ActionUWE: Transformation of UWE to
ActionGUI Models

Marianne Busch! and Miguel Angel Garcia de Dios?

! Ludwig-Maximilians-Universitit Miinchen
busch@pst.ifi.lmu.de

2 IMDEA Software Institute
miguelangel.garcia@Qimdea.org

September 2012

Technical Report 1203
Version 1.0

Research Unit of Programming and Software Engineering (PST)
Institute for Informatics
Ludwig-Maximilians-Universitdt Miinchen, Germany

This work has been supported by the EU-NoE project NESSoS, 256980.

Abstract

Both, UWE (UML-based Web Engineering) and ActionGUI are web

engineering approaches for modeling secure web applications. They pro-
vide a graphical notation for the representation of the models: a UML
profile for UWE and a proprietary notation for ActionGUI. UWE focuses
on a high level of abstraction, whereas ActionGUI models can directly
be transformed to code. In this report, we describe ActionUWE: the
model-to-model transformation from UWE into ActionGUI models. As a
result, our new ActionUWE approach allows modelers and developers to
generate semi-automatically secure code from high-level UWE models.

Contents
1 Introduction
2 The ActionUWE Approach 4
2.1 UWE and ActionGUI Models. 4
2.2 ActionUWE 5
3 Hosplnfo — introducing ActionUWE by example 6
3.1 Case Study HospInfo 6
3.2 Transformation of the Content Features 6
3.3 Transformation of Menus 6
3.4 Transformation of the UWE Presentation Features 7
3.5 Transformation of the UWE Navigational States 7
3.6 Transformation of UWE’s Security Features 12
3.6.1 Basic Rights Model 12
3.6.2 Security Aspects of Navigational States. 14
4 Transformation Process 17
4.1 Step 1: Mapping of Navigational Menus 17
4.2 Step 2: Mapping of Presentation Elements 18
4.3 Step 3: Mapping Navigation Features 18
4.4 Step 4: Mapping Security Features 20
4.4.1 Basic Rights Model 20
4.4.2 Security Aspects of Navigational States. 21
5 Extension of the ActionGUI Metamodel 25
6 Extension of the UWE Metamodel 26
7 Conclusion and Outlook 28
8 Acknowledgements 29

1 Introduction

To secure web applications is increasingly important because of rising
cybercrime as well as the growing awareness of data privacy. Besides au-
thentication and confidential connections, both data access control and
navigational access control are the most relevant security features in this
field. However, adding such security features to already implemented
web applications is an error-prone task. Therefore, the goal is to include
security features in early stages of the development process, i.e., at re-
quirements specification and modeling level.

Existing approaches, such as OOHRIA [6], OOWS [8], WebML (7],
UWE [4, 3], or ActionGUI [1] already provide well-known methods and
tools for the design and development of web applications. Most of them
follow the principle of “separation of concerns” using separate models
for different views on the application, such as e.g. content, navigation,
presentation and business processes. Most of the available methods do
not support the modeling of security, whereas the UWE approach by
Koch et al. [3] and the ActionGUI approach by Basin et al. [1] define
models for security features like access control. ActionGUI’s proprietary
notation comprises data models, security models and GUI models, and the
whole application logic is represented using OCL. UWE provides a set of
UML stereotypes for each view defining a so-called UML profile. UWE’s
main focus is on the process of discussing and planing an application
from different points of view as e.g. requirements, content (data model),
navigation, users and roles, basic rights, presentation and process.

At the moment, no model-driven solution for secure web applications
exists which can unite the advantages of both approaches, i.e.:

e the advantages of the high-level of abstraction of UWE with its many
views (separation of concerns), helping the modelers and developers
to plan and implement the application without referring to concrete
technologies

e the advantages of a concrete modeling language like ActionGUI
which is based on a formal specification of the whole application
logic and its access control policies. Furthermore, those policies al-
low the generation of secure web applications where the security
policies are automatically embedded in the GUI.

Our model-driven approach, called ActionUWE (using UWE and Ac-
tionGUI together) combines both approaches, enabling web engineers to
model security issues for web applications in the abstract way of UWE
and to transform this representation to ActionGUI. The ActionGUI model
has to be enriched with a rather small amount of additional information
to specify the details of the application’s behavior. Afterwards validation
checks that are available for ActionGUI models can be used to examine the
model before it is subjected to the model-to-code transformation. Conse-
quently, ActionUWE is the first approach to generate semi-automatically
secure software from UWE models.

In this report, we describe ActionUWE, starting with an overview
of UWE, ActionGUI and our ActionUWE transformation in section 2.
Then we introduce ActionUWE by transforming parts of an example in
section 3. Afterwards, the transformation is described in section 4. In
order to make this transformation between UWE and ActionGUI possi-
ble, the original ActionGUI metamodel is extended (section 5) and some
elements are added to the metamodel of UWE (section 6). Finally, we
give a summary and an outlook in section 7.

2 The ActionUWE Approach

In this chapter we briefly describe UWE and ActionGUI, before giving
an overview of the ActionUWE transformation which converts a UWE
model to an ActionGUI Model.

2.1 UWE and ActionGUI Models

As already mentioned in the introduction, ActionUWE aims at comprising
the advantages of both, UWE and ActionGUI. UWE is based on the
UML standard, i.e., UWE models can be edited with all UML editors
that support UML profiles. UWE provides many different models that
describe the web application from several abstract points of view. The
focus is not on modeling every detail of the application, but on providing
an overview of several aspects.

By contrast, the approach of ActionGUI is to model a web application
in detail (with a proprietary emf/gmf eclipse plugin) so that a concrete
web application can be generated afterwards. For this aim, ActionGUI
uses a SecureUML+ComponentUML Model to specify access control rules
and defines the whole web application by modeling the GUI enriched with
OCL statements defining the application logic.

For the ActionUWE transformation, the following UWE models are
useful (cf. left part of figure 1):

The Requirements Model defines requirements for a project and can
be used to get a better understanding. However, it is not necessary
for ActionUWE itself.

The UWE Content Model contains the data structure, i.e. the data
that is used by the application.

The UWE Role Model defines a hierarchy of user groups to be used
for authorization and access control issues. It is usually included in
a User Model, which specifies basic structures, e.g., that a user can
take on certain roles simultaneously.

The UWE Basic Rights Model describes the security policy using
role based access control. It constrains elements from the UWE
Content Model and from the User Model.

The UWE Presentation Model models graphical parts of the web
application.

The UWE Navigational States Model depicts the navigation flow
of the application and navigation-related access control policies. Ad-
ditionally, it comprises a Navigational Menu Model, including avail-
able menu entries of the application, regardless of their layout.

Further information about UWE models can be found at the UWE
website!.
ActionGUI comprises the following models (cf. right part of figure 1):

The ActionGUI Model contains not only the graphical layout of the
application, but also the application logic, which is specified using
OCL.

The ComponentUML Model describes the data structure.
The SecureUML Model defines a role based access control policy.

For more detailed information about ActionGUI, see [1].

LUWE website. http://uwe.pst.ifi.lmu.de

http://uwe.pst.ifi.lmu.de

UWE

is transformed to

ActionGUI

1 [
Requirements ActionGUI
«refine»
i iaiieiaiiy |
1 ! [I
UserModel N Content L NavigationalStates]
|l«use»
RoleModel y 7 N\ NavigationalMenu N2
, ComponentUML
\
= /
/ \ n T
«use»\) / «use» \\ // lcuses
0y | 0 |
BasicRights Presentation SecureUML

Figure 1: Overview of ActionUWE Transformation

2.2 ActionUWE

The ActionUWE model-to-model transformation relates the UWE model
elements to those of ActionGUI in four steps:

Step 1 maps the data structure and creates a main window for the web
application and transforms menus modeled with UWE.

Step 2 converts the remainder of the UWE Presentation Model into Ac-
tionGUI.

Step 3 transforms the navigational flow information from the UWE Nav-
igational States Model to ActionGUI Model.

Step 4 maps security features.

As ActionGUI and UWE use a different way of grouping features to
models, the ActionGUI model itself contains most of the transformed
elements:

The UWE Content Model is mapped in a straightforward way to a
ComponentUML Model in ActionGUI.

The UWE Basic Rights Model is mapped to a SecureUML Model
in ActionGUI.

The UWE Presentation Model is mapped to a set of Widgets that
are part of an ActionGUI Model.

The UWE Navigational States Model is mapped to certain Action
and Event elements of the ActionGUI Model.

The transformation itself is described in section 4 in further detail. In
the following chapter we present our case study HospInfo and and use it
for illustrating each step of the transformation.

In this document we refer to the metamodel of UWE using the syntax
of the concrete UML stereotypes, e.g. we write <presentationGroup> when
referencing the PresentationGroup meta class. For the content it makes
no difference if you say “an element which is stereotyped by <xy>" vs
“an element of the type xy”.

3 HosplInfo — introducing ActionUWE by ex-
ample

In this section, we give an example of how to transform, step by step,
an application which is already modeled with UWE into an application
modeled in ActionGUI. For this purpose, we work with the HospInfo
example? which is introduced in the following. Afterwards, in section 4,
the transformation is specified in general.

3.1 Case Study Hosplnfo

Our case study, called HospInf (Hospital Information), is a prototype of a
web-based Hospital Information System. The roles identified for this web
application are: visitor, registeredUser, nurse, receptionist, physician and
admin. Its main functions are:

e Staff members should be able to register

e The roles of the staff members are set later by an administrator

e Physicians need the permission to create new patient records or
change information of patients.

e Nursing staff should be able to read the information about patients
from their ward and access the health records of the patients from
other wards in cases of emergency (which differs in the fact that the
access is logged).

e [t should not be the task of physicians to enter organizational patient
data, usually this is done by receptionists who can read all informa-
tion (or at least accounting relevant parts), but cannot change health
related data, because they usually have no medical education.

A more detailed description of the example can be found in [2].

In the next sections, HospInfo’s UWE models are introduced and

transformed to ActionGUI.

3.2 Transformation of the Content Features

In HosplInfo the focus of interest is on the Patients with some attributes as
name, address, ward or gender (see figure 2). If the item administrative
is chosen for the patient’s ward from the Ward enumeration, it means that
a patient has been created for the purpose of software testing.

The UWE Content Model can be transformed to the ComponentUML
Model in a straightforward way, because the ComponentUML Model of
ActionGUI is mainly just another syntax for classes (UML) / compo-
nents (ComponentUML Model). The resulting syntax of ComponentUML
Model is depicted in figure 3.

3.3 Transformation of Menus

Figure 4 shows the Navigational Menu Model of HospInfo. Abstract menu
classes as DefaultMenu cannot stand for themselves. That means there is
no menu that only presents those five menu entries. HosplInfo offers eight
menu entries to an external visitor: the five ones from the DefaultMenu
and three additional ones that belong to the Visitor class.

Regarding the menu structure, the transformation algorithm has to
consider e.g. the following elements:

2HospInfo UWE example. http://uwe.pst.ifi.lmu.de/exampleHospInfo.html

ackage Content Content J
P 9 [! «enumeration»
«webUser» lastEditedBy . gender Gender
User Patient male
firstName : String name : String female
lastName : String birthY ear : Integer
eMail : String address : String blood [«enumerations
password : String healthStatus : String
Blood
rolesl* wardl1 ward |1 A
«enumeration» «enumeration» EB
Role Ward 0
registeredUser wardA undef
physician wardB
receptionist wardC
nurse administrative
visitor notinHospital
admin
* | inheritsRightsFrom

Figure 2: UWE: Content Model

e <navigationMenu> classes that are connected to the Presentation
Model by tags as labeled in figure 4.

e The property ShowPatients can exemplarily be found in the UWE
Presentation Model as shown in figure 5(a).

e [t is contained by the <presentationMenus> class with the name
NavigationMenu. Figure 5(b) depicts the children of this class in
the containment tree of the CASE tool MagicDraw?®.

e Each of those classes (that are also added as UML property to
the NavigationMenu class) are transformed to menu entries in Ac-
tionGUI.

An excerpt of the resulting ActionGUI model is depicted in figure 6.

Please notice that only some classes are transformed as proof of concept.

3.4 Transformation of the UWE Presentation Fea-
tures

Figure 7 depicts the default page layout of HospInfo: a Headline <texts*
on top, a Footer at the bottom of the page and on the left a NavigationMenu
with anchors that determine the body of the ContentArea, «presentation-
Alternative> class, which means that exactly one of the included <presen-
tationGroup> properties can be displayed simultaneously. Furthermore,
some details of the log-in form are shown (lower right), which are stereo-
typed by <inputForm> to denote that the user can submit credentials to
a Web server

In ActionGUI the UWE classes and properties are recursively replaced
by corresponding ActionGUI elements as shown in figure 8. The algo-
rithm starts at the DefaultPageLayout class and then transforms e.g. the
ContentArea and the nested property for the LogInPage form (figure 9).

3.5 Transformation of the UWE Navigational States

Figure 10 shows possible ways to navigate in HospInfo inside the area
for receptionists or physicians. Navigation means to browse through the

3MagicDraw. https://www.magicdraw.com
4UWE stereotype names & symbols: http://uwe.pst.ifi.lmu.de/profileOverview.html

http://uwe.pst.ifi.lmu.de/profileOverview.html

< User
<4 isUser : true

< Patient
Attributes 4 isUser : false
<4+ FirstName : String Attributes
< name : String
<& lastName : String
<~ birthYear : Integer
< eMail: String
< address : String
< password : String
% Role - healthStatus : String 4 Gender
4 isUser : False Association ends 4 isUser : False
Attributes 4 lastEditedPatient] Associationends Attributes
< role : String Multiplicity : 0.1 <4 lastEditedBy < gender : Strin:
< ward % Ward Multiplicity : 1.1
Associstion ends \:“:gzgw: 1.1 4 isUser : false < ward Assoriation ends
4 users o Attributes Multiplicity: 1.1 < gender0)
ultiplicity : 0. Multiplicity : 0.. % ward : String 4 gender ultiplicity : 0..*
Vnultt)llpllcd\ty: 1.1 % Blood
Association ends + bloo <4 isUser : false
% InChargeOf Multiplicity : 1.1 Attributes
ultiplicity : 1.. < blood : String
< patients
ultiplicity : 0..% Association ends
< DloodOl
ultiplicity : 0..*

Figure 3: ActionGUI: ComponentUML Model

application, thus the diagram specifies how parts of a web page change.
The transitions on the left stand for menu entries, as clicking on a menu
entry will fire the corresponding transition. Transitions starting on the
border of a state are specified in UML to leave the state and enter again.

This paragraph explains to the interested reader, how those menus are
linked with the main state machine, which is depicted in figure 16. Because
of the integrated menus, shown in 16 the three triggers createPatient (),
showPatients() and searchPatients(...) (see figure 10) are removed
from the inner transitions and combined with the first transition in the
MultipleRolesArea state, as defined in section 4.4.2. After applying the
transformation according to the referenced definition, three transitions
connect the MultipleRolesArea state with three new entry points of the
topmost substate machine.

In the following, we show an example of how to map navigation flow of
the UWE Navigational States Model to the ActionGUI model. The basic
idea is to iterate over UWE Presentation elements, to take into account
the corresponding states and transitions in the UWE Navigational States
Model and to enrich the ActionGUI Model with (conditional) OnClick
actions.

In the UWE Navigational States Model, the navigation flow is mod-
eled by transitions between different states, but transitions do not always
directly connect a source state to a target state. Choice Pseudostate
elements can appear in a transition to split the transition into different
branches depending on the conditions of these Choice Pseudostate ele-
ments.

The transition edit (surrounded by the lower rounded shape in fig-
ure 10) is an example of a transition without Choice Pseudostate ele-
ments. This transition is mapped to ActionGUI Model as shown in fig-
ure 11. On the other hand, the transition finish (surrounded by the up-

package MavigationStates [Na\rigationr-nenus])

znavigationMenus
DefaultMenu

+home()

+gotoLiftHomer)

+generallnformation()
+gotoMABEVAHomeE)

L’P

+gotalLMUHome()
menu for home node
|

enavigationMenus anavigationhenus '@
RegisteredVisitor Visitor
+logout() +leging)
+editlUser() +signlp()
+changePassword() +lostPassword()

I

enavigationMenuz T | |enavigationMenus T ﬁavigmionr\-‘lenu» —-'-%
o

Hurse Admin

+unfoldPatientCategories()
+showOwnPatients()
+showCtherPatients()
+searchPatients(name : String)

+managellsers() \h«nenuLinl s+showPatients(){target = ShowPatients }

F. ReceptionistOrPhysician >

ePatient()
+E58 ; -~ Sirine

Figure 4: UWE Navigation menu

NavigationMenu

f : ShowPatiemts __ .

| : CreatePatients __ |

: Search |E|

: SearchExpression

{autoSuggestion,
livelfalidation}

: SearchPatients g

(a) HospInfo: menu (diagram)

..... — Signlp
----- — Editllser

----- = Logouk

----- — _hangePassword

(b) HosplInfo: menu (tree)

Figure 5: Excerpt of the UWE Presentation Model

PatientList : Menu

ShowPatients : Button |

| CreatePatients : Button |

... - Button |

Figure 6: ActionGUIL:

Part of the navigation menu

DefaultPageLayout M

: Headline o
\ £

e : ContentArea Ea

lome i :HomePage ’6‘

| : Generalinformation _ | ‘ :WelcomeMessage 2% ‘

~
2
epresentationGroups L]

: Generalinformationlotes

: Footer 2
Lift _‘ |:MAEWAII_| | My
hd
ContentArea B}
: LoginPage =

| : EMailAddress |

| ‘EMailText 22
v

| : PasswordText

m| | : Password |

| irecoverPassword | :Login g |

Figure 7: Example of UWE presentation diagrams

[~ widget Attributes =
id : DefaultPageLayout

main : true
Widget Attributes))
Lo : Headline Widget Attributes
= id: ContentArea
o Widget Attributes
id : Home B
ons Widget Attributes Widget Attributes

d : Generalinformation

id : WelcomeMessage

[widget Attributes [2] widget Attributes

id : NavigationMenu id : HomePage

Widget Attributes

id : GeneralinformationNotes

[2] widget Attributes
id : Footer

. Widget Attributes w Widget Attributes o Widget Attributes
id: Lift id : MAEWAII id : LMU

Figure 8: Default layout transformed in ActionGUI

[} = Widget Attributes
id: ContentArea
main : false
Widget Attributes =0 (=0 Widget Attributes
id : EMailText id : EMailAddress
‘Widget Attributes {=h [=[1 Widget Attributes
id : PasswordText id : Password
[©] Widget Attributes - -
id : LoginPage
o Widget Attributes ok Widget Attributes
id : RecoverPassword id: Login

Figure 9: Log-in form transformed in ActionGUI

10

(‘'state machine ReceptionistOrPhysicianarea [ReceptionistOrPhysicianArea]J

ReceptionistOrPhysicianArea

wtargets)
cancel) GoBack /

.+ {goBack,
createPatient() goBackDefault = MultipleRolesfres}

| EditNewPatient | -
finish()

not{Fatient. sllinstances
-rexists(p|p.name = [FatientMame. text]))

[false] [true]
.) b .
showPatient=() ecollections E'
searchPatientz(name : String) ShowPatients
T {itemType = Patient}
. . . [success]
no() | |ves() |delete) edit()
submitChanges()
DeletePatient EditPatient

enavigationalNodes |:| ‘ y
[

lisModal} [failure] / showErrors()

Figure 10: Two transitions of the UWE Navigational States Model

[2] Widget Attributes
id : ShowPatientsPage
o onClick

Set
karget : ShowPatientsPage.isVisible
o Widget Attributes OnCreate walue : false
id: edit fet Set
karget : text karget : EditPatient.isVisible
walue : 'Edit’ walue : true

Figure 11: ActionGUI: Simple transition mapped to ActionGUI

[o] Widget Attributes

id : CreatePatientsPage
ok Widget Attributes

id : Finish B |=[widget Attributes
id : PatientMName
OnCreate
Set ok
karget : text
wvalue : "Finish
OnClick
Conditional

condition : Patient.allinstances()->exists(p|p.name = [PatientName.text])

Else Branch Then Branch

Set Set

target : CreatePatientsPage.isVisible target : CreatePatientsPage.isVisible
value : false value : false

Set Set

target : CreatePatientsPage.isVisible target : ShowPatientsPage.isVisible
value : true value : true

Figure 12: ActionGUI: Complex transition mapped to ActionGUI

11

per box) serves as an example of a transition with a Choice Pseudostate
element. Figure 12 depicts how this transition is mapped to ActionGUI.
In this case, a Conditional Action is added to the event in order to
implement the condition of the Choice Pseudostate element.

For this transformation it is necessary to know which UWE «presen-
tationGroup> is shown in a certain state (<form> inherits from <presen-
tationGroup>) and which transition is triggered from an «interactiveEle-
ment> like a «button>. Figure 13 shows a simple example which is linked
to states / transitions which have been depicted in figure 10.

: CreatePatientsPage
navState= EditNewPsatient}

ao

tHame 2

: PatientName ‘

: Gender %

:Birth 2w : BirthYear %

tGender 2w
=

EII

i Address 2y : Address

: Blood 2

I
II

: BloodType %

: HealthStatus 2w
&

: HealthStatus ‘

+Ward CK

1 Cancel - : Finish -
navTrans= cancel{j} navTrans= finish{}}

Figure 13: UWE’s Presentation Model linked to Navigation States Model

+Ward %

¥

Furthermore, the transformation algorithm has to remember the con-
nections from the UWE Presentation Model to the ActionGUI Model
which have been established in the previous steps.

3.6 Transformation of UWE’s Security Features

In this section, we give several examples of how to map the different
security features from the UWE profile to ActionGUI.

3.6.1 Basic Rights Model

An application modeled with UWE can include security policies. The
UWE Basic Rights Model is used to define which roles exist and which
permissions over the application data those roles have.

Figure 14 shows the UWE Basic Rights Model that corresponds to the
security policy of the HospInfo example. There are six roles, four of them
(admin, receptionist, physician and nurse) are sub-roles of the super-role
registeredUser. Each role has its own permissions on the application data,
which has been defined in the UWE Content Model. Some permissions
have additional authorization constraints associated to them.

In step 4 of section 4, we explain the mapping of the UWE Basic Rights
Model to the SecureUML~+Component UML Model in further detail; right
now, we give some examples.

12

package BasicRights [BasicRings]J

AN
Constrained elements Permissions Roles
(from content or user model) (with constraints) (from role model)

User E — — |
&lail : String authorizationConstraint
firstMame : String | . = supdatedlls
lasthame : String L pre: caller == self {except= roles, ward}
password: String | _ _ — = = — - — - - __ registerediser
roles: Role [f] o — — — «reads ‘{
ward :Ward [1] & — — —|
T supdates| |supdates
I - i
galthorizationConstraintz

|
|
I _pre:caller<> self
I _ areadflls L =~ J admin
adeletes

adleletes

acreates P
S T T T aeadl;” T T T T T T T T Lecentionist
Patient b — — — s supdateslls |
n {except= healthStatus, blood}
name : String

hirth'fear : Integer
address : String
healthStatus : String
lastEditedBy : User
gencder : Gender
hlood : Blood

ward : VWard [1]

T - — — — — — — ﬁ.lpd_ﬁteﬂl» _________ physician

Figure 14: UWE BasicRights Model

Figure 15 shows the resulting SecureUML Model. Each role of the
UWE Basic Rights Model is directly mapped to a role in the SecureUML
Model, and also the hierarchy between them.

In figure 14, the <updateAll> permission between the role physician
and the class Patient is mapped in the SecureUML Model to a permission
named updatePatientsPhysician, with an Patient EntityUpdate action at-
tached. This is an example of how composite actions are transformed:
If there is a permission with a composite action and an <except> re-
striction in the UWE Basic Rights Model, the corresponding permission
in SecureUML Model will contain atomic actions for every attribute and
association of the corresponding class, except for those listed in the <ex-
cept> restriction. This is the case for the updatePatientsReceptionist per-
mission: it contains atomic update actions for each allowed element, in-
stead of containing just one composite action for every element.

The <delete> permission of the role admin, in figure 14, additionally
has an attached <authorizationContraint> which defines that the user
which should be deleted has to be different from the administrator that
executes the action. This permission is mapped, with the corresponding
authorization constraint, to the permission delete User in the SecureUML
Model. Remaining formal permissions are transformed in the same way.

The slightly extended OCL language is used to define the authorization
constraints in the UWE Basic Rights Model as well as in ActionGUI’s
SecureUML Model defines the keywords caller and self. The first refers
to the current user of the application whereas the latter references — as is
usual — the object on which the permission is applied.

13

4 createUsers : Permission 4 updateOwninfo : Permission

<4 resource : User <4 resource : User
[User AtomicCreate 4 User eMall AtomicUpdate
< updatePatientsPhysician : Permission 4 User TTStName Atoml(Upaat

<4 readPatientsNurse : Permission = “- registeredUser : Role .
4 resource : Patient < readRoles : Permission
resource : User
% Patient EntityRead [+
4 User rol ssAtum\(Crsat1
. T ai &
<4 readUsers : Permission > receptionist : Role
4 resource : User 4 readPatientsReceptionist : Permission
4 User EntityRead <4 resource : Patient
|+ Patient EntityRead |
- < deletePatients: Permission
4 deleteUser : Permission —_—
4 body : caller <> self < resource : Patient

4 User password AtomicUpdate

< resource : Patient 4 body: caller = self
T e T el
|¢ Fatient EntityUpdate | Role 4 User [astName AtomicUpdate
Role

& resource : User < updatePatientsReceptionist : Permission
: 4 Patient AtomicDelete <4 resource : Patient
4 User AtomicDelete
[Patient name AtomicUpdate
4 updateRoles: Permission 4 createPatients: Permission| [Patient ElrtHVearAtomlcUpaate
<4 resource : User <4~ resource : Patient

4 body: caller <> self

|+ User roles AssociationEndUpdate

|+ Patlent AtomicCreate | 4 Patient address AtomicUpdate

4 Patient a;tEa\teaEy A;;o(latmnEnaUpaate
< updateWard : Permission

<4 resource : User

4 Patient gender AssociationEndUpdate

4 body: caller <> self 4 User ward AssociationEndUpdate
4 Patient ward AssociationEndUpdate

Figure 15: ActionGUI’s SecureUML Model

3.6.2 Security Aspects of Navigational States

In the UWE Navigational States Model, several security aspects are taken
into account: secure communication links, authentication and naviga-
tional access control. Secure communication links cannot be mapped to
ActionGUI, authentication patterns are available in the UWE profile and
if they are used, they can be translated without further ado. Navigational
access control has already been partly transformed when we had a look at
the Choice Pseudostates in section 3.5. Additionally, we have to clarify
how guards on menu entries can be transformed to ActionGUI so that the
user cannot see a prohibited menu entry. Therefore, we give an example of
how a menu transition is mapped to the ActionGUI Model in this section.

figure 16 illustrates the <updateMenus> transition ¢r surrounded by
the rounded box on the left. It is fired when a user logged-in successfully.
In the other circle, a transition is shown which is a typical menu transition
which leaves the state first and enters again, targeting a substate.

The stereotype <integratedMenus is just a simplifying abbreviation
so that we do not have to model all menus for the admin (that are hidden
in the substate machine) independently. Further details can be found
in section 3.5. In the HospInfo example it is important that the menu
entries for the administrators are only available when the set of roles for
current user includes the admin role. In case the user is a physician and
an administrator at the same time, all those menus are shown when he or
she is logged-in.

For our transformation to ActionGUI, we pick the <updateMenus> tran-
sition ¢r and have a look at the “Login” button which is used after having
entered the credentials. After our previous transformations, the “Login”

14

state machine Visitor4rea | [B1 VisitorArea]J

xsessions IE
Hospinfo
{ransmission Type = “cif}

sessions B logout() «sessions
HospinfoVisitorNode cupdateienuss MultipleRolesArea
{isHome, {unauthorizedAccess = AccessDenied}
[= navigsticnMenu = Visitor, [(reles-»includes(receptionist) [—
=) - :) : ReceptionistOrPhysicianArea
— 1 roles-sincludesiregisteredVisitor)] =R v
) | — - . -
i uccess ;
. s g $ wintegratedienus toles = physician, receptionist}
gin J
do / LoginVi m oo
= | [roles-=includes(nurse) & roles
J -sincludes(registeredVisitor)] «sessions B
) of T ; cintegratedlanus BTl
CredentialRecoveryViaEmail | $UCC8SS {navigationMenu = Nurse,
roles = nurse}
supdatelienuss
o=
signUp() Signlp uccess J
do/ Register r T B
& supdateliznusx [roles-=includes(admin) & roles . AdminArea
oo o -*includes(registeredVisitor]] s H ki,
home() wintegratedMenus foles = sdmin}
T @—— Showtome | __J
—_— oo
eneralinformation() : 1
g 0 : ShowGenerallnfo | —
=] [roles-=includes registeredVisitor)] : RegisteredVisitorArea
T —rE—— idle(20) / logout() «integratedienus {navigsticnMenu = RegisteredVisitor,
| [l: roles = registeredUser]
I oo
e — false]
enavigationalioder] ogedin
AccessDenied | AccessDeniedinternal |
el eSS
‘Lguluuﬂﬂumeti lgu(ul.\AE‘f\f&\HumE(; lr gotoLWUHome)
X
[o ks I cextermalLinks [cextemalLinka
{lecationExpressicn =" (hweww liftweb net™} = "hitp:/iuwe.pst.ifi. mu.de/infolMAE! htmi'} i ion = "http:iA i hen.de}

Figure 16: Example of <updateMenus> transitions in the UWE Navigational
States Model

widget should have a “OnClick” ActionContainer attached that already
hides a kind of VisitorArea panel and shows an MultipleRolesInternal
panel.

Furthermore, we iterate over at all menu transitions (selected accord-
ing to their connection from the UWE Presentation Model) that cannot
fire in the target state of the <updateMenus> transition, which is the
MultipleRolesArea. Those are e.g. login() or lostPassword(), thus we
hide them in the ActionGUI menu.

Menu transition that are reachable from within the MultipleRolesArea
are for instance the nurse menus, but they are guarded and only available
for nurses, not for our example-user which is physician and admin. Con-
sequently, the guard evaluates to false and the nurse menus are hidden for
our user.

Besides, there are the menus for registered visitors, for physicians and
for administrators which should be displayed. The hiding or showing of
menu items in ActionGUI are done using a Set which sets the variable
isVisible of the menu widgets, as shown in figure 17. In our example,
roles serves as a short form for caller.roles. Finally, the non-guarded
logout () menu transition is reachable as well and should also be available
in the menu.

Note that according to the definition of the «integratedMenu> stereo-
type, all menus that are modeled within substate machines have to be
taken into account, as e.g. CreatePatient which has been depicted in
figure 10.

15

OnCreate
Set
target : text
value :"Login’
ot Widget Attributes
id : LoginButton

OncClick

Set Then Branch

target : MultipleRolesInternal.isVisible Set

wvalue : true target : NurseMenul.isVisible
Set value : true

target : VisitorArea.isVisible

value: false

et Else Branch

target : LoginMenu.isVisible Set

value: false target : MurseMenul.isVisible
Get walue : false

target : LostPasswordMenu.isVisible
value: false

Set

target : LogoutMenu.isVisible
wvalue: true

Conditienal

condition : caller.roles->includes{nurse) & caller.roles-*includes(registeredVisitor)

Conditional

Then Branch

Set

target : PhysMenuiCreatePatient.isVisible
value :true

Set

target : PhysMenu2ShowPatients.isVisible
walue : true

Else Branch

Set

target : PhysMenul CreatePatient.isVisible
value: false

Set

target : PhysMenu2ShowPatients.isVisible
value: false

condition : (callerroles-=includes(receptionist) | callerroles-=includes{physician)) & callerroles-=includes(registeradVisitor)

Figure 17: ActionGUI: Part of the transformed <updateMenus> transition

16

4 Transformation Process

As already described in section 2.2, the transformation process from UWE
to ActionGUI is performed in in four steps: step 1 creates a main window
for the web application and transforms available menus that are modeled
with UWE. Step 2 transforms the remainder of the UWE Presentation
Model into ActionGUI. Afterwards, step 3 transforms the navigational
flow information from the UWE Navigational States Model to ActionGUI
Model. Finally, in step 4 security features are mapped.

Our goal is a web application app’, which is partially modeled in Ac-
tionGUIL. The whole data structure of app should be mapped. The layout
and the navigation flow (including security features) of the application is
also mapped, but the behavior of the application cannot be transformed
since it is only partly defined through Activity diagrams and in this ap-
proach, we do not take Activity diagrams into account.

Generally, for each element that is transformed to a Widget, an unique
id has to be generated and stored as an attribute, or copied in case an
<uiElement> {id} is specified in UWE.

At the beginning we directly translate the UWE Content Model in the
representation of ComponentUML Model, which is easy, as both focus on
elements, attributes, associations and operations (although operations are
not needed for our transformation right now). An example can be found
on the previous pages (section 3).

4.1 Step 1: Mapping of Navigational Menus

First an outermost Window has to be created in ActionGUI with the at-
tribute main set to true. Within the Navigational Menu Model, for each
operation of all classes, the corresponding <anchor> class from the UWE
Presentation Model has to be added to a new set M. This corresponding
classes are linked using the <menuLink> {target} tag. If it is not set, the
menu entry is ignored, i.e. not added to M.

For each element in M, the outermost parent class (that contains the
property of the element) stereotyped by <presentationMenu> has to be
found and added to a new set called P. All this is necessary because the
menu is not modeled at one place in the UWE Presentation Model.

Afterwards, the following menuTransformation-function is used, with
actual parameters (menu m, set P), where m is a newly created menu that
is added to the outermost ActionGUI window of the application, which
has been created above.

menuTransformation (Class z, Set<Class> P){
for (classes ¢ : P){
if (Class c is stereotyped by presentationMenu){
create an ActionGUI Menu with the name of ¢
add that menu to z
call menuTransformation(c, direct descendants of c¢)
telse if (Class c is stereotyped by anchor){
create a button with the name of c
add it to the menu z

}
}

Additionally, we remove anchors or menus from the UWE Presentation
Model that are not related to an operation in a <navigationMenus.

17

4.2 Step 2: Mapping of Presentation Elements

This step consists of creating further graphical elements of the application
and defining their nested structure. In the following we describe how UWE
modeling elements are mapped to ActionGUI elements.

e Given the UWE Presentation Model, each «presentationPage> is
mapped to a Window (i.e. for each <presentationPage> a Window is
created in ActionGUI).

e Each «presentationGroup> excluding the <navigationMenu> ones,
is mapped to an ActionGUI Panel. Likewise <inputForm>, <pre-
sentationAlternatives> and «tab> are mapped to Panels.
<anchors and <button> are mapped to Button.
<text> is mapped to Label.
<textInput> is mapped to TextField.
<selection> is mapped to Table, if {multiple=true}. Otherwise it
is mapped to ComboBox.
<sliders is mapped to ComboBox.

e <iteratedPresentationGroup> is mapped to Table. Eventually add
a Panel for each row to describe more complex information.

e Other elements of the UWE Presentation Model can not be mapped
automatically to ActionGUI yet (e.g. <images, <mediaObject>,
<imagelnput>, <fileUpload> and <customComponent>). How-
ever, the transformations can be added as soon as ActionGUI sup-
ports those kinds of widgets.

The recursive algorithm for mapping the UWE presentation elements
to the ActionGUI elements is the following: collect all <presentation-
Page> s and within each page look for <uiElement> s. For each «uiEle-
ment> create the corresponding ActionGUI element specified above and
add it to the corresponding ActionGUI Window (that stands for the <pre-
sentationPage>). This means that we instantiate the association between
Container and Widget and specify the container and content roles ac-
cordingly. For each <«presentationGroup> that is included inside the
newly transformed element recursively transform the contained proper-
ties to nested ActionGUI elements.

A constraint (precondition) is that in UWE no «presentationPage> is
included in other states as a property.

4.3 Step 3: Mapping Navigation Features

This step consists of mapping the navigation flow of the UWE Naviga-
tional States Model to the ActionGUI model. This means navigation links
between the different elements of the application are created by using the
ConditionalAction and Set actions of ActionGUI.

We expect every element of the UWE Presentation Model stereotyped
with <presentationGroup> (or subtypes) to be linked to a state of the
UWE Navigational States Model by the tag {navState : State}. Further-
more, every element of the UWE Presentation Model stereotyped with
<interactiveElement>, must be linked to a transition of the UWE Nav-
igational States Model using the tag {navTrans : Transition}, in order
to specify which element of the UWE Presentation Model triggers which
transition. (To be exact, the UWE Navigational States Model has to be
transformed into a version without UWE stereotypes and tags [2] like
<navigationalNode> {isModal}, but for this first version of ActionUWE,
we neglect those subtleties, because at the moment ActionGUI does not
support features like modal windows or the navigation to a certain point

18

within the application using a URL. Nevertheless, «integratedMenu> s
have to be kept in mind, as explained in further detail in section 4.4.2
and <target> {goBack} may be transformed to “OnClick/Back” in Ac-
tionGUL)

In addition, we expect every Choice Pseudostate element cp of the
UWE Navigational States Model to be defined in the following way:

e Exactly one transition acts as an entry of the cp.

e One or two outgoing transitions of the cp.

e The condition has to be written using the OCL language and must be
specified for cp. If there is no guard (for example when the success
of an action is checked informally), the [true] or [success] branch
is taken and transformed adding just a comment in ActionGUI to
remind the developer of dealing with the [false] or [failure] branch.

e If the cp has two outgoing transitions, they must be guarded by
[true] and [false] referencing the then and else branch respec-
tively.

e If the ¢p has just one outgoing transition, this branch references to
the then branch and it can be optionally guarded by [true].

Given a transition ¢r of the UWE Navigational States Model, we call
ta the target state of the transition tr. If the target state ta is not referred
by any <presentationGroup> element in the UWE Presentation Model,
then there must be a state contained in ta that has a starting point. In
this case, this state will be the target state ta.
Furthermore, there is an <interactiveElement> element of the UWE
Presentation Model that triggers the transition ¢r. To make things easier
the current version of ActionGUI only considers one overall menu and one
panel visible at the same time (boolean isVisible). As usual, each Panel
is a Container for several elements.
For each transition tr of the UWE Navigational States Model, which
is referenced from the UWE Presentation Model, the mapping algorithm
to the ActionGUI Model is the following:
e Create an OnClick event ev and link it to the corresponding Ac-
tionGUI widget w. (This is the widget which has been created from
a UWE «interactiveElement> which is linked to the transition tr.
It can also be a menu entry.)

e Call the function createNavFlow(w, tr, ev) defined below:

createNavFlow (Widget w, Transition tr, ActionContainer ac){
if (the target of tr is a state){
create a Set action sl in ActionGUI
and set isVisible of the source_panel(w) to false;
link sl to the ActionContainer ac;
create a Set action s2 in ActionGUI
and set isVisible of the target_panel(w) to true;
link s2 to the ActionContainer ac;
}
else if (the target of tr is a Choice ch){
create a ConditionalAction ca in ActionGUI;
get the condition ¢ of the Choice’s target;
set the condition attribute of ca to c;
link the ConditionalAction ca to ac;
for (outgoing transition et of ch){
if (et is not guarded || et is guarded by [true]){
create a ThenContainer tc in ActionGUI;

19

link the tc to ca;

call createNavFlow (w, et, tc);

} else if (et is guarded by [false]){
create an ElseContainer ec in ActionGUI;
link ec to ca;

call createNavFlow(w, et, ec);

}
}
}
}

source_panel (w) refers to the ActionGUI panel which has been trans-
formed from a UWE Presentation element containing the «interactiveEle-
ment> (the counterpart of w) that is connected to the transition ¢r.

target_panel (w) refers to the ActionGUI panel which is going to re-
place the source_panel(w). It has been transformed from a UWE pre-
sentation element which is connected to a state in the UWE Navigational
States Model that is the target of the transition ¢r.

As already stated in the introduction of this section, transitions that
are not mapped to the UWE Presentation Model are ignored as their
functionality has to be modeled in ActionGUI with greater detail. Usually
not many transitions are modeled in the UWE Navigational States Model
that do not alter the GUI of the applications (but change the state of the
application itself).

4.4 Step 4: Mapping Security Features

In this step, the security-awareness from the UWE Basic Rights Model and
the UWE Navigational States Model is added to the ActionGUI model.
First we transform the RBAC structure, then the menu is secured and
navigational access control features are mapped.

4.4.1 Basic Rights Model

The UWE Basic Rights Model is just another graphical representation of
the SecureUML+ComponentUML language that is used in ActionGUI (in
a version that differs from the original which is described by Lodderstedt
et al. [5]).

e For each Role instance r from the UWE Role Model, create the
corresponding instance r’ of the Role class in the SecureUML Model.

e For every inheritance relationship between two roles, r1 ans r2 in
UWE Basic Rights Model, create a link between the corresponding
two roles, r1’ and 72’ in the SecureUML Model.

e For each set of dependencies d between a Role instance r and a
constrained class ¢ from the UWE Role Model, create a Permission
instance p in the SecuretUML Model. Set the resource of p with the
entity e in the ComponentUML Model which corresponds to ¢ in
UWE Role Model by creating a link between p and e. Also, create a
link between p and . If a subset of dependencies is constrained by a
set of <authorizationConstraint> s, then create an own Permission
instance for them.

e The allowed actions are mapped in the following way:

1. For all «create> and <delete> dependencies between a Role in-
stance and a class in the UWE Basic Rights Model, EntityCreate

20

and EntityDelete actions are added to the corresponding per-
mission in SecureUML Model.

2. For all «read> and «<update> dependencies between a role and
an attribute, AtomicRead and AtomicUpdate actions are created
respectively, and linked to the corresponding permission.

3. The <readAll»> and <updateAll> dependencies without {except }
tag specified are mapped to EntityRead and EntityUpdate com-
pound actions respectively. Dependencies with {except}-tag are
transformed executing the previous step for every attribute/role
of the constrained class, except for the ones described in the
{except} tag.

4. <executex> and <executeAll> dependencies cannot be trans-
lated at the moment, because ActionGUI does not support them
in the same manner.

e Map all authorization constraints in a straightforward way and con-
nect them to the newly created Permission classes.

4.4.2 Security Aspects of Navigational States

In the UWE Navigational States Model, several security aspects are taken
into account:

Secure Communication Links (ensure e.g. confidentiality, integrity and
freshness). They cannot be transformed to ActionGUI

Authentication in terms of predefined patterns available in the UWE
profile. They can be transformed by adding them to the UWE Pre-
sentation Model before step 3.

Navigational Access Control as described below.

There are several ways to address Navigational Access Control. The
most important ones can be transformed as described in the following
sections.

Showing and Hiding Menus according to permissions. In
UWE, menus are common transitions that usually leave a state, enter
again and point to a substate, so that it can be fired from any substate.

To ease the modeling of menus that are modeled in detail in substate
machines, the «integratedMenu> stereotype allows the modeler to split
one menu into several submachine states without using entry points for
each menu. This comes in handy if many roles and many menus are used.

For a full understanding of this stereotype, the constraint and defini-
tion of a transformation to plain UML without stereotypes, are cited from
Busch [2]:

Constraint. A composite state s contains m submachine
statesp; € P (i = 1,...,m). P is the set of submachine states,
where transitions stereotyped by «integratedMenu> end. Tran-
sitions in the set T are typed by «integratedMenu> with the
guard expressions g; and no other properties (like effects or trig-
gers) and each t; € T; connects s or an initial node — see also the
paragraph below — with p;. Each p; refers to a state machine
p;. Each p; contains o; transitions ¢i; € T;(j = 1,...,0;) from
a composite state s; (which is the target of an initial state) in

p; to a substate s{; in s.

21

An initial state can exist in s. If no other transition is con-
nected with a submachine state p; that includes menu transi-
tions, which should be integrated, the transition coming from
the initial node, pointing to p;, has to be stereotyped by «<in-
tegratedMenus.

Definition. For each t;, the transition ¢; that targets p; is
copied, which results in the transformed transitions £ij with
the guards g;;. Each Eij targets a new entry point e;; of p;
with the corresponding representation ej; in pj. All ¢; are
transformed to #;; that start at e}, instead of .

For all transitions TE»L']', all properties of f;j are added. The guard
g: is added with '&’ to the guards g;; (for j =1,...,0;). If one
guard is empty, the &’ is left out. If a ¢; starts at an initial
node, the <integratedMenu> stereotyped is removed, if not, ¢;
is deleted itself.

All transitions without the «integratedMenus stereotype re-
main unchanged.

This transformation has to be considered whenever dealing with the
UWE Navigational States Model. An example is shown in figure 18 (and
explained in further detail in [2, p.51]).

('state machine integratedMenu [integratedMenuAbbreviation U R
«session»
Application
{isHome,
transmissionType = "cif"}
«navigationalNode» |:|
SessionForLoggedinUsers s
'9 3 [rolles->includes(r1)] p1 : MenuFor
‘ Login | «integratedMenu» AnotherRole P1'
‘ exit / roles=rolesOf User() P
o
[roles->includes(r2)] P =
; p2: MenuFor
«integratedMenu» AnotherRole P2'
o
state machine MenuFor AnotherRole P1' J S
= «integratedMenuy» p3 : DefaultMenu
. | ForAllUsers P3'
menuEntry11() Y)
o>
menuEntry12() 5)
J

Figure 18: UWE: HosplInfo Example of an «integratedMenu> (from [2, p.52])

For showing or hiding menus in UWE, we have to take into account
transitions which are related to menu elements from the UWE Presenta-
tion Model, since the actions of showing and hiding menus are executed
when those transitions are triggered: every time a transition stereotyped
with «updateMenus> is triggered, all menu entries are hidden and just
the ones that correspond to the menu transitions reachable from target
state, are shown. We added the «updateMenus: stereotype to be able to
avoid recalculating the menu for each transition.

22

The rough behavior of showing and hiding menus is the following:
When a transition ¢r stereotyped with <updateMenus> is triggered, then:
For each menu transition mt, we will check if the corresponding menu
entry should be shown or not:

e Hide menu entries that cannot be accessed from the target state s
of tr.

e If mt is accessible and does not have any condition or a condition
that evaluates to true, then show the menu that corresponds to mt.

e If mt is accessible and the condition evaluates to false, do not show
the menu entry.

As we have already discussed in step 3, all transitions are mapped to
an ActionContainer element in the ActionGUI Model which contains cer-
tain actions, depending on whether the target of the transition is a Choice
Pseudostate element or a State element in the UWE Navigational States
Model. We expect all transitions stereotyped by «updateMenus> to di-
rectly lead to a state, thus these transitions are already mapped to Ac-
tionGUI ActionContainer elements containing the action of hiding the
current panel and showing the target panel.

Given a transition tr stereotyped with <updateMenus>, and given
the corresponding (On-Click) ActionContainer ac that maps ¢r to the
ActionGUI Model, the concrete algorithm of mapping the behavior of ¢r
is called as: updateMenus(tr, ac).

updateMenus (Transition tr, ActionContainer ac){

s = the state that is reached by tr;

for (menu widget me in the ActionGUI model)

mt = the menu transition that corresponds to me;

if (mt is not reachable from s){
create a Set action se
and set isVisible of me to false;
link se to ac;

} else if (mt is reachable from s and not guarded)
create a Set action se
and set isVisible of me to true;
link se to ac;

} else if (mt is reachable from s and guarded){
create a ConditionalAction ca in ActionGUI;
get the guard g;
set the condition attribute of ca to g;
link the ConditionalAction ca to ac;

create a ThenContainer tc in ActionGUI;
link the tc to ca;

create a Set action se in ActionGUI
and set isVisible of the me to true;
link se to tc;

create an ElseContainer ec in ActionGUI;
link the ec to ca;

create a Set action se in ActionGUI

and set isVisible of the me to false;
link se to tc;

23

Note that menus can be nested and if no inner menu is shown the
parent should also be hidden.

Accessing States. How the access to states and their substates is
additionally guarded in UWE in order to allow to use a set of URLs in
the final web applications that target different states without causing se-
curity problems by guessing or saving those URLs. As specified in the
UWE profile, the {role} tag that specifies roles which are allowed to ac-
cess a state is internally transformed into a {roleExpression} tag which
then is transformed to a choice for the (usually not modeled) transition
that comes from a location choice just behind the overall initial pseu-
dostate. What to do in case of unauthorized access is modeled using the
tag <unauthorized Access> that references another state.

In ActionGUI only one URL for the hole application is allowed, there-
fore this kind of access control does not have to be transformed. However,
if the access to certain actions are not allowed, an “access denied” pop-up
appears in the resulting web application.

Automatic Logout. To automatically logout is modeled in UWE
using a logout () transition e.g. idle(mins) / logout(). In ActionGUI,
there are two ways of dealing with the log-out operation automatically.
The first one is that, by default, generated applications with ActionGUI
execute automatically the logout operation after a certain seconds of in-
activity. The second one is that you can define a system operation in the
ComponentUML Model of your application that implements the log-out
feature. This operation could be called from any part of the ActionGUI
Model through the OCL language.

24

5 Extension of the ActionGUI Metamodel

The current approach extends the ActionGUI metamodel from from Clavel

et al.® with two meta-classes:

e Panel inherits from Container
e Menu inherits from Container, but it can only contain elements of
type Menu or Button. Menu elements can only be contained in ele-
ments of type Window, at most one menu for every window. A vari-
able called foldAutomatically :
open menu trees automatically in case of selecting other menu en-
tries.
The class Widget needs an additional variable called isVisible :

Boolean that specifies whether it is displayed or not.

Widget

Boolean is added for collapsing

Container
JaN
Window Menu
Table Panel
ComboBox

Label

TextField

Button

BooleanField

DateField

Figure 19: Part of the ActionGUI Metamodel

5 ActionGUI metamodel v. 1.2012 personal communication

25

6 Extension of the UWE Metamodel

In order to improve the possibilities of automatic transformations UWE
to ActionGUI, some extensions of the UWE Profile v2.1 were necessary,
which are described in this section.

Content Model. UWE also uses the well-defined OCL from ActionGUI’s
SecureUML Model that refers to the user of an action in the web applica-
tion as ‘caller’. Consequently, we have to specify the class representing
the caller (i.e. the user), which is implemented by the stereotype <we-
bUsers.

Connection of Menus. All methods that are contained in a <navi-
gationMenu> class have to be connected to the corresponding menus or
anchors that are used in the UWE Presentation Model. This is done by
adding a new stereotype <menuLink> with the tag {target : Anchor} to

package NavigationStates| na\flgatlonStates]J e
eMetaclasss

Pseudostate

ametaclasss «metaclasss

the Operation class, as depicted in figure 20.
Transition

ametaclass:
Class

StateMachine State
ssterectypes
browserDependent [y——
astereotypes [+ search
astereotypes |:| externalLink expression : String [0..1]
wsterectypes Ena\flgaﬂonl\denu igati 0.1 locationExpression : String [1] g
- astereotypes
istodal : Boolean oA astereotypes i')' integratedMenu

' W unauthor T0..1 goBackDefaut target estereatypes
e | -goBack : Boolean [0.1] allltems

Operation astersotypes [astereotypes
collection session
<stereatypes ftemType : Class [0.1] | [roles : InstanceSpecification [*]
menuLink

rolesExpression : String [0..1]
transmissionType : String
sessionData : sessionClass [Y]

Figure 20: UWE navigational states profile

Navigational States Model. In order to identify in which situations
the menu of a web application should be recalculated, the stereotype <up-
dateMenus> is introduced which should be set manually on transitions in
the UWE Navigational States Model (figure 20).

Presentation Model. The relationship between a navigational state
(or its parental state) and a presentation group needs to be modeled ex-
plicitly in UWE in order to facilitate the mapping to ActionGUI. There-
fore the tag {navState : State} has been added to <presentationGroup> el-
ements of the UWE Presentation Model (figure 21).

Every transition of the UWE Navigational States Model is triggered
by a certain element of the UWE Presentation Model. To establish a
connection between those two elements, the tag {navTrans : Transition}
has been introduced in «interactiveElement> s of the UWE Presentation
Model.

For supporting menus explicitly in UWE, we have added the stereo-
type <presentationMenu> that inherits from <anchor>. For compatibil-
ity with ActionGUI only <anchor> s should be added as property to a
concrete menu class.

26

emetaclassz emetaclasss
Class Property

T T

asterectypes
presentationElemant

-clynamicDisplay : Boolean = false

[|

estereotypez B] asterectypes
presentationAlternatives wiElemeant
-digablingCondtion : String [0..1]
-enablingCondition : String [0..1]
-id: String [0..1]
-styleClass : String [0..1]
-styleClassExpression : String [0..1]
-visibility Condition : String [0..1]
-iveSearchCondition : String [0.1]

LP

«stersotypes
presentationGroup
-collapse : Boolean = false ustersctypes
-navigationMode : navigationMode [0..1] valuedElement
-lighthox : Boolean = false
-liveReport | Boolean = false -valugExpression : String [0..1]
-richEditor . Boolean = false
-fitter : Boclean = false
-gallery : Boolzan = false
-inLink : link
-navState: State
[I 1
asterectypes esterectypes g ssterectypes B
iteratedPresentationGroup putForm presentationPage
-itemVarName : String [0..1] -liveFeedback : Boolzan = false
«sterectypes «stereotypes
interactiveEfement outputElement

-targetPage : String [0..1] -periodicRefresh : Boolean = false
:::} -navTrans: Transition -dragDrop : Boolzan
I 1

asterectypes @‘ esterectypes m‘

[
esterectypes %

text image mediaObject
[I I 1
esterectypes f— esterectypes «stereotypes = asterectypes
anchor button tab inputElement
-link - link [0.1] -tabPane : presentationGroup | [-submitChange : Boolean
-targethlode : navigationMode [0..1] -clataProperty : Property
[[[|
asterectypes E asterectypes % astereotypes asterectypes |1 astereotypes
presentationMenu selection input p p
-muftiple : Boolean -element : uiElzment [*
\ y il I

EIS

astereotypes — asterectypes asterectypes
slider textinput imagelnput
-autoCy 1: Boolean = false

-autoSuggestion : Boolean = false
-livelalidation : Boolzan = false

Figure 21: UWE presentation profile

27

7 Conclusion and Outlook

In this document we described ActionUWE, the transformation of UWE
models into ActionGUI models. As ActionGUI models can be transformed
to code, ActionUWE is an approach to semi-automatically generate secure
software from UWE models.

Summarizing, one might say that UWE enables the modeler to start
modeling on a high level of abstraction, to design different views and to
use the well-known UML modeling language. ActionUWE can be used for
the generation of concrete ActionGUI models. This is the time for the
web engineer to be more specific about the behavior of the application in
order to use the ActionGUI generator to produce an executable prototype.

The ActionUWE transformation itself is executed in four steps:

Step 1 Initializes the ActionGUI model and transforms available UWE
menus to ActionGUI Menu classes.

Step 2 adds further information of the Presentation Model to ActionGUI.

Step 3 transforms the UWE Navigational States Model to ActionGUI
Model without regarding security features.

Step 4 converts the role based access control (RBAC) constraints and
the navigational access control features, modeled in the UWE Basic
Rights Model and the UWE Navigational States Model.

To make the transformation possible, we had to slightly extend the
metamodels of UWE and ActionGUI. Furthermore, we had to specify
sound preconditions.

For the first approach of the transformations we e.g. assumed that
one menu exists and this menu changes exactly one other panel. This is
necessary to keep the planned implementation as simple as possible. In
further versions this restriction might be avoided, but this would lead to
a rather complex way of describing which panel (or subordinated panel)
should be exchanged at runtime.

As illustrated in the HospInfo example, ActionGUI allows buttons as
menu entries. This might be changed in a way that links/buttons and
other elements like a text field for the search can be inserted, as common
for huge web applications.

One resulting question for a future implementation is, whether Ac-
tionUWE should transform every piece of information from UWE that
is expressible in ActionGUI (e.g. by the use of Choice statements) or
whether security features of UWE’s Navigation Model could be ignored
for the transformation process. The former approach has been explained
in this report. The latter would also be possible, because ActionGUI can
infer some navigational access control rights from SecureUML Model and
hide elements and pages with restricted access. Nevertheless, a model-
checker would be required to double-check, if the user of the transformed
application still has access to the same menus and pages (as sometimes
a page should be removed from the menu when it contains a prohibited
action and sometimes it should be accessible and just the element that
triggers this action should be hidden). Presumably, a mix of both ap-
proaches should be implemented in the long run.

At the moment we are working on the implementation of the trans-
formation, starting with a simple address book example without menus.
After this proof-of-concept we plan to extend the tool support for both,
ActionGUI and UWE to support e.g. semi-automatic tag-links between
the several UWE models.

28

8 Acknowledgements

We would like to thank Martin Wirsing and Manuel Clavel for supervis-
ing this work. Furthermore, we are thankful for the NESSoS funding of
the travels to Madrid and Munich and thus for the opportunity to work
together face to face. Finally, our thanks go to Nora Koch for extensive
proof reading.

29

References

1]

D. A. Basin, M. Clavel, M. Egea, M. A. G. de Dios, C. Dania, G. Or-
tiz, and J. Valdazo. Model-driven development of security-aware guis
for data-centric applications. In A. Aldini and R. Gorrieri, editors,
Foundations of Security Analysis and Design VI - FOSAD Tutorial
Lectures, volume 6858 of Lecture Notes in Computer Science, pages
101-124. Springer, 2011.

M. Busch. Integration of Security Aspects in Web Engineering. Mas-
ter’s thesis, Ludwig-Maximilians-Universitdat Miinchen, 2011. http:
//uwe.pst.ifi.lmu.de/publications/BuschDA.pdf.

M. Busch, A. Knapp, and N. Koch. Modeling Secure Navigation in
Web Information Systems. In J. Grabis and M. Kirikova, editors, 10th
Int. Conf. on Business Perspectives in Informatics Research, LNBIP,
pages 239-253. Springer Verlag, 2011.

N. Koch, A. Knapp, G. Zhang, and H. Baumeister. UML-based Web
Engineering: An Approach based on Standards. In Web Engineering:
Modelling and Implementing Web Applications, Human-Computer In-
teraction Series, pages 157-191. Springer, 2008.

T. Lodderstedt, D. Basin, and J. Doser. SecuretUML: A UML-Based
Modeling Language for Model-Driven Security. In Proc. 5th Int. Conf.
Unified Modeling Language (UML’02), volume 2460 of Lecture Notes
in Computer Science, pages 426-441. Springer, 2002.

S. Melia, J. Gémez, S. Pérez, and O. Diaz. A Model-Driven Develop-
ment for GWT-Based Rich Internet Applications with OOH4RIA. In
Proc. 8th Int. Conf. Web Engineering (ICWE’08), pages 13-23. IEEE,
2008.

N. Moreno, P. Fraternali, and A. Vallecillo. WebML modelling in
UML. IET Software, 1(3):67, 2007.

F. Valverde and O. Pastor. Applying Interaction Patterns: Towards
a Model-Driven Approach for Rich Internet Applications Develop-
ment. In Proc. 7th Int. Wsh. Web-Oriented Software Technologies
(IWWOST’08), 2008.

30

http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf
http://uwe.pst.ifi.lmu.de/publications/BuschDA.pdf

	1 Introduction
	2 The ActionUWE Approach
	2.1 UWE and ActionGUI Models
	2.2 ActionUWE

	3 HospInfo – introducing ActionUWE by example
	3.1 Case Study HospInfo
	3.2 Transformation of the Content Features
	3.3 Transformation of Menus
	3.4 Transformation of the UWE Presentation Features
	3.5 Transformation of the UWE Navigational States
	3.6 Transformation of UWE's Security Features
	3.6.1 Basic Rights Model
	3.6.2 Security Aspects of Navigational States

	4 Transformation Process
	4.1 Step 1: Mapping of Navigational Menus
	4.2 Step 2: Mapping of Presentation Elements
	4.3 Step 3: Mapping Navigation Features
	4.4 Step 4: Mapping Security Features
	4.4.1 Basic Rights Model
	4.4.2 Security Aspects of Navigational States

	5 Extension of the ActionGUI Metamodel
	6 Extension of the UWE Metamodel
	7 Conclusion and Outlook
	8 Acknowledgements

