Let P be a regular n-gon. We label the consecutive vertices of this n-gon P by A_0, A_1, ..., A_{n-1}, and we let $A_n = A_0$.

Let M be a point in the plane, and let B_k be the orthogonal projection of this point M on the line A_kA_{k+1} for each $k \in \{0, 1, ..., n-1\}$. Assume that this projection B_k lies inside the segment A_kA_{k+1} for each $k \in \{0, 1, ..., n-1\}$. Prove that

$$\sum_{k=0}^{n-1} \text{Area}(\triangle (MA_kB_k)) = \frac{1}{2} \text{Area}(P).$$

Solution by Darij Grinberg.

We denote the area of any triangle XYZ by $|XYZ|$ (instead of the lengthy notation $\text{Area}(\triangle (XYZ))$).

We set $A_{n+1} = A_1$ just as the problem author set $A_n = A_0$.

We WLOG assume that the n-gon P is directed counter-clockwise.

For every $k \in \{0, 1, ..., n-1\}$, let C_k denote the midpoint of the side A_kA_{k+1} of P. Also, let O be the center of P. Due to the symmetry of P, we have $OC_k \perp A_kA_{k+1}$ for every $k \in \{0, 1, ..., n-1\}$. Let $2a$ be the sidelength of P, and let d be the distance from O to every side of P.

Let D_k be the foot of the perpendicular from M to OC_k for every $k \in \{0, 1, ..., n-1\}$. Then, $MB_kC_kD_k$ is a rectangle for every $k \in \{0, 1, ..., n-1\}$ (due to right angles at B_k, C_k and D_k).

We will use directed segments, denoting the directed length of any segment XY by \overrightarrow{XY}. Of course, this directed length is well-defined only if the points X and Y lie on some directed line. For every $k \in \{0, 1, ..., n-1\}$,

- we direct the line A_kA_{k+1} in such a way that $\overrightarrow{A_kA_{k+1}} > 0$ (so that $\overrightarrow{A_kA_{k+1}} = 2a$),
- we direct the line MB_k in such a way that $\overrightarrow{MB_k} > 0$,
- we direct the line OC_k in such a way that $\overrightarrow{OC_k} > 0$ (so that $\overrightarrow{OC_k} = d$),
- we direct the line MD_k in the same way as the line A_kA_{k+1} (to which it is parallel, because $MB_kC_kD_k$ is a rectangle)1,
- we direct the line OM in such a way that $\overrightarrow{OM} > 0$.

For any two directed lines g and h, we can not only endow segments along these lines with signs (what leads to directed segments), but also define a directed angle $\angle (g, h)$ between the directed lines g and h; this is the angle about which g must be rotated in order to end up parallel and equidirected to h. This angle $\angle (g, h)$ is an element of the group $\mathbb{R} \setminus \{2\pi \mathbb{Z}\}$ (in other words, it is an angle defined up to integral multiples of 2π).

\footnote{If M coincides with D_k, the line MD_k has to be understood as the perpendicular from M to OC_k (remember the definition of D_k).}
Define an angle $\rho \in \mathbb{R} \setminus (2\pi \mathbb{Z})$ by $\rho = \angle (A_kA_{k+1}, A_{k+1}A_{k+2})$ for every $k \in \{0, 1, ..., n-1\}$ (this is possible since all angles $\angle (A_kA_{k+1}, A_{k+1}A_{k+2})$ are equal, because P is a regular n-gon). Then, $n\rho = 0$ (since $n\rho = \sum_{k=0}^{n-1} \rho = \sum_{k=0}^{n-1} \angle (A_kA_{k+1}, A_{k+1}A_{k+2}) = \angle (A_0A_1, A_nA_{n+1}) = \angle (A_0A_1, A_0A_1) = 0$) and thus $n \cdot 2\rho = 0$, but $\rho \neq 0$ and $2\rho \neq 0$ (since the lines A_kA_{k+1} and $A_{k+1}A_{k+2}$ are not parallel). Let $\phi = \angle (OM, A_0A_1)$. Then,

$$\angle (OM, A_kA_{k+1}) = \angle (OM, A_0A_1) + \sum_{i=0}^{k-1} \angle (A_iA_{i+1}, A_{i+1}A_{i+2}) = \phi + \sum_{i=0}^{k-1} \rho = \phi + k \rho$$

for every $k \in \{0, 1, ..., n-1\}$. Besides, $\angle (A_kA_{k+1}, OC_k) = \frac{\pi}{2}$ (in fact, $OC_k \perp A_kA_{k+1}$ yields $\angle (A_kA_{k+1}, OC_k) = \pm \frac{\pi}{2}$, and the \pm becomes a $+$ since the n-gon P is directed counter-clockwise), so that

$$\angle (OM, OC_k) = \angle (OM, A_kA_{k+1}) + \angle (A_kA_{k+1}, OC_k) = \phi + k \rho + \frac{\pi}{2}$$

for every $k \in \{0, 1, ..., n-1\}$.

Since triangle MA_kB_k is right-angled at B_k, we have $|MA_kB_k| = \frac{1}{2} \cdot MB_k \cdot A_kB_k$.

Since triangle OA_kC_k is right-angled at C_k, we have $|OA_kC_k| = \frac{1}{2} \cdot OC_k \cdot A_kC_k$. Notice that $A_kC_k = a$ (since C_k is the midpoint of A_kA_{k+1}, and $A_kA_{k+1} = 2a$) and $OC_k = d$, so this becomes $|OA_kC_k| = \frac{1}{2} \cdot d \cdot a$.

The rectangle $MB_kC_kD_k$ yields $DC_kC_k = MB_k$. On the other hand, C_kB_k is the orthogonal projection of the segment OM onto the line A_kA_{k+1}, so that $\frac{C_kB_k}{OM} = \cos \angle (OM, A_kA_{k+1})$. Besides, OD_k is the orthogonal projection of the segment
OM onto the line OC_k, so that $\overrightarrow{OD_k} = \overrightarrow{OM} \cdot \cos \angle (OM, OC_k)$. Thus,

$$\sum_{k=0}^{n-1} |MA_k B_k| = \sum_{k=0}^{n-1} \frac{1}{2} \cdot MB_k \cdot \overrightarrow{A_k B_k} = \frac{1}{2} \sum_{k=0}^{n-1} \frac{MB_k}{\overrightarrow{OC_k - OD_k}} - \frac{A_k B_k}{\overrightarrow{a + C_k B_k}} = \frac{1}{2} \sum_{k=0}^{n-1} (d - \overrightarrow{OM} \cdot \cos \angle (OM, OC_k)) \cdot (a + \overrightarrow{OM} \cdot \cos \angle (OM, A_k A_{k+1}))$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} \left(d - \overrightarrow{OM} \cdot \cos \left(\phi + k\rho + \frac{\pi}{2} \right) \right) \cdot \left(a + \overrightarrow{OM} \cdot \cos (\phi + k\rho) \right)$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} \left(da + d \cdot \overrightarrow{OM} \cdot \cos (\phi + k\rho) + a \cdot \overrightarrow{OM} \cdot \sin (\phi + k\rho) + \overrightarrow{OM}^2 \cdot \sin (\phi + k\rho) \cos (\phi + k\rho) \right)$$

$$= \frac{1}{2} \sum_{k=0}^{n-1} da + \frac{1}{2} d \cdot \overrightarrow{OM} \cdot \sum_{k=0}^{n-1} \cos (\phi + k\rho) + \frac{1}{2} a \cdot \overrightarrow{OM} \cdot \sum_{k=0}^{n-1} \sin (\phi + k\rho) + \frac{1}{4} \overrightarrow{OM}^2 \cdot \sum_{k=0}^{n-1} \sin (2\phi + k \cdot 2\rho).$$

(11392.1)

Now, we will show that any two angles ϕ and ρ such that $n\rho = 0$ and $\rho \neq 0$ satisfy

$$\sum_{k=0}^{n-1} \cos (\phi + k\rho) = 0;$$

(11392.2)

$$\sum_{k=0}^{n-1} \sin (\phi + k\rho) = 0,$$

(11392.3)

and that any two angles ϕ and ρ such that $n \cdot 2\rho = 0$ and $2\rho \neq 0$ satisfy

$$\sum_{k=0}^{n-1} \sin (2\phi + k \cdot 2\rho) = 0.$$

(11392.4)

In fact, $n\rho = 0$ yields $e^{i\cdot n\rho} = 1$, but $\rho \neq 0$ yields $e^{i\rho} \neq 1$. Thus,

$$0 = e^{i\phi} \frac{1 - 1}{e^{i\rho} - 1} = e^{i\phi} \frac{e^{i\cdot n\rho} - 1}{e^{i\rho} - 1} = e^{i\phi} \sum_{k=0}^{n-1} e^{i\cdot k\rho} = \sum_{k=0}^{n-1} e^{i\cdot (\phi + k\rho)} = \sum_{k=0}^{n-1} (\cos (\phi + k\rho) + i \sin (\phi + k\rho)).$$

Taking the real part of this equation, we obtain (11392.2); the imaginary part yields (11392.3). The identity (11392.4) is nothing but (11392.3) applied to the angles 2ϕ and 2ρ instead of ϕ and ρ.

Using (11392.2)-(11392.4), our equation (11392.1) simplifies to

$$\sum_{k=0}^{n-1} |MA_k B_k| = \frac{1}{2} \sum_{k=0}^{n-1} da = \frac{1}{2} \sum_{k=0}^{n-1} d \cdot a = \sum_{k=0}^{n-1} |O A_k C_k|.$$

(11392.5)
By the symmetry of the regular n-gon P, we have $\sum_{k=0}^{n-1} |OA_kC_k| = \sum_{k=0}^{n-1} |OC_kB_k|$, while obviously $\sum_{k=0}^{n-1} |OA_kC_k| + \sum_{k=0}^{n-1} |OC_kB_k| = \text{Area } P$. Thus, $\sum_{k=0}^{n-1} |OA_kC_k| = \frac{1}{2} \text{Area } P$, so that (11392.5) becomes $\sum_{k=0}^{n-1} |MA_kB_k| = \frac{1}{2} \text{Area } P$, qed.

Remark. A user of the MathLinks webforum called Myth (Mikhail Leptchinski in real life) found this problem in 2005: