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For every integer n ≥ 0, define a polynomial fn ∈ Q [x] by

fn (x) =
n∑

i=0

(
n

i

)
(−x)n−i

i−1∏
j=0

(x + j) .

Find deg fn for every n > 1.

Solution by Darij Grinberg.
First, we will show:

Lemma 1. For every integer n > 1, we have fn (x) = (n− 1) (fn−1 (x) + xfn−2 (x)).

Proof of Lemma 1. Every integer i ∈ {0, 1, ..., n− 1} satisfies

i ·
(
n− 1

i

)
= (n− 1) ·

(
n− 2

i− 1

)
. (1)

[Proof of (1): Let i ∈ {0, 1, ..., n− 1}. We must prove (1). If i = 0, then (1) follows

immediately by comparing i︸︷︷︸
=0

·
(
n− 1

i

)
= 0 with (n− 1) ·

(
n− 2

i− 1

)
︸ ︷︷ ︸

=0
(since i−1<0 (since i=0<1))

= 0.

Thus, for the rest of this proof of (1), we can WLOG assume that i 6= 0. Assume this.
Hence, i ≥ 1 (since i 6= 0 and i ∈ {0, 1, ..., n− 1}), so that i− 1 ≥ 0. Now,

i ·
(
n− 1

i

)
︸ ︷︷ ︸

=
(n− 1)!

i! ((n− 1)− i)!

= i · (n− 1)!

i! ((n− 1)− i)!
= i · (n− 1) · (n− 2)!

((i− 1)! · i) · ((n− 2)− (i− 1))!

(since (n− 1)! = (n− 1) · (n− 2)!, i! = (i− 1)! · i and (n− 1)− i = (n− 2)− (i− 1))

= (n− 1) · (n− 2)!

(i− 1)! · ((n− 2)− (i− 1))!︸ ︷︷ ︸
=

(
n− 2

i− 1

) = (n− 1) ·
(
n− 2

i− 1

)
.

This proves (1).]
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Now,

fn (x) =
n∑

i=0

(
n

i

)
(−x)n−i

i−1∏
j=0

(x + j) =
n∑

i=0

((
n− 1

i− 1

)
+

(
n− 1

i

))
(−x)n−i

i−1∏
j=0

(x + j)(
as

(
n

i

)
=

(
n− 1

i− 1

)
+

(
n− 1

i

)
by the recurrence of the binomial coefficients

)
=

n∑
i=0

(
n− 1

i− 1

)
(−x)n−i

i−1∏
j=0

(x + j) +
n∑

i=0

(
n− 1

i

)
(−x)n−i

i−1∏
j=0

(x + j)

=
n∑

i=1

(
n− 1

i− 1

)
(−x)n−i

i−1∏
j=0

(x + j) +
n∑

i=0

(
n− 1

i

)
(−x)n−i

i−1∏
j=0

(x + j)
here we replaced the first

n∑
i=0

sign by an
n∑

i=1

sign,

since the addend for i = 0 is zero

(as

(
n− 1

i− 1

)
=

(
n− 1

−1

)
= 0 for i = 0)


=

n−1∑
i=0

(
n− 1

i

)
(−x)n−i−1

i∏
j=0

(x + j) +
n∑

i=0

(
n− 1

i

)
(−x)n−i

i−1∏
j=0

(x + j)

(here we substituted i + 1 for i in the first sum)

=
n−1∑
i=0

(
n− 1

i

)
(−x)n−i−1

i∏
j=0

(x + j) +
n−1∑
i=0

(
n− 1

i

)
(−x)n−i

i−1∏
j=0

(x + j) here we replaced the
n∑

i=0

sign by an
n−1∑
i=0

sign, since the addend for i = n is zero

(as

(
n− 1

i

)
=

(
n− 1

n

)
= 0 for i = n)


=

n−1∑
i=0

(
n− 1

i

)(
(−x)n−i−1

i∏
j=0

(x + j) + (−x)n−i
i−1∏
j=0

(x + j)

)

=
n−1∑
i=0

(
n− 1

i

)(
(−x)n−i−1

i∏
j=0

(x + j) + (−x)n−i−1 (−x)
i−1∏
j=0

(x + j)

)
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=
n−1∑
i=0

(
n− 1

i

)
(−x)n−i−1

(
i∏

j=0

(x + j) + (−x)
i−1∏
j=0

(x + j)

)

=
n−1∑
i=0

(
n− 1

i

)
(−x)n−i−1

(
(x + i)

i−1∏
j=0

(x + j) + (−x)
i−1∏
j=0

(x + j)

)

=
n−1∑
i=0

(
n− 1

i

)
(−x)n−i−1 ((x + i) + (−x))︸ ︷︷ ︸

=i

i−1∏
j=0

(x + j) =
n−1∑
i=0

(
i ·
(
n− 1

i

))
(−x)n−i−1

i−1∏
j=0

(x + j)

=
n−1∑
i=0

(
(n− 1) ·

(
n− 2

i− 1

))
(−x)n−i−1

i−1∏
j=0

(x + j) (by (1))

= (n− 1) ·
n−1∑
i=0

(
n− 2

i− 1

)
(−x)n−i−1

i−1∏
j=0

(x + j) . (2)

But

fn−1 (x) =
n−1∑
i=0

(
n− 1

i

)
︸ ︷︷ ︸

=

(
n− 2

i

)
+

(
n− 2

i− 1

)
(by the recurrence of the binomial coefficients)

(−x)(n−1)−i︸ ︷︷ ︸
=(−x)n−i−1

i−1∏
j=0

(x + j)

=
n−1∑
i=0

((
n− 2

i

)
+

(
n− 2

i− 1

))
(−x)n−i−1

i−1∏
j=0

(x + j)

=
n−1∑
i=0

(
n− 2

i

)
(−x)n−i−1

i−1∏
j=0

(x + j) +
n−1∑
i=0

(
n− 2

i− 1

)
(−x)n−i−1

i−1∏
j=0

(x + j)

and

fn−2 (x) =
n−2∑
i=0

(
n− 2

i

)
(−x)(n−2)−i

i−1∏
j=0

(x + j) ,

yielding

xfn−2 (x) = x

n−2∑
i=0

(
n− 2

i

)
(−x)(n−2)−i

i−1∏
j=0

(x + j) = − (−x)
n−2∑
i=0

(
n− 2

i

)
(−x)(n−2)−i

i−1∏
j=0

(x + j)

= −
n−2∑
i=0

(
n− 2

i

)
(−x) (−x)(n−2)−i︸ ︷︷ ︸

=(−x)(n−2)−i+1=(−x)n−i−1

i−1∏
j=0

(x + j)

= −
n−2∑
i=0

(
n− 2

i

)
(−x)n−i−1

i−1∏
j=0

(x + j) = −
n−1∑
i=0

(
n− 2

i

)
(−x)n−i−1

i−1∏
j=0

(x + j) here we replaced the
n−2∑
i=0

sign by an
n−1∑
i=0

sign, since the addend

for i = n− 1 is zero (as

(
n− 2

i

)
=

(
n− 2

n− 1

)
= 0 for i = n− 1)

 ,
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so that

fn−1 (x) + xfn−2 (x)

=

(
n−1∑
i=0

(
n− 2

i

)
(−x)n−i−1

i−1∏
j=0

(x + j) +
n−1∑
i=0

(
n− 2

i− 1

)
(−x)n−i−1

i−1∏
j=0

(x + j)

)

+

(
−

n−1∑
i=0

(
n− 2

i

)
(−x)n−i−1

i−1∏
j=0

(x + j)

)

=
n−1∑
i=0

(
n− 2

i− 1

)
(−x)n−i−1

i−1∏
j=0

(x + j) ,

and thus (2) becomes fn (x) = (n− 1) · (fn−1 (x) + xfn−2 (x)) . This proves Lemma 1.
Next, we introduce a notation: For any polynomial p ∈ Q [x] , and for any integer

k ≥ 0, we denote by coeff (p, k) the coefficient of p before xk. Then, every polynomial
p ∈ Q [x] satisfies p (x) =

∑
k≥0

coeff (p, k) · xk.

Now, Lemma 1 yields:1

Corollary 2. For every integer n > 1, we have deg fn ≤ max {deg fn−1, 1 + deg fn−2}
and coeff (fn, s) = (n− 1) (coeff (fn−1, s) + coeff (fn−2, s− 1)) for every pos-
itive integer s.

Proof of Corollary 2. Theorem 1 yields fn (x) = (n− 1) (fn−1 (x) + xfn−2 (x)) .
Thus,

deg fn = deg (fn (x)) = deg

 (n− 1)︸ ︷︷ ︸
is a nonzero

constant

(fn−1 (x) + xfn−2 (x))

 = deg (fn−1 (x) + xfn−2 (x))

≤ max {deg (fn−1 (x)) , deg (xfn−2 (x))} = max {deg (fn−1 (x)) , 1 + deg (fn−2 (x))}
= max {deg fn−1, 1 + deg fn−2}

and

coeff (fn, s) = coeff (fn (x) , s) = coeff ((n− 1) (fn−1 (x) + xfn−2 (x)) , s)

= (n− 1) (coeff (fn−1 (x) , s) + coeff (xfn−2 (x) , s))

= (n− 1) (coeff (fn−1 (x) , s) + coeff (fn−2 (x) , s− 1))

= (n− 1) (coeff (fn−1, s) + coeff (fn−2, s− 1)) ,

and Corollary 2 is proven.
Next, we notice that

f0 (x) =
0∑

i=0

(
0

i

)
(−x)0−i

i−1∏
j=0

(x + j) =

(
0

0

)
︸︷︷︸

=1

(−x)0−0︸ ︷︷ ︸
=(−x)0=1

−1∏
j=0

(x + j)︸ ︷︷ ︸
=1

= 1

1Here and in the following, we are using the convention that the degree of the zero polynomial is
−∞.
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and

f1 (x) =
1∑

i=0

(
1

i

)
(−x)1−i

i−1∏
j=0

(x + j)

=

(
1

0

)
︸︷︷︸

=1

(−x)1−0︸ ︷︷ ︸
=(−x)1=−x

−1∏
j=0

(x + j)︸ ︷︷ ︸
=1

+

(
1

1

)
︸︷︷︸

=1

(−x)1−1︸ ︷︷ ︸
=(−x)0=1

0∏
j=0

(x + j)︸ ︷︷ ︸
=x+0=x

= (−x) + x = 0.

Thus, Lemma 1 (applied to n = 2) yields

f2 (x) = (2− 1) (f2−1 (x) + xf2−2 (x)) = 1

f1 (x)︸ ︷︷ ︸
=0

+x f0 (x)︸ ︷︷ ︸
=1

 = 1 (0 + x) = 1x = x.

Also, Lemma 1 (applied to n = 3) yields

f3 (x) = (3− 1) (f3−1 (x) + xf3−2 (x)) = 2

f2 (x)︸ ︷︷ ︸
=x

+x f1 (x)︸ ︷︷ ︸
=0

 = 2 (x + 0) = 2x.

Now, our main result:

Theorem 3. For any positive integer u, we have deg f2u = deg f2u+1 = u,
coeff (f2u, u) > 0 and coeff (f2u+1, u) > 0.

Proof of Theorem 3. We will show Theorem 3 by induction over u:
Induction base. For u = 1, we have f2u (x) = f2·1 (x) = f2 (x) = x, thus deg f2u =

1 = u and coeff (f2u, u) = coeff (f2u, 1) = 1 > 0. Besides, for u = 1, we have f2u+1 (x) =
f2·1+1 (x) = f3 (x) = 2x, thus deg f2u+1 = 1 = u and coeff (f2u+1, u) = coeff (f2u+1, 1) =
2 > 0. Altogether, we have thus shown that the relations deg f2u = deg f2u+1 = u,
coeff (f2u, u) > 0 and coeff (f2u+1, u) > 0 hold for u = 1. In other words, Theorem 3 is
proven for u = 1. This completes the induction base.

Induction step. Let k ≥ 2 be an integer. Assume that Theorem 3 holds for u = k−1.
We want to prove that Theorem 3 holds for u = k as well.

Since Theorem 3 holds for u = k − 1, we have deg f2(k−1) = deg f2(k−1)+1 = k − 1,
coeff

(
f2(k−1), k − 1

)
> 0 and coeff

(
f2(k−1)+1, k − 1

)
> 0.

Now, Corollary 2 (applied to n = 2k and s = k) yields

deg f2k ≤ max {deg f2k−1, 1 + deg f2k−2} = max
{

deg f2(k−1)+1, 1 + deg f2(k−1)

}
= max {k − 1, 1 + (k − 1)} = max {k − 1, k} = k

and

coeff (f2k, k) = (2k − 1) (coeff (f2k−1, k) + coeff (f2k−2, k − 1))

= (2k − 1)

coeff
(
f2(k−1)+1, k

)︸ ︷︷ ︸
=0, since

deg f2(k−1)+1=k−1<k

+ coeff
(
f2(k−1), k − 1

)


= (2k − 1)︸ ︷︷ ︸
>0

coeff
(
f2(k−1), k − 1

)︸ ︷︷ ︸
>0

> 0.
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These, combined, yield deg f2k = k.
Furthermore, Corollary 2 (applied to n = 2k + 1 and s = k) yields

deg f2k+1 ≤ max
{

deg f(2k+1)−1, 1 + deg f(2k+1)−2

}
= max

{
deg f2k, 1 + deg f2(k−1)+1

}
= max {k, 1 + (k − 1)} = max {k, k} = k

and

coeff (f2k+1, k) = ((2k + 1)− 1)
(
coeff

(
f(2k+1)−1, k

)
+ coeff

(
f(2k+1)−2, k − 1

))
= 2k︸︷︷︸

>0

coeff (f2k, k)︸ ︷︷ ︸
>0

+ coeff
(
f2(k−1)+1, k − 1

)︸ ︷︷ ︸
>0

 > 0.

These, combined, yield deg f2k+1 = k.
Altogether, we have thus shown deg f2k = deg f2k+1 = k, coeff (f2k, k) > 0 and

coeff (f2k+1, k) > 0. In other words, we have shown that Theorem 3 holds for u = k.
This completes the induction step. Thus, the proof of Theorem 3 is complete.

To conclude, here is a formula for deg fn:

Corollary 4. For every integer n ≥ 0, we have deg fn =

{ ⌊n
2

⌋
, if n 6= 1;

−∞, if n = 1
(where we consider deg 0 to be −∞).

Proof of Corollary 4. If n = 0, then fn (x) = f0 (x) = 1, so that deg fn = 0 =⌊
0

2

⌋
=
⌊n

2

⌋
.

If n = 1, then fn (x) = f1 (x) = 0, so that deg fn = −∞.
If n is even and n > 1, then there exists a positive integer u such that n = 2u, so

that

deg fn = deg f2u = u (by Theorem 3)

= buc =

⌊
2u

2

⌋
=
⌊n

2

⌋
.

If n is odd and n > 1, then there exists a positive integer u such that n = 2u + 1,
so that

deg fn = deg f2u+1 = u (by Theorem 3)

=

⌊
u +

1

2

⌋
=

⌊
2u + 1

2

⌋
=
⌊n

2

⌋
.

Thus, for every integer n ≥ 0, we have

deg fn =



⌊n
2

⌋
, if n = 0;

−∞, if n = 1;⌊n
2

⌋
, if n is even and n > 1;⌊n

2

⌋
, if n is odd and n > 1

=


⌊n

2

⌋
, if n = 0;

−∞, if n = 1;⌊n
2

⌋
, if n > 1

=

{ ⌊n
2

⌋
, if n 6= 1;

−∞, if n = 1
.

Corollary 4 is proven.
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