American Mathematical Monthly
 Problem 11403 by Yaming Yu (edited)

For every integer $n \geq 0$, define a polynomial $f_{n} \in \mathbb{Q}[x]$ by

$$
f_{n}(x)=\sum_{i=0}^{n}\binom{n}{i}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)
$$

Find $\operatorname{deg} f_{n}$ for every $n>1$.

Solution by Darij Grinberg.

First, we will show:
Lemma 1. For every integer $n>1$, we have $f_{n}(x)=(n-1)\left(f_{n-1}(x)+x f_{n-2}(x)\right)$.
Proof of Lemma 1. Every integer $i \in\{0,1, \ldots, n-1\}$ satisfies

$$
\begin{equation*}
i \cdot\binom{n-1}{i}=(n-1) \cdot\binom{n-2}{i-1} . \tag{1}
\end{equation*}
$$

[Proof of (1): Let $i \in\{0,1, \ldots, n-1\}$. We must prove (1). If $i=0$, then (11) follows immediately by comparing $\underbrace{i}_{=0} \cdot\binom{n-1}{i}=0$ with $(n-1) \cdot \underbrace{(\text { since } i=0<1))}_{(\text {since } i-1<0=0}\binom{n-2}{i-1} \quad=0$.
Thus, for the rest of this proof of (1), we can WLOG assume that $i \neq 0$. Assume this. Hence, $i \geq 1$ (since $i \neq 0$ and $i \in\{0,1, \ldots, n-1\}$), so that $i-1 \geq 0$. Now,

$$
\begin{aligned}
& i \cdot \underbrace{(n-1)!}_{\binom{n-1}{i}}=i \cdot \frac{(n-1)!}{i!((n-1)-i)!}=i \cdot \frac{(n-1) \cdot(n-2)!}{((i-1)!\cdot i) \cdot((n-2)-(i-1))!} \\
& =\frac{(\text { since }(n-1)!=(n-1) \cdot(n-2)!, \quad i!=(i-1)!\cdot i \text { and }(n-1)-i=(n-2)-(i-1))}{i!((n-1)-i)!} \\
& =(n-1) \cdot \underbrace{\frac{(n-2)!}{(i-1)!\cdot((n-2)-(i-1))!}}=(n-1) \cdot\binom{n-2}{i-1} .
\end{aligned}
$$

This proves (1).]

Now,

$$
\left.\begin{array}{rl}
f_{n}(x)= & \sum_{i=0}^{n}\binom{n}{i}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)=\sum_{i=0}^{n}\left(\binom{n-1}{i-1}+\binom{n-1}{i}\right)(-x)^{n-i} \prod_{j=0}^{i-1}(x+j) \\
& \left(\begin{array}{c}
\text { as } \left.\binom{n}{i}=\binom{n-1}{i-1}+\binom{n-1}{i} \text { by the recurrence of the binomial coefficients }\right) \\
=
\end{array} \sum_{i=0}^{n}\binom{n-1}{i-1}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)+\sum_{i=0}^{n}\binom{n-1}{i}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)\right. \\
= & \sum_{i=1}^{n}\binom{n-1}{i-1}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)+\sum_{i=0}^{n}\binom{n-1}{i}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j) \\
& \binom{\text { here we replaced the first } \sum_{i=0}^{n} \operatorname{sign} \text { by an } \sum_{i=1}^{n} \operatorname{sign},}{\text { since the addend for } i=0 \text { is zero }} \\
\quad\left(\text { as }\binom{n-1}{i-1}=\binom{n-1}{-1}=0 \text { for } i=0\right)
\end{array}\right)
$$

(here we substituted $i+1$ for i in the first sum)
$=\sum_{i=0}^{n-1}\binom{n-1}{i}(-x)^{n-i-1} \prod_{j=0}^{i}(x+j)+\sum_{i=0}^{n-1}\binom{n-1}{i}(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)$
$\binom{$ here we replaced the $\sum_{i=0}^{n} \operatorname{sign}$ by an $\sum_{i=0}^{n-1}$ sign, since the addend for $i=n$ is zero }{$\left(\right.$ as $\binom{n-1}{i}=\binom{n-1}{n}=0$ for $\left.i=n\right)}$
$=\sum_{i=0}^{n-1}\binom{n-1}{i}\left((-x)^{n-i-1} \prod_{j=0}^{i}(x+j)+(-x)^{n-i} \prod_{j=0}^{i-1}(x+j)\right)$
$=\sum_{i=0}^{n-1}\binom{n-1}{i}\left((-x)^{n-i-1} \prod_{j=0}^{i}(x+j)+(-x)^{n-i-1}(-x) \prod_{j=0}^{i-1}(x+j)\right)$

$$
\begin{align*}
& =\sum_{i=0}^{n-1}\binom{n-1}{i}(-x)^{n-i-1}\left(\prod_{j=0}^{i}(x+j)+(-x) \prod_{j=0}^{i-1}(x+j)\right) \\
& =\sum_{i=0}^{n-1}\binom{n-1}{i}(-x)^{n-i-1}\left((x+i) \prod_{j=0}^{i-1}(x+j)+(-x) \prod_{j=0}^{i-1}(x+j)\right) \\
& =\sum_{i=0}^{n-1}\binom{n-1}{i}(-x)^{n-i-1} \underbrace{((x+i)+(-x))}_{=i} \prod_{j=0}^{i-1}(x+j)=\sum_{i=0}^{n-1}\left(i \cdot\binom{n-1}{i}\right)(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j) \\
& =\sum_{i=0}^{n-1}\left((n-1) \cdot\binom{n-2}{i-1}\right)(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j) \quad(\text { by }(1)) \\
& =(n-1) \cdot \sum_{i=0}^{n-1}\binom{n-2}{i-1}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j) . \tag{2}
\end{align*}
$$

But

$$
\begin{aligned}
f_{n-1}(x) & =\sum_{i=0}^{n-1} \underbrace{\binom{n-1}{i}} \underbrace{(-x)^{(n-1)-i}}_{=(-x)^{n-i-1}} \prod_{j=0}^{i-1}(x+j) \\
& =\sum_{i=0}^{(\text {by the recurrence of the binomial coefficients) }}\left(\binom{n-2}{i}+\binom{n-2}{i-1}\right)(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j) \\
& =\sum_{i=0}^{n-1}\binom{n-2}{i}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j)+\sum_{i=0}^{n-1}\binom{n-2}{i-1}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j)
\end{aligned}
$$

and

$$
f_{n-2}(x)=\sum_{i=0}^{n-2}\binom{n-2}{i}(-x)^{(n-2)-i} \prod_{j=0}^{i-1}(x+j)
$$

yielding

$$
\begin{aligned}
x f_{n-2}(x)= & x \sum_{i=0}^{n-2}\binom{n-2}{i}(-x)^{(n-2)-i} \prod_{j=0}^{i-1}(x+j)=-(-x) \sum_{i=0}^{n-2}\binom{n-2}{i}(-x)^{(n-2)-i} \prod_{j=0}^{i-1}(x+j) \\
= & -\sum_{i=0}^{n-2}\binom{n-2}{i} \underbrace{(-x)(-x)^{(n-2)-i}}_{=(-x)^{(n-2)-i+1}=(-x)^{n-i-1}} \prod_{j=0}^{i-1}(x+j) \\
= & -\sum_{i=0}^{n-2}\binom{n-2}{i}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j)=-\sum_{i=0}^{n-1}\binom{n-2}{i}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j) \\
& \binom{\text { here we replaced the } \sum_{i=0}^{n-2} \operatorname{sign} \text { by an } \sum_{i=0}^{n-1} \text { sign, since the addend }}{\text { for } \left.i=n-1 \text { is zero (as }\binom{n-2}{i}=\binom{n-2}{n-1}=0 \text { for } i=n-1\right)}
\end{aligned}
$$

so that

$$
\begin{aligned}
& f_{n-1}(x)+x f_{n-2}(x) \\
& =\left(\sum_{i=0}^{n-1}\binom{n-2}{i}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j)+\sum_{i=0}^{n-1}\binom{n-2}{i-1}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j)\right) \\
& +\left(-\sum_{i=0}^{n-1}\binom{n-2}{i}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j)\right) \\
& =\sum_{i=0}^{n-1}\binom{n-2}{i-1}(-x)^{n-i-1} \prod_{j=0}^{i-1}(x+j),
\end{aligned}
$$

and thus (2) becomes $f_{n}(x)=(n-1) \cdot\left(f_{n-1}(x)+x f_{n-2}(x)\right)$. This proves Lemma 1.
Next, we introduce a notation: For any polynomial $p \in \mathbb{Q}[x]$, and for any integer $k \geq 0$, we denote by coeff (p, k) the coefficient of p before x^{k}. Then, every polynomial $p \in \mathbb{Q}[x]$ satisfies $p(x)=\sum_{k>0} \operatorname{coeff}(p, k) \cdot x^{k}$.

Now, Lemma 1 yields ${ }^{\top}$
Corollary 2. For every integer $n>1$, we have $\operatorname{deg} f_{n} \leq \max \left\{\operatorname{deg} f_{n-1}, 1+\operatorname{deg} f_{n-2}\right\}$ and coeff $\left(f_{n}, s\right)=(n-1)\left(\operatorname{coeff}\left(f_{n-1}, s\right)+\operatorname{coeff}\left(f_{n-2}, s-1\right)\right)$ for every positive integer s.

Proof of Corollary 2. Theorem 1 yields $f_{n}(x)=(n-1)\left(f_{n-1}(x)+x f_{n-2}(x)\right)$. Thus,

$$
\begin{aligned}
\operatorname{deg} f_{n} & =\operatorname{deg}\left(f_{n}(x)\right)=\operatorname{deg}(\underbrace{(n-1)}_{\begin{array}{c}
\text { is a nonzero } \\
\text { constant }
\end{array}}\left(f_{n-1}(x)+x f_{n-2}(x)\right))=\operatorname{deg}\left(f_{n-1}(x)+x f_{n-2}(x)\right) \\
& \leq \max \left\{\operatorname{deg}\left(f_{n-1}(x)\right), \operatorname{deg}\left(x f_{n-2}(x)\right)\right\}=\max \left\{\operatorname{deg}\left(f_{n-1}(x)\right), 1+\operatorname{deg}\left(f_{n-2}(x)\right)\right\} \\
& =\max \left\{\operatorname{deg} f_{n-1}, 1+\operatorname{deg} f_{n-2}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{coeff}\left(f_{n}, s\right) & =\operatorname{coeff}\left(f_{n}(x), s\right)=\operatorname{coeff}\left((n-1)\left(f_{n-1}(x)+x f_{n-2}(x)\right), s\right) \\
& =(n-1)\left(\operatorname{coeff}\left(f_{n-1}(x), s\right)+\operatorname{coeff}\left(x f_{n-2}(x), s\right)\right) \\
& =(n-1)\left(\operatorname{coeff}\left(f_{n-1}(x), s\right)+\operatorname{coeff}\left(f_{n-2}(x), s-1\right)\right) \\
& =(n-1)\left(\operatorname{coeff}\left(f_{n-1}, s\right)+\operatorname{coeff}\left(f_{n-2}, s-1\right)\right),
\end{aligned}
$$

and Corollary 2 is proven.
Next, we notice that

$$
f_{0}(x)=\sum_{i=0}^{0}\binom{0}{i}(-x)^{0-i} \prod_{j=0}^{i-1}(x+j)=\underbrace{\binom{0}{0}}_{=1} \underbrace{(-x)^{0-0}}_{=(-x)^{0}=1} \underbrace{\prod_{j=0}^{-1}(x+j)}_{=1}=1
$$

[^0]and
\[

$$
\begin{aligned}
f_{1}(x) & =\sum_{i=0}^{1}\binom{1}{i}(-x)^{1-i} \prod_{j=0}^{i-1}(x+j) \\
& =\underbrace{\binom{1}{0}}_{=1} \underbrace{(-x)^{1-0}}_{=(-x)^{1}=-x} \underbrace{\prod_{j=0}^{-1}(x+j)}_{=1}+\underbrace{\binom{1}{1}}_{=1} \underbrace{(-x)^{1-1}}_{=(-x)^{0}=1} \underbrace{\prod_{j=0}^{0}(x+j)}_{=x+0=x} \\
& =(-x)+x=0 .
\end{aligned}
$$
\]

Thus, Lemma 1 (applied to $n=2$) yields

$$
f_{2}(x)=(2-1)\left(f_{2-1}(x)+x f_{2-2}(x)\right)=1(\underbrace{f_{1}(x)}_{=0}+x \underbrace{f_{0}(x)}_{=1})=1(0+x)=1 x=x .
$$

Also, Lemma 1 (applied to $n=3$) yields

$$
f_{3}(x)=(3-1)\left(f_{3-1}(x)+x f_{3-2}(x)\right)=2(\underbrace{f_{2}(x)}_{=x}+x \underbrace{f_{1}(x)}_{=0})=2(x+0)=2 x .
$$

Now, our main result:
Theorem 3. For any positive integer u, we have $\operatorname{deg} f_{2 u}=\operatorname{deg} f_{2 u+1}=u$, coeff $\left(f_{2 u}, u\right)>0$ and coeff $\left(f_{2 u+1}, u\right)>0$.

Proof of Theorem 3. We will show Theorem 3 by induction over u :
Induction base. For $u=1$, we have $f_{2 u}(x)=f_{2 \cdot 1}(x)=f_{2}(x)=x$, thus $\operatorname{deg} f_{2 u}=$ $1=u$ and coeff $\left(f_{2 u}, u\right)=\operatorname{coeff}\left(f_{2 u}, 1\right)=1>0$. Besides, for $u=1$, we have $f_{2 u+1}(x)=$ $f_{2 \cdot 1+1}(x)=f_{3}(x)=2 x$, thus deg $f_{2 u+1}=1=u$ and coeff $\left(f_{2 u+1}, u\right)=\operatorname{coeff}\left(f_{2 u+1}, 1\right)=$ $2>0$. Altogether, we have thus shown that the relations $\operatorname{deg} f_{2 u}=\operatorname{deg} f_{2 u+1}=u$, coeff $\left(f_{2 u}, u\right)>0$ and coeff $\left(f_{2 u+1}, u\right)>0$ hold for $u=1$. In other words, Theorem 3 is proven for $u=1$. This completes the induction base.

Induction step. Let $k \geq 2$ be an integer. Assume that Theorem 3 holds for $u=k-1$. We want to prove that Theorem 3 holds for $u=k$ as well.

Since Theorem 3 holds for $u=k-1$, we have $\operatorname{deg} f_{2(k-1)}=\operatorname{deg} f_{2(k-1)+1}=k-1$, coeff $\left(f_{2(k-1)}, k-1\right)>0$ and coeff $\left(f_{2(k-1)+1}, k-1\right)>0$.

Now, Corollary 2 (applied to $n=2 k$ and $s=k$) yields

$$
\begin{aligned}
\operatorname{deg} f_{2 k} & \leq \max \left\{\operatorname{deg} f_{2 k-1}, 1+\operatorname{deg} f_{2 k-2}\right\}=\max \left\{\operatorname{deg} f_{2(k-1)+1}, 1+\operatorname{deg} f_{2(k-1)}\right\} \\
& =\max \{k-1,1+(k-1)\}=\max \{k-1, k\}=k
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{coeff}\left(f_{2 k}, k\right) & =(2 k-1)\left(\operatorname{coeff}\left(f_{2 k-1}, k\right)+\operatorname{coeff}\left(f_{2 k-2}, k-1\right)\right) \\
& =(2 k-1)(\underbrace{\operatorname{coeff}\left(f_{2(k-1)+1}, k\right)}_{\substack{=0, \text { since } \\
\operatorname{deg} f_{2(k-1)+1}=k-1<k}}+\operatorname{coeff}\left(f_{2(k-1)}, k-1\right)) \\
& =\underbrace{(2 k-1)}_{>0} \underbrace{\operatorname{coeff}\left(f_{2(k-1)}, k-1\right)}_{>0}>0 .
\end{aligned}
$$

These, combined, yield $\operatorname{deg} f_{2 k}=k$.
Furthermore, Corollary 2 (applied to $n=2 k+1$ and $s=k$) yields

$$
\begin{aligned}
\operatorname{deg} f_{2 k+1} & \leq \max \left\{\operatorname{deg} f_{(2 k+1)-1}, 1+\operatorname{deg} f_{(2 k+1)-2}\right\}=\max \left\{\operatorname{deg} f_{2 k}, 1+\operatorname{deg} f_{2(k-1)+1}\right\} \\
& =\max \{k, 1+(k-1)\}=\max \{k, k\}=k
\end{aligned}
$$

and

$$
\begin{aligned}
\operatorname{coeff}\left(f_{2 k+1}, k\right) & =((2 k+1)-1)\left(\operatorname{coeff}\left(f_{(2 k+1)-1}, k\right)+\operatorname{coeff}\left(f_{(2 k+1)-2}, k-1\right)\right) \\
& =\underbrace{2 k}_{>0}(\underbrace{\operatorname{coeff}\left(f_{2 k}, k\right)}_{>0}+\underbrace{\operatorname{coeff}\left(f_{2(k-1)+1}, k-1\right)}_{>0})>0 .
\end{aligned}
$$

These, combined, yield $\operatorname{deg} f_{2 k+1}=k$.
Altogether, we have thus shown $\operatorname{deg} f_{2 k}=\operatorname{deg} f_{2 k+1}=k$, $\operatorname{coeff}\left(f_{2 k}, k\right)>0$ and coeff $\left(f_{2 k+1}, k\right)>0$. In other words, we have shown that Theorem 3 holds for $u=k$. This completes the induction step. Thus, the proof of Theorem 3 is complete.

To conclude, here is a formula for $\operatorname{deg} f_{n}$:
Corollary 4. For every integer $n \geq 0$, we have $\operatorname{deg} f_{n}=\left\{\begin{array}{cc}\left\lfloor\frac{n}{2}\right\rfloor, & \text { if } n \neq 1 ; \\ -\infty, & \text { if } n=1\end{array}\right.$
(where we consider deg 0 to be $-\infty$).
Proof of Corollary 4. If $n=0$, then $f_{n}(x)=f_{0}(x)=1$, so that $\operatorname{deg} f_{n}=0=$ $\left\lfloor\frac{0}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor$.

If $n=1$, then $f_{n}(x)=f_{1}(x)=0$, so that $\operatorname{deg} f_{n}=-\infty$.
If n is even and $n>1$, then there exists a positive integer u such that $n=2 u$, so that

$$
\begin{aligned}
\operatorname{deg} f_{n} & =\operatorname{deg} f_{2 u}=u \quad(\text { by Theorem 3) } \\
& =\lfloor u\rfloor=\left\lfloor\frac{2 u}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor .
\end{aligned}
$$

If n is odd and $n>1$, then there exists a positive integer u such that $n=2 u+1$, so that

$$
\begin{aligned}
\operatorname{deg} f_{n} & =\operatorname{deg} f_{2 u+1}=u \quad(\text { by Theorem 3) } \\
& =\left\lfloor u+\frac{1}{2}\right\rfloor=\left\lfloor\frac{2 u+1}{2}\right\rfloor=\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

Thus, for every integer $n \geq 0$, we have
$\operatorname{deg} f_{n}=\left\{\begin{array}{c}\left\lfloor\frac{n}{2}\right\rfloor, \text { if } n=0 ; \\ -\infty, \text { if } n=1 ; \\ \left\lfloor\frac{n}{2}\right\rfloor, \text { if } n \text { is even and } n>1 ; \\ \left\lfloor\frac{n}{2}\right\rfloor, \text { if } n \text { is odd and } n>1\end{array} \quad=\left\{\begin{array}{c}\left\lfloor\frac{n}{2}\right\rfloor, \text { if } n=0 ; \\ -\infty, \text { if } n=1 ; \\ \left\lfloor\frac{n}{2}\right\rfloor, \text { if } n>1\end{array}=\left\{\begin{array}{c}\left\lfloor\frac{n}{2}\right\rfloor, \text { if } n \neq 1 ; \\ -\infty, \text { if } n=1\end{array}\right.\right.\right.$.
Corollary 4 is proven.

[^0]: ${ }^{1}$ Here and in the following, we are using the convention that the degree of the zero polynomial is $-\infty$.

