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Abstract. In [WooZei09], Philip Matchett Wood and Doron Zeilberger
have constructed identities for the Fibonacci numbers fn of the form

1 fn = fn for all n ≥ 1;
2 fn = fn−2 + fn+1 for all n ≥ 3;
3 fn = fn−2 + fn+2 for all n ≥ 3;
4 fn = fn−2 + fn + fn+2 for all n ≥ 3;

etc.;

k fn = ∑
s∈Sk

fn+s for all n > max {−s | s ∈ Sk} ,

where Sk is a fixed “lacunar” set of integers (“lacunar” means that no
two elements of this set are consecutive integers) depending only on
k. (The condition n > max {−s | s ∈ Sk} is only to make sure that all
addends fn+s are well-defined. If the Fibonacci sequence is properly
continued to the negative, this condition drops out.)
In this note we prove a generalization of these identities: For any family(

a1, a2, . . . , ap
)

of integers, there exists one and only one finite lacunar
set S of integers such that every n (high enough to make the Fibonacci
numbers in the equation below well-defined) satisfies

fn+a1 + fn+a2 + · · ·+ fn+ap = ∑
s∈S

fn+s.

The proof uses the Fibonacci-approximating properties of the golden
ratio. It would be interesting to find a purely combinatorial proof.

This is a brief version of my note [Grinbe11]. For a long version, which
gives more details in the proofs, see [Grinbe11].
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1. The main result

The purpose of this note is to establish a generalization of the so-called Zeckendorf
family identities which were discussed in [WooZei09]. Before we can state it, we
need a few definitions:

Definition 1.1. A subset S of Z is called lacunar if it satisfies
(s + 1 /∈ S for every s ∈ S).

In other words, a subset S of Z is lacunar if and only if it contains no two
consecutive integers.

Definition 1.2. The Fibonacci sequence ( f1, f2, f3, . . .) is a sequence of positive inte-
gers defined recursively by the initial values f1 = 1 and f2 = 1 and the recurrence
relation ( fn = fn−1 + fn−2 for all n ∈N satisfying n ≥ 3).

(Here and in the following, N denotes the set {0, 1, 2, . . .}.)

Remark 1.3. Many authors define the Fibonacci sequence slightly differently:
They define it as a sequence ( f0, f1, f2, . . .) of nonnegative integers defined re-
cursively by the initial values f0 = 0 and f1 = 1 and the recurrence rela-
tion ( fn = fn−1 + fn−2 for all n ∈N satisfying n ≥ 2). Thus, this sequence be-
gins with a 0, unlike the Fibonacci sequence defined in our Definition 1.2. How-
ever, starting at its second term f1 = 1, this sequence takes precisely the same
values as the Fibonacci sequence defined in our Definition 1.2 (because both se-
quences satisfy f1 = 1 and f2 = 1, and from here on the recurrence relation
ensures that their values remain equal). So it differs from the latter sequence
only in the presence of one extra term f0 = 0 at the front.

The Fibonacci sequence is one of the best known integer sequences from com-
binatorics. It has had conferences, books and a journal devoted to it. By way of
example, let us only mention Vorobiev’s book [Vorobi02], which is entirely con-
cerned with Fibonacci numbers, and Benjamin’s and Quinn’s text [BenQui03] on
bijective proofs, which includes many identities for Fibonacci numbers.

In [WooZei09], Wood and Zeilberger discuss bijective proofs of the so-called Zeck-
endorf family identities. These identities are a family of identities for Fibonacci num-
bers (one for each positive integer); the first seven of these identities are

1 fn = fn for all n ≥ 1;
2 fn = fn−2 + fn+1 for all n ≥ 3;
3 fn = fn−2 + fn+2 for all n ≥ 3;
4 fn = fn−2 + fn + fn+2 for all n ≥ 3;
5 fn = fn−4 + fn−1 + fn+3 for all n ≥ 5;
6 fn = fn−4 + fn+1 + fn+3 for all n ≥ 5;
7 fn = fn−4 + fn+4 for all n ≥ 5.
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In general, for each positive integer k, the k-th Zeckendorf family identity expresses
k fn (for each sufficiently large integer n) as a sum of the form ∑

s∈S
fn+s, where S is a

finite lacunar subset of Z. Of course, the subset S does not depend on n.
Our main theorem is the following:

Theorem 1.4 (generalized Zeckendorf family identities). Let T be a finite set, and
let at be an integer for every t ∈ T.

Then, there exists one and only one finite lacunar subset S of Z such that1

(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
.

Remark 1.5. 1. The Zeckendorf family identities from [WooZei09] are the result
of applying Theorem 1.4 to the case when all at are = 0.

2. The condition n > max ({−at | t ∈ T} ∪ {−s | s ∈ S}) in Theorem 1.4
serves only to ensure that the Fibonacci numbers fn+at for all t ∈ T and fn+s
for all s ∈ S are well-defined. (If we would define the Fibonacci numbers
fn for integers n ≤ 0 by extending the recurrence relation fn = fn−1 + fn−2
“to the left”, then we could drop this condition.)

The proof we shall give for Theorem 1.4 is not combinatorial. It will use inequal-
ities and the properties of the golden ratio; in a sense, its underlying ideas come
from analysis (although it will not actually use any results from analysis).

2. Basics on the Fibonacci sequence

We begin with some lemmas and notations:
We denote by N the set {0, 1, 2, . . .}. Also, we denote by N2 the set {2, 3, 4, . . .} =

N \ {0, 1}.

Also, let φ =
1 +
√

5
2

. This number φ is the famous golden ratio. It satisfies

φ ≈ 1.618 . . . and φ2 = φ + 1.
We recall some basic and well-known facts about the Fibonacci sequence:

Lemma 2.1. Let S be a finite lacunar subset of N2. Then, ∑
t∈S

ft < fmax S+1.

Proof. WLOG assume that the set S is nonempty (else, the lemma follows from our
convention that max∅ = 0). Write the set S in the form {s1, s2, . . . , sk} with s1 <

1Here and in the following, max∅ is understood to be 0.
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s2 < · · · < sk. Every i ∈ {1, 2, . . . , k− 1} satisfies si + 1 ≤ si+1− 1 (because the set S
is lacunar, so si+1 cannot be si + 1, whence si+1 > si + 1 and thus si+1− 1 ≥ si + 1),
so that

fsi+1 ≤ fsi+1−1 (1)

(since the Fibonacci sequence ( f1, f2, f3, . . .) is weakly increasing). Thus,

∑
t∈S

ft =
k

∑
i=1

fsi︸︷︷︸
= fsi+1− fsi−1

(since fsi+1= fsi+ fsi−1)

=
k

∑
i=1

(
fsi+1 − fsi−1

)
=

k

∑
i=1

fsi+1︸ ︷︷ ︸
=

k−1
∑

i=1
fsi+1+ fsk+1

−
k

∑
i=1

fsi−1︸ ︷︷ ︸
= fs1−1+

k
∑

i=2
fsi−1

=


k−1

∑
i=1

fsi+1︸︷︷︸
≤ fsi+1−1

(by (1))

+ fsk+1

−
(

fs1−1 +
k

∑
i=2

fsi−1

)

≤
(

k−1

∑
i=1

fsi+1−1 + fsk+1

)
−
(

fs1−1 +
k

∑
i=2

fsi−1

)

=

(
k

∑
i=2

fsi−1 + fsk+1

)
−
(

fs1−1 +
k

∑
i=2

fsi−1

)
(here, we substituted i for i + 1 in the first sum)

= fsk+1 − fs1−1 < fsk+1
(
since fs1−1 > 0

)
= fmax S+1

(since sk = max S), which proves Lemma 2.1. (An alternative proof proceeds by
strong induction over max S; it uses fmax S+1 = fmax S + fmax S−1 in the induction
step.)

Lemma 2.2 (existence part of the Zeckendorf theorem). Let n ∈ N. Then, there
exists a finite lacunar subset T of N2 such that n = ∑

t∈T
ft.

Proof. Strong induction over n. The case n = 0 needs to be treated separately. In the
induction step for n > 0, the main idea is to let t1 be the maximal τ ∈N2 satisfying
fτ ≤ n (this exists because f2 = 1 ≤ n and because the Fibonacci sequence is
increasing and unbounded from above), and to apply Lemma 2.2 to n− ft1 instead
of n. (This yields a finite lacunar subset T′ of N2 satisfying n− ft1 = ∑

t∈T′
ft; now,

it remains to be shown that the set T′ ∪ {t1} is still lacunar. To check this, observe
that n < ft1+1, so that n− ft1 < ft1+1 − ft1 = ft1−1, which shows that no addend ft
of the sum ∑

t∈T′
ft can be ft1−1 or larger.) The details are left to the reader (and can

be found in [Grinbe11]).
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Lemma 2.3 (uniqueness part of the Zeckendorf theorem). Let n ∈ N, and let T
and T′ be two finite lacunar subsets of N2 such that n = ∑

t∈T
ft and n = ∑

t∈T′
ft.

Then, T = T′.

Proof. Strong induction over n. In the induction step for n > 0, use Lemma 2.1 to
show that max T < max T′ + 1 and max T′ < max T + 1; these together result in
max T = max T′. Hence, the sets T and T′ have an element in common, and we
can reduce the situation to one with a smaller n by removing this common element
from both sets.

Lemmata 2.2 and 2.3 together yield the following theorem:

Theorem 2.4 (Zeckendorf theorem). Let n ∈ N. Then, there exists one and only
one finite lacunar subset T of N2 such that n = ∑

t∈T
ft.

Theorem 2.4 is a classical result that can be found in various places (e.g., [Hender16]).
Hoggatt proved a generalization of Theorem 2.4 in [Hoggat72].

Definition 2.5. Let n ∈N. Theorem 2.4 shows that there exists one and only one
finite lacunar subset T of N2 such that n = ∑

t∈T
ft. We will denote this set T by

Zn. Thus, n = ∑
t∈Zn

ft.

3. Inequalities for the golden ratio

Next, we state a completely straightforward (and well-known, cf. [BenQui03, Chap-
ter 9, Corollary 34]) theorem, which shows that the Fibonacci sequence grows
roughly exponentially (with the exponent being the golden ratio φ):

Theorem 3.1. For every positive integer n, we have | fn+1 − φ fn| =
1√
5
(φ− 1)n.

Proof. Binet’s formula (see, e.g., [BenQui03, Identity 240] or [Vorobi02, (1.20)])

yields fn =
φn − φ−n
√

5
and fn+1 =

φn+1 − φ−(n+1)
√

5
; the rest is computation.

Let us show yet another lemma for later use:

Lemma 3.2. Let S be a finite lacunar subset of N2. Then, ∑
s∈S

(φ− 1)s ≤ φ− 1.
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Proof of Lemma 3.2. Since S is a lacunar subset of N2, the smallest element of S is
at least 2, the second smallest element of S is at least 4 (since it is larger than the
smallest element by at least 2), the third smallest element of S is at least 6 (since it
is larger than the second smallest element by at least 2), and so on. Since N → R,
s 7→ (φ− 1)s is a weakly decreasing function (as 0 ≤ φ− 1 ≤ 1), we thus have

∑
s∈S

(φ− 1)s ≤ ∑
s∈{2,4,6,...}

(φ− 1)s = ∑
t∈{1,2,3,...}

(φ− 1)2t = φ− 1

(by the formula for the sum of the geometric series, along with some computations).
This proves Lemma 3.2.

4. Proving Theorem 1.4

Let us now come to the proof of Theorem 1.4. First, we formulate the existence part
of this theorem:

Theorem 4.1 (existence part of the generalized Zeckendorf family identities). Let
T be a finite set, and let at be an integer for every t ∈ T.

Then, there exists a finite lacunar subset S of Z such that(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
.

Before we start proving this, let us introduce a notation:

Definition 4.2. Let K be a subset of Z, and let a ∈ Z. Then, K + a will denote
the subset {k + a | k ∈ K} of Z.

Clearly, (K + a) + b = K + (a + b) for any two integers a and b. Also, K + 0 = K.
Finally, if K is a lacunar subset of Z, and if a ∈ Z, then K + a is lacunar as well.

Proof of Theorem 4.1. Choose a high enough integer N. Here, “high enough” means
that N should satisfy N ∈N2 and N > max {−at | t ∈ T} and

(φ− 1)N ∑
t∈T

(φ− 1)at + (φ− 1) < 1. (2)

(Such an N can indeed be found2.)

2Proof. We have (φ− 1)N → 0 for N → ∞ (since 0 < φ− 1 < 1). Therefore, the left hand side of (2)
tends to φ− 1 as N → ∞. Thus, for all sufficiently high N, the left hand side of (2) will be < 1,
because φ− 1 < 1. So, if we take N sufficiently high, then (2) will hold. Of course, our other
two requirements on N (namely, N ∈ N2 and N > max {−at | t ∈ T}) can also be achieved by
taking N sufficiently high.
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Let ν = ∑
t∈T

fN+at . Then, Zν is a finite lacunar subset of N2 satisfying ν = ∑
t∈Zν

ft.

Hence, Lemma 3.2 yields
∑

s∈Zν

(φ− 1)s ≤ φ− 1. (3)

Define a subset S of Z by S = Zν + (−N). Then, S is a finite lacunar subset of
Z (since Zν is a finite lacunar subset of Z). Furthermore, from S = Zν + (−N), we
obtain Zν = S + N. Thus, the map S → Zν, s 7→ N + s is a bijection. This allows
us to substitute N + s for t in sums over all t ∈ Zν; we thus obtain

∑
t∈Zν

ft = ∑
s∈S

fN+s and

∑
t∈Zν

(φ− 1)t = ∑
s∈S

(φ− 1)N+s . (4)

Hence,
∑
t∈T

fN+at = ν = ∑
t∈Zν

ft = ∑
s∈S

fN+s, (5)

while the equality (4) yields

∑
s∈S

(φ− 1)N+s = ∑
t∈Zν

(φ− 1)t = ∑
s∈Zν

(φ− 1)s ≤ φ− 1 (6)

(by (6)).
So, we have chosen a high N and found a finite lacunar subset S of Z which

satisfies ∑
t∈T

fN+at = ∑
s∈S

fN+s. But Theorem 4.1 is not proven yet: Theorem 4.1

requires us to prove that there exists one finite lacunar subset S of Z which works
for every N, while at the moment we cannot be sure yet whether different N’s
wouldn’t produce different sets S. And, in fact, different N’s can produce different
sets S, but (fortunately!) only if the N’s are too small. As we have taken N high
enough, the set S that we obtained turns out to be universal, i.e., it satisfies(

∑
t∈T

fn+at = ∑
s∈S

fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
. (7)

We are now going to prove this.
In order to prove (7), we need two assertions:

Assertion 1: If some n ∈ Z satisfies n ≥ N and ∑
t∈T

fn+at = ∑
s∈S

fn+s, then

∑
t∈T

f(n+1)+at = ∑
s∈S

f(n+1)+s.

Assertion 2: If some n ∈ Z satisfies ∑
t∈T

fn+at = ∑
s∈S

fn+s and ∑
t∈T

f(n+1)+at =

∑
s∈S

f(n+1)+s, then ∑
t∈T

f(n−1)+at = ∑
s∈S

f(n−1)+s (if

n− 1 > max ({−at | t ∈ T} ∪ {−s | s ∈ S})).
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Obviously, Assertion 1 yields (by induction) the equality ∑
t∈T

fn+at = ∑
s∈S

fn+s for

every n ≥ N (the induction base follows from (5)), and Assertion 2 then proves it
for the remaining values of n (by backwards induction, or, to be more precise, by
an induction step from n + 1 and n to n− 1). Thus, once both Assertions 1 and 2
are proven, (7) will follow and thus Theorem 4.1 will be proven.

Assertion 2 follows from comparing the equalities

∑
t∈T

f(n−1)+at︸ ︷︷ ︸
= fn+at−1

= fn+at+1− fn+at

= ∑
t∈T

fn+at+1 − ∑
t∈T

fn+at = ∑
t∈T

f(n+1)+at − ∑
t∈T

fn+at

and
∑
s∈S

f(n−1)+s︸ ︷︷ ︸
= fn+s−1

= fn+s+1− fn+s

= ∑
s∈S

fn+s+1 −∑
s∈S

fn+s = ∑
s∈S

f(n+1)+s −∑
s∈S

fn+s

(whose right hand sides are equal by the assumptions of Assertion 2); thus, it only
remains to prove Assertion 1.

So let us prove Assertion 1. Here we are going to use that N is high enough
(because otherwise, Assertion 1 wouldn’t hold). We have ∑

t∈T
fn+at = ∑

s∈S
fn+s by

assumption, so that ∑
t∈T

fn+at − ∑
s∈S

fn+s = 0. Thus,

∑
t∈T

f(n+1)+at −∑
s∈S

f(n+1)+s = ∑
t∈T

f(n+1)+at −∑
s∈S

f(n+1)+s − φ

(
∑
t∈T

fn+at −∑
s∈S

fn+s

)
= ∑

t∈T

(
f(n+1)+at − φ fn+at

)
−∑

s∈S

(
f(n+1)+s − φ fn+s

)
= ∑

t∈T
( fn+at+1 − φ fn+at)−∑

s∈S
( fn+s+1 − φ fn+s) ,
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so that∣∣∣∣∣∑t∈T
f(n+1)+at −∑

s∈S
f(n+1)+s

∣∣∣∣∣ =
∣∣∣∣∣∑t∈T

( fn+at+1 − φ fn+at)−∑
s∈S

( fn+s+1 − φ fn+s)

∣∣∣∣∣
≤ ∑

t∈T
| fn+at+1 − φ fn+at |+ ∑

s∈S
| fn+s+1 − φ fn+s| (by the triangle inequality)

= ∑
t∈T

1√
5
(φ− 1)n+at + ∑

s∈S

1√
5
(φ− 1)n+s (by Theorem 3.1)

< ∑
t∈T

(φ− 1)n+at︸ ︷︷ ︸
≤(φ−1)N+at

(since n≥N and 0<φ−1<1)

+ ∑
s∈S

(φ− 1)n+s︸ ︷︷ ︸
≤(φ−1)N+s

(since n≥N and 0<φ−1<1)

(
since

1√
5
< 1

)

≤ ∑
t∈T

(φ− 1)N+at

︸ ︷︷ ︸
=(φ−1)N ∑

t∈T
(φ−1)at

+ ∑
s∈S

(φ− 1)N+s

︸ ︷︷ ︸
≤φ−1
(by (6))

≤ (φ− 1)N ∑
t∈T

(φ− 1)at + (φ− 1) < 1

(by (2)). This leads to
∣∣∣∣ ∑
t∈T

f(n+1)+at − ∑
s∈S

f(n+1)+s

∣∣∣∣ = 0 (since
∣∣∣∣ ∑
t∈T

f(n+1)+at − ∑
s∈S

f(n+1)+s

∣∣∣∣
is a nonnegative integer). In other words, ∑

t∈T
f(n+1)+at = ∑

s∈S
f(n+1)+s. This com-

pletes the proof of Assertion 1, and, with it, the proof of Theorem 4.1.

All that remains now is the (rather trivial) uniqueness part of Theorem 1.4:

Lemma 4.3 (uniqueness part of the generalized Zeckendorf family identities).
Let T be a finite set, and let at be an integer for every t ∈ T.

Let S be a finite lacunar subset of Z such that(
∑

t∈T
fn+at = ∑

s∈S
fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S})

)
. (8)

Let S′ be a finite lacunar subset of Z such that ∑
t∈T

fn+at = ∑
s∈S′

fn+s for every n ∈ Z which

satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S′})

 . (9)

Then, S = S′.

Proof of Lemma 4.3. Let

n = max
(
{−at | t ∈ T} ∪ {−s | s ∈ S} ∪

{
−s | s ∈ S′

})
+ 2. (10)

Then, n satisfies n > max ({−at | t ∈ T} ∪ {−s | s ∈ S}). Thus, (8) yields

∑
t∈T

fn+at = ∑
s∈S

fn+s = ∑
t∈S+n

ft
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(here, we substituted t for n + s, since the map S→ S + n, s 7→ n + s is a bijection).
Similarly, ∑

t∈T
fn+at = ∑

t∈S′+n
ft. Since the sets S + n and S′ + n are both lacunar

(since so are S and S′) and finite (since so are S and S′), and are subsets of N2
(by (10)), we can now conclude from Lemma 2.3 (applied to ∑

t∈T
fn+at , S + n and

S′ + n instead of n, S and S′) that S + n = S′ + n, so that S = S′. This proves
Lemma 4.3.

Proof of Theorem 1.4. Now, Theorem 1.4 is clear, since the existence follows from
Theorem 4.1 and the uniqueness from Lemma 4.3.
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