
Zeckendorf family identities
generalized

Darij Grinberg

June 11, 2018, long version

Abstract. In [WooZei09], Philip Matchett Wood and Doron Zeilberger
have constructed identities for the Fibonacci numbers fn of the form

1 fn = fn for all n ≥ 1;
2 fn = fn−2 + fn+1 for all n ≥ 3;
3 fn = fn−2 + fn+2 for all n ≥ 3;
4 fn = fn−2 + fn + fn+2 for all n ≥ 3;

etc.;

k fn = ∑
s∈Sk

fn+s for all n > max {−s | s ∈ Sk} ,

where Sk is a fixed “lacunar” set of integers (“lacunar” means that no
two elements of this set are consecutive integers) depending only on
k. (The condition n > max {−s | s ∈ Sk} is only to make sure that all
addends fn+s are well-defined. If the Fibonacci sequence is properly
continued to the negative, this condition drops out.)
In this note we prove a generalization of these identities: For any family(

a1, a2, . . . , ap
)

of integers, there exists one and only one finite lacunar
set S of integers such that every n (high enough to make the Fibonacci
numbers in the equation below well-defined) satisfies

fn+a1 + fn+a2 + · · ·+ fn+ap = ∑
s∈S

fn+s.

The proof uses the Fibonacci-approximating properties of the golden
ratio. It would be interesting to find a purely combinatorial proof.

This is a detailed version of my note [Grinbe11]. It contains the proof
outlined in [Grinbe11] in much more detail and was written for the
purpose of persuading myself that my proofs are correct.
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1. The main result

The purpose of this note is to establish a generalization of the so-called Zeckendorf
family identities which were discussed in [WooZei09]. Before we can state it, we
need a few definitions:

Definition 1.1. A subset S of Z is called lacunar if it satisfies
(s + 1 /∈ S for every s ∈ S).

In other words, a subset S of Z is lacunar if and only if it contains no two
consecutive integers.

Definition 1.2. The Fibonacci sequence ( f1, f2, f3, . . .) is a sequence of positive inte-
gers defined recursively by the initial values f1 = 1 and f2 = 1 and the recurrence
relation ( fn = fn−1 + fn−2 for all n ∈N satisfying n ≥ 3).

(Here and in the following, N denotes the set {0, 1, 2, . . .}.)

Remark 1.3. Many authors define the Fibonacci sequence slightly differently:
They define it as a sequence ( f0, f1, f2, . . .) of nonnegative integers defined re-
cursively by the initial values f0 = 0 and f1 = 1 and the recurrence rela-
tion ( fn = fn−1 + fn−2 for all n ∈N satisfying n ≥ 2). Thus, this sequence be-
gins with a 0, unlike the Fibonacci sequence defined in our Definition 1.2. How-
ever, starting at its second term f1 = 1, this sequence takes precisely the same
values as the Fibonacci sequence defined in our Definition 1.2 (because both se-
quences satisfy f1 = 1 and f2 = 1, and from here on the recurrence relation
ensures that their values remain equal). So it differs from the latter sequence
only in the presence of one extra term f0 = 0 at the front.

The Fibonacci sequence is one of the best known integer sequences from com-
binatorics. It has had conferences, books and a journal devoted to it. By way of
example, let us only mention Vorobiev’s book [Vorobi02], which is entirely con-
cerned with Fibonacci numbers, and Benjamin’s and Quinn’s text [BenQui03] on
bijective proofs, which includes many identities for Fibonacci numbers.

In [WooZei09], Wood and Zeilberger discuss bijective proofs of the so-called Zeck-
endorf family identities. These identities are a family of identities for Fibonacci num-
bers (one for each positive integer); the first seven of these identities are

1 fn = fn for all n ≥ 1;
2 fn = fn−2 + fn+1 for all n ≥ 3;
3 fn = fn−2 + fn+2 for all n ≥ 3;
4 fn = fn−2 + fn + fn+2 for all n ≥ 3;
5 fn = fn−4 + fn−1 + fn+3 for all n ≥ 5;
6 fn = fn−4 + fn+1 + fn+3 for all n ≥ 5;
7 fn = fn−4 + fn+4 for all n ≥ 5.
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In general, for each positive integer k, the k-th Zeckendorf family identity expresses
k fn (for each sufficiently large integer n) as a sum of the form ∑

s∈S
fn+s, where S is a

finite lacunar subset of Z. Of course, the subset S does not depend on n.
Our main theorem is the following:

Theorem 1.4 (generalized Zeckendorf family identities). Let T be a finite set, and
let at be an integer for every t ∈ T.

Then, there exists one and only one finite lacunar subset S of Z such that1

(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
.

Remark 1.5. 1. Theorem 1.4 generalizes the Zeckendorf family identities
(which correspond to the case when all at are = 0).

2. The condition n > max ({−at | t ∈ T} ∪ {−s | s ∈ S}) in Theorem 1.4 is
just a technical condition made in order to ensure that the Fibonacci num-
bers fn+at for all t ∈ T and fn+s for all s ∈ S are well-defined. (If we would
define the Fibonacci numbers fn for integers n ≤ 0 by extending the re-
currence relation fn = fn−1 + fn−2 “to the left”, then we could drop this
condition.)

The proof we shall give for Theorem 1.4 is not combinatorial. It will use inequal-
ities and the properties of the golden ratio; in a sense, its underlying ideas come
from analysis (although it will not actually use any results from analysis).

2. Basics on the Fibonacci sequence

We begin with some lemmas and notations:
We denote by N the set {0, 1, 2, . . .} (and not the set {1, 2, 3, . . .}, like some other

authors do). Also, we denote by N2 the set {2, 3, 4, . . .} = N \ {0, 1}.

Also, let φ =
1 +
√

5
2

. This number φ is known as the golden ratio. We notice that

φ ≈ 1.618 . . . and that φ2 = φ + 1. Binet’s formula states that fn =
φn − φ−n
√

5
for

every positive integer n. (See, e.g., [BenQui03, Identity 240] or [Vorobi02, (1.20)] for
proofs of Binet’s formula.)

We observe that the Fibonacci sequence ( f1, f2, f3, . . .) consists of positive integers
(indeed, its two starting values f1 = 1 and f2 = 1 are positive integers, and thus the
recurrence relation fn = fn−1 + fn−2 clearly ensures that all the following values

1Here and in the following, max∅ is understood to be 0.
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are also positive integers). Thus, fn > 0 for each positive integer n. Now, for each
integer n ≥ 2, we have fn−1 > 0 (since the Fibonacci sequence ( f1, f2, f3, . . .) consists
of positive integers). The recurrence relation of the Fibonacci sequence shows that
for each integer n ≥ 2, we have fn+1 = fn + fn−1 > fn (because fn−1 > 0), so that
fn < fn+1. In other words, f2 < f3 < f4 < · · · . In other words, the Fibonacci
sequence is strictly increasing beginning with its second term f2. Furthermore,
f1 = 1 = f2, so that f1 = f2 < f2 < f3 < f4 < · · · . Hence, the Fibonacci sequence is
weakly increasing.

We recall some basic and well-known facts about the Fibonacci sequence:

Lemma 2.1. Let S be a finite lacunar subset of N2. Then, ∑
t∈S

ft < fmax S+1.

Proof of Lemma 2.1. We WLOG assume that S is nonempty (since otherwise, Lemma 2.1
follows easily from our convention that max∅ = 0).

Every t ∈ N2 satisfies ft+1 = ft + ft−1 (due to the relation fn = fn−1 + fn−2,
applied to n = t + 1), so that

ft = ft+1 − ft−1. (1)

Let us write the set S in the form {s1, s2, . . . , sk}, where s1 < s2 < · · · < sk. Then,

∑
t∈S

ft =
k
∑

i=1
fsi and sk = max S.

Notice that k ≥ 1 (since S is nonempty). From s1 ∈ {s1, s2, . . . , sk} = S ⊆ N2, we
obtain s1 ≥ 2 and thus s1 − 1 ≥ 1. Hence, fs1−1 > 0.

On the other hand, every i ∈ {1, 2, . . . , k− 1} satisfies si + 1 ≤ si+1 − 1 2, so
that

fsi+1 ≤ fsi+1−1 (2)

2Proof. Let i ∈ {1, 2, . . . , k− 1}. Thus, both i and i + 1 belong to {1, 2, . . . , k}.
The set S is lacunar, and thus s + 1 /∈ S for every s ∈ S. Applying this to s = si, we get

si + 1 /∈ S (since si ∈ {s1, s2, . . . , sk} = S), so that si + 1 6= si+1 (since si+1 ∈ {s1, s2, . . . , sk} = S).
Since s1 < s2 < · · · < sk, we have si < si+1, so that si + 1 ≤ si+1 (because si and si+1 are

integers). Since si + 1 6= si+1, this becomes si + 1 < si+1, so that si + 1 ≤ si+1 − 1 (because si + 1
and si+1 are integers).
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(since the Fibonacci sequence ( f1, f2, f3, . . .) is weakly increasing). Thus,

∑
t∈S

ft =
k

∑
i=1

fsi︸︷︷︸
= fsi+1− fsi−1

(by (1), applied to t=si)

=
k

∑
i=1

(
fsi+1 − fsi−1

)
=

k

∑
i=1

fsi+1︸ ︷︷ ︸
=

k−1
∑

i=1
fsi+1+ fsk+1

−
k

∑
i=1

fsi−1︸ ︷︷ ︸
= fs1−1+

k
∑

i=2
fsi−1

=


k−1

∑
i=1

fsi+1︸︷︷︸
≤ fsi+1−1

(by (2))

+ fsk+1

−
(

fs1−1 +
k

∑
i=2

fsi−1

)

≤
(

k−1

∑
i=1

fsi+1−1 + fsk+1

)
−
(

fs1−1 +
k

∑
i=2

fsi−1

)

=

(
k

∑
i=2

fsi−1 + fsk+1

)
−
(

fs1−1 +
k

∑
i=2

fsi−1

)
(here, we substituted i for i + 1 in the first sum)

= fsk+1 − fs1−1 < fsk+1
(
since fs1−1 > 0

)
= fmax S+1

(since sk = max S). This proves Lemma 2.1.

Lemma 2.2 (existence part of the Zeckendorf theorem). Let n ∈ N. Then, there
exists a finite lacunar subset T of N2 such that n = ∑

t∈T
ft.

Proof of Lemma 2.2. We are going to prove Lemma 2.2 by strong induction over n:
Induction base: Let n = 0. Then, there exists a finite lacunar subset T of N2 such

that n = ∑
t∈T

ft (namely, T = ∅), and thus Lemma 2.2 holds for n = 0, and the

induction base is completed.
Induction step: Let ν ∈ N be such that ν > 0. Assume that Lemma 2.2 holds for

every nonnegative integer n < ν. We must now prove that Lemma 2.2 holds for
n = ν.

In fact, we have ν > 0, so that ν ≥ 1 (since ν is an integer). Thus, f2 = 1 ≤ ν.
Let t1 be the maximal integer τ from N2 satisfying fτ ≤ ν 3. Then, ft1 ≤ ν

3Such an integer t1 exists, because of the following:
The Fibonacci sequence ( f1, f2, f3, . . .) is strictly increasing beginning with f2 and therefore

unbounded from above (because every strictly increasing sequence of integers is unbounded
from above). Hence, “sooner or later” this sequence will surpass any given integer. Thus, in
particular, there are only finitely many integers τ from N2 satisfying fτ ≤ ν.

On the other hand, 2 is an integer τ from N2 satisfying fτ ≤ ν (since f2 ≤ ν). Hence, there
exists at least one integer τ from N2 satisfying fτ ≤ ν. Thus, there exists a maximal integer τ
from N2 satisfying fτ ≤ ν (because we have already shown that there are only finitely many
integers τ from N2 satisfying fτ ≤ ν). This is what we wanted to prove.
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but ft1+1 > ν (since t1 is maximal). Hence, ν− ft1 is a nonnegative integer (since
ft1 ≤ ν) and < ν (since ft1 > 0). Thus, Lemma 2.2 holds for n = ν − ft1 (since
we assumed that Lemma 2.2 holds for every nonnegative integer n < ν). In other
words, there exists a finite lacunar subset T of N2 such that ν− ft1 = ∑

t∈T
ft. We

rename this subset T as S (so as not to confuse it with the set T that we want
to construct for n = ν). Thus, we have a finite lacunar subset S of N2 such that
ν− ft1 = ∑

t∈S
ft.

The relation fn = fn−1 + fn−2 (applied to n = t1 + 1) yields ft1+1 = ft1 + ft1−1, so
that ft1+1− ft1 = ft1−1. Now, from ν < ft1+1, we obtain ν− ft1 < ft1+1− ft1 = ft1−1.

Since the set S is lacunar, we know that

s + 1 /∈ S for every s ∈ S. (3)

Now, let s ∈ S. Then, fs is an addend of the sum ∑
t∈S

ft. Since ft is nonnegative

for every t ∈ S, we thus have

fs ≤ ∑
t∈S

ft = ν− ft1 < ft1−1

and thus s < t1 − 1 (since the Fibonacci sequence ( f1, f2, f3, . . .) is weakly increas-
ing). This rewrites as s + 1 < t1.

Now, forget that we fixed s. We thus have proven that

s + 1 < t1 for each s ∈ S. (4)

Applying this to s = max S, we get max S + 1 < t1 (since max S ∈ S) 4. Hence,
t1 > max S+ 1 > max S, and thus t1 /∈ S (because if an integer x satisfies x > max S,
then x /∈ S). Also, t1 + 1 > t1 > max S, so that t1 + 1 /∈ S (because if an integer x
satisfies x > max S, then x /∈ S). Combining t1 + 1 /∈ S with t1 + 1 /∈ {t1} (which is
obvious), we obtain t1 + 1 /∈ S ∪ {t1}.

Again, let s ∈ S. From (4), we obtain s + 1 < t1. Thus, s + 1 6= t1; in other words
s + 1 /∈ {t1}. But (3) yields s + 1 /∈ S. Combining this with s + 1 /∈ {t1}, we get
s + 1 /∈ S ∪ {t1}.

Now, forget that we fixed s. We thus have proven that

s + 1 /∈ S ∪ {t1} for every s ∈ S. (5)

Hence, s + 1 /∈ S∪ {t1} for every s ∈ S∪ {t1} 5. In other words, the set S∪ {t1}
is lacunar. Denoting this set S ∪ {t1} by Q, we thus have shown that the set Q is

4Strictly speaking, this argument only works when S is nonempty. But when S is empty, the
inequality max S + 1 < t1 is obvious for a different reason: Namely, in this case, we have
max S = max∅ = 0, so that max S + 1 = 1 < 2 ≤ t1 (since t1 ∈N2).

5Proof. Let s ∈ S ∪ {t1}. We must prove that s + 1 /∈ S ∪ {t1}.
If s ∈ S, then this follows immediately from (5). Thus, we can WLOG assume that s /∈ S.

Assume this. Combining s ∈ S∪ {t1} with s /∈ S, we obtain s ∈ (S ∪ {t1}) \ S ⊆ {t1}. Therefore,
s = t1. Hence, s + 1 = t1 + 1 /∈ S ∪ {t1}. This proves s + 1 /∈ S ∪ {t1}.
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lacunar. Clearly, Q is a finite set (since S is finite). Moreover, {t1} ⊆ N2 (since
t1 ∈ N2), so that Q = S︸︷︷︸

⊆N2

∪ {t1}︸︷︷︸
⊆N2

⊆ N2 ∪N2 = N2. From Q = S ∪ {t1}, we obtain

Q \ {t1} = (S ∪ {t1}) \ {t1} = S (since t1 /∈ S). Also, t1 ∈ {t1} ⊆ S ∪ {t1} = Q.
Therefore,

∑
t∈Q

ft = ∑
t∈Q\{t1}

ft + ft1 = ∑
t∈S

ft︸ ︷︷ ︸
=ν− ft1

+ ft1 (since Q \ {t1} = S)

= (ν− ft1) + ft1 = ν.

Hence, we have found a finite lacunar subset Q of N2 such that ν = ∑
t∈Q

ft. Hence,

there exists a finite lacunar subset T of N2 such that ν = ∑
t∈T

ft (namely, T = Q).

This proves Lemma 2.2 for the case n = ν. This completes the induction step, and
thus the induction proof of Lemma 2.2 is complete.

Lemma 2.3 (uniqueness part of the Zeckendorf theorem). Let n ∈ N, and let T
and T′ be two finite lacunar subsets of N2 such that n = ∑

t∈T
ft and n = ∑

t∈T′
ft.

Then, T = T′.

Proof of Lemma 2.3. We are going to prove Lemma 2.3 by strong induction over n:
Induction base: Let n = 0. Then, n = ∑

t∈T
ft yields T = ∅ 6. Similarly, T′ = ∅.

Comparing this with T = ∅, we obtain T = T′. Hence, we have shown that
Lemma 2.3 holds for n = 0, and the induction base is completed.

Induction step: Let ν ∈ N be such that ν > 0. Assume that Lemma 2.3 holds for
every nonnegative integer n < ν. We must now prove that Lemma 2.3 holds for
n = ν.

So let T and T′ be two finite lacunar subsets of N2 such that ν = ∑
t∈T

ft and

ν = ∑
t∈T′

ft. Then, we want to prove that T = T′.

Since ∑
t∈T

ft = ν > 0, we have T 6= ∅. Thus, max T ∈ T. Similarly, max T′ ∈ T′.

But fmax T is an addend in the sum ∑
t∈T

ft (since max T ∈ T). Since the Fibonacci

numbers ft are all nonnegative, we thus obtain fmax T ≤ ∑
t∈T

ft = ν = ∑
t∈T′

ft <

fmax T′+1 (by Lemma 2.1, applied to S = T′). Hence, max T < max T′ + 1 (since
the Fibonacci sequence ( f1, f2, f3, . . .) is weakly increasing), so that max T ≤ max T′

(since max T and max T′ are integers). The same argument (with the roles of T

6Proof. Assume the contrary. Thus, T 6= ∅. Hence, ∑
t∈T

ft is a nonempty sum of positive integers

(since the Fibonacci numbers ft are positive), and thus itself is a positive integer. Thus, ∑
t∈T

ft > 0.

This contradicts ∑
t∈T

ft = n = 0. This contradiction shows that our assumption was wrong, qed.
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and T′ interchanged) shows that max T′ ≤ max T. Combining this with max T ≤
max T′, we get max T = max T′. Let µ denote the number max T = max T′. Then,
µ = max T ∈ T and µ = max T′ ∈ T′. Let S = T \ {µ} and S′ = T′ \ {µ}. Clearly,
S is a finite subset of N2. Furthermore, S is a subset of the lacunar subset T of Z

(because S = T \ {µ} ⊆ T), and thus itself is lacunar (since every subset of a lacunar
subset of Z is lacunar). Thus, S is a finite lacunar subset of N2. Similarly, S′ is a
finite lacunar subset of N2. Obviously, ∑

t∈S
ft ≥ 0 (since all ft are nonnegative).

Now,

ν− fµ = ∑
t∈T

ft − fµ = ∑
t∈T\{µ}

ft (since µ ∈ T)

= ∑
t∈S

ft

(since T \ {µ} = S) and similarly ν − fµ = ∑
t∈S′

ft. Since ν − fµ is a nonnegative

integer (because ν− fµ = ∑
t∈S

ft ≥ 0) and satisfies ν− fµ < ν (because fµ > 0), we

can thus apply Lemma 2.3 to ν− fµ instead of n and to the lacunar subsets S and S′

instead of T and T′ (since we assumed that Lemma 2.3 holds for every nonnegative
integer n < ν), and we obtain S = S′. Now, S = T \ {µ} yields T = S ∪ {µ} (since
µ ∈ T), and similarly T′ = S′ ∪ {µ}, so that T = S︸︷︷︸

=S′
∪ {µ} = S′ ∪ {µ} = T′. This

proves Lemma 2.3 for the case n = ν. Thus, the induction step is completed, and
the induction proof of Lemma 2.3 is done.

Theorem 2.4 (Zeckendorf theorem). Let n ∈ N. Then, there exists one and only
one finite lacunar subset T of N2 such that n = ∑

t∈T
ft.

Proof of Theorem 2.4. There exists a finite lacunar subset T of N2 such that n = ∑
t∈T

ft

(according to Lemma 2.2), and such a subset is unique (because any two such
subsets are equal (according to Lemma 2.3)). Thus, there exists one and only one
finite lacunar subset T of N2 such that n = ∑

t∈T
ft. This proves Theorem 2.4.

Theorem 2.4 is a classical result known as the Zeckendorf theorem; it can be found
in various places. In particular, the proof given in [Hender16] is rather close to
ours. Hoggatt proved a generalization of Theorem 2.4 in [Hoggat72].

Definition 2.5. Let n ∈N. Theorem 2.4 shows that there exists one and only one
finite lacunar subset T of N2 such that n = ∑

t∈T
ft. We will denote this set T by

Zn. Thus, n = ∑
t∈Zn

ft.
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3. Inequalities for the golden ratio

Next, we state a completely straightforward (and well-known) theorem, which
shows that the Fibonacci sequence grows roughly exponentially (with the expo-
nent being the golden ratio φ):

Theorem 3.1. For every positive integer n, we have | fn+1 − φ fn| =
1√
5
(φ− 1)n.

Theorem 3.1 can easily be derived from [BenQui03, Chapter 9, Corollary 34]. For
the sake of self-containedness, let us nevertheless give a proof of it here.

Proof of Theorem 3.1. It is easy to see that φ−1 = φ− 1 and 1− φ−2 = φ− 1. Also,

(φ− 1)n ≥ 0 (since φ− 1 ≥ 0) and thus
1√
5
(φ− 1)n ≥ 0.

Let n be a positive integer. By Binet’s formula, we have

fn =
φn − φ−n
√

5
=

φn (1− φ−2n)
√

5
=

1√
5

φn
(

1− φ−2n
)

.

Applying this to n + 1 instead of n, we get

fn+1 =
1√
5

φn+1
(

1− φ−2(n+1)
)

.
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These two equalities yield

fn+1 − φ fn =
1√
5

φn+1
(

1− φ−2(n+1)
)
− φ · 1√

5
φn︸ ︷︷ ︸

=
1√
5

φφn

(
1− φ−2n

)

=
1√
5

φn+1
(

1− φ−2(n+1)
)
− 1√

5
φφn︸︷︷︸
=φn+1

(
1− φ−2n

)

=
1√
5

φn+1
(

1− φ−2(n+1)
)
− 1√

5
φn+1

(
1− φ−2n

)

=
1√
5

φn+1

(1− φ−2(n+1)
)
−
(

1− φ−2n
)

︸ ︷︷ ︸
=φ−2n−φ−2(n+1)


=

1√
5

φn+1

φ−2n − φ−2(n+1)︸ ︷︷ ︸
=φ−2n−2=φ−2nφ−2


=

1√
5

φn+1
(

φ−2n − φ−2nφ−2
)
=

1√
5

φn+1φ−2n︸ ︷︷ ︸
=φ(n+1)+(−2n)=φ−(n−1)=(φ−1)

n−1

(
1− φ−2

)

=
1√
5

 φ−1︸︷︷︸
=φ−1


n−1 (

1− φ−2
)

︸ ︷︷ ︸
=φ−1

=
1√
5
(φ− 1)n−1 (φ− 1)︸ ︷︷ ︸

=(φ−1)n

=
1√
5
(φ− 1)n ,

so that

| fn+1 − φ fn| =
∣∣∣∣ 1√

5
(φ− 1)n

∣∣∣∣ = 1√
5
(φ− 1)n

(
since

1√
5
(φ− 1)n ≥ 0

)
,

and Theorem 3.1 is proven.

Let us show yet another lemma for later use:

Lemma 3.2. Let S be a finite lacunar subset of N2. Then, ∑
s∈S

(φ− 1)s ≤ φ− 1.

Proof of Lemma 3.2. We WLOG assume that S is nonempty (since otherwise, Lemma 3.2
follows easily from 0 ≤ φ− 1).

Let ψ = φ − 1. It is easily seen that 0 < ψ < 1. Also, ψ = φ − 1 yields ψ2 =

(φ− 1)2 = φ2︸︷︷︸
=φ+1

−2φ + 1 = (φ + 1) − 2φ + 1 = 2 − φ and thus 1 − ψ2 = 1 −
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(2− φ) = φ− 1 = ψ, so that
ψ2

1− ψ2 =
ψ2

ψ
= ψ. Also, from 0 < ψ < 1, we obtain

0 < ψ2 < 1, so that 1− ψ2 > 0.
Let us write the set S in the form {s1, s2, . . . , sk}, where s1 < s2 < · · · < sk. Then,

∑
s∈S

ψs =
k
∑

i=1
ψsi . Also, k ≥ 1 (since the set S is nonempty). On the other hand, every

i ∈ {1, 2, . . . , k− 1} satisfies si + 1 ≤ si+1 − 1 (this was proven during the proof of
Lemma 2.1) and thus si + 2 ≤ si+1 and therefore

ψsi+2 ≥ ψsi+1 (6)

(since 0 < ψ < 1). Besides, s1 ≥ 2 (since s1 ∈ S ⊆ N2) and thus ψs1 ≤ ψ2 (since

0 < ψ < 1). Now, ∑
s∈S

ψs =
k
∑

i=1
ψsi yields

(
1− ψ2

)
∑
s∈S

ψs =
(

1− ψ2
) k

∑
i=1

ψsi =
k

∑
i=1

ψsi︸ ︷︷ ︸
=ψs1+

k
∑

i=2
ψsi

− ψ2
k

∑
i=1

ψsi︸ ︷︷ ︸
=

k
∑

i=1
ψ2ψsi=

k
∑

i=1
ψsi+2=

k−1
∑

i=1
ψsi+2+ψsk+2

=

(
ψs1 +

k

∑
i=2

ψsi

)
−


k−1

∑
i=1

ψsi+2︸ ︷︷ ︸
≥ψsi+1

(by (6))

+ψsk+2


= ψs1 +

k

∑
i=2

ψsi −
k−1

∑
i=1

ψsi+2︸ ︷︷ ︸
≥ψsi+1

(by (6))

−ψsk+2

≤ ψs1 +
k

∑
i=2

ψsi −
k−1

∑
i=1

ψsi+1 − ψsk+2 = ψs1 +
k

∑
i=2

ψsi −
k

∑
i=2

ψsi − ψsk+2

(here, we substituted i for i + 1 in the second sum)

= ψs1︸︷︷︸
≤ψ2

−ψsk+2︸ ︷︷ ︸
≥0

≤ ψ2 − 0 = ψ2.

Dividing this inequality by 1− ψ2 (here we are using 1− ψ2 > 0), we get ∑
s∈S

ψs ≤

ψ2

1− ψ2 = ψ. Replacing ψ by φ− 1 in this inequality (since ψ = φ− 1), we rewrite it

as ∑
s∈S

(φ− 1)s ≤ φ− 1. This proves Lemma 3.2.
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4. Proving Theorem 1.4

Let us now come to the proof of Theorem 1.4. First, we formulate the existence part
of this theorem:

Theorem 4.1 (existence part of the generalized Zeckendorf family identities). Let
T be a finite set, and let at be an integer for every t ∈ T.

Then, there exists a finite lacunar subset S of Z such that(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
.

Before we start proving this, let us introduce a notation:

Definition 4.2. Let K be a subset of Z, and let a ∈ Z. Then, K + a will denote
the subset {k + a | k ∈ K} of Z.

Clearly, (K + a) + b = K + (a + b) for any two integers a and b. Also, K + 0 = K.
Finally,

if K is a lacunar subset of Z, and if a ∈ Z, then K + a is lacunar as well (7)

7.
Let us furthermore make two basic observations:

• If u and v are two real numbers, then

|u− v| ≤ |u|+ |v| . (8)

(Indeed, this is one of the forms of the triangle inequality.)

• If m is a positive integer, then

fm = fm+2 − fm+1. (9)

7Proof. Let K be a lacunar subset of Z. Let a ∈ Z. Let q ∈ K + a. We shall prove that q + 1 /∈ K + a.
Assume the contrary. In other words, assume that q + 1 ∈ K + a. Thus, q + 1 ∈ K + a =
{k + a | k ∈ K}. Hence, there exists some ` ∈ K such that q + 1 = `+ a. Consider this `.

Now, q ∈ K + a = {k + a | k ∈ K} yields that there exists some k ∈ K such that q = k + a.
Consider this k. Since K is a lacunar set, we have (s + 1 /∈ K for every s ∈ K). Applying this to
s = k, we get k + 1 /∈ K. But `+ a = q︸︷︷︸

=k+a

+1 = k + a + 1 yields ` = (k + a + 1)− a = k + 1 /∈ K,

contradicting ` ∈ K. This contradiction shows that our assumption was wrong. Hence, q + 1 /∈
K + a is proven.

Now, forget that we fixed q. We thus have shown that q + 1 /∈ K + a for every q ∈ K + a.
Renaming the variable q as s in this statement, we obtain (s + 1 /∈ K + a for every s ∈ K + a). In
other words, the subset K + a of Z is lacunar. Qed.
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[Proof of (9): Let m be a positive integer. Thus, m ≥ 1, so that m + 2 ≥ 1 + 2 =
3. But recall that every integer n ≥ 3 satisfies fn = fn−1 + fn−2, so that fn−2 =
fn − fn−1. Applying this to n = m + 2, we obtain f(m+2)−2 = fm+2− f(m+2)−1.
This simplifies to fm = fm+2 − fm+1. Thus, (9) is proven.]

Proof of Theorem 4.1. Let us define a real constant C by C = ∑
t∈T

1√
5
(φ− 1)at . Clearly,

C ≥ 0 (since φ− 1 > 0).
First, notice that 0 < φ− 1 < 1 yields lim

n→∞
(φ− 1)n = 0, so that lim

n→∞

(
(φ− 1)n C

)
=

lim
n→∞

(φ− 1)n︸ ︷︷ ︸
=0

·C = 0 as well. Therefore, for every ε > 0, every sufficiently high inte-

ger N satisfies (φ− 1)N C < ε. In particular, taking ε = 2−φ (here we are using that
2−φ > 0), we see that every sufficiently high integer N satisfies (φ− 1)N C < 2−φ.
Also, obviously, every sufficiently high integer N satisfies N > max {−at | t ∈ T}.
Hence, if we take our integer N high enough, we can ensure that it will satisfy both
(φ− 1)N C < 2− φ and N > max {−at | t ∈ T}. So let us fix some integer N ∈ N2

high enough that it satisfies both (φ− 1)N C < 2− φ and N > max {−at | t ∈ T}.
Since N > max {−at | t ∈ T}, we have N > −at for every t ∈ T, and thus

N + at > 0 for every t ∈ T. This shows that the Fibonacci number fN+at is well-
defined for every t ∈ T. (This was exactly the reason why we have required N >

max {−at | t ∈ T}. The reason for the second condition (φ− 1)N C < 2− φ will
become clear later in the proof.)

Let ν = ∑
t∈T

fN+at . Recall that Zν is a finite lacunar subset of N2 such that ν =

∑
t∈Zν

ft (by the definition of Zν). Let S = Zν + (−N). Then, the set S = Zν + (−N)

is lacunar (by (7) (applied to K = Zν and a = −N), because Zν is a lacunar subset
of Z) and finite (since Zν is finite), and satisfies

ν = ∑
t∈Zν

ft = ∑
s∈Zν+(−N)

fN+s

(
here, we substituted N + s for t, because the map

Zν + (−N)→ Zν, s 7→ N + s is a bijection

)
= ∑

s∈S
fN+s (since Zν + (−N) = S) .

So now we know that ∑
t∈T

fN+at = ∑
s∈S

fN+s (because both sides of this equation

equal ν).
So, we have chosen a large N and found a finite lacunar subset S of Z which

satisfies ∑
t∈T

fN+at = ∑
s∈S

fN+s. In other words, we have showed that the equation

∑
t∈T

fn+at = ∑
s∈S

fn+s (10)

holds for n = N. But we must show that this equation holds for every n >
max ({−at | t ∈ T} ∪ {−s | s ∈ S}). In order to do this, first let us prove that (10)
holds for n = N + 1. Actually, we are going to show a bit more:
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Assertion α: Let m ≥ N be an integer such that (10) holds for n = m.
Then, (10) also holds for n = m + 1.

[Proof of Assertion α: Since (10) holds for n = m, we have ∑
t∈T

fm+at = ∑
s∈S

fm+s.

Now,

∑
t∈T

f(m+1)+at︸ ︷︷ ︸
= fm+at+1

=( fm+at+1−φ fm+at)+φ fm+at

−∑
s∈S

f(m+1)+s︸ ︷︷ ︸
= fm+s+1

= ∑
t∈T

(( fm+at+1 − φ fm+at) + φ fm+at)︸ ︷︷ ︸
= ∑

t∈T
( fm+at+1−φ fm+at)+φ ∑

t∈T
fm+at

−∑
s∈S

fm+s+1

= ∑
t∈T

( fm+at+1 − φ fm+at) + φ ∑
t∈T

fm+at︸ ︷︷ ︸
= ∑

s∈S
fm+s

−∑
s∈S

fm+s+1

= ∑
t∈T

( fm+at+1 − φ fm+at) + φ ∑
s∈S

fm+s −∑
s∈S

fm+s+1︸ ︷︷ ︸
= ∑

s∈S
(φ fm+s− fm+s+1)=− ∑

s∈S
( fm+s+1−φ fm+s)

= ∑
t∈T

( fm+at+1 − φ fm+at)−∑
s∈S

( fm+s+1 − φ fm+s) ,

so that∣∣∣∣∣∑t∈T
f(m+1)+at −∑

s∈S
f(m+1)+s

∣∣∣∣∣ =
∣∣∣∣∣∑t∈T

( fm+at+1 − φ fm+at)−∑
s∈S

( fm+s+1 − φ fm+s)

∣∣∣∣∣
≤
∣∣∣∣∣∑t∈T

( fm+at+1 − φ fm+at)

∣∣∣∣∣+
∣∣∣∣∣∑s∈S

( fm+s+1 − φ fm+s)

∣∣∣∣∣ (11)

(by (8), applied to u = ∑
t∈T

( fm+at+1 − φ fm+at) and v = ∑
s∈S

( fm+s+1 − φ fm+s)).
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Now, the triangle inequality yields∣∣∣∣∣∑t∈T
( fm+at+1 − φ fm+at)

∣∣∣∣∣
≤ ∑

t∈T
| fm+at+1 − φ fm+at |︸ ︷︷ ︸

=
1√
5
(φ−1)m+at

(by Theorem 3.1, applied to
m+at instead of n)

= ∑
t∈T

1√
5

(φ− 1)m+at︸ ︷︷ ︸
=(φ−1)m(φ−1)at

= (φ− 1)m ∑
t∈T

1√
5
(φ− 1)at

︸ ︷︷ ︸
=C

= (φ− 1)m︸ ︷︷ ︸
≤(φ−1)N (since

0<φ−1<1 and m≥N)

C ≤ (φ− 1)N C (since C ≥ 0)

< 2− φ.

On the other hand, S is a lacunar subset of Z, and thus the set S + m is lacunar
as well (by (7), applied to S and m instead of K and a), and besides S︸︷︷︸

=Zν+(−N)

+m =

(Zν + (−N)) + m = Zν + ((−N) + m) = {z + ((−N) + m) | z ∈ Zν} ⊆ N2
8.

Thus, S + m is a finite lacunar subset of N2 (indeed, the set S + m is finite since S
is finite). Hence, Lemma 3.2 (applied to S + m instead of S) yields ∑

s∈S+m
(φ− 1)s ≤

φ− 1.
The triangle inequality yields∣∣∣∣∣∑s∈S

( fm+s+1 − φ fm+s)

∣∣∣∣∣
≤ ∑

s∈S
| fm+s+1 − φ fm+s|︸ ︷︷ ︸

=
1√
5
(φ−1)m+s

(by Theorem 3.1, applied to
m+s instead of n)

= ∑
s∈S

1√
5
(φ− 1)m+s =

1√
5

∑
s∈S

(φ− 1)m+s

=
1√
5

∑
s∈S+m

(φ− 1)s

︸ ︷︷ ︸
≤φ−1

(
here, we substituted s for m + s, since the map

S→ S + m, s 7→ m + s is a bijection

)

≤ 1√
5︸︷︷︸

<1

· (φ− 1) < φ− 1 (since φ− 1 > 0) .

8because every z ∈ Zν satisfies z︸︷︷︸
≥2

(since z∈Zν⊆N2)

+

(−N) + m︸︷︷︸
≥N

 ≥ 2 + ((−N) + N) = 2 and thus

z + ((−N) + m) ∈N2
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Thus, (11) becomes∣∣∣∣∣∑t∈T
f(m+1)+at −∑

s∈S
f(m+1)+s

∣∣∣∣∣ ≤
∣∣∣∣∣∑t∈T

( fm+at+1 − φ fm+at)

∣∣∣∣∣︸ ︷︷ ︸
<2−φ

+

∣∣∣∣∣∑s∈S
( fm+s+1 − φ fm+s)

∣∣∣∣∣︸ ︷︷ ︸
<φ−1

< (2− φ) + (φ− 1) = 1.

Since ∑
t∈T

f(m+1)+at − ∑
s∈S

f(m+1)+s is an integer, we thus conclude that ∑
t∈T

f(m+1)+at −

∑
s∈S

f(m+1)+s is an integer with an absolute value < 1. But the only integer with an

absolute value < 1 is 0. Thus, ∑
t∈T

f(m+1)+at− ∑
s∈S

f(m+1)+s = 0, so that ∑
t∈T

f(m+1)+at =

∑
s∈S

f(m+1)+s. In other words, (10) holds for n = m + 1. This proves Assertion α.]

Assertion α almost immediately yields the following:

Assertion β: The equation (10) holds for every n ≥ N.

[Proof of Assertion β: We are going to prove Assertion β by induction over n:
As the induction base we take the case n = N. In this case, the equation (10)

holds (as we already know), so that Assertion β is proved for n = N, and thus the
induction base is completed.

Induction step: Let m ≥ N be an integer. Assume that Assertion β holds for
n = m. In other words, the equation (10) holds for n = m. Then, Assertion α yields
that the equation (10) holds for n = m + 1 as well. In other words, Assertion β
holds for n = m + 1 as well. This completes the induction step, and thus Assertion
β is proven by induction over n.]

With Assertion β we now know that (10) holds for all sufficiently high n, namely
for all n ≥ N. But in order to prove Theorem 8, we must show that it also holds
for all n > max ({−at | t ∈ T} ∪ {−s | s ∈ S}); usually, these n are not all ≥ N.
What remains to do is “backwards induction” or an application of the maximum
principle. Here are the details:

Let M = max ({−at | t ∈ T} ∪ {−s | s ∈ S}). We thus must show that (10) holds
for all n > M.

Define a subset R of Z by

R = {n ∈ Z | we have n > M, and (10) does not hold} . (12)

This set R is bounded from above by N (in fact, it does not contain any n ≥ N,
because (10) does hold for all n ≥ N (according to Assertion β)), and bounded
from below by M (because every element of this set is > M by definition). Thus,
this set R is finite (since any subset of Z that is bounded from above and bounded
from below is finite).

Let us assume (for the sake of contradiction) that R is nonempty. Then, the set
R is a nonempty finite set of integers, and thus has a maximum (since a nonempty



Zeckendorf family identities generalized (long version) page 17

finite set of integers always has a maximum). Let λ be this maximum. Then,
λ ∈ R = {n ∈ Z | we have n > M, and (10) does not hold}. In other words, λ is
an element of Z satisfying λ > M, and (10) does not hold for n = λ. On the other
hand,

for every integer µ > λ, the equation (10) holds for n = µ (13)
9. In particular, applying (13) to µ = λ + 1, we see that (10) holds for n = λ + 1; in
other words, ∑

t∈T
fλ+1+at = ∑

s∈S
fλ+1+s. Besides, applying (13) to µ = λ + 2, we see

that (10) holds for n = λ + 2; in other words, ∑
t∈T

fλ+2+at = ∑
s∈S

fλ+2+s.

Now, we are going to prove the equation ∑
t∈T

fλ+at = ∑
s∈S

fλ+s. (We notice that this

equation indeed makes sense, because the Fibonacci number fλ+at is well-defined
for every t ∈ T 10, and because the Fibonacci number fλ+s is well-defined for
every s ∈ S 11.) Applying (9) to m = λ + at, we obtain

fλ+at = fλ+at+2︸ ︷︷ ︸
= fλ+2+at

− fλ+at+1︸ ︷︷ ︸
= fλ+1+at

= fλ+2+at − fλ+1+at (14)

for every t ∈ T. On the other hand, applying (9) to m = λ + s, we obtain

fλ+s = fλ+s+2︸ ︷︷ ︸
= fλ+2+s

− fλ+s+1︸ ︷︷ ︸
= fλ+1+s

= fλ+2+s − fλ+1+s (15)

9Proof. Let µ > λ be an integer. We must prove that the equation (10) holds for n = µ.
Assume the contrary. Thus, the equation (10) does not hold for n = µ. Hence, µ is an integer

with the property that µ > M (since µ > λ > M), and (10) does not hold for n = µ. In other
words, µ ∈ {n ∈ Z | we have n > M, and (10) does not hold}. In view of (12), this rewrites as
µ ∈ R.

But λ is the maximum of R. Thus, every r ∈ R satisfies r ≤ λ. Applying this to r = µ,
we obtain µ ≤ λ (since µ ∈ R). This contradicts µ > λ. This contradiction shows that our
assumption was wrong. Hence, the equation (10) holds for n = µ. This proves (13).

10Proof. In fact, λ > M = max

{−at | t ∈ T} ∪ {−s | s ∈ S}︸ ︷︷ ︸
⊇{−at |t∈T}

 ≥ max {−at | t ∈ T} yields that

λ > −at for every t ∈ T. Thus, for every t ∈ T, we have λ + at > 0, and thus fλ+at is well-
defined.

11Proof. In fact, λ > M = max

{−at | t ∈ T} ∪ {−s | s ∈ S}︸ ︷︷ ︸
⊇{−s|s∈S}

 ≥ max {−s | s ∈ S} yields that

λ > −s for every s ∈ S. Thus, for every s ∈ S, we have λ + s > 0, and thus fλ+s is well-defined.
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for every s ∈ S. Thus,

∑
t∈T

fλ+at︸ ︷︷ ︸
= fλ+2+at− fλ+1+at

(by (14))

= ∑
t∈T

( fλ+2+at − fλ+1+at) = ∑
t∈T

fλ+2+at︸ ︷︷ ︸
= ∑

s∈S
fλ+2+s

−∑
t∈T

fλ+1+at︸ ︷︷ ︸
= ∑

s∈S
fλ+1+s

= ∑
s∈S

fλ+2+s −∑
s∈S

fλ+1+s = ∑
s∈S

( fλ+2+s − fλ+1+s)︸ ︷︷ ︸
= fλ+s

(by (15))

= ∑
s∈S

fλ+s.

In other words, (10) holds for n = λ. This contradicts our knowledge that (10) does
not hold for n = λ. This contradiction shows that our assumption (the assumption
that the set R is nonempty) was wrong. Hence, the set R is empty. In other words,
the set

{n ∈ Z | we have n > M, and (10) does not hold}
is empty (since R = {n ∈ Z | we have n > M, and (10) does not hold}). In other
words, there exists no n ∈ Z satisfying n > M such that (10) does not hold. In
other words, (10) holds for every n ∈ Z satisfying n > M. Since
M = max ({−at | t ∈ T} ∪ {−s | s ∈ S}), this is equivalent to saying that (10) holds
for every n ∈ Z satisfying n > max ({−at | t ∈ T} ∪ {−s | s ∈ S}). Consequently,
Theorem 4.1 is proven.

All that remains now is the (rather trivial) uniqueness part of Theorem 1.4:

Lemma 4.3 (uniqueness part of the generalized Zeckendorf family identities).
Let T be a finite set, and let at be an integer for every t ∈ T.

Let S be a finite lacunar subset of Z such that(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
. (16)

Let S′ be a finite lacunar subset of Z such that ∑
t∈T

fn+at = ∑
s∈S′

fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S′})

 . (17)

Then, S = S′.

Proof of Lemma 4.3. Let

n = max
(
{−at | t ∈ T} ∪ {−s | s ∈ S} ∪

{
−s | s ∈ S′

})
+ 2.
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Then,

n > max

{−at | t ∈ T} ∪ {−s | s ∈ S} ∪
{
−s | s ∈ S′

}︸ ︷︷ ︸
⊇{−at|t∈T}∪{−s|s∈S}


≥ max ({−at | t ∈ T} ∪ {−s | s ∈ S}) ,

so that

∑
t∈T

fn+at = ∑
s∈S

fn+s (by (16))

= ∑
t∈S+n

ft

(
here, we substituted t for n + s, since the map

S→ S + n, s 7→ n + s is a bijection

)
.

Similarly, ∑
t∈T

fn+at = ∑
t∈S′+n

ft.

Now, S + n is a lacunar set (by (7) (applied to K = S and a = n), since S is a
lacunar subset of Z) and a subset of N2

12. In other words, S + n is a finite
lacunar subset of N2 (since S + n is finite (because S is finite)). Similarly, S′ + n is
a finite lacunar subset of N2. Applying Lemma 2.3 to S + n, S′ + n and ∑

t∈T
fn+at

instead of T, T′ and n yields that S + n = S′ + n (because ∑
t∈T

fn+at = ∑
t∈S+n

ft and

∑
t∈T

fn+at = ∑
t∈S′+n

ft). Hence,

S = S + 0︸︷︷︸
=(n+(−n))

= S + (n + (−n)) = (S + n)︸ ︷︷ ︸
=S′+n

+ (−n)

=
(
S′ + n

)
+ (−n) = S′ + (n + (−n))︸ ︷︷ ︸

=0

= S′ + 0 = S′.

This proves Lemma 4.3.

Proof of Theorem 1.4. There exists a finite lacunar subset S of Z such that(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
12Proof. Since

n = max
(
{−at | t ∈ T} ∪ {−s | s ∈ S} ∪

{
−s | s ∈ S′

})︸ ︷︷ ︸
≥max{−s|s∈S}

(since {−at |t∈T}∪{−s|s∈S}∪{−s|s∈S′}⊇{−s|s∈S})

+2 ≥ max {−s | s ∈ S}+ 2,

we have n− 2 ≥ max {−s | s ∈ S}, and thus n− 2 ≥ −s for every s ∈ S. Hence, every s ∈ S
satisfies n− 2 + s ≥ 0, which rewrites as s + n ≥ 2. Equivalently, s + n ∈ N2. Thus, we have
shown that s + n ∈N2 for each s ∈ S. In other words, {s + n | s ∈ S} ⊆N2. Hence,

S + n = {s + n | s ∈ S} ⊆N2.
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(according to Theorem 4.1), and such a subset is unique (because any two such
subsets are equal (according to Lemma 4.3)). Thus, there exists one and only one
such subset. This proves Theorem 1.4.
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