
American Mathematical Monthly Problem 11398 by Stanley Huang

Let ABC be an acute-angled triangle such that its angle at A is the middle-sized
among its three angles. Further assume that the incenter I of triangle ABC is equidis-
tant from the circumcenter O and the orthocenter H. Prove that ]CAB = 60◦, and
that the circumradius of triangle IBC equals the circumradius of triangle ABC.

Solution (by Darij Grinberg).

Before we come to the solution of the problem, we recapitulate two known facts
from triangle geometry:

Lemma 1. Let ABC be a triangle, and let X, Y, Z be the midpoints of the
arcs BC, CA, AB (not containing A, B, C, respectively) of the circumcircle
of triangle ABC. Then, the incenter I of triangle ABC is the orthocenter
of triangle XY Z.

Proof of Lemma 1. I really don’t wish to repeat this proof here, since it is more
than well-known. I gave it in

http://www.mathlinks.ro/Forum/viewtopic.php?t=6095

post #2; if my memory doesn’t betray me, the proof can also be found in the solution
of an AMM problem from a few years ago.

Lemma 2, the Sylvester theorem. If O is the circumcenter and H is

the orthocenter of a triangle ABC, then
−−→
OH =

−→
OA +

−−→
OB +

−→
OC.

Proof of Lemma 2. It is a known fact (the Euler line theorem) that the points O, G

and H are collinear, and
−−→
HG = 2 ·

−→
GO, where G is the centroid of triangle ABC. This

yields
−−→
HO =

−−→
HG +

−→
GO = 2 ·

−→
GO +

−→
GO = 3 ·

−→
GO; in other words,

−−→
OH = 3 ·

−→
OG. Since

−→
OG =

−→
OA +

−−→
OB +

−→
OC

3
(what follows from G being the centroid of triangle ABC),

this becomes
−−→
OH =

−→
OA +

−−→
OB +

−→
OC, and Lemma 2 is proven.

Now let us solve the problem. We are going to use complex numbers. For every
point named by a capital letter - say, P - we denote its affix (this means the complex
number corresponding to this point) by the corresponding lower letter - in this case, p.
In particular, we denote the affix of the incenter I by i; we will not use the letter i for√
−1 (we will simply write

√
−1 for

√
−1).

We can WLOG assume that the vertices a, b, c of triangle ABC lie on the unit
circle

{
t ∈ C | tt = 1

}
. This yields aa = bb = cc = 1 and o = 0. Let ]A, ]B, ]C

denote the three angles ]CAB, ]ABC, ]BCA of triangle ABC.
Let X, Y, Z be the midpoints of the arcs BC, CA, AB (not containing A, B, C,

respectively) of the unit circle (which, of course, is the circumcircle of triangle ABC).
Then, Lemma 1 yields that I is the orthocenter of triangle XY Z, whereas it is clear
that O is the circumcenter of this triangle. Thus, applying Lemma 2 to triangle XY Z
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in lieu of triangle ABC yields
−→
OI =

−−→
OX+

−−→
OY +

−→
OZ. Translating into complex numbers,

this becomes i−o = (x− o)+(y − o)+(z − o) . Since o = 0, this becomes i = x+y+z.

On the other hand, directly applying Lemma 2 to triangle ABC leads to
−−→
OH =−→

OA +
−−→
OB +

−→
OC, what becomes h − o = (a− o) + (b− o) + (c− o) when translated

into complex numbers, and thus h = a + b + c since o = 0.
Next we claim that:

Lemma 3. We have a = −yz

x
, b = −zx

y
and c = −xy

z
.

Proof of Lemma 3. For any complex number t 6= 0, we denote by arg t the principal
value of the argument of t (that is, the value lying in the interval [0, 2π)), and we
denote by

√
t the square root of t that satisfies arg

√
t < π. Obviously, if t lies on the

unit circle, then so does
√

t, and we have arg
√

t =
1

2
arg t. Now, WLOG assume that

the triangle ABC is directed clockwise. Then, the arc BC on the unit circle is the arc
that goes in the counter-clockwise direction from C to B; hence, the midpoint X of

this arc has the affix c

√
b

c
1. In other words, x = c

√
b

c
. Similarly, y = a

√
c

a
and

z = b

√
a

b
. It is easy to see that

√
b

c
·
√

c

a
·
√

a

b
= −1 (since

∣∣∣∣∣
√

b

c
·
√

c

a
·
√

a

b

∣∣∣∣∣ =

√
|b|
|c|
·

√
|c|
|a|

·

√
|a|
|b|

= 1

and

arg

(√
b

c
·
√

c

a
·
√

a

b

)
≡ arg

√
b

c
+ arg

√
c

a
+ arg

√
a

b
=

1

2
arg

b

c
+

1

2
arg
( c

a

)
+

1

2
arg
(a

b

)

=
1

2

(
arg

b

c
+ arg

c

a
+ arg

a

b

)
=

1

2

]COB + ]BOA + ]AOC︸ ︷︷ ︸
these angles mean directed angles


=

1

2
· 360◦ = 180◦ mod 360◦

). Besides,

(√
b

c

)2

=
b

c
. Thus,

yz

x
=

a

√
c

a
· b
√

a

b

c

√
b

c

=

a

√
c

a
· b
√

a

b
·
√

b

c

c

√
b

c
·
√

b

c

=

ab ·
√

b

c
·
√

c

a
·
√

a

b

c

(√
b

c

)2 =
ab · (−1)

c · b

c

= −a,

1One may be tempted to ”simplify” this to
√

bc, but this can turn out false - we may have c

√
b

c
=

√
bc but we also may have c

√
b

c
= −

√
bc.
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so that a = −yz

x
. Similarly, b = −zx

y
and c = −xy

z
.

Thus, h = a+b+c becomes h =
(
−yz

x

)
+

(
−zx

y

)
+
(
−xy

z

)
= −xyz

(
1

x2
+

1

y2
+

1

z2

)
,

so that

i−h = (x + y + z)−
(
−xyz

(
1

x2
+

1

y2
+

1

z2

))
= (x + y + z)+xyz

(
1

x2
+

1

y2
+

1

z2

)
.

(11398.1)
Now, the condition of the problem states that |IO| = |IH| . Thus, |i− o| = |i− h| ;

that is, |i| = |i− h| . Hence, |i|2 = |i− h|2 , what rewrites as ii = (i− h)
(
i− h

)
. Using

i = x + y + z and (11398.1), this rewrites as

(x + y + z) (x + y + z) =

(
(x + y + z) + xyz

(
1

x2
+

1

y2
+

1

z2

))(
(x + y + z) + xyz

(
1

x2 +
1

y2 +
1

z2

))
.

Since the points X, Y, Z lie on the unit circle, their affixes x, y, z satisfy xx = 1,

yy = 1, zz = 1, so we can replace x, y, z by
1

x
,

1

y
,

1

z
in this equation, and obtain

(x + y + z)

(
1

x
+

1

y
+

1

z

)
=

(
(x + y + z) + xyz

(
1

x2
+

1

y2
+

1

z2

))
·
((

1

x
+

1

y
+

1

z

)
+

1

x
· 1

y
· 1

z

(
1

(1/x)2 +
1

(1/y)2 +
1

(1/z)2

))
.

After some work, this equation simplifies to(
y2 + yz + z2

) (
z2 + zx + x2

) (
x2 + xy + y2

)
= 0.

Hence, one of the numbers y2 + yz + z2, z2 + zx + x2 and x2 + xy + y2 must be 0.

First we consider the case y2+yz+z2 = 0. Since y2+yz+z2 =
(
y + e2π

√
−1/3z

)(
y − e2π

√
−1/3z

)
,

we must have y+e2π
√
−1/3z = 0 or y−e2π

√
−1/3z in this case, so that

y

z
= ±e2π

√
−1/3. Us-

ing Lemma 3, this yields
c

b
=
−xy

z

−zx

y

=
(y

z

)2

=
(
±e2π

√
−1/3

)2

= e4π
√
−1/3. Consequently,

]BOC = arg
b

c
= arg e4π

√
−1/3 =

4π

3
, so that ]COB = 2π−]BOC = 2π− 4π

3
=

2π

3
.

But by the central angle theorem for triangle ABC, we have ]COB = 2 · ]CAB, so

this becomes ]CAB =
π

3
= 60◦. In other words, ]A = 60◦.

Hence, in the case y2 + yz + z2 = 0, we have obtained ]A = 60◦. Similarly, in
the case z2 + zx + x2 = 0 we obtain ]B = 60◦, and in the case x2 + xy + y2 = 0
we conclude that ]C = 60◦. Thus, one of the three angles ]A, ]B, ]C of triangle
ABC must be equal to 60◦. But 60◦ is also the average of these angles ]A, ]B, ]C

(since ]A + ]B + ]C = 180◦ and thus
]A + ]B + ]C

3
= 60◦), and if one of the

three angles ]A, ]B, ]C equals to the average of these angles, then it must be the
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middle-sized angle. Hence, the middle-sized angle of triangle ABC equals 60◦; in other
words, ]A = 60◦ (since the problem requires that ]A is the middle-sized angle of
triangle ABC).

It remains to prove that the circumradius of triangle IBC is the same as that of
ABC. This is easy now: By the extended law of sines, the circumradius of triangle

IBC is
BC

2 sin ]BIC
, while the circumradius of triangle ABC is

BC

2 sin ]A
. Hence, it

remains to show that sin ]BIC = sin ]A. But

]BIC = 180◦ − ]IBC − ]ICB = 180◦ − ]B

2
− ]C

2(
since I is the incenter of triangle ABC, and thus lies on the

angle bisectors of its angles ]B and ]C

)
= 90◦ +

180◦ − ]B − ]C

2
= 90◦ +

]A

2
= 90◦ +

60◦

2
= 120◦

so that sin ]BIC = sin 120◦ = sin 60◦ = sin ]A, qed.

Remark. Nowhere in this solution did we need the assumption that triangle ABC
be acute.
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