
Integration of Security Aspects

in Web Engineering

Marianne Busch

Institut für Informatik

Ludwig-Maximilians-Universität München

Diplomarbeit

Integration of Security Aspects

in Web Engineering

Marianne Busch

aufgabensteller Prof. Dr. Wirsing

betreuer Dr. Nora Koch

abgabedatum 24.2.2011

Marianne Busch: Integration of Security Aspects in Web Engineering,
© 24.2.2011

D E C L A R AT I O N

Hiermit versichere ich, dass ich die vorliegende Diplomarbeit
selbstständig verfasst und keine anderen als die angegebenen
Quellen und Hilfsmittel verwendet habe.

München, 24.2.2011

Marianne Busch

A B S T R A C T

Secure web applications are becoming increasingly important
due to rising cybercrime as well as the growing awareness of
data privacy. Since adding security features to already existing
applications can be a very time-consuming task, it is important to
take security aspects into account while planning and modeling
a web application.

In this thesis, the challenges of security in the web and cur-
rently existing security and web engineering approaches are
investigated in order to create a comprehensive and coherent se-
curity modeling technique for web applications. Web developers
should be enabled to model security aspects as authentication, ac-
cess control and secure connections efficiently. For this purpose,
the UML-based Web Engineering (UWE) approach, which has
been developed at the Institute of Programming and Software
Engineering of the Ludwig-Maximilians-Universität München
is enhanced. Despite its seamless integration into UWE, the con-
cept presented here can also be utilized independently for other
UML-based modeling techniques.

In order to create a versatile approach, the functionality of the
MagicDraw plugin MagicUWE is complemented by appropriate
features. A case study of a Hospital Information System verifies
the suitability for daily use of the approach as well as of the
tool. To this effect, a prototype is not only modeled, but also
implemented. Additionally, an address book example presents
alternatives regarding the usage of modeling elements.

vii

Z U S A M M E N FA S S U N G

Sichere Webanwendungen gewinnen nicht nur wegen der zuneh-
menden Internetkriminalität an Bedeutung, sondern auch durch
das steigende Bewusstsein für Datenschutz. Da Sicherheit nur mit
großem Aufwand nachträglich zu einer Anwendung hinzugefügt
werden kann, ist es wichtig, Sicherheitsaspekte bei der Planung
und Modellierung von Webanwendungen mit einzubeziehen.

Im Vorfeld werden in dieser Arbeit zunächst die Herausfor-
derungen von Websicherheit beschrieben und bestehende Mo-
dellierungstechniken in Betracht gezogen – sowohl im Bereich
des Security-, als auch im Bereich des Webengineerings. Dar-
auf aufbauend wird der am Lehrstuhl für Programmierung und
Softwaretechnik der Ludwig-Maximilians-Universität München
entwickelte Ansatz namens UML-based Web Engineering (UWE)
um ein umfassendes Sicherheitskonzept erweitert, das dem We-
bentwickler die effiziente Modellierung von Authentifizierung,
Zugriffskontrolle und sicheren Verbindungen ermöglicht. Trotz
der nahtlosen Anbindung an UWE kann das Konzept auch unab-
hängig für andere UML-basierte Methoden eingesetzt werden.

Für die Verbreitung des neuen Ansatzes wird das MagicDraw
Plugin MagicUWE um passende Funktionalitäten ergänzt. Das
Fallbeispiel eines Krankenhausinformationssystems dient der
Überprüfung der Praxistauglichkeit des Ansatzes sowie des
Werkzeugs. Dabei wird besonderes Augenmerk auf die Model-
lierung eines Prototypen und dessen Implementierung gelegt.
Ein Adressbuch als weiteres Fallbeispiel erläutert Alternativen
hinsichtlich der Modellierung.

viii

Most interesting of all, however, is the lesson
that the bulk of computer security research and

the development activity is expended on activities
which are of marginal relevance to real needs.

A paradigm shift is underway,
and a number of recent threads point towards a

fusion of security with software engineering,
or at the very least to an influx of

software engineering ideas.

— Ross Anderson

A C K N O W L E D G M E N T S

My thanks go to Dr. Nora Koch for the supervision of this the-
sis and her help with words and deeds. It has always been a
pleasure working together with her: as a student assistant for
the last four years as well as in the course of my bachelor thesis
(“Projektarbeit”). I have treasured not only our lively discussions
but also thousands of nightly e-mails and many phone calls.

I would like to thank Prof. Dr. Wirsing, who offered me the
opportunity to take part in the NESSoS Kickoff located in Pisa
and to attend the second meeting in Madrid. It was a rewarding
experience to discuss with so many experts in person.

Furthermore, I am grateful Dr. Matthias Hölzl for his advice
regarding literature about security and for previously suggesting
several interesting subject areas in the field of software engineer-
ing.

Special thanks go to Prof. Dr. Alexander Knapp and Dr. Gefei
Zhang for clarifying details and for pointing out that some errors
in the UML state machine specification are of a historical nature,
due to the renaming of elements.

Finally, I would like to thank my friends who proofread this
thesis and my partner and my family for their understanding and
in particular Dr. Claudia Busch for sharing her knowledge about
hospital information systems.

ix

C O N T E N T S

1 introduction 1

i security, web applications and software engi-
neering approaches 3

2 security aspects of web applications 5

2.1 Entity Authenticity and Authentication 5

2.2 Data Origin Authenticity 7

2.3 Data Confidentiality 7

2.4 Data Integrity . 8

2.5 Access Control and Authorization 9

2.6 Non-repudiation . 11

2.7 Freshness . 11

2.8 Internet Privacy . 12

2.9 Secure Information Flow 12

2.10 Roles and their Responsibilities 14

2.10.1 System Administrator 14

2.10.2 Web Developer 15

2.10.3 User . 15

3 related work 17

3.1 Security Modeling 17

3.1.1 UMLsec . 17

3.1.2 SecureUML 19

3.1.3 Security modeling for SOA 20

3.1.3.1 SECTET Framework 20

3.1.3.2 UML4SOA 22

3.1.3.3 SecureSOA 23

3.1.4 Pattern-based Approaches 24

3.2 Web Engineering . 25

3.2.1 UWE . 26

3.2.1.1 Content 26

3.2.1.2 Navigation 26

3.2.1.3 Presentation 28

3.2.1.4 Process 28

3.2.1.5 Existing Security Engineering Ap-
proaches for UWE 28

3.2.2 WebML . 29

3.2.3 Other Approaches 30

ii uwesecurity 33

4 security engineering for web applications 35

4.1 Requirements Analysis 36

4.2 Navigation State Model 38

4.2.1 Web Navigation with State Machines 39

xi

xii contents

4.2.1.1 Navigational Nodes 39

4.2.1.2 Sessions 41

4.2.1.3 Targets 44

4.2.1.4 Collections 47

4.2.1.5 Other Stereotypes 49

4.2.2 Transformations between Navigation Class
Model and Navigation State Model 52

4.3 UWEsecurity Patterns 55

4.3.1 Registration 55

4.3.2 Authentication 56

4.3.3 Credential Recovery 57

4.3.4 Further Patterns 57

4.4 Role-Based Access Control 58

4.4.1 Role Model 58

4.4.2 Basic Rights Model 59

4.4.3 Transformation to SecureUML with dialect
ComponentUML 62

5 implementing uwesecurity models 63

5.1 Authentication . 63

5.2 Role-based Access on Classes 64

5.3 Role-based Access on Navigational Nodes 64

5.4 Secure Communication 64

iii working with uwesecurity 67

6 case study – design of hospinfo 69

6.1 Requirements Analysis 69

6.1.1 Examples of Hospital Information Systems . 69

6.1.2 Functionality of HospInfo 71

6.1.3 Security Features 73

6.2 Modeling . 74

6.2.1 Content Model 74

6.2.2 User Model and Role Model 75

6.2.3 Basic Rights Model 76

6.2.4 Navigation States Model 77

6.2.5 Navigation Classes Model 80

6.2.6 Presentation Model 81

6.2.7 Process Model 81

7 case study – implementation of hospinfo 85

7.1 Selection of a Web Framework 85

7.1.1 Scala Features 86

7.1.2 Lift Features 86

7.2 Realization based on Scala and Lift 88

7.2.1 User Management 89

7.2.2 Authentication and Access Control 90

7.2.3 Secure Communication 92

7.2.4 Logging and Break Glass Policy 93

7.3 Lessons Learned . 93

contents xiii

8 tool support – magicuwe 97

8.1 Support for Stereotypes and Tags 97

8.1.1 Easing the Use of Submachine States 98

8.1.2 Default Stereotypes of Nested Elements . . . 99

8.2 Consistency of the Transmission Type Tag 100

iv conclusion 103

9 summary 105

10 future work 107

v appendix 109

a case study – an address book 111

a.1 Requirements Analysis 111

a.2 Content Model . 112

a.3 User Model and Role Model 112

a.4 Basic Rights Model 112

a.5 SecureUML Model 113

a.6 Navigation States Model 114

a.7 Presentation Model 117

b content of the enclosed cd 121

bibliography 123

L I S T O F F I G U R E S

Figure 2.1 Wireshark. TLS communication 7

Figure 3.1 UMLsec example [34, excerpt of figure 5] . . 18

Figure 3.2 SecureUML metamodel (adapted from [9,
page 13]) . 19

Figure 3.3 SecureUML example 20

Figure 3.4 Single Sign-on authentication [31, page 6] . . 22

Figure 3.5 UML4SOA. Metamodel of non-functional
extensions. [13, figure 6] 23

Figure 3.6 SecureSOA. Base model [32, figure 2] 23

Figure 3.7 SecureSOA. Confidentiality constraint [32,
figure 9] . 24

Figure 3.8 Pattern example. Security session (adapted
from [50, page 300]) 25

Figure 3.9 Names and symbols of UWE navigation
class stereotypes 27

Figure 3.10 UWE example. Navigation class diagram . . 27

Figure 3.11 State machine specifying an access control
rule [54] . 29

Figure 3.12 Pageflow and RBAC metamodel [36] 31

Figure 4.1 UWE with UWEsecurity. Model overview . 35

Figure 4.2 Use case example 36

Figure 4.3 Part of the requirements profile 37

Figure 4.4 Navigation states profile 39

Figure 4.5 «navigationalNode»: {isModal} abbreviation 41

Figure 4.6 «navigationalNode»: {isModal} extended
version . 42

Figure 4.7 «session»: {unauthorizedAccess} abbreviation 43

Figure 4.8 «session»: {unauthorizedAccess} extended
version . 44

Figure 4.9 «target»: {node} abbreviation 45

Figure 4.10 «target»: {node} extended version 46

Figure 4.11 «target»: {goBack} abbreviation 47

Figure 4.12 «target»: {goBack} extended version 48

Figure 4.13 «collection» abbreviation 48

Figure 4.14 «collection» extended version 49

Figure 4.15 «integratedMenu» abbreviation 50

Figure 4.16 «integratedMenu» extended version 52

Figure 4.17 Secure registration 55

Figure 4.18 Authentication with a password form 57

Figure 4.19 Authentication with Single Sign-on. Se-
quence diagram 58

xiv

acronyms xv

Figure 4.20 Authentication with Single Sign-on. State
machine diagram 59

Figure 4.21 Credential recovery via email 60

Figure 4.22 BasicRights UML profile 61

Figure 4.23 SecureUML. ComponentUML actions 62

Figure 6.1 Care2x. Person registration. 70

Figure 6.2 HospInfo. Use case diagram 72

Figure 6.3 HospInfo. Content diagram 75

Figure 6.4 HospInfo. Role model 75

Figure 6.5 HospInfo. Basic rights diagram 76

Figure 6.6 HospInfo. Navigation menu 77

Figure 6.7 HospInfo. Navigation diagram of visitors . . 78

Figure 6.8 HospInfo. Navigation diagram of recep-
tionist / physician area 79

Figure 6.9 HospInfo. Navigation classes diagram . . . 80

Figure 6.10 HospInfo. Presentation diagram template . . 81

Figure 6.11 HospInfo. Presentation for nurses 82

Figure 6.12 HospInfo. Create patient process 83

Figure 6.13 HospInfo. Edit user properties process . . . 83

Figure 7.1 HospInfo. Excerpt of project file tree 88

Figure 7.2 HospInfo. Excerpt of source file tree 89

Figure 7.3 HospInfo. Patient search (physician) 91

Figure 7.4 HospInfo. Login 92

Figure 7.5 HospInfo. Patient list (nurse from ward B) . 94

Figure 8.1 MagicUWE. Toolbar and main menus 98

Figure 8.2 MagicUWE. Copy stereotypes from subma-
chine state to state machine 99

Figure 8.3 MagicUWE. Display stereotypes on state
machine diagrams 99

Figure 8.4 MagicUWE. Set stereotype on navigational
substates, check tag {transmissionType} . . 100

Figure A.1 Address book. Use case diagram 111

Figure A.2 Address book. Content diagram 113

Figure A.3 Address book. Role model 114

Figure A.4 Address book. Basic rights diagram 115

Figure A.5 Address book. SecureUML diagram 116

Figure A.6 Address book. Navigation Menu 117

Figure A.7 Address book. Navigation of address book . 118

Figure A.8 Address book. Navigation of internal reg-
istered visitors 118

Figure A.9 Address book. Presentation 119

A C R O N Y M S

AAC Attribute-based Access Control
ACL Access Control List
AES Advanced Encryption Standard
API Application Programming Interface
BGP Break-Glass Policy
BPMN Business Process Modeling Notation
CA Certificate Authority
CAPTCHA Completely Automated Public Turing test

to tell Computers and Humans Apart
CASE Computer-Aided Software Engineering
CD Compact Disc
CERT Computer Emergency Response Team
CGI Common Gateway Interface
CRUD create, read, update and delete
DAC Discretionary Access Control
DFG Deutsche Forschungsgemeinschaft
DICOM Digital Imaging and Communications in

Medicine
DNS Domain Name System
DRG diagnosis-related group
DRM Digital Rights Management
EPR electronic patient record
ERM Entity-relationship model
FMC Fundamental Modelling Concept
GPS Global Positioning System
GUI Graphical User Interface
HIS Hospital Information System
HL7 Health Level 7

HMAC Hash-based Message Authentication Code
HPC Health Professional Card
HTML Hypertext Markup Language
http Hypertext Transfer Protocol
https Hypertext Transfer Protocol Secure
IDE integrated development environment
IEC International Electrotechnical Commission
IP Internet Protocol
IS information system
ISO International Organization for

Standardization
Jif Java + information flow
JVM Java Virtual Machine
MAC Mandatory Access Control

xvi

acronyms xvii

MAEWA Model-Driven Engineering of Web
Applications

MD Message-Digest algorithm
MDSD Model-Driven Software Development
NMRI nuclear magnetic resonance imaging
OCL Object Constraint Language
OID Object Identifier
ORM object-relational mapping
OSI Open Systems Interconnection
OWASP Open Web Application Security Project
PACS picture archiving and communication

system
PC Personal Computer
pdf Portable Document Format
PGP Pretty Good Privacy
PKI Public Key Infrastructure
POM Project Object Model
RBAC Role-Based Access Control
REST Representational State Transfer
RIA Rich Internet Application
RIS radiology information system
S/MIME Secure / Multipurpose Internet Mail

Extensions
SHA Secure Hash Algorithm
Sif Servlet Information Flow
SMS Short Message Service
SOA Service-Oriented Architecture
SSL Secure Sockets Layer
SSO Single Sign-on
TAN Transaction Authentication Number
TLS Transport Layer Security
TV television
UML Unified Modeling Language
URL Uniform Resource Locator
UTF Unicode Transformation Format
UWE UML-based Web Engineering
WebML Web Modeling Language
XMI XML Metadata Interchange
XSS Cross-site scripting

1
I N T R O D U C T I O N

The article Top 25 Most Dangerous Software Errors1 shows the rele-
vance of security aspects in software systems. The list includes
flaws like “Improper Access Control (Authorization)”, “Missing
Encryption of Sensitive Data” or “Missing Authentication for
Critical Function”. Those who are aware of all this will not find
it surprising to read about data leaks in web applications almost Are current web

applications secure
enough?

every day in the news. Incidents like publicly accessible credit
card details or personal registration data could be avoided for
the most part by using a web engineering method that supports
security aspects, e.g. secure connections and user management.
This means security can be modeled in diagrams additionally to
other features of up-to-date web applications. It is our intension
to provide convenient modeling techniques that enable develop-
ers to figure out the actual needs of the customers and that allow
them to implement their idea of security.

Web and security engineering have been two rather separated
research areas so far. At the Institute of Programming and
Software Engineering of the Ludwig-Maximilians-Universität
München, web engineering techniques have been investigated
for more than a decade. The UML-based Web Engineering (UWE)
modeling method resulted from this research. Two consecutive
Deutsche Forschungsgemeinschaft (DFG) projects2 have leveraged
both the research and the tool support for UWE.

It has become increasingly apparent that security engineering bringing together
security and web
engineering

cannot be separated from web engineering any longer, because
security plays an important role in almost all advanced web
applications. Therefore, this work aims at integrating the vari-
ous security aspects in web engineering. Our approach, called
UWEsecurity, can be combined with any web engineering method,
although this diploma thesis focuses on the combination with
UWE.

The aim of UWEsecurity is to model authentication, access con-
trol and secure connections graphically. First of all, it is impor-
tant to provide a navigation model that supports role dependent
sessions, because login mechanisms mostly do not only imply
changed permissions regarding accessible data or activities, but
also access to particular non-public areas of a website. Restricted
access often goes hand in hand with the need to take care of fresh-

1 Common Weakness Enumeration CWE/SANS. Top 25 Most Dangerous Soft-
ware Errors. http://cwe.mitre.org/top25/#Details, last visited 2010-11-26

2 MAEWA I and MAEWA II (Model-Driven Engineering of Web Applications).
http://uwe.pst.ifi.lmu.de/infoMAEWA.html, last visited 2010-10-26

1

http://cwe.mitre.org/top25/#Details
http://uwe.pst.ifi.lmu.de/infoMAEWA.html

2 introduction

ness, confidentiality and integrity while transmitting data over
an insecure network as the Internet. Instead of reinventing the
wheel while modeling internal details for every application, the
use of approved web concepts like Transport Layer Security (TLS)
connections have to be considered.

We do not only incorporate Unified Modeling Language (UML)
based modeling techniques, but also security patterns (for ex-
ample for different authentication variants) in order to ease the
development of secure web applications for the web engineer.
According to that, our UWEsecurity models are designed to be
clear and precise so the web developer does not loose himself in
confusing diagrams, but still has the possibility to specify details
as well. This implies that the users can decide on their own, if
e.g. the definition of access control is important for all elements
or only for particular ones.

Beyond this work, the Institute of Programming and SoftwareNESSoS project

Engineering has been involved in the NESSoS3 project since
October 2010. NESSoS is an EU project that is concerned with
engineering secure future Internet software. We will contribute
particularly to the integration of various methodologies, similarly
following the idea of linking different security aspects and tools.

This thesis consists of four parts: The first part provides somedescription of
contents background information regarding security aspects of web ap-

plications (chapter 2) and examines related work in the field of
security modeling and web engineering methods (chapter 3).

The second part introduces our security engineering method
UWEsecurity. In chapter 4 (security engineering for web applica-
tions), the UML profile is defined. Based on this profile, chapter 5

describes the realization of modeled security features in practice.
In the third part, our case study proves the applicability of

our approach. This is achieved by the design (chapter 6) and
implementation (chapter 7) of a prototype Hospital Informa-
tion System (HIS). In order to facilitate the modeling process,
new functionalities are introduced in our MagicDraw Plugin
MagicUWE, as described in chapter 8.

Finally, part iv summarizes the results (chapter 9) and pro-
vides an outlook on future work (chapter 10). Subsequently,
appendix A presents the modeling of an address book case study
and appendix B lists the files that are stored on the attached CD.

3 NESSoS is the abbreviation of Network of Excellence on Engineering Secure
Future Internet Software Services and Systems. http://www.nessos-project.
eu/, last visited 2011-02-16

http://www.nessos-project.eu/
http://www.nessos-project.eu/

Part I

S E C U R I T Y, W E B A P P L I C AT I O N S A N D
S O F T WA R E E N G I N E E R I N G A P P R O A C H E S

2
S E C U R I T Y A S P E C T S O F W E B A P P L I C AT I O N S

The main question of this work is, how to make the modeling
of security aspects easier for an web engineer and facilitate the
definition of model transformations in a model-driven approach.
Before caring about the ‘how’, we have to define the required
security features and discuss their importance in the context
of web applications. The technical implementations are also
mentioned and a couple of sections finish with additional roles
and responsibilities one might bear in mind while planning the
integration of a security aspect. This chapter provides a brief
overview of security concepts such as authenticity, confidentially,
integrity, access control, non-repudiation, freshness, privacy and
secure information flow, and discusses their relevance in web
applications.

2.1 Entity Authenticity and Authentication

In many applications the first thing users have to do is to prove
who they are. This process is called authentication and the aim is Authentication is

the act of confirming
something as
authentic

to archive a state, in which the system can be sure that the person
in front of the computer is most likely authentic, i.e. not taken
for someone else.

An example would be the login form of online bulletin boards:
it allows to establish an own profile and enables the mapping
of posts to users. In other scenarios, the user has to show not
only who he is, but also that his e-mail address actually belongs
to him (e.g. by clicking at a confirmation link, which had been
sent to that address before). Another possibility is to register a
cell phone number, which is validated by sending an SMS with a
Transaction Authentication Number (TAN), which has to be typed
in a validation field.1

Using web applications the user usually has to provide a name
and a predefined, correct password (knowledge) or a digital
certificate2 (property) for a successful authentication.

The advantage of a Public Key Infrastructure (PKI) is that certifi-
cates can contain a valid e-mail address and additional informa-
tion, like the real name in the identification card. The disadvan-
tage is that there are not many Certificate Authorities (CAs) that

1 An example can be found during the registration for E-Postbrief. https:

//adresse-sichern.epost.de/, last visited 2010-09-27

2 An example is the “Certificate Login” of CAcert. https://www.cacert.org/,
last visited 2010-09-10

5

https://adresse-sichern.epost.de/
https://adresse-sichern.epost.de/
https://www.cacert.org/

6 security aspects of web applications

issue free public key certificates. Consequently, certificates are
not widely-used for login purposes.

Passwords are easier to create than certificates, but the prob-
lems with them can be summarized as “choose a password you
can’t remember, and don’t write it down”[2, page 33] (because it
should be hard to find it out, either by guessing or by automated
testing). To reduce the risk of password theft even more, it should
often be changed and the same one must not be used for different
services.

Password recovery sometimes requires answering questions, e.g.
“your mother’s maiden name”, but this is considered as a design
error in [2, page 37], especially because it is easy to find out and
the user can’t change it as frequently as passwords should be
changed. Therefore, storing an e-mail address or a mobile phone
number is more popular. If someone has forgotten his password
but not the user name, he or she can receive an e-mail or a SMS

message with a new, generated password.
There is a trend to use Single Sign-on (SSO) with OpenID.3

In this way, the user can authenticate himself once with e.g. a
Google account4 and later on connect to other web services (e.g.
Zoho5). The authorized access can be withdrawn6, but it is easy
for a fisherman to build a website which imitates an OpenID
login form. In IT security, a fisherman is someone who steals
data by pretending to be someone else.

Two-factor authentication7 is more secure, as the users have to
provide two types of credentials, like entering a password and
a kind of TAN. Some systems also use biometrical data, e.g. the
sound of a human voice or a fingerprint or the user has to provide
a smart card. This is not common regarding web applications,
because the users often need to be mobile and it is impractical
to take scanners or card readers with them. However, a new
approach is google’s two-step authentication8 that uses an app
for the smart phone called Google Authenticator. It generates
short codes that have to be entered additionally to the password.
For usability reasons it can be configured that the additional code
has to be entered only once a month for permanently used PCs.
An overview of identification and authentication patterns can be
found in [50, page 63].

3 Wikipedia: OpenID. http://de.wikipedia.org/wiki/OpenID, last visited
2010-09-16

4 Google Accounts. Login. https://www.google.com/accounts/Login, last vis-
ited 2010-09-16

5 Zoho. http://www.zoho.com/, last visited 2010-08-20

6 Google Accounts. My Account. https://www.google.com/accounts/

IssuedAuthSubTokens, last visited 2010-09-16

7 Wikipedia: Two-factor authentication. http://en.wikipedia.org/wiki/

Two-factor_authentication, last visited 2010-09-05

8 Google 2-step verification. https://www.google.com/accounts/

SmsAuthConfig, last visited 2011-02-18

http://de.wikipedia.org/wiki/OpenID
https://www.google.com/accounts/Login
http://www.zoho.com/
https://www.google.com/accounts/IssuedAuthSubTokens
https://www.google.com/accounts/IssuedAuthSubTokens
http://en.wikipedia.org/wiki/Two-factor_authentication
http://en.wikipedia.org/wiki/Two-factor_authentication
https://www.google.com/accounts/SmsAuthConfig
https://www.google.com/accounts/SmsAuthConfig

2.2 data origin authenticity 7

2.2 Data Origin Authenticity

Data origin authenticity “means to secure the information on the Sometimes it is
important to know
who created a
message

message origin”[23, page 43]. The origin can be a system part as
well as a person.

An example would be an online bank login form. The users
really want to be sure that the web page has been delivered by
their bank and not by a fisherman, who wants to collect their
credentials.

The technical solution for the web is using X.509 server certifi-
cates and a secure connection over Transport Layer Security (TLS)
or Secure Sockets Layer (SSL) and the Hypertext Transfer Protocol
Secure (https). X.509 is a standard for a PKI and the certificates
guarantee that the website belongs to a certified domain. In this
case, a DNS name is part of the certificate and common browsers
deploy a list of root certificates of CAs in order to simplify the
verification. TLS (the successor of SSL) is a cryptographic protocol
for secure transit at the transport layer of the OSI model. It com-
prises e.g. data confidentiality, integrity and authentication with
X.509 certificates.

Figure 2.1: Wireshark. TLS communication

The communication can be tracked with a network protocol
analyzer like Wireshark.9 Figure 2.1 shows that the German
online bank Comdirect uses TLS for their https login page.10

2.3 Data Confidentiality

The International Organization for Standardization (ISO) defines
confidentiality as “ensuring that information is accessible only to
those authorized to have access”.11 Its goal is that a thief is not
able to decode any intercepted data.

9 Wireshark. http://www.wireshark.org/, last visited 2010-09-21

10 Comdirekt. Persönlicher Bereich - Login. https://kunde.comdirect.de/lp/

wt/login, last visited 2010-09-21

11 ISO 17799

http://www.wireshark.org/
https://kunde.comdirect.de/lp/wt/login
https://kunde.comdirect.de/lp/wt/login

8 security aspects of web applications

The areas of application are manifold: submitted Credit Card
information should not be visible to everyone. Likewise, bankConfidentiality is

one of the
cornerstones of

information security
(often summarized
as confidentiality,

integrity and
availability)

transfers are intended to remain a banker’s secrecy.
Cryptography deals with the en- and decryption of messages

in order to hide information during the transmission over the
‘insecure’ Internet. Web applications often use an https connection
that wraps up different kinds of encryption, depending on the
requirements of computation speed and on the level of security.
The security settings are negotiated in a so called cipher suite at
the beginning of a TLS connection. Comdirect uses https with
cipher AES256-SHA AES(256), which can be found out using a
service called serversniff.12 AES stands for Advanced Encryp-
tion Standard (a symmetric-key encryption) and SHA is a Secure
Hash Algorithm, ensuring integrity, as described in the following
section.

It is crucial to transmit authentication data, e.g. passwords, in a
confidential way to avoid identity theft. It is not always necessary
to implement an own login form, as common browsers support
http digest access authentication and display an appropriate input
box.13 It has to be kept in mind that basic access authentication is
only encoded, not encrypted. Encoding algorithms are functions,
which transform an input into another one. The result may not
be human readable, but the input can be restored by an inverse
function. Encrypted information instead requires a key (e.g. a
password) for data retrieval and of course the knowledge which
algorithm has been previously applied.

2.4 Data Integrity

No matter if someone deals with encrypted information or not,Data integrity
makes sure that a
message remains

unchanged

he sometimes want to be sure that nobody has altered the data.
Data integrity means to enable “recipients to verify that the data
has not been modified”.14

This is not only important for downloading unchanged files,
but also for sending messages. For example, if a user places a
bid on eBay15 and wants to pay a maximum of 10 Euros, the
system has to care about the integrity of this value, otherwise
one of the routers may be compromised and might forward the
bid containing a multiple of the intended price. It would be hard

12 Serversniff. http://serversniff.de/sslcheck.php, last visited 2010-09-21

13 Wikipedia: Digest Access Authentication. http://en.wikipedia.org/

wiki/Digest_access_authentication#Browser_implementation, last visited
2010-09-21

14 Preventing theft and unauthorized modification of electronic data with
new ISO/IEC standard. http://www.iso.org/iso/pressrelease.htm?refid=

Ref1221, last visited 2010-09-19

15 eBay. http://www.ebay.com/, last visited 2010-08-20

http://serversniff.de/sslcheck.php
http://en.wikipedia.org/wiki/Digest_access_authentication#Browser_implementation
http://en.wikipedia.org/wiki/Digest_access_authentication#Browser_implementation
http://www.iso.org/iso/pressrelease.htm?refid=Ref1221
http://www.iso.org/iso/pressrelease.htm?refid=Ref1221
http://www.ebay.com/

2.5 access control and authorization 9

to demonstrate that he is not the one, who entered the exorbitant
value.

A cryptographic hash function is used to ensure data integrity, hash functions

therefore the algorithms are designed to make it (almost) impos-
sible to:

• find a message that has a given hash

• find different messages with the same hash

• modify a message without changing its hash (this feature
is called avalanche effect),

No ideal hash functions exist, but there are some convenient
ones which are good enough for daily use. For example SHA1 or
MD5 checksums are used especially for downloads. They at least
have to be stored separately, because of man-in-the-middle attacks
where a third party is lying in-between the communication path
of the client and the original server. In this case the client may
receive bogus files as well as recalculated checksums. Hence it is
more secure to use TLS at least for the transmission of the hash,
as the processing time for the encryption of every download can
be tremendous. It remains to add that there is no built-in check
for downloads, so that users are responsible for the check by
themselves.

To get a secure hash for the transmission of website content, e.g.
Hash-based Message Authentication Code (HMAC) can be used.
The additional usage of a secret key prevents man-in-the-middle
attacks. HMAC is applied within the TLS protocol.16 Even if MD5

and SHA1 are considered to be sufficiently secure, some sort of
attacks can be successful anyway, e.g. a collision attack can occur.
That means two identical MD5 hash values are constructed delib-
erately as for instance to request two interchangeable certificates.
One of them might be approved by a CA and the other one can
be used secretly by an attacker. [47, 48]

2.5 Access Control and Authorization

The aim of authentication is to gain access to a protected resource. Access control
enables authorities
to control access to
resources of
information systems

The process of authorization determines what a subject (e.g. a
user or a program) is allowed to do, especially what he can do
with specific objects (e.g. files). Several access control techniques17

exist:

attribute-based access control (AAC) Attributes as the
user’s geolocation are used (which may be estimated by

16 Wikipedia: HMAC. http://en.wikipedia.org/wiki/Hmac, last visited
2010-09-20

17 Wikipedia: Access Control. http://en.wikipedia.org/wiki/Access_control#
Access_control_techniques, last visited 2010-09-20

http://en.wikipedia.org/wiki/Hmac
http://en.wikipedia.org/wiki/Access_control#Access_control_techniques
http://en.wikipedia.org/wiki/Access_control#Access_control_techniques

10 security aspects of web applications

looking up the IP address, because Global Positioning Sys-
tem (GPS) is no standard equipment and not implemented
in all browsers).

discretionary access control (DAC) Every object has an
owner who can determine the access policy for all his ob-
jects, e.g. the objects he created by himself.

mandatory access control (MAC) The system determines
all access policies and they can be very fine-grained. It has
been one of the first access control techniques which have
been used for multi-level secure systems (as explained in
more detail in section 2.9).

role-based access control (RBAC) This access policy also
is determined by the system, but the structure is predefined:
several roles can be added to users and each role is associ-
ated with a set of permissions. Additional constraints may
be applied on top of RBAC, e.g. to grant access only for a
certain period of time or to realize the Break-Glass Policy
(allowing logged access in an emergency – a requirement
for several medical applications). [18, page 37] RBAC is a
widely used approach, for that reason our approach is built
upon it.

Moreover, digital tickets “guarantee certain rights of the ticket
owner”. [12] They are widespread in the web and mainly applied
for gift cards (e.g. amazon18) and voucher codes.19

Usually, web applications use a kind of role-based security sys-
tem. Examples are the different user groups in web applications
which are usually connected either with the amount of money the
users pay20, or with the status they have gained, e.g. by writing
articles or by gaining points within a community.21

Technically, access control is realized by maintaining Access
Control Lists (ACLs) or a set of rules and is enforced by a reference
monitor, which is an element (e.g. a part of an operating system)
that controls access to subjects. A reference monitor has to be
tamper-proof and no subject can bypass it in order to gain un-
observed access to an object. Regarding web applications, there
is often a difference between limited access and full access with

18 Amazon. Gift Cards. http://www.amazon.com/gp/gc/ref=topnav_giftcert,
last visited 2010-09-27

19 An example is http://www.vouchers.org.uk/, last visited 2010-09-27

20 An example is Last.fm’s normal user vs. subscriber. http://www.last.fm/, last
visited 2010-07-08

21 An example is the assurance system of CAcert. Users can meet each other to
assure the correctness of their names in their identity card. More experienced
assurers can confer more points and when a user has gained a certain amount
of points, he get a certificate containing his name, become an assurer himself
etc. https://www.cacert.org/index.php?id=19, last visited 2010-09-10

http://www.amazon.com/gp/gc/ref=topnav_giftcert
http://www.vouchers.org.uk/
http://www.last.fm/
https://www.cacert.org/index.php?id=19

2.6 non-repudiation 11

errors. The former only allows access to pages where the content
is authorized for the authenticated user. The latter means that
one is allowed to navigate to a page, but the content will not be
presented, instead an error message, a login form or a remark
is shown (or an advertisement22 is displayed, if the content is
available for a charge). [50, chapter 9.5 and 9.6]

2.6 Non-repudiation

Non-repudiation means that a user or a system cannot deny an ac- Non-repudiation
provides undeniable
evidence for a
particular action

tion afterwards. A distinction is drawn between “non-repudiation
of origin” and “non-repudiation of receipt”, according to the mo-
ment the action is captured. [39, page 7]

It is difficult to realize non-repudiation for web applications,
but strictly speaking every online bank and every online shop
should provide it. In practice, “non-repudiation of receipt” is
‘ensured’ by providing e.g. a confirmation e-mail. The problem
is that most of those e-mails are not even signed (e.g. by using
Secure / Multipurpose Internet Mail Extensions (S/MIME) or
Pretty Good Privacy (PGP)) and therefore can also be imitated. We
have not found an example implementation for “non-repudiation
of origin”. Presumably this is not considered, as the users are
self-responsible for ensuring that they receive a confirmation.

The most common way to provide non-repudiation is through
the use of digital signatures in order to authenticate the sender
and to keep the data unaltered. Implementations e.g. for web
services include a Trusted Third Party which is responsible for
logging and forwarding of messages as well as for logging “proof
of receptions” (cf. [18, page 128 ff.]).

We may keep at the back of our mind that SSL/TLS does not
provide non-repudiation. [51, page 13] Surprisingly, it seems
not to be necessary to implement a real waterproof system for
non-repudiation regarding jurisdiction. In our opinion there is
room for improvement.

2.7 Freshness

The actuality of an action like a data transmission is important, “Freshness
(cryptography) -
certainty that
replayed messages in
a replay attack on a
protocol will be
detected as such”
(Wikipedia)

as otherwise it could also be a replay of a communication which
has been eavesdropped before.

The effect is quite evident: a user usually does not want to pay
an item which was ordered last week more than one time.

So called replay attacks can be avoided using session tokens,
nonces or timestamps. In TLS a combination of timestamps and

22 An example is StayFriends http://www.stayfriends.de/, last visited
2010-09-10

http://www.stayfriends.de/

12 security aspects of web applications

nonces is used. [14, page 38] Session tokens and nonces are often
randomly chosen from a set of numbers and it has to be ensured
that the possibility is low for guessing a valid reply. This can
be achieved e.g. by increasing the size of the set or by using
different keys for the encryption of the answer to prove not only
the actuality but also the identity of the communication partner.

2.8 Internet Privacy

Internet Privacy “involves the exercise of control over the type orPrivacy means to
reveal personal

information about
oneself selectively

amount of information that persons reveal about themselves on
the Internet and who may access such information”.23

The claim for a right to privacy has caused considerably long
pages where users can adjust their privacy settings (e.g. Face-
book24). In spite of that, providers of social networks can never
guarantee that no data theft will occur in the future, either by
mistake or by an attack.

Another topic is the tracking of users with http cookies and
other techniques as e.g. Flash Cookies and HTML5 storage.25

Users often do not know which data is collected and have no
overview which way their data is flowing.

Technically, the simplest way is to implement access control
and to allow users to determine the usage of their data. Some
enforced settings are convenient, like never publishing bank
details. Especially in social networks, a kind of multilayer security
is commonly used, in order to differ between public- and private
data, and data only a special group of people is allowed to access.

2.9 Secure Information Flow

Even if confidential data is stored and protected with an efficientSecure Information
Flow protects data of

several security
levels

access control system, how can users be sure that their data is
always processed in a secure way, which does not lead to infor-
mation leaks? Roughly speaking, secure information flow tries
to control where the data goes and checks that no authenticated
user forwards confidential data to a less confidential area. The
other way around is interesting as well: in some systems, no
insecure/low value should influence a calculation of secure/high
values. [23, page 23]

Multilevel security is a precondition for secure information
flow. It is defined as “the application of a computer system to
process information with different sensitivities (i.e. at different

23 Wikipedia: Privacy. http://en.wikipedia.org/wiki/Internet_privacy, last
visited 2010-09-20

24 Facebook. http://www.facebook.com/, last visited 2010-10-01

25 Evercookie. http://samy.pl/evercookie/, last visited 2010-10-15

http://en.wikipedia.org/wiki/Internet_privacy
http://www.facebook.com/
http://samy.pl/evercookie/

2.9 secure information flow 13

security levels)”.26 The amount of categories can vary from only
two (low and high) to a couple of categories (e.g. self defined
ones as in Security-Enhanced Linux27).

An example of a kind of secure information flow in a web
application is the digital library of Munich.28 All the media can be
borrowed for seven days and Digital Rights Management (DRM)
(e.g. of pdfs or films) prevents the data from being distributed
illegally. It is evident that access control and secure information
flow always have to go hand in hand. In our case there are only
two levels of security: borrowed and non-attached. To the regret
of many authors, there are always ways of copying data which
can also be read by a human eye (e.g. by taking screenshots).

There are only few examples where secure information flow is
actually implemented. Researchers invented Java + information
flow (Jif), “a security-typed programming language that extends
Java with support for information flow control and access con-
trol”29 and a software framework for web applications, called
Servlet Information Flow (Sif) [8], but it seems not to be widely-
used so far. The reason may be the diversity of the problem of the diversity of

secure information
control

secure information control; the issues to be covered are:

• who (user or other system) should have access to the data
(entity authenticity), including ways of authentication and
enforcement of access control

• how the data is transferred (data origin authentication, confi-
dentiality, integrity, freshness and maybe non-repudiation)

• how the data should be stored (presumably encrypted)

• how to deal with the data within each program using it
and to which extent the users can handle data in insecure
environments (e.g. their browser, printing it or copying it)

If all this would be possible in a convenient way for all web
applications, privacy would be no problem, as with a suitable
logging system, everyone will be able to track the own data
packets. Due to usability aspects, this would be very cumbersome,
because every snippet of data would have to carry a DRM tag
that includes a note of the origin and the security level of the
data. Nevertheless, such a system could make sense for critical
applications as HISs. In this case Health Professional Cards (HPCs)
could be used to authenticate the physician and to authorize

26 Wikipedia: Multilevel security. http://en.wikipedia.org/wiki/Multilevel_
security, last visited 2010-09-24

27 Fedora SELinux. Security context. http://fedoraproject.org/wiki/SELinux/
SecurityContext, last visited 2010-10-05

28 Virtuelle Münchner Stadtbibliothek. http://www1.onleihe.de/muenchen, last
visited 2010-09-01

29 Jif. http://www.cs.cornell.edu/jif/, last visited 2010-09-19

http://en.wikipedia.org/wiki/Multilevel_security
http://en.wikipedia.org/wiki/Multilevel_security
http://fedoraproject.org/wiki/SELinux/SecurityContext
http://fedoraproject.org/wiki/SELinux/SecurityContext
http://www1.onleihe.de/muenchen
http://www.cs.cornell.edu/jif/

14 security aspects of web applications

him to read some admission notes within the application of the
Hospital Information System (HIS) without the possibility to copy
parts of the text. This inhibits data leakage via copy/paste into
insecure applications as e.g. email.

2.10 Roles and their Responsibilities

The topic of data security requirements cannot be restricted to the
areas mentioned above. A secure Rich Internet Application (RIA)
also requires foresighted web developers as well as full-fledged
system administrators. Last but not least, the user should not
be moved out of the focus. IT-Service-Management goes beyond
of the scope of this work, but we would like to mention that
Information Security Management is a part of ISO/IEC 20000

(further reading may emanate from the specification itself30).

2.10.1 System Administrator

Besides keeping track of the logfiles and installing updates and
fixes, system administrators who care about web security prefer-
ably have to know what goes on in the security domain, e.g.
by subscribing to Computer Emergency Response Team (CERT)
advisories31 and general security news.32

To avoid misconfiguration, they should be trained in configur-
ing security aspects of software systems they use, e.g. in Apache
Security [44].

The pattern community invented many patterns in order to
help considering all important issues while planning and main-
taining a secure system. Some patterns seem to be simple, but
can be very effective, like the “document the server configuration”
pattern, which name stands for its intention. [25] A more com-
mon one is the “distrustful decomposition”, claiming to “move
separate functions into mutually untrusting programs”. [10, chap-
ter 2.1] For example, a system administrator has to make sure that
the web server runs CGI scripts with the permissions of several
restricted users instead of the root’s permissions.33

30 ISO/IEC 20000. http://www.iso.org/iso/catalogue_detail?csnumber=

41332, last visited 2010-09-26

31 DFN-CERT. https://portal.cert.dfn.de/adv/archive/, last visited
2010-09-20

32 Heise Security. http://www.heise.de/security/, last visited 2010-09-20

33 An example would be the suEXEC support of the Apache HTTP server. http:
//httpd.apache.org/docs/2.2/suexec.html, last visited 2010-09-28

http://www.iso.org/iso/catalogue_detail?csnumber=41332
http://www.iso.org/iso/catalogue_detail?csnumber=41332
https://portal.cert.dfn.de/adv/archive/
http://www.heise.de/security/
http://httpd.apache.org/docs/2.2/suexec.html
http://httpd.apache.org/docs/2.2/suexec.html

2.10 roles and their responsibilities 15

2.10.2 Web Developer

Secure programming for the web not only comprises gaining
knowledge about the deployed web framework and programming Code injection is the

exploitation of a bug
that can be exploited
by processing
malicious input of
users.

language, but also about common security risks. Some of the
latter are universal, e.g. account hijacking and code injection,
especially for cross-site scripting. [10, chapter 4.5]

Other risks are specific for each language and developers
should be familiar with their language to avoid momentous
bugs (cf. the save data buffer pattern in C [17]) and to be able to
deal with common security libraries. Appropriate information is
available for almost every kind of technology, examples are Ruby
on Rails34, Lift35 and Java36 (German readers can also refer to [52,
chapter 26]).

For both, the system administrator and the web developer, the
Open Web Application Security Project (OWASP) can be of help.
OWASP tries “to make application security visible, so that peo-
ple and organizations can make reasonable decisions about true
application security risks”.37 Furthermore, they are providing
several tools e.g. to check an application for known vulnerabili-
ties (cf. skipfish38). If there is time, it also may be interesting to
practice with the google code lab project Gruyere.39 The online
portal “Build Security In”40 is the most comprehensive compila-
tion of articles and references about software security, we have
found. Even if it is not entirely up-to-date, it is a good starting
basis and a glance at the associated CAPEC41, classifying attacks,
is worth one’s while. The classification of the mechanisms of
attacks provides a realistic overview what might be risky and
therefore should gain attention.

2.10.3 User

Unfortunately, security engineering is such a broad subject that it
is not enough to cut it down to the technical aspect. This means

34 Ruby on Rails Security Project - The Book. http://www.rorsecurity.info/

the-book, last visited 2010-09-25

35 Lifts Security. http://wiki.github.com/dpp/liftweb/lifts-security, last
visited 2010-09-25

36 CERT. Secure Coding Standard for Java. https://www.securecoding.cert.

org/confluence/display/java/, last visited 2010-09-27

37 OWASP. http://www.owasp.org, last visited 2010-09-25

38 Skipfish. Web application security scanner. http://code.google.com/p/

skipfish/, last visited 2010-09-25

39 Web Application Exploits and Defenses. http://google-gruyere.appspot.

com/, last visited 2010-09-25

40 Build Security In. https://buildsecurityin.us-cert.gov, last visited
2010-09-26

41 Common Attack Pattern Enumeration and Classification. http://capec.mitre.
org/, last visited 2010-09-26

http://www.rorsecurity.info/the-book
http://www.rorsecurity.info/the-book
http://wiki.github.com/dpp/liftweb/lifts-security
https://www.securecoding.cert.org/confluence/display/java/
https://www.securecoding.cert.org/confluence/display/java/
http://www.owasp.org
http://code.google.com/p/skipfish/
http://code.google.com/p/skipfish/
http://google-gruyere.appspot.com/
http://google-gruyere.appspot.com/
https://buildsecurityin.us-cert.gov
http://capec.mitre.org/
http://capec.mitre.org/

16 security aspects of web applications

the developer has to consider not only the stability of all the
underlying pieces of software but also psychological aspects of
the users.

“Absolutely secure” may be impossible, but it is always a gameCybercrime would
be less lucrative, if

the users were better
informed

of strategy to rate risks and to take countermeasures. It is worth
to mention Ross Anderson’s book “Security Engineering” [2].
Chapter two – “Usability and Psychology” – which is an excellent
return to the border of technical security: the human behavior.

Examples are the use of a browser’s password database without
turning encryption on, social engineering (e.g. asking someone to
reveal a password) or shoulder surfing (watching over someone’s
shoulder in order to observe the typing). Often, the design of the
application fosters that kind of errors, e.g. when the users have to
type their password as often as in Windows Vista and Windows
7, they might get used to it and type it in every input box that
pops-up, without taking a closer look.

3
R E L AT E D W O R K

This work is based on several security and web engineering
methods. We decided to rely on the Unified Modeling Lan-
guage (UML)[37], which has gained acceptance as the de facto
standard for modeling software systems. Nevertheless, the fol-
lowing sections also provide an overview of non-UML-based work
to make comparisons possible.

3.1 Security Modeling

Several methods of security modeling exist. Some are very formal
and almost all are designed for a small scope of application only.
This section gives an overview of graphical (mainly UML) and
pattern-based modeling methods and each subsection finishes
with a short comparison with our approach.

3.1.1 UMLsec

UMLsec [23] is an extension of UML with emphasis on secure
protocols. Initially it was based on UML1.4 and even if it is gradu-
ally adapted to UML2, the provided UMLsec tools1 and the used
Computer-Aided Software Engineering (CASE) tool ArgoUML2

still only supports UML1.4. Nevertheless, the UMLsec tool suite
was transformed from a web based system to an ArgoUML plu-
gin in a recent master thesis. [24] The disadvantage is that it is not
planned to integrate UML2 in ArgoUML. Theoretically, XMI files
can be used for exchange of UML projects between several UML
CASE tools, but in practice XMI exports e.g. from MagicDraw3 can
often not be imported correctly to other tools like ArgoUML.

UMLsec is used for modeling:

fair exchange in activity diagrams. A {start} tag defines ac-
tions and if one of them had been executed, one of the
actions mentioned in the {stop} tag have to be executed
later on. The intention is to provide e.g. a fair exchange
between a customer and a business.

rbac is modeled by denoting activity diagrams with the stereo-
type «rbac» (a stereotype is a UML notation). Tags that

1 UMLsec Analysis Tools. http://ls14-www.cs.tu-dortmund.de/main2/jj/

umlsectool/, last visited 2010-08-10

2 ArgoUML. http://argouml.tigris.org/, last visited 2010-08-02

3 MagicDraw. http://www.magicdraw.com/, last visited 2010-08-02

17

http://ls14-www.cs.tu-dortmund.de/main2/jj/umlsectool/
http://ls14-www.cs.tu-dortmund.de/main2/jj/umlsectool/
http://argouml.tigris.org/
http://www.magicdraw.com/

18 related work

belong to this stereotype: {role} lists available roles, {right}
is a list of pairs, the first entry stands for an actor and the
second value the assigned role; the value of {protected} is a
character string, which is equal to the constrained activity
name.

guarded access allows to model the usage of a system like
the Java security architecture, where several objects are
guarded. For that UMLsec primarily connects the guarded
objects with the guards, using the stereotype «guarded»
with the tag {guard=Guard-Class}.

authenticity freshness, secrecy & integrity are data
security properties of attributes that are specified as tags
of the stereotype «critical», as mentioned in the following
example. Jürjens often refers to ‘confidentiality’ as ‘secrecy’.

secure information flow is based on multilevel security
as explained in section 2.9. Additionally, not only the two-
tier level of information has to be set (using {high} that also
is a tag of the stereotype «critical»), but also a state machine
has to be designed in order to show possible information
flows.

Figure 3.1: UMLsec example
[34, excerpt of figure 5]

An example of a UML

object with UMLsec an-
notations is depicted in
figure 3.1. It is a small
part of a case study
about common electronic
purse specifications as de-
scribed in detail in [23,
chapter 5.3]. The stereo-
type «critical» is used to-
gether with the tag {se-
crecy} to indicate that the attribute K−1

p should be handled in a
confidential way. The tags {fresh} and {integrity} are also applied
to attributes, which are merely represented in a style that is more
influenced from the protocol specification symbols than from the
standard UML rendering.

It is noticeable that UMLsec models quickly become very com-
plex and this complexity may be acceptable and rather com-
prehensible in comparison to hundreds of pages of a formal
specification of a security protocol. But it is comparatively im-
practical to apply UMLsec for modeling that does not have the
main focus on details of security implementations. That is the
reason why we see UMLsec as a supplement and hence do not
use it for our approach. In addition UMLsec can be applied to
specify a protocol for the transmission of web application data.

3.1 security modeling 19

3.1.2 SecureUML

SecureUML [30] is a UML profile that enables the developer to “Similar to
SecureUML,
UMLsec can be
considered as a
notation to specify
and design secure
software systems
rather than a
security
requirements
engineering
method” [11]

model Role-Based Access Control (RBAC) as described in sec-
tion 2.5. The SecureUML metamodel is depicted in figure 3.2,
additional authorization constraints can be expressed with the
Object Constraint Language (OCL). A SecureUML dialect has to be
defined to connect a system design modeling language as e.g. Com-
ponentUML with the SecureUML metamodel. This is necessary,
because the possible Actions on the predefined Resources have
to be specified.

Figure 3.2: SecureUML metamodel (adapted from [9, page 13])

ComponentUML is a modeling language similar to a simplified
UML class model containing only entities (instead of classes)
with methods and attributes. Entities can be connected with
associations. An example for a SecureUML dialect which restricts
access on methods would be modeled in the following way:
EntityMethod (ComponentUML) is inherited from Resource and
provides the AtomicAction execution that is expressed by a usage
arrow labeled with ‘execute’.

With these preconditions, a simple RBAC pattern can be applied
to a fictively class CommentManager that handles blog comments.
Registered users are allowed to write comments, everyone else –
«Role» (anonymous) Users – has read-only access. Views enable
the web engineer to model the weblog application itself indepen-
dently of the security aspects. They are just added in an extra
SecureUML model, as depicted in figure 3.3.

In our approach, we specify role-based execution rights to
methods in a Basic Rights Model (section 4.4.2) using dependen-
cies instead of the SecureUML association classes, because they
are rather confusing due to their copies of method names with
an access related return type. Our models are constructed de-
liberately in a way that they can easily be transformed into a
SecureUML representation, as described in section 4.4.3.

20 related work

Figure 3.3: SecureUML example

3.1.3 Security modeling for SOA

Service-Oriented Architectures (SOAs) technically consist of differ-
ent aspects of orchestrated services. ’Orchestrated’ is a buzzword
that “describes the automated arrangement, coordination, and
management”4 of services. Security modeling for SOAs focus on
the communication between several services in order to make
sure it is as secure as intended.

The difference to our approach is that we focus on the model
of the web application itself and hence on the details of the im-
plementation rather than on the communication with the outside
world. Nevertheless, almost every web application can be ex-
tended with an Application Programming Interface (API) to be
assimilable in a SOA environment.

Lift for example provides a RESTful API. [7, chapter 15: web
services] Representational State Transfer (REST) is an http-based
architectural style that describes a uniform interface to resources,
e.g. data values, images, etc.

3.1.3.1 SECTET Framework

In their book “Security engineering for Service-Oriented Archi-
tectures”, the authors define security as

“the sum of all techniques, methods, procedures and
activities employed to maintain an ideal state specified
through a set of rules of what is authorized and what
is not in a heterogeneous, decentralized and inter-
connected computing system.” [18, page 28]

4 Wikipedia: Orchestration. http://en.wikipedia.org/wiki/Orchestration_

%28computers%29, last visited 2010-09-10

http://en.wikipedia.org/wiki/Orchestration_%28computers%29
http://en.wikipedia.org/wiki/Orchestration_%28computers%29

3.1 security modeling 21

The thought of having “a set of rules” leads to security policies,
which can be modeled later on. They concentrate on four basic
security policies:

confidentiality policy to ensure confidentiality of the ex-
changed documents.

integrity policy to specify who is allowed to alter informa-
tion.

availability policy is intentionally put on the same level as
non-repudiation. [18, page 32] Usually, Availability means
that something e.g. a service or a document is available
when needed. The preceding three policies are often re-
ferred to as CIA triad, according to the first letter of each
term.

policy models. Discretionary Access Control (DAC) is men-
tioned as well as Mandatory Access Control (MAC), and
RBAC.

In addition, advanced Security Policies include more complex
issues like e.g.:

dynamic access control policies grant access according
to a changing environment e.g. nurses can only access the
information of patients of their ward. UCONABC [40] is
a model for usage control, supporting continuity of access
decision (which means that the access decision is verified
during the access so that it is possible to revoke permissions
whenever necessary) and mutability of attributes (which en-
sures that subject or object attributes are adapted, which
can lead to a change in access decisions). Examples are
conflicts of interests that can be resolved by denying access
to certain objects.

4-eyes-principle means that access is only granted if two
subjects (usually humans) are available at the same time.
An example is the access to the data stored on electronic
health insurance cards.

Technically this is tackled by reading the e-health card of
the patient and the doctor’s Health Professional Card at
the same time and credentials like passwords can be ad-
ditionally required. Stereotypes (e.g. «fourEyesPrinciple»)
and OCL constraints are used in a UML class diagram to
determine, which policy is applied. [19, figure 3]

delegation of rights policies allow users to delegate rights to
other objects.

22 related work

Figure 3.4: Single Sign-on authentication [31, page 6]

bgp (Break-Glass Policy) grants access in case of emergency to
e.g. medical data of vital importance.

In order to inspect the communication between the services,
sequence diagrams are used as patterns. An example is the SSO

authentication as depicted in figure 3.4. It is certainly not satisfac-
tory to model this diagram every time a developer want to use
SSO, but this encapsulation provides not only a coherent speci-
fication of what is meant by SSO, but also eases the adaptation
process, if something has to be slightly changed for a particular
system.

3.1.3.2 UML4SOA

UML4SOA was developed in the SENSORIA EU project5, which
was coordinated by the LMU from 2005 to 2010. The UML-based
modeling language UML4SOA supports constructs such as event
handling and message passing.

Security was not in the focus of this project; nevertheless it
discussed the inclusion of security aspects as non-functional prop-
erties of services. The non-functional metamodel (UML4SOA-NFP,
depicted in figure 3.5) provides a monitored NFContract as a part
of a ServiceInterface. This contract specifies non-functional
aspects (NFCharacteristic e.g. performance, security) that are
described in more detail with NFDimension elements. Encryption
and digital signatures are examples mentioned in a case study of
SENSORIA. [13, chapter 4.2] In this way, the developer can model
e.g. properties of encryption to specify which part of the message
should be encrypted, which algorithm will be used and decide if
a signature is necessary. These RunTimeValues are controlled by

5 SENSORIA. http://www.sensoria-ist.eu/, last visited 2010-10-20

http://www.sensoria-ist.eu/

3.1 security modeling 23

Figure 3.5: UML4SOA. Metamodel of non-functional extensions.
[13, figure 6]

the monitor to make sure that the previously agreed contract is
fulfilled.

3.1.3.3 SecureSOA

SecureSOA [32] is a relatively new security language for Service-
Oriented Architectures integrated in Fundamental Modelling
Concept (FMC) Block Diagrams. FMC is a semi-formal graphi-
cal notation to describe software systems. SecureSOA can also
be combined with other languages, such as Business Process
Modeling Notation (BPMN).

Figure 3.6: SecureSOA. Base model
[32, figure 2]

SecureSOA’s base (meta)
model is shown in fig-
ure 3.6, it contains an
Object (e.g. a web ser-
vice or a service client),
consisting of a set of
Attributes. The Inter-

action the object partic-
ipates in is performed on
a Medium (network) in order to exchange Information.

Several security patterns can be modeled with SecureSOA: dig-
ital identities for the web services as well as for users, general se-
curity policies and authentication and confidentiality constraints.
The metamodel of the confidentiality constraint is depicted in
figure 3.7. It is noticeable that the metamodel is not directly
based on the base model of figure 3.6.

A model example would instantiate e.g. the Confidential

Algorithm Type with a concrete cryptographic protocol, Policy
Owner would be set to the name of the service and Credential

Type would be a particular public key from a PKI. In our opinion
this representation of SecureSOA models is rather confusing and
the extensive usage of connection arrows in figure 3.7 give rise to
this impression.

24 related work

Figure 3.7: SecureSOA. Confidentiality constraint [32, figure 9]

3.1.4 Pattern-based Approaches

Most existing pattern-based approaches are rather at the level“A security pattern
describes a partic-

ular recurring
security problem

that arises in a
specific security

context and presents
a well-proven

generic scheme for a
security solution.”
[49, definition 12]

of system engineering, than at the level of software engineering.
Security patterns are often extended and republished later on.
An example is a technical report about secure design patterns
[10] which subsumes

architectural-level patterns , such as privilege separa-
tion for reducing the code that runs with more privileges
than needed.

design-level patterns , like secure factory, which returns a
particular object after the input of a specific set of creden-
tials.

implementation-level patterns , such as secure logger to
prevent gathering useful information from the logfile of an
application.

The report does not deal with privacy aspects. Privacy patterns
can be found in the papers of Hafiz [16] and Romanosky et al.
[45]. The former describes privacy at the network and transport
layer, the latter identifies three online interaction patterns:

informed consent for web-based transactions “how
websites can inform users whenever they intend to collect
[. . .] personal data” [45]

masked online traffic disclose only a very few amount of
personal data

minimal information asymmetry users should gather in-
formation about the services they are using

3.2 web engineering 25

Many aspects have to be taken into account for each of the
patterns and it is useful to keep them in mind while modeling a
web application.

Figure 3.8: Pattern example. Security session
(adapted from [50, page 300])

Some of the pattern descriptions contain diagrams, e.g. the
pattern of access control with security sessions in [50] (as depicted
in figure 3.8). They often provide an UML overview, such as
our security aspects in the following chapter. We can see in
figure 3.8 that it is important to discuss if we want to model
session timeouts and how this can be done in a practical way.

To fulfill the objective of our work, more specific patterns are
important, e.g. different login schemata that can be modeled
in a more detailed way. This is especially useful, if a standard
procedure can be modeled as a pattern (with stereotypes) as well
as redefining the pattern in detail. Nevertheless, the developers
should pay attention to the general patterns [50, 10, 25], because
many aspects of security are out of scope of formal or graphical
methods, as described in section 2.10.

3.2 Web Engineering

In 1999, Murugesan et al. defined:

Web engineering is the establishment and use of
sound scientific, engineering and management prin-
ciples and disciplined and systematic approaches to
the successful development, deployment and mainte-
nance of high quality web-based systems and applica-
tions. (republished in [35])

The need of web engineering methods may even have grown with
the increasing complexity of current web applications, because an

26 related work

up-to-date RIA can quickly become as complex as a usual desktop
application.

The following subsection provides an introduction to UWE. Our
security extension UWEsecurity, as described in chapter 4, is based
on this web engineering method, but can also be used together
with other UML-based approaches. Subsequently, some existing
security aspects of UWE are illustrated and a comparison with
the Web Modeling Language (WebML) regarding security issues
is drawn. At the end of this chapter, two smaller web security
modeling approaches are presented in brief.

3.2.1 UWE

The increasing application complexity is another reason for choos-“UWE uses ‘plain’
UML notation and

UML diagram types
whenever possible

for the analysis and
design of Web

applications, i.e.
without extensions

of any type” (UWE
Homepage)

ing UWE for this work, as UWE is based on UML, which can be
extended using the profile mechanism provided by UML. The
traditional UWE-Profile defines basically four views for the separa-
tion of concerns: Content, Navigation, Presentation and Process.
The following sections provide a quick overview of each of these
views, as far as needed for the next chapters. Further information,
some modeling examples and a tutorial can be found on the UWE

website.6

3.2.1.1 Content

The content model comprises classes which are needed by the
future application for domain specific tasks. No UWE stereotypes
are defined for those classes at the moment, but of course each
model can be enriched with information of other UML profiles,
which specify extensions applicable for class diagrams.

3.2.1.2 Navigation

Class diagrams are used for modeling the navigational view of
a web application as well, but there is an ongoing discussion to
use hierarchical state charts instead. This provides additional
information as it would be more obvious which parts of a web
page can be displayed and changed independently. Furthermore
sessions and connections could be represented as discussed in
more detail in the next chapter.

UWE stereotypes are provided to distinguish several types of
UML classes and associations so far, as can exemplarily be seen in
figure 3.9.

An example of a model of an online address book supporting
the search, creation and deletion of contacts is depicted in fig-
ure 3.10. For nodes and links the stereotypes «navigationClass»

6 UWE. http://uwe.pst.ifi.lmu.de, last visited 2010-12-24

http://uwe.pst.ifi.lmu.de

3.2 web engineering 27

navigationClass menu

index query

guidedTour processClass

Figure 3.9: Names and symbols of UWE navigation class stereotypes

Figure 3.10: UWE example. Navigation class diagram

and «navigationLink» are used and the tagged value {isHome}
indicates the starting point of the navigation structure. A «menu»
() can be inserted to navigate to different classes, as Search,
ContactList and ContactCreation in our example. The stereo-
type «index» () is used to list a number of objects of the same
type, as miscellaneous Contact objects. The content update, i.e.
modification of contact data, deleting a contact or adding a new
contact, is modeled with so-called process nodes and integrated
in the navigation flow by process links. A «query» () (as can
be found on the Search class) is a kind of «process class» (),
because searching something is a very common task in the web.

We can see that the assignment of navigation nodes to pages is
not specified in the navigation model (but to some extent in the
presentation model, see section 3.2.1.3). Sometimes only a part
of the page changes; for example a RIA implements our model

28 related work

of figure 3.10 and permits to edit a contact and allows to search
for others in the meantime. Other realizations of that model
might reconnect to the server for each of the elements shown in
the model and it is not clear which navigation node can only be
used within a previously established session. These aspects are
discussed in further detail in chapter 4.

3.2.1.3 Presentation

In order to define the rough structure of the web layout, the pre-
sentation view models not only the way elements are arranged,
but also allows the engineer to nest them, using UML properties.
Furthermore, special stereotypes and tags for RIAs specify the
behavior of interactive elements as text fields that provide au-
tomatic completion while the user is typing. It is obvious that
security affects all views, in this case it would be desirable to
define, which element can be displayed and which one should
not be visible. [3] This depends on a full-fledged security model,
therefore our work first and foremost focuses on the security
basics.

3.2.1.4 Process

UWE provides two process modeling views: on the one hand the
process structure can be defined, showing dependencies between
several processes () in class diagrams. On the other hand, the
workflow of the processes itself can be modeled with activity
diagrams. UWE stereotypes indicate if something is a user () or
a system action ().

3.2.1.5 Existing Security Engineering Approaches for UWE

Two aspect-oriented approaches exist for UWE:
First, Zhang et al. proposed an aspect-oriented techniqueZhang et al.

for modeling access control in web applications, based on the
navigation model of UWE. [54] State machines are used to specify
the process of granting access to navigation nodes. The advantage
is that access control rules can define nodes (e.g. web pages like
‘LogOn’ or ‘Error’) to be displayed, instead of just deciding if
a user has access or not, as depicted in figure 3.11. To connect
one or more aspects with a navigation node, aspects are modeled
as (nested) containers wherein the nodes are included. Our
approach also uses state machines, but integrates RBAC directly
in a new UWE navigation model, as described in further detail in
section 4.2.

Second, Pramod [42] sketched the same authentication aspectPramod et al.

(without quoting Zhangs work) and added a login tracer to deal
with multiple unsuccessful login attempts. The aim is to execute
several aspects in a row and to describe each of them with a

3.2 web engineering 29

Figure 3.11: State machine specifying an access control rule [54]

state chart. Every aspect is attached to a component using UML

component diagrams, but the relation to the aspects in UWE

models is not clearly shown.

A subsequently published paper [43] is closer related to the
implementation of security aspects in java. Examples are cross
site scripting, sql injection, authentication, authorization and
session hijacking attacks. Unfortunately the paper is not very
detailed with respect to the modeling of the proposed aspects.

3.2.2 WebML

The Web Modeling Language (WebML)7 is another web engineer-
ing method with a focus on data-intensive web applications.
Originally, a particular graphic notation has been invented for
WebML, e.g. for hypertext elements as login units, data units or
several units to modify database objects. In the meantime, WebML

can also be expressed using a WebML-UML profile. [33] Neverthe-
less, Entity-relationship models (ERMs) are still in use and hence
not fully replaced by UML.

As in UWE, WebML defines different views. For example a
content view for data organization, a composition view to define
pages and their subpages, a navigation view and a presentation

7 WebML Homepage. http://www.webml.org, last visited 2010-10-16

http://www.webml.org

30 related work

view. A good introduction can be found at the homepage of
Brambilla.8

Security issues modeled by WebML are access control and site
view assignment, which means a group of users has access to a
set of sites. The dependency of users and groups are intended
to be saved in a database and login and logout units provide a
basic session control by storing the current Object Identifier (OID)
of the logged in user and the associated group as predefined
global parameters. WebRatio9, a CASE tool for BPMN and WebML

can be used to model a business process for each role a user can
take on and generates a basic web application comprising user
authentication, role assignment and authorization to tasks. If
users are not entitled to do a task, they cannot even see it in their
task list. In this way, too many error messages are avoided.

3.2.3 Other Approaches

There are some other rather isolated approaches for the inte-
gration of security and web engineering. Oberortner et al. [36]Oberortner et al.

combined pageflow in the web with RBAC. The paper is moti-
vated by Model-Driven Software Development (MDSD), but the
resulting example is a very simple one, even though the related
model is rather big and unintuitive. That is because the meta-
model provides a flexible and therefore complex, decision based
system for the navigation, which comes along with the If, ElseIf,
Else classes, depicted in the metamodel (figure 3.12). Apart from
this, they present the navigation structure as simple state ma-
chines for each role, comparable to WebML’s BPMN diagrams. Our
approach is to use complex states that integrate different roles
in the navigation structure. This makes the reuse of nested state
diagrams possible.

An older approach from Aedo et al. [1] uses the Ariadne Devel-Aedo et al.

opment Method for Hypermedia. The paper focuses on authoriza-
tion and authorization propagation mechanisms, i.e. the inheri-
tance of permissions, which are associated with subjects in a RBAC

manner. Grouping of objects is also taken into account. Graphical
modeling techniques are mentioned, such as a structural diagram
showing the structure of objects, but the access control itself is
mainly based on Access Control Lists (ACLs). Security access
categories are browsing, personalizing (creating personal entries)
and editing (the general structure of the page). Compared to
everyday social web communities as facebook, these categories
may be useful especially in a preliminary stage of modeling. In

8 WebML. Tutorial with audio and slides. http://dbgroup.como.polimi.it/

brambilla/webml, last visited 2010-10-16

9 WebRatio. http://www.webratio.com, last visited 2010-10-15

http://dbgroup.como.polimi.it/brambilla/webml
http://dbgroup.como.polimi.it/brambilla/webml
http://www.webratio.com

3.2 web engineering 31

Figure 3.12: Pageflow and RBAC metamodel [36]

our work, we focus on RBAC, because it is independent of its field
of application.

Part II

U W E S E C U R I T Y

4
S E C U R I T Y E N G I N E E R I N G F O R W E B
A P P L I C AT I O N S

As mentioned in chapter 3, our approach called UWEsecurity can
be combined with UWE, but UWEsecurity can also be used in-
dependently or be added to other UML profiles. This chapter
introduces UWEsecurity: Section 4.1 presents a way of modeling
the requirements of secure web applications. In section 4.2, the
navigation state model is specified, which also is used in sec-
tion 4.3 for common security patterns that can easily be included
as substates in the navigation state diagrams. Finally, section 4.4
defines the UWEsecurity “basic rights” Role-Based Access Control
model, which is transformable in a SecureUML model.

Before describing the features of UWEsecurity, an overview of overview of UWE
modelsthe purpose of all resulting UWE models is given (cf. figure 4.1).

Further information to the traditional UWE models can be found
in section 3.2.1.

Figure 4.1: UWE with UWEsecurity. Model overview

content. The content model is used to represent relevant con-
cepts of the domain and their relationships. In UWE we use
a UML class diagram for the visualization of the content
model.

user model. A user or context model can be used to collect
information needed for adaptation (which is not used in
the following examples). Furthermore, it is useful to add
characteristics of users and roles, as kinds of User and Role

classes to work with UWEsecurity. Of course their relation
to content classes can be depicted in content diagrams. The

35

36 security engineering for web applications

user model can contain a UWEsecurity role model that repre-
sents the role hierarchy, e.g. with a snapshot of existing role
and user instances and their relations, usually illustrating
the state after the installation (see section 4.4).

basic rights. The basic rights model specifies access control.
For that it connects the role model with classes from content
using dependencies with UWEsecurity UML stereotypes and
UML tags.

navigation. UWE’s navigation model is used to represent nav-
igable nodes of the hypertext structure. Links between
nodes stand for the possibilities of navigation the user has.

The Navigation Classes Model is the classic navigation in
UWE, which is much easier to use than the UWEsecurity
navigation states model, but also less expressive. UML class
diagrams are used for representing the navigation nodes.

Section 4.2 introduces the UWEsecurity navigation states model
that includes security aspects like secure connections, ses-
sions and access control on navigational nodes. In addi-
tion to the UML state machines, the structure of navigation
menus can be represented with class diagrams.

presentation describes not only the rough layout of the pages,
but also RIA features as autocompletion in search fields.
Again, class diagrams are used that are extended with UWE

stereotypes.

process is divided into two views: On the one hand, the pro-
cess structure model describes the relations between the
different processes, which are related to the classic naviga-
tion. On the other hand the process flow model comprises
activities for the processes.

requirements. The requirements analysis is supported by
UWE by use case diagrams and activity diagrams, as de-
scribed in the following section.

4.1 Requirements Analysis

Figure 4.2: Use case example

Use cases and roles in use case dia-
grams are one part of modeling the
requirements of a web application.
Another part is made up of activity
diagrams with special stereotypes,
but in this work we did not make
use of that UWE feature. [27]

Before describing our extensions
for use case diagrams, we have to

4.1 requirements analysis 37

specify how to read them: the association between two actors associations in use
case diagramsand one use case (see figure 4.2) can have two meanings: on the

one hand it can be seen as 4-eyes-principle (two actors are needed
for one use case), on the other hand, it expresses that both actors
can interact with the use case individually. [21, p. 184] The latter
case is the one, which is used in this work.

Figure 4.3: Part of the requirements profile

Figure 4.3 depicts a part of the UWE profile for requirements. UWEsecurity
extension of the
UWE requirements
profile

An additional metamodel is not necessary for UWEsecurity, as all
required information can already be found in the profile. The
stereotypes «browsing» and «processing» and their descendants
are from [27], but they had been renamed (from «navigation» and
«process»), because the stereotype «process» exists in the UML

profile with a different semantics. In RIAs it is not always clear
whether a use case only refers to browsing activities without
processing something, as e.g. a generated list from a “list all”
operation is processed in a way, too. Therefore, we suggest to
use «processing» in case some direct input is given (like a search
string) or in case of a significant database modification (like
creating a new user).

The UWE profile is extended with the rule which is described
in the upper comment in figure 4.3, because previously the men-

38 security engineering for web applications

tioned stereotypes could only be added to use cases, not to
packages. The only new stereotype is «webUseCase» (); it
denotes not only the ‘web’ character of a use case, but also makes
it possible to specify a {transmissionType} i.e. a mode of transmis-
sion for transferred data. Usually, no technology is specified – as
the detailed realization is determined later on. For this reason in
our examples we use the first letters of the underlying concepts
(c for confidentiality, i for integrity and f for freshness).

4.2 Navigation State Model

The traditional navigation class model does not specify the navi-
gation flows exactly, because it is not defined when the user can
go back or access several nodes in parallel. Hence, the navigation
class model is not powerful enough to include basic security
issues as a role management (if some users are allowed to access
different nodes than others) or secure connections.

Therefore, we need another, more precise navigation model forthe diagram type of
a new navigation

model
UWEsecurity to represent not only navigation, but also security
features. We selected UML in order to describe state configura-
tions, where it is possible that more than one state is active at
the same time. This is needed when the user has more than one
part of the navigation that switches independently to a state in
which other links are offered. Activity diagrams were also taken
into consideration, but they are too fine-grained, because the
navigation view should concentrate on navigation features and
not on single actions. Furthermore, parallel actions cannot be
specified as precisely as in state machines. If the communication
between the server and the client necessarily is to be modeled in
detail, activity or sequence diagrams can be used additionally for
rather small parts of the system.

The navigation state model can be used side by side with
the UWE navigation class model, as can be observed in our case
studies in sections 6.2.4 and 6.2.5. The traditional navigation
class model represents only the structure of the navigation and
the navigation states model additionally allows the modeler to
specify the behavior of the navigation, i.e. when a node can be
activated and when not etc.

Figure 4.4 presents the profile of the navigation state model. Athe navigation state
model profile «navigationMenu» () is a UML class with operations that specify

the functionality of navigation menus for web applications. Sev-
eral classes can be abstract and of course inheritance can be used.
In the containment tree, the navigation state machines are stored
as descendants of these «navigationMenu» classes. The other
stereotypes and tags that are shown in figure 4.4, are introduced
in the following subsection.

4.2 navigation state model 39

Figure 4.4: Navigation states profile

4.2.1 Web Navigation with State Machines

A convenient navigation state model to represent the navigation
in a web application is specified in the following. Every stereo-
type and all tags have to be specified exactly. The following
pattern is used for the specification:

• Stereotype name(s) and tag(s)

• Purpose (directly following the name)

• Constraint – if necessary

• Definition of the transformation for replacing the stereotype-
/tag with a longer version without this stereotype, if appli-
cable. The transformation from a version with UWEsecurity
stereotypes to a plain UML version needs at most two steps.

• Abstract example for complex definitions, especially those
that require transformations. Abstract means that the nam-
ing of the definitions is used instead of real world labels.
Further examples can be found in our case studies in chap-
ter 6 and appendix A.

4.2.1.1 Navigational Nodes

A «navigationalNode» () is the basic state or state machine
stereotype in our navigational state model. ‘Navigational’ refers

40 security engineering for web applications

to the view and the granularity of the state machines, because
states that do not change the navigational behavior are repre-
sented as one state.

Specification 1

«navigationalNode» ()
Some states (or state machine configurations, i.e. a set of active«navigationalNode»

() states in orthogonal superstates) can be accessed directly. This is
necessary for explicit access of a special state via a URL. Usually
the assignment between a navigation state configuration and
URLs is not modeled explicitly in order to keep the diagrams
comprehensible. Nevertheless it is possible to represent this
behavior by adding a choice between the initial node and the
{isHome} state and by using a new variable in the model called
‘location’. With guards, effects and choices, the location variable
can not only be helpful for direct access, but also for changing the
location path according to the current state of the web application.

Specification 2

«navigationalNode» () {isHome} specifies that this is the
main node (=̂ the first state) the users go to when accessing the
web application. Usually it is related to the home page of the
whole application.

Constraint. Exactly one «navigationalNode» has the {isHome =
true} tag within a web application.

Specification 3

Default stereotype «navigationalNode» () within other
«navigationalNode» states
Per default, every state which is nested within a state denoted
by the stereotype «navigationalNode» (or inherited stereotypes)
is assumed to represent a navigational node. State machines
can contain outermost states without stereotypes, if they are
always used as submachine states in a valid context, i.e. a «nav-
igationalNode» stereotype is set to the submachine state or to
parental states of the submachine state. This avoids overfull state
diagrams, because stereotypes only have to be set when they
represent new information, such as a substate, which redefines
the {unauthorizedAccess} behavior or a state that is the target
«navigationalNode» of the {unauthorizedAccess} tag.

Specification 4

«navigationalNode» () {isModal=true} guarantees that
only this state is active and that it can only be left by a transition
that goes back to the previously active state. All parallel regions
are restored after having left the modal state. This represents the
navigational behavior of a modal dialog. An example is depicted
in figure 4.5; the main advantage is that this abbreviation can be
used within state machines without taking care of the nesting.

4.2 navigation state model 41

Figure 4.5: «navigationalNode»: {isModal} abbreviation

Constraints:

1. Exactly one transition targets the modal state with a unique
action., i.e. an action that cannot occur elsewhere at the
same time.

2. Exactly one transition makes it possible to go back from the
modal state to the previous state.

3. These two transitions are the only ones that are connected
with the modal state.

Definition. The transformation consists of the following steps:
A new composite state z is added that includes the outermost
state machine of the web application, i.e. the state with the tag
{isHome = true} and connected states. A new initial state is added,
which is connected with z. The modal state m is moved outside
of z and the transition that comes from m targets a new history
state in z, instead of the state before m. For transitions that cross
state machine borders, entry and exit points are used.

Figure 4.5 depicts an example in which the abbreviation with example for
«navigationalNode»
() {isModal=true}

the «isModal» stereotype is used. If states in both regions of B
are active, M can be activated and inhibits all other transitions, in
this case f(), g() and y(). The extended version1 in figure 4.6
shows the outsourced state M and the new deep history state
within the outermost state Z*. The drawback is that entry / exit
actions have to be used with caution when modeling with the
«isModal» abbreviation, as it is not obvious that they are executed
when entering / leaving the modal state. If the modal dialog
is displayed within a secure session, the state machines are not
quite correct, because we still assume that the modal dialog is
implemented by using the given connection.

4.2.1.2 Sessions

Sessions are a common concept in the world of the web. They
allow the users to navigate in the web application without losing

1 States in extended versions of the examples are renamed from ‘State’ to ‘State*’
in order to emphasize their relation

42 security engineering for web applications

Figure 4.6: «navigationalNode»: {isModal} extended version

the context, like authentication information or the items they
added to their shopping cart. Often, sessions are combined with
authorization and it is important how long a session is active, e.g.
an online bank closes the session after a few minutes of inactivity
and a personalized TV guide allows the users to return a few
weeks later without an explicit authentication. Furthermore,
sessions allow to specify the type of transmission, which can be
independent of the user-related sessions.

As can be seen in figure 4.4, the «session» stereotype inherits
the «navigationalNode» meaning that a session is a navigational
node, which can be a state or a state machine. Some useful
features are not depicted in the profile, for example there is no
need for defining an explicit logout mechanism, because state
machines support this out of the box by adding a transition with
the trigger logout() or even a time-referenced action, as modeled
in detail in figure 6.7 (section 6.2.4).

Specification 5

«session» () {sessionData} allows the modeler to explicitlysession ()

specify session classes («sessionClass») that are available during
the session. It can be used to store session variables as known
from many web frameworks.

Please notice that the former «visitClass» introduced in [28, p.
25] is renamed to «sessionClass». Before, it had been rarely used,
probably because of the misleading name and the unfamiliar way
to apply it at a session, rather than directly denoting the data
that is available during a session.

Specification 6

«session» () {transmissionType} specifies the type of data
transmission between interacting instances, such as the client and
the server. The value can e.g. be set to ‘cif’ for confidentiality,

4.2 navigation state model 43

integrity and freshness. (May later be implemented as SSL/TLS
connection.)

Specification 7

«session» () {rolesExpression}, {roles}
The permissions of a session can be set by the following tags:

• {rolesExpression} – To access a node, the rolesExpression

has to be true. Usually, ‘currentUser’ refers to the currently
active user instance.

• {roles} – To access a node, the users must have at least one
role in their assigned roles that also exists in the set of the
{roles} tag. If both tags are set, they are combined according
to the following definition.

Constraint. The user model contains a User class and Role class
or enumeration. Usually, a User class is connected with a Role

(multiplicity *, role name ‘roles’) as presumed for this definition.

Definition for RBAC (Role-Based Access Control).
{rolesExpression} and {roles} are combined in the following way:
rolesExpression := R & rolesExpression, where
R = (currentUser.roles->includes(r1) |...|

currentUser.roles->includes(rn))

(r1, . . . , rn are the role values for {roles}).
The {roles} tag is deleted at the end of the transformation and

the final {rolesExpression} tag also is used in the definition of
{unauthorizedAccess} (see specification 8 in the next paragraph).

Specification 8

«session» () {unauthorizedAccess=navigationalNode}
refers to a node, users without the appropriate permissions (see
specification 7) should be redirected to. An example is depicted
in figure 4.7, but of course the tag is more useful if the target
state is located in other state machines or if the target is often
redefined within state machines.

Figure 4.7: «session»: {unauthorizedAccess} abbreviation

44 security engineering for web applications

Definition of {unauthorizedAccess=s} on «session» c (s is typed by
«navigationalNode»). c is wrapped in a new composite state z.
All transitions that started/ended at c, now start/end at z. A
new initial node and a choice with the final {rolesExpression}
constraint (see specification of {roles} and {rolesExpression}) is
added to z and connected by a transition. The choice has two
outgoing transitions: One with the guard [true], leading to c and
one with the guard [false], targeting s. Targeting s should also
be possible if s is located in another state machine, therefore the
abbreviation with the stereotype «target» and the tag {node=s}
is used as intermediate step to bypass the borders of the state
machines (see the following subchapter).

An example for the usage of the tag {unauthorizedAccess} isexample for
«session» ()

{unauthorizedAc-
cess}

depicted in figure 4.7. Session C is only available for users with
the role demoRole. If a user is not assigned to this role, the access
to node C is denied and he is redirected to the node D, as specified
in the {unauthorizedAccess} tag.

Figure 4.8: «session»: {unauthorizedAccess} extended version

Figure 4.8 shows the extended version with a new state Z* and
a choice which tests the assigned role. The new state GoToStateD*
is typed by «target» with the tag {node=D*}, which in this case
means that the transition with the guard [false] ends at D* and
the state GoToStateD* is deleted. As a consequence, the process
of replacing the UWEsecurity abbreviated types with the extended
versions remains linear (in relation to all states). At most two
steps are required: firstly, the replacement of «session» {unautho-
rizedAccess} and afterwards the one of «target» {node}.

4.2.1.3 Targets

The «target» stereotype () is needed in case a web application«target» ()

directly implements the functionality of going back to the previ-
ously displayed page. Another field of application is the “go to
{node}” option. It is not recommended to use it directly, because
diagrams become very confusing, much the same as early BASIC

4.2 navigation state model 45

programs that used ‘goTo’ instead of expressing directly that a
loop or a method call is meant. Nevertheless, it can be very useful
for defining the aspect of unauthorized access behavior (see pre-
vious subsection) without flooding the diagram with transitions
and entry or exit points.

Specification 9

«target» () {goBack}, {goBackDefault} and {node} that can
be set on a UML state allow the modeler to use a shortcut for:

• either going back to the previous state, which is defined as
the state before the state that has a transition to the state
with the {goBack} tag. (see figure 4.11)

(The {goBackDefault} tag specifies an alternative node, in
case the state is accessed directly and not from previous
states.)

• or going to another {node} (see figure 4.9).

Figure 4.9: «target»: {node} abbreviation

Constraints:

1. Only one transition can lead to a state stereotyped by «tar-
get». If there are more transitions, the state typed by «target»
has to be copied before the definition of the transformation
can be applied.

2. If the tag {goBack} or the tag {goBackDefault} are set, the
tag {node} cannot be set at the same state. If only {goBack-
Default} is specified, {goBack} is added before the definition
is applied.

3. {goBack} only: if there is a case where it is not possible to
go back (because no variable x is set, cf. definition), the tag
{goBackDefault} has to be defined.

46 security engineering for web applications

Definition of {goBack}. Let s be the state before the «target» state
r. t is the transition from s to r. Let x be a variable, which had
not been in the set of all variables before.

To all outermost states (no pseudostates) Q that can be left
by a transition which leads to s, exit/x = q ′ is added (q ′ is a
unique state identifier of q and q is a member of Q). The guard
[x == q ′] is added to t. t is copied for each q and the copy of t
targets:

case 1 a new deep history in a region of q, if q is a composite
or orthogonal state2 deep history states are only defined
for composite states (not for orthogonal states), which may
result from a inadequate renaming between previous UML

versions.

case 2 q, else.

A transition can cross state machine borders using entry and exit
points. Afterwards r is deleted.

If the variable x can be null, because of any kind of direct
access (see specification 1), then the {goBackDefault=p} tag is
used. This means the tag {node=p} is set and the tags {goBack}
and {goBackDefault} are deleted.

Definition of {node=p}. (Should be used rarely, it is mainly de-
fined to handle the aspect of unauthorized access.) Transition(s)
and exit/entry points – if required – are added to connect the
state before the «target» state with p. At the end of the transfor-
mation the state typed by «target» is deleted.

Figure 4.10: «target»: {node} extended version

Figures 4.9 and 4.10 illustrate the definition of {goBack}. Fig-example for «target»
() {node} ure 4.9 depicts an example that uses the abbreviation, where the

state T that is located within a substate of the state machine O

2 The deep history is expected to recover the previous state of all regions of q. In
[37, p. 557]

4.2 navigation state model 47

should target the state M (of a state machine, which includes O)
with its outgoing transition.

This behavior is explicitly shown in figure 4.10. For crossing
the state machine borders with the transition, a new exit point x
and a transition from the exit point of the submachine state to
the state M is added. The transition to U now targets x. Of course
the advantage of «target» is linear the number of nested state
machines.

Figure 4.11: «target»: {goBack} abbreviation

An example for the application of the «target» {goBack} defini- example for «target»
() {goBack}tion is presented in figure 4.11. In the first region of the outermost

state, the red, bold transition is expected to navigate to the state
that had been active before Dialog s (expressed with the state R).
In the second region, the difference is that the previous state is
an orthogonal state with substates.

In figure 4.12 the extended versions are depicted. In the upper
region, two red, bold transitions are used with guards, checking
in their condition a variable, which is set in the exit actions of the
states A* and B*. In the lower region, another variable is set and
because one of the previous states (the only one in this case) is
an orthogonal state, a deep history is used. Please remember our
assumption for deep history states: they are expected to recover
the previous state of all regions of the surrounding orthogonal
state.

4.2.1.4 Collections

Specification 10

«collection» () {itemType=ItemClass} and «allItems»

48 security engineering for web applications

Figure 4.12: «target»: {goBack} extended version

«collection» is used to simplify the presentation of collections«collection» ()

e.g. lists with several items that are typical for the web. The
tag {itemType=ItemClass} targets an ItemClass (from the content
model). An example is depicted in figure 4.13.

The «collection» stereotype is defined on:

• a submachine (state) to denote that it contains one or more
states with the «collection» stereotype.

• a state in order to specify the meaning of the outgoing
transitions:

– By default, outgoing transitions are thought to come
from a particular item of the collection. Typically, trig-
ger (or effects) on outgoing transitions have a first
parameter i:ItemClass. To avoid repetitions, an un-
derscore ’_’ can be used instead of i:ItemClass.

– Outgoing transitions with the stereotype «allItems»
are intended to come from the whole collection, not
from single elements.

Figure 4.13: «collection» abbreviation

4.2 navigation state model 49

Constraints:

1. «allItems» can only occur on an outgoing transition of a
state that is stereotyped by «collection».

2. All outgoing transitions of a state that is stereotyped by
«collection» either must have a trigger with a parameter
that refers to an element of the collection (explicitly or
implicitly by using the underscore), or has to be denoted
by the stereotype «allItems».

Figure 4.13 depicts an example of a «collection». In the state example for
«collection» ()List several actions are possible: on each Item (the itemType

corresponds to a Item class from the content model) the g()

or the h() can occur. For the identification of an item, the ‘_’
notation is used in the parameter lists, instead of ‘item:Item’ (cf.
extended version in figure 4.14).

Figure 4.14: «collection» extended version

f() is an operation that is not executed for single elements
of the collection, therefore the «allItems» stereotype is added to
denote that f() is applied to the whole List.

4.2.1.5 Other Stereotypes

This subsection introduces four additional stereotypes for typical
situations in the web. Very common is the «search» () and if a
concrete semantics depends on the viewer for the web application
(like a browser), the stereotype «browserDependent» is used. The
stereotype «externalLink» is rather self-explanatory and used to
express the navigation to foreign web applications. The specifica-
tion of «integratedMenu» is more complex, but plays a part in
keeping the arrangement of the diagrams clear, even if a complex
navigation menu structure is used.

Specification 11

«search» () on transitions denotes that the output (usually «search» ()

a «collection») is determined by a search operation. The tag
{expression} can be used to specify a kind of search expression in
a formal or informal way.

Constraint. A trigger or effect such as searchByName (name :

String) has to be added to specify the parameters of the search.

50 security engineering for web applications

Specification 12

«browserDependent» means that a behavior depends on the«browserDepen-
dent» implementation of the browser.

For example an «externalLink» on terminate states can on the«externalLink»

one hand be opened in a new window or tab; in this case the
pseudostate terminate is not activated. On the other hand it
is possible to navigate to the external node by terminating the
current web application.

Before coming to the integrated menus, the usual way of mod-modeling navigation
menus eling navigation menu should be outlined: to use a navigation

menu in a web application means to substitute at least a part of a
page with another content, which can include other navigation
possibilities. This can be modeled using transitions from the
border of a composite state to substates with the semantics of
leaving the composite state, entering again and activating the
target state. The content of the composite state is related to the
part of the page that is exchanged and usually loses its context
information when another menu item is activated.

Specification 13

«integratedMenu» on transitions (from a composite state to
inner submachine states) allows the modeler to split one menu
into several submachine states without using entry points for
each menu. This comes in handy if many roles and many menus
are used. An example is depicted in figure 4.15.

Figure 4.15: «integratedMenu» abbreviation

4.2 navigation state model 51

Constraint. A composite state s contains m submachine states
pi ∈ P (i = 1, . . . ,m). P is the set of submachine states, where
transitions stereotyped by «integratedMenu» end. Transitions
in the set T are typed by «integratedMenu» with the guard ex-
pressions gi and no other properties (like effects or triggers) and
each ti ∈ Ti connects s or an initial node – see also the paragraph
below – with pi. Each pi refers to a state machine p ′

i. Each p ′
i

contains oi transitions t ′ij ∈ T ′
i (j = 1, . . . ,oi) from a composite

state s ′i (which is the target of an initial state) in p ′
i to a substate

s ′′ij in s ′i.
An initial state can exist in s. If no other transition is connected

with a submachine state pi that includes menu transitions, which
should be integrated, the transition coming from the initial node,
pointing to pi, has to be stereotyped by «integratedMenu».

Definition. For each t ′i, the transition ti that targets pi is copied,
which results in the transformed transitions t̂ij with the guards
gij. Each t̂ij targets a new entry point eij of pi with the corre-
sponding representation e ′ij in p ′

i. All t ′ij are transformed to t̂ ′ij
that start at e ′ij instead of s ′i.

For all transitions t̂ij, all properties of t̂ ′ij are added. The guard
gi is added with ’&’ to the guards gij (for j = 1, . . . ,oi). If one
guard is empty, the ’&’ is left out. If a ti starts at an initial node,
the «integratedMenu» stereotyped is removed, if not, ti is deleted
itself.

All transitions without the «integratedMenu» stereotype re-
main unchanged.

It is not easy to present a small and at the same time convinc- example for
«integratedMenu»ing example for an integrated menu, because the advantage of

the use of this shortcut can be observed best in rather large and
complex models. In figure 4.15 two roles are each allowed to
access one substate machine. In addition, all users can use the
default menu for all users, no matter what roles they take on.
The first substate machine p1 is depicted in the bottom left corner
of figure 4.15 with two menu transitions targeting inner states.
An inner initial node is not necessary, because of the «integrated-
Menu» stereotype at the transition that ends at the state p1 in the
context state machine SessionForLoggedInUsers s.

After transforming the diagram into a version without inte-
grated menus (figure 4.16), entry points and the repetition of
the guards for all navigation menus crowd the diagram. If p1
had got 20 instead of 2 menus – e.g. for r1=administrators with
the permission to access many configuration pages – 20 entry
points with 20 copies of the guard roles->includes(r1) would
be necessary at the top level. Consequently, changing all those
guards would be a tedious task without the «integratedMenu»
stereotype.

52 security engineering for web applications

Figure 4.16: «integratedMenu» extended version

4.2.2 Transformations between Navigation Class Model and Naviga-
tion State Model

It is difficult to define a transformation between two models that
do neither have exactly the same focus, nor the same expres-
siveness. Nonetheless, it is interesting to give a semi-automatic
transformation between the UWE navigation class model and the
UWEsecurity navigation state model a thought.

Knapp and Zhang created an “approach of building a UML“big picture”
approach state machine that integrates the separate concerns [. . .] of a web

system into a big picture, which can then be validated formally”.
[26] In [26, chapter 3.1] they describe the transformation of UWE’s
navigation structures.

The difference to UWEsecurity’s navigation states model is that
Knapp’s state machine is simpler, as security features, user man-
agement, sessions and global menus are nonexistent. That’s the
reason why a semi-automatic transformation is presented in the
following. Initially, the basic transformation is described and
afterwards further options that can be chosen by the modeler are
outlined.

Basic transformation from navigation classes (see section 3.2.1.2)transformation from
navigation classes to

navigation states
to navigation states:

navigationclass ishome is transformed to a composite state
with the same name and the stereotype «navigationalNode»
with the tag {isHome=true}. An initial node is placed next
to the new state and connected with it by a new transition.
These elements are the starting position for all transforma-
tions.

4.2 navigation state model 53

navigationclass islandmark equals to a navigation menu
in the «navigationalNode» state with the tag {isHome}, if
this is the outermost state.

index correlates to a «collection» state. The «index» class itself is
not transformed, but the item class that is connected with an
association is converted to a «collection» state. The modeler
has to specify further details after the transformation.

menu is converted into ‘menu’ transitions that start at the border
of a composite state and end at an inner state. Further
information is needed to be able to identify the scope for
each menu and to specify if two menus can be activated in
parallel, e.g. if one menu item just expands something like
a search field, but not changes the navigation possibilities
of the rest of the page.

process class. There are two options: it can be transformed
into a state or into a transition with an action name equal
to the process name. In some cases processes could also be
effects, but a choice should be optional in order to provide
a fast result at the first time. Default operation is to convert
the class into a transition if there is exactly one outgoing
«processLink» association and otherwise into a state.

query is transformed to a «search» transition. If the «query»
class is not connected with two directed associations, an
incoming and an outgoing one, the modeler has to decide
what should happen.

external node is converted to an «externalLink» terminal
state.

navigation class. Per default, a «navigationClass» is trans-
formed to a new state, but the modeler should have the
option to transform it to a transition or substate of another
state instead.

Further refinements for the transformation could be:

user management. If user management should be introduced,
the navigation classes have to be divided into groups: one
group for each internal area with a guard that specifies the
conditions for entering it. By default, this schema is trans-
formed into an external visitor area (containing submachine
states from the UWEsecurity patterns, e.g. “authentication
via password form” for login) with transitions from the
login state to an internal visitor area that internally uses
the given guards and the «integratedMenu» stereotype.

54 security engineering for web applications

navigation menus that cannot be derived from the naviga-
tion class model. Maybe a window is advantageous where
the modeler can select elements from the traditional navi-
gation class model. These elements can then be grouped
together and be converted to a composite state with several
menu transitions. This step should be optional, because
presumably it is easier for the modeler if the transformation
has less dialogs and instead the output includes only some
composite states (see user management) and further states
are located loosely within those states and are just con-
nected with each other by “empty completion transitions”
in the first place.

secure connections can be derived from the user manage-
ment option to some extent: per default, the login and
registration as well as all internal areas should be enclosed
by a «session» state with {transmissionType=‘cif’}.

The transformation is bidirectional, the other direction is de-transformation from
navigation states to

navigation classes
scribed in the following. The navigation states model is more
powerful, therefore information loss cannot be completely avoided.
It is required that «target» stereotypes are replaced by applying
their definition, before the transformation from the navigation
states model to the navigation class model is executed.

navigational states. The basis is the «isHome» tag, similar
to the other direction of the transformation. All «naviga-
tionalNode» or «session» substates are unfolded, i.e. the
inner states are converted to classes stereotyped by «nav-
igationClass» (if no other rules are applicable, see below)
and the composite state itself is transformed into a «menu»
class (which belongs to a preceding class with a composi-
tion). In most cases, transitions can be converted to directed
«navigationLink» associations.

collections are transformed into «index» classes with the
name of the state concatenated with ‘Index’. Those classes
have a directed association (multiplicity * at the end) to a
«navigationClass» with the original name.

external links are converted to «externalNode» classes.

search transitions are equal to a new «query» class between the
converted elements at the ends of the transitions. Directed
associations typed by «processLink» are connecting the new
class.

In summary, it can be stated that these two transformations are
too complex to have a beneficial effect on the comprehensibility
and speed of the process of creating another kind of navigation

4.3 uwesecurity patterns 55

model. Nevertheless, a limited implementation of the outlined
transformations may be a good start.

4.3 UWEsecurity Patterns

Patterns are a common approach to tackle the problem of repeti-
tive tasks. It is necessary to implement authentication due to its
importance, as authorization is impossible without authentica-
tion. Otherwise everyone would have the same rights, because no
distinction of users would be feasible. Therefore, several typical
authentication related mechanisms are provided as patterns, e.g.
user registration, authentication (login mechanisms), credential
recovery (lost password), and further patterns, as user profile
configuration.

4.3.1 Registration

User registration has to ensure at least two things: On the one secure registration

hand the user should be human, which can be verified by a
CAPTCHA3 as depicted in figure 4.17. On the other hand the infor-
mation the user provides has to be useful, for example the given
email address should be valid. Another frequent requirement is
to encrypt the entered data during the transmission to the server,
as determined by the tag {transmissionType=‘cif’}.

Figure 4.17: Secure registration

Another variant is the insecure basic registration pattern. It insecure basic
registration. . .does not specify a CAPTCHA or a secured connection and can later

3 An example is google reCAPTCHA. http://www.google.com/recaptcha, last
visited 2010-12-20

http://www.google.com/recaptcha

56 security engineering for web applications

be used e.g. for signing up with a nickname and an email for
services that have not to be secure.4 In addition, a typical regis-
tration process is available as activity diagram that distinguishes. . . with additional

activity diagram between user, system and database actions. In order to keep the
diagram clear, the semantics of the stereotypes «userAction» and
«systemAction» has been enhanced so that both can also be ap-
plied to activity partitions. The advantage is that not every action
in a stereotyped swimlane has to be stereotyped individually.

4.3.2 Authentication

After having signed up, the users usually want to log in. Several
types of logon requests are provided as navigation state patterns:

• Login via password form, which is located at a website.
Besides the navigation state machine, an activity diagram
and an exemplary presentation are provided.

• Single Sign-on (SSO) with an additional sequence diagram
for OpenID

• Login with a client certificate

• Digest access authentication, if man-in-the-middle attacks
should not be excluded

• CAPTCHAs only, as for submitting comments to blogs

Exemplarily the first two patterns are described in this subsec-
tion. Thus, figure 4.18 depicts the authentication via passwordauthentication via

password form form. Simple enough, a secure connection is established, the
users can enter their names and passwords and after the submis-
sion the authentication can be successful or not. In this particular
case error messages are displayed and the user can try it again. A
cancel method is not provided, because this navigational pattern
should be integrated as submachine state and in case navigation
menus are used, the user can activate those outer transitions to
navigate away from the login form.

Another example of our predefined patterns that are presentedsingle sign-on with
OpenID here is the SSO as shown in figure 4.19. This sequence dia-

gram5 depicts the communication between client, site-server and
OpenID provider. The main point is that the site-server only asks
the OpenID provider to authenticate the user and afterwards
relies on the authentication result.

Figure 4.20 depicts the corresponding navigation state dia-
gram. Of course only navigation related states are shown, as the

4 An example is http://www.dict.cc/, last visited 2011-01-29, an online dictio-
nary where e.g. a vocabulary trainer can be used after the registration.

5 For the creation of figure 4.19 information from http://www.theserverside.

com/news/1364125/Using-OpenID, last visited 2010-12-15 was used.

http://www.dict.cc/
http://www.theserverside.com/news/1364125/Using-OpenID
http://www.theserverside.com/news/1364125/Using-OpenID

4.3 uwesecurity patterns 57

Figure 4.18: Authentication with a password form

possibility for the user to enter an OpenID URL and the vague
representation of the authentication procedure itself. The result
of the login is likely to change the further navigation flow of the
modeled application.

4.3.3 Credential Recovery

Credential recovery is important, if the user has lost e.g. his three patterns for
credential recoverypassword. To recover the password, predefined questions can

be asked (which is considered insecure, see section 2.1) or a SMS

or email can be sent. The last one out of these three patterns is
shown in figure 4.21. There is nothing special in this diagram
except that the SendMail state is modeled even if it is only indi-
rectly necessary for the navigation. ‘Indirectly’ means that the
model would be incomprehensible without it and furthermore it
might be desired to specify the recovery link in more detail.

4.3.4 Further Patterns

Our patterns should be self-explanatory so we only give some
more examples that can be found at the attached CD.

User profile configuration is something almost every web ap- profile configuration
patternplication offers that provides a login functionality. In other words

users can choose from a typical navigation menu that is specified
with a class diagram. An appropriate navigation states diagram
depicts how to navigate through the tabs for editing account
information, user details or privacy settings. The pattern also
provides an activity diagram that focuses on the server actions.
It is expectable that these diagrams can be used without further
adaptation only on rare occasions, but they might be a good

58 security engineering for web applications

Figure 4.19: Authentication with Single Sign-on. Sequence diagram

start for the modelers, as they just can copy them into their own
models.

Non-repudiation for web applications is treated as an orphan,non-repudiation
pattern because no common solution exists. Our “non-repudiation sub-

stitute” pattern points out that fact and suggests a combination
of writing a log-file and sending a confirmation email to the user.

4.4 Role-Based Access Control

After having mentioned RBAC for session nodes in the previous
sections, this segment introduces UWEsecurity’s role model, basic
rights model and its transformation to SecureUML.

4.4.1 Role Model

A role model is a special case of user model, in which character-
istics of the roles users may take on are specified. UWEsecurity’s
role model comprises instances from a Role class or enumeration
and models their hierarchy and connection to User instances
with links. Usually the moment after the installation of the web
application is captured in this way to avoid inaccuracies because
of subsequently registered users. Detailed examples can be found
in section 6.2.2 (roles as items of an enumeration) and section A.3
(roles as classes). As a matter of course more than one snapshot

4.4 role-based access control 59

Figure 4.20: Authentication with Single Sign-on. State machine diagram

can be modeled e.g. in case the application allows to change the
role structure dynamically.

In a model-driven process, we may generate a first version of
the role model from the actors hierarchy in the use case diagrams.
The only thing we need to know is which classes in the user
model correspond to the typical RBAC Role & User classes in-
cluding the association that represents the inheritsRightsFrom

relationship, if a hierarchy is used.

4.4.2 Basic Rights Model

At the beginning we planned to use SecureUML together with the Role Model and
Basic Rights Model
instead of
SecureUML

dialect ComponentUML (see section 3.1.2) for expressing RBAC,
but SecureUML introduces a new class for each user, instead of
instantiating one Role class or enumeration as generally used
in implementations. Furthermore, association classes are not
popular, due to the fact that they are unhandy and not supported
by many CASE tools, and the repetition of e.g. method names
in order to define the access is cumbersome. In addition, it is
somewhat peculiar to create new classes for the return values
within the association classes, each time the model is used, or
select them without ordinary tool support from a UML profile.

By contrast, in the basic rights model the role instances are con- basic rights model

nected with the content (or user model) classes or their attributes
or methods just with stereotyped dependencies. The stereotypes
to specify RBAC with dependencies are defined in figure 4.22.

The basic rights model is based on CRUD (create, read, update RBAC for classes
and their attributes
and methods

and delete) with an additional execute operation. This means the
users are only allowed to execute a method of a content class, if
they are associated (at runtime) with a role that is connected to
this method with an «execute» dependency or with this class with
an «executeAll» dependency (if this RBAC is modeled at all, see
60). The stereotypes «read» and «update» are used in a similar
way, but for attributes instead of methods. The «delete» and «cre-

60 security engineering for web applications

Figure 4.21: Credential recovery via email

ate» stereotypes refer to the whole object and their specification
is especially useful if the object should relate to a database entry
of the web application. Additionally, authorization constraints
– that are similar to those of SecureUML – may be added as
comments. For the sake of clarity, they can be connected with
corresponding dependencies.

Two important issues came up when conceptualizing the basic
rights model:

First, the impact of the introduction of {except} tags for thethe «∼All»
stereotypes «∼All» stereotypes have to be considered. On the one hand,

a model that permits and denies access at the same time can
become confusing, as for large applications several diagrams
may be used and it is difficult to see inconsistencies. On the
other hand, this extremely rare case could be checked with a
tool and there is no good reason for modeling nineteen «read»
dependencies if the modeler wants to express that the twentieth
and latest attribute cannot be accessed.

Second, the claim for default permissions when nothing iswhen to assume
default permissions specified. Our first thought was to allow nothing in this case,

because no careless mistakes can occur when a new attribute
or method is added in the content model without adapting the
basic rights model. In spite of that, practice has shown that it
is not useful to specify the exact permissions for all classes. It
is far more important to have the freedom to specify RBAC only
for well-chosen classes. As a result, we defined that if a content

4.4 role-based access control 61

Figure 4.22: BasicRights UML profile

class occurs in the basic rights model and for some methods of a
class RBAC is modeled and for others not, the permission should
be denied for the undefined ones. Same with attributes and the
operations create / delete.

Again, the trick is to demand a full specification for a single
class (that is shown in the basic rights model) in the categories:

• create/delete

• execute/executeAll

• read/readAll and update/updateAll (as usual, update in-
cludes read)

This means the modeler is free to qualify only some classes
and if e.g. only the execution of methods is important for him,
nothing can be derived for the access on attributes. Concrete
modeling examples are located in sections 6.2.3 and A.4 and the
following subsection (section 4.4.3) outlines the transformation
to SecureUML.

62 security engineering for web applications

4.4.3 Transformation to SecureUML with dialect ComponentUML

The disadvantage of the invention of an own model – as our
role model and basic rights model – normally is that existing
tools for more popular modeling techniques cannot be used. A
transformation to SecureUML (with the dialect ComponentUML)
solves this problem for UWEsecurity. SecureUML’s metamodel is
described in section 3.1.2 and as can be derived from the last two
sections, our models are identical with regard to the expressive-
ness, since another representation cannot change the meaning
of the model. The following list sketches the transformations in
both directions between UWEsecurity’s role and basic rights model
and SecureUML.

role and user elements and their hierarchies Role
and user instances are converted to «Role» and «User»
classes. The ‘inheritsRightsFrom’ link is replaced with a
generalization in SecureUML and vice versa.

authorization constraints The stereotype «authorization-
Constraint» has a capital letter in SecureUML.

Figure 4.23: SecureUML. ComponentUML actions

dependencies The dependencies are replaced with «Permis-
sion» association classes (between the content and the
«Role» elements), which contain adequate “access speci-
fication methods”. Possible ‘return values’ for RBAC are
depicted in figure 4.23 («∼All» equals ‘∼FullAccess’). In the
other direction, some constraints can be simplified with
«∼All» stereotypes, by using {except} tags, if there are more
single items to grant access to than to deny. In Compo-
nentUML a distinction is made between association ends
(which may relate to roles) and attributes. In the basic rights
model, roles and attributes are treated equally.

constrained classes The classes are the same, but the mean-
ing of omitted information could differ.

5
I M P L E M E N T I N G U W E S E C U R I T Y M O D E L S

After having modeled the web application with UWEsecurity, there
are several ways of implementing the application. This chapter
describes the realization of security features like authentication
and RBAC on content or user model classes and on navigational
nodes and addresses the implementation of secure connections.

The focus is on the relationships between these security as-
pects, but beforehand the next table gives an overview over the realization overview

modeling elements and their implementation.

Security
Feature

UWEsecurity
Model

General
Implementation

Authentica-
tion

pattern(s) in the navi-
gation state model

web framework pat-
terns

RBAC on
classes

BasicRights model individual implementa-
tion related to database
access control

RBAC on
navigational
nodes

navigation state
model with «ses-
sion» states and tags
{rolesExpression},
{roles}

rules and specification
of a presentation on er-
ror in the web frame-
work; .htaccess files

Secure
Communi-
cation

navigation state
model with «ses-
sion» and secure
{transmissionType}

establish appropriate
TLS \ SSL connection
(see web server config-
uration)

5.1 Authentication

For several authentication related patterns of UWEsecurity, a coun- implementation of
authentication
related patterns

terpart exists in many web frameworks, as a predefined regis-
tration, login and lost password form. Sometimes the developer
can also use modules from the web framework community for
additional features like SSO and authentication with client certifi-
cates. This is especially useful if a standard implementation is
not available or insufficient.

Authentication goes hand in hand with user management and relationships

RBAC, therefore those parts have to be co-ordinated.

63

64 implementing uwesecurity models

5.2 Role-based Access on Classes

RBAC on content or user model classes, as it is defined in the
UWEsecurity’s basic rights model, often is not directly supported
by web frameworks. That is the reason why the models should
be used as basis for the implementation. In addition, the access
control structure can be distributed thus many classes contain
methods that decide whether object or database entries are acces-
sible or not.

5.3 Role-based Access on Navigational Nodes

The RBAC on classes is often directly connected with RBAC oncorrelation of RBAC
on classes and nodes navigational nodes, since a user should not be able to access

navigational nodes that link to a page where protected infor-
mation is expected to be shown. If the user navigates to such
a page directly, usually an error message is displayed, but it is
user-friendly if this error state can only be reached by accessing
a URL and not while navigating through the application. A sim-
ilar scenario is the access restrictions for method execution: it
is unpleasant to receive an error message after the invocation of
an unauthorized method and it is more professional to hide that
option right from the start.

To implement the «session» states with the tags {rolesExpres-realization

sion} and {roles}, primarily the latter tag has to be integrated
in the {rolesExpression} (see specification 7 in chapter 4). After-
wards, these roles have to be used for the specification of page
access in a web framework and finally an alternative presentation
(e.g. an error message and/or a redirection to the login form) has
to be set.

Another possibility for the customization of navigational nodes
are .htaccess files. They can not only be used to rewrite URLs to
shorter ones, but also to block users by domain or by IP address.
Furthermore security restrictions for the folder that contains the
.htaccess file can be specified.

5.4 Secure Communication

All previous subchapters try to protect some kind of information.link to other security
aspects But if the access can be denied for users that are regularly using

the application, it does not automatically mean that only autho-
rized users can read the critical data. That is because web appli-
cations are client/server applications that transmit data between
the server and the client (for static web sites only once, but the
trend is toward RIAs that can communicate almost continuously
with the server). This data transmission may be eavesdropped by

5.4 secure communication 65

a third party and thus many of the other security precautions are
bypassed.

As already mentioned in chapter 2, the common solution for realization of secure
connections«session» with {transmissionType=‘cif’} is the use of X.509 server

certificates and a secure connection over TLS / SSL and https. The
concrete setup can be adjusted in the configuration file of the
web server. Another approach is to encrypt / decrypt sensitive
data in the client and server part of the application manually,
but non-standard operations are not recommendable, as the new
software can hardly be as bullet proof as established standards.

The following part of this work gives illustrative examples of
working with UWEsecurity in practice. Among other things the
implementation of a case study is described in chapter 7.

Part III

W O R K I N G W I T H U W E S E C U R I T Y

6
C A S E S T U D Y – D E S I G N O F H O S P I N F O

When dealing with medical data, several aspects of anonymity,
pseudonymity laws and provisions have to be taken into consid-
eration. Authentication, authorization and secure connections
are basic and important requirements for Hospital Information
Systems (HISs). The sooner security aspects are incorporated into
the development process, the sooner errors and inappropriate
concepts can be revealed that otherwise would have required
costly fault analysis and patching cycles.

Our case study, called HospInfo (Hospital Information), is a web-
based HIS. In this chapter, we elicit and specify the requirements
and model the application using UWEsecurity, introduced in the
previous part of this thesis.

6.1 Requirements Analysis

In this section, the requirements of HospInfo are discussed, es-
pecially why to use a web application, the general structure of
HospInfo and its security features.

6.1.1 Examples of Hospital Information Systems

Web applications have the advantage of being universally accessi-
ble, because the users only need a browser and eventually some
plugins. In the following some HISs are introduced that are used
in the area of Munich.

In the hospital “Klinikum der Universität München”1, LAMP-IS web-based example:
LAMP-IS2 (information system) is used, which is a web-based HIS. LAMP-

IS originally stands for the applied techniques: Linux, Apache,
MySQL and PHP. It has been designed and programmed largely
by Dr. Endres since 1999 for the Intranet of the hospital. Due to
the heterogeneity of systems in the medical environment, it is
difficult to install a local software on the clients. Usually even
diverse browsers are used.

The problem of heterogeneity can be tackled by using web
applications for the client and the heterogeneity of (server) ap-
plications is tried to be overcome by standardized protocols e.g.

1 Klinikum der Universität München. http://www.klinikum.uni-muenchen.de,
last visited 2010-10-24

2 LAMP-IS KIS (Krankenhausinformationssystem). http://www.klinikum.

uni-muenchen.de/Medizinische-Klinik-Innenstadt/download/de/

HeiseOpen08_LAMP-IS.pdf, last visited 2010-10-23

69

http://www.klinikum.uni-muenchen.de
http://www.klinikum.uni-muenchen.de/Medizinische-Klinik-Innenstadt/download/de/HeiseOpen08_LAMP-IS.pdf
http://www.klinikum.uni-muenchen.de/Medizinische-Klinik-Innenstadt/download/de/HeiseOpen08_LAMP-IS.pdf
http://www.klinikum.uni-muenchen.de/Medizinische-Klinik-Innenstadt/download/de/HeiseOpen08_LAMP-IS.pdf

70 case study – design of hospinfo

Health Level 7 (HL7) and Digital Imaging and Communications
in Medicine (DICOM)3. The physicians can watch a preview of
nuclear magnetic resonance imaging (NMRI) images in LAMP and
have access to e.g. full 3D scans, stored in a separate Siemens4

picture archiving and communication system (PACS) via a web-
client (Siemens syngo Imaging). That client does not require an
installation as an administrator and can use the authentication
provided by LAMP. In general, there is the possibility to use
browser plugins, but apart from the lack of availability of those
plugins for medical purposes, it is cumbersome or even impos-
sible to install desktop applications (e.g. a special browser in a
particular version) on all PCs, especially when access to the HIS

over the Internet is supported.

Figure 6.1: Care2x. Person registration.

Another web based HIS is care2x.5 It is an open source HIS,web-based example:
care2x also written in PHP. There are several translations available and

among other things the code was updated from PHP4 to PHP5

in the last year. An installation manual6 is available for Ubuntu,
Nginx WebServer, MySQL and PHP, but we experienced no
serious problems using Apache instead of Nginx while testing
the HIS. Care2x implements a lot of functionalities therefore we
decided to develop HospInfo with basic functionalities in order
to keep our case study precise and coherent. An example is the

3 HL7 and DICOM are standards for handling and transmitting medical data.
Further information can be found in [22, chapter 6.4] and in [29, chapter 10 and
13]. [22] is a good and relatively new book to learn about the interaction of IT
and management and healthcare.

4 Siemens Healthcare. http://www.medical.siemens.com/, last visited
2010-10-20

5 care2x. http://www.care2x.org/, last visited 2010-08-26

6 Installing care2x 2.6. http://sourceforge.net/apps/phpbb/care2002/

viewtopic.php?f=6&t=6, last visited 2010-09-15

http://www.medical.siemens.com/
http://www.care2x.org/
http://sourceforge.net/apps/phpbb/care2002/viewtopic.php?f=6&t=6
http://sourceforge.net/apps/phpbb/care2002/viewtopic.php?f=6&t=6

6.1 requirements analysis 71

“person registration” form of care2x: it includes many text fields –
as shown in figure 6.1 – but the amount of input is not related
with the amount of security features we want to model, so we
can keep it short for our purposes.

Many HISs are not web-based (yet). An example is the NEXUS non web-based
example/ HIS7, which is used in the hospital “Marianne-Strauß-Klinik”.8

It requires to execute a desktop application and the available
modules have to be paid adequately to requirements, usually per
year. Of course the disadvantage of this system is the limited
flexibility.

In summary it can be said that web applications are easy to use conclusion with
regard to web-based
HISs

and require less maintenance effort than desktop-based solutions.
Nevertheless, some viewers usually have to be installed locally
and the most important problem (similar to desktop-based ver-
sions) is the integration of already existing software components,
e.g. radiology information systems (RISs). Furthermore, before
using the software, local regulations and requirements have to
be validated. For our case study, we abstract from the aspect of
software heterogeneity in hospitals and concentrate on the web
application itself.

6.1.2 Functionality of HospInfo

For our case study we consider administrators, physicians, nurses
and receptionists as the most important user groups, which are
represented as actors in the use case diagram shown in figure 6.2.
The following functionality is required for HospInfo: Staff mem-
bers should be able to register by providing a forename and a staff

surname, a well-formed email address and a password, which
has at least the length of five characters and which has to be
entered twice to avoid spelling mistakes. The roles of the staff
members are set later by an administrator, who also chooses the
ward (or main workspace).

Consequently, registered visitors initially have no special permis-
sions, except editing their profile, e.g. changing their name in
case of marriage or spelling mistakes and their email address.
They can also set a new password (which requires entering the
previous one first). Furthermore, a logout option is required. If
someone forgets his password he should enter his email address
to receive a new one. Logged in or not, the home page and a page
with general information, such as useful links and phone num-
bers should be accessible for everyone, as depicted in figure 6.2,
the UML use case diagram of HospInfo.

Physicians need the permission to create new patient records patient records

or change information of patients. The patient information can

7 NEXUS AG. http://www.micom-medicare.de, last visited 2010-10-24

8 Marianne-Strauß-Klinik. http://www.ms-klinik.de/, last visited 2010-10-24

http://www.micom-medicare.de
http://www.ms-klinik.de/

72 case study – design of hospinfo

Figure 6.2: HospInfo. Use case diagram

be read in a list of all patients. This would not be convenient for
normal sized hospital, therefore a search function is necessary.
Each patient record should comprise name, gender, date of birth,
address, blood group (A, B, AB or 0), the affiliation to a ward
and medical information, given by diagnosis-related group (DRG)
codes or free text.

Nursing staff should be able to read the information about pa-
tients from their ward and access the health records of the patients
from other wards in emergency (which differs in the fact that the
access is logged). For this purpose, two lists of patients should be
presented: one for the patients of the same ward as the nurse and
one for other patients (cf. use cases ShowOwnPatientInformation

and ShowOtherPatientInformation in figure 6.2).

6.1 requirements analysis 73

It should not be the task of physicians to enter organizational
patient data, usually this is done by receptionists who can read
all information (or at least accounting relevant parts), but can-
not change health related data, because they normally have no
medical education.

In figure 6.2 it can be seen that use cases like Edit- and
DeletePatient are stereotyped by «processing» (), whereas
use cases that do not change the state of the application are an-
notated with «browsing» (). Additionally, stereotypes can be
omitted (as described in further detail in section 4.1), if they are
assigned to a parental package, which in this case is used for the
UserManagement package.

HospInfo should become a prototype to demonstrate the model- prototype vs.
ready-to-use
application

ing and implementation of security features (see next subsection).
An application for a real world scenario would include more
features, the patient registration would be separated from the
admission and the former visits would be saved together with
the medical report as well as the treatment, e.g. medication or
surgery and the linked resources, e.g. blood values or diagnostic
images. Usually there is a calendar and there are dedicated views
for each section, e.g. for radiology, pharmacy and for laboratories.
Every staff member also has an own calendar and some entries
have to be synchronized, e.g. appointments should allocate time
in the calendar of a patient as well as in the one of the attending
physician.

6.1.3 Security Features

We have chosen our case study with regard to the manifold
security aspects that are important for a HIS:

• A secure user management ensures that no credential theft
occurs. In HospInfo, the password should be entered into
an HTML password field (the characters are not shown) and
the credentials should always be transmitted in a secure
way.

• Therefore, secure transmission is required not only for
sending the credentials, but also for retrieving medical data.
Thus, freshness, confidentiality and integrity are crucial
for a HIS, as it is easy to be liable to prosecution, when
confidential data gets into the wrong hands. Consequently,
figure 6.2 shows the tag {transmissionType=‘cif’} for the
«webUseCase» package to specify this requirement.

• The login session should provide a session timeout so that
the users have to re-authenticate themselves after a certain
amount of time. This is necessary, because medical staff is

74 case study – design of hospinfo

often called off in an emergency without having the time to
log out.

• Access control should be available, as described in the
previous subsection (6.1.2). RBAC supports the following
roles that correspond to actors in the use case diagram:
admins (full access), physicians (read and write access to all
patient data), receptionists (can read all patient information,
but are just allowed to edit non health related entries),
nurses (read access regarding patient records). As depicted
in figure 6.2, the break glass policy is used to allow logged
access for nurses in case of emergency, e.g. if a nurse is
called to help a patient from another ward and it is required
to access the patient record.

Access control does not only refer to the access the users
have on objects, but also to the web pages they are allowed
to see in their role. This is tackled in two ways: on the
one hand, unavailable options should not be shown; on the
other hand, an access denied error message should indicate
that the user has to login with the appropriate permissions
to display the requested page. This happens especially,
if the user tries to access parts of the application directly,
using a URL. An example would be a nurse trying to access
the patient creation form, using the URL https://host/

createPatient.

In this way HospInfo demonstrates typical secure workflows:
user registration, authentication and authorization, password
recovery (or change) and session or error handling are addressed.

6.2 Modeling

This section illustrates the use of UWEsecurity by presenting the
software design model of the case study HospInfo. We have
already shown a use case diagram in the last section, so we
can now concentrate on the other UWE and UWEsecurity views
(content, user and role model, basic rights, navigation states,
traditional navigation classes, presentation and process). For
a more detailed overview of the views and their intention, the
reader is referred back to figure 4.1 on page 35.

6.2.1 Content Model

When the modelers know the main concept of the future appli-
cation, they usually start with the content model to capture the
involved elements as UML classes. In HospInfo the focus of interest
is on the Patients with some attributes as name, address, ward

https://host/createPatient
https://host/createPatient

6.2 modeling 75

or gender (see figure 6.3). If the item administrative is chosen
for the patient’s ward from the Ward enumeration, it means that
a patient has been created for the purpose of software testing.

Figure 6.3: HospInfo. Content diagram

The associations to User and Role are shown in the content connection to the
user modelmodel even if both classes are located in the user model as

described in the next section.

6.2.2 User Model and Role Model

In the user model the class User is accompanied by the enumer-
ation Role. We have chosen an enumeration with regard to the
future implementation with the web framework Lift.

Figure 6.4: HospInfo. Role model

The user model includes the almost self-explanatory role model
(cf. section 4.4.1) that is depicted in figure 6.4. The UML associa-
tion role inheritsRightsFrom is not shown in the enumeration
items, because MagicDraw does only support the link presenta-
tion between those items.

76 case study – design of hospinfo

6.2.3 Basic Rights Model

Figure 6.5 depicts the basic rights model of HospInfo with access
specifications for the classes User and Patient.

Figure 6.5: HospInfo. Basic rights diagram

The rule that admins cannot change their own user account is
depicted with the «authorizationConstraint» in the center of the
diagram (cf. section 4.4.2). Thereby the ‘variable’ currentUser
stands for the operating administrator.

The {except=healthStatus, blood} tag on the «updateAll» depen-
dency between the receptionist and the Patient specifies that
the updates on all other attributes of the class Patient are permit-
ted. By contrast physicians can «updateAll» Patient attributes
without any {except} restrictions.

For nurses, the Break-Glass Policy (BGP) for patients of other
wards is captured in a rather informal «authorizationConstraint»
(see bottom of figure 6.5).

6.2 modeling 77

6.2.4 Navigation States Model

The UWEsecurity navigation states model consists of a set of menus navigation menu

(see figure 6.6) that are connected with the state machines. Ab-
stract menu classes as DefaultMenu () cannot stand for them-
selves. That means there is no menu that only presents those five
menu entries. HospInfo offers eight menu entries to an external
visitor: the five ones from the DefaultMenu and three additional
ones that belong to the Visitor class.

Figure 6.6: HospInfo. Navigation menu

The names of the menu classes give a clue where they are navigational state
machinesfinally used, but the concrete connection is set up in the naviga-

tional «session» () states (cf. section 4.2.1). Figure 6.7 shows the
main navigation state diagram for HospInfo. At the bottom of that
diagram some external links can be found (). They correspond
to the links that are always displayed in the footer of the applica-
tion. The whole application HospInfo transmits all information in
a confidential way and cares for the integrity and the freshness of
the data (denoted by the tag «session» {transmissionType=‘cif’}).

Basically HospInfo consists of two navigation areas that are
depicted in figure 6.7: a visitor area (in the diagram on the left)
and an internal area (on the right), which is guarded according
to the existing roles. The guards on the transitions are needed to
specify the available menus and the «session» {roles} tag allows
the modeler to define a set of roles that each can access the state.

In the visitor area the UWEsecurity patterns are used as substate
machines e.g. for the secure login via password form and for
the password recovery. The triggers of the transitions from the

78 case study – design of hospinfo

Figure 6.7: HospInfo. Navigation diagram of visitors

6.2 modeling 79

visitor session to substates are linked with operations from the
«navigationMenu» classes.

After the successful login, the menus that should be avail-
able for the user are constructed with guards and the «inte-
gratedMenu» stereotype. In case of unauthorized access the
AccessDenied state is activated. If the user is logged in, an in-
ternal error node becomes active, if not an external message is
displayed, which differs from the navigational perspective at least
in the navigation menu that is available.

An example for an actual internal node for receptionists or
physicians is depicted in figure 6.8. Because of the integrated
menus, the three triggers createPatient(), showPatients() and
searchPatients(...) are removed from the inner transitions
and combined with the first transition in the MultipleRolesArea

state, as described in specification 13 (see figure 6.7). After
applying the transformation according to the specification, three
transitions connect the MultipleRolesArea state with three new
entry points of the topmost substate machine.

Figure 6.8: HospInfo. Navigation diagram of receptionist / physician
area

Another feature of the diagram in figure 6.8 is the use of
the «target» () stereotype. It makes sure that after canceling
the creation of a new patient HospInfo navigates back to the
previous page of the application (or to the MultipleRolesArea,
if the patient creation had been accessed directly).

Furthermore, the ShowPatient state is a «collection» () of
Patients and due to no outgoing transition is stereotyped by
«allItems» all trigger methods refer to a patient element, e.g. the
edit(_) method stands for edit(p:Patient).

80 case study – design of hospinfo

6.2.5 Navigation Classes Model

To be able to draw a comparison between the new navigation
state diagram and the traditional navigation class diagram for
HospInfo, the latter is depicted in figure 6.9. The modeling of
authentication issues is not provided, but menus () as the
ExternalMenu, AdminMenu etc. allow to draw conclusions to the
substate session areas that are depicted in figure 6.7.

Figure 6.9: HospInfo. Navigation classes diagram

An advantage of the navigation class model is the clarity of the
diagram that is supported by the division in several packages,
in this case in UserManagement and PatientManagement. But as
already discussed in section 4.2, security features and sessions
have no representation in this traditional navigation model.

6.2 modeling 81

6.2.6 Presentation Model

This subsection gives an example of the abstract presentational
view that is modeled with UWE, wheras the concrete layout of
HospInfo is presented in the next chapter (section 7.2).

Figure 6.10 depicts the default page layout: a Headline «text»
() on top, a Footer at the bottom of the page and on the left
a NavigationMenu with anchors () that determine the body
of the ContentArea, «presentationAlternative» () class, which
means that exactly one of the included «presentationGroup» ()
properties can be displayed simultaneously.

Figure 6.10: HospInfo. Presentation diagram template

The diagram in figure 6.11 shows the concrete classes for the
nurse area. The classes NavigationMenu and ContentArea are the
same as in figure 6.10, but different properties are modeled.

On the left of figure 6.11 the menu is depicted that can be
unfolded so that AllCategories «presentationGroup» () i.e.
all submenus are displayed. Again dependencies are added to
understand the effect of a link. For example the ContentArea

shows the patients of the same ward after the according anchor
in the menu had been activated.

6.2.7 Process Model

The UWE process model is used to present detailed workflows.
For HospInfo example diagrams are introduced for the process of
creating a patient and for the process of editing user properties
by an administrator.

Figure 6.12 depicts the first case and the UWE stereotypes «user-
Action» () and «systemAction» () are used to draw a distinc-
tion between actions that are carried out by the user or by the
system. Thus the user edits a new patient (EditNewPatient), but

82 case study – design of hospinfo

Figure 6.11: HospInfo. Presentation for nurses

the validation of the data is done by the system. It is noticeable
that we do not model any distinction between system actions that
are executed on the server and those which are processed by the
client.

Figure 6.13 shows a similar activity diagram for the process of
editing user properties. The difference to figure 6.12 is that if the
administrator e.g. wants to remove the ‘registeredVisitor’ role for
a user, HospInfo corrects this value and generates a hint. It is a bit
unusual to implement the registered visitors as a role, because all
users that are available in the system are of course ‘registered’,
but we wanted to stick closely to the model in this case study.

Due to the lack of space, not all diagrams could be depicted
in this chapter. The interested reader may refer to the attached
MagicDraw project on CD.

6.2 modeling 83

Figure 6.12: HospInfo. Create patient process

Figure 6.13: HospInfo. Edit user properties process

7
C A S E S T U D Y – I M P L E M E N TAT I O N O F
H O S P I N F O

The web framework Lift has been chosen for the implementation
of HospInfo. This chapter starts with a brief introduction of Lift
and the underlying language Scala. Afterwards we discuss some
aspects of the implementation and finally, we sum up our lessons
learned while transforming our HospInfo model into a running
application.

7.1 Selection of a Web Framework

For the implementation of HospInfo a web framework has to be
selected from the many available ones. A tabular comparison
can be found at Wikipedia.1 For HospInfo an implementation of web framework

requirementsa prototype without having to configure too many components
(convention over configuration) is as important as the support of
security frameworks. Furthermore Ajax has to be available to en-
able up-to-date RIAs and the underlying programming language
must be expressive and easy to learn.

These requirements do not really narrow the results, so we
decided to gain experience in some of the newer languages and decision to choose

one of the newer web
frameworks

frameworks, like Ruby2 on Rails3, Groovy4 / Grails5 or Scala6 /
Lift.7 In the end, Lift provoked curiosity, not only because it com-
prises many features of former frameworks, but also because it is
based on Scala, a multi-paradigm programming language that al-
lows object-oriented as well as functional programming. Another
considerable possibility is Sif, a “framework for building high-
assurance web applications, using language-based information-
flow control to enforce security” [8]. We have decided to use
Scala instead of Sif, because information flow is out of the scope
of our modeling techniques so far and the Scala / Lift community
is many times greater at the moment.

1 Wikipedia: Comparison of web application frameworks. http://en.

wikipedia.org/wiki/Comparison_of_web_application_frameworks, last vis-
ited 2010-10-24

2 Ruby Programming Language. http://www.ruby-lang.org/, last visited
2010-10-25

3 Ruby on Rails. http://rubyonrails.org/, last visited 2010-10-25

4 Groovy. http://groovy.codehaus.org/, last visited 2010-10-25

5 Grails. http://grails.org//, last visited 2010-10-25

6 The Scala Programming Language. http://www.scala-lang.org/, last visited
2010-10-25

7 Lift web framework. http://liftweb.net/, last visited 2011-02-12

85

http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks
http://www.ruby-lang.org/
http://rubyonrails.org/
http://groovy.codehaus.org/
http://grails.org//
http://www.scala-lang.org/
http://liftweb.net/

86 case study – implementation of hospinfo

7.1.1 Scala Features

Scala is a good way to try something new and interesting in order
to improve skills in functional programming without abandoning
the option of imperative programming at all. Apart from that,
Scala is based on Java, runs on the Java Virtual Machine (JVM)
and therefore allows the programmer to use Java libraries. This
feature is very useful, not only because the programmers can
keep their Java code, but also because Java provides libraries of
many kinds.

Examples are the libraries of Java SE Security.8 They provide
functionality for e.g. authentication and access control, PKI and
secure communications and there is no need for Scala to reimple-
ment these practical and well tested features.

In addition, Scala’s strengths are beyond Java and comprise
code patterns as well as the concise style of functional program-
ming languages. A short example for a code pattern is the iteratorScala example

pattern, which is integrated in the language: [53, chapter 13]

"Programming Scala" foreach {c => println(c)} �
This example iterates over each character and prints it in a new
line. Even if foreach looks like a keyword, it is none. An implicit
conversion converts the Java String into a Scala RichString,
which provides a foreach method. Methods in Scala can be
invoked by replacing the common Java-like dot before with a
space and if the method only takes one argument, parentheses
can be avoided or substituted with round brackets.

At a first glance, Scala takes a little time to getting used to, butlearning Scala

with a basic knowledge of functional languages a programmer
can easily learn the ropes by reading tutorials (e.g. [46] or German
ones [20, 15]) and go into more detail with [53], [41] (German) or
the book of the designer of Scala, Martin Odersky [38].

7.1.2 Lift Features

The Lift web framework was launched 2007 and version 2.0 was
released in June 2010. We used version 2.2 for the implementation;
the version 2.2-M1 (based on Scala 2.8.0) had been used until 2.2
(based on Scala 2.8.1) was finally released in January 2011. The
Lift homepage claims:

Lift applications are:

• Secure – Lift apps are resistant to common vul-
nerabilities including many of the OWASP Top 10

8 Java SE Security. http://www.oracle.com/technetwork/java/javase/tech/

index-jsp-136007.html, last visited 2010-09-30

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html

7.1 selection of a web framework 87

• Developer centric – Lift apps are fast to build,
concise and easy to maintain

• Scalable – Lift apps are high performance and
scale in the real world to handle insane traffic
levels

• Interactive like a desktop app – Lift’s Comet
support is unparalled and Lift’s ajax support
is super-easy and very secure.7

The OWASP Top 109 of the year 2010 contains e.g. injection flaws OWASP

(SQL or others), Cross-site scripting (XSS) and broken authentica-
tion and session management. Comet is a model where the client Comet

sends a request to the server and the server responds to the RIA

when data is available. Afterwards a new request is sent by the
client to give the impression that the server is notifying the client
automatically. Despite the advertising text above, Lift still is in
the early stages of development, i.e. the documentation is under Lift documentation

development and some features are supposed to be changed,
e.g. the primary object-relational mapping (ORM) framework. [7,
chapter 8] At the moment, [7] is the only Lift book available,
but the Lift community leverages a Wiki10 and a German reader
might start with an online tutorial of Heise Developer [4].

Scala is supported by many integrated development environ- working
environmentments (IDEs), e.g. by Eclipse11 (Scala-IDE12) and by NetBeans13

(Scala Plugin14). Testing web applications can be a tedious task,
as usually all sources have to be recompiled and the servlet con-
tainer (e.g. Tomcat15 or Jetty16) has to be restarted to load the
updated files. If Eclipse is used, this process can be simplified
by using Maven17 (a build system) and JRebel18, which is free
for Scala developers. Eclipse supports the incremental build
process (Project / Build automatically) and JRebel automati-
cally reloads the relevant files without enforcing a complete Jetty
restart. Consequently, we use Eclipse Helios with the Scala-IDE
2.8.1 (nightly), the maven plugin m2eclipse19 together with Jetty
and JRebel 3.6.1.

9 OWASP Top 10 2010. http://owasptop10.googlecode.com/files/OWASP%

20Top%2010%20-%202010.pdf, last visited 2010-10-20

10 Lift Wiki. http://www.assembla.com/wiki/show/liftweb, last visited
2010-10-25

11 Eclipse. http://www.eclipse.org/, last visited 2010-10-16

12 Scala-IDE. http://www.scala-ide.org/, last visited 2011-02-12

13 NetBeans. http://netbeans.org/, last visited 2010-10-16

14 Scala Plugin. http://wiki.netbeans.org/Scala, last visited 2010-10-16

15 Apache Tomcat. http://tomcat.apache.org/, last visited 2010-09-01

16 Jetty. http://jetty.codehaus.org/jetty/, last visited 2010-09-01

17 Apache Maven. http://maven.apache.org/, last visited 2010-09-01

18 JRebel. http://sales.zeroturnaround.com/, last visited 2011-02-12 (the Scala
version can be accessed directly from the ‘Sales’ page)

19 M2Eclipse. http://m2eclipse.sonatype.org/, last visited 2010-10-25

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://www.assembla.com/wiki/show/liftweb
http://www.eclipse.org/
http://www.scala-ide.org/
http://netbeans.org/
http://wiki.netbeans.org/Scala
http://tomcat.apache.org/
http://jetty.codehaus.org/jetty/
http://maven.apache.org/
http://sales.zeroturnaround.com/
http://m2eclipse.sonatype.org/

88 case study – implementation of hospinfo

7.2 Realization based on Scala and Lift

This section describes the implementation of HospInfo, which is
based on Scala and Lift. After brief instructions how to start with
a Lift project, the parts of the application that realize the modeled
security features are presented. These are: user management,
authentication aspects, secure communication and logging, in
particular the logging of Break-Glass Policy (BGP) actions.

The HospInfo Lift application was created and built using thecreating a Lift
project commands that are introduced in the following:

mvn archetype:generate \

-DarchetypeGroupId=net.liftweb \

-DarchetypeArtifactId=lift-archetype-basic_2.8.1 \

-DarchetypeVersion=2.2 \

-DarchetypeRepository=http://scala-tools.org/repo-snapshots \

-DremoteRepositories=http://scala-tools.org/repo-snapshots \

-DgroupId=de.lmu.ifi.pst.uwe \

-DartifactId=his \

-Dversion=1.0 �
This Maven command creates a new default Lift 2.2 project (based
on Scala 2.8.1) called ‘his’, as HospInfo is a prototype of a Hospital
Information System. On windows each backslash (\) has to be
replaced by a caret (ˆ) in order to form a command with more
than one line.

Figure 7.1: HospInfo.
Excerpt of
project file tree

We want to use eclipse with
the plugins m2eclipse and the
Scala-IDE, therefore we change into
the his directory and execute mvn

eclipse:eclipse to create appropri-
ate project files (cf. figure 7.1). Af-
terwards the .project file has to be
changed so that the Scala <nature> is
the first one. The java <buildCommand>

can be deleted. UTF8 should be used
as encoding for the Scala source files,
as otherwise strange errors may arise
(e.g. the compiler complains that semi-
colons are missing, although Scala
mostly does not need any). Finally **/*.java has to be replaced
with **/*.java|**/*.scala in the .classpath file.

To launch the web server jetty with HospInfo, the command
mvn jetty:run is used. JRebel automatically reloads recom-
piled files, if the MAVEN_OPTS system variable is set to -noverify

-javaagent:"PathTo/jrebel.jar". When using JRebel, jetty’s
<scanIntervalSeconds> entry should be set to 0 in our Maven
configuration file (pom.xml, whereas POM stands for Project Ob-
ject Model) to avoid unnecessary reboot cycles.

7.2 realization based on scala and lift 89

7.2.1 User Management

The basis of the following subsections is the user management of
HospInfo. The model of the basic Lift project already comprises a
default user in the User.scala file as can be seen in the source
folder in figure 7.2.

Figure 7.2: HospInfo. Excerpt of source file tree

Lift recommends a standardized package hierarchy and the
content of the model folder corresponds to the classes and enu-
merations of the UWE content and user model. Therefore the Role
enumeration can also be found in this model, but there are no
native enumerations in Scala that is why the following code is
used:

object Role extends Enumeration{

val RegisteredVisitor, Admin, Physician, Receptionist,

Nurse = Value

} �
Enumeration is a built-in Scala class and Role an object (con-

trary to the class in our UWE model, cf. section 6.2.2), which means
that it is not instantiable.

The default Lift user is enhanced by roles and ward objects, interaction of user
and rolewhich are comparable to the association roles of our UML class

Role. These nested objects make it possible to use the create,
read, update and delete (CRUD) principle. This means the object
may specify a default value or a function for verifying the value.
The advantage is that other methods can use the roles and ward

definitions without having to care about their scope. Addition-

90 case study – implementation of hospinfo

ally, the ORM framework Mapper encapsulates the persistence
of the user in a database (see *.db files in figure 7.1) and the
containing objects are stored automatically as soon as they extend
abstract Mapper classes, as for example object roles extends

MappedEnumList or simpler data types as MappedString.
Some important Lift source folders are shown in figure 7.2:default structure of

Lift projects Resources for configuration files, scala for the source code and
webapp for HTML templates, images and javascript files.

Apart from the model, the scala folder contains so called
snippets, i.e. segments of code that are referenced from the
HTML templates. The package comet normally includes Ajax fea-
tures, but in this case it is empty because for HospInfo we rely
on existing implementations of interactive elements, as for ex-
ample the search field. Besides, the package bootstrap.lifweb

contains the class Boot that constitutes the starting point of the
web application.

For the user management, our UserSnippet provides an edit

functionality, which is called from within the editUsers.html file.
But before an administrator can access this page, the application
has to handle authentication and access control as described in
the following subsection.

7.2.2 Authentication and Access Control

A basic registration, authentication and lost password page is
already included in the default Lift project. We decided to add
google’s reCAPTCHA service to the registration form in order to
check if the visitor is a human being. For the incorporation of
reCAPTCHA, an additional class is used and a reference to the
library has to be added to pom.xml. Additionally, a translation is
provided in the i18n folder.

After the login, there are two common ways to manage access
control: On the one hand the application can use a snippet to
control the access; an example is a simple check if the user is
logged in or not. This is used in HospInfo if and only if just a
small part of the page should be adapted, e.g. the home page
of HospInfo presents the assigned roles to a logged in user and
otherwise an invitation to navigate to the login form. On the
other hand the general access control mechanism of Lift can be
used, which is configured in the Boot class. The next listing
shows a single line that is responsible for the decision if the nurse
role exists in the current user’s set of roles.

val loggedInNurse =

If(() => (User.loggedIn_? &&

User.currentUser.open_!.roles

.exists(x => x == Role.Nurse)

), () => RedirectResponse("/accessDenied")) �

7.2 realization based on scala and lift 91

This line can be used for the construction of Lift’s navigation
menu. The menu is constructed with a list; the concerned part
of menu entries is presented in the following lines. The colons
connect the nurse menu with all other menus, which are taken
over from our UWEsecurity navigation menu diagram (figure 6.6
in section 6.2.4).

:: Menu(Loc(" Patients ", List("showPatientListOverview"),
" Patients ", loggedInNurse),

Menu(Loc("Show All Patients ", List("showPatientList"),
"Show All Patients ", loggedInNurse, Hidden)),

Menu(Loc("Same Ward", List("showPatientListSameWard"),
"Same Ward", loggedInNurse)),

Menu(Loc("Other Wards", List("showPatientListOtherWards"),
"Other Wards", loggedInNurse))) :: �

For a menu, the name of the menu entry, the location of the
page and the access rights have to be specified (cf. figure 6.7).
Hidden menus are not displayed in the navigation menu, but
authorized users can navigate to the page anyway, e.g. to show
all matching patients in one list after the submission of a search
term, as depicted in figure 7.3 (physician view) and figure 7.5
(nurse view).

Figure 7.3: HospInfo. Patient search (physician)

After this menu configuration, Lift automatically prohibits the
unauthorized navigation to a page and instead executes the given
RedirectResponse instruction (of course any other function may
be used instead).

Up to now we have implemented the modeled access on navi-
gation nodes, but the information of the basic rights diagram is
still missing. As already mentioned in the previous subsection,
Lift supports CRUD, thus we have to specify proper validation
methods for the nested objects in Patient. Lift and CRUD do
not only automate the database and table creation, definition
and modification, but also the GUI construction. Consequently
e.g. the creation of patients is really concise: the snippet and the

92 case study – implementation of hospinfo

HTML template code together consist of less than twenty short
lines due to the fact that they just have to specify where the
form should be displayed and which properties of the patient
are editable. At that point the UWEsecurity basic rights diagram
has to be taken into consideration, because receptionists are only
allowed to specify values that are not health-related.

7.2.3 Secure Communication

Figure 7.4 depicts the SSL connection in the browser Firefox.20

In the page properties it can be seen that HospInfo establishes a
secure Advanced Encryption Standard (AES) connection with 128

bit. This is the implementation of the «session» {transmission-
Type=‘cif’} tag of our UWEsecurity navigation state model that is
specified in section 6.2.4, figure 6.7.

Figure 7.4: HospInfo. Login

To secure the communication between the server and the client
with confidentiality, integrity and freshness, an SSL server certifi-SSL server

certificate cate has to be created and signed by a CA. For our prototype we
use a no-cost self-signed certificate.21 The disadvantage is that
the browser displays a warning, because the own CA is of course
not included in Firefox’s predefined list of root certificates.22

The web server Jetty has to be configured accordingly.23 There-web server
configuration fore the following lines are added to the Jetty configuration in

20 Firefox 3.6 http://www.mozilla-europe.org/en/firefox/, last visited
2011-02-14

21 Ubuntu Documentation. Certificates. https://help.ubuntu.com/8.04/

serverguide/C/certificates-and-security.html, last visited 2011-02-13

22 Firefox. Included Certificate List. http://www.mozilla.org/projects/

security/certs/included/, last visited 2011-02-14

23 Jetty SSL Configuration. http://docs.codehaus.org/display/JETTY/How+to+
configure+SSL, last visited 2011-02-13

http://www.mozilla-europe.org/en/firefox/
https://help.ubuntu.com/8.04/serverguide/C/certificates-and-security.html
https://help.ubuntu.com/8.04/serverguide/C/certificates-and-security.html
http://www.mozilla.org/projects/security/certs/included/
http://www.mozilla.org/projects/security/certs/included/
http://docs.codehaus.org/display/JETTY/How+to+configure+SSL
http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

7.3 lessons learned 93

our pom.xml file. Basically, the port of the new SSL connector
is set to the typical https port 443 and a keystore file has to be
created from the signed certificate.

<connectors>

<connector implementation=

"org .mortbay. jet ty . security . SslSocketConnector">
<port>443</port>

<maxIdleTime>60000</maxIdleTime>

<keystore>

${project.build.directory}/demoCA/jetty-ssl.keystore

</keystore>

<password>password</password>

<keyPassword>key password</keyPassword>

</connector>

</connectors> �
After a restart of Jetty, HospInfo can be accessed at https:

//localhost/. It is notable that the registration page is the only
page that does not establish a valid SSL connection, because the
CAPTCHA is used as a service from google, thus the browser
shows the error “connection partially encrypted” with good rea-
son.

7.2.4 Logging and Break Glass Policy

For the implementation of the logging functionality, the log4j24

library is used and referenced in our pom.xml. We particularly
need the logging to realize the BGP concerning nurses. This means
nurses are allowed to access patients of other wards in case of
emergency, as depicted in figure 7.5, but the access is logged.
In addition, all changes of electronic patient records (EPRs) are
recorded as well.

The log4j configuration file default.log4j.xml that is located logging with log4j
in Scalain the resources folder does not only define a ConsoleAppender

(for writing logs to the console), but also a FileAppender that
appends all new entries to the file HospInfo.log in the project
root (cf. figure 7.1). Logging in Scala is simple, the class or
object just has to mix in the trait Logger or similar traits from the
same library, as e.g. Loggable, to get a nested logger that can be
accessed in the following way: logger.info("String to log").

7.3 Lessons Learned

After the description of the HospInfo implementation in the be-
ginning of this chapter, this section outlines our experiences with

24 Apache Logging. log4j. http://logging.apache.org/log4j/, last visited
2011-02-14

https://localhost/
https://localhost/
http://logging.apache.org/log4j/

94 case study – implementation of hospinfo

Figure 7.5: HospInfo. Patient list (nurse from ward B)

the realization of our new UWE model and with technical issues
regarding the work with Scala and Lift.

In general the realization of UWEsecurity’s security features isrealization of the
UWEsecurity model straightforward, as it is tailored for web applications. Even if

the navigation state model tends to become very complex, it is
useful, as the presented information cannot be derived directly
from the code. Consequently, the programmer can take care of
the overall navigation structure while implementing parts of the
application. The navigation menus in Lift are not implemented
with inheritance, but together with the «session» {roles} tags it is
clear how to build HospInfo’s access controlled menu structure.
The basic rights model can also be realized easily, because both
the model and the code rely on the CRUD principle.

Only the creation of an UWE presentation model takes too much
time in comparison with the CRUD approach that is supported
by web frameworks like Lift. Therefore we suggest a mixture
of prototyping with Lift and graphical modeling for the other
UWE models. This would avoid spending about one week for
modeling the UWE presentation whereas only a few days are
needed for implementing it in Lift. Ideally, the basic Lift model
files are generated from the UWE content and user model so that
the GUI prototype can be developed even more quickly.

The first impression of Scala is that it is quite complex andtechnical aspects of
Scala and Lift there are many ways to express the same thing. But in the

end the learning curve is not very steep, if someone is already
familiar with functional and imperative programming. Scala’s
documentation is extensive, but the poor tool support of the
Scala-IDE acts as a deterrent, because Eclipse freezes from time
to time and the plugin is extremely slow. In extenuation of those
errors it has to be said that the Scala-IDE for eclipse Helios is still
experimental and therefore it is not surprising that the imports

7.3 lessons learned 95

cannot be organized correctly and sometimes inappropriate error
messages are displayed hundredfold.

We consider Lift to be a web framework with high potential
as it comprises useful features for many other web frameworks,
e.g. Seaside’s highly granular sessions and security and Wicket’s
designer-friendly templating style.10 Nevertheless, its develop-
ment is still at the very beginning, thus it is sparsely documented
and the API changes so often that it sometimes is almost im-
possible to reuse older code from the web. In spite of that, the
community is extremely helpful, especially the mailing list25, and
the programmer can learn a lot just by reading available code in
Lift’s git hub.26

25 Lift. Google Groups. http://groups.google.com/group/liftweb, last visited
2011-02-14

26 Lift Framework. GitHub. https://github.com/lift/framework, last visited
2011-02-15

http://groups.google.com/group/liftweb
https://github.com/lift/framework

8
T O O L S U P P O RT – M A G I C U W E

Tool support is important for the usage of UWEsecurity. We de-
cided to rely on the MagicDraw1 CASE tool for modeling web
applications. Other tools provide less functionality, particularly
for UML2, and at the moment the UWE profile is also maintained
with MagicDraw. Nevertheless, our tool concept may be adopted
for other CASE tools like the open source toolkit TOPCASED2.

MagicUWE3 [6] is a plugin for the CASE tool MagicDraw version MagicUWE has been
developed since 2007

16.8. MagicUWE has been built for web engineers who work with
the UWE(security) UML-profile in order to ease the modeling
activities. Whenever models are created, some tasks have to be re-
peated over and over. Furthermore, some consistency checks and
transformations are very time consuming, if executed manually.
The solution is to provide plugin features like inserting UWE’s
stereotyped elements and copying UWE stereotypes and their
tags. UWEsecurity is integrated in the UWE profile in Version 2.0,
but for MagicUWE it is negligible in which profile the stereotype
definitions are located.

The following sections introduce the functionality of the ex-
tensions of MagicUWE for UWEsecurity. The source code and the
plugin can be found on the attached CD. In this chapter we do not
want to dwell on the Java implementation with the MagicDraw so
called OpenAPI, because the architecture of MagicUWE can easily
be derived from the Javadoc documentation. For further details,
the interested reader is referred to the bachelor thesis [5] (German
‘Projektarbeit’) of the author.

8.1 Support for Stereotypes and Tags

As can be seen in figure 8.1, the plugin MagicUWE adds a menu
to the menu bar of MagicDraw, from which e.g. all kinds of
new UWE diagrams can be created. If the users want to work
with stereotyped UWE models in the containment tree, the new
diagrams can be stored at the right position automatically, i.e. in a
model with an appropriate UWE stereotype. The left of figure 8.1
shows that there are several modeling projects in one MagicDraw

1 MagicDraw. http://www.magicdraw.com/, last visited 2011-02-03

2 Topcased. http://www.topcased.org/, last visited 2011-02-20

3 The current version of MagicUWE can be downloaded from http://uwe.pst.

ifi.lmu.de/toolMagicUWE.html (last visited 2011-02-03) and a reference for all
features – not only the ones for UWEsecurity as described in this chapter – can
also be found.

97

http://www.magicdraw.com/
http://www.topcased.org/
http://uwe.pst.ifi.lmu.de/toolMagicUWE.html
http://uwe.pst.ifi.lmu.de/toolMagicUWE.html

98 tool support – magicuwe

project. That causes the plugin to ask the user to which model
the diagram should be assigned.

Figure 8.1: MagicUWE. Toolbar and main menus

For the developer, the most common task is to insert elements
and to add stereotypes of the UWE profile. These two steps can be
simplified with MagicUWE by choosing the stereotyped elements
directly from the toolbar as depicted in the lower quarter of
figure 8.1. In this case the user wants to insert a state that is typed
by «navigationalNode» in a navigation state diagram. Another
frequent job the specification of UWE tags, which is facilitated by
a context menu (see figure 8.2).

8.1.1 Easing the Use of Submachine States

Copying stereotypes and their tags from a submachine state
to the associated state machine or back is a feature which is
needed due to the fact that UML allows the modeler to use a
set of independent stereotypes for both, but in UWE there is no
difference in the meaning. Moreover, in MagicDraw it is not
possible to display tagged values in the diagram of the concerned
state machine. In this way, inconsistencies may arise soon.

Figure 8.2 presents the MagicUWE context menu in state ma-
chine diagrams. The ‘copy’ submenu can only be selected on

8.1 support for stereotypes and tags 99

Figure 8.2: MagicUWE. Copy stereotypes from submachine state to
state machine

submachine states and the user has to choose the direction. Re-
defined tags are overwritten, further tags remain untouched.

Figure 8.3: MagicUWE. Display stereotypes on state machine diagrams

By default, the stereotype of a state machine is not displayed,
but that is configurable in a MagicDraw dialog. The related
options can be found in the Diagram properties menu with the
label Use Stereotype, where Context or Diagram can be selected
for the stereotypes that should appear in the headline of the state
machine diagram. The value Context has to be chosen for the
stereotype of the state machine, as depicted at the top edge of
figure 8.3.

8.1.2 Default Stereotypes of Nested Elements

Specification 3 in chapter 4 makes it possible to derive the type
of a substate from the stereotypes of a superstate recursively.
That means the stereotype «navigationalNode» is set to all
substates without a stereotype that at least inherits from the
«navigationalNode» stereotype. In figure 8.2 the context menu

100 tool support – magicuwe

called “Set «navigationalNode» on substates...” implements
this transformation.

A similar case of inheritance of stereotypes is implemented
for use cases stored in a package. UWE also defines the use case
stereotypes on packages (cf. section 4.1) and MagicUWE allows
the developer to apply that definition to a concrete package,
so that all use cases inherit the stereotypes «browsing», «pro-
cessing», «adaptation» or «observation» of the package. This is
especially useful if the user plans a modification of the package
structure without loosing the former stereotype information for
every single use case.

8.2 Consistency of the Transmission Type Tag

In UWEsecurity’s navigation state models the transmission type
can be redefined for parts of the web page and hence for parts of
the navigation structure that is nested in other states. An example
is the use of an insecure CAPTCHA service that is embedded on
an SSL secured page.

Figure 8.4: MagicUWE. Set stereotype on navigational substates, check
tag {transmissionType}

Figure 8.4 depicts how the consistency check functionality in
MagicUWE can be used: the recursive check of the transmission
type redefinition in substates can be executed from a context
menu of a «session» state where the tag {transmissionType} is«session» ()

{transmissionType}
redefinition check

set. All results are listed in a tabbed window (see bottom of
figure 8.4). Additionally red rectangles are drawn around the
concerned substates in the diagrams. If the user double-clicks on
a row of the result table, the element is selected in MagicDraw’s
containment tree.

8.2 consistency of the transmission type tag 101

In the example in figure 8.4, the value {transmissionType=‘cif’}
on the HospInfo state is replaced in two nested substates, as e.g.
in the CAPTCHA example we just mentioned. Both are located
in the patterns of MagicUWE, therefore it would have been time-
consuming for the modeler to perform this check by hand.

Part IV

C O N C L U S I O N

9
S U M M A RY

This work about the integration of security aspects in web engi- initial situation

neering tackles the problem of insecure web applications. Earlier
approaches for security engineering were too detailed and formal
to be combined with web engineering. UWEsecurity fills this gap
with a pragmatic approach.

Our solution consists of modeling security features graphi- our solution:
UWEsecuritycally with UML and combining them with UWE, the UML-based

Web Engineering approach. Unlike the other methods ours –
called UWEsecurity – can also be integrated in other UML-based
approaches. For web engineers it is now easy to consider security
features at an early stage, without being forced to switch between
two separate modeling techniques.

Security aspects that are particularly important for web applica- security aspects

tions are authentication, access control, data confidentiality, data
integrity and freshness. To integrate these features in the model-
ing process, it is useful to group them according to their granular-
ity that is necessary for their implementation. For example, TLS

connections can ensure confidentiality and freshness, therefore
models for a secure communication link, authentication related pro-
cesses and Role-Based Access Control (RBAC) are required. RBAC

not only is important for creating, reading, updating and deleting
objects (CRUD) and accessing their methods and attributes (as can
be expressed in the basic rights model of UWEsecurity), but also
for navigational nodes. This means some users are allowed to
navigate to a particular page whereas others are not, as shown
in UWEsecurity’s navigation state model. In this model the trans-
mission type can also be specified, as well as in the requirements
model. To avoid repetitions for common navigation structures,
patterns for e.g. authentication (login), registration and password
loss are provided that can easily be added as substate machine
in various navigation state diagrams.

The applicability of the UWEsecurity approach was proven by case studies

two case studies: a Hospital Information System (HIS) and an
Address Book. The first case study does not only show how to
model with UWEsecurity, but also how modeled aspects can be
realized in a concrete implementation in Lift respectively Scala.
Scala is an imperative and functional programming language
based on the Java virtual machine and Lift is a new web frame-
work for Scala. The objective was to implement a prototype of a
HIS that includes user management as well as security features.

105

106 summary

Our second case study is an online address book application
which allows the users to manage their address book and contacts
in two partially dependent areas. Thus we are able to prove that
the new navigation state model is powerful enough to express
even complex navigation structures.

Whenever UWEsecurity’s graphical models are created, sometool support

tasks have to be repeated over and over. Consequently, convenient
tool support for MagicDraw was created. For this purpose, the
plugin MagicUWE was extended with features like inserting stereo-
typed elements, copying and automatically setting stereotypes
and tags and checking the consistency of the {transmissionType}
tag in substates. The next chapter presents our visions for the
future of MagicUWE and UWEsecurity itself.

10
F U T U R E W O R K

Some software engineers may dream of model-to-code transfor-
mations that produce perfectly ‘secure’ web applications. We
think this will remain a dream forever, because security has to
be seen as a process rather than a feature an application might
have and if a graphical model specifies every detail, it is likely to
become as complex as written code.

Nevertheless, it is important to support this process with ma- extensions for
UWEsecurityture modeling techniques, which are continuously adapted to

further security needs and the technical progress. An example
would be UCONABC, a usage control system that allows for
instance ongoing controls of permissions. [40] If it is used in com-
mon web applications some day, UWEsecurity should be enhanced
accordingly.

Before thinking about new technologies, it would be interesting
to try out the combination of UWEsecurity and other web engi-
neering methods in practice. The UML version of WebML might be
a worthwhile candidate.

A further security aspect could be the generation of a database
scheme in conjunction with access rights. With some additional
information, a transformation from the basic rights model would
be conceivable and might be supported by MagicUWE. For this
purpose we will consider the ongoing research work of Egea et
al. (IMDEA1, Madrid) concerning SecureUML and databases.

Even if the modeling of services has not been in the focus of
UWE yet, it may be helpful to enable the specification of more
details, not only concerning security features, but also general
services and SOAs as an ongoing trend.

Our MagicDraw plugin MagicUWE has continuously been ex- further development
of MagicUWEtended during the last years. Further extensions could include:

• A semi-automatic transformation between the navigation
classes model and the navigation states model.

• The transformation from the basic rights model to Se-
cureUML and a consistency check based on the {except}
tags.

• Adapted transformations between the traditional UWE views
so that the new views are considered as well.

In chapter 2, we have mentioned how psychological methods
can boycott the hypothetically securest application and the dif-

1 IMDEA. http://www.imdea.org/, last visited 2011-02-20

107

http://www.imdea.org/

108 future work

ficulty in understanding a security issue and choosing the right
way to tackle it. Our approach of modeling web applications
before implementing them, contributes to understanding both
the security problems as well as their intended solutions.

Part V

A P P E N D I X

A
C A S E S T U D Y – A N A D D R E S S B O O K

Besides HospInfo, the case study of an address book has been
investigated. This appendix describes the identification of re-
quirements, the UWE content model, the user and role model,
the basic rights models and its alternative representation in Se-
cureUML, the navigation model with state machines and the
presentation model for the address book case study.

A.1 Requirements Analysis

The web application should allow registered users to create sev-
eral address books and to add new contacts to one of them.

Figure A.1: Address book. Use case diagram

111

112 case study – an address book

Non-registered visitors can only read an introduction and the
terms of service until they register or authenticate themselves, as
depicted in figure A.1. Administrators cannot use the address
book functionality, but they are allowed to search for users and
to delete their accounts including all address books and contacts.

For registered visitors the address books are shown in a column
on the left of the page. On the right the contact details of the
currently selected address book are displayed. Every address
book can be deleted and besides it is possible to create additional
ones. The contacts can be created/removed and the user may
read or update the contact details, e.g. the name, picture, postal
addresses, email address or phone numbers. The latter three
elements are tagged, i.e. the user can specify an arbitrary named
tag for each address to distinguish between them, for example
between home address and business address. Stereotypes of
figure A.1 are used unspectacularly according to their definitions
in section 4.1.

A.2 Content Model

The content diagram in figure A.2 not only depicts that a user
(from the UWE user model) is the owner of an unlimited num-
ber of address books, but also that each address book contains
contacts with several contact details.

The abstract class TaggedEntry makes sure that the classes
Address, EMail and Phone provide a tagName label for every ob-
ject which is created by a user.

A.3 User Model and Role Model

In contrast to our HospInfo case study (section 6.2.2), a User isuser model

associated with exactly one role. That Role is modeled as a class,
as introduced in the previous section, and not as an enumeration.

In this case study we want to compare our UWEsecurity ba-role model

sic rights model (section A.4) with the SecureUML model (sec-
tion A.5). Therefore figure A.3 shows the underlying UWEsecurity
role model (cf. section 4.4.1) in the upper and the SecureUML
version in the lower half of the diagram. The two versions differ
in the use of linked instances versus stereotyped classes with
inheritance.

A.4 Basic Rights Model

The basic rights model comprises access rules for contacts, users
and address books. In this case study we do not model the

A.5 secureuml model 113

Figure A.2: Address book. Content diagram

CRUD access, but instead the execution rights on methods. All
possibilities can be found in section 4.4.2.

Some comments stereotyped by «authorizationConstraint» are
added in order to specify that a registered visitor is just allowed
to delete his own contacts and address books. Furthermore, an
administrator has the permission to delete users, except other
administrators. Other constraints, as for Contact.edit() or
AddressBook.create() are easily conceivable, but for the sake of
clarity they are left out in this example.

A.5 SecureUML Model

Figure A.5 shows the same facts and circumstances with a Se-
cureUML diagram. It is noticeable that even this simple diagram
looks overfilled, because of the association classes.

As already mentioned in section 3.1.2, SecureUML diagrams comparison of the
Basic Rights and the
SecureUML model

specify the permissions by repeating the (method) names of
the classes in the «Permission» association classes, while the
return type defines the allowed actions. The result is that –
at the first glance – it is impossible to see which methods are
constrained, whereas in the basic rights diagram dependencies
directly point to the restricted methods in the majority of cases.

114 case study – an address book

Figure A.3: Address book. Role model

If some methods of a class are executable and some not, all
executable ones have to be listed separately in SecureUML. This
is the reason for avoiding SecureUML diagrams in the HospInfo
case study.

A.6 Navigation States Model

Figure A.6 depicts the navigation menu diagram of our addressnavigation menu

book application. The menu items are modeled as methods
within «navigationMenu» () classes. As specified in the require-
ments (section A.1), the terms of service and the introduction
links in the menu can be accessed by everyone.

The «session» () ExternalArea in the navigation states dia-external area

gram (figure A.7) is denoted by the following tags, according to
the specifications in section 4.2.1:

A.6 navigation states model 115

Figure A.4: Address book. Basic rights diagram

• {isHome} indicates that this state is the starting point of our
web application.

• {navigationMenu=ExternalMainMenu} connects the menu
class ExternalMainMenu with this state, i.e. the external
menus are available in this navigational node.

• {roles=visitors} defines that only user instances which are
linked with the visitors instance in the role model (see
section A.3) are allowed to access this state. In this case
every external visitor automatically takes on the visitor role.

After the registration and login – that are both modeled with
UWEsecurity patterns – two types of internal areas can be reached:
One for the administrators and a separated one for the registered
users that want to manage their contacts. Therefore guards on
transitions targeting the internal areas check the access rights.
Nevertheless, the internal sessions are also labeled with {roles}
tags in order to prohibit unauthorized direct access via URL.

In figure A.8 the internal area for registered visitors is depicted. internal area for
registered visitorsThe challenge is to model our two semi-independent navigation

areas (address books and contacts) correctly. For that reason the
orthogonal state InternalArea contains three regions:

The first is the DependentArea with the navigation for the
contact area. The second region comprises only one state for
the independent presentation of the list of address books. It
is stereotyped by «collection» () with the tagged value {item-

116 case study – an address book

Figure A.5: Address book. SecureUML diagram

Type=AddressBook} that points to the AddressBook class in our
content model (cf. section A.2). The third region is required for
the navigation to the CreateAddressBook navigational node, as
the creation of address books is self-sufficient.

The modal dialog for the TermsOfService is modeled equally
(with «navigationalNode» () {isModal}) as in the external area
(cf. figure A.7). Even though it has to be kept in mind that both
dialogs are represented by two different states, even if they have
the same name.

InnerContactArea is a state that is nested in the DependentArea
in order to separate the navigation for the presentation of search
results and the navigation possibilities that are available after the
user has selected an address book. The difference is that after
a search was executed no contacts can be created and address
books cannot be deleted, because the listed contacts could be
located in different address books. Furthermore, the return from
the DisplayContact submachine state is different, as in the outer
state the search is executed again to update the resulting contact
list. The «search» () stereotype allows the modeler to replace
ct:String with an underscore (_), but for the sake of clarity this
abbreviation is not used in figure A.8.

Due to the lack of space, not all diagrams could be depicted in
this chapter, but all diagrams are stored on the attached CD.

A.7 presentation model 117

Figure A.6: Address book. Navigation Menu

A.7 Presentation Model

As described in section A.1, the address book homepage is di-
vided into two parts after a registered visitor has logged in: The
address books are shown on the left – AddressBooksArea, stereo-
typed by «presentationGroup» () – and if an address book is
selected, the contacts are presented on the right (ContactsArea),
as depicted in figure A.9. Furthermore there is a menu on top of
the page, which includes links to the introduction page, to the
terms of service pop-up and to a logout functionality, denoted by
the stereotype «anchor» ().

The button DeleteBook is hidden if contacts from several ad-
dress books are displayed after the user has executed the search.
In order to keep the presentation simple, this is not modeled here,
but the related navigation structure is depicted in figure A.8.

On the right, a list of contact names (ContactListEntry [*]), the contacts area

or the contact details of exactly one selected contact are shown.
This exclusiveness is specified by the stereotype «presentation-
Alternatives» (). To change between both views, the anchors
ContactListEntry and Back are used. Contact details that can
be tagged consist of a TagName and a TaggedEntry, in which the
actual contact data is shown.

118 case study – an address book

Figure A.7: Address book. Navigation of address book

Figure A.8: Address book. Navigation of internal registered visitors

A.7 presentation model 119

Figure A.9: Address book. Presentation

B
C O N T E N T O F T H E E N C L O S E D C D

The content of the enclosed CD is organized as follows:

/

his . Implementation of HospInfo
with Scala/Lift

MagicDrawProjects UWEsecurity profile, HospInfo
and AddressBook case study

MagicUWE MagicUWE version 1.3.4, Java
project and plugin installers

Paper Copies of the related work that
is referenced in the thesis

Thesis The written thesis in LATEX and
pdf format

Chapters Chapters as tex-files

FrontBackmatter . . . Front and backmatter as tex-files

Images Images used in the thesis

Presentation The Oberseminar presentation

121

B I B L I O G R A P H Y

[1] Ignacio Aedo, Paloma Díaz, and Susana Montero. A method-
ological approach for hypermedia security modeling. Infor-
mation and Software Technology, 45(5):229–239, April 2003.

[2] Ross J. Anderson. Security Engineering: A Guide to Building
Dependable Distributed Systems. Wiley, 2 edition, April 2008.
ISBN 9780470068526.

[3] David Basin, Manuel Clavel, and Marina Egea. Automatic
Generation of Smart , Security-Aware GUI Models. In Engi-
neering Secure Software and Systems, volume 5965 of Lecture
Notes in Computer Science, pages 201–217. Springer, 2010.

[4] Guy Philipp Bollbach and Christian Dietrich. Lift – Ve-
hikel zum nächsten Web-Framework-Level? Heise Developer,
September 2009. http://goo.gl/0hbxE.

[5] Marianne Busch. Migration und Erweiterung des
MagicDraw-Plugins MagicUWE zur Entwicklung von Web-
Anwendungen. Projektarbeit an der Ludwig-Maximilians-
Universität München, 2009.

[6] Marianne Busch and Nora Koch. MagicUWE – A CASE
Tool Plugin for Modeling Web Applications. In Martin
Gaedke, Michael Grossniklaus, and Oscar Díaz, editors,
Web Engineering, volume 5648 of Lecture Notes in Computer
Science, pages 505–508. Springer Berlin / Heidelberg, 2009.

[7] Derek Chen-Becker, Tyler Weir, and Marius Danciu. Ex-
ploring Lift. Open Source, 2 edition, August 2010. http:

//groups.google.com/group/the-lift-book.

[8] Stephen Chong, Krishnaprasad Vikram, and Andrew C.
Myers. SIF: enforcing confidentiality and integrity in web
applications. In SS’07: Proceedings of 16th USENIX Secu-
rity Symposium on USENIX Security Symposium, pages 1–
16, Berkeley, CA, USA, 2007. USENIX Association. http:

//www.cs.cornell.edu/jif/sif/.

[9] Torsten Lodderstedt David Basin, Jürgen Doser. Model
Driven Security: from UML Models to Access Control In-
frastructures. Technical report, ETH Zürich, July 2003.

[10] Chad Dougherty, Kirk Sayre, Robert C. Seacord, David Svo-
boda, and Kazuya Togashi. Secure Design Patterns. Techni-
cal report, Carnegie Mellon University. Software Engineering
Institute, October 2009. http://www.sei.cmu.edu/reports/
09tr010.pdf.

123

http://goo.gl/0hbxE
http://groups.google.com/group/the-lift-book
http://groups.google.com/group/the-lift-book
http://www.cs.cornell.edu/jif/sif/
http://www.cs.cornell.edu/jif/sif/
http://www.sei.cmu.edu/reports/09tr010.pdf
http://www.sei.cmu.edu/reports/09tr010.pdf

124 bibliography

[11] Benjamin Fabian, Seda Gürses, Maritta Heisel, Thomas San-
ten, and Holger Schmidt. A comparison of security require-
ments engineering methods. Requirements Engineering, 15(1):
7–40, November 2009.

[12] Ko Fujimura and Yoshiaki Nakajima. General-purpose
digital ticket framework. In WOEC’98: Proceedings of the
3rd conference on USENIX Workshop on Electronic Commerce,
pages 15–15, Berkeley, CA, USA, 1998. USENIX Associa-
tion. http://www.usenix.org/events/ec98/full_papers/

fujimura/fujimura_html/fujimura.html.

[13] Stephen Gilmore, László Gönczy, Nora Koch, Philip Mayer,
Mirco Tribastone, and Dániel Varró. Non-functional Proper-
ties in the Model-Driven Development of Service-Oriented
Systems. Journal of Software and Sytems Modeling (SoSym,
2010.

[14] Network Working Group. The Transport Layer Security (TLS)
Protocol. Version 1.2, August 2008. http://tools.ietf.org/
html/rfc5246.

[15] Arno Haase. Große Oper. Scala – funktionale und objekto-
rientierte Programmierung als pragmatische Kombination.
IX special – Programmieren heute, 1:53–55, 2010.

[16] Munawar Hafiz. A collection of privacy design patterns.
In Proceedings of the 2006 conference on Pattern languages of
programs – PLoP ’06, New York, New York, USA, 2006. ACM
Press. ISBN 9781605583723.

[17] Munawar Hafiz, Paul Adamczyk, and Ralph E. Johnson.
Organizing Security Patterns. IEEE Software, 24(4):52–60,
July 2007.

[18] Michael Hafner and Ruth Breu. Security Engineering for
Service-Oriented Architectures. Springer, November 2008.
ISBN 9783540795384.

[19] Michael Hafner, Mukhtiar Memon, and Muhammad Alam.
Modeling and Enforcing Advanced Access Control Policies
in Healthcare Systems with S ECTET. Elements, pages 132–
144, 2008.

[20] Christian Helmbold. Zwei Welten – Funktional und ob-
jektorientiert programmieren mit Scala. c’t – Magazin für
Computer Technik, 21:128–187, December 2009.

[21] Martin Hitz, Gerti Kappel, Elisabeth Kapsammer, and
Werner Retschitzegger. UML @ Work. Objektorientierte Model-
lierung mit UML 2. Dpunkt Verlag, 3., aktualis. und überarb.
a. edition, July 2005. ISBN 9783898642613.

http://www.usenix.org/events/ec98/full_papers/fujimura/fujimura_html/fujimura.html
http://www.usenix.org/events/ec98/full_papers/fujimura/fujimura_html/fujimura.html
http://tools.ietf.org/html/rfc5246
http://tools.ietf.org/html/rfc5246

bibliography 125

[22] Christian Johner and Peter Haas. Praxishandbuch IT im
Gesundheitswesen. Erfolgreich einführen, entwickeln, anwen-
den und betreiben. Hanser Fachbuch, March 2009. ISBN
9783446415560.

[23] Jan Jürjens. Secure Systems Development with UML. Springer,
November 2004. ISBN 9783540007012. Tools and further
information: http://www.umlsec.de/.

[24] Serge Kater. System security requirements verifica-
tion using UMLsec. Master’s thesis, Open University,
March 2010. http://jan.jurjens.de/umlsectool/M801_

Dissertation_S_Kater_X0321151.pdf.

[25] Darnell Kienzle, Matthew Elder, David Tyree, and James
Edwards-Hewitt. Security Patterns Repository. Security,
2002. http://www.scrypt.net/~celer/securitypatterns/.

[26] Alexander Knapp and Gefei Zhang. Model transformations
for integrating and validating web application models. In
Heinrich C. Mayr and Ruth Breu, editors, Proceedings of
Modellierung, volume P-82, pages 115–128. Gesellschaft für
Informatik, 2006.

[27] Sergej Kozuruba. Modellbasierte Anforderungsanalyse für
die Entwicklung von adaptiven RIAs. Master’s thesis,
Ludwig-Maximilians-Universität München, September 2010.

[28] Christian Kroiß. Modellbasierte Generierung von
Web-Anwendungen mit UWE. Master’s thesis,
Ludwig-Maximilians-Universität München, 2008.
http://uwe.pst.ifi.lmu.de/publications/christian_

kroiss_Ausarbeitung_DA_final.pdf.

[29] Thomas M. Lehmann. Handbuch der medizinischen Informatik.
Hanser Fachbuchverlag, 2 edition, December 2004. ISBN
9783446227019.

[30] Torsten Lodderstedt, David Basin, and Jürgen Doser. Se-
cureUML : A UML-Based Modeling Language for Model-
Driven Security. In Proceedings of 5th International Conference
on the Unified Modeling Language, 2002. – UML’02, volume
2460 of Lecture Notes in Computer Science, pages 426–441,
Berlin, Germany, 2002. Springer Verlag.

[31] Mukhtiar Memon, Michael Hafner, and Ruth Breu. SECTIS-
SIMO : A Platform-independent Framework for Security Ser-
vices. Components, October 2008. http://www.comp.lancs.

ac.uk/modsec/papers/modsec08_submission_2.pdf.

[32] Michael Menzel and Christoph Meinel. A Security Meta-
model for Service-Oriented Architectures. 2009 IEEE In-
ternational Conference on Services Computing, pages 251–259,
September 2009.

http://www.umlsec.de/
http://jan.jurjens.de/umlsectool/M801_Dissertation_S_Kater_X0321151.pdf
http://jan.jurjens.de/umlsectool/M801_Dissertation_S_Kater_X0321151.pdf
http://www.scrypt.net/~celer/securitypatterns/
http://uwe.pst.ifi.lmu.de/publications/christian_kroiss_Ausarbeitung_DA_final.pdf
http://uwe.pst.ifi.lmu.de/publications/christian_kroiss_Ausarbeitung_DA_final.pdf
http://www.comp.lancs.ac.uk/modsec/papers/modsec08_submission_2.pdf
http://www.comp.lancs.ac.uk/modsec/papers/modsec08_submission_2.pdf

126 bibliography

[33] Nathalie Moreno, Piero Fraternali, and Antonio Vallecillo.
WebML modelling in UML. IET Software, 1(3):67, 2007. ISSN
17518806.

[34] Haralambos Mouratidis, Jan Jürjens, and Jorge Fox. Towards
a Comprehensive Framework for Secure Systems Devel-
opment. Advanced Information Systems Engineering, Lecture
Notes in Computer Science, pages 48 – 62, 2006.

[35] San Murugesan, Yogesh Deshpande, Steve Hansen, and
Athula Ginige. Web engineering: a new discipline for de-
velopment of web-based systems. In San Murugesan and
Yogesh Deshpande, editors, Web Engineering, volume 2016

of Lecture Notes in Computer Science, pages 3–13. Springer
Berlin / Heidelberg, 2001.

[36] Ernst Oberortner, Martin Vasko, and Schahram Dustdar.
Towards Modeling Role-Based Pageflow Definitions within
Web Applications. In Proceedings of the 4th International Work-
shop on Model-Driven Web Engineering, pages 1–15, 2008.

[37] OMG Unified Modeling Language (OMG UML), Superstruc-
ture. Object Management Group (OMG), 2.3 edition, 2010.
http://www.uml.org/.

[38] Martin Odersky, Lex Spoon, and Bill Venners. Programming
in Scala: A Comprehensive Step-by-step Guide. Artima Inc,
November 2008. ISBN 9780981531601.

[39] Rolf Oppliger. SSL and TLS: Theory and Practice (Information
Security and Privacy). Artech House Publishers, September
2009. ISBN 9781596934474.

[40] Jaehong Park and Ravi Sandhu. The UCONABC usage con-
trol model. ACM Trans. Inf. Syst. Secur., 7:128–174, February
2004.

[41] Lothar Piepmeyer. Grundkurs funktionale Programmierung
mit Scala. Hanser Fachbuchverlag, June 2010. ISBN
9783446420922.

[42] Dhanya Pramod. Modeling security aspects in model driven
web application. Journal of Computer Science, 1(1), 2008.

[43] Dhanya Pramod and Vinay Vaidya. A Platform Specific UML
model for Web application self defense through an Aspect
Oriented Approach. International Journal, 1(4):449–457, 2009.

[44] Ivan Ristic. Apache Security. O’Reilly Media, March 2005.
ISBN 9780596007249.

[45] Sasha Romanosky, Alessandro Acquisti, Jason Hong, Lor-
rie Faith Cranor, and Batya Friedman. Privacy patterns for
online interactions. In Proceedings of the 2006 conference on

http://www.uml.org/

bibliography 127

Pattern languages of programs – PLoP ’06, New York, New
York, USA, 2006. ACM Press. ISBN 9781605583723.

[46] Michel Schinz. A Scala Tutorial, 2010. http://www.

scala-lang.org/docu/files/ScalaTutorial.pdf.

[47] Jürgen Schmidt. Hash cracked. The consequences of
the successful attacks on SHA-1. Heise Security, Au-
gust 2006. http://www.h-online.com/security/features/
Hash-cracked-747181.html.

[48] Jürgen Schmidt. Hashes revisited. The consequences
of the successful MD5 attacks. Heise Security, January
2009. http://www.h-online.com/security/features/

Consequences-of-the-successful-MD5-attacks-746221.

html.

[49] Markus Schumacher. Security Engineering with Patterns: Ori-
gins, Theoretical Models, and New Applications (Lecture Notes
in Computer Science). Springer, September 2003. ISBN
9783540407317.

[50] Markus Schumacher, Eduardo Fernandez-Buglioni, Duane
Hybertson, Frank Buschmann, and Peter Sommerlad. Se-
curity Patterns: Integrating Security and Systems Engineering
(Wiley Software Patterns Series). Wiley, March 2006. ISBN
9780470858844.

[51] Stephen A. Thomas. SSL and TLS Essentials: Securing the
Web. Wiley, February 2000. ISBN 9780471383543.

[52] Christian Ullenboom. Java ist auch eine Insel. Galileo
Press GmbH, January 2009. ISBN 9783836213714. http:

//openbook.galileocomputing.de/javainsel8/.

[53] Dean Wampler and Alex Payne. Programming Scala: Scal-
ability = Functional Programming + Objects. O’Reilly Me-
dia, September 2009. ISBN 9780596155957. http://

programming-scala.labs.oreilly.com/.

[54] Gefei Zhang, Nora Koch, and Alexander Knapp. Aspect-
Oriented Modeling of Access Control in Web Applications.
In 6th Workshop on Aspect Oriented Modeling (AOM), 2005.

http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
http://www.scala-lang.org/docu/files/ScalaTutorial.pdf
http://www.h-online.com/security/features/Hash-cracked-747181.html
http://www.h-online.com/security/features/Hash-cracked-747181.html
http://www.h-online.com/security/features/Consequences-of-the-successful-MD5-attacks-746221.html
http://www.h-online.com/security/features/Consequences-of-the-successful-MD5-attacks-746221.html
http://www.h-online.com/security/features/Consequences-of-the-successful-MD5-attacks-746221.html
http://openbook.galileocomputing.de/javainsel8/
http://openbook.galileocomputing.de/javainsel8/
http://programming-scala.labs.oreilly.com/
http://programming-scala.labs.oreilly.com/

	Declaration
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	Acronyms

	1 Introduction
	Security, Web Applications and Software Engineering Approaches
	2 Security Aspects of Web Applications
	2.1 Entity Authenticity and Authentication
	2.2 Data Origin Authenticity
	2.3 Data Confidentiality
	2.4 Data Integrity
	2.5 Access Control and Authorization
	2.6 Non-repudiation
	2.7 Freshness
	2.8 Internet Privacy
	2.9 Secure Information Flow
	2.10 Roles and their Responsibilities
	2.10.1 System Administrator
	2.10.2 Web Developer
	2.10.3 User

	3 Related Work
	3.1 Security Modeling
	3.1.1 UMLsec
	3.1.2 SecureUML
	3.1.3 Security modeling for SOA
	3.1.3.1 SECTET Framework
	3.1.3.2 UML4SOA
	3.1.3.3 SecureSOA

	3.1.4 Pattern-based Approaches

	3.2 Web Engineering
	3.2.1 UWE
	3.2.1.1 Content
	3.2.1.2 Navigation
	3.2.1.3 Presentation
	3.2.1.4 Process
	3.2.1.5 Existing Security Engineering Approaches for UWE

	3.2.2 WebML
	3.2.3 Other Approaches

	UWEsecurity
	4 Security Engineering for Web Applications
	4.1 Requirements Analysis
	4.2 Navigation State Model
	4.2.1 Web Navigation with State Machines
	4.2.1.1 Navigational Nodes
	4.2.1.2 Sessions
	4.2.1.3 Targets
	4.2.1.4 Collections
	4.2.1.5 Other Stereotypes

	4.2.2 Transformations between Navigation Class Model and Navigation State Model

	4.3 UWEsecurity Patterns
	4.3.1 Registration
	4.3.2 Authentication
	4.3.3 Credential Recovery
	4.3.4 Further Patterns

	4.4 Role-Based Access Control
	4.4.1 Role Model
	4.4.2 Basic Rights Model
	4.4.3 Transformation to SecureUML with dialect ComponentUML

	5 Implementing UWEsecurity Models
	5.1 Authentication
	5.2 Role-based Access on Classes
	5.3 Role-based Access on Navigational Nodes
	5.4 Secure Communication

	Working with UWEsecurity
	6 Case Study – Design of HospInfo
	6.1 Requirements Analysis
	6.1.1 Examples of Hospital Information Systems
	6.1.2 Functionality of HospInfo
	6.1.3 Security Features

	6.2 Modeling
	6.2.1 Content Model
	6.2.2 User Model and Role Model
	6.2.3 Basic Rights Model
	6.2.4 Navigation States Model
	6.2.5 Navigation Classes Model
	6.2.6 Presentation Model
	6.2.7 Process Model

	7 Case Study – Implementation of HospInfo
	7.1 Selection of a Web Framework
	7.1.1 Scala Features
	7.1.2 Lift Features

	7.2 Realization based on Scala and Lift
	7.2.1 User Management
	7.2.2 Authentication and Access Control
	7.2.3 Secure Communication
	7.2.4 Logging and Break Glass Policy

	7.3 Lessons Learned

	8 Tool Support – MagicUWE
	8.1 Support for Stereotypes and Tags
	8.1.1 Easing the Use of Submachine States
	8.1.2 Default Stereotypes of Nested Elements

	8.2 Consistency of the Transmission Type Tag

	Conclusion
	9 Summary
	10 Future Work

	Appendix
	A Case Study – An Address Book
	A.1 Requirements Analysis
	A.2 Content Model
	A.3 User Model and Role Model
	A.4 Basic Rights Model
	A.5 SecureUML Model
	A.6 Navigation States Model
	A.7 Presentation Model

	B Content of the enclosed CD
	Bibliography

