
Design and Implementation of a Widget Set for Steerable
Projector-Camera Units

Dennis Reiter
Computer Science

Saarland University
Saarbr̈ucken, Germany

Andreas Butz
Media Informatics

University of Munich
Munich, Germany

Abstract

We describe the design and implementation of graphi-
cal interaction widgets for use with a steerable projector-
camera unit. The design of our widgets is adapted to pro-
vide the right visual cues when projected and they are
controlled by the user’s hand. The widgets’ input re-
gions are arranged in an ergonomic way and they use a
simple but robust computer vision technique for interac-
tion. The widget set has been implemented in our instru-
mented environment, and we demonstrate interactive but-
tons, checkboxes, sliders and selection boxes.

1 Introduction

Instrumented environments are one way of exploring
ubiquitous computing scenarios within limited areas of
space. Instrumentation can be achieved by various kinds
of sensors and actuators, including cameras, projectors
and conventional displays. The SUPIE (Saarland Univer-
sity Pervasive Instrumented Environment) is such an in-
strumented environment in the size of a regular office, and
one of its central elements is a steerable projector-camera
unit mounted on the ceiling in the middle of the room.
Details of the setup can be found in [1]. One straightfor-
ward approach to make such an environment interactive is
to transfer concepts from current desktop or WIMP (Win-
dows, Icons, Menus, Pointing device) interfaces to it. Us-
ing known concepts, such as GUI widgets as interactive
elements in the environment also has the advantage, that
they will be intuitively understandable to people who had

exposure to WIMP GUIs before. In a sense, they even
come closer to the original idea of direct manipulation in-
terfaces, since they are manipulated directly with the hand
instead of indirectly via a pointing device.

2 Related Work

Kjeldsen and Hartmann [3] provide an overview of vision-
based User Interfaces, the issues encountered there, and
the general design space. They also discuss the use of
widgets, but only at a very general level. From the tech-
niques described there, we only use the statical pointing
action, since this can be detected reliably even under dif-
ficult conditions, such as low resolution and frame rate,
and high jitter and noise. Later work by the same authors
[4] describes an architecture for reconfigurable interfaces
which provide similar functionality in different situations,
but the physical design of the widgets is not discussed.
In [5], design issues of projective interfaces are also dis-
cussed, but only at a conceptual level. In our work, we
observe these insights, but specifically contribute aspects
of the physical design (i.e. the actual graphics) of robust
projective widgets. Fails and Olsen present a way of pro-
viding interactivity in the physical environment in their
work on light widgets [2]. While direct visual feedback is
a core ingredient of Direct Manipulation Interfaces, their
light widgets remain invisible to the user’s eye and just
provide data input. Feedback is only obtained indirectly
via the triggered actions, such as volume control or sta-
tion selection of a radio. In our work we aim to provide
widgets which are much closer to the concept of widgets



in graphical UIs, i.e. clearly recognizable as interactive
elements and providing immediate visual feedback. Us-
ing a steerable projector-camera unit to create the visual
elements, our method also works with a single camera in-
stead of two, since the camera and the projector almost
share an optical axis, and interactivity is connected to pro-
jected elements rather than physical locations.

3 A Widget Set for Projection

Projected widgets differ from regular GUI widgets in sev-
eral aspects. One limiting factor is the relatively low out-
put resolution and the absence of pixel alignment in im-
ages rectified for arbitrary surface angles. Another limita-
tion is the relatively low input resolution of a video cam-
era. A more subtle difference is the fact, that we can-
not project darkness. This means, that any surface can
only become brighter by projection and that any dark area
can only be dark in comparison to brighter surroundings.
While this sounds trivial, it has substantial impact on the
widgets’ graphical design.

3.1 Creating Interactive Regions

To provide interactive elements with limited camera reso-
lution and low frame rates, we refrained from true motion
detection or feature tracking. Instead, we use interactive
regions, in which we just detect the presence of large con-
trasting objects, such as the user’s hand. These regions
correspond to small rectangular areas in the video stream,
for which we observe changes in their average color and
brightness. If an interactive region hasw ∗ h pixels, for
each of the pixels we observe its red, green and blue val-
ues0 ≤ r, g, b ≤ 255. When the widget is created, its
visual elements are projected and then a snapshot of the
video stream in the interactive region is stored. This snap-
shot containsr, g, b values for each pixel in the region,
which now serve as the calibration valuesr0, g0, andb0.
Changes in the surface color, such as patterned or col-
ored areas are thus accounted for. Slow changes in overall
brightness, such as changing daylight, are accommodated
for by the camera’s automatic exposure control.

From then on, in each frame we compare the actual
r, g, b values to the calibration values and count the num-
ber of pixelsnr, for whichabs(r− r0) > c for a constant

0 ≤ c ≤ 255, similarly ng andnb for the other colors.
If the number of pixels which deviate from the calibra-
tion value in this way is more than a certain partp of the
area in at least one color channel (e.g.,nr > p ∗ w ∗ h),
this constitutes a significant change in the region. The in-
evitable pixel noise is filtered out by choosing the constant
c big enough. For practical matters, we have determined
useful values ofc to be around40 for robust detection.
Small objects, such as a single finger from a hand touch-
ing an adjacent widget, are filtered out by choosing the
value ofp big enough. In our practical tests, values for
p around0.5 served our purposes well. Observing the
three color channels separately accounts for situations, in
which the projection surface has a similar overall bright-
ness (grey value) as the user’s hand. On a skin-colored
background, of course, even this procedure fails. In gen-
eral, however, the method above allows the creation of
interactive regions, for which the touch of the user’s hand
(or any other large object) can be detected reliably. We do
not attempt to distinguish an actual touch from an object
hovering over the projection surface, so the widgets can
also be operated without any physical contact.

3.2 Visual Cues and Feedback

In Desktop GUIs, interactive elements are usually given a
3D appearance as a visual cue for their interactivity and
as a means to provide visual feedback. Buttons, for exam-
ple, stand out by default and seem to sink in when they are
pushed, imitating a physical behavior. The 3D appearance
is provided by a virtual light source from the upper left
corner of the screen (light from upper left corners has a
long tradition in the visual arts), which makes the top and
left edge of the button appear brighter than its surround-
ings and the lower and right edge darker. The background
color is therefore never set to black, but mostly middle
tone values. If the button is pushed, the edge coloring
is reversed and since it is perceptually implausible that
a light source changes so suddenly, and since this would
also be perceptually inconsistent with all the other buttons
remaining unchanged, we perceive that the pushed button
sinks in (see figure 1 left).

If we try to project the same design without its sur-
rounding grey area, this whole mechanism doesn’t quite
work anymore. While the regular button can still be seen
as an object standing out from a dark environment, its

2



Figure 1: Left: a push button as known from Desktop
GUIs; middle: the same design when projected; right: a
button design which is better suited for projection

pushed counterpart appears like a well-lit cavity in a dark
surrounding, which strongly contradicts our experience
with the physical world. Cavities are usually darker than
their environment (given a light source from the side), and
so the button rather appears as standing out, but lit from
the other side (see fig. 1 middle). In order to restore vi-
sual plausibility, a plausible visual context has to be pro-
vided. Instead of embedding the widget in a lit area, this
can also be achieved by a design which doesn’t make the
whole button sink in, but only its middle part, leaving a
ridge around the edge. This arrangement is more consis-
tent with our experience, since the whole button is still
perceived as standing out, and can therefore plausibly be
well lit in a dark environment (see figure 1 right). Finally,
in traditional GUIs, widgets can be ”greyed out” which
signifies that they are not functional at this point but will
become functional in other situations. This effect can eas-
ily be achieved by darkening the widget, which makes it
appear weaker in the projection.

3.3 Arrangement of Widget Elements

For a combo box, a logical arrangement of the interac-
tive elements would be to place the button to show or hide
the list of alternatives next to the current selection and the
buttons to move the list up or down above respectively be-
low it. If we use such an arrangement projected onto the

Figure 2: A projected combo box widget in its closed state
(top) and while operated (bottom)

wall in front of us at eye height, we cannot reach the mid-
dle or top area without covering up the bottom one, since
our hand comes into the image from below. This problem
is referred to as the Midas touch problem: every interac-
tive region we cover is triggered. A horizontal alignment
of the interactive regions would solve this problem, but
would contradict the desired spatial mapping of the but-
tons (up moves up and down moves down). One possible
solution is to position interactive regions on a diagonal
line, which is perpendicular to the expected direction of
the forearm when using the widget. Figure 2 thus shows
a projected combo box widget for use by the left hand at
eye height. In our widget set, combo boxes can be created
in different variations for use by the left or right hand and
at different heights in the environment, which results in
different arrangements of the interactive elements.

3



Figure 3: Four widget types: a combo box (top left), a
slider (top right), a check box (bottom right) and a simple
push button (bottom left)

The other three widget types we implemented are a
slider, a checkbox and a simple push button (Figure 3).
The slider is operated similarly to the combo box in its
open state with the difference, that the axis of possible
values doesn’t move, but the boxed value on it changes
and slides up and down with the push of the up/down but-
tons. While this design is slower than a slider operated by
a moving hand, it can be built with the robust detection al-
gorithm discussed above and will therefore also work un-
der difficult conditions. The checkbox widget consists of
a frame which either contains a check mark or is empty (in
analogy to screen GUIs) and a small button in the lower
right corner which can be touched to toggle the check
mark. The design of the simple push button itself (bot-
tom left) is obvious from the discussion above. These four
widgets were implemented in Java and they form the basis
of our projective widget set. They can be instantiated with
different parameters regarding their content, range or spa-
tial arrangement and a position in the environment, just
as regular GUI widgets on a 2D screen. The position, of
course, is supposed to lie on a suitable projection surface
in our 3D model of the environment. Currently, this 3D
model and the set of display surfaces are still constructed
manually, but we will work towards an automatic acquisi-
tion in the future.

4 Summary and Future Work

We have presented the design and implementation of wid-
gets for use with a steerable projector-camera unit. These
widgets have a graphical design which is adapted to the
fact that they are projected without a visual context. They
use a simple but robust recognition method which allows
their use under difficult conditions, such as low camera
resolution and uncontrolled lighting. The spatial arrange-
ment of the widget elements accounts for a general prob-
lem with this kind of algorithm (Midas touch problem).
Four interactive GUI widgets have been implemented as
a widget set which can be used by programmers similarly
to regular widgets in screen interfaces, in order to create
interactive elements in the physical environment.

Using widgets in an instrumented environment will
make interactive elements immediately recognizable to
users who have seen GUI widgets before. In WIMP GUIs
there is a single mouse pointer and all interaction is done
through it. In instrumented environments, this doesn’t
hold, since users can operate widgets with both hands,
and several users can interact in a cooperative or concur-
ring way. While the widgets presented here have a very
direct relation to the GUI world, we will explore other
widget concepts to account for this situation as well.

References

[1] A. Butz, M. Schneider, and M. Spassova. Searchlight - a
lightweight search function for pervasive environments. In
Proceedings of Pervasive 2004, LNCS. Springer, 2004.

[2] J. Fails and D. Olsen. LightWidgets: Interacting in every-
day spaces. InProceedings of IUI ’02 (San Francisco CA,
January 2002), 2002.

[3] R. Kjeldsen and J. Hartman. Design issues for vision-based
computer interaction systems. InWorkshop on Perceptive
User Interfaces. ACM Digital Library, November 2001.
ISBN 1-58113-448-7.

[4] R. Kjeldsen, A. Levas, and C. Pinhanez. Dynamically re-
configurable vision-based user interfaces. InProceedings of
3rd International Conference on Computer Vision Systems,
pages 323–332, 2003.

[5] N. Sukaviriya, M. Podlaseck, R. Kjeldsen, A. Levas,
G. Pingali, and C. Pinhanez. Embedding interactions in
a retail store environment: The design and lessons learned.
In Proc. of INTERACT’03, Zurich, Switzerland, 2003.

4


