Symmetric Index Structures

Highly efficient symmetric text indexing

Daniel Bruder

Munich 2012

Symmetric Index Structures

Highly efficient symmetric text indexing

Daniel Bruder

Thesis
for the acquisition of the degree to
Magister Artium (M.A.)

Centrum fiir Informations- und Sprachverarbeitung (CIS)
Ludwig-Maximilians-Universitat (LMU)
Minchen

Daniel Bruder

September 2012

Primary Reviewer: Prof. Dr. Klaus U. Schulz

Contents

1 Preface 5
2 Motivation and Goals 6
2.1 Uses for Automata 6
2.2 A motivating example 7
2.3 Goalsofthiswork, 12
2.4 Organization of thiswork 13

3 Index Structures 15
3.1 Technical Preliminaries 15
3.1.1 Notation Lo 15

3.1.2 Definitions 16

3.2 Indexing all subpartsof atext. 20
3.2.1 General Overview of Indexing Steps 21

3.3 Comparison and highlights of the index structures used in the following 23

3.3.1 Properties Lo 23

3.3.2 Suffix Tree 23

333 CDAWG. e 23

3.3.4 SCDAWG e 24

3.3.5 Graphical Overview of structure relationships 24

4 Indexing all subparts of a text directly 26
4.1 Indexing all suffixes 26
4.2 Ukkonen’s algorithm L. 27
4.2.1 Suffix Tree construction, 28

4.2.2 More TeSOUTCES . . « . v v v v v i e e 36

5 Building the smallest automaton possible 37
5.1 Definition of the CDAWG 38
5.2 The Inenaga algorithm for CDAWGs 39
5.2.1 Construction example 40

6 Constructing the symmetric automaton

6.1 Definition of the SCDAWG
6.2 SCDAWG structure overview
6.3 SCDAWG Example
6.4 Building the SCDAWG
6.5 Algorithm for the bijection

6.5.1 Intuitive description of the algorithm

6.5.2 Pseudo-Code

6.5.3 Actual implementation

Adding “inverted file” information to the SCDAWG

7.1 Adapting Blumer, Blumer et al’s idea to SCDAWGs

7.2 Attaching inverted file information to SCDAWG’s states

7.3 The algorithm L
7.3.1 Overview of the algorithm steps
7.3.2 Intuitive description of the algorithm
7.3.3 Actual implementation of adding of documents
7.3.4 Actual implementation of indexing step
7.3.5 Locating patterns and positions in the SCDAWG
7.3.6 Collecting the positions in the text base

7.4 Overall Time and space complexity

Code Usage Example
8.1 C Automata Code Base Usage Example
8.2 msgrep implementation exampleo 0L

8.2.1 Sampleoutput L

Adapting the existing automata code base

9.1 Extending, Reusing and Refactoring of the existing implementation .
9.1.1 Refactoring guidelines and Approaches

9.2 Wrapping C
9.2.1 Adapter Classes
9.2.2 General Description of Adapter Classes

9.3 Implementation Specifics: Layer System Description

9.3.1 Advantages of the layered system

46
46
46
46
47
47
49
49
49

51
51
52
52
02
52
95
Y
o8
60
62

63
63
64
66

9.3.2 Conventions used in the Layered System 73

9.4 TImplementation specifics: Staging system 73
9.4.1 Staging systemidea oL 74
9.4.2 In-depth description of stages 75

9.5 Implementation specifics: the templated DocumentIndexingAutomaton 78

9.5.1 DocumentIndexingAutomaton as a template 79

9.6 Specific new features of C++11 81
9.6.1 autokeyword 81
9.6.2 Constructor delegation 81
9.6.3 Compilers 82

9.7 Transition to cmake build systemo 000 83
9.7.1 CMake build framework, 83
9.72 Testing e 84
9.73 Unittests L 84
9.74 CPack packaging 84

9.8 Doxygen integration L0 oo 84
10 Metrics 85
10.1 Code Metrics o o o 85
10.1.1 Adapted Code base size metrics 85
10.1.2 Newly written indexing automaton code base 85
10.1.3 Whole code base size metrics 86

10.2 Indexing time metricso L 86
10.3 Automaton Size metrics 88
11 Summary 90
11.1 Wrap-Up o e 90
11.2 A few words on the current State of the Art, 90
11.3 Possible areas of improvement 92
11.3.1 Accessibility improvements 92
11.3.2 Multithreading support 92
11.3.3 General improvement ideas 94
11.3.4 User Interface improvements 95
11.3.5 Functional improvements 96

Compilation and Installation procedure 97

A.1 Getting the sources o 97
A.2 Structure of this project 97
A3 Requirements 98
A4 Compilation 99

Glossary 100

Colophon 102

Acknowledgements 103

Thanks 104

1 Preface

Treat the index, not the text!

[Klaus U. Schulz]

The work presented here is the thesis for the acquisition of the degree to “Mag-
ister Artium (M.A.)” at the Ludwig-Maximilians-Universitdt (LMU Miinchen) in

Computational Linguistics as a major.

It comprises an intensive period of work that started following a visit to the Bulgarian

Academy of Sciences in Sofia whose efforts form the ground base of this work.'

After the visit to Sofia, proof of concept implementations to acquire familiarity with
the variety of intricate algorithms and different types of indexing structures used in

this work followed.

Next up, wrapping and extending the existing code base to extend the current library

to be a document-indexing automaton followed.

The points presented here summarize the efforts and want to help successive work on
the library. To make the understanding of the complex algorithms as easy as possible
for new readers in the first steps, the presentation is intentionally kept simple where
possible. The goal decidedly is to “get to point across” to as many readers as possible
and to stay clear and comprehensible in the presentation. In all places references are
given to the original papers, mathematically sound definitions and additional links

for further reading and presentations from different perspectives.

This work is mostly based on work by Klaus Schulz et al. ([10]), as will become

clear in the following.

Iplease see “Acknowledgements” and “Thanks”

2 Motivation and Goals

The beginnings of the theory of finite state automata essentially date back to the
1940s and 1950s when researchers began work on structures and machines following
Turing’s preliminary work on the so called “Turing machines” in the 1930s. Although
these machines were initially intended to simulate human brain functions, they soon

proved to be of great use elsewhere...”

Despite less concrete work on the theory of finite state automata itself in recent
years, the basic concepts of finite state automata theory form the crucial backbones
of many of today’s technologies (find a compilation of a subset of the uses for finite

state automata in Uses for Automata).

Following [14], in today’s formal training, the approach to finite state automata is
a more pragmatic one. May the situation be as it is, I feel lucky that, in the formal
training in Computational Linguistics at the Munich LMU University, I could find
a lot more than only pragmatic approaches to this, admittedly, at times perplexing

theoretic field through Prof. Klaus U. Schulz and his research assistants.

The theory of finite state automata, for sure, can be a very complex topic at times,
but, it needs to be said, that albeit its complexity it nevertheless builds on only a
small set of common ground compared to the many tasks where it can successfully
be put to use. Thus, the theory of finite state automata draws its immense value
from the vast fields where it can be applied successfully in conjunction with the

(finite) set of theory as a foundation.
2.1 Uses for Automata

Index structures such as the ones described in this work and in the papers refer-
enced, can be used to effectively store and index strings, along with useful additional
information that can be of great use in a wide range of applications and a diverse

set of mathematical problems on strings.

In order to arrive at the carefully woven index structure, to incorporate, for in-
stance, all subparts of a text, different structures have been studied and algorithms

developed.

The different structures that have been developed which can serve a diverse set of
purposes and can be distinguished by their different properties and thus prove to be

suitable in various degrees for different tasks at hand.

Among the wide range of applications that Finite State Automata (in the following:
FSA?) in the form of index structures like Suffix Trees / Suffix Tries, Directed Acyclic

2See [14, chapter 1, “Automata: The Methods and the Madness”)
3also check the Glossary section in the Appendix

Word Graphs (DAWGSs), Compacted Directed Acyclic Word Graphs (CDAWGS) can
be used for, one can find — at least

 information retrieval

e bioinformatics

o pattern matching / regular expressions

e data compression

o spell checking

e OCR correction

From another level, these structures can be used to give answers to a manyfold of

combinatorial problems on strings like*

o the “pattern p in text t”—problem, i.e. string search, in O(m) complexity, where
m is the length of the current sub-string of the pattern searched for (with initial

O(n) time required to build the structure for the string)
e the “finding the longest common substring” problem
o the “finding the longest repeated substring” problem

e the “finding the longest palindrome in a string” problem

2.2 A motivating example

To introduce the topic of this thesis and to ensure that all readers are on the same
page, a very illustrative example is chosen. Feel free to skip to the next section, if
you are familiar with the theory and foundation of FSA — you will find the concrete

goals of this work summarized in the next section.

Imagine, the words of our language (the text t) that are to be recognized were

L = {cocoa, cola}, and the pattern p that is searched for were cola.

Imagine further, that the words which are recognized as valid words of the language

were given as a plain text file with one word per line, sorted alphabetically:

Ccocoa

cola

“see, for example, [27] for an overview of applications

Now, to decide whether the pattern p = cola is part of our language without using
an automaton, in the worst case, one would have to compare each and every word
in the text file with the pattern. In this case pictured here, this lookup would lead
to two comparisons, asking whether the input pattern is equal to the current line
of our dictionary. Only in the last of these string comparisons however, do we find
that, indeed, the word cola is part of our language and thus is “accepted” as a valid

word of the language given.

However, if there were a million words in our language and in alphabetical order
“cola” was the last word in that file, one million lookups and comparisons would be

needed to decide whether that word (pattern) is part of the particular language L.

Of course, the pattern we are looking up could be not part of our language, and if so,
in the current example, this would mean to make a million lookups and comparisons
in the first place — only to find out after the last unsuccessful comparison that the

search pattern is not part of the language.

Obviously, an approach like the one described is grossly ineffective. As was said,
using automata, the lookup can be carried out in O(m) time w.r.t. to length of the
pattern (and with the initial O(n) time overhead to build the automaton w.r.t. to
the input length of the text ¢). This means that, if no words with an initial letter ¢
exist in our language, we could stop searching for the pattern cola right away in the
very first step. Compare that to a million (potentially useless) lookups, or worse,

maybe 10 million or more — depending on the language L.

These algorithmic questions are exactly where Finite State Automata come into play.
We can use an automaton as an index structure to represent our language L and to
execute the search for the pattern p on that text base. If we choose a standard Trie’
as our structure to represent the language L = {cocoa, cola}, it would look like the

one in figure 1.

Figure 1: Example Automaton Trie(L) for L = {cocoa, cola}

Sa directed tree for text retrieval

Recognizing cola as the pattern to decide whether it is recognized and thus “part of

the language L”, we would, for example,

o go from the dedicated “start state” 0 to state 1 by using the first letter of the

pattern, c in one step

o from there, in a second step, move on to state 2 with the second letter o. State
2 does have a transition with the next letter I, so this transition is followed to
state 6

o finally, in a last step, the “accepting” final state 7 is reached (the double circles
indicate that this is a final, accepting state). This is the indication that the

search pattern was “matched successfully”.

Conversely to the example given above, even if there were a million words in our
language, the steps needed to recognize a word of that language would still be O(m),
i.e. the matching procedure for the search pattern cola would need four steps — or
less if it was not part of our language. In effect, only exactly as many steps as the
pattern’s number of characters are needed to successfully recognize that word. In
other words: the matching procedure is made independent of the number of words

of that language.

Where this pays off even more is in the second scenario given above: trying to match
a word that is not part of the language (hence: “not accepted by the automaton”). In
this toy example, if the pattern was, instead of cola, the word water, the automaton
simply would not have any path to follow the start state and thus recognition is
aborted in the very first step. In other words again, the pattern cannot be recognized
and thus it is clear that the pattern p is not part of the language L of which the

automaton is a representation of.

Now, going one step further: imagine we wanted to match suffixes of the language.
Take, for example the suffix oa of the word cocoa, i.e. let the pattern be oa. It is
easy to see that oa is not part of our language L, oa ¢ L where L = {cocoa, cola}.
Speaking in terms of the automaton, there is no transition with letter o from the
start state (as was the case when the search pattern was p = water) to begin with,

so recognition is abandoned in the first step.

If we were to recognize even subparts of the language given, we would have to build

a superset of that language first.

Let’s look at an example automaton of a superset of L, incorporating the suffizes
giving us LSuf(cocoa)USuf(cola) = LSuf(cocoa) U LSuf(cola) with LSuf(cocoa)
{cocoa, ocoa, coa,0a,a} and Lgyfcoiay = {cola,ola,la,a} resulting in L =

{cocoa, ocoa, coa, oa, cola, ola,la,a}, depicted by figure 2 on the next page.

o
8

8
o o
8

Figure 2: Example Automaton SuffizTrie(L) for L = {Suf(cocoa),Suf(cola)}

10

It is easy to see, that now, the pattern p = oa is recognized by the automaton,

L.e. the suffiz “oa” part of the language, p € Lgyf(cocoa,cola)-

From this standard point in the theory of finite state automata several paths to go

further are possible:

e What if we wanted to “walk” with a certain pattern, e.g. co and get suggestions
on possible extensions of the current pattern? In other words the automaton
would respond with all possible extensions giving us all extensions that can still
lead to a successful match. For instance, for the beginning co the automaton
would not only return the obvious extensions “cocoa” and “cola” but also

the suffix “coa” as a possible extension — since it is part of our language

LSuf(cocoa,cola) .

e Another possible way to take this further: What if we wanted to add full
sentences or whole text bases (like articles, books, complete works) and work
on that level? What could suggestions look like and how would the indexing of
them, the building of the structure work? Which structure and construction

algorithm would prove as the most suitable for this task?

e For the case that we were to add whole texts instead of words only: How could
one build a search engine / text lookup and retrieval system in which the user
could a) enter a certain part of a pattern — b) get suggestions — c¢) enter
more subparts of the text — d) follow a certain part of the given suggestions
again — e) modify the search pattern (and so forth) until finally reaching an

accepting state?

e Additionally: How could the structure be used to store information in order to
be able to point the user back to that specific subpart of text that she derived
from the previous steps? How can the user be pointed to the occurrence of

that specific pattern she chose?

e How can one build the even smaller and more space efficient equivalent repre-
sentation of the language as in 3 on the following page, cutting down on the
number of states from 21 to 4 and on the number of transitions from 21 to 7

only?

e Since most of these question have already been solved and answered in the
articles referenced in the bibliography, one thing that has not been done yet:
How would suggestions in both directions work, i.e. how could the user be
provided with additional suggestions not only “to the right” (as is known from
search engines and search fields), but also “to the left” and thus get more

specific context-like suggestions? What would the index structure suitable for

11

this kind of task look like and how would one go about constructing and using

it in the most efficient way?

e How can one build the smallest possible structure for this task directly, i.e.

without the help of intermediate structures?

o Additionally: How can one do all these steps symmetrically, i.e. construct an
automaton capable of giving suggestions for both directions directly and in the

most compact way possible?

Figure 3: Example Automaton CDAWG(L) for Ly (cocoa,colay = 1c0c0a, ocoa, coa,

oa, a, cola,ola,la,[a]}
Luckily, solutions to all these questions will be given in this work.
2.3 Goals of this work

Ultimately, what we want to achieve in this work, is to build an index structure,
that will

o take a set of files containing “running text” (as opposed to words of a dictionary

only)
o index all subparts (factors, “infixes”) of each text file

o allow pattern search on the infixes in O(m) complexity, where m is the length
of the current sub-string of the search pattern (with the build time being linear
O(n) w.r.t. to the input length of the text ¢)

« allow the pattern search in both directions: in “natural” left-to-right direction

as well as a right-to-left direction

o give suggestions on possible concrete extensions of the given pattern p to both
these directions (as opposed to suggestions classically known from search en-

gines that are statistical and only “to the right”)

12

« additionally keep an inverted file index of all these concrete factors keeping
track of their respective occurrences and concrete positions in the given text

files and return them for the current pattern found
e be the smallest automaton possible

e be constructed in linear time and space complexity w.r.t. to the input length

and directly.
To this end I will describe

e how to obtain a Symmetric Index Structure that is suitable to index the en-

tirety of the text base’s subparts (in this case, infizes)

o that, by its nature, can be used to give suggestions to both sides using the

deterministic extensions present in the symmetric automaton

e how to apply Blumer, Blumer et al’s “complete inverted files” algorithm to

the symmetric automaton (in linear time).

2.4 Organization of this work

Chapter 3 will set a baseline for the rest of this work by introducing the basic
definitions of Finite State Automata, regular languages, the indexing of words, of

suffixes, and supersets of languages.

Chapter 4, “Indexing all subparts of a text directly”, will first begin to describe how
all suffixes of a text can be indexed in a suffix tree (similar to figure 2 on page 10)

directly and on-line using Ukkonen’s clever algorithm from [23].

In the chapter following, it is shown how to use Inenaga et al’s algorithm that
builds the smallest automaton possible of the same set of suffixes directly (Chapter

5, “Building the smallest automaton possible”).

Chapter 6, “Constructing the symmetric automaton” will then go on to describe
how to obtain the symmetric index structure that incorporates all suffizes of the
natural reading direction of the text and all suffixes in the reversed direction directly

and on-line.

Furthermore, this section will then describe how to identify the resulting equivalent
states of both the automata gained in the first step, through the algorithm developed
by Schulz et al. ([10]) to build a fairly novel structure, the SCDAWG.

Building on this is chapter 7, in which it is described how to use and apply the ideas
by Blumer, Blumer et al. to attach additional “inverted file” information to this

smallest possible symmetric structure obtained in the previous step (compare [2]).

13

Following a code usage example on how to use the current library in chapter 8,
chapter 9, “Adapting the existing automata code base” will go into details of the
implementation of the algorithms covered and will discuss the refactoring process of

the existing code base that this work builds on.

Finally, metrics (chapter 10) are presented as well as ideas and hints for future work
(chapter 11).

Please see the Appendix section for definitions and additional information on ter-
minology and structures used throughout the text and for additional indexes to the
tables and figures that illustrate this work. Additionally, links to the sources and a

detailed installation procedure are given.

14

3 Index Structures

While there is a wide family of index structures, all of them are composing Finite
State Automata theory of some sort with a few differences and thus are intimately

inter-related.

The theory of finite state automata is central to each of the index structures de-
scribed in the following. Hence, we will cover the essential basics first, then pro-
gressing on to describing the commonalities and differences between the different
variants of index structures and how to make use of them for the task at hand:
indexing all factors of a set of running text in a symmetric structure enabling us to
give suggestions to the left and to the right of a current search pattern p by having

these present in our symmetric structure deterministically.

In order to finally obtain the SCDAWG structure that is needed, we will follow the

description of the related automata in the following chain:

SuffixTrie — SuffixTree - DAWG — CDAWG — SCDAWG

Table 1: Progression of index structures

3.1 Technical Preliminaries

Next follow the essential definitions that will be needed in the sequel. These are
meant to serve as a common ground where, in the following, only the differences
between the structures are presented. As far as the deeper specifics of individual
structures are concerned, the presentation will focus on the differences only and
pointers to the original references and, at times, more formally tight definitions will

be given.
3.1.1 Notation

As far as the notation is concerned, it will be kept close to the notation found in
[10, pp. 3].
Let ¥ denote a finite alphabet, and words P, U, V, W denote words over ¥*. The

empty word is written as € and single letters of % are written as o, and o;; W =

01...0np.
W7 denotes the reversed word oy,...01. The length (the number of symbols) of a
given word W is given by |W/|.

The notation UV is used for the concatenation U o V. A string U is called a prefix
(resp. suffix) of W € ¥* iff W can be represented in the form W = U oV (resp.
W =V oU) for some V € ¥*.

15

A string is an infiz of W € X* iff W can be represented in the form W = U oV o Us
for some Uy, Us € ¥*. The set of all strings over ¥ is denoted ¥* and the set of

nonempty strings over ¥ is denoted X7.

A lexicon or dictionary is represented by a nonempty collection D of words, a text
T is a concatenation of strings over ¥* with length |T] > 0, a text base B is a

(nonempty) collection of texts T.
The set of all infixes, suffixes, prefixes in B is Inf(B), Suf(B), Pref(B).
The size of the text base B is |B|| = > |T].

TeB

3.1.2 Definitions

To begin with, definitions are given with respect to the structures and concepts
used in the following. The list here is not exhaustive in the sense that, in the sequel,

additional definitions will be given where needed.

Finite State Automaton. Classically, (see, for instance, [16, 17, 10, 14, 24, 3]), a
basic Deterministic Finite State Automaton (DFA) is a quintuple, consisting of
A=1{Q,%,s,§, F} where®

e (Q is a finite set of states

e Y is a finite input alphabet

e s is a start state

e 0 is the partial transition function 6 : Q@ x I' — @

e F C Q is the set of final states

Regular language. A Finite State Automaton represents a regular language in an
algebraic form (compare, among many, [14, chapter 3|) and thus can “recognize” a

language.”

A regular language is defined as “a formal language that can be expressed using a
regular expression”. See, e.g. [26] for the formal definition of a regular language.

The interesting part is that

 a regular language satisfies the property (among other properties), that it can

be accepted by a deterministic finite state automaton

e a regular language can be expressed through a regular expression

Scompare Gerdjikov et al. [10], Definition 2.1
"For an example of a recognition process, see again, section 2.2, “A motivating example”.

16

o all finite languages are regular languages — to prove that a language is regular,
one often uses the “Myhill-Nerode theorem” or the “pumping lemma” among
other methods®.

Relationships between automata and languages. The crucial point here is that, in
every case, a regular language can be represented by a Finite State Automaton and a

regular expression and vice versa in all directions, compare the table “Relationships”.

Regular language = Regular expression = Finite State Automaton

Table 2: Relationships

Trie. The trie data structure can be seen as the common ground for all other sub-

sequent tree like data structures.

A trie is an ordered tree structure that is used to store a dynamic set or associative

array where the keys are usually strings. It is also known as a “Prefix Tree™”.

For example, the Trie depicted in figure 2 on page 10 for the lexicon D =
{Suf(cocoa),Suf(cola)} is a

“deterministic finite-state automaton Trie(D) = (Q,%, ¢, 0, {qu | U €
D}) where Q = {qu | U € Pref(D)} is a set of states indexed with the
prefixes in Pref(D) and 6(qu, o) = quoo for all U o o € Pref(D)"".

Suffix Trie. A suffix trie is a special trie in the sense that it indexes the set Suf(D)

and thus recognizes all suffizes of D.

Formally, Trie(Suf(D)) = STrie(D) = (Q, X, ge, 9, F') where the set of final (i.e. ac-
cepting) states is F' = {qu | U € D}.

The size of the suffix trie is bounded by Suf(|D|) and thus quadratic w.r.t |D|; for
every n € N it is (n 4+ 1)2.!

Suffix tree. A suffix tree is a specialized suffix trie in the sense that can be seen as
the compacted version of the aforementioned Suffix Trie, which requires only linear

space w.r.t. |D|.

“Suffix tree STree(T) of T is a data structure that represents STrie(T')
in space linear in the length |T'| of T. This is achieved by representing
only a subset Q' U {1}"?

8see, for example, Wikipedia [26]

compare Wikipedia [28]

19Gerdjikov et al. [10], Definition 2.3
Heompare Gerdjikov et al. [10], Definition 2.4
12Ukkonen [23], p. 6

17

Note that the additional state L is a special “bottom state” that makes the con-

struction easier:

“Auxiliary state | allows us to write the algorithms in the sequel such
that an explicit distinction between the empty and the nonempty suf-
fixes (or, between root and the other states) can be avoided. State L is
connected to the trie by g(L,a) = root for every a € 3. We leave f(L)

undefined”

(Compare [23, pp. 3]. Read ¢ for g and “Suffix Link” sl for f).

Compacted Automaton. A compacted automaton represents a compacted version of
a “standard” automaton. The accepted language remains identical, but the com-
pacted automaton features a smaller set of states compared to its counterpart. This
is achieved by removing explicit states of “out-degree 1” making them implicit and

introducing a generalized transition function.

Compare the compacted Suffix Tree of figure 5 on page 27 with the Suffix Trie of
figure 2 on page 10 to get the idea behind the compaction — keep in mind the latter
automaton additionally represents the suffixes of the word cola, but still, the side-
by-side comparison should make the point of compaction clear. Figure 4 on page 25

gives an overview of the relationships of the different types of automata.

Minimized Automaton. A minimized automaton is a deterministic finite state au-
tomaton with the least possible states. A deterministic automaton is minimized by
identifying non-distinguishable states through their right-language and by removing
all states that are non-reachable or “trap states” (states from which there is no es-
cape). Compare the minimized equivalent automaton of figure 17 on page 38 with
the compacted automaton of figure 5 on page 27. Figure 4 on page 25 gives overview
of the relationships of the different types of automata. The definitions needed for

the minimized automaton are as follows.

Right-language. Two states can be considered non-distinguishable when their right-
language is identical. The right-language of two states is identical when both states
have the same “finality” (both are final states or both are non-final states), the same
amount of transitions, all transitions have the same symbols, and the same needs to

hold true for all states that are reachable from this pair of states.

_)
The right language L of state ¢ is given by (using a generalized transition function

A

9)

L(g) = {w e = | 3(g,w) € F}

18

Recursively defined (with a unique solution) it is:

{e} ifgqeF

® otherwise

L(g) = {dL(5(q,)) | a € S A S(g,a) # L} U {

Compare these definitions with [7].

Reachability. The next property needed for the minimal automaton is the property
of all states being reachable from the root state (cf. [7]):

Reachable(A) := vquaweZ*(S(qm w) = q)

Minimalitity. A deterministic finite state automaton A is defined as minimal, if:
_>
Minimal(A) == (Vg qpeqla # ¢ = f(q) # L(q'))) N Reachable(A)

Thus, all states of the automaton are reachable and no two non-distinguishable

states p and p’ exist for which the right language is the same.

Compare these definitions with [7].

Explicit state. A branching state, i.e. a state from which there are at least two
13

outgoing transitions.
Implicit state. The term “implicit state” refers to a position on a compacted edge
in a deterministic automaton. It is only an intuitive helper but does not actually
exist as a dedicated state in the automaton. It is generally referred to using a tuple
(root,c, 1), indicating that the point referred to is the point reachable from the
(explicit) root state, following the transition beginning with letter ¢ just after the
first letter.

One could say that an implicit state is a (fictional) state from which there is only

one outgoing transition, a “state of out-degree 1714

Equivalence class. When building equivalence classes, one builds a partition over
a set X in which several specific elements z, z’ are considered “equivalent” to each
other with respect to the equivalence relation R. In our case we build the equivalence
classes w.r.t. to the equivalence relations £, = and = to gain the equivalence
classes m, m and m The special signs # and $ found throughout this work are
classic boundary helper symbols in the theory of finite state automata. They are
not part of the Alphabet X and, in the following, will be left out where presentative

purposes allow to do so. Otherwise, they are considered inherent.

13compare Ukkonen [23], pp. 6

Hcompare Ukkonen [23], p. 7

19

Example of equivalence classes. The equivalence classes that will be built and used
in this work will be represented by the states in the minimized automata. For
example, the equivalence classes of the automaton of figure 3 on page 12 consist of:
0 = {e},1 = {co,0},2 = {cocoa, ocoa,oa,a},3 = {cola,ola,la},4 = {a} with the

reason being the definition of equivalence w.r.t. &:

Two suffixes are considered part of the same equivalence class, when their set of end-
positions are equal, which for instance, can easily be seen in the equivalence class
3 = {cola,ola,la}. All these suffixes have the same set of end-positions, whereas the
suffix e is in an equivalence class of its own, since its set of end-positions contains

both: the end-position in cocoa and the end-position in cola.

For the mathematically sound definitions, please compare [10, Definitions 5.1 and
5.2 and pp. 14-19].

Canonical representative. The canonical representative of an equivalence class as
built in the previous example simply is the longest member of the class. That is, the
canonical representatives concerning the classes given above are: 0 =¢,1 = co,2 =
cocoa,3 = cola,4 = a. For the mathematically sound definitions, please compare
[10, Proposition 5.3 and p. 14] or [16, Definition 3].

DAWG. For a definition of the Directed Acyclic Word Graph compare, e.g. [10,
Definition 5.8].

CDAWG. Please find the definition for the Compacted Directed Acyclic Word Graph
in section “5.1 Definition of the CDAWG” on page 38 of this work or consult [10,
Definition 5.9].

SCDAWG. Please find the definition for the Symmetric Compacted Directed Acyclic
Word Graph, the SCDAWG, in section “6.1 Definition of the SCDAWG” on page 46
of this work or confer to [10, Definition 5.10].

Inverted file. Also referred to as “inverted index” — “an index data structure storing
a mapping from content, such as words or numbers, to its locations in a database

915

file, or in a document or a set of documents”*°. The purpose of an inverted index is

to allow fast full text searches.
3.2 Indexing all subparts of a text

In order to obtain a symmetric index structure suitable to incorporate all subparts,

i.e. infizes of a given set of texts Inf(B) (as opposed to all infixes of a given set

15¢f. Wikipedia [25] for an overview and for a tighter definition: Blumer et al. [3], “Abstract”

and “Introduction”

20

of words, as found in a dictionary D) and giving suggestions in the search/lookup-
phase in both directions, one needs to build a Finite State Automaton in form of a
Symmetric Compacted Directed Acyclic Word Graph (SCDAWG).

The SCDAWG index structure’s language symmetrically incorporates all unique in-
fixes of a set of texts Inf(B), such that the states represent the infixes as equivalence
classes w.r.t. = . This way, both directions are covered by indexing the set of all
suffixes of the natural left-to-right (LTR) reading direction Suf(B) as well as the set
of all suffixes of the right-to-left (RTL) direction Suf(B"V) followed by a bijection

function identifying identical states in both these sets.

The index structure can be queried for a pattern p — to finally point the user to
the respective locations of the pattern, one needs to additionally save “inverted file”
information attached to the states corresponding to the offsets of the pattern in the
set of text files.

3.2.1 General Overview of Indexing Steps

On the construction-side, the general steps to be taken can essentially be broken

down to the following:

(1) Construct a suitable one-directional index structure in the natural left-to-right
(LTR) reading direction for the set of suffixes Suf(B)

(2) Construct a suitable one-directional index structure in the opposite right-to-left
(RTL) direction for the set of suffixes Suf(B"")

(3) Compact and minimize both these automata
(4) Identify the equivalent states of both automata

(5) Attach additional “inverted file” information to one of the underlying automata
(naturally most likely the LTR directed automaton, although it is irrelevant

which automaton is chosen)

As far as the user interface side is concerned, to be able to give suggestions in both
directions, one will need to
(1) Carry out reading in the current pattern p

(2) user will accept (deterministic) suggestions to the left (!) and to the right of

the current pattern or type more parts of her pattern
(3) (recursively follow steps (1) and (2) until user chooses specific match)

(4) point user to all pieces of text where pattern p occurs

21

Additional points regarding the construction. On the construction side, the separate
automata generated in steps (1) and (2) will best be constructed in a compacted

manner directly by using an on-line algorithm.

Inenaga et al. ([16]) give a nice description how to perform a so-called on-line con-
struction to obtain the Compacted Directed Acyclic Word Graph (CDAWG) directly

based on ideas of Ukkonen’s on-line algorithm.

Make sure to check Ukkonen’s description ([23]) of the direct construction of suffix
trees and the section “Ukkonen’s algorithm”. Ukkonen gives a nice description of
his Suffix Tree construction algorithm that will make understanding the Inenaga

algorithm a lot easier.

For the CDAWG construction algorithm check the description in [16] and the section
“The Inenaga algorithm for CDAWGs”. The algorithm proposed by Inenaga et al.
proves to be interesting in that it constructs the smallest automaton possible directly
using key ideas that were presented by Ukkonen’s direct Suffix Tree construction

algorithm.

With step (3) covered, step (4), the identification of equivalent states, will use the
algorithm described by Schulz, Mihov et al. ([10]).

It is fascinating and interesting to note already here, that both automata, the LTR-
Compacted Directed Acyclic Word Graph (gained from step (1)), and the RTL-
Compacted Directed Acyclic Word Graph (gained from step (2)) which are now
combined to form the SymmetriccCDAWG, the SCDAWG, have the nice property
of having the same set of identifiable states — even though they individually indexed
Suf(B) and Suf(B") respectively.

Finally, for step (5), Blumer & Blumer’s idea of attaching “inverted file”-information
to the automaton’s states (compare [3] and [2]) is used and applied to the symmetric

structure obtained through the previous steps.

Also interesting to note in this place already is, that all of these automaton con-
struction steps described can be carried out in linear time and space w.r.t. to the
length of the input string(s) (or document(s)) and, as was mentioned before, the

resulting automaton will be the smallest automaton possible (compare with [3] and
[10]).
Especially in a case where all factors, i.e. supersets over a text base I3 are indexed,

e.g. for the complete works of an author or the complete set of a newspaper’s articles

from a range of several years are to be indexed, these are very desirable properties.

22

3.3 Comparison and highlights of the index structures used in the following

As was mentioned before, the different index structures can be characterized by their

different properties and, by this, are suitable for different tasks.
3.3.1 Properties
For our task at hand, and following the comparison of index structures in [16, p. 4],

we will add to it the SCDAWG structure with the following properties:

e construction on-line and directly — i.e. without the need to rebuild the whole
structure when a new set of texts is added and with the structure being readily

constructed up to the current point at all times.
e in linear time and space

o for multi-strings (in this case “running text” from the text base B as opposed

to a dictionary D)

o with additional inverted file information (pointing to all occurrences of the

pattern p in the text data base B).

3.3.2 Suffix Tree

The suffix tree construction for Suf(B) as described by [23] has the following prop-

erties:
Property Ukkonen SuffixTree
on-line construction v
construction in linear-time v
linear-space consumption v
smallest possible automaton X
symmetric structure X

Table 3: Comparison of properties of Ukkonen’s Suffix Tree construction

3.3.3 CDAWG

The description of the CDAWG follows [16]. The CDAWG described by Inenaga et
al. for Suf(B) has the following properties:

23

Property CDAWG

on-line construction v
construction in linear-time v
linear-space consumption v
smallest possible automaton v
symmetric structure X

Table 4: Comparison of properties of Inenaga et al’s CDAWG construc-

tion

3.3.4 SCDAWG
The full algorithm for the direct construction of an SCDAWG as described in this
work was first presented in [10], following [17].

Essentially, this algorithm fills the gap of the outline to a symmetric structure which

was given in [17] as a sketch!C.

The indexed factors are Inf(B) . Additionally, inverted file information will be

added to the resulting structure.

Property SCDAWG

on-line construction

construction in linear-time

linear-space consumption v
smallest possible automaton v
symmetric structure v

Table 5: Comparison of properties of Schulz / Mihov et al’s SCDAWG

construction

3.3.5 Graphical Overview of structure relationships

The graph in figure 4 on the following page illustrates the relationships between the
Suffix Trie, Suffix Tree, DAWG and CDAWG structures, check [16, p. 3] for a more

detailed account of the relationships.

16compare Gerdjikov et al. [10], p. 17

24

Suffix Tree

Suffix Trie

minimizatid .
eOmMpaction

Figure 4: Graphical overview of structure relationships

25

4 Indexing all subparts of a text directly

As was pointed out briefly in section “General Overview of Indexing Steps”, ulti-
mately, to arrive at a symmetric index structure which represents all infixes Inf(B)
of a set of texts, in a first step, two independent one-directed Automata are used
to form, in a consecutive second step, the Symmetric Compacted Directed Acyclic
Word Graph Automaton, referred to as the “SCDAWG”.

The steps involved in indexing all infixes of a text are based on indexing all suffizes
(i.e. “factors”) of a text — one each for both reading directions LTR and RTL -, fol-
lowed by an identification step afterwards (refer to sections “Building the SCDAWG”

and “Algorithm for the bijection” respectively for this identification step).

As was mentioned in section “General Overview of Indexing Steps”, Inenaga et
al. ([16]) give an on-line algorithm for obtaining a (one-directed) CDAWG index
structure directly, based on Ukkonen’s on-line algorithm used for the construction

of another related index structure, the Suffiz Tree.

Since Inenaga’s algorithm works so closely with the ideas of Ukonnen’s algorithm, we
will describe Ukkonen’s algorithm first and progress on to describing the CDAWG

construction algorithm.

Keep in mind, at the end, two such Inenaga-CDAWGs will be combined to form
the Symmetric CDAWG, the SCDAWG - find an illustration of the SCDAWG’s
structure in figure 25 on page 47 and an example SCDAWG automaton in figure 26

on page 48.
4.1 Indexing all suffixes

The suffixes of a word are denoted by Suf(w).

Imagine you had the word cocoa, then, the set of suffixes Suf(cocoa) to be indexed

would consist of:

COCoOa
OCoOa
Coa

Ooa

The easiest and most straight-forward structure to represent this language'’, is a

suffix tree / suffix trie that has all these suffixes added to its structure.

17¢f. the definition of a regular language in the definitions section

26

As can be told from figure 5, this automaton accepts, as its language, exactly this
same set of suffixes. For instance, to recognize the suffix coa, it could go to state &
from the start state and from there go on to state 4, by which the suffix is accepted.
Similarly the same holds for the suffix ocoa: The automaton would simply progress
along the path (State 0 — State 5 — State 2).

Also obvious in this sense should be that, for instance, a suffix ox would not lead to
a successful recognition. From one perspective, simply because it is not part of the
language L that this automaton is a representation of. From another perspective
the alleged suffix cannot be recognized, because there is no transition to be taken
for the letter x after having progressed with letter o to state 5. In other words again,

simply the alleged suffix oz is not part of the set Suf(cocoa).

Figure 5: Suffix Tree for L = {cocoa, ocoa, coa, oa,a}

4.2 Ukkonen's algorithm

What Ukkonen’s algorithm achieves is to build the suffix tree index structure in
linear-time and directly, and, additionally, as far as the understanding of the algo-

rithm itself is concerned, it does this in a more “natural” left-to-right direction.

Ukkonen’s algorithm is a successor to Weiner’s method [24] that proceeds right-to-
left and adds the suffixes to the structure in increasing order of their length and also
to McCreight’s algorithm [18], that adds the suffixes to the tree in decreasing order
of their length.'® Both, Weiner’s and McCreight’s algorithm, do not have the online-
ness-property.'? Essentially this means that all words that are to be added need to
be known beforehand. Make sure to confer to [11] for an in-depth comparison of

similarities and differences between these three Suffix Tree Construction algorithms.

18
19

compare Ukkonen [23], p. 2
compare Inenaga et al. [16], p. 4 and the Glossary section in the Appendix

27

Although all of Ukkonen’s, Weiner’s and McCreight’s construction algorithms ulti-
mately build one and the same structure, Ukkonen’s algorithm tries to give a more
“natural” idea by processing the string symbol by symbol from left to right while

having the current tree readily available at any time during the construction.

Ukkonen’s key idea is to obtain all suffixes of a string 7" by concatenating ¢; to the

end of each suffix of 7?~! and by adding an empty suffix*’:
suffiz(T?) = suffiz(THt; U {e}
The essential “key” tricks used in Ukkonen's algorithm are:
e the “active point”, keeping track of the location where the next insertion will
have to be made from

e a counter called “remainder”, keeping track of the remaining suffixes that need

insertion at a later step
« implicit states, i.e. “states of out-degree one”?!
« symbol by symbol adding of suffixes (see above)
o suffix links, as known from the Aho-Corasick algorithm ([1])

e open edges — as defined below

o data and pointers into data: “data” is one long string of the original text base

B. Transitions are merely pointers to these memory locations

o edges once created will not “move” again, rather, they will only be split (and
thus make the tree structure “finer grained”). Leaf nodes always stay leaf

nodes and keep to the rule “once a leaf, always a leaf”.

4.2.1 Suffix Tree construction

What follows, is a hands-on presentation of this algorithm with illustrations to give
a better understanding of each of the steps taken in the construction.’? Please refer
to [23] for the exact details and pseudo code — the approach taken here is to give an

intuitive understanding of the steps taken in the construction.

20Ukkonen [23], p. 5
2Lecompare Definitions
2Zinspired by the excellent answer to the question “Ukkonen’s suffix tree algorithm in plain En-

glish?” on http://stackoverflow.com by “jogojapan”, see: stackoverflow/jogojapan [22]

28

http://stackoverflow.com

Adding cocoa Step 1, adding letter ¢ from position 1 of the input string cocoa.

In the first step, the first symbol is added to the structure, in this case, letter ¢

(compare figures 6 and figure 7), beginning from the root state 0.

Since this is the first step, in the structure, no transition with c is present from the
root state, and thus, a new edge from the root state is created to a newly formed

“sink state”, state 1.

By using open edges and, by this, pointers into the text, it is not exactly the letter c,
that is added, but merely two pointers saying [1, #], meaning that this edge covers
the string from position 1 in data to the (open) end #. Currently, since we are in

step 1, the open edge represented by # is # = 1.

Although, up to this point, only the letter ¢ of cocoa was added, effectively, still the
“rest” of the word is, so-to-say, already present in the structure implicitly: an open
edge represents the whole rest of the word up to the current point. Ultimately, the
current point will move to the last position of T, t7, i.e. the whole word will get

added and the open edge # will be pushed and increased to |T]|.

The open edge based representation of the current structure is illustrated by figure 6:

Figure 6: Suffix Tree construction step for L = {c(ocoa)} (in open edge representa-

tion)

Effectively, the current stage in “string representation” (i.e. with “interpreted edges”)
is illustrated by figure 7 (the ocoa-part in parentheses represents the implicitly-

available parts that will ultimately be added by extending the open edge step by
step):

4’@ c(ocoa) 1

Figure 7: Suffix Tree construction step for L = {c(ocoa)}

29

Adding ocoa Step 2, adding letter o from position 2 of the input string cocoa.

In the next step of the algorithm, depicted by figure 8, the next letter o is added,
and thus, through open edge representation, the suffixes up to the current point ¢;,

o(coa) and co(coa) are added to the structure.

Since there is no transition that starts with letter o from the root state 0 (to which
the algorithm brought us back to in the previous step) which could be followed, a

new transition [2, #] is created, that points to a newly created state, state 2.

Again, the two different representations are presented by figures 8 and 9.

[1.4# 1

2

Figure 8: Suffix Tree construction step for L = {co(coa),o(coa)} (in open edge

representation)

Note that in step 2, the edge 0 — 1 is automatically extended to represent co instead

of ¢ by virtue of open edges, i.e. by setting the current open edge boundary marker

= 2.

Co 1
(.

2

Figure 9: Suffix Tree construction step for L = {co(coa), o(coa)}

Adding coa Step 3, adding letter ¢ from position 3 of the input string cocoa.

In the third step, a new phenomenon occurs: Again, starting from the root state,
letter ¢ is to be added to the structure. Now, that a transition with c already exists

from the root state, several different steps from the ones seen before happen:

o we will not create a duplicate transition, but rather, remember that we were
to add the suffix coa to the tree

30

o instead of creating such a new (open) edge for the letter ¢, we follow the already
existing transition and thus move forward to the position right after the letter

¢ in our current structure to an implicit state

e since this implicit state carries no state identification number of its own, we
refer to the position that the next insertion will have to happen from by using
the tuple (root,c,1). This is actually moving the active point away from the

root state where it used to be in the previous steps.

Again, to remember that we were to add the suffix coa and the current point from
where the next insertion will have to happen from, we make use of the active point:
by setting it to the tuple (root,c, 1), we to refer to this implicit state. In the next
step t; the check whether there already exists a transition with the letter to be added

will be carried out from this (implicit) state.

The tuple (root, ¢, 1) specifically points to the position starting from root, with letter

¢, at the position just-past position 1 on that edge.

The variable remainder, which used to be 1 in all previous cases (but was not
mentioned yet) is increased to 2, since we did not really insert anything in this step,
but rather only moved the active point and have one more remaining factor left to

insert in one of the next steps.

That is, the insertion of the suffix coa is not carried out directly at this point but
postponed to a later step. Rather than inserting anything in this step, pieces of
information are saved for a later step, by moving the active point and increasing the

counter remainder.

As was done in the previous steps however, the value of the open edge pointer # is

set to 3, giving us the following picture representation (figure 10):

C
° o °

Figure 10: Suffix Tree construction step for L = {coc(oa),oc(oa)}. Factor c(oa)
remaining to be inserted in a later step, the active point on implicit state (root,c, 1)
is represented by the dot.

31

Adding oa Step 4, adding letter o from position 4 of the input string.

This time, after having moved the active point to the position (root,c, 1), we start
the regular insertion process from this implicit state, rather than from root (as we

have done before, without knowledge about the active point at that time).

Again, similar to the previous step, we see that there is no edge to be added, because

there already is an edge that starts with o from the active point (root,c,1).

As before, we carry out several steps to be able to add the suffix oa at a later time:

e we move the active point tge position just past the letter that already exists

from the current node, (root, ¢, 2)

e increment remainder to the value of 3

— to remember that we were about to add a factor of our input string, but

did not actually carry out the insertion

— because a transition with the letter to be added already existed (the
fourth letter o of our input string and thus the suffix oa of our input

string).

e Again, the open edge pointer is extended to represent the current construction

process — we arrive at the current structure as represented by figure 11.

Figure 11: Suffix Tree construction step for L = {coco(a),oco(a)} (with factors

co(a), o(a) remaining)

Adding a Step 5, adding letter a from position 5 of the input string cocoa.

In the final position, the suffix a needs to be added and by this, the final letter a

needs insertion to the structure.

This last step indeed is an interesting step: Again, we are adding the letter starting

from the current active point, which is, resulting from the previous step (root, ¢, 2),

32

and our remainder is still at &, which means that the suffixes that are waiting to be

added are coa, oa, and now, a.

Ultimately, since this is the last step, we will have to add all of the remaining suffixes
that had been postponed to a later step to the structure (oa, and coa) at some point

before leaving the construction phase.

First, like in all previous steps, we increase the boundary of the open edge, making

the structure look as depicted by figure 12:

co
° 0Coa Q

Figure 12: Suffix Tree construction step 1 for L = {cocoa, ocoa}

Next, we check if there already exists a transition with letter a from the active point.

There is none, so a can be added directly at this point.

However, since our active point is placed on an implicit state, we need to split the
edge first before adding a new transition and thus have to make this implicit state
an explicit state (remember, explicit states are states with more than one outgoing

edge).

In this sense, the implicit state where the active point is located, is split (made
explicit) and a new transition with letter a is appended to this newly formed state

(state &), pointing to another newly created state, state 4.
Compare the current situation of the structure with figure 13 on the following page.

Now that we have added coa as one of the remaining suffixes and extended the open
edges by setting # to the value 5 — and thus extended all existing edges in only
one step to represent cocoa, ocoa and coa respectively — we still need to add the

remaining suffixes oa and a.

In the step that we have just carried out — adding coa — we decrement the remainder
counter to a value of 2 and move the active point to the next position where the
adding of the remaining suffixes will have to start from. In this case, the next

remaining suffix to be added is oa.

The rule for a situation like this is the following: If there is a suffiz link pointing

out from the node we have done the split and the insertion of a new edge from,

33

Figure 13: Suffix Tree construction step 2 for L = {cocoa, ocoa,coa}. Suffixes oa

and a waiting for insertion

we follow this suffix link. If there is no such suffix link from the current point, the

active node is set back to root.

Although suffiz links have been mentioned before in the characteristics section of

the Ukkonen algorithm, only now do we first encounter them.

Suffiz links are another key point of Ukkonen’s algorithm and are very suitable for
something that could be described as a sort of “backtracking” into the remaining

suffixes to be added from our stack of remaining suffixes®’.

The concept of suffix links is very useful and the rule for suffix links can be summed

up like the following [compare [22], and figure 14 on the next page]:

“If we split an edge and insert a new node, and if that is not the first
node created during the current step, we connect the previously inserted

node and the new node through a special pointer, a suffix link.” (][22])

In our case at hand, we are still in step 5, and this is our first split and insertion of

a new node — so no suffix link had been created before or gets created at this point.

Instead, as a rule, on the first split, the active node is reset to root and follows the
first transition found from there, of the next suffix we want to insert — if there is one

such transition to follow.

Since in this current case the suffix to be inserted next from our stack of remaining
suffixes is oa, the active node is set to (root,o0,1) — compare with figure 14 on the

following page to see the current location of the active point (indicated by the dot).

From here, again an implicit state, we can split the edge, make the active point

an explicit node (state 5), and insert a new transition with the letter a of our suffix

Z3also referred to as “failure transitions” in [11] and [17]. Also see the algorithm by [1] and its use

of suffix-links in the Unix-classic fgrep program.

34

Figure 14: Suffix Tree construction step 3 for L = {cocoa, ocoa, coa}

to add, oa to another newly formed state, state 6, just as we have done previously

for the suffix coa. Figure 15 illustrates this step.

Conversely to the previous split however, since this is our second split in the
current step 5, we have to insert a suffix link from the previously created node that
was created during a split to the newly created node (compare with the rule above).

Thus, our structure looks like the following (figure 15):

Figure 15: Suffix Tree construction step 4 for L = {cocoa, ocoa, coa, oa}

If there was a suffix link from the current point of insertion, we would have to follow
it and set the active point to it. Since this is not the case, for the last remaining
suffix a, we will set the active point back to the root node, and, from there, since no
transition starting with a exists, we will create a new transition to a newly created

state, state 7.

Finally, the resulting structure looks like the structure represented by figure 16 on

the next page and the algorithm is finished with the construction.

35

Figure 16: Suffix Tree construction step 5 for L = {cocoa, ocoa, coa, oa, a}

The points to keep in mind are:

e The moving of the active node across the structure

e The updating of the open edges by setting # to the current point of insertion

and how it can guarantee the linear time complexity of the algorithm.

e the pointers into data and how it helps to guarantee the linear space complexity
of the algorithm

o How the “once a leaf node, always a leaf node”-rule applies: merely does the
tree structure get finer grained but transitions to leaf nodes that have existed
will be kept as they are — only splits may occur and leaf nodes once created

will stay untouched.

4.2.2 More resources

For descriptions from other perspectives, please confer to these excellent resources,
linked to in the bibliography, which are: Ukkonen’s own account of the algorithm in
[23] and two further online resources, which give more perspectives on this beautiful
algorithm: [22] and [20].

36

5 Building the smallest automaton possible

As the table “Progression of index structures” has pointed out, we will next cover
the construction of the CDAWG structure. What we have seen so far was how to
reduce the automaton size by building a Suffix Tree instead of a Suffix Trie to index

all suffixes of a text.

Compare figures 2 on page 10 and 3 on page 12 to see the reduction in states and
transitions needed to represent the same language through two different-sized — but,

nevertheless w.r.t. to the language represented, equivalent automata.

In this section we will further reduce the Suffix Tree as seen in the previous chapter
to a CDAWG-automaton which is the smallest automaton possible for the same

language L.

Looking at the suffix tree’s graph of figure 5 on page 27, two important things can
be noted:

a) to further reduce the automaton’s size to obtain the smallest automaton pos-
sible, some states could be “folded”, “merged” together to save space without
changing the language L of the automaton: for instance, some states having
transitions ending in ¢ and coa in the graph 5 on page 27 could be summed up
and be represented through one single state only, since their right-language*
is the same to form the equivalent automaton of figure 17 on the following

page. Effectively, this means a converging, a “sharing” of common suffizes.

b) compared to the Suffix Trie of figure 2 on page 10, some states can be saved
by making transitions hold multi-letter units instead of single letters and thus
making some states implicit. In figure 5 on page 27 this was already taken

care for through Ukkonen’s algorithm for the language L = {Suf(cocoa)}.

It is important to note, that what step a) involves is a minimization, and what step

b) accomplishes is a compaction.

Consequently, the tree depicted in figure 5 on page 27 already is a compacted au-

tomaton.

The minimized and compacted version of said trie is the so called CDAWG structure

and looks like the automaton shown in figure 17 on the following page.

The minimization and compaction of the suffix trie is what makes the CDAWG, the
compacted directed acyclic word graph. The language of all three types of structures
is the same and thus the automata are equivalent in terms of the language they

represent.

24¢f. the definition of right-language in the Definitions section.

37

Figure 17: CDAWG for L = {cocoa, ocoa, coa, oa,a}

Now, to obtain a CDAWG structure from a suffix tree, two obvious ways will form

viable paths:

a) First minimizing and then compacting the suffix trie

b) first compacting and then minimizing the suffix trie.

Inenaga et al. ([16, p. 3]) give a nice illustration of these relationships concerning the
transformations between the structures — figure 4 on page 25 gives a small example

illustration of the same figure.

Finally, in order to keep space requirements linear at all times and not having to
construct a potentially quadratic size structure during construction time, Inenaga
et al. ([16]) present an on-line, direct algorithm to arrive at the CDAWG structure

directly, i.e. without the need for any such intermediate structures.
5.1 Definition of the CDAWG

The CDAWG automaton is the same as defined in [2], [16] and [10] as the tuple
P
C(#D$) := (Qz Sys. I, 0, Fiz), where

. Qﬁ is the set of all equivalence classes [V] w.r.t. <,

o the start state is H €@z,

o the (partial) transition function 05 1 Qg X E;;SB — Q4 is defined for a string
of the form oU(c € Yy, U € Xiq) iff X oo = X 0oU. The value is
S
5((X],0U) = [X 0]

o the set of final states is F = {fﬁ \ m N#D$ # 0}.

Compare these definitions here with [10, p. 16] and [2].

38

5.2 The Inenaga algorithm for CDAWGs

The main difference between Inenaga et al. ([16]) and Crochemore’s algorithm ([6])

is the property of on-line-ness, i.e.

a) the strings / set of strings does not need to be known beforehand
b) the structure is readily constructed up to the current point at all times

c¢) in the case of updating the structure with a new suffix or a new string that
was not known / had not been known beforehand, there is no need to rebuild
the whole structure from scratch (cf. [16, p. 33]).

The main difference of Inenaga et al’s algorithm to Blumer et al’s algorithm ([3])
is, that Inenaga et al. ([16]) build the CDAWG directly, i.e. without the need of
an intermediate DAWG structure that is, only in a second step, shrinked down to
a CDAWG by eliminating all out-degree-one nodes from it?°. The point here is,
that, in order to build a space and time economical structure (take the case of
combinatorial algorithms on DNA with a huge set of factors) it sometimes is strictly
not possible to build a quadratic-size in-between structure to finally obtain from it

the desired structure by compacting and minimizing it only in a second step.

The construction algorithm proposed by Inenaga et al. is very similar to Ukkonen’s

algorithm and draws its main characteristics and ideas from there.

The CDAWG structure is a more space-efficient structure than the DAWG?%, and
represents the smallest automaton possible in terms of states and edges®” — in this
case for all suffixes Suf(B) of the input text base 5.

For an overview of the properties of the CDAWG structure please refer back to the

tables found in the section “Properties”.

In this section, I will present the key ideas and modifications of the Inenaga et al.
algorithm ([16]) to Ukkonen’s Suffix Tree algorithm and give a walk-through of the
Inenaga CDAWG construction algorithm’s basic ideas. We will use this type of
CDAWG construction to serve our final goal, building a symmetric index structure
for a set of texts. For a more detailed and the technical elaboration of the CDAWG

construction algorithm, please consult the original paper [16].

25 compare Inenaga et al. [16], pp. 31

26compare Inenaga et al. [16], p. 2
*Tcompare Crochemore [5]

39

The key ideas to this algorithm are

« all edges of an input word lead to the same sink state

e merging equivalent factors in the construction by building equivalence classes

(compare [3])
e to this aim, during construction, edges might need redirection

e at times, edges might need separation

What Inenaga et al. draw from Ukkonen are the general ideas of the construction
process, i.e. a) building the structure letter by letter, left to right, directly, and
on-line. As was shown before, this makes it possible for the structure to represent
at all times the current stage of adding factors. Along with it, b) the idea of open
edges and pointers into the one place only where the whole string is stored (“data”),
¢) the idea of suffix links and, finally, d) the active point are also kept as base for
the algorithm. Conversely however, one and only one sink state per document will
be added to the structure.

5.2.1 Construction example

In this section I would like to present a casual, lightweight walk-through of the
Inenaga algorithm. Please consult [16] for deeper technical details and the formal
description of the algorithm. The description here is intended to present a nice entry
point for readers coming to the subject, showing how to arrive at the structure as

shown in figure 17 on page 38.

The example will, as did the example for Ukkonen’s algorithm in the previous chap-
ter, add the word cocoa to the structure. Having the word cocoa as input is a very
suitable example for it is short enough to walk through the entire example and it
additionally has the nice property of having the repeated substring co. This example
word will show us again how the adding of particular suffixes can be postponed and

how the active point is moving during the construction phase.

Step 1 Adding the first letter ¢ of the input cocoa.

As was already mentioned, the CDAWG structure has exactly one sink state per
input string. Since we are adding the first letter of our string, we have to construct
this sink state first and subsequently direct all edges of the current input document
to 1t.

In a first step, we create an open edge (as with Ukkonen) from the start state to this
newly formed sink state, and obtain the structure as depicted by figure 18 on the next
page (as with Ukkonen, the additional “bottom state” is left out for presentiveness

purposes, as well as the special delimiters # and $).

40

ORSN

Figure 18: CDAWG construction step for L = {¢(ocoa)}

Step 2 Adding the second letter o (and thus the suffixes up to the current point,

co and o)

In the second step, the suffix o, and by this, the suffixes of the current point co and
o are added to the structure. Now, since we have one sink state only, the newly
created edge is directed to the sink state for this string, i.e (root, o, sink) — compare
with figure 19.

As in Ukkonen’s algorithm, the open edge c is extended to co, i.e. by setting the
open edge marker # = 1 to # := 2. Again, as before, extending all existing edges

at once by only one operation can guarantee linear time construction.

. () .

Figure 19: CDAWG construction step for L = {co(coa), o(coa)}

Step 3 Adding the third letter ¢ and moving the active point.

In step 3, while adding the third letter ¢ in order to add the factors coc, oc, c,
another phenomenon occurs that is already familiar from Ukkonen’s algorithm: since
a transition with c already exists from the root node — which we have returned to
in the previous steps without explicit mention — instead of creating another node

beginning with same letter, the active point is moved.

It is worth noting that the active point represents the current LRS, the longest re-
peated suffiz of the structure. In this case here, the longest repeated suffix up to the
current point is ¢. The active node is moved to the (implicit) position (root,c, 1),
i.e. the position just past the first letter on the edge that starts with letter c¢. Fig-

ure 20 on the next page gives an illustration.

41

aCEOCI

Figure 20: CDAWG construction step for L = {coc(oa), oc(oa)} with the factor ¢(oa)

waiting for insertion

Step 4 Adding the fourth letter o and moving the active point again.

This step is similar to step 3 and also known from the description of Ukkonen’s
algorithm. Again, as in every step, the open edges are automatically extended,
and, since there already exists a transition with the current letter o from the current
active point where the next insertion would be made from, we move this active point

(root,c,1) to (root,c,2) and increase counter remainder := 2.

Note that we obtain a new longest repeated suffix (LRS) co by doing so — figure 21

gives an illustration.
a Cco M (&{¢] I

Figure 21: CDAWG construction step for L = {coco(a), oco(a)} — factors up to the

current point, co(a), o(a) postponed

Step 5 Adding the final letter a of string cocoa.
This final step is an interesting step and will have a few sub-steps.

To begin with, as in every step, all existing open edges are extended to represent
the current stage of adding suffixes (compare figure 22 on the next page). The
active point is on (root, ¢,2) and the counter remainder is currently set to 3, for the

currently remaining suffixes are coa, oa and a.

Next, it is checked, whether there is a transition with a from the current point, the
active point (root,c,2). Since there is none, a transition with that letter needs to be
created — remember, in this algorithm, it will be directed to the dedicated sink state
for the current document. As with Ukkonen, since the current point is an implicit
state, it needs to be made explicit (or, seen from another perspective the current
implicit state is made ezplicit by raising its out-degree > 1); consult figure 23 on the

following page.

42

a co M coa H

Figure 22: CDAWG construction step 1 for L = {cocoa, ocoa}. Suffixes coa, oa, and

a left for insertion

With this step accomplished, we have made the remaining suffix coa part of the au-
tomaton. The counter remainder gets decremented to remainder := 2, the suffixes

remaining to be inserted are oa and a.

Figure 23: CDAWG construction step 2 for L = {cocoa, ocoa, coa}. Suffixes oa, a

left for insertion

As for the suffix link, remember that with Ukkonen, it was said that no suffiz link
needs to be set to another state on the first split. However, in this case here we

need to set this suffiz link (why this is the case will be clear in a minute).

Additionally, since this was the first split in this step, the new current active point
is set back to root for now. From there, since oa is the next suffix waiting to be

inserted, the active point is moved to (root,o,1) (also represented in figure 23).

As is already known from Ukkonen’s algorithm, the implicit state where the next
insertion will have to happen from (indicated by the active point), would be split
and a new transition with letter a of the suffix oa would be created from this newly

created state 3 — and directed to the sink state for this word.
However, in this algorithm this case is handled differently:

Since the resulting automaton is supposed to be the smallest possible (“minimized”)
automaton, built in a direct-construction algorithm, the state that would be created
(state 3) would be equal to the already existing state 2 in its right-language. Thus

it is not created at all but rather the edge (root,0,1) is redirected to state 2.

Essentially, one can imagine the creation of a state § with the out-going edges coa

and a, followed by an immediate merge with the already existing state 2, but in fact,

43

no new state needs creation.

Still, since this was the second split — speaking with Ukkonen — a suffix link needs
to be set. However, it cannot be set to the state where the previous split happened:
the previous split had created state 2 — exactly the state which the last edge had
been redirected to. Thus we can use the suffix link that was set before from state 2

to root.

Thus the active point is set back to the root state and a transition with a is cre-
ated from the root state to the dedicated sink state for this “document” and the

construction is finished for all suffixes of the word cocoa (compare figure 24).

Figure 24: CDAWG construction step 4 for L = {cocoa, ocoa, coa, oa, a}

Additional Step 6 The above walkthrough made most of the construction clear.
However, what has not been covered yet is another main addition to Ukkonen’s

algorithm: the separation of nodes.

Imagine we were adding the second word (and all its suffixes of course), cola. As was
shown in the example of equivalence classes in the Definitions section, and as the
automaton in figure 3 on page 12 clearly shows, at some point, the suffix a will be

represented in an equivalence class of its own — state 4 in the example automaton.

Recalling the definition of equivalence classes, it is clear that the suffix a will need
to be in an equivalence class of its own, since it occurs in two different places: as the
last letter of cocoa and as the last letter of cola. Thus, its set of end-positions is not
the same as the (individual) sets of end-positions of the same letter in the respective

words.

What this means in terms of the construction is, that, for the second word cola,
the construction will be carried out similarly to the above example: as the second
document being added to the structure, it will be granted a dedicated sink state and
all edges will be directed towards it. The active node will move in situations where
transitions with the current letter to be added already exist. Finally however, for
the last letter a, a call to the function separate_node (as called by Inenaga et al.)
will happen and state 4 will be created for the new equivalence class that a is part
of.

44

The points to keep in mind are:

e The close similarities to Ukkonen’s algorithm: using pointers into data and
extension of the open edges using the current point boundary #, the moving
of the active node, as well as the order in which the suffixes get added to the

structure.

e The “one dedicated sink state” approach and how the edges of one document
get directed to it

e The use of equivalence classes and how these are represented as states

e The merging and separation of nodes

45

6 Constructing the symmetric automaton

The SCDAWG index structures presented in this work basically build on the classic
Finite State Automata structures and theory as described in chapter “Index Struc-

tures”.
6.1 Definition of the SCDAWG

Instead of being a five-tuple, like the CDAWG, an SCDAWG structure is a siz-tuple
composed of two generalized CDAWG automata, with an additional delta function

68 for extensions “to the left”.

The bidirectional symmetric compact directed acyclic word graph (SC-
DAWG) for #D$ is the tuple ﬁ(#D$) = (Q?,Z;f%, m,&g,ég,ﬂa)
where Q@ = Q<5 = sz and Fg = Fg = Fg

[10, Definition 5.10, p. 16]

Regarding the definition, two details should be noted:

e In our case, the automaton will hold the text base #B$ instead of the dictio-
nary #D$. As such, we will add a seventh element to the tuple definition of
the SCADWG to form a document-indexing SCDAWG, the location-relation
P Qg — posy Bs(g) which maps an equivalence class’ occurrences to the
positions in the text base B. (See “Adding "inverted file” information to the

SCDAWG” for a description of how this information is generated.)

e Again, the special markers # and $ denote that each of the elements of B is
prepended (resp. appended) with # (resp. $) that are not part of the input
alphabet X.

The two composing CDAWG structures are two generalized CDAWG automata as
defined in “Definition of the CDAWG?”.

6.2 SCDAWG structure overview

With the definitions given, the structure of the SCDAWG can be pictured like the

following (compare figure 25 on the following page).
6.3 SCDAWG Example

Figure 26 on page 48 gives an example of an SCDAWG structure for the language
L = {Inf(cocoa),Inf(cola)} with additional boundary markers # and $. The
dashed transitions represent the additional delta function 58 for extensions “to the
left”.

46

SCDAWG
+ LTR-CDAWG
+ RTL-CDAWG

+ Bijection Table

LTR-CDAWG RTL-CDAWG

+ data ‘L + data

+ states + states

Figure 25: SCDAWG structure overview

6.4 Building the SCDAWG

Since the two generalized CDAWG structures which form the SCDAWG are iso-
morphic®®, we need a recursive bijection function that will run in linear time and
identify the equivalent states in the LTR-CDAWG and the RTL-CDAWG. The iso-
morphism of the two underlying structures is guaranteed through the properties of
the equivalence relation with an equivalence relation being reflexive, transitive and
symmetric and thus the states of the two independent structures can be identified

as identical and the structures themselves synchronized.

If we were not to build to CDAWGs independently and afterwards identify the
equivalence classes / states, and instead built the SCDAWG directly, in the worst

case the construction time could be quadratic w.r.t. to the input length n.?’
6.5 Algorithm for the bijection

Synchronization of the two independent, but nonetheless isomorphic CDAWG struc-
tures works by using a bijection function b. The input words are added to the
CDAWGS individually (in LTR and RTL direction). Following this step, every new
state is identified with its “counterpart” in the other structure by the recursive
FindRightState function.

Zcompare Gerdjikov et al. [10], p. 17, Proposition 5.13

again, Gerdjikov et al. [10], p. 13, Proposition 5.13

47

Figure 26: SCDAWG for Lyg = {Inf(cocoa),Inf(cola)}

48

6.5.1 Intuitive description of the algorithm

The algorithm for the bijection works along the following lines:

First, the independent CDAWG structures (created and initialized in lines 2-3 of
function BuildSCDAWG in the pseudo code 27 on the following page) are filled with
the input strings (in forward and reverse order — compare lines 6-7 in the pseudo
code). By this, they create new states (which are consecutive integer numbers, with
the root state being state 0). For each new state, an empty slot in the bijection
table b is created (line 10).

Next, the recursive identification of states is carried out using the recursive Find-
RightState function. Since the adding of new states is stable w.r.t. to the previously

calculated values of b, only the newly added states need identification®’.

The recursive function first descends back to a known identification of two states
using the suffiz links (the bottom of the recursive function is guaranteed through
the identification of the root states of both automata in line 12 of BuildSCDAWG).

From there, the information used to identify two states is the position end(i) in
the concatenated data variable and the length of the canonical representative of this
equivalence class (i.e. of this state) — compare line 6 of the FindRightState function in
the pseudo code. Once the begin of the canonical representative of this equivalence
class in data is known (end—length = j), there must be exactly one transition in the
other respective structure with this letter ¢ at position j in data — which leads to the

state that needs identification in the other structure; see line 7 of FindRightState.

For the proof and mathematically tighter description of the algorithm, please consult
[10, p. 18, Proposition 5.15].

6.5.2 Pseudo-Code
The pseudo code to the intuitive description is given in figure 27 on the next page?!.
6.5.3 Actual implementation

Keep in mind that for the bijection to work, since it builds upon the chain of suffix
links in the tree (which are located in the BuildHelp structure), the identifica-
tion step must be carried in PRE-CLOSED stage (compare section “Implementation

specifics: Staging system” in the sequel).

30compare Gerdjikov et al. [10], p. 18, Proposition 5.15
31 (almost) verbatim from [10, p. 20]

49

© 0 N O Ut ks W N

N N N = o e e = e e s e
N = O © 00 I O Ut i Ww N = O

© 00 N O Ot s W N

BuildSCDAW G(#D$){
Q={0};6=0;F =0;Q ={0};6 = 0; F' = 0;
= (Q’Eﬂ$70757F)§<5/ = (Q',45,0,8, F');b=0;b"! = 0;
for(#W$ € #D3$){
n=1Ql;
AddStringInCDAWG(C , #W$);
AddStringInCDAWG(C', SWTev4);
1=n;
while(i < |Q[){
b(i) = nil;i =i+ 1;
}
b(0) = 0; 5_1(0) =01 =mn;
while(i < |Q|){
if (b(i) == nil)
b(i) = FindRightState(C, C',b,b™1,i);
b=1(b(1)) = is
}
i=i+1;
}
’ e
return(C, C’,b,b71);

}

FindRightState(C, C',b,b~",i){
s = suffixlink(i);
if (b(s) == nil){
; ; ValRal -1 ;.1
b(s) = FindRightState(C, C',b,b7",4);67(b(s)) = s;
}
q =b(s);j = end(i) — length(s); o = Dj;
let '(¢',cU) = p’ be the o-transition from ¢’ in 5’;

return p’;

Figure 27: Online construction of a representation of SCDAWG for #D$

50

7 Adding “inverted file" information to the SCDAWG

To finally obtain a document-indexing SCDAWG structure, one last element is miss-
ing: adding positional information to the equivalence classes — i.e. the states of the

automaton.

Following the previously described bijection and identification step of the isomorphic
states in the LTR- and RTL-CDAWG s, this chapter will describe Blumer, Blumer
et al’s idea of attaching inverted file information to CDAWGs, as described in [2].

Just as the previous step, this step again runs in linear O(n) time. With this final
step running in linear time again, and thus all steps running in linear time, an overall

complexity of O(n) can be guaranteed.

Please note again, that as such, the construction described here and in [10] is the
first algorithm to build a symmetric structure with document-indexing / inverted
file information that can be built directly and with linear complexity in space and

time.

The chapter given here will describe how to apply Blumer, Blumer et al’s algorithm
(given in [2]) for CDAWGS to our structure at hand, the SCDAWG.

Recall, that the states of both underlying CDAWGs can be identified since the
equivalence relation = is the transitive closure of = and £ and for this reason
the equivalence classes of both these automata are identical, since the equivalence

closure € is symmetric, reflexive, and transitive®”.

Now, in order to be able to locate patterns in the text base #B$, attaching location
information of the occurrences of the equivalence classes Q? w.r.t. to the positions
in Bug is needed. This way, each state will hold information of its occurrences in
the text base B. To this end, this final step following the bijection algorithm closes

the document indexing process.
7.1 Adapting Blumer, Blumer et al's idea to SCDAWGs

After having given all the needed steps in the previous sections, this last step,
adapting Blumer, Blumer et al’s algorithm based on CDAWGs to SCDAWGs can

be described as a rather straightforward approach.

Recall the composition of the SCDAWG: the SCDAWG is based on two independent
— but nevertheless isomorphic - CDAWGs and the additional identification step that
followed.*® Through the isomorphism of the two underlying CDAWG structures, it
is perfectly enough to apply the algorithm given by Blumer, Blumer et al. to one of

32compare [2], [16, p. 13] and also [10)
33¢f. “Constructing the symmetric automaton” and figure 25 on page 47.

51

the underlying CDAWGs only and thus attaching of inverted file information to the
states of only one of the CDAWGs, preferably the LTR-CDAWG.

7.2 Attaching inverted file information to SCDAWG's states

Since Blumer, Blumer et al’s algorithm will make use of suffix links, again, as before,
this step is to be carried out in PRE-CLOSED stage™*.

We will gain from it, a new method called Index() in a (templated) class that we

will write for it, DocumentIndexingAutomaton<SCDAWG>.

In the following, a hands-on-description of the algorithm is given. Please consult [2]

for the full, in-depth description.
7.3 The algorithm

The document indexing algorithm has two sides to it: Obviously, in a first step,
a) the indexing step, the structure needs to be prepared accordingly to hold the
information bits and pieces that will be needed in the second step, b) the retrieval

step.

The first step, taking care of the indexing, consists of a modified AddDocuments ()
method and the Index() method. Since this is such a crucial step, it also finds a

representation as a dedicated “stage” of the automaton: INDEXED stage.>

The retrieval step, is represented by the method findall(). It will locate all oc-
currences of the current pattern in the indexed text files £ € B. findall() will
(internally) call two other methods: find() and findRec().

7.3.1 Overview of the algorithm steps

Figure 28 on the next page illustrates the indexing steps.

For the retrieval side, figure 29 on page 54 summarizes the steps involved.
7.3.2 Intuitive description of the algorithm

As far as the indexing side of the algorithm is concerned one will:

o Add all documents, each as one long string, append the string to data with
delimiters # and $

e grant each document its own, dedicated sinkstate

¢ save information document < sinkstates

34again, compare section “Implementation specifics: Staging system” in the sequel

33compare “Implementation specifics: the templated DocumentIndexingAutomaton” in the sequel

36 compare “Implementation specifics: Staging system”

52

save sinkstates of documents,
save document lengths

Index()

AddDocuments()

INDEXED stage

findall()

Figure 28: Graphical overview of document indexing steps

93

findall(pattern p)

delta(p) to implicit
or explicit state

INDEXED stage

find()
canonical representative

findRec():
find all occurences
of canonical representative
in text base

Figure 29: Graphical overview of pattern retrieval steps

54

e save information document <> documentlength

e in a final step, for each document that was added:

— starting from the document’s dedicated sink state
— walk up the tree on the suffix links until the start state is reached

— tell every state visited on this path, that it is attached to the current

document
For the location procedure and pattern p,

o delta with pattern p to a state s

e state s may be an implicit one

— in that case search for the canonical representative of the current pattern

p and adjust the length information of the modified pattern accordingly

e once at an explicit state, use the length information of the pattern

e use this length information of the pattern and documentlength to calculate
all the positions in each of the documents that are attached to that state to

calculate the positions of occurrences of the pattern in the documents.

7.3.3 Actual implementation of adding of documents

The code examples given here are based on the templated C+4-implementation and
present a version that was simplified to serve as a kind of pseudo-code implementa-

tion to grasp the essential bits of the algorithm.

In the DocumentIndexingAutomaton, the method AddDocument () is similar to the
previously existing methods to add documents to the structures. However, in this
case, it additionally keeps track of the association sinkstate <> document and the

information of the document’s length.

The class template DocumentIndexingAutomaton<AutomatonType> introduces
AddDocuments() as a public member method and consequently will call
AutomatonType: :Add ().

This means, if it is instantiated as DocumentIndexingAutomaton<CDAWG>, it will call
CDAWG: : Add () etc.

AddDocuments () takes care of adding the documents, saving the corresponding
sinkstates and document lengths and sets the automaton back to UNSORTED stage in

the staging system (more on the idea of the staging system in the sequel).

95

AddDocuments(const std::vector<DocumentName>& documents) {

/* Suffiz links are needed */
assert(ManagedAutomatonStage_ < CLOSED);

unsigned int total_length = O;

unsigned int number_of_docs_read = 0;

/* Save the document names im a member wariable */

document_names_ = documents;

// Add documents
for (auto& doc: document names) {

number_of_docs_read++;

// read the whole document

std::string str = read_document (doc) ;

// call to template's Add()

// (i.e. CDAWG::Add or SCDAWG::Add)

// Add() will return the sinkstate

// which was created for this document
State sinkstate = AutomatonType::Add(str);

// We need the sinkstates later on

// to follow the suffiz links back up to source.
// In order to associate states and documents
// that relate to each other

document_sinkstate_[doc] = sinkstate;

// adjust document's length
// (it is prepended and appended with
/7 '#' and '$')

DocumentPosition pos

str.length()

+ total_length

+ number_of_docs_read*2
ilg

document_length_[doc] = pos;

56

// - 2 to take '#' and '$' into account...
total_length += str.length() - 2;

/* Automaton has newly added documents
So it will need to be sorted and
indezxed

*/

ManagedAutomatonStage_ = UNSORTED;

7.3.4 Actual implementation of indexing step
Of course, the Index()-ing step will have to happen before any findall() steps
and will set the automaton to INDEXED stage.

The Index () method expects the automaton to at least be filled, and not yet closed
(since the suffix links are needed for the indexing step and would not be available
in CLOSED stage).

For the case that the automaton has not been sorted yet, the AutomatonType’s

respective SortTransitions () method is called.

Essentially, what the Index () method does, is to follow the chain of suffix links back
up to the source state for each document, starting from the document’s sink state.
Every state that is “visited” on this path is attached with the information that it is

associated with this particular document.

Finally, the automaton’s stage is set to INDEXED stage.

Index() {

assert(ManagedAutomatonStage_ > EMPTY &&
ManagedAutomatonStage_ < CLOSED) ;

if (ManagedAutomatonStage_ < SORTED) {
AutomatonType: :SortTransitions();
assert(ManagedAutomatonStage_ >= SORTED);

if (ManagedAutomatonStage_ < INDEXED) {

State source = 0;

57

State state = O;

for (auto doc: document_names_) {

state = document sinkstate [doc];

while(state != source){
// associate document back to state...

states_documents_[state] .push_back(doc);

// ...and follow suffix link up to source

state = suffixLink(state);

}
ManagedAutomatonStage_ = INDEXED;

On the retrieval side, the method findall() is the the only public method visible
to the user. As its arguments, it accepts a string and starts the search process. It
will call find() and findRec () and return a container holding the positions where

the pattern p occurs in the text base B.

7.3.5 Locating patterns and positions in the SCDAWG

// find all occurrences of a given string W

findall(const std::string& w) {

// Transitions need to be sorted (internally)
if (ManagedAutomatonStage_ < SORTED) {

AutomatonType: :SortTransitions();

// Indexing step must have been executed before
if (ManagedAutomatonStage_ < INDEXED) {
AutomatonType: : Index() ;

State state = GetStartState();
State nextState;

o8

// Delta() with each character of the pattern
for(size_t i = 0; i < w.length(); i++){
nextState = Delta(&state, w.at(i));
if (nextState.index == NO){

/* no occurences, break */
return; // empty results

3

state = nextState;

/* call find() */
return find(state, w.length());

The method £ind() in the retrieval chain is a private method, not visible to the
user. It takes care of adjusting the state and length information if the state reached
with the pattern is an implicit state. In the latter case, the next explicit state
will be searched for and the “length” of the pattern is adjusted. (Recall that the
next explicit state is, in other words, the canonical representative of the current
equivalence class that the implicit state is a part of. The canonical representative
is, by definition, longer than the actual pattern and thus the length needs to be
adjusted).

find() will call findRec() which will then collect the concrete positions of the
pattern p in B.

// the find method
find(const State state, unsigned int length) {
// check excplicit-ness of the state:
// if state is mot explicit yet, "move forward"
// (i.e. find the canonical representative)
// and adjust length
if(! state.explicit) {
length += state.implicit.nextExplicitState.endPoint
- state.implicit.ownRealStartPoint + 1;
state = state.implicit.nextExplicitState;
}
return findRec(state, length);

99

7.3.6 Collecting the positions in the text base

findRec() is the last callee in the chain findall() — find() — findRec(). It
recursively collects all occurrences of the pattern across the text base B and returns

a container holding the respective positions.

The recursive findRec () method works along the following lines:

(1) if the current state s is associated with a document, it will insert the pattern’s
position pos in the document(s) into the container that will be returned back

up along the caller-chain

(2) in most cases however, the loop over the transitions will be used to recursively
call findRec () on the states that the original state transitions to until a state of
category (1), i.e. a state that has been “visited” by Index () is found. Of course,
the state that was reached by findall() and passed in to findRec() by
“walking” with the pattern p is part of some document (otherwise findall ()
would not have reached any state and would have returned zero occurrences)
— nevertheless this does not necessarily mean that the state that was reached
by delta()-ing to it had been visited before by Index() on the chain of suffix
links.

Along the way, obviously, the length information needs adjusting. In other words,
the method reaches out from the current state in the tree until it reaches a state

that had been visited and associated with documents in the Index() method.

From the state that is reached by recursively stretching out into the deeper tree
structure, findRec () can, using the document’s length information and the length

of the pattern, determine the position(s) of the pattern in the document(s).

Again, this is a simplified version of the method and special precautions need to be
taken to get the real position. Recall the delimiters # and $ and keep in mind that

all documents are concatenated to one big data-string.

In fact, three different positions can be distinguished:

i) the relative position in the respective document,
ii) the absolute position in the concatenation of documents in data, and finally,
iii) the actual position in data taking into account the delimiting symbols on each

document in the data-concatenation.

For the understanding of the algorithm however, the method shown here is sufficient.

60

// the recursive collector method

findRec(const State s, const unsigned int length) {

// Positions collector to be returned

static DocumentIndexingAutomatonFindResults results_acc;

// state s had been visited by Indez():

// in many cases, if there is mo assoctiation,

// this loop will not start and we have to stretch
// out into the tree using the next loop below

for (auto doc: states_documents_[s]) {

DocumentPosition pos = document_length_[doc] - length;

results_acc.insert_position(doc, pos);

// stretch out into the tree until we hit
// states that had been wvisited and thus
// associated with a document by Index()
for(auto transition: states_transitions_[s]) {
findRec(
transition.toState,
length + transition.toState.endPoint
- transition.startPoint
+ 1

// return collected positions up along the chain:
// findall() -- find() -- findRec()
return
std: :forward<DocumentIndexingAutomatonFindResults>(
results_acc

)

61

7.4 Overall Time and space complexity

As was noted in the beginning of this chapter, the complete construction of the

DocumentIndexingAutomaton is carried out in linear time.

Since each of the algorithms described so far runs in linear time, the construction
of the document indexing structure as a whole will run in linear time and use linear

space only w.r.t. to the input length n of || B||.

Namely, the linear-complexity of the algorithms is proven individually for:

o The construction of the CDAWG: [16]

o the construction of the SCDAWG structure (identification of equivalent states):
[10]

o attaching the inverted file information: [2]

o linear size of the CDAWG automaton: [3]

62

8 Code Usage Example
In this chapter, a quick introduction is given to the usage of the existing code base.
8.1 C Automata Code Base Usage Example

The C Automata Code Base has one executable: caut. This target was built by
the original library and is still built after introducing cmake to the compilation

workflow”’ .
Usage of this executable is along the following lines:
The caut-executable is the entry point to a list of features and functionality provided
by the original library®®. It accepts several different commands as its first argument
(similar to tools like svn or git), or, for the case that no arguments are given, goes
into interactive mode, whereby the the information that would be supplied in form
of arguments is stepped through. The executable’s first-hand commands are:

1. reverse_and_sort

2. build_suffix_tree

3. generate_suffixes

4. compressed_automaton_lang

5. build_cdawg

6. compressed_automaton_stat

7. build_scdawg

8. scdawg_left_lang

9. compressed_automaton_gv

10. scdawg_stat
11. scdawg_gv

For a description of the individual arguments, please consult the interactive mode.
Although most commands should be self-explanatory, as a rule of thumb, all com-
mands ending in _gv are used to dump graphical visualizations using the “graphviz

dot” tool while all commands beginning in build_ are used to build the respective

structures and serialize them to disk in binary format.

37¢f. “Transition to cmake build system”
38¢f. “Structure of this project”

63

These first hand commands are followed by additional arguments and again, should

be self-explanatory:

o file
e PLAIN / UTF-8

e TarjanTable yes/no

8.2 msgrep implementation example

In this section, an example is given how a tool similar to fgrep, named msgrep can
be implemented for the task of locating patterns in text bases. Compare, e.g. Aho-

Corasick ([1]) and other implementations of the Unix-classic grep program.

fgrep is used as a pattern search tool. This means, that it is given a set of texts
and a pattern of which to locate all occurrences in the given set of texts (may the
text base be served as files or piped input on the terminal). On successful locating
of the pattern, its location information, i.e. the offsets where the pattern occurs in

the files are presented.

The DocumentIndexingAutomaton<AutomatonType> can be used to implement a

similar feature.

It is worth knowing that the Aho-Corasick ([1]) fgrep program works in a similar
fashion as our program will be: The given texts are represented in a suitable index
structure with additional “inverted file” information to execute pattern searches on
the text base.

fgrep is a variant of the classic grep tool, alongside several other variations of
the grep tool like egrep and agrep, where agrep is based on the algorithm in
[@WuManber92] and supports approximative matching. fgrep is used for exact
pattern search that builds a trie like structure with additional suffix links as “failure

transitions”, as was seen before.

In our case, the msgrep tool will be based on the SCDAWG symmetric index struc-
ture and will work in the same way, that the usual grep-derivates work: transforming
the text base into an index structure and locate the pattern p to search for while

adding additional inverted file information.

Here is an example with additional comments of how the presented code base can be
used to implement msgrep with different underlying types of automata (CDAWG,
SCDAWG, SuffixTree, ...) using the templated class DocumentIndexingAutomaton.
See “Implementation specifics: the templated DocumentIndexingAutomaton” for an

in-depth description of the DocumentIndexingAutomaton and the ideas behind it.

64

10

11

12

13

14

15

16

17

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

#include
#include

#include

#include

#include

/* Get in

using std:
using std:
using std:

using std:

using lmu:

using lmu:

int main(

vector<string> filenames = { "filel", "file2" };

/* change to CDAWGAdapter, SuffizTree tf needed */
DocumentIndexingAutomaton< SCDAWGAdapter > aut;

aut.Add

aut.Ind

/* Search for all occurrences of the pattern "cocoa'" */

string

auto re

/* List
for (au
cout
<<
<<
<<
<<

<iostream>
<vector>

<string>

"DocumentIndexingAutomaton.hpp"

"SCDAWGAdapter.hpp"
to namespace */
:vector;

:string;

:cout;
:endl; /* is "\n" */

) o

Documents(filenames) ;

ex();

pattern("cocoa");

sults = aut.findall(pattern);

matches */

to r: results) {

<< "Pattern " << pattern << " found in "

results.document_name(r)
n at n
results.relative_pos(r)
endl;

:cis::sis::DocumentIndexingAutomaton;
:cis::sis::SCDAWGAdapter;

65

41

42

43

44

45

46

47

48

49

/* Concordance view,

with 30 chars to the left and to the right
*/
for (auto r: results) {

cout << results.lr_context(r, 30) << endl;

return O;

For the correctness of the argument, this “msgrep-implementation” does not support
search using reqular expressions as the original grep. Nonetheless, it is similar (and,
by its symmetricity, more powerful) than fgrep. Compared to agrep, this structure
can be used as an excellent ground for approximate search without the so called
“wall effect”, that, in many cases, makes fuzzy matching slow (or even unreliable as

far as the results are concerned).

For a description of what the “wall effect” means and the details of the algorithm
circumventing it using a SCDAWG index structure, please consult [10]. For infor-
mation on how to provide this functionality to the current code base, please see the
description of possible areas of improvement in the closing section of this work, the
descriptions on the implementation specifics in the next chapter, and, make sure to

find the technical documentation linked to in the final chapters.
8.2.1 Sample output

To be able to see the concordance view in action, here is some sample output of a
part of philosopher Friedrich Nietzsche’s works (for now, the sample files have been
“brought into shape” very roughly). This data was used for the “heavy load tests”
in the Metrics section, cf. “Automaton Size metrics” for numbers and figures on the

automaton’s size, execution times, etc.

Pattern und found in ../etc/N/MAI_clean.txt -- 668 -- 668 -- 669
Pattern und found in ../etc/N/MAI_clean.txt -- 895 -- 895 -- 896
Pattern und found in ../etc/N/MAI_clean.txt -- 1237 -- 1237 -- 1238
Pattern und found in ../etc/N/MAI_clean.txt -- 1276 -- 1276 -- 1277
[...]

Concordance view: gar nur die streit und redelustigen Schaa
Concordance view: muss geschehen sein und die einzige Statue
Concordance view: an welcher man Sinn und Zweck jener grosse
Concordance view: ch sollt ihr mir Freunde geworden sein und
Concordance view: Brueder, auf jede Stunde, wo euer Geist in

[...1

Matches: 4097

66

9 Adapting the existing automata code base

In order to create a usable library with safety and to establish a solid ground work
which to continuously build on in the future, several adaptation steps to the existing

code base were needed.

The main goals for this work and including future work on the existing library
consisted of establishing maintainability and adaptability for new use cases, such as

this one.

On the one hand side, the existing cautomata-library composes the essential parts
of the algorithms described in the previous chapters, on the other hand was in a
state where it was designed for one specific use case and thus needed adaptation to

be able to meet different needs that might arise in the future.

Clearly, by lowering the heights of the initial steps of getting to grips on the existing

library, collaborative future efforts are leveraged.
9.1 Extending, Reusing and Refactoring of the existing implementation

Since a lot of good work has been put into implementation of the algorithms and
automata described, the document indexing automata presented in this work are

closely coupled to the already existing implementations by Petar Mitankin®”.

Not only does the existing code base already implement many of the intricate al-
gorithms and index structures described in this paper in a well-thought out and
highly efficient manner, moreover does an adaptation process meet the tight time
constraints for this work and also reflects a standard situation in commercial work

processes.

Simply put, re-implementing a large library and thus “re-inventing the wheel”, in
most cases, is not affordable. Please consult the section code metrics for estima-
tions on lines of code, estimated time schedules and a rough estimation on money

resources, etc. to prove this argument.

Consequently, reusing and maturing the existing code base through refactoring and
adaptation was a rational decision in light of the time (and, were it a commercial
application, money constraints) given. Especially does this hold true for the proof
of concept implementations used for the metrics in the paper [10] that were already

in good shape as far as the speed metrics of the implementation are concerned.

In a nutshell, these pre-existing implementations, as a starting point, gave way to

the document indexing automata presented in the preceding sections.

39Petar Mitankin, researcher at the Bulgarian Academy of Sciences with Stoyan Mihov is the
author of the underlying C implementation of most index structures upon which the indexing and

suggestions-giving automata of this work were built. He is co-author of [10].

67

The following sections will reflect on the refactoring and adaptation process, will
elaborate on the rationale of design decisions and approaches taken, and, finally, will
present highlights of the maturing of the existing code and finally give an outline of

the advantages that can be gained gained on a long term basis.
9.1.1 Refactoring guidelines and Approaches

The indexing automata presented here use several techniques and approaches and
mainly follow these guidelines, principles and common refactoring practices in the

adaptation process:

o Adapting the existing pure C codebase using the Adapter / Wrapper Design
Pattern, keeping the original implementations untouched (as described in sec-

tion “Wrapping C”)

o Tightly coupled to the previous point is the Layering System consisting of a
C++-layer covering the underlying (wrapped) C-implementation-layer. Please
consult the description of advantages of this approach in section “Implemen-

tation Specifics: Layer System Description”

e Along with the advantages that the object-oriented programming approach
gives us — explicitly stated inheritances and interfaces, and, moreover, inher-
itability of classes as a ground base for future work, while keeping the sheer
speed of the original C implementation through the adapter pattern (compare
with section “Adapter Classes”) — generative programming approaches were
used for describing the document indexing automata’s behavior. See section
“Implementation specifics: the templated DocumentIndexingAutomaton” for
the details and more information on the rationale behind this decision and the

resulting advantages.

e Less on the concrete implementation, but more on the distribution side, lever-
aging future work on the existing code base, basic ground work was done to
ease implementation of new features for coders coming to the project by adding
the basic grounds for test driven development — see the sections on “Transition

to cmake build system” and “Unit tests” for a description of this approach.

e Additionally, cmake was brought into the project to help with the classic GNU-

make-process in building and compiling the library on different platforms

9.2 Wrapping C

A first step to “conquer” the existing the library was to wrap the most essential

C-style structs into full object oriented classes.

68

The combination of a lower-level C-layer and a higher-level C++-layer brings in a
“best of both worlds” notion, in that the lower-level C-layer guarantees maximum
efficiency and the higher-level C++-layer maximizes flexibility, safety and fast results

and long-time implementation gains in terms of time and cost reduction.

In this section I will highlight the first steps of adapting the existing code base,
namely through Adapter Classes.

9.2.1 Adapter Classes

The C++-adapters used here are full C++-classes wrapped around their counterpart
C-structs — which can be (and often are) interpreted as something “equivalent” to
classes with the only difference that “everything is public”. This is a short-sighted
argument, for C-structs still lack all gains that can be drawn from a full fledged
object-oriented class (just to name a few: inheritance, interfaces, encapsulation, etc.
— more on that to follow in the sequel).

The so called “Adapter pattern” which was used is also known as the “Wrapper

pattern”.

As the “Gang of Four” point out, the Adapter Pattern’s applicability is given by the

following criteria:

”Use the Adapter pattern when

e you want to use an existing class, and its interface does not match
the one you need.

e you want to create a reusable class that cooperates with unrelated
or unforeseen classes, that is, classes that don’t necessarily have
compatible interfaces.

o (object adapter only) you need to use several existing subclasses,

but it’s impractical to adapt their interface by subclassing every one.

An object adapter can adapt the interface of its parent class.”*!

As far as “Collaborations” are concerned, [9] have to say the following:

“Clients call operations on an Adapter instance. In turn, the adapter

calls Adaptee operations that carry out the request.”*?

This approach of adapting the underlying C-structs is fruitful for a variety of reasons:

10For a detailed description of this Object Oriented Design Pattern, see the “Gang of Four” (also
known as the “GoF”) in [9, pp. 139].

Gamma et al. [9], pp. 139

2Gamma et al. [9], p- 141. The “GoF” has much more to say about Adapter pattern’s conse-

quences, also see pp. 142

69

Advantages of Adapter Classes. Compared to their C-structs, full C++ adapter

classes define “proper” constructors, destructors, interfaces, state their inheritance,

are inheritable and template-able, meaning that

In a

The

the objects are “easier to handle” on the user side: easier instantiation of ob-
jects with automatic memory allocation and multiple constructors for different

situations

Easy to implement: mainly these full-feature adapter classes created for this
work do a simple delegation (“pass-through”) of their own methods to the

struct’s original functions, while making them more type-safe

The C++4 adapter classes of this work can be reused in many different situa-
tions through inheritance (for instance confer to “DocumentIndexingAutoma-

ton as a template”)

Since the adapter pattern makes it possible to generate compatible interfaces
for other classes, in our case here, a crucial advantage can be found in that
the existing code base need not be rewritten, but stays as it is. Imagine a
vendor class interface with compiled objects, that you don’t have direct access
to, except for the documented interface. In all these cases the adapter pattern

proves to be ideal.

nutshell, full-fledged object-oriented classes are

easier to instantiate / work with
make inheritance, interfaces and composition explicit

use the language’s own object building facilities (rather than “rolling your own”
object system, or, for that matter, use pointers and references as if they were
real objects and leaving inheritance, templatization and specialization implicit

and/or to dangerous macros)
therefore minimize risks

while still holding up the speed of the original C implementation.

adapter pattern used here is inherently very tightly coupled to the Layered-

System introduced in this work. For a full description, cf. the section on “Imple-

mentation Specifics: Layer System Description”.

70

9.2.2 General Description of Adapter Classes

Adapter classes are relatively easy to implement in that the adapting class merely
keeps a pointer to the adapted class (also referred to as the “adaptee”) and, in

general, mainly forwards method calls to the adaptee’s functions.

However, adapter classes are capable of much more. Not only can adapter classes
specifically override some (or all) of the adaptee’s behavior, in order to make incom-
patible interfaces compatible to each other [cf. 9, pp. 139] — adapters can also add

behavior to the class adapted or specifically choose to hide certain functionality.

In our specific case here, not only do the adapter classes wrap the original C-structs,
but also give them, by making them full C++-classes, additional properties, like
inheritability and present the user with a variety of overlaoded methods that make

working with these classes easier in different circumstances.

Conventions for adapter classes in this distribution. The adapter classes defined in

this distribution follow these conventions:

e The struct SCDAWG’s adapter can be found as the class SCDAWGAdapter

o for instance, a function like SCDAWGAdd (SCDAWG* scdawg, VoidSequencex
input) will turn into the method SCDAWGAdapter::Add(VoidSequencex*
input)

— oftentimes, SCDAWGAdapter: :Add(VoidSequence* input) will be over-
loaded so that different input methods can be used to add data to the

automaton, e.g.

* SCDAWGAdapter::Add(const std::string input&)
* SCDAWGAdapter: :Add(const char* input)

* etc.

o adapted methods/functions are spelled with a capital letter
e newly added methods are spelled regularly using lower case letters

o Following the adapter class design pattern, the adapting class holds a pointer

to its adaptee:

— Class SCDAWGAdapter will hold a pointer to the struct SCDAWG from the
C-Layer as SCDAWG* C_SCDAWG as a member.

o all adapter classes end in ...Adapter as a naming convention.

71

Construction and Destruction Handling in Adapter Classes. Construction and De-

struction are handled transparently in the following way:

e An adapter class holds a private member:

— VoidSequenceAdapter will hold a private member C_VoidSequence

which will point to the struct tVoidSequence

— (Ideally) exactly only one constructor per adapter class, will call

VoidSequencelInitialize() to do a proper initialization.

* The other constructors available to the adapter class are merely to
make configuration easier on the user’s end and will internally do

Constructor-Forwarding as needed

— The destructor ~VoidSequenceAdapter() will make a call to
VoidSequenceFree(C_VoidSequence) in order to release the pointer

and to tear down the struct properly.

9.3 Implementation Specifics: Layer System Description

As was mentioned in the section “Adapter Classes”, the library presented here is

inherently tightly coupled to a layered design.

The already existing code base (in pure and fast ANSI C) comprises imple-
mentations for Compacted Automata (i.e. automata with implicit states, named
CompressedAutomaton), Ukkonen’s and Inenaga’s CDAWG algorithms, and the
algorithm for constructing SCDAWGs as described in [10].

This pure-C-base presents the grounds for the adaptation of the automata described

to function as Document-Indexing Automata.

To make implementation of such document-indexing automata easier and safer to
use, the latter is achieved by wrapping (“adapting”) the pure-C base and thus leading

to a “layered system”. Find an overview illustration in figure 30 on the next page.
Please also check the UML graphs in the technical documentation generated by
doxygen (cf. Doxygen integration on page 84).

9.3.1 Advantages of the layered system

Many of the points mentioned in the section “Advantages of Adapter Classes” are

equally valid in the description of the layered system:

e The layered systems keeps on to the immense speed of the pure C implemen-

tation

72

9.3.2

9.4

(C++ classes layer with inheritance, interfaces, constructors, etc)

(Adapter Class layer)

[C-Layer with original structs)

Figure 30: Layered system overview

the layered system makes both, usage and implementation easier and safer

(see again the Description of Advantages of the Adapter Pattern)

Through the layered/adapted system, clear inheritance, composition and tem-

platization are made possible.

In many respects a document-indexing CDAWG and SCDAWG pretty much
behave the same. This let’s us abstract even a little more, and through the use
of generative programming allows us to have the appropriate code generated
for us through templatization (see more on templatization in “Implementation

specifics: the templated DocumentIndexingAutomaton”).

Conventions used in the Layered System

You will find the adapted pure C code base in src/bas/lml (Bulgarian
Academy of Sciences / Linguistic Modelling Department).

Keep in mind, that for this whole approach none of this code had to be changed.

Check src/lmu/cis/sis/adapter for the corresponding adapter classes
(Ludwig-Maximilian-Universitat Miinchen (LMU) / Centrum fir Informations-

und Sprachverarbeitung (CIS) / Symmetric Index Structures).

Check src/lmu/cis/sis/indexer for the indexer classes building on the

adapter classes.

Implementation specifics: Staging system

This section describes the automaton’s different stages during construction and while

working on building a text retrieval system and with the automaton itself.

73

9.4.1 Staging system idea
During construction, and before and while processing and indexing text, the au-
tomaton, at any time, can find itself in exactly one specific stage.

The set of different stages is the following, in progressive order:

e EMPTY: automaton is empty and has not been filled yet.

o UNSORTED: text has been read-in (or new text has been added) — the transitions

are not sorted yet.

o SORTED: after having read-in new text, the transitions have been sorted (this

is an internal, but nevertheless crucial operation.)
o SHRUNK: the index of transitions has been shrunk (internal, optional)

e TARJANTABLE: a tarjantable has been added to the automaton to reduce size

and improve lookups (optional).

e INDEXED: the automaton has been indexed, i.e. bookkeeping was done in order

to be able to do text-retrieval

e CLOSED: the automaton has been closed, i.e. the additional buildhelp-
structures needed during construction have been freed (note: this action is

un-recoverable)

These stages are comsecutive in the sense that each of the steps depends on the
former as a minimum base. Some of the stages are optional (see above) and some
of these stages are un-recoverable and can not be taken back (this is especially true
for CLOSED) — for the latter, please compare with the dotted lines in figure 31 on

page 76.

All stages however will need to be re-done, if an action of a previous stage was

executed in the meantime.

Example: SORTED / UNSORTED stage: You can add additional text, but eventually

you will have to re-sort the transitions.

In this sense, specific methods can only be executed after specific needed actions

have been executed beforehand (e.g. sorting, indexing).

In simpler words, for certain methods, the automaton needs to be in a specific stage

— figure 31 on page 76 should explain this.

For instance, Index () needs to happen

74

o right before Close() (if to be followed by text retrieval operations)

e some time after SortTransitions()

Assertions (at run-time) are available to test these conditions when certain methods,

like the following are called:

e Write(FILE * file)

Close()

o findall(string pattern)

e AddTarjanTable()

For all these methods you will find additional information in the class’s documenta-
tion as to which stage they belong to and which stage they incur on the automaton
(consult the section “Doxygen integration” for pointers to the documentation and

hints on generating the documentation yourself).

In some cases, the appropriate actions might be taken for you as a convenience,
however, you should not rely on them, since they can have undesirable effects which
are not possible to recover from, so control is mostly up to you (actions of the latter

form would not be taken, so you should not rely on them being executed for you).

Anyway, keep in mind that many of these actions can at times be expensive op-

erations and, since this is C-World, usually, “you don’t pay for what you don’t

2

use’.

However, to be on the safe side, as was mentioned, you will get checks done on the
current stage of the automaton and the executability of your desired action wherever

possible.
9.4.2 In-depth description of stages

To guarantee robustness of the automaton at all times, the current stage is saved

and enforced using assertions where possible.

Note that derived classes will have to make sure to properly work with these condi-

tions (respect them and set them).

The general rationale behind stages is that

e some operations are essential to certain other operations, and

e some operations can be expensive and unnecessary for certain other tasks.

75

Empty stage

d

ad

Unsorted stage

f
i

Sorted stage

al

Shrunk stage

Tarjan-Table stage

Indexed stage

AL,

Closed stage

i

Figure 31: Staging system overview

In other words (and other contexts) one would say that these are “lazy” operations,
i.e. certain operations will only be executed at the “latest time possible” in order to
cut down on potentially unneeded and expensive computation/run-time.
Description of stages: EMPTY stage.

Right after construction, the automaton finds itself in EMPTY stage.

In most cases, at this time, new documents will be added, which sets the automaton
to UNSORTED stage.

Description of stages: UNSORTED stage.

After new documents have been added to the automaton (whether it be from EMPTY
stage or, say, SORTED stage), the automaton is set to / set back to UNSORTED stage.

For consecutive actions, the automaton will have to be SORTED, i.e. a call to the
specific class’ method SortTransitions() will be necessary.

Description of stages: SORTED stage.

After calling SortTransitions() the automaton is in SORTED stage.

This is a stage necessary to (internally) clean up pointers of transitions in order to

be able to get to the following stages described below.

Externally speaking, this is a crucial stage needed for all following stages.

Most likely, INDEXED or CLOSED stage will be a favorable next stage for document
retrieval and serialization of the automaton.

Description of stages: SHRUNK stage.

Between SORTED, INDEXED and CLOSED stage, SHRUNK stage exists, in order to reduce

on the memory footprint of the final automaton.

It will cut down on unneeded pointers, transitions and memory allocations which

are waiting for potential new documents to be added.

This stage is especially useful for TARJANTABLE stage and reduction of memory allo-

cation.

Note however, that this stage is optional to the main stages UNSORTED, SORTED,
INDEXED and CLOSED and might be considered optional as well as “internal” (but

nevertheless “useful”).

Description of stages: TARJANTABLE stage.

At this stage, a TarjanTable?® is added to the automaton to give it “sparse table

compression”.

434, sparse table — cf. the Glossary

77

This is an extremly powerful method to reduce the size of huge, but sparse, arrays

and can save a lot of memory needed to save the automaton’s transitions.

Note again, that this is a stage optional to the main stages UNSORTED, SORTED,
INDEXED and CLOSED.

Description of stages: INDEXED stage.
For all document retrieval tasks, INDEXED stage is the necessary, crucial stage.

Index ()-ing of the automaton is an operation which only makes sense at a certain

point and may be expensive (although it is implemented to run in O(n), linear time).

The Index () method is in charge of associating the automaton’s internal states with

the documents added to make retrieval of patterns possible.

Description of stages: CLOSED stage.

During construction and for most stages before the Close ()-ing step, the automaton
carries extra information in its class-specific Buildhelp struct in its underlying C-

listayer.

After construction and during the Close ()-ing step, this struct is used to “finalize”
the automaton, but will be deleted in the closing step to cut down on memory

needed, since it is not needed for any retrieval steps following after indexing.

For this reason, setting the automaton to CLOSED stage, again reduces on the memory
footprint of the automaton by free()-ing and releasing the internal BuildHelp-

structure(s).

Note that this is a non-recoverable step. Adding new documents to a CLOSED automa-
ton will not be possible and the automaton would have to be rebuilt from scratch

in order to add new documents to a CLOSED automaton.

Note as well, that some methods can only be invoked in post-CLOSED state, see
“Post-Closed Methods” in the respective class’ technical documentation for a com-

prehensive list.

For example, Write (FILE* fp)-like serialization methods expect the automaton to
be in CLOSED stage, since Read (FILEx fp)-like de-serialization methods expect to
read a CLOSED stage automaton.

9.5 Implementation specifics: the templated DocumentIndexingAutomaton

As proven in sections “Wrapping C”, “Adapter Classes” and, also, “Transition to
cmake build system”, the approach of adapting the existing pure C code base through

writing adapter classes around the structs, not only gave way to

78

o easier and safer handling of the structures

« explicitely stated relations between the structures and inhertiability for future

classes

e possibility of adding unit-, integration- and regression-tests

but also the existence of the structures as full C++ classes has yet another, com-

pelling advantage: templatibility.
9.5.1 DocumentIndexingAutomaton as a template

For the task at hand of making the existing index structures additionally carry
inverted file information, i.e. turning a simple SCDAWG into a document-indexing
SCDAWG, there generally exist two distinct routes to take:

e Inherit SCDAWG and give it additional functionality through a new class
DocumentIndexingSCDAWG.

o Write a template class DocumentIndexingAutomaton.

Although, it might seem, at first sight, less straight-forward, writing a templated

class DocumentIndexingAutomaton has one major advantage:

Imagine, we had 10 different index structures which all were to become ex-
tended to be document-indexing automata. Now, of course, is it possible to
extend each and every class through inheritance and adding the new desired
behavior as a DocumentIndexingStructureX, DocumentIndexingStructurey,
DocumentIndexingStructureZ, and so forth (keep in mind, this would produce 10

more classes in the library which, in turn, need individual maintenance).

The other approach, achieving the same goal through one and only one template
class for the whole family of interrelated structures in one go not only has the
advantage of being

e more general

o less error-prone (in the long run)

o more “DRY”-ly (“don’t repeat yourself”)
but it simply extends, as said, a whole family of automata with the exact same

behavior (while still staying open to specializations of individual automata should

they need such extra treatment in some cases) through one class template.

79

Code example. Imagine we were taking the first approach, extending class SCDAWG by
inheriting from it and forming a new class DocumentIndexingSCDAWG with additional

InvertedFileInformation:

/* The simple inheritance approach */
class DocumentIndexingSCDAWG : public SCDAWG {
protected: /* Protected so others can inherit from us */
InvertedFileInformation info_; /* Adding a new member */

};

The same would be done individually for CDAWGs, SuffixTrees, SuffixTries, and

SO O1l...

Albeit less easily readable on first sight, the template class to extend all of the named

automata in one go is not very much different:

/* The class template approach */

template<typename AutomatonType>

class DocumentIndexing<AutomatonType> : public AutomatonType {
protected: /* Protected so others can inherit from us */

InvertedFileInformation info_; /* Same as before here */

};

A template class really is nothing more than a class that is generated for us, hence

the term “generative programming”.

Admittedly, in some places templated classes are not as easy and straight-forward
as the respective one-by-one approach, but instead of writing a dedicated class
DocumentIndexingSCDAWG we obtain it simply by asking for one such getting gen-
erated through a call to DocumentIndexing<SCDAWG>.

Keep in mind though, that for obtaining a DocumentIndexing<InenagaCDAWG>, we
only need to instantiate it and no DocumentIndexingInenagaCDAWG class needs ex-
plicit declaration and definition. This approach keeps the code base small, mainte-

nance to a minimum and generality between the individual classes coherent.

The compiler essentially is doing a copy-paste-like replacement, and as such is writing
a class definition on its own. Of course, the same effect could be achieved by using
#defines and such, but, since this is C++, this approach really is safe in that all
code generated is passed on to regular compilation and thus, errors are spotted easily

by the compiler.

80

9.6 Specific new features of C++11

This section is an outline and a small introduction to (only a very tiny part) of the
new features of the newly released standard of the C4++ language, named “C++11”

that were used in this work.
9.6.1 auto keyword

In C++11, the auto keyword is one of the first and frontmost nice features that
is able to not only ease the software development process itself but also is of great

benefit to the “end user” when using the automaton library.

As a small example of its power, former ways to iterate over the elements of a

container can be reduced to the following through a process called “type inference”:

/* The "old" way to iterate the elements of a container */
for(std::vector<std::pair<std::string,int> >::const_iterator it =

fregs.begin(); it != fregs.end(); ++it)

std::cout << it->first << std::endl;

/* Put the auto keyword to practice
let the compiler infer the type of the iterator */
for (auto it = fregs.begin(); it != freqs.end(); ++it) {
std::cout << it->first << std::endl;

Better yet, the new standard — and through the powers of the auto keyword — makes
the latter loop even easier to write and boils down the aforementioned code fragment

examples to the following:

for (auto it: freqs) {
std::cout << it->first << std::endl;

9.6.2 Constructor delegation

Unfortunately, Constructor delegation was not yet existent at the time of this writing
with gee 4.7.0 but would have been helpful especially for the setting of the members
C_symbolsize through the cascade of interrelated interface classes. Somehow, when

passing on information in constructors in this way, this information can (still) get lost

81

and special precautions need to be taken to avoid loss of infomation in instantiation

— this was taken care of but can be improved in the future.

Whatever the situation is on constructor delegation, one point that deserves special
mention at this point as far as instantiation of objects is concerned, is the changed

rule on object instantiation in C++11:

In C4++411 an object is existent as soon, as the first constructor has finished and
returned — compared to the object being constructed only when the last constructor

has finished, as in the previous standard of the language:

“In klassischem C++ ist ein Objekt fertig konstruiert, wenn sein Kon-
struktor ausgefiihrt wurde. Dies dndert sich mit C++11. Hier gilt:
Sobald der erste Konstruktor fertig ausgefiihrt wurde, ist das Objekt fer-
tig konstruiert. Das bedeutet natiirlich, dass jeder weitere Konstruktor
auf einem fertig konstruierten Objekt agiert.” (“In classic C++ an object
is readily constructed when its constructor returns. This is changing in
C++11: The rule is, as soon as the first constructor was executed and
has returned, the object is readily constructed. This of course means that

all following constructors can operate on a readily constructed object.”)

[12, pp. 147, especially p.151 “fertig konstruiertes Objekt” (German
source)]

9.6.3 Compilers

Obviously, and as seen in the section constructor delegation, compilers still need

time to implement and support the whole set of features of the new standard.

Users will have to check on the availability of the new set of features in their respec-

tive compilers.

This is a classical trade-off situation that is to be decided on the following questions:

e Should one avoid features of the new standard for the moment?
e Where will my library be deployed?

o Will I deliver pre-(cross-)compiled source code?

e Which features does my compiler support?

e How fast will the new compilers be available on the target machines:

— How fast are system administrators going to provide them?

— Will the users of the library be able to install a new compiler?

82

e Can I get enough support in case of problems?

e Are the new features going to help the development process enough to justify

using the new standard?

Under the assumption that the new standard of the language is going to leverage
the development process and that the library in its current state will not (yet!) be
used by a wide audience of users and needs additional work by a few dedicated
contributors, the question whether to use the new standard was decided in favor of

actually using it.

In combination with a powerful build system (see the next section “Transition to
cmake build system”), good documentation (see the section doxygen support) and
a version controlled code base (through git), contribution is eased and the develop-

ment process is opened to more contributors by lowering the entry bars considerably.
9.7 Transition to cmake build system

Transitioning the current code base to the cmake build system is guided by the prin-
ciples of modern software development. Among its many advantages, the following
points need special mention:

¢ cross-platform support and deployment

e vast IDE support

« casy setup and maintenance (vs. the classic GNU build system™*)

o integrated testing facilities (unit testing, integration testing)

o integrated cross-platform packaging

9.7.1 CMake build framework

The open source build framework cmake by Kitware is transforming into a de-facto
standard of modern C/C++-software build system® in software development pro-

cesses.

44gometimes also referred to “autohell”

45For a list of organizations using cmake, cf. http://www.cmake.org/cmake/project/success.

html: Among the most presitigous and biggest, KDE needs mentioning.

83

http://www.cmake.org/cmake/project/success.html
http://www.cmake.org/cmake/project/success.html

9.7.2 Testing

In all brevity, Test driven development (TDD) has key advantages, such as:

e avoiding regressions in future development
o thus stabilizing the whole code base

e new coders to the project can immediately see if and how their changes to the

code affect the code base

9.7.3 Unit tests

Central to all programming efforts of these days is the existence of an automated

testing framework.

In light of the complexity of the existing code, tests were needed in order to confirm

the efficiency of changes to the existing code while reducing regressions.

cmake makes it easy to write and provide tests to the library.
9.7.4 CPack packaging

Along with the many benefits that cmake offers, transparent and cross-platform

packaging is a blessing.

This way, installers for different platforms can be created while not having to care
about each of them individually. Find more information on CPack at http://

cmake.org/.
9.8 Doxygen integration

Along with wrapping the current code base into C++ adapter classes, adding tests
and packaging facilities through the cmake build framework, dozrygen was used for

commenting the newly written code.

Doxygen is — like cmake —, the state-of-the-art documentation system which produces
nicely formatted and intelligent source code documentation, and additionally is able
to produce UML graphs of the class designs, of callers and callees, in many different

formats (html, IATEX and many other documentation formats) among much else.

The current source code documentation can be found at the address http://www.
cip.ifi.lmu.de/~bruder/sis/documentation/html/index.html for the html
version and http://www.cip.ifi.lmu.de/~bruder/sis/documentation/latex
for the IXTEX (book) version of the documentation. Please check the appendix

section for additional pointers concerning the sources and availability.

84

http://cmake.org/
http://cmake.org/
http://www.cip.ifi.lmu.de/~bruder/sis/documentation/html/index.html
http://www.cip.ifi.lmu.de/~bruder/sis/documentation/html/index.html
http://www.cip.ifi.lmu.de/~bruder/sis/documentation/latex

10 Metrics

This chapter will present key figures on the code base itself, on the sizes of different
automata and additionally will give execution times and measures on the indexing

steps involved.
10.1 Code Metrics

In order to estimate the code base size, sloccount®’, is used as a tool*” to (roughly)

measure and quickly grasp code base sizes and implementation efforts.

As far as sloccount’s accuracy is concerned, it proves to be very exact by estimating
the newly written code base’s development efforts at about 4.5 months of work which

gets very close to the time that was available for working on the code.

10.1.1 Adapted Code base size metrics

As for the adapted code base sloccount the numbers show the following:

SLOC Directory SLOC-by-Language (Sorted)
3638 bas ansic=3638

Totals grouped by language (dominant language first):
ansic: 3638 (100.00%)

Total Physical Source Lines of Code (SLOC) 3,638
Development Effort Estim., Person-Years (Person-Months) = 0.78 (9.31)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.49 (5.84)
(Basic COCOMO model, Months = 2.5 * (person-months**0.38))

Estimated Average Number of Developers (Effort/Schedule) = 1.60

Total Estimated Cost to Develop =$ 104,845

(average salary = $56,286/year, overhead = 2.40).

10.1.2 Newly written indexing automaton code base

As for the newly written indexing automaton and adapter classes code base

sloccount’s output:

SLOC Directory SLOC-by-Language (Sorted)
1712 1lmu cpp=1573,ansic=139

4645loc” is a common acronym for Single Lines Of Code. Compare with “kloc” (1000 lines of

code), etc. Also cf. the glossary.
4Tthe figures presented here are generated using David A. Wheeler’s ‘SLOCCount’ http://www.

dwheeler.com/sloccount/

85

http://www.dwheeler.com/sloccount/
http://www.dwheeler.com/sloccount/

Totals grouped by language (dominant language first):

cpp: 1573 (91.88%)

ansic: 139 (8.12%)

Total Physical Source Lines of Code (SLOC) =1,712

Development Effort Estim., Person-Years (Person-Months) = 0.35 (4.22)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC*%1.05))

Schedule Estimate, Years (Months) = 0.36 (4.32)

(Basic COCOMO model, Months = 2.5 * (person-months#**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 0.98
Total Estimated Cost to Develop $ 47,514

(average salary = $56,286/year, overhead = 2.40).

10.1.3 Whole code base size metrics

Adding in to the pre-existing code and the newly written indexing automaton code
base the test cases written and the cmake build system files, sloccount gives us the

following final measure on the code:

SLOC Directory SLOC-by-Language (Sorted)

3638 bas ansic=3638

1444 1mu cpp=1444

268 CMakeFiles ansic=139,cpp=129
248 t cpp=248

162 top_dir cpp=162

Totals grouped by language (dominant language first):
ansic: 3777 (65.57%)
cpp: 1983 (34.43%)

Total Physical Source Lines of Code (SLOC) = 5,760

Development Effort Estim., Person-Years (Person-Months) = 1.26 (15.09)
(Basic COCOMO model, Person-Months = 2.4 * (KSLOC**1.05))

Schedule Estimate, Years (Months) = 0.58 (7.01)

(Basic COCOMO model, Months = 2.5 * (person-months**0.38))
Estimated Average Number of Developers (Effort/Schedule) = 2.15
Total Estimated Cost to Develop $ 169,858
(average salary = $56,286/year, overhead = 2.40).

10.2 Indexing time metrics

All test times have been measured on shell-level using the unix tool time.

In this series of tests, works of philosopher Friedrich Nietzsche have been used as

data®® on three different machines

« Apple MacBook Air (in the following: MBA)*.

48 Nietzsches “Morgenréthe” and “Menschliches, Allzumenschliches” part I, from [21]
4913-inch, Mid 2011, 1.7 GHz Intel Core i5 (Processor), 4 GB 1333 MHz DDR3 (Memory), 1
Processor, 2 physical Cores, L2 Cache (per Core): 256KB, L3 Cache 3MB

86

« Apple iMac (referred to as “iMac” in the following)™.

e “Calculus”!

Since all machines have about the same processor speed, the times are very close
as expected. Although already blazingly fast (thanks to the underlying C-layer) at
roughly 30 words / millisecond, these times can at least be cut down by 50% (when
using two cores to fill the two CDAWGs individually) by implementing the ideas on
multithreading pointed out in “Possible areas of improvement”. More speed could
be gained by intelligently applying multithreading techniques to the individual steps

that are carried out.

In this series of texts, the files are 1) read, 2) added to the structure, the 3) transitions

sorted, 4) indexed and 5) the automaton gets closed.””

The number of words is a rough figure from the Unix program wc (word count) to

give some sense on the data that is processed.

All tests were run 25 times to derive more accurate run times. As an interpretable
key performance indicator, the “number of words” (as rough as it is) that can be

indexed in one millisecond is given for each machine.

Machine Bytes Words Median Time (sec) w/ms
MBA 697,033 104,176 3,940 26.44
iMac 697,033 104,176 3,322 31.36
Calculus 697,033 104,176 3,381 30.81

Table 6: Indexing 697033 Bytes (0.697 MB) of text in a document-indexing
CDAWG.

The same test is carried out for a document-indexing SCDAWG. As expected, the
construction time grows linearly, since the SCDAWG structure is composed of two
CDAWG structures.”®

®027-inch, Mid 2011, 2.7 GHz Intel Core i5 (Processor), 16GB 1333 MHz DDR (Memory), 1
Processor, 4 Cores, L2 (per Core) 256KB, L3 Cache 6MB

S Ryjitsu RX600S5, 19-inch 4HU, 2011, Intel(R) Xeon(R) CPU X7560 @ 2.27GHz, 4x8=32 phys-
ical Cores, 1024GB RAM 1033MHz DDR3 (PC3-8500)

52¢f. “In-depth description of stages”

53¢f. “SCDAWG structure overview”; also compare “Multithreading support”

87

Machine Bytes Words Median Time (sec) w/ms

MBA 697,033 104,176 6,120 17.02
iMac 697,033 104,176 95,306 19.63
Calculus 697,033 104,176 9,110 20.37

Table 7: Indexing 697033 Bytes (0.697 MB) of text in a document-indexing
SCDAWG.

10.3 Automaton Size metrics

The next set of figures is aimed at observing the structure growth size. Again, these
tests are carried out for both document-indexing CDAWGs and SCDAWGs. As
expected, the figures grow with linear complexity, with the SCDAWG counting in
at two times the CDAWG's size.

An interesting point for discussion is the last value given, the size-growth factor.
Since the O(n) complexity measure only states the linearity of growth w.r.t. the
input length it nevertheless says nothing about the factor involved. Therefore this

factor proves to be an interesting figure.

In (bytes) In (MB) Out (bytes) Out (MB) Factor

697,033 0.66 8,162,382 7.8 11.71

Table 8: Input/Output size metrics for CDAWGs

In (bytes) In (MB) Out (bytes) Out (MB) Factor

697,033 0.66 15,422,406 15 22.12

Table 9: Input/Output size metrics for SCDAWGS

Next, to arrive at clearer metrics of index structures, even bigger parts of philoso-
pher F. Nietzsches works are indexed in an SCDAWG structure. The input data is
weighing in at 12.77 MB, or roughly 2 million words. The drop of words that are
indexed per millisecond is both, interesting and startling at the same time. It defi-
nitely shows the need for “heavy load” tests and demands for further investigation.
The reasons do not seem clear at this stage, although memory swapping and/or
repeated memory allocations and de-allocations (on machine-level) and the internal

SortTransitions()”? routine are suspected to cause this drop at this point.

54compare “In-depth description of stages”

88

In (MB) Out (MB) Factor t (sec) Words w/ms

12.77 275 21.55 326 1,942,903 6.00

Table 10: Heavy load statistics for SCDAWG

The figures presented below are from the same test set of text, involving about 1.9

million words.

number of data symbols 18,596,902
number of states (per SCDAWG) 3,501,505
number of transitions 11,338,695
total number of transitions 23,245,921

Table 11: Heavy load statistics for SCDAWG (internal fig-

ures)

89

11 Summary

11.1 Wrap-Up

After establishing the basics to indexing texts with Finite State Automata in section
“A motivating example” and covering the basic definitions in chapter 3, chapter 4
presented the Ukkonen algorithm to indexing all suffixes of a text base in form of a
Suffix Tree.

Following these descriptions, chapter 5, “Building the smallest automaton possible”
showed how to obtain the CDAWG structure for a text base B through the In-
enaga construction algorithm. Figure 32 again illustrates the Inenaga construction

algorithm’s derivation from the Ukkonen construction algorithm for Suffix Trees.

Ukkonen's direct on-line construction algorithm for
Suffix Trees

'

(Inenaga et al.'s adaptation to CDAWGSJ

l

(on-line and direct CDAWG construction)

Figure 32: Graphical Overview of CDAWG construction algorithm evolution

Subsequently, chapters 6 and 7 built on the CDAWG structure to build the SC-
DAWG structure with document indexing abilities. This is again summarized by

figure 33 on the next page.

Chapter 9 then went into clarifying how the existing code base was adapted and how
the new class DocumentIndexingAutomaton<AutomatonType> was created. These

points are illustrated and summarized again in figure 34 on the following page.
11.2 A few words on the current State of the Art

Due to the tight time constraints given for this work, several nice features and a lot

of what originally was on the roadmap had to be left for future work.

Two things slowed down the highly-set goals considerably:

e getting to grips with the complex algorithms

90

(LTR-CDAWG] (RTL-CDAWG)

Bijection

(SCDAWG) (Inverted file information)

[Document Indexing SCDAWG

Figure 33: Graphical Overview of document-indexing SCDAWG construction

Pure C struct:
SuffixTree /
CDAWG /

Adapter pattern

SCDAWG

Full C++ Class: Generic Programming:
SuffixTreeAdapter / class template
CDAWGAdapter / DocumentIndexingAutomaton<AutomatonType>
SCDAWGAdapter (indexer component)

Concrete instantiation:
DocumentIndexingAutomaton< SuffixTreeAdapter /
CDAWGAdapter /
SCDAWGAdapter >

Figure 34: Graphical Overview document-indexing SCDAWG construction (imple-

mentation side)

91

o adapting the, at the time, existing code base and getting it into shape for the

tasks at hand while leveraging future efforts.

Especially the latter proved to be more error prone than initially expected. Although
the code base was in good shape, as soon as one starts to work with it in a different
way, things usually start to break. In the case here, as a first step, the focus was
shifted to bringing the code base into a shape that will leverage future work on the

automata.

In the following, I will give hints and explanations for such future work and hope to

successfully lower the entry bars for everyone willing to contribute.

11.3 Possible areas of improvement

As far as areas of improvement are concerned, a few points spring to mind:
11.3.1 Accessibility improvements

Language bindings. Giving bindings to other languages might be a useful idea. For
example, bindings to Perl are possible and generally done through XS (eXternal
Subroutines). One could think of a perl module to make calls to the cautomata
library. Having the C/C++-library “available” from an “easier to write” language

such as perl, certainly can help make the library more accessible.

Documentation improvements. As always, the documentation is at the heart of future
development. Although most of the concepts and methodologies described in the
section Adapting the existing automata code base can be found in the “Related
Pages” section of the doxygen-documentation, having contributors read and improve

the documentation always is of great help to future contributors.

Several improvements on the code base itself would be of great use and calls for ad-
ditional contributors. Part of this work was to make contribution easier by lowering
the bars of getting “in medias res” and from this base, the following ideas should be
kept in mind when looking for improvements. For those interested in contributing,
please see the following sections for first ideas on areas of improvement as far as the

current code base is concerned.
11.3.2 Multithreading support

With the code base being adapted and with the new standard of the C++-language
being established in the current code base, the facilities for multithreading that the
new standard supports are getting more and more attractive. Indeed, the first areas

that can benefit from multithreading support would be the following;:

92

Multithreading support in filling the separate CDAWGs. Since the two independent
LTR and RTL CDAWG structures are filled in separate steps (and only in a later
step their respective isomorphic states are identified), this step seems ideal for mul-
tithreading support: While the first automaton is indexing the LTR directed text,
the RTL-CDAWG can independently index the RTL-directed text from the same
file (only in reversed order) without breaking any structures whatsoever or having
to do additional bookkeeping / mutexing / locking of specific states for the adding

of transitions.

Multithreading support in pre-reading the files to be added. Once this previously
mentioned step is established, one can think of having a separate process for the
slow reading of the files from the hard disk and keeping the next file “in stock” for
the other two processes described above, taking care of the adding of the contents
to the separate structures. Once one structure is finished it could immediately start
adding the next file’s content without having to first go into the (relatively) slow

reading of the next file.

Multithreading support in adding to the structure with Ukkonen's algorithm possible?
A theoretically very interesting idea for further going research can be the following;:
Is the Inenaga algorithm capable and agnostic to when and how different parts are
added to the CDAWG structure? Is it possible to add two files at the same time
to the very same CDAWG structure using the Inenaga algorithm? In other words,
since one of the principles in Ukkonen’s algorithm tells us that “a leaf is always a
leaf” and since in the Inenaga algorithm each document that is added is granted its
very own sinkstate (read: “leaf”) and adding additional information will in all cases
only lead to a finer-grained branching of the current tree, is it possible to add, say,
two files to the same structure at the same time without breaking the language of

the automaton?

The question is a rather tricky one and to answer the question whether all this is
possible without locking states and doing additional bookkeeping will ultimately be
decided upon the moving of the so called “active point” which is crucial for the

decision of where the next branching will occur.

Surely, this is a very interesting field for further theoretical work as far as Ukkonen’s
and the Inenaga algorithm are concerned. (Recall Hopcroft et al’s words from
the introductory sections in [14], that theoretical work in the field of finite state
automata was rather neglected for more pragmatic approaches to this very complex
world...)

93

11.3.3 General improvement ideas

Improvements on the sorting algorithm. One more idea of improving the existing
current code base is directed at the underlying C implementation: After adding new
documents to the automata, in a next step the transitions need to get sorted. The
current sort algorithm can be implemented differently to run in faster time, with a

better complexity in “big O-terms”. Currently it is not linear.

Since the sorting step is a) crucial to all work with the index structures and b) lots of
speed can be gained in this step, it seems like a good place for speed improvements.
Looking at the output of a code metrics analyzer like valgrind might bring clarity
as to whether SortTransitions() is a “bottleneck”-procedure and can benefit from

improvements in terms of execution speed.

Bit-shifting the tarjan table (“sparse table”). As far as the (optional) tarjan table
is concerned: one idea might be to represent a state and its transitions for a fixed
alphabet (potentially only sparsely filled) through bit vectors. Each state has an
array of fixed size for each letter of the alphabet, pointing to the state that the
transition with this specific letter leads to. In the sparse table compression where
two such arrays are shifted against each other to find a possible matching, one can
imagine using bit-shift operations for this step and thus, by being even closer to the

machine, speeding up the sparse table compression as a whole.
Discussions with Petar Mitankin®® show that this approach seems worthwhile trying.

However, it is true that one will have to take special care of the following: Since
the number of transitions of a state exceeds the boundaries of a machine word when
represented as a vector of binary information, one needs to take extra special care

in terms of the correctness of the bit-shifts.

Luckily, C++ features a specially designed class to take care of a scenario like this
one: std: :bitset, defined in the header file <bitset>.

Serialization. However, what’s needed in an earlier (and easier) step, will be seri-
alization support for reading in and writing to disk for the newly created generic
index structure DocumentIndexingAutomaton<AutomatonType> that carries the ad-

ditional “inverted file” information of each state.

In order to keep implementation time minimal, one idea is to keep the existing seri-
alization and deseralization routines of the current underlying C layer, the adaptee,
and in the wrapping step, have the adaptee read/write his/her own respective bytes,
and, following the adaptee’s steps, read/write additional bytes to the files from the
adapter layer.

55¢f. “Thanks” and “Acknowledgements”

94

11.3.4 User Interface improvements

Last but definitely not least will be improvements to the user facing interface.

First of all, a good idea will be to have separate executable programs for the following

tasks:

Indexer executable: msgrep-index. Pre-Index a set of documents (files) in a direc-
tory and serialize the generated index to a (hidden) file in that same directory for
repeated and independent lookups and use, and thus making sure that the next time
msgrep is called, it can directly work on that pre-generated index. Obviously, checks
will need to be made whether all files that have been indexed are still available in

that directory or warnings need to be emitted otherwise.

Lookup executable: msgrep-interactive. Unfortunately the implementation and
adaptation of the existing automata library proved to be more time-consuming than
initially expected and the interactive user-facing interface parts giving suggestions,
accepting choices and generally helping the user “drill down” to the text-parts she

is interested in, had to be shifted to a later time.

Here lies an interesting field not only for researchers of the field of finite state
automata, but also interaction designers and researchers from the field of “human—

machine interaction”:

How can suggestions to the left best be designed and offered to the user? How
can the user most effectively choose suggestions and new results and how can these
suggestions “to the left” and “to the right” best be presented? It really is a pity that
this work could not be taken up to this point, but it definitely still is a very attractive

field for further research, also in terms of inter-disciplinary research projects.

Commandline interface / Web interface. Of equal importance are the user-facing
parts in terms of commandline interface and keeping to the standards established
in the Unix world. A consistent and more user friendly commandline interface
definitely is one of the very next steps where improvements are needed. Following a

good commandline interface, a web interface will be a next step.

Different walking and search behaviors. In hindsight of the time constraints for the

work presented here, several obvious next-step features had to be left omitted.

First of all, on the user-interface and user-friendliness level, a case insensitive search

for the pattern p will be the next feature to implement in msgrep.

On the academic level, different “walking behaviors” could be implemented, like the

following:

95

o walking is possible by locating the pattern p in the index structure (using
delta) and from there, by recursively following outgoing transitions up to a
certain depth. Keep in mind, for the SCDAWG, this can be done in both

directions.

o while recursively collecting possible extensions, the output can be tweaked as
to give markers where transitions have been taken. Effectively, this means
to indicate where and how equivalence classes are spread in small text bases
up to large text bases. From there, several more fields of interest open up
for further going linguistic research as far as recurring patterns in terms of a

lower, finer-grained in-word level are concerned.

o walking is possible by locating the correct position in the data_-store and
extending to the left and to the right from there. Although this walking
behavior already is implemented, for concordance view, cleanups to the output
are essential. For instance, all whitespace is reduced to a single space in order
to keep the concordance view clean. A lot of further going user interface

improvements can be made here.

11.3.5 Functional improvements

For now, the approximate search functionality described in [10] is not yet imple-
mented, i.e. the automaton of the msgrep example of chapter “Code Usage Exam-
ple” is not yet fully functional in the sense that it could do approximate search as

well. One can find the description of the algorithm in [10].

96

A Compilation and Installation procedure

All source code of this project is contained in the src/ directory in the tree structure
of this project. The source code also contains the technical documentation which

can be generated using doxygen (cf. Requirements).

As far as the source code is concerned, three main directories can be distinguished:
e src/bas/, containing the original C code base, from the Bulgarian Academy
of Sciences by Petar Mitankin

e src/lmu/, containing the main project files to this project, i.e. the wrapper

classes in adapter/ and the document indexing classes in indexer/.
e another directory of great use and, especially when looking for use-case exam-

ples is t/, the test directory.

After getting the sources, and fulfilling the Requirements, the sources can be com-

piled and installed.
A.1 Getting the sources

The sources are available, a) either on the CD shipped with this printed work, or
b) from http://www.cip.ifi.lmu.de/~bruder/sis/ from where the version con-

trolled sources can be downloaded by

issuing the following command

wget http://www.cip.ifi.lmu.de/~bruder/sis/sis-latest.tar.gz
followed by the unpacking command:

tar xvzf sis-latest.tar.gz

A.2 Structure of this project

root of the project
base CMakeLists.txt file
generated from Doxyfile.in

| -- CMakeLists.txt
|-- Doxyfile

|-- Doxyfile.in
|-- build

|-- config.cmake

Will be used by cmake

Directory to build from

Basic configuration for *.in files
|-- etc

Il I--N

text files to test automata, etc.

H OH OH H O OH OH OH

text files containing Nietzsche works

97

http://www.cip.ifi.lmu.de/~bruder/sis/

-- 1lib # libraries generated from src/
|-- libcautomata.a
|-- libcppautomataadapter.a

-- libcppindexer.a

-— src # sources
| -— CMakeLists.txt
|-- bas # Bulgarian Academy of Sciences sources
| |-- CMakeLists.txt
| == 1ml
I - L]
|-- config # Files used to configure the sources

| “-- sis_config.hpp.in
|-- lmu # Sources written for this work

| T-- cis

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| | |-- sis_config.hpp
|

|

|

|

| | -- CMakeLists.txt
|
|
|
|
|
|
|
|
|

|
|
| | -- adapter # Adapter classes to bas/Ilml
I I == [...]
| | -— cppbase.hpp
| |-- indexer # Document indexing automata
| | —-[...]
| “-- utility.hpp
|-- main.cpp
-t # Unit test sources
- [...]
-- var # folder for various files:
T—-- t3.stat # logs, stats, etc.

A.3 Requirements
For a successful compilation of this project the following requirements need to be
fulfilled:

o the GNU compilers gcc and g++ with g++ > 4.7.0 (or any suitable compiler

with C++11 support)®®

o cmake > 2.8.3 (to build the Makefile)"’

Snttp://gcc.gnu.org/
SThttp://www.cmake . org/

98

http://gcc.gnu.org/
http://www.cmake.org/

« doxygen > 1.7.5.1 (optionally, to build the technical documentation)’®

A.4 Compilation

Compilation of the sources is done in a multi-step process. Generally, one should do
so-called “out-of-source-builds” with cmake, i.e. one should not compile the sources
from within the source tree. What this means is, that one will create a build-

directory from where all cmake, make and compilation steps will be carried out.

To this end, the steps in successfully building the project follow along these lines

(more detailed descriptions will follow right after):

cd ~/sis; \ # Change to project's directory

rm -rf build; \ # delete (old) build directory

mkdir build; \ # Create a clean build directory

cd build; \ # switch to it

cmake \ # create Makefiles by running cmake
-DCMAKE_C_COMPILER=/usr/bin/gcc \ # set specific c and c++ compilers
-DCMAKE_CXX_COMPILER=/usr/local/bin/g++-4.7 \
-DCMAKE_BUILD_TYPE=Release .. ; \ # set the build type

make; \ # run make (compile)

make test; \ # run tests (optional)

bin/caut # run (any executable from build/bin/)

It is important to note the following points:

o it is essential to set a suitable compiler for the C++-files. It needs to be
capable of compiling according to the new C+411 standard. It is set using
-DCMAKE_CXX_COMPILER=.

o All files will be built in the build/ directory. You will find the executables in
build/bin/

« make doc offers a separate target in the Makefile to build the technical docu-

mentation using doxygen

*®nttp://doxygen.org/

99

http://doxygen.org/

B Glossary

Alphabet Finite set of symbols

Canonical Representative the longest member of an equivalence class
CLI Command-line Interface

Compacted Automaton an automaton with compacted transitions, i.e. not all

states need to be explicit.

Compressed Automaton Petar Mitankin’s term in the C base implementation

for “Compacted Automaton”

DAWG Directed Acyclic Word Graph:

» all states are accepting

e “Crochemore has pointed out that with a different assignment of accept-
ing states, this DFA is the smallest automaton for the set of all suffixes
of w.[3]

DFA Deterministic Finite (State) Automaton
FSA Finite State Automata consist of states and transitions between states that
react to input. They are useful to a variety of software applications, for ex-

ample the lexical analysis components of compilers and text retrieval pro-

grams[Compare 14, end of chapter 1].
KLOC abbreviation for 1K = 1000 Lines Of Code, compare with SLOC

Language a (potentially infinite) set of strings, whose symbols are drawn from one

and the same alphabet [following 14, end of chapter 1].
LTR left-to-right (reading direction, automaton)
LRS longest repeated suffix (of a word w)

Partial DFA “Let a partial deterministic finite automaton be a DFA in which each
state need not have a transition edge for each letter of the alphabet.” [3, p. 31].

Regular Expressions a structural notation to describe patterns which can be rep-

resented through a finite state automaton [following 14, end of chapter 1].

RTL right-to-left (reading direction, automaton)

SLOC abbreviation for Single Lines Of Code, compare with KLOC

100

String a finite set of symbols [following 14, end of chapter 1].

Suffix Tree a.k.a. “‘compact position trees’, earlier as ‘PATRICIA trees’”[3,
p. 31

On-line algorithm “in the strong sense”[3] “At each stage of our construc-
tion, the automaton will be correct for the prefix of w that has been

processed.”[3, p. 39]

101

C Colophon

This work was written in TextMate 1.5.11 on a Mac OSX 10.7.3 using the excellent
markup language pandoc 1.9.1.2 with inline graphviz and from there, converted
to IWTEX and typeset using a custom shell script. The whole typesetting process
took about half a minute to render the final pdf. pandoc also makes it possible
to render presentations and websites from the same sources without changing the
input. It builds on Markdown and MultiMarkdown and makes writing technical

documentation and scientific works a breeze.

pandoc: http://www.johnmacfarlane.net/pandoc/.

102

http://www.johnmacfarlane.net/pandoc/

D Acknowledgements

This work heavily builds on the work by Klaus U. Schulz, Stoyan Mihov, Petar
Mitankin and Stefan Gerdjikoff and their to-be-published paper [10].

The existing code base was written by Petar Mitankin and was adapted and extended

as described in this paper.

Many discussion with Klaus Schulz and Petar Mitankin and my fellow colleagues
Estelle Perez, Florian Fink, David Kaumanns and Patrick Seebauer tremendously
helped to deeply understand the algorithms themselves as well as the occasional

edge cases.

103

E Thanks

In my final words I would like to express my sincerest thanks to the people mentioned
here and whose input has been immensely helpful in covering the difficult topic of
this thesis:

e Front and foremost, I would like to thank Prof. Klaus U. Schulz not only
for providing me with this interesting topic for a thesis from the field of Fi-
nite State Automata, but most for his invaluable expertise, his patience and
thoughtfulness and his unmistakeable capability of breaking down the hardest-
to-cover topics into easily understandable examples and pictures. I value these

wholeheartedly.

e Second, Petar Mitankin and his incredibly well-thought out and cleverly de-
signed base implementation of many of the algorithms to build on that com-
prised the aforementioned basic C-layer of this work. Before reading his code,

I thought I was proficient in reading and writing C. Now I really am.

o Estelle Perez, my fellow student colleague, for her insightfulness, patience and
eager to understand even the hardest of algorithms, while still having her own
thesis to write and for all the tracing back Petar’s Code in places where I
was lost. Not to forget the invaluable discussions on the design of this work.

Thank you, thank you, thank you, Estelle!

e Dr. Max Hadersbeck, my academic mentor who not only made computational
linguistics a hobby for me, but who is a friend as good as you can imagine:
even in hard times, he was always there for me, a friend and mentor you can

count on.

e My fellow students Patrick Seebauer, David Kaumanns and Florian Fink for
their discussions to help clear things up when I was lost or in search for new
ideas as well as for their dedicated proof reading and valuable input. Thank

you guys, you rock!
e My long time friend Claudia Iberle for her extensive proof reading.

e My friends and family, foremost my beloved sister Franciska, again, for all
your patience during my absence while writing the thesis. I couldn’t imagine

what I would be doing without you.

104

List of Tables

10
11

Progression of index structures
Relationships o
Comparison of properties of Ukkonen’s Suffix Tree construction . . .
Comparison of properties of Inenaga et al’s CDAWG construction

Comparison of properties of Schulz / Mihov et al’s SCDAWG con-

struction e

Indexing 697033 Bytes (0.697 MB) of text in a document-indexing
CDAWG. . . . e e

Indexing 697033 Bytes (0.697 MB) of text in a document-indexing
SCDAWG. o e

Input/Output size metrics for CDAWGs
Input/Output size metrics for SCDAWGs
Heavy load statistics for SCDAWG

Heavy load statistics for SCDAWG (internal figures)

105

List of Figures

10

11

12
13

14
15
16
17
18
19
20

21

Example Automaton Trie(L) for L = {cocoa,cola}
Example Automaton SuffizTrie(L) for L = {Suf(cocoa), Suf(cola)}

Example Automaton CDAWG (L) for Lgy¢(cocoa,cola) = {cocoa, ocoa,

coa,oa,a,cola,ola,la,[al} oo
Graphical overview of structure relationships
Suffix Tree for L = {cocoa, ocoa, coa,oa,a}

Suffix Tree construction step for L = {c(ocoa)} (in open edge repre-

sentation)
Suffix Tree construction step for L = {c(ocoa)}

Suffix Tree construction step for L = {co(coa), o(coa)} (in open edge

representation) . o.o.
Suffix Tree construction step for L = {co(coa),o(coa)}

Suffix Tree construction step for L = {coc(oa), oc(oa)}. Factor c¢(oa)
remaining to be inserted in a later step, the active point on implicit

state (root,c, 1) is represented by the dot.

Suffix Tree construction step for L = {coco(a),oco(a)} (with factors

co(a),o(a) remaining)l
Suffix Tree construction step 1 for L = {cocoa,ocoa}

Suffix Tree construction step 2 for L = {cocoa, ocoa, coa}. Suffixes oa

and a waiting for insertion L.
Suffix Tree construction step 3 for L = {cocoa, ocoa,coa}
Suffix Tree construction step 4 for L = {cocoa, ocoa, coa,oa}
Suffix Tree construction step 5 for L = {cocoa, ocoa, coa, oa,a}

CDAWG for L = {cocoa,ocoa,coa,oa,a}
CDAWG construction step for L = {c(ocoa)}
CDAWG construction step for L = {co(coa),o(coa)}

CDAWG construction step for L = {coc(oa), oc(oa)} with the factor

c(oa) waiting for insertion L.

CDAWG construction step for L = {coco(a),oco(a)} — factors up to

the current point, co(a), o(a) postponed

10

31

106

22

23

24
25
26
27
28
29
30
31
32
33
34

CDAWG construction step 1 for L = {cocoa, ocoa}. Suffixes coa, oa,

and a left for insertion e 43

CDAWG construction step 2 for L = {cocoa, ocoa, coa}. Suffixes oa,

a left for insertion L oL L 43
CDAWG construction step 4 for L = {cocoa, ocoa, coa,oa,a} 44
SCDAWG structure overview 47
SCDAWG for Lyg = {Inf(cocoa), Inf(cola)} 48
Online construction of a representation of SCDAWG for #D$ 50
Graphical overview of document indexing steps 53
Graphical overview of pattern retrieval steps. 54
Layered system overview 73
Staging system overviewo oo 76
Graphical Overview of CDAWG construction algorithm evolution . . 90
Graphical Overview of document-indexing SCDAWG construction . 91

Graphical Overview document-indexing SCDAWG construction (im-

plementation side) o L 91

107

References

1]

2]

Alfred V. Aho and Margaret J. Corasick. “Efficient string matching: an aid to
bibliographic search”. In: Commun. ACM 18 (6 1975), pp. 333-340.

A. Blumer et al. “Complete inverted files for efficient text retrieval and anal-
ysis”. In: Journal of the Association for Computing Machinery 34.3 (1987),
pp. 578-595.

A. Blumer et al. “The smallest automation recognizing the subwords of a
text”. In: Theoretical Computer Science 40 (1985). Eleventh International Col-

loquium on Automata, Languages and Programming, pp. 31-55.

Marshall Cline. C++ FAQ. Aug. 2012. URL: http://www.parashift.com/c+
+-faq/index.html.

Maxime Crochemore. “Transducers and repetitions”. In: Theoretical Computer
Science 45.0 (1986), pp. 63-86.

Maxime Crochemore and Renaud Vérin. “On compact directed acyclic word
graphs”. In: Structures in Logic and Computer Science. Ed. by Jan Mycielski,
Grzegorz Rozenberg, and Arto Salomaa. Vol. 1261. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1997, pp. 192-211.

Jan Daciuk et al. “Incremental construction of minimal acyclic finite-state

automata”. In: Computational Linguistics 26.1 (2000), pp. 3—-16.

Paul J. Deitel. C++ How to Program (6th Edition). 6th ed. Prentice Hall,
Aug. 2007.

Erich Gamma et al. Design Patterns: Elements of Reusable Object-Oriented
Software. 1st ed. Addison-Wesley Professional, Nov. 1994.

Stefan Gerdjikov et al. “Good parts first — a new algorithm for approximate

search in lexica”. To appear. 2012.

Robert Giegerich and Stefan Kurtz. “From Ukkonen to McCreight and Weiner:
A Unifying View of Linear-Time Suffix Tree Construction”. In: Algorithmica
19 (1997), pp. 331-353.

R. Grimm. C++11: Der Leitfaden fiir Programmierer zum neuen Standard.

Programmer’s Choice. Addison Wesley, 2011.

Max Hadersbeck. Programmierung mit C++ fiir Computerlinguisten. CIS In-
ternal Book, 2010.

J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to automata theory,
languages, and computation. Pearson/Addison Wesley, 2007.

Andrew Hunt and David Thomas. Der Pragmatische Programmierer. Hanser
Fachbuch, Mar. 2003.

108

http://www.parashift.com/c++-faq/index.html
http://www.parashift.com/c++-faq/index.html

[16]

[17]

[23]

[24]

[25]

Shunsuke Inenaga et al. “On-Line Construction of Compact Directed Acyclic
Word Graphs”. In: Word Journal Of The International Linguistic Association
146.2 (2005), pp. 1-12.

Shunsuke Inenaga et al. “On-Line Construction of Symmetric Compact Di-
rected Acyclic Word Graphs”. In: Proceedings of the 8th International Sym-
posium on String Processing and Information Retrieval (SPIRE’01). IEEE
Computer Society, 2001, pp. 96-110.

Edward M. McCreight. “A Space-Economical Suffix Tree Construction Algo-
rithm”. In: Journal of the Association for Computing Machinery 23.2 (1976),
pp. 262-272.

Scott Meyers. Effektiv C++ programmieren. Addison Wesley Verlag, Feb. 1998.

Mark Nelson. Fast String Searching With Suffix Trees. 1996. URL: http://
marknelson.us/1996/08/01/suffix-trees/.

Friedrich Nietzsche. Friedrich Nietzsche, Digital critical edition of the complete
works and letters, based on the critical text by G. Colli and M. Montinari,
Berlin/New York, de Gruyter 1967—, edited by Paolo D’lorio. 2012. URL:
http://nietzschesource.org/.

stackoverflow/jogojapan. [Answer to] Ukkonen’s suffix tree algorithm in plain
English? [without concrete date]. URL: http: //stackoverflow . com/a/
9513423.

Esko Ukkonen. “On-line construction of suffix-trees”. In: Algorithmica 14.3
(1995), pp. 249-260.

Peter Weiner. “Linear pattern matching algorithms”. In: Proceedings of 14th

IEEE Annual Symposium on Switching and Automata Theory. 1973, pp. 1-11.

Wikipedia. Inverted index. 2012. URL: http://en.wikipedia.org/wiki/

Inverted_file.

Wikipedia. Regular language. 2012. URL: http://en.wikipedia.org/wiki/
Regular_language.

Wikipedia. Suffiz tree. 2012. URL: https ://en . wikipedia . org/wiki /

Suffix_tree.

Wikipedia. Trie. 2012. URL: http://en.wikipedia.org/wiki/Trie.

109

http://marknelson.us/1996/08/01/suffix-trees/
http://marknelson.us/1996/08/01/suffix-trees/
http://nietzschesource.org/
http://stackoverflow.com/a/9513423
http://stackoverflow.com/a/9513423
http://en.wikipedia.org/wiki/Inverted_file
http://en.wikipedia.org/wiki/Inverted_file
http://en.wikipedia.org/wiki/Regular_language
http://en.wikipedia.org/wiki/Regular_language
https://en.wikipedia.org/wiki/Suffix_tree
https://en.wikipedia.org/wiki/Suffix_tree
http://en.wikipedia.org/wiki/Trie

	Preface
	Motivation and Goals
	Uses for Automata
	A motivating example
	Goals of this work
	Organization of this work

	Index Structures
	Technical Preliminaries
	Notation
	Definitions

	Indexing all subparts of a text
	General Overview of Indexing Steps

	Comparison and highlights of the index structures used in the following
	Properties
	Suffix Tree
	CDAWG
	SCDAWG
	Graphical Overview of structure relationships

	Indexing all subparts of a text directly
	Indexing all suffixes
	Ukkonen's algorithm
	Suffix Tree construction
	More resources

	Building the smallest automaton possible
	Definition of the CDAWG
	The Inenaga algorithm for CDAWGs
	Construction example

	Constructing the symmetric automaton
	Definition of the SCDAWG
	SCDAWG structure overview
	SCDAWG Example
	Building the SCDAWG
	Algorithm for the bijection
	Intuitive description of the algorithm
	Pseudo-Code
	Actual implementation

	Adding ``inverted file'' information to the SCDAWG
	Adapting Blumer, Blumer et al.'s idea to SCDAWGs
	Attaching inverted file information to SCDAWG's states
	The algorithm
	Overview of the algorithm steps
	Intuitive description of the algorithm
	Actual implementation of adding of documents
	Actual implementation of indexing step
	Locating patterns and positions in the SCDAWG
	Collecting the positions in the text base

	Overall Time and space complexity

	Code Usage Example
	C Automata Code Base Usage Example
	msgrep implementation example
	Sample output

	Adapting the existing automata code base
	Extending, Reusing and Refactoring of the existing implementation
	Refactoring guidelines and Approaches

	Wrapping C
	Adapter Classes
	General Description of Adapter Classes

	Implementation Specifics: Layer System Description
	Advantages of the layered system
	Conventions used in the Layered System

	Implementation specifics: Staging system
	Staging system idea
	In-depth description of stages

	Implementation specifics: the templated DocumentIndexingAutomaton
	DocumentIndexingAutomaton as a template

	Specific new features of C++11
	auto keyword
	Constructor delegation
	Compilers

	Transition to cmake build system
	CMake build framework
	Testing
	Unit tests
	CPack packaging

	Doxygen integration

	Metrics
	Code Metrics
	Adapted Code base size metrics
	Newly written indexing automaton code base
	Whole code base size metrics

	Indexing time metrics
	Automaton Size metrics

	Summary
	Wrap-Up
	A few words on the current State of the Art
	Possible areas of improvement
	Accessibility improvements
	Multithreading support
	General improvement ideas
	User Interface improvements
	Functional improvements

	Compilation and Installation procedure
	Getting the sources
	Structure of this project
	Requirements
	Compilation

	Glossary
	Colophon
	Acknowledgements
	Thanks

