American Mathematical Monthly Problem 11409 by Paolo Perfetti.

Let a and 8 be positive reals such that g > a. Let
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Prove that the limit hm S (a, B, N) exists.
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Solution (by Darij Grinberg).

EDIT: This solution is slightly flawed. Can you find the flaw? — See the remark at
the end of the solution for the answer and a workaround.
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is alternating. Thus, by Leibniz’s criterion, in order to prove its convergence, it is
enough to show that
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Since nlogn H is positive for every n > 2, the series

Since
T (a+ klogk
nlognH a—l—k’logk: _ nlogn 1;[(04+ og k)
3 0+ (k+1)log (k +1) k]l(ﬁ—l—(k—i—l)log(k—kl))
IT (o + klogk) nlogn II (o + klogk)
= nlogni = = (O 2loe ) G T og +1)k:2
n n n
[1 (8+ klogk) & T1 (8 + Klog k)
=3 =2
(B4 2l0g2) nlogn Ha+klogk

B+ (n+1)log(n+1) ﬂ+klogk’

this is equivalent to proving that
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Since (8 + 2log 2 is just a constant, and
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(where we used that lim = 1, which is easy to see!), this reduces to showing
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both converge to 1 for n — oo, and thus converges to 1.

2This crude estimate becomes clear by multiplying out the product on the left hand side - you
obtain numerous addends, among them all those appearing in the sum on the right hand side, and
some more (which are all positive, so they can be omitted).



But this can be done in the same way as one usually shows that the harmonic series
diverges:
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Remark. Have you found the mistake in the above solution? It is in the application
of Leibniz’s criterion. In order to use it to prove the convergence of the alternating
series
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but also must prove that the sequence
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is monotonically decreasing from some n onwards. How to show this? Here is one
possible way: We have to prove the existence of some N € N such that the inequality
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holds for every n > N. This inequality is easily rewritten as
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Now, in order to prove (1), we introduce some notation.

A function from an interval I C R to R is called neat if is either constantly 0 or
has only finitely many zeroes.

A 1-logarithmic term on an interval I C R will mean a term of the form ) py log gx,

k=1
where p1, P2, ..., Pu, ¢1, G2, ---, qu are finitely many rational functions in one variable x

over R such that ¢, ¢, ..., q, are all positive on I.
A 2-logarithmic term on an interval I C R will mean a term of the form > py log ¢x log 7,
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where p1, P2, ooy Dus Q15 G2, -ovs Qus T1, T2, ..., Ty, are finitely many rational functions in

one variable x over R such that ¢, qs, ..., qu, 71, 72, ..., 7, are all positive on I.

Obviously, any 1-logarithmic term defines a function I — R, and any 2-logarithmic
term defines a function I — R. A function I — R will be called 1-logarithmic if it can
be represented by a 1-logarithmic term on 7, and similarly it will be called 2-logarithmic
if it can be represented by a 2-logarithmic term on 1.

First, we notice an easy property:

Lemma 1. a) If a function f : I — R is I-logarithmic, then so is f( for every
¢eN.

b) If a function f : I — R is 2-logarithmic, then so is f) for every ¢ € N.

Proof of Lemma 1. a) This will follow by induction once we show that if a function
f 1 — Ris 1-logarithmic, then so is f’. But this is clear because

u u

u / /
(Zmloqu> =3 (pkloqu + pgq’“> => (p; log i + %loge) :
1 k k

k=1 k=1

b) This can be proven similarly to a), but we won’t use it here, so we restrain from
giving the proof.

Thus, Lemma 1 is proven.

Now we claim:

Lemma 2. a) Let I C R be an interval. Then, any 1-logarithmic function on I is
neat.

b) Let I C R be an interval. Then any 2-logarithmic function on [/ is neat.

Proof of Lemma 2. a) Let Z pr log qr be a 1-logarithmic term on [; this means

that p1, po, ..., Pu, Q15 @2, -y Qu are finitely many rational functions in one variable x
over R such that qi, 2, ..., ¢, are all positive on I. We must prove that the function

> prlogqr : I — R is neat.
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We can WLOG assume that py, po, ..., p, are polynomials (else, just multiply the
rational functions py, pa, ..., p, by their common denominator).

Notice that if f : I — R is a differentiable function such that f’ is neat, then
f is neat as well (since Rolle’s theorem asserts the existence of a zero of f’ between
any two zeroes of f). By induction, this yields that if f*) is neat for some ¢ € N,
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then f is neat. Hence, in order to prove that the function > pylogqx is neat, it is
k=1

u 0)
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function (since any rational function is neat). This can be proven by induction over
max {degpy | k € {1,2,...,u}}: If max{degpi | k € {1,2,...,u}} < 0, then p; = 0 for

every k, so that > ploggr = 0 and everything is obvious. If not, then
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Here, Z P}, log g is a 1-logarithmic term which satisfies max {degp} | k € {1,2,...,u}} <
max {deg ok | k€ {1,2,...,u}}. Hence, by induction, there exists some ¢ € N such that
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is a rational function, and the induction step is done.
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b) Let Y pilogqrlogry be a 2-logarithmic term on I; this means that py, po, ...,
k=1

Dus Q15 G2, -5 Qu, T1, T2, --., Ty, are finitely many rational functions in one variable x over

R such that ¢, g9, ..., qu, 71, T2, ..., 7, are all positive on I. We must prove that the
u
function > pilogqilogry : I — R is neat.
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As in the proof of Lemma 2 a), we can WLOG assume that py, po, ..., p, are polyno-
mials. Again, we remember that if a function f : I — R is such that £ is neat for some
u

¢ € N, then f is neat. Hence, in order to prove that the function ) pjlog gx logry is
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neat, it is enough to show that there exists an ¢ € N such that (Z i log g log rk>
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is a 1-logarithmic function (since Lemma 2 a) states that any 1-logarithmic func-

tion is neat). This can be proven by induction over max {degpy | k € {1,2,...,u}}: If
max {degpy | k € {1,2,...,u}} <0, then p, = 0 for every k, so that >_ pylog qx logr, =
k=1



0 and everything is obvious. If not, then
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is a 1-logarithmic function, and the induction step is done.
The proof of Lemma 2 is thus complete.
Back to our problem. Define a function g : R — R by

g(x)=zlogz-(B+ (z+2)log(x+2))—(a+ (x+1)log(z+1))-(z+1)log(x+1).

This function g is 2-logarithmic (in order to see it, just replace 5 and a by Floge and
alog e, respectively, and multiply out), and therefore neat (by Lemma 2 b)). In other
words, ¢ is constantly 0 or has only finitely many zeroes on R*. In both of these cases,
we conclude that there exists some N € N such that the number g (z) has the same
sign for all real z > N (because ¢ is continuous, and thus cannot change signs without
having a zero). Thus, either

rlogz Za+(:v+1)log(x+1) for all z > N,
(x+1)log(x+1) — B+ (v+2)log(z+2)
or
vlogz <a+(m—|—1)log(x+1) for all x > N.

(x+1log(x+1) = B+ (z+2)log(z+2)
The first of these two cases yields that (1) holds for every n > N, and thus the se-
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second of these two cases is impossible, since it would (similarly) yield that the se-
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is absurd because all its values are positive while its limit is 0 (as we have shown in
the solution of the problem). Thus, the first case must hold, and we conclude that the
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the gap in our solution of the problem is (finally) filled.
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Thanks to mathmanman for noticing the mistake!



