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∗ ∗ ∗
This is a text (or, more honestly, a glorified set of lecture notes) for my Math
332 course at Drexel University in Winter 2023. At the moment, it is somewhat
of a draft (and much of it is copypasted from my Math 533 course in Winter
2021).
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1. Preface

1.1. What is this?

These notes are written for the second part of a groups-first undergraduate ab-
stract algebra sequence, or for an introductory graduate course on rings and
fields. They cover the basic properties of rings, modules and fields, in particu-
lar polynomial rings and finite fields, while assuming that the reader is fluent
in the basic language of groups (and in elementary number theory, such as the
properties of prime numbers and greatest common divisors). The content is
mostly introductory, and the main results obtained are

• the Chinese Remainder Theorem for rings and ideals,

• the construction of monoid algebras (including polynomial rings as a par-
ticular case),

• the main properties of univariate polynomial rings,

• the existence and uniqueness of finite fields Fpn of all prime-power orders,

• the law of quadratic reciprocity (with a proof in the odd/odd case), and

• two proofs of Fermat’s theorem about writing primes p as sums of two
squares (one giving an “explicit” expression in terms of Jacobsthal sums).

The last sections briefly introduce Gröbner bases (without proofs) and the
Smith normal form (over Z, with an outlined proof). Some properties of the
Fibonacci sequence are explored as applications. Thus, the text is suited to a
quarter-long course, less to a semester-long one.

This text is written rather informally and sometimes tersely. I assume that
the reader has encountered proofs before, as she will have to fill in some details
and understand some hints. Unlike my notes on combinatorics, this text is
not trying to fill any expository gaps, since the literature on abstract algebra is
already vast and includes some rather detailed and rigorous texts (e.g., Warner
[Warner90], Jacobson [JacobsXX], Zariski/Samuel [ZarSam86]).

On occasion, I have tried to mildly innovate, e.g., by constructing the poly-
nomial ring as a monoid algebra, or by involving the Fibonacci numbers in
a few places as a “grass-touching” example. I also attempt to view the sub-
ject through a more constructive lens than usual (Section 6.5 is a noticeable
example), although I am nowhere as consistent about it as a text dedicated to
constructive algebra (such as [Edward22]) would be.

A quarter is not much time, and this text reflects the necessary tradeoffs. I
would have loved to cover some Galois theory, more about quadratic number
rings, more about multivariate polynomials, Gröbner bases with proofs, linear
algebra with proofs, the Smith normal form over non-Z rings, tensor prod-
ucts, determinants, exact sequences, ..., but I have not managed to fit this into
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a quarter-long course. A reader who whets her appetite by this text will al-
most surely have to satisfy it elsewhere (e.g., [Aluffi16], [Bosch18], [CoLiOs15],
[Cox12], [DumFoo04], [Edward22], [Elman22], [Goodma16], [JacobsXX], [Knapp16],
[Laurit09], [LidNie00], [Lorsch20a], [Lorsch20b], [McNult16], [Rotman3e], [Sharif22],
[Siksek19], [Steinb06], [Stewar15], [Waerde91]).

The original template for the structure of this text was the book Abstract
Algebra by Dummit and Foote ([DumFoo04] in the bibliography), specifically
a subset of [DumFoo04, Chapters 7–14]. However, I have ended up deviating
from [DumFoo04] in the presentation, in the ordering, in the exercises and
digressions, and even in some of the terminology.

The course has a website:

https://www.cip.ifi.lmu.de/~grinberg/t/23wa/

on which you can find homework sets. Also, old homework sets can be found
at the website of my Math 533 course from Winter 2021:

https://www.cip.ifi.lmu.de/~grinberg/t/21w/

I thank Bogdan Nica for reporting mistakes in the text that follows.

1.2. Plan

This text is split into 6 chapters:

2. Rings and ideals. Just like the notion of a group is an abstract model
for a set of symmetries or invertible operations in general, the notion of
a ring models a set of numbers or things made out of numbers (such as
polynomials or matrices). More formally, a ring is a set equipped with
two operations called “addition” and “multiplication” and two elements
called “zero” and “unity” that satisfy certain axioms. We will explore
both specific examples and general properties of rings, and we will study
features of rings such as subrings and ideals, and certain classes of rings
such as integral domains and fields.

3. Modules. Modules are the natural generalization of vector spaces when
the underlying number system is replaced by a ring. In particular, we will
learn some of the basics of abstract linear algebra (the theory of vector
spaces over fields) here.

4. Monoid algebras and polynomials. This is a generalization of the clas-
sical notion of polynomials, which replaces the monomials by something
much more general (the elements of a monoid). Among other things, this
will give us a precise definition of polynomials. We will study univari-
ate polynomials (i.e., polynomials in one indeterminate) in more detail,

https://www.cip.ifi.lmu.de/~grinberg/t/23wa/
https://www.cip.ifi.lmu.de/~grinberg/t/21w/
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establishing in particular some of their unique features (division with re-
mainder and Euclidean algorithm). This will help us “adjoin” a root of a
polynomial to a commutative ring or field.

5. Finite fields. Finite fields are “miniature versions” of our familiar number
systems; they are sets with extremely well-behaved “addition” and “mul-
tiplication” operations but only finitely many elements. We will build up
some of their basic theory and see a few of their many applications.

6. Polynomials II. We will study polynomials in more detail, focussing now
mostly on multivariate polynomials. We will give a very introductory
treatment of Gröbner bases (explaining their simplest uses, but not prov-
ing any of their nontrivial properties). We will explain how polynomials
with integer coefficients can be factored (into irreducibles), and address
some parts of the ancient question of “how do you solve a system of poly-
nomial equations?”.

7. Modules over a PID. To be specific, we will be studying modules over Z

only. In particular, we will prove the structure theorem for finite abelian
groups, and construct the Smith normal form of a matrix. As an applica-
tion, we will prove the existence of primitive roots in a finite field.

1.3. Notations

We shall use the following notations:

• We let N = {0, 1, 2, . . .}.

• The notation |S| denotes the size (i.e., the number of elements) of a set S.

• Unlike algebraic geometers, we do accept noncommutative rings as rings
(see below for the definition). Unlike [DumFoo04], we don’t accept nonuni-
tal rings (i.e., rings without a 1) as rings. This will be discussed in more
detail below.

1.4. Refresher on modular arithmetic

We will use modular arithmetic (specifically, the notion of residue classes mod-
ulo n, and the algebraic operations on these classes). An introduction to mod-
ular arithmetic can be found in almost any textbook on abstract algebra (see,
e.g., [Grinbe19, §3.4]), and I assume that you have seen it at least in some form,
since it underlies the standard definition of cyclic groups. Let me nevertheless
give a summary as a reminder.

For the rest of this section, we fix an integer n. Two integers a and b are said
to be congruent (to each other) modulo n if and only if n | a − b. The short
notation for this is “a ≡ b mod n”, but we shall shorten this even further to
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“a ≡
n

b” in this subsection, so that ≡
n

becomes a binary relation on the set Z of
all integers.

For example, 5 ≡
2

9 (since 2 | 5 − 9) but 5 ̸≡
2

8 (since 2 ∤ 5 − 8). (As usual,

“a ̸≡
n

b” means “not a ≡
n

b”.)

The binary relation ≡
n

is an equivalence relation. It is called congruence
modulo n. Its equivalence classes are called the residue classes of integers
modulo n. Explicitly, for every integer a, the residue class that contains a is the
set

{all integers that are congruent to a modulo n}
= {all integers that differ from a by a multiple of n}
= {. . . , a − 2n, a − n, a, a + n, a + 2n, a + 3n, . . .} .

We denote this class by a. Two integers a and b satisfy a = b if and only if a ≡
n

b.

In particular, the residue class 0 of 0 consists of all integers that are multiples
of n. That is:

0 = {. . . , −3n, −2n, −n, 0, n, 2n, 3n, . . .} .

The residue class n of n consists of the very same integers, since an integer is
congruent to n modulo n if and only if it is congruent to 0 modulo n. In other
words, n = 0. Likewise, 2n = 0 and 3n = 0 and so on. Likewise, n + 1 = 1 and
n + 2 = 2 and so on. On the other hand, the n residue classes 0, 1, . . . , n − 1 are
all distinct, since no two of the integers 0, 1, . . . , n − 1 are congruent modulo n.

Here are some examples:

• For n = 2, the only two residue classes modulo n are

0 = {all even integers} = {. . . ,−6,−4,−2, 0, 2, 4, . . .} and

1 = {all odd integers} = {. . . ,−5,−3,−1, 1, 3, 5, . . .} .

For any other integer a, the residue class a of a modulo 2 is either 0 or 1,
depending on whether a is even or odd. For instance, 2 = 4 = 6 = · · · = 0
whereas 1 = 3 = 5 = · · · = 1.

• For n = 5, there are five residue classes modulo n, namely

0 = {. . . ,−10,−5, 0, 5, 10, . . .} ,

1 = {. . . ,−9,−4, 1, 6, 11, . . .} ,

2 = {. . . ,−8,−3, 2, 7, 12, . . .} ,

3 = {. . . ,−7,−2, 3, 8, 13, . . .} ,

4 = {. . . ,−6,−1, 4, 9, 14, . . .} .
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• For n = 1, there is only one residue class modulo n, namely

0 = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .} = Z.

• The case n = 0 is special: Here, no two distinct integers a and b are
congruent modulo n (because only 0 is divisible by 0). Thus, for each
integer a, the residue class a of a modulo 0 is just the singleton set {a}.
Hence, there are infinitely many residue classes modulo 0, one for each
integer.

As you see, the residue classes a modulo n differ from their underlying inte-
gers a in that different integers a, b lead to the same residue class a = b when
their difference is a multiple of n. Thus, working with residue classes of inte-
gers modulo n can be viewed as working with integers but pretending that n
equals 0 (so that two integers that differ by a multiple of n are equal).

The set of all residue classes of integers modulo n will be called Z/n or
Z/nZ (or sometimes Zn, but this symbol is unfortunately also used for other
purposes). This set Z/n has size n if n is positive1, size −n if n is negative, and
infinite size if n = 0 (indeed, Z/0 is just Z “with its elements relabelled”2).

We note that, from the viewpoint of group theory, the residue classes mod-
ulo n are the cosets of the subgroup nZ = {all multiples of n} in the group
(Z,+, 0). Thus, the set Z/nZ of these residue classes is the quotient of the
group (Z,+, 0) by this subgroup nZ. This is where the notation Z/nZ comes
from. (The notation Z/n is just shorthand for that.)

We can furthermore define the sum, the difference and the product of any
two residue classes modulo n. Namely, if a and b are two residue classes mod-

1Indeed, when n is positive, the n distinct residue classes modulo n are

0 = {. . . , −3n, −2n, −n, 0, n, 2n, 3n, . . .} ,

1 = {. . . , −3n + 1, −2n + 1, −n + 1, 1, n + 1, 2n + 1, 3n + 1, . . .} ,

2 = {. . . , −3n + 2, −2n + 2, −n + 2, 2, n + 2, 2n + 2, 3n + 2, . . .} ,
. . . ,

n − 1 = {. . . , −2n − 1, −n − 1, −1, n − 1, 2n − 1, 3n − 1, 4n − 1, . . .} .

2You may be unused to this; some textbooks carefully avoid the n = 0 case when considering
Z/n. And indeed, Z/0 behaves unlike the “other” Z/n’s in some regard (for example,
Z/0 is infinite, whereas Z/n is finite for each nonzero n). But the underlying idea is still
the same: Two integers a and b are congruent modulo 0 if and only if 0 divides a − b; but
0 only divides 0 itself (since the only multiple of 0 is 0), so this means that a and b are
congruent modulo 0 if and only if a and b are equal. Hence, each residue class modulo
0 just consists of a single number. Thus, the elements of Z/0 are the one-element sets
. . . , {−2} , {−1} , {0} , {1} , {2} , . . .. They are added and multiplied just as the correspond-
ing integers: {a}+ {b} = {a + b} and {a} · {b} = {a · b}.
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ulo n, then we set

a + b = a + b;

a − b = a − b;

a · b = ab.

In other words, to add (or subtract, or multiply) two residue classes, we just add
(or subtract, or multiply) the underlying numbers and take the residue class of
the result. It takes a bit of thought to prove that this is well-defined (i.e., that
the values a + b, a − b and ab really depend only on the residue classes a and b
and not on their chosen representatives a and b), but this is fairly easy and well-
known. These operations (addition, subtraction and multiplication) on residue
classes are called modular arithmetic.

Here are some examples:

• If n = 24, then

23 + 5 = 23 + 5 = 28 = 4
(

since 28 ≡
24

4
)

.

This is actually the known fact that “5 hours after 23 o’clock is 4 o’clock”
(although here in the US, you would usually say “11 PM” instead of “23
o’clock”, and “4 AM” instead of “4 o’clock”). The 24 hours of a day thus
naturally correspond to the residue classes modulo 24, and reckoning
with time is a matter of modular arithmetic.

• If n = 12, then

4 · 9 = 4 · 9 = 36 = 0
(

since 36 ≡
12

0
)

.

The addition of residue classes that we defined above turns the set Z/nZ of
all these residue classes into a group

(
Z/nZ, +, 0

)
. When n is positive, this

group is known as the cyclic group of order n. However, the multiplication is
of interest too, and in fact is one of the main protagonists of this course.

1.5. Homework set #0: (de)motivating questions

The following exercises should be viewed as food for thought. Some of them
are easy, some hard, some close to impossible at the current state. Just think
about each of them for a little while (5 minutes? 15 minutes? an hour if you like
them?). These exercises are illustrative of some of the elementary applications
of abstract algebra. This course will teach you to solve some of them. Solution
sketches can be found in [21w, solutions to Homework set 0].
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Exercise 1.5.1.

(a) Factor the polynomial a3 + b3 + c3 − 3abc.

(b) Factor the polynomial bc (b − c) + ca (c − a) + ab (a − b).

(c) How general have your methods been? Did you use tricks specific to the given
polynomials, or do you have an algorithm for factoring any polynomial (say,
with integer coefficients)?

Exercise 1.5.2. Simplify 3
√

2 +
√

5 + 3
√

2 −
√

5.

Exercise 1.5.3. Let n ∈ N. Let a1, a2, . . . , an be n integers, and let b1, b2, . . . , bn be n
further integers. The Gaussian elimination tells you how to solve the system

a1x1 + a2x2 + · · ·+ anxn = 0;
b1x1 + b2x2 + · · ·+ bnxn = 0

for n unknowns x1, x2, . . . , xn ∈ Q. The answer, in general, will have the form “all Q-
linear combinations (i.e., linear combinations with rational coefficients) of a certain
bunch of vectors”. (More precisely, “a certain bunch of vectors” are n − 2 or n − 1
or n vectors with rational coordinates, depending on the rank of the 2 × n-matrix(

a1 a2 · · · an
b1 b2 · · · bn

)
.)

Now, how can you solve the above system for n unknowns x1, x2, . . . , xn ∈ Z ?
Will the answer still be “all Z-linear combinations (i.e., linear combinations with
integer coefficients) of a certain bunch of vectors”?

What about more general systems of linear equations to be solved for integer
unknowns?

Exercise 1.5.4. You are given a 5 × 5-grid of lamps, each of which is either on or
off. For example, writing 1 for “on” and 0 for “off”, it may look as follows:

1 0 0 1 1

1 1 0 0 1

1 0 0 1 0

0 1 1 1 1

0 1 0 0 0

In a single move, you can toggle any lamp (i.e., turn it on if it was off, or turn it off
if it was on); however, this will also toggle every lamp adjacent to it. (“Adjacent to
it” means “having a grid edge in common with it”; thus, a lamp will have 2 or 3 or
4 adjacent lamps.) For example, if we toggle the second lamp (from the left) in the
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topmost row in the above example grid, then we obtain

1 0 0 1 1

1 1 0 0 1

1 0 0 1 0

0 1 1 1 1

0 1 0 0 0

(where the boldfaced numbers correspond to the lamps that have been affected by
the move).

Assume that all lamps are initially off. Can you (by a strategically chosen se-
quence of moves) achieve a state in which all lamps are on?

[Remark: You can play this game on https://codepen.io/wintlu/pen/ZJJLGz .]

Exercise 1.5.5.

(a) How many of the numbers 0, 1, . . . , 6 appear as remainders of a perfect square
divided by 7 ?

(b) How many of the numbers 0, 1, . . . , 13 appear as remainders of a perfect square
divided by 14 ?

What about replacing 7 or 14 by n? Can you do better than just squaring them
all?

[For example, 3 of the numbers 0, 1, . . . , 4 appear as remainders of a perfect square
divided by 5 – namely, the three numbers 0, 1, 4.]

Exercise 1.5.6. Solve the following system of equations:

a2 + b + c = 1;

b2 + c + a = 1;

c2 + a + b = 1

for three complex numbers a, b, c.

The next exercise requires some preliminary discussion.

The following triangular table shows the binomial coefficients
(

n
m

)
for n ∈

https://codepen.io/wintlu/pen/ZJJLGz
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{0, 1, . . . , 7} and m ∈ {0, 1, . . . , n}:

k=0
↙

n = 0 → 1
k=1
↙

n = 1 → 1 1
k=2
↙

n = 2 → 1 2 1
k=3
↙

n = 3 → 1 3 3 1
k=4
↙

n = 4 → 1 4 6 4 1
k=5
↙

n = 5 → 1 5 10 10 5 1
k=6
↙

n = 6 → 1 6 15 20 15 6 1
k=7
↙

n = 7 → 1 7 21 35 35 21 7 1

(This is part of what is known as Pascal’s triangle.)
Now, in this table, let us replace each even number by a 0 and each odd

number by a 1. We obtain

k=0
↙

n = 0 → 1
k=1
↙

n = 1 → 1 1
k=2
↙

n = 2 → 1 0 1
k=3
↙

n = 3 → 1 1 1 1
k=4
↙

n = 4 → 1 0 0 0 1
k=5
↙

n = 5 → 1 1 0 0 1 1
k=6
↙

n = 6 → 1 0 1 0 1 0 1
k=7
↙

n = 7 → 1 1 1 1 1 1 1 1

This looks rather similar to the third evolutionary stage of Sierpinski’s triangle:

(Each 0 in the above table corresponds to a white △ triangle, and each 1 corre-
sponds to a black ▲ triangle.)

https://en.wikipedia.org/wiki/Sierpinski triangle
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Exercise 1.5.7. Where does this similarity come from?

Exercise 1.5.8. A conic means a curve of the form{
(x, y) ∈ R2 | ax2 + bxy + cy2 + dx + ey + f = 0

}
,

where a, b, c, d, e, f are six real numbers such that (a, b, c, d, e, f ) ̸= (0, 0, 0, 0, 0, 0).
Examples of conics are

• any circle, e.g., the unit circle
{
(x, y) ∈ R2 | x2 + y2 = 1

}
;

• more generally, any ellipse;

• any parabola, e.g.,
{
(x, y) ∈ R2 | x2 + y = 0

}
;

• any hyperbola, e.g.,
{
(x, y) ∈ R2 | xy = 1

}
or
{
(x, y) ∈ R2 | x2 − y2 = 1

}
;

• the union of any two lines, e.g.,
{
(x, y) ∈ R2 | xy = 0

}
.

A conic is said to be nondegenerate if it is not the union of two lines.

(a) What is the maximum number of points in which a nondegenerate conic can
intersect a line?

(b) What is the maximum number of points in which two nondegenerate conics
can intersect each other?
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2. Rings and ideals

2.1. Defining rings ([DumFoo04, §7.1])

2.1.1. The definition

You may have seen rings before, but beware: There are at least 4 non-equivalent
notions of a “ring”, and the one you know might be different from the one we’ll
use. Let us define the one we want:3

Definition 2.1.1. A ring means a set R equipped with

• two binary operations (i.e., maps from R × R to R) that are called addi-
tion and multiplication and are denoted by + and ·, and

• two elements of R that are called zero and unity and are denoted by 0
and 1,

such that the following properties (the “ring axioms”) hold:

• (R,+, 0) is an abelian group. In other words:

– The operation + is associative (i.e., we have a+(b + c) = (a + b)+
c for any a, b, c ∈ R).

– The element 0 is a neutral element for the operation + (i.e., we
have a + 0 = 0 + a = a for any a ∈ R).

– Each element a ∈ R has an inverse for the operation + (i.e., an
element b ∈ R satisfying a + b = b + a = 0).

– The operation + is commutative (i.e., we have a + b = b + a for
any a, b ∈ R).

• (R, ·, 1) is a monoid. In other words:

– The operation · is associative (i.e., we have a · (b · c) = (a · b) · c for
any a, b, c ∈ R).

3Let us recall the notion of a monoid, which will be briefly used in this definition.
Essentially, a monoid is just “a group without inverses”. The formal definition is as

follows: A monoid is a set S equipped with a binary operation ∗ (that is, a map from S × S
to S) and a specified element e ∈ S such that

• the operation ∗ is associative (i.e., we have a ∗ (b ∗ c) = (a ∗ b) ∗ c for any a, b, c ∈ S,
where we are using the notation x ∗ y for the image of a given pair (x, y) under the
operation ∗), and

• the element e is a neutral element for this operation ∗ (i.e., we have a ∗ e = e ∗ a = a
for any a ∈ S).

We denote this monoid by (S, ∗, e).
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– The element 1 is a neutral element for the operation · (i.e., we have
a · 1 = 1 · a = a for any a ∈ R).

Note that we do not require that the operation · be commutative; nor
do we require elements to have inverses for it.

• The distributive laws hold in R: That is, for all a, b, c ∈ R, we have

(a + b) · c = a · c + b · c and a · (b + c) = a · b + a · c.

• We have 0 · a = a · 0 = 0 for each a ∈ R.

The zero of R and the unity of R don’t necessarily have to be the numbers
0 and 1; we just call them 0 and 1 because they behave similarly to said
numbers. If things can get ambiguous (i.e., if they actually differ from the
numbers 0 and 1), then we will call them 0R and 1R instead (see below for
some examples of this).

The unity 1 of R is also known as the identity or the one of R (but beware
the ambiguity of the latter words).

The product a · b of two elements a, b ∈ R is often denoted ab (so we omit
the · sign) or occasionally a × b (we will avoid the latter notation).

The inverse of an element a ∈ R in the abelian group (R,+, 0) will be
called the additive inverse of a, and is denoted −a.

If a, b ∈ R, then the difference a− b is defined to be the element a+(−b) ∈
R.

Definition 2.1.2. A ring R is said to be commutative if its multiplication is
commutative (i.e., if ab = ba for all a, b ∈ R).

2.1.2. Some examples of rings

You have probably seen various rings in your mathematical life. Here are some
examples:

• The sets Z, Q and R (endowed with the usual addition, the usual multi-
plication, the usual 0 and the usual 1) are commutative rings. The same
holds for the set C of complex numbers4.

4This course will not rely overly much on complex numbers, as we will be working in more
abstract settings most of the time. Thus, if you ignore everything I say about complex
numbers and C, you will miss out on some examples and applications, but still understand
the core of this course.

However, it will still be rather helpful to understand the construction of the complex
numbers, since we will imitate this construction later on. This construction is covered in
detail in [Grinbe19, §4.1] or in [BeaBla19, §A.5]. See also Grant Sanderson’s video https:
//www.youtube.com/watch?v=5PcpBw5Hbwo on the geometric meaning of complex numbers.

https://www.youtube.com/watch?v=5PcpBw5Hbwo
https://www.youtube.com/watch?v=5PcpBw5Hbwo
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(Notice that existence of multiplicative inverses – i.e., inverses for the
operation · – is not required.)

• The set N of nonnegative integers5 (again endowed with the usual addi-
tion, the usual multiplication, the usual 0 and the usual 1) is not a ring,
since (N,+, 0) is not a group (only a monoid). It’s what is called a semir-
ing.

(Don’t be fooled by the existence of negative numbers: The number 2 has
no additive inverse in N, even though −2 is an additive inverse for it in
Z.)

• We can define a commutative ring Z′ as follows: We define a binary
operation ×̃ on the set Z by setting

a ×̃ b = −ab for all (a, b) ∈ Z × Z.

Now, let Z′ be the set Z, endowed with the usual addition + and the
(unusual) multiplication ×̃ and with the (usual) zero 0Z′ = 0 and the
(unusual) unity 1Z′ = −1. It is easy to check that Z′ is a commutative
ring. It is an example of a ring whose unity is not equal to the integer 1;
the two “1”s in the equality 1Z′ = −1 mean different things (the first “1”
is the unity of Z′, while the second “1” is the number 1). This is why it is
important to never omit the subscript Z′ in “1Z′”.

Note that I am denoting this new ring by Z′ rather than by Z, even though
as a set it is identical with Z. I do this because I want to refer to a ring
by just one single letter instead of having to specify the addition and
multiplication every time; but this cannot go well if we use the same letter
for different rings. A ring is not just a set, but rather the entire package
consisting of the set, the addition, the multiplication, the zero and the
unity. The rings Z and Z′ have the same underlying set, but they differ in
the rest of the package (specifically, in the multiplication and the unity).

This all said, Z′ is not a very interesting ring: It is essentially “a copy of
Z, except that every integer n has been renamed as −n”. To formalize
this intuition, we would need to introduce the notion of a ring isomor-
phism, which I will do soon (Definition 2.7.1 (b)); the main idea is that
the bijection

φ : Z → Z′, n 7→ −n

5Recall once again that N is defined to be {0, 1, 2, . . .}.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 21

6 satisfies

φ (a + b) = φ (a) + φ (b) for all (a, b) ∈ Z × Z;

φ (a · b) = φ (a) ×̃ φ (b) for all (a, b) ∈ Z × Z;
φ (0) = 0Z′ ;
φ (1) = 1Z′

(where the “0” and the “1” without subscripts are the usual numbers 0
and 1), and thus the ring Z′ can be viewed as the ring Z with its elements
“relabelled” using this bijection.

• The polynomial rings

Z [x] = {all polynomials in one indeterminate x with integer coefficients} ,
Q [x] = {all polynomials in one indeterminate x with rational coefficients} ,

R [x, y] = {all polynomials in two indeterminates x, y with real coefficients}

and

R [z1, z2, . . . , zn]

= {all polynomials in n indeterminates z1, z2, . . . , zn with real coefficients}

(and many others, such as Z [a, b] or C [u, p, q]) are commutative rings.
(We won’t give a formal definition of polynomials until Chapter 4.2, but
you probably already have a rough idea of what polynomials are, and this
idea should suffice for now.)

• The set of all functions Q → Q is a commutative ring, where addition and
multiplication are defined pointwise (i.e., addition is defined by

( f + g) (x) = f (x) + g (x) for all f , g : Q → Q and x ∈ Q,

and multiplication is defined by

( f g) (x) = f (x) · g (x) for all f , g : Q → Q and x ∈ Q,

), where the zero is the “constant-0” function (sending every x ∈ Q to 0),
and where the unity is the “constant-1” function (sending every x ∈ Q

to 1). Of course, the same construction works if we consider functions
R → C, or functions C → Q, or many other kinds of functions.

More generally, if R is a ring, and if S is any set, then the set of all func-
tions S → R is a ring (with +, ·, 0 and 1 defined as above). If R is
commutative, then so is this new ring. (For some reason, [DumFoo04]
requires S to be nonempty here, but this is unnecessary.)

6This notation means “the map φ from Z to Z′ that sends each n to −n”.
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When we specify a ring, we don’t need to provide its zero 0 and its unity 1
(although, of course, they need to exist); they are uniquely determined by the
operations + and ·. This is because they are neutral elements for the operations
+ and ·; but the neutral element of an operation is always unique.7

Here are some more examples of rings:

• The set S of all real numbers of the form a + b
√

5 with a, b ∈ Q (endowed
with the usual notions of “addition” and “multiplication” defined for real
numbers) is a commutative ring. The “hard” part of proving this is show-
ing that the product of two numbers of this form is again a number of this
form; but this is just a matter of computation:(

a + b
√

5
) (

c + d
√

5
)
= ac + bc

√
5 + ad

√
5 + bd · 5

= (ac + 5bd)︸ ︷︷ ︸
∈Q

+ (bc + ad)︸ ︷︷ ︸
∈Q

√
5.

Associativity, distributivity, etc. come for “free”, or, as we say, are inher-
ited from R (meaning that we already know that they hold for R, so they
must automatically hold for S). Only the existence of additive inverses
(i.e., of inverses for the operation +) does not come for free (sure, every
element of S has an additive inverse of R, but we must show that it has
an additive inverse of S), but it is easy to check (the additive inverse of
a + b

√
5 ∈ S is (−a) + (−b)

√
5 ∈ S).

The standard notation for this ring is Q
[√

5
]
, not S. We will eventually

see it as a particular case of a general construction.

• We could define a different ring structure on the set S (that is, a ring
which, as a set, is identical with S, but has a different choice of operations)
as follows: We define a binary operation ∗ on S by setting(

a + b
√

5
)
∗
(

c + d
√

5
)
= ac + bd

√
5

for all (a, b) ∈ Q × Q and (c, d) ∈ Q × Q.

This is well-defined, because every element of S can be written in the form
a + b

√
5 for a unique pair (a, b) ∈ Q × Q. This is a consequence of the

irrationality of
√

5. You could not do this with
√

4 instead of
√

5 !

Now, let S′ be the set S, endowed with the usual addition + and the
(unusual) multiplication ∗, with the (usual) zero 0S′ = 0 and with the

7To wit: If ∗ is a binary operation on a set S, and if u and v are two neutral elements for ∗, then
u ∗ v = u (by the neutrality of v) and u ∗ v = v (by the neutrality of u), so that u = u ∗ v = v.
You have probably seen this argument in group theory, but it does not require a group, just
an arbitrary binary operation.
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(unusual) unity 1S′ = 1 +
√

5 (not the integer 1). It is easy to check that
S′ is a commutative ring. The sets S and S′ are identical, but the rings S

and S′ are not: For example, the ring S′ has two nonzero elements whose
product is 0 (namely, 1 ∗

√
5 = 0), whereas the ring S has no such things.

Thus, we don’t just have S′ ̸= S as rings, but there is also no way to regard
S′ as “a copy of S with its elements renamed” (like we did with Z′ and
Z). So a ring is much more than just a set; the +, ·, 0 and 1 matter.

• The set S3 of all real numbers of the form a+ b 3
√

5 with a, b ∈ Q (endowed
with the usual addition, etc.) is not a ring. Indeed, multiplication is not a
binary operation on this set S3, as you can see by noticing that(

1 + 1 3
√

5
)

︸ ︷︷ ︸
∈S3

(
1 + 1 3

√
5
)

︸ ︷︷ ︸
∈S3

= 1 + 2 3
√

5 +
(

3
√

5
)2

/∈ S3.

(Strictly speaking, this requires some work to prove – how can we be sure

there are no a, b ∈ Q that satisfy 1 + 2 3
√

5 +
(

3
√

5
)2

= a + b 3
√

5 ? – but I’m
just making a point about how not everything that looks like a ring is a
ring.)

• For any n ∈ N, the set Rn×n of all n × n-matrices with real entries (en-
dowed with matrix addition, matrix multiplication, the zero matrix and
the identity matrix) is a ring. It is not commutative unless n ≤ 1, since we
don’t usually have AB = BA for matrices.

More generally: If R is any ring, and if n ∈ N, then the set Rn×n of all
n × n-matrices with entries in R (endowed with matrix addition, matrix
multiplication, the zero matrix and the identity matrix) is a ring. This is
called the n × n-matrix ring over R; it is denoted by Rn×n or Mn (R) or
Mn (R). Of course, the matrix addition is defined in terms of the addition
of R, and the matrix multiplication is defined in terms of both + and
· operations of R. Matrix rings are one of the main reasons people are
studying noncommutative rings.

Note that if R is not commutative, then this ring Rn×n is not commutative
even for n = 1.

[Here I was asked what a 0 × 0-matrix is. Well, it pays off to be literal: It
is a table with 0 rows, 0 columns and 0 entries.]

At this point, the “endowed with...” phrase has become somewhat of a ritual
incantation: Most of our rings are endowed with the exact operations (+ and ·)
and special elements (0 and 1) you would guess if I just told you the set. Thus,
in future, I will omit this phrase unless I actually mean to endow the ring with
some unexpected operations. In particular, if I say that a set of numbers is a
ring, then I automatically understand it to be endowed with the usual addition,
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the usual multiplication, the usual zero 0 and the usual unity 1, unless I say
otherwise.

We continue with our litany of examples:

• Another famous noncommutative ring is the ring of Hamilton quater-
nions H. Its elements are the “formal expressions” of the form a + bi +
cj + dk with a, b, c, d ∈ R. (To be more rigorous, you can define them to
be 4-tuples (a, b, c, d) with a, b, c, d ∈ R; the “formal” sum a + bi + cj + dk
can be viewed as just a fancy way to write such a 4-tuple.) Addition is
defined by the distributive law:

(a + bi + cj + dk) +
(
a′ + b′i + c′ j + d′k

)
=
(
a + a′

)
+
(
b + b′

)
i +
(
c + c′

)
j +
(
d + d′

)
k.

Multiplication is also defined by the distributive law using the formulas

i2 = j2 = k2 = −1, ij = −ji = k, jk = kj = −i, ki = −ik = j

(and the rule that any real number should commute with any of i, j, k).
For example, the distributive law yields

(1 + i) (2 + k) = 2 + k + i · 2︸︷︷︸
=2i

+ ik︸︷︷︸
=−j

= 2 + k + 2i + (−j) = 2 + 2i − j + k.

We will see in Section 3.12 that this H is indeed a ring. It is not commu-
tative. It is used in computer graphics (quaternions encode rotations in
3D space), physics and number theory(!). In particular, Lagrange’s four-
squares theorem, which says that any positive integer can be written as a
sum of four perfect squares, can be proved using quaternions!

• If you like the empty set, you will enjoy the zero ring. This is the ring
which is defined as the one-element set {0}, endowed with the only pos-
sible operations + and · and its only possible 0 and 1 (there is only one
possibility for each of these, since the ring only has element!). So its zero
and its unity are both 0 (nobody said that they have to be distinct!), and
it has 0 + 0 = 0 and 0 · 0 = 0.

The zero ring is, of course, commutative. It plays the same role in the
world of rings as the empty set does in the world of sets: It contains
no interesting information whatsoever, but its existence is important for
things to work.

Generally, a trivial ring is defined to be a ring containing only one ele-
ment. Every trivial ring can be viewed as the zero ring with its element 0
relabelled.
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• For every integer n, the residue classes8 of integers modulo n form a
commutative ring, which is called Z/nZ or Z/n or Zn (depending on
the author; beware that Zn has two different meanings). You already
know its additive group (Z/n,+, 0), which is classically called the cyclic
group of order n. The multiplication is defined just as addition is: namely,
we set

a · b = a · b for any a, b ∈ Z.

(where the overline means “residue class modulo n”). This is all known
as modular arithmetic.

The ring Z/n has n elements when n > 0. In particular, Z/1Z is a trivial
ring. In contrast, as we already mentioned in Section 1.4, the ring Z/0Z

is just Z with its elements relabelled (since a residue class modulo 0 only
contains a single integer).

• Here is yet another very small ring: Let F4 be a set consisting of four
distinct elements 0, 1, a, b. Define two binary operations + and · on F4 by
the following tables:

x + y y = 0 y = 1 y = a y = b

x = 0 0 1 a b

x = 1 1 0 b a

x = a a b 0 1

x = b b a 1 0

x · y y = 0 y = 1 y = a y = b

x = 0 0 0 0 0

x = 1 0 1 a b

x = a 0 a b 1

x = b 0 b 1 a

.

Then, I claim that F4 is a ring (with zero 0 and unity 1). This can be
proved by meticulously checking that all the ring axioms are satisfied.
Arguably, this is rather boring9. Eventually, we will find a way around
this busywork by constructing this ring F4 in a different (more conceptual)
way.

8See Section 1.4 for a refresher on residue classes.
9For example, checking associativity of multiplication requires proving (ab) c = a (bc) for

43 = 64 different triples (a, b, c) ∈ (F4)
3.
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This ring F4 is easily seen to be commutative (since the table for x · y is
symmetric across the diagonal). Its additive group (F4,+, 0) is the famous
Klein four-group, characterized by the fact that it has four elements and
each element x satisfies x + x = 0.

Note that both rings F4 and Z/4 are commutative rings with 4 elements
each. But they are rather different; in particular, F4 is not just “Z/4 with
its labels taken off”10.

• Here is one more ring with 4 elements: Let D4 be a set consisting of four
distinct elements 0, 1, a, b. Define a binary operation + on D4 in the same
way as for F4 in the previous example (i.e., using the exact same table).
Define a new binary operation · on D4 by the following table:

x · y y = 0 y = 1 y = a y = b

x = 0 0 0 0 0

x = 1 0 1 a b

x = a 0 a 0 a

x = b 0 b a 1

.

Then, D4 is a commutative ring (with zero 0 and unity 1). This ring differs
crucially from both Z/4 and F4.

• Yet another ring with 4 elements is the ring B4, which again consists of
four distinct elements 0, 1, a, b and again has the same binary operation +
as F4 and D4, but now has a multiplication · given by the table

x · y y = 0 y = 1 y = a y = b

x = 0 0 0 0 0

x = 1 0 1 a b

x = a 0 a a 0

x = b 0 b 0 b

.

This is again a commutative ring with zero 0 and unity 1.

More examples of rings can be found below (e.g., in Exercises 2.3.2, 2.10.6
and 2.3.6) and in the next few exercises.

10Here is one difference: Every element x ∈ F4 satisfies x + x = 0, but not every element
x ∈ Z/4 satisfies this.

https://en.wikipedia.org/wiki/Klein_four-group
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Exercise 2.1.1. Let F8 be a set consisting of eight distinct elements 0, 1, a, b, c, d, e, f .
Define two binary operations + and · on F8 by the following tables:

x + y y = 0 y = 1 y = a y = b y = c y = d y = e y = f

x = 0 0

x = 1 0

x = a b 0

x = b a 1

x = c d e 0

x = d c f 1

x = e f c a

x = f e d b

x · y y = 0 y = 1 y = a y = b y = c y = d y = e y = f

x = 0

x = 1 1

x = a a c b

x = b b

x = c c b e

x = d

x = e

x = f

.

Oops, I lost most of the entries! Reconstruct all missing entries in the tables. (You
can take it for granted that F8 is really a ring.)

Recall that complex numbers were defined as pairs (a, b) of real numbers,
with entrywise addition

(a, b) + (c, d) = (a + c, b + d)

and a certain weird-looking multiplication

(a, b) · (c, d) = (ac − bd, ad + bc) .

By setting i = (0, 1), and identifying each real number r with the complex
number (r, 0), we can then write each complex number (a, b) in the familiar
form a + bi.
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In the next exercise, we will define a different kind of “numbers”: the dual
numbers11. They, too, are defined as pairs (a, b) of real numbers, and again
they are added entrywise, but their multiplication is different from the multi-
plication of complex numbers:

Exercise 2.1.2. We define a dual number to be a pair (a, b) of two real numbers a
and b.

We let D be the set of all dual numbers.
Define an addition + and a multiplication · on D by setting

(a, b) + (c, d) = (a + c, b + d) and
(a, b) · (c, d) = (ac, ad + bc)

for all (a, b) ∈ D and (c, d) ∈ D. (Note that the only difference to complex numbers
is the definition of ·, which is lacking a −bd term.)

(a) Prove that D becomes a commutative ring when equipped with these two
operations and with the zero (0, 0) and the unity (1, 0).

This ring D will be called the ring of dual numbers.
We shall identify each real number r with the dual number (r, 0).
We let ε denote the dual number (0, 1).

(b) Prove that, for any a, b ∈ R, we have a + bε = (a, b) in D (where a, of course,
means the dual number (a, 0)).

(c) Prove that ε2 = 0 in D.

The usefulness of dual numbers stems from the fact that the dual number ε is a sort
of “algebraic infinitesimal” (in the sense that ε ̸= 0 but ε2 = 0). We will eventually see
(in Exercise 5.3.10) that by evaluating a polynomial at a dual number of the form (a, 1),
we obtain not only the value of the polynomial at a but also its derivative at a.

2.1.3. Notes on the definitions

Remark 2.1.3. Our above definition of a ring has some redundancies:
First of all, the 0 · a = a · 0 = 0 axiom follows from distributivity and the

groupness of (R,+, 0). This is why it appears in [DumFoo04] as a theorem
([DumFoo04, Proposition 1 on page 226]), not as an axiom.

Second, we can drop the “abelian” in the axiom “(R,+, 0) is an abelian
group”; in other words, we can drop the requirement that addition be com-
mutative. This is because this requirement can be derived from the remain-
ing axioms (see [DumFoo04, page 223]). But this is a bit artificial. I am

11Do they really deserve to be called “numbers”? Matter of taste. But with the adjective “dual”,
the terminology is unambiguous.
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aiming not for a minimal set of axioms, but for a reasonable set of axioms
that strikes the balance between usefulness (i.e., important things are easy to
derive from the axioms) and verifiability (i.e., it is easy to check these axioms
in meaningful cases).

The kind of rings we defined above aren’t the same kind of rings [DumFoo04]
defines. The latter differ in that they are “lacking a unity”. I will call them
nonunital rings:

Definition 2.1.4. A nonunital ring is defined in the same way as we defined a
ring, except we no longer require a unity, and we replace the axiom “(R, ·, 1)
is a monoid” by “the operation · is associative”. In particular, any ring is a
nonunital ring, but not vice versa.

Note that the word “nonunital” means “we don’t require a unity”, not “the
ring must not have a unity”.

For example, the set 2Z of all even integers (i.e., the set {. . . ,−4,−2, 0, 2, 4, . . .})
is a nonunital ring (when equipped with the usual operations), but not a ring
in our sense.

Beware:

• What we call a ring is called a “ring with identity” (or “ring with 1”) in
[DumFoo04].

• What we call a nonunital ring is just called a “ring” in [DumFoo04].

For an enlightening polemic about why rings in our sense (i.e., rings with a
unity) are a more important concept than nonunital rings, see [Poonen18].

Historically, the concept of a ring originated in the late 19th century in
number-theoretical considerations of Dedekind, Kronecker and Hilbert, and
emerged gradually from particular cases. Until the late 1930s, its definition
was rather fluid: Different authors imposed fewer or more axioms depending
on their specific needs. By the 1970s perhaps, the definition had stabilized
(thanks to the work of Noether and the textbook [Waerde91] by van der Waer-
den), except for the questions as to whether a ring should always have a unity
(i.e., the very point on which we disagree with [DumFoo04]) and occasionally
as to whether a ring should always be commutative (we believe they should
not, but a number of mathematicians whose entire career is built on the study
of commutative rings prefer to have fewer words to type).

More on the history of rings can be found in https://mathshistory.st-andrews.
ac.uk/HistTopics/Ring_theory/ .

https://mathshistory.st-andrews.ac.uk/HistTopics/Ring_theory/
https://mathshistory.st-andrews.ac.uk/HistTopics/Ring_theory/
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2.2. Calculating in rings

2.2.1. What works in arbitrary rings

You can think of a commutative ring as a “generalized number system”. In
particular, all computations that can be performed with the operations +, −
and · on integers can be similarly made in any commutative ring. To some
extent, this holds also for general (noncommutative) rings.

For instance, if a1, a2, . . . , an are n elements of a ring, then the sum a1 +
a2 + · · · + an is well-defined, and can be computed by adding the elements
a1, a2, . . . , an together in any order12. More generally, finite sums of the form
∑

s∈S
as are defined when the as belong to a ring13, and these sums behave just

like finite sums of numbers.
The same holds for finite products when the ring is commutative. If the ring

is not commutative, then finite products in a specified order – like a1a2 · · · an
– are still well-defined14, but unordered finite products – like ∏

s∈S
as – are not,

unless you have “local commutativity” (i.e., the as commute with each other).15

In any ring, subtraction satisfies the rules you would expect: For any two
elements a, b of a ring, we have

(−a) b = a (−b) = − (ab) ;
(−a) (−b) = ab;

(−1) a = −a.

See [DumFoo04, §7.1, Proposition 1] for the easy proofs. Furthermore, any

12This means that, for example, the four sums ((a1 + a2) + a3) + a4 and (a3 + (a2 + a4)) + a1
and (a2 + a3) + (a4 + a1) are equal (for fixed elements a1, a2, a3, a4 of a ring).

This fact is known as general commutativity (or generalized commutativity), and is
true not just for rings but also (more generally) for arbitrary abelian monoids (where +
is the operation of the monoid). For a proof, see (e.g.) [Grinbe15, Theorem 2.118 (a)]
(which superficially only discusses real numbers, but gives a proof that applies verbatim to
any ring) or https://proofwiki.org/wiki/General_Commutativity_Theorem (where the
operation we call + is called ◦).

13It should be kept in mind that empty sums (i.e., sums of the form ∑
s∈∅

as) are defined to equal

the zero of the ring.
14This means that the product is the same no matter “where the parentheses are placed”. For

example, a product abcde of five elements can be computed as (((ab) c) d) e or as a (b (c (de)))
or as (a (bc)) (de) or in several other ways, and all these ways lead to the same result.

This fact is known as general associativity (or generalized associativity), and is
true not just for rings but also (more generally) for arbitrary monoids. For a
proof, see (e.g.) [Ford22, Lemma 2.1.4] or https://groupprops.subwiki.org/wiki/
Associative_implies_generalized_associative or https://math.stackexchange.com/
questions/2459697/prove-generalized-associative-law .

15It should be kept in mind that empty products (i.e., products of the form ∏
s∈∅

as) are defined

to equal the unity of the ring.

https://proofwiki.org/wiki/General_Commutativity_Theorem
https://groupprops.subwiki.org/wiki/Associative_implies_generalized_associative
https://groupprops.subwiki.org/wiki/Associative_implies_generalized_associative
https://math.stackexchange.com/questions/2459697/prove-generalized-associative-law
https://math.stackexchange.com/questions/2459697/prove-generalized-associative-law
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three elements a, b, c of a ring satisfy the “subtractive distributivity laws”

a (b − c) = ab − ac and (a − b) c = ac − bc.

(These follow easily from the standard distributivity laws that are part of the
ring axioms.)

If n is an integer and a is an element of a ring R, then we define an element
na of R by

na =


a + a + · · ·+ a︸ ︷︷ ︸

n addends

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n addends

 , if n < 0
.

This defines the product of an integer with an element of R. This new “multipli-
cation” operation is usually called “scaling” rather than “multiplication”, since
its two inputs are of different types: The first is an integer, while the second is
an element of R. In general, it is unrelated to the product of two elements of
R, although these operations usually agree when Z is a subset of R (unless the
multiplication of R is defined in a particularly pathological way16).

We note that 0a = 0 for any a ∈ R, where the “0” on the left hand side is the
integer 0. This is because an empty sum is defined to be 0.

If n is a nonnegative integer and a is an element of a ring R, then we define
an element an of R (called the n-th power of a) by

an = a · a · · · · · a︸ ︷︷ ︸
n factors

.

In particular, applying this definition to n = 0, we obtain

a0 = (empty product) = 1R for each a ∈ R.

Furthermore, a1 = a for each a ∈ R.
Thus we can scale elements of a ring by integers, and take them to nonneg-

ative integer powers. These operations satisfy the identities you would expect
them to satisfy: For example, for any a, b ∈ R (with R being a ring) and any
n, m ∈ Z, we have

(n + m) a = na + ma;
n (a + b) = na + nb;
(nm) a = n (ma) ;
(−1) a = −a.

16If R is the ring Z′ defined in Subsection 2.1.2, then the two operations do not agree, i.e., the
expression “na” has different values depending on whether you are viewing it as a product
of two elements of R or as a product of an integer with an element of R. But this is no
surprise, since our definition of Z′ relied on deliberately altering the multiplication.
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Furthermore, for any a ∈ R and any n, m ∈ N, we have

an+m = anam;

anm = (an)m .

Also,

1n = 1 for n ∈ N;

0n =

{
0, if n > 0;
1, if n = 0

for n ∈ N

(where, of course, the “1” and “0” stand for 1R and 0R, except for the two “0”s
in “n > 0” and in “n = 0”.)

Moreover, if a, b ∈ R satisfy ab = ba, then we have

aibj = bjai for i, j ∈ N (1)

and
(ab)n = anbn for n ∈ N (2)

and (the binomial formula)

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k for n ∈ N. (3)

All of this is proved just as for numbers.

Exercise 2.2.1. Actually prove these equalities (1), (2) and (3).

Exercise 2.2.2. Prove that the three equalities (1), (2) and (3) can fail if we don’t
require ab = ba. For instance, find two 2 × 2-matrices a, b ∈ Q2×2 that violate (1) for
i = j = 2, violate (2) for n = 2 and violate (3) for n = 2.

We note that even when two elements a and b of a ring R don’t satisfy ab = ba,
the n-th power (a + b)n can be expanded using distributivity; the result will just not
usually be as nice as (3). For example,

(a + b)3 = a3 + a2b + aba + ab2 + ba2 + bab + b2a + b3.

The following exercise generalizes the well-known “geometric sum” formula

1 + q + q2 + · · ·+ qn−1 =
1 − qn

1 − q
(for q ̸= 1):

Exercise 2.2.3. Let R be any ring. Let a, b ∈ R satisfy ab = ba. Let n ∈ N. Prove
that

an − bn = (a − b) ·
n−1

∑
k=0

akbn−1−k

︸ ︷︷ ︸
=an−1+an−2b+···+abn−2+bn−1

.

(Note that when n = 0, the sum
n−1
∑

k=0
akbn−1−k is an empty sum and thus equals 0 by

definition.)
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The following exercises provide some practice with calculating in rings:

Exercise 2.2.4.

(a) Without computing the integer 74, prove that 74
= 1 in the ring Z/10.

(b) Find a simple rule for the k-th power 7k of the element 7 in the ring Z/10.
Specifically, this rule should express 7k in terms of the remainder that k leaves
when divided by 4.

(c) What is the units digit of the number 79999 ?

Exercise 2.2.5.

(a) Prove that every element x ∈ Z/7 satisfies x7 = x in Z/7.

(b) In the ring H of Hamilton quaternions (see Subsection 2.1.2), compute ijk and
(1 + i + j + k)2.

Next, recall the ring F4 constructed in Subsection 2.1.2, with its four elements
0, 1, a, b.

(c) Prove that a4 = a in this ring.

(d) What is b4 ?

[Part (a) is generalized in Proposition 2.6.4 below, whereas parts (c) and (d) are
generalized in Proposition 2.6.6.]

Exercise 2.2.6.

(a) In the ring H of Hamilton quaternions (see Subsection 2.1.2), prove that
(ai + bj + ck)2 = −

(
a2 + b2 + c2) for any a, b, c ∈ R.

(b) Conclude that there are infinitely many quaternions w ∈ H satisfying w2 =
−1.

2.2.2. What doesn’t work in arbitrary rings

Here are some things that might feel less familiar. Again, we let R be a ring,
and we let a, b be two elements of R.

• It is not always true that a ̸= 0 and b ̸= 0 implies ab ̸= 0. This fails in the
ring Z/6 (for example, you can pick a = 2 and b = 3 to get ab = 2 · 3 =
2 · 3 = 6 = 0, even though a and b are ̸= 0) and in matrix rings like Z2×2
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(here you can pick a =

(
1 0
0 0

)
and b =

(
0 0
0 1

)
to get ab =

(
0 0
0 0

)
,

even though neither a nor b is the zero matrix).

• It is not always true that ab = 1 implies ba = 1. This would be true in
the classical matrix rings Rn×n and Cn×n, in any commutative ring (for
obvious reasons), and in any finite ring (for less obvious reasons), but
may fail in arbitrary rings. (Counterexamples are not easy to find; see
[DumFoo04, §7.1, exercise 30 (a)] for one.)

2.2.3. Idempotents

The next few exercises are concerned with the notion of “idempotent elements”
of a ring. This is a useful notion, but more importantly, the exercises should
provide some practice with calculations in rings.

Definition 2.2.1. Let R be a ring.

(a) An element a of R is said to be idempotent if it satisfies a2 = a.

(b) An element a of R is said to be involutive if it satisfies a2 = 1.

Some examples first: The idempotent elements of R are 0 and 1. The involu-
tive elements of R are 1 and −1. The ring Z/6 has four idempotent elements
(0, 1, 3 and 4) and two involutive elements (1 and 5). A matrix ring like Rn×n

usually has infinitely many idempotent elements (viz., all projection matrices
on subspaces of Rn) and infinitely many involutive elements (viz., all matri-
ces A satisfying A2 = In; for instance, all reflections across hyperplanes are
represented by such matrices).

Exercise 2.2.7. Let p be a prime number, and let k be a positive integer.

(a) Prove that the only idempotent elements of the ring Z/pk are 0 and 1.

(b) Now assume furthermore that p ̸= 2. Prove that the only involutive elements
of the ring Z/pk are 1 and −1.

Exercise 2.2.8. Let R be a ring. Prove the following:

(a) If a is an idempotent element of R, then 1 − a ∈ R is again idempotent.

(b) If a is an involutive element of R, then −a ∈ R is again involutive.

(c) If a is an idempotent element of R, then an = a for each positive n ∈ N.

(d) If a is an idempotent element of R, then (1 + a)n = 1 + (2n − 1) a for each
n ∈ N.
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Exercise 2.2.9. Let R be a ring.

(a) Let a ∈ R. Prove that if a is idempotent, then 1 − 2a is involutive.

(b) Now, assume that 2 is cancellable in R; this means that if u and v are two
elements of R satisfying 2u = 2v, then u = v. Prove that the converse of the
claim of part (a) holds: If a ∈ R is such that 1 − 2a is involutive, then a is
idempotent.

(c) Now, let R = Z/4Z. Find an element a ∈ R such that 1 − 2a is involutive, but
a is not idempotent.

Exercise 2.2.9 (a) assigns an involutive element to each idempotent element
of R. If 2 is invertible in R (that is, if the element 2 · 1R has a multiplicative
inverse), then this assignment is a bijection (as can be easily derived from Exer-
cise 2.2.9 (b)). Note that this assignment, when applied to a matrix ring Rn×n, is
exactly the assignment you would expect from the geometric point of view: To
the orthogonal projection on a hyperplane H, it assigns the reflection in the hy-
perplane H. Exercise 2.2.9 (c) shows that we cannot drop the “2 is cancellable”
condition in Exercise 2.2.9 (b).

2.3. Subrings ([DumFoo04, §7.1])

2.3.1. Definition

Groups have subgroups; vector spaces have subspaces (and so do topological
spaces, although the two notions have little in common). Not surprisingly, the
same is true for rings, and you can guess the definition:

Definition 2.3.1. Let R be a ring. A subring of R is a subset S of R such that

• we have a + b ∈ S for any a, b ∈ S;

• we have ab ∈ S for any a, b ∈ S;

• we have −a ∈ S for any a ∈ S;

• we have 0 ∈ S (where the 0 means the zero of R);

• we have 1 ∈ S (where the 1 means the unity of R).

The five conditions in Definition 2.3.1 are called the “subring axioms”. The
first of these five axioms is often reformulated as “S is closed under addition”;
the second then becomes “S is closed under multiplication”; the third becomes
“S is closed under negation”. Thus, a subring of a ring is a subset that is
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closed under addition, closed under multiplication, closed under negation, and
contains the zero and the unity.

The following is essentially obvious:

Proposition 2.3.2. Let S be a subring of a ring R. Then, S automatically is a
ring in its own right (with its operations + and · obtained by restricting the
corresponding operations of R, and with its elements 0 and 1 passed down
from R).

2.3.2. Examples

Here are some examples of subrings:

• From the classical construction of the number systems, you know that
Z ⊆ Q ⊆ R ⊆ C. Each of these three “⊆” signs can be strengthened to
“is a subring of” (for example, Z is a subring of Q).

• We can extend this chain further to the right: C is a subring of H (the
quaternions).

• However, we cannot extend this chain to the left: The only subring of Z

is Z itself. Indeed, a subring of Z would have to contain 0 and 1 (by
definition), thus also any sum of the form 1 + 1 + · · ·+ 1 (since a subring
is closed under addition), i.e., any positive integer, and therefore also any
negative integer (since it is closed under negation), and thus any integer.
But this means that it is Z.

• There are lots of rings between Z and Q (that is, rings B such that Z is
a subring of B and B in turn is a subring of Q). You will see some of
these in Exercise 2.3.2. Here is another: Let Qodd be the ring of all rational
numbers of the form

a
b

with a ∈ Z being arbitrary and b ∈ Z being odd.

Then, Qodd is a subring of Q (this is pretty easy to check17), and Z is a
subring of Qodd.

• There are myriad rings between Q and R. For example, the ring S from
Subsection 2.1.2 is one of these.

17For example, in order to check that Qodd is closed under addition, we need to verify that the

sum of two numbers of the form
a
b

(with a ∈ Z being arbitrary and b ∈ Z being odd) is

again a number of this form. But this follows easily from the formula
a
b
+

c
d

=
ad + bc

bd
,

along with the fact that a product of two odd numbers is odd.
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• There are no rings between R and C. That is, if a subring of C contains
R as a subring, then this subring must be either R or C itself. This is not
hard to prove (but I won’t do so here).

• There are rings between Z and C that are neither subrings nor “super-
rings” of R. A particularly important one is the ring Z [i] of Gaussian
integers. A Gaussian integer is a complex number of the form a + bi
where a and b are integers (and where i is the imaginary unit

√
−1). For

example, 3 + 5i and −7 + 8i are Gaussian integers. It is easy to see that
Z [i] is indeed a subring of C, and of course Z is a subring of Z [i]. But
Z [i] is not an intermediate stage on the Z ⊆ Q ⊆ R ⊆ C “chain”; it is a
“detour”.

Likewise, there is a ring Q [i] of Gaussian rationals, which are defined
just as Gaussian integers but using rational numbers (instead of integers)
for a and b. This ring Q [i] is sandwiched between Q and C.

• Recall the ring of functions from Q to Q. Similarly, there is a ring of func-
tions from R to R. The latter has a subring consisting of all continuous
functions from R to R. To see that this is indeed a subring, you need to
show that the sum and the product of two continuous functions are con-
tinuous, that the negation − f of a continuous function f is continuous,
and that the constant-0 and constant-1 functions are continuous.

• Let n ∈ N, and let R be any ring. Recall the matrix ring Rn×n, consisting
of all n × n-matrices with entries in R. Then,

Rn≤n := {all upper-triangular n × n-matrices with entries in R}

=




a1,1 a1,2 · · · a1,n
0 a2,2 · · · a2,n
...

... . . . ...
0 0 · · · an,n

 | ai,j ∈ R for all i ≤ j


is a subring of Rn×n (because the sum and the product of two upper-
triangular matrices are again upper-triangular, and because the zero ma-
trix and the identity matrix are upper-triangular). Similarly,

Rn≥n := {all lower-triangular n × n-matrices with entries in R}

=




a1,1 0 · · · 0
a2,1 a2,2 · · · 0

...
... . . . ...

an,1 an,2 · · · an,n

 | ai,j ∈ R for all i ≥ j


is a subring of Rn×n. The intersection Rn≤n ∩ Rn≥n of these two subrings is
again a subring of Rn×n (and its elements are the diagonal n× n-matrices).
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However,

Rn×n
symm := {all symmetric n × n-matrices with entries in R}

=




a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
... . . . ...

an,1 an,2 · · · an,n

 | ai,j = aj,i ∈ R for all i, j


is not a subring of Rn×n unless n ≤ 1 or R is trivial (since in all other
cases, it is easy to find two symmetric matrices whose product is not
symmetric18).

Warning 2.3.3. Beware that our Definition 2.3.1 does not agree with the def-
inition of a “subring” in [DumFoo04].

Indeed, [DumFoo04] does not require 1 ∈ S for a subring, because
[DumFoo04] does not require rings to have a 1 in the first place. Thus, for
example, the nonunital ring 2Z is a subring of Z in [DumFoo04]’s sense (but
not in our sense, since we don’t even count 2Z as a ring). Even more confus-
ingly, it can happen that S and R are two rings in our sense (i.e., they both
have unities), and S is a subring of R in [DumFoo04]’s sense (i.e., S satisfies
our definition of a subring, minus the “1 ∈ S” axiom), but not a subring of R
in our sense (because its unity is not the unity of R). For example, the zero
ring is a subring of Z in [DumFoo04]’s sense, but not in ours (since the unity
of the zero ring is the number 0). Alas, there are less pathological examples,
too, so this isn’t something you can ignore. For example, you can pretend
that each 2 × 2-matrix is secretly a 3 × 3-matrix by inserting a zero row at
the bottom and a zero column at the right (i.e., identifying each 2 × 2-matrix(

a b
c d

)
with the 3 × 3-matrix

 a b 0
c d 0
0 0 0

; note that I am not saying you

should do that), and this makes R2×2 a subring of R3×3 in [DumFoo04]’s
sense, but not in ours. Of course, this is one of the situations where you
really need subscripts under the “1” to avoid confusing different unities.

The following exercises provide several more examples of subrings:

Exercise 2.3.1. Let c, d and g be three integers with g ̸= 0. Assume that d is not a
perfect square (i.e., not the square of an integer).

18For example, if n = 2, then the two symmetric matrices
(

1 0
0 0

)
and

(
0 1
1 0

)
have

product
(

1 0
0 0

)(
0 1
1 0

)
=

(
0 1
0 0

)
, which is not symmetric.
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Let ζ =
c +

√
d

g
. (This is a real number if d ≥ 0, and a complex number if d < 0.)

Set

X := {a + bζ | a, b ∈ Z} and
Y := {a + bζ | a, b ∈ Q} .

(a) Prove that Y is always a subring of C.

(b) Prove that X is a subring of C if and only if we have g | 2c and c2 ≡ d mod g2.

[Hint: Show that g2ζ2 = 2cgζ +
(
d − c2).]

Note that the ring Y in Exercise 2.3.1 (a) generalizes the ring Q [i] of Gaussian ratio-
nals (obtained by setting c = 0 and d = −1 and g = 1), whereas the ring X in Exercise
2.3.1 (b) generalizes the ring Z [i] of Gaussian integers (obtained in the same way).

Exercise 2.3.2. Fix an integer m. An m-integer shall mean a rational number r such
that there exists a k ∈ N satisfying mkr ∈ Z.

For example:

• Each integer r is an m-integer (since mkr ∈ Z for k = 0).

• The rational number
5
12

is a 6-integer (since 6k · 5
12

∈ Z for k = 2), but neither
a 2-integer nor a 3-integer (since multiplying it by a power of 2 will not “get
rid of” the prime factor 3 in the denominator, and vice versa19).

• The 1-integers are the integers (since 1kr = r for all r).

• Every rational number r is a 0-integer (since 0kr ∈ Z for k = 1).

Let Rm denote the set of all m-integers. Prove that Rm is a subring of Q.

The ring Rm in Exercise 2.3.2 is an example of a ring “between Z and Q” (in
the sense that Z is a subring of Rm, while Rm is a subring of Q). Note that
R1 = Z and R0 = Q, whereas R2 = R4 = R8 = · · · is the ring of all rational
numbers that can be written in the form a/2k with a ∈ Z and k ∈ N.

Here is another example of a subring of a matrix ring Rn×n:

19To make this more rigorous: If we had 2k · 5
12

∈ Z for some k ∈ N, then we would have

12 | 2k · 5, which would entail that 3 | 12 | 2k · 5, and thus 3 would appear as a factor in the

prime factorization of 2k · 5. But this is absurd. Hence, 2k · 5
12

∈ Z cannot hold. Similarly,

3k · 5
12

∈ Z cannot hold.
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Exercise 2.3.3. Let n ∈ N. Let R be any ring. An n × n-matrix A =
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 ∈ Rn×n will be called centrosymmetric if it satisfies

ai,j = an+1−i, n+1−j for all i, j ∈ {1, 2, . . . , n} .

(Visually, this means that A is preserved under “180◦-rotation”, i.e., that any two
cells of A that are mutually symmetric across the center of the matrix have the same

entry. For example, a centrosymmetric 4 × 4-matrix has the form


a b c d
e f g h
h g f e
d c b a


for a, b, . . . , h ∈ R.)

Prove that the set {all centrosymmetric n × n-matrices with entries in R} is a sub-
ring of Rn×n.

[Hint: This can be done in a particularly slick way as follows: Let W be the n × n-
matrix obtained from the identity matrix In by a horizontal reflection (or, equiva-

lently, a vertical reflection). For example, if n = 4, then W =


0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

. Now,

show that an n× n-matrix A is centrosymmetric if and only if it satisfies AW = WA.]

Subrings can be used to answer a curious question: How small can a noncommuta-
tive ring be? A moment of thought leads us to the ring (Z/2)2≤2 of upper-triangular
matrices with entries in Z/2; this ring is noncommutative and has size 8 (since there
are 2 choices for each of the three entries of such a matrix, not counting the bottom-left
entry because that entry must be 0). Thus, a noncommutative ring can have size 8. A
smaller size is not possible, as follows from the following exercise:

Exercise 2.3.4. Let R be a finite ring. Assume that its size |R| is either a prime
number p or a product pq of two (not necessarily distinct!) prime numbers p and q.
Our goal is to show that R is commutative.

Consider the abelian group (R,+, 0). If u1, u2, . . . , uk are any elements of R, then
⟨u1, u2, . . . , uk⟩ shall denote the subgroup of this abelian group (R,+, 0) generated
by u1, u2, . . . , uk. (Explicitly, this subgroup consists of all sums of the form a1u1 +
a2u2 + · · ·+ akuk with a1, a2, . . . , ak ∈ Z.)

Let x, y ∈ R. Consider the following chain of subgroups of (R,+, 0):

0 ≤ ⟨1⟩ ≤ ⟨x, 1⟩ ≤ R.

(The symbol ≤ means “subgroup of”.)

(a) Prove that at least one of the three “≤” signs in this chain must be an “=”
sign.
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(b) Prove that xy = yx if the first “≤” sign is a “=” sign.

(c) Prove that xy = yx if the second “≤” sign is a “=” sign.

(d) Prove that xy = yx if the third “≤” sign is a “=” sign.

(e) Conclude that R is commutative.

[Hint: In part (a), recall Lagrange’s theorem about subgroups, and observe that
a number m of the form p or pq cannot have a nontrivial chain of three divisors
1 | d | e | m. Parts (b), (c) and (d) are easy in their own ways.]

The following exercise gives a way to construct new subrings out of old ones:

Exercise 2.3.5.

(a) Let R be a ring. Let S and T be two subrings of R. Prove that S ∩ T is again a
subring of R.

(b) For each integer m, define the subring Rm of Q as in Exercise 2.3.2. Prove that
Rm ∩ Rn = Rgcd(m,n) for all m, n ∈ Z.

[Hint: Part (a) is easy. Part (b) requires a bit of elementary number theory.]

2.3.3. A first application

We haven’t proved much so far, but we are already able to reap some first
rewards. Namely, we shall prove two properties of the famous Fibonacci se-
quence. We recall its definition:

Definition 2.3.4. The Fibonacci sequence is the sequence of integers defined
recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

The first entries of this sequence are

n 0 1 2 3 4 5 6 7 8 9 10 11 12

fn 0 1 1 2 3 5 8 13 21 34 55 89 144
.

Much more about this sequence can be found (e.g.) in [Vorobi02] or [Grinbe21].
The entries f0, f1, f2, . . . of this sequence are known as the Fibonacci numbers.

We shall prove the following two facts:
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Proposition 2.3.5. The Fibonacci sequence ( f0, f1, f2, . . .) satisfies

fn+m = fn fm+1 + fn−1 fm

for all positive integers n and all nonnegative integers m.

Proposition 2.3.6. The Fibonacci sequence ( f0, f1, f2, . . .) satisfies

fd | fdn for any nonnegative integers d and n.

There are many proofs of these propositions (see, e.g., [Grinbe21, Exercise
4.9.3] and [Grinbe21, Exercise 4.9.7] for generalizations proved in a very ele-
mentary way). We will give a proof that uses a certain commutative subring F
of the matrix ring Z2×2 as a tool:

Exercise 2.3.6. Let A be the 2× 2-matrix
(

0 1
1 1

)
∈ Z2×2. Consider also the identity

matrix I2 ∈ Z2×2.

(a) Prove that A2 = A + I2.

Now, let F be the subset

{aA + bI2 | a, b ∈ Z} =

{(
b a
a a + b

)
| a, b ∈ Z

}
of the matrix ring Z2×2.

(b) Prove that the set F is a commutative subring of Z2×2.

Next, let ( f0, f1, f2, . . .) be the Fibonacci sequence.

(c) Prove that An = fn A + fn−1 I2 for all positive integers n.

(d) Prove that fn+m = fn fm+1 + fn−1 fm for all positive integers n and all m ∈ N.
(This is Proposition 2.3.5.)

Now, define a further matrix B ∈ F by B = (−1) A + 1I2 = I2 − A.

(e) Prove that B2 = B + I2 and Bn = fnB + fn−1 I2 for all positive integers n.

(f) Prove that An − Bn = fn (A − B) for all n ∈ N.

(g) Prove that fd | fdn for any nonnegative integers d and n. (This is Proposition
2.3.6.)



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 43

[Hint: In part (b), don’t forget to check commutativity! It is not inherited from
Z2×2, since Z2×2 is not commutative.

One way to prove part (d) is by comparing the (1, 1)-th entries of the two (equal)
matrices An Am+1 and An+m+1, after first using part (c) to compute these matrices.

For part (g), compare the (1, 1)-th entries of the matrices Ad − Bd and Adn − Bdn,
after first proving that Ad − Bd | Adn − Bdn in the commutative ring F . Note that
divisibility is a tricky concept in general rings, but F is a commutative ring, which
lets many arguments from the integer setting go through unchanged in F .]

2.3.4. More computational exercises

Exercise 2.3.7. Let R be any ring. For any two elements a, b ∈ R, we define the
element [a, b] of R by

[a, b] := ab − ba.

This element [a, b] is called the commutator of a and b (as it “measures” how much
a and b violate the commutative law ab = ba). Don’t confuse it with the group-
theoretical commutator aba−1b−1, which is also denoted by [a, b] (but is defined for
groups rather than rings).

Prove that every three elements a, b, c ∈ R satisfy the Leibniz identity

[a, bc] = [a, b] c + b [a, c]

and the Jacobi identity

[a, [b, c]] + [b, [c, a]] + [c, [a, b]] = 0.

Exercise 2.3.8. Let R be any ring. The determinant of a 2 × 2-matrix A ∈ R2×2 is
usually defined only when R is commutative, but let us (for this specific exercise)
define it in general by the formula

det
(

a b
c d

)
:= ad − bc for any

(
a b
c d

)
∈ R2×2.

Prove that the equality det (AB) = det A · det B holds for every pair of two matri-
ces A, B ∈ R2×2 if and only if R is commutative.

[Hint: The “if”-direction can be considered well-known from linear algebra.]

Exercise 2.3.9. Let R be a commutative ring in which 2 · 1R = 0R. (Examples of
such rings are Z/2 or polynomial rings over Z/2.)

Prove that the set of all idempotent elements a ∈ R is a subring of R.

Exercise 2.3.10. Let R be a commutative ring in which 8 · 1R = 0R. (Examples of
such rings are Z/2, Z/4 and Z/8, but there are also many others, such as polyno-
mial rings over Z/8.)

Prove that the set of all elements a ∈ R satisfying (1 − 2a)2 = 1 is a subring of R.
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2.3.5. The center of a ring, and the centralizer of a subset

Here is yet another way to construct subrings of a ring:

Definition 2.3.7. Let R be a ring.

(a) An element a ∈ R is said to be central if all b ∈ R satisfy ab = ba. (In
other words, a is central if and only if a commutes with every element
of R.)

(b) The center of R is the set of all central elements of R. This set is denoted
by Z (R).

Exercise 2.3.11. Let R be a ring. Prove that:

(a) The center Z (R) of R is a commutative subring of R.

(b) We have Z (R) = R if and only if R is commutative.

(c) All elements of the form n · 1R for n ∈ Z belong to Z (R).

Exercise 2.3.12.

(a) Prove that Z (C) = C and Z (H) = R (where H is the ring of quaternions).

(b) Compute Z
(
R2×2) and Z

(
R2≤2). (In other words, find the 2× 2-matrices that

commute with all 2 × 2-matrices, and find the upper-triangular 2 × 2-matrices
that commute with all upper-triangular 2 × 2-matrices.)

The previous exercise illustrates a somewhat slippery point: If R is a subring
of a ring S, then Z (R) doesn’t have to be a subring of Z (S). An element of
R that commutes with all elements of R might still fail to commute with some
elements of S.

Exercise 2.3.13. Let R be a ring. Let a, b ∈ R be such that a + b is central. Prove
that ab = ba.

Exercise 2.3.14. Let R be a ring. Let a, b ∈ R be such that ab is central. Prove that
(ab)n = anbn for all n ∈ N.

A generalization of the center is the “centralizer” of a subset of a ring:20

20If you have seen centralizers in groups, you’ll recognize this as an analogous notion.
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Definition 2.3.8. Let R be a ring. Let S be a subset of R.

(a) An element a ∈ R is said to centralize S if and only if all b ∈ S satisfy
ab = ba. (In other words, a centralizes S if and only if a commutes with
every element of S.)

(b) The centralizer of S in R is the set of all elements of R that centralize S.
This set is denoted by ZR (S).

Note that ZR (R) = Z (R) is the center of R.

Exercise 2.3.15. Let R be a ring. Let S be a subset of R. Prove that:

(a) The centralizer ZR (S) is a subring of R.

(b) We have ZR (∅) = ZR ({0}) = ZR ({1}) = R. (This shows, in particular, that
ZR (S) is not always commutative.)

(c) If T is a subset of S, then ZR (S) ⊆ ZR (T).

(d) If T is a subset of ZR (S), then S is (in turn) a subset of ZR (T).

Exercise 2.3.16. Let R be the matrix ring R2×2. In this ring R, consider the two
matrices

A :=
(

0 1
0 0

)
and B :=

(
0 0
1 0

)
.

(a) Describe the centralizer ZR ({A, B}).

(b) Describe the centralizer ZR ({A + B}).

(c) Describe the centralizer ZR ({A − B}).

Exercise 2.3.17. Let R be a ring. Let S be a subset of R. Prove the following:

(a) We have S ⊆ ZR (ZR (S)).

(b) If R = Q and S = Z, then S is a proper subset of ZR (ZR (S)).

(c) However, we always have ZR (S) = ZR (ZR (ZR (S))).

2.4. Zero divisors and integral domains ([DumFoo04, §7.1])

Here comes a rather unsurprising definition:
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Definition 2.4.1. An element of a ring R is said to be nonzero if it is ̸= 0.
(Here, 0 means 0R.)

As we saw above, it can happen that a product of two nonzero elements of a
ring R is zero. Let us give this phenomenon a name (at least in a commutative
setting):

Definition 2.4.2. Let R be a commutative ring. A nonzero element a ∈ R is
called a zero divisor if there is a nonzero b ∈ R such that ab = 0.

This definition is slightly controversial: Some people don’t require a to be
nonzero. Thus, to them, 0 is a zero divisor unless R is trivial. It’s not a very
well-conceived definition, but it’s not used very much either.

Here are some examples:

• The elements 2, 3 and 4 of the ring Z/6 are zero divisors, since they are
nonzero but satisfy 2 · 3 = 6 = 0 = 0Z/6 and 3 · 2 = 6 = 0 = 0Z/6
and 4 · 3 = 12 = 0 = 0Z/6. The element 0 is not a zero divisor (since
our definition requires a zero divisor to be nonzero). The elements 1
and −1 are not zero divisors either; indeed, it is easy to see that for any
commutative ring R, neither 1R nor −1R is a zero divisor.

• If a is an idempotent element of a commutative ring R (see Definition 2.2.1
(a)), but equals neither 0 nor 1, then a is a zero divisor, since a (1 − a) =
a − a2︸︷︷︸

=a

= a − a = 0.

Zero divisors themselves aren’t very useful, but their non-existence (in some
rings) is:

Definition 2.4.3. Let R be a commutative ring. Assume that 0 ̸= 1 in R. (By
this, we mean 0R ̸= 1R; that is, the zero and the unity of R are distinct. In
other words, we assume that the ring R is not trivial.) We say that R is an
integral domain if all nonzero a, b ∈ R satisfy ab ̸= 0.

Equivalently, a commutative ring R with 0 ̸= 1 (in R, that is) is an integral
domain if and only if R has no zero divisors.

Examples:

• The rings Z, Q, R and C are integral domains.

• The ring Z/n is an integral domain if and only if n is 0 or a prime or
minus a prime. We will prove this later.

• The ring S′ from Subsection 2.1.2 (i.e., the ring whose elements are num-
bers of the form a + b

√
5 with a, b ∈ Q, with multiplication ∗ given by(

a + b
√

5
)
∗
(

c + d
√

5
)
= ac + bd

√
5) is not an integral domain, since it

has 1 ∗
√

5 = 0.
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• The ring of all functions from Q to Q is not an integral domain, since any
two functions with disjoint supports will multiply to 0. (For a specific
example, we have δ0 · δ1 = 0, where δy (for y ∈ Q) is the function that
sends y to 1 and all other rational numbers to 0.)

• We required an integral domain to be commutative in Definition 2.4.3. If
we dropped this requirement, then the ring H of quaternions would be
an integral domain, but the matrix ring R2×2 would not be.

Exercise 2.4.1. Consider the ring R2×2 of all 2 × 2-matrices with real entries.
Define two subsets P and M of R2×2 by

P :=
{(

a b
b a

)
| a, b ∈ R

}
and

M :=
{(

a b
−b a

)
| a, b ∈ R

}
.

(a) Show that P and M are commutative subrings of R2×2.

(b) Prove that P is not an integral domain.

(c) Prove that M is a field.

Exercise 2.4.2.

(a) Recall the commutative ring F from Exercise 2.3.6 (b). Prove that F is an
integral domain.

(b) Let FQ be the ring defined just like F , but using Q instead of Z (that is, it is
the subring {aA + bI2 | a, b ∈ Q} of Q2×2). Is FQ an integral domain?

(c) Let FR be the ring defined just like F , but using R instead of Z (that is, it is
the subring {aA + bI2 | a, b ∈ R} of R2×2). Is FR an integral domain?

[Hint: For part (a), argue that the determinant

det (aA + bI2) = det
(

b a
a a + b

)
= −a2 + ab + b2 =

5b2 − (2a − b)2

4

of any nonzero matrix aA + bI2 ∈ F \ {0} is nonzero, since
√

5 is irrational. Now
recall that det (AB) = det A · det B for any A, B ∈ R2×2.]

Warning 2.4.4. Let R be a commutative ring, and let S be a subring of R. It
can happen that some element a ∈ S is a zero divisor in R (that is, there is
a nonzero b ∈ R such that ab = 0) but not a zero divisor in S (that is, there
exists no nonzero b ∈ S such that ab = 0). This should not be too surprising
(R has more elements than S, so it should be “easier” to find the required b
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in R than in S), although an explicit example is not easy to construct at this
point. (Using the concept of quotient rings we will learn later, we can take
R = Z [x] / (2x) and S = Z and a = 2, where we view S as a subring of R in
the “obvious” way by identifying each integer n ∈ Z with the corresponding
residue class n ∈ R.)

2.5. Units and fields ([DumFoo04, §7.1])

2.5.1. Units and inverses

By definition, any ring R has an addition, a subtraction and a multiplication.
Division, on the other hand, is not guaranteed: Even the ring Z doesn’t really
have division (unless you count division with remainder, which is a different
story). However, any ring R has some elements that can be divided by; the
simplest such element is its unity 1. Let us introduce a name for these elements:

Definition 2.5.1. Let R be a ring.

(a) An element a ∈ R is said to be a unit of R (or invertible in R) if there
exists a b ∈ R such that ab = ba = 1. In this case, b is unique and
is known as the inverse (or multiplicative inverse, or reciprocal) of a,
and is denoted by a−1.

(b) We let R× denote the set of all units of R.

A few comments:

• It goes without saying that the “1” refers to the unity of the ring R.

• We required ab = ba = 1 rather than merely ab = 1 because R is not
necessarily commutative. When R is commutative, of course, ab = 1
suffices.

• Why is b unique in Definition 2.5.1 (a)? Because if b1 and b2 are two
such b’s (for the same a), then ab1 = b1a = 1 and ab2 = b2a = 1, so that
b1 ab2︸︷︷︸

=1

= b11 = b1 and thus b1 = b1a︸︷︷︸
=1

b2 = 1b2 = b2. This is the exact

same argument that proves the uniqueness of inverses in a group.

• Don’t confuse “unit” (= invertible element) with “unity” (= neutral ele-
ment for multiplication). The unity is always a unit, but not vice versa!

• Some people write R∗ or Rx for R×.

Here are some examples of units:
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• The units of the ring Q are all nonzero elements of Q. (This is because
every nonzero element of Q has a reciprocal, and this reciprocal again lies
in Q.) The same holds for R and for C.

• The units of the ring Z are 1 and −1 (with inverses 1 and −1, respec-

tively). No other integer is a unit of Z. For example, 2 has an inverse
1
2

in Q, but not in Z.

• The units of the matrix ring Rn×n are the invertible n × n-matrices. You
have seen many ways to characterize them in your linear algebra class.
You might even remember that the set (Rn×n)

× of these units is known
as the n-th general linear group of R, and is called GLn (R) or GL (n, R).

• In the ring of all functions from Q to Q, the units are the functions that
never vanish (i.e., that don’t take 0 as a value). Inverses can be computed
pointwise.

• Recall the ring Z [i] of Gaussian integers. Its only units are 1, i,−1,−i.
This is Corollary 2.16.7 further below.

Our next example we state as a proposition:21

Proposition 2.5.2. Let n ∈ Z.

(a) The units of the ring Z/n are precisely the residue classes a ∈ Z/n
where a ∈ Z is coprime to n.

(b) Let a ∈ Z. Then, a ∈ Z/n is a unit of Z/n if and only if a is coprime
to n.

Proof. We begin by proving part (b), which is the stronger claim. (Part (a) will
then easily follow.)

(b) This is an “if and only if” statement. We shall prove its “if” (i.e., “⇐=”)
and “only if” (i.e., “=⇒”) parts separately:
⇐=: Assume that a ∈ Z is coprime to n. Bezout’s theorem22 tells us that

there exist x, y ∈ Z with xa + yn = gcd (a, n). Consider these x, y. We have
xa + yn = gcd (a, n) = 1 (since a is coprime to n). Thus, xa ≡ xa + yn =
1 mod n. Translating this into the language of residue classes, we obtain xa = 1

21Two integers a and b are said to be coprime (to each other) if and only if gcd (a, b) = 1. Some
authors say “relatively prime” instead of “coprime”.

22Bezout’s theorem (from elementary number theory) states that for any two integers a and b,
there exist two integers x and y satisfying xa + yb = gcd (a, b). In other words, the greatest
common divisor of two integers a and b can always be written as a linear combination of a
and b with integer coefficients.

See, e.g., [Grinbe19, Theorem 2.9.12] for a proof of Bezout’s theorem.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 50

in Z/n. Hence, x · a = xa = 1 in Z/n. Since the ring Z/n is commutative, this
shows that a is invertible (with inverse x). In other words, a is a unit of Z/n.
=⇒: Conversely, assume that a is a unit of Z/n. Thus, a has an inverse

b ∈ Z/n. This inverse b satisfies ab = 1; in other words, ab ≡ 1 mod n. But this
easily yields that23 gcd (ab, n) = gcd (1, n) = 1. In other words, ab is coprime
to n. Hence, a is coprime to n as well (since any common divisor of a and n
must be a common divisor of ab and n).

(a) This follows easily from part (b).

Here are some examples of Proposition 2.5.2:

• The units of the ring Z/12 are 1, 5, 7, 11 (because among the integers
0, 1, . . . , 11, it is the four numbers 1, 5, 7, 11 that are coprime to 12).

• The units of the ring Z/5 are 1, 2, 3, 4.

• The only unit of the ring Z/2 is 1.

Next, we shall show some general properties of units in rings:

Theorem 2.5.3. Let R be a ring. Then, the set R× is a multiplicative group.
More precisely: (R×, ·, 1) is a group.

Proof. It suffices to show the following facts:

1. The unity 1 of R belongs to R×.

2. If a, b ∈ R×, then ab ∈ R×.

3. If a ∈ R×, then a has an inverse in R×.

All other group axioms for R× follow from the ring axioms of R. So let us
prove these three facts.

Proof of Fact 1: Fact 1 is obvious (as 1 has inverse 1).
Proof of Fact 2: Let a, b ∈ R×. Thus, the elements a, b are units, and thus

have inverses a−1, b−1, respectively. These satisfy aa−1 = a−1a = 1 and bb−1 =

b−1b = 1. Now, a bb−1︸︷︷︸
=1

a−1 = aa−1 = 1 and b−1 a−1a︸︷︷︸
=1

b = b−1b = 1, so that ab is

invertible as well (with inverse b−1a−1). That is, ab ∈ R×. This proves Fact 2.
Proof of Fact 3: Let a ∈ R×. Thus, a has an inverse a−1 in R. This inverse a−1,

in turn, has an inverse (namely, a), and thus also lies in R×. Hence, a has an
inverse in R×. This proves Fact 3.

23We are using the fact that if u and v are two integers satisfying u ≡ v mod n, then gcd (u, n) =
gcd (v, n). This is just a restatement of the classical result that the gcd of two integers does
not change if we add a multiple of one to the other.
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The group R× from Theorem 2.5.3 is known as the group of units of R. Thus,
every ring R produces two groups: the additive group (R,+, 0) (which contains
all elements of R) and the multiplicative group of units (R×, ·, 1) (which only
contains the units).

Theorem 2.5.4 (Shoe-sock theorem). Let R be a ring. Let a, b be two units of
R. Then, ab is a unit of R, and its inverse is (ab)−1 = b−1a−1.

Proof. See the proof of Fact 2 in the proof of Theorem 2.5.3.

Theorem 2.5.5. Let R be a ring. Let a be a unit of R. Then, a−1 is a unit of R,
and its inverse is

(
a−1)−1

= a.

Proof. See the proof of Fact 3 in the proof of Theorem 2.5.3.

Here are a few exercises on units and inverses in some special rings. The first
exercise ([21w, homework set #2, Exercise 5 (a)]) will come useful later:

Exercise 2.5.1. Let p be a prime. Prove that the only units of the ring Z/p that are
their own inverses (i.e., the only m ∈ (Z/p)× that satisfy m−1 = m) are 1 and −1.

Exercise 2.5.2. Let p be a prime. Let k be a positive integer. Prove that the number
of units of the ring Z/pk is pk − pk−1.

Exercise 2.5.3. Let R be the ring (Z/2)2×2 of all 2× 2-matrices with entries in Z/2.
This ring has size 24 = 16, since each such matrix has 4 entries and there are 2
options for each entry.

(a) Find the group of units R× of this ring.

(b) Prove that this group R× is isomorphic to the symmetric group S3 (that is, the
group of all permutations of the set {1, 2, 3}).

Exercise 2.5.4. Let D be the ring of dual numbers, as defined in Exercise 2.1.2.
Prove the following:

(a) A dual number a + bε (with a, b ∈ R) is a unit of D if and only if a ̸= 0.

(b) If a, b ∈ R satisfy a ̸= 0, then the inverse of the dual number a + bε is
1
a
− b

a2 ε.

Exercise 2.5.5. Recall the Fibonacci sequence ( f0, f1, f2, . . .) from Definition 2.3.4,
and recall the matrix A and the commutative ring F from Exercise 2.3.6 (b).

We extend the Fibonacci sequence ( f0, f1, f2, . . .) to an infinite-in-both-directions
“sequence” (. . . , f−2, f−1, f0, f1, f2, . . .) by requiring that it satisfy the original recur-
sive equation fn = fn−1 + fn−2 for all n ∈ Z (not just for n ≥ 2). Thus, the negatively
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indexed Fibonacci numbers f−1, f−2, f−3, . . . are computed recursively by solving this
recursive equation fn = fn−1 + fn−2 for fn−2. For instance, f−1 = f1 − f0 = 1− 0 = 1
and f−2 = f0 − f−1 = 0 − 1 = −1.

(a) Prove that the matrix A is a unit of F (that is, it has an inverse in F ).

(b) Prove that An = fn A + fn−1 I2 for all n ∈ Z.

(c) Prove that f−n = (−1)n fn for each n ∈ Z.

(d) Prove that the units of F are precisely the powers Ak of the matrix A (with
k ∈ Z). (This includes its positive powers A1, A2, A3, . . ., its negative powers
A−1, A−2, A−3, . . . and its zeroth power A0 = I2.)

[Hint: Part (d) is surprisingly tricky! Recall again that det (aA + bI2) = −a2 +

ab + b2 for any a, b ∈ Z. Show that this determinant det (aA + bI2) has to be 1 or −1
if aA + bI2 is a unit of F . Thus, we must have −a2 + ab + b2 ∈ {1,−1} if aA + bI2

is a unit. But this means that the pair (a, b) is a “golden pair” in the terminology
of [Grinbe21, Exercise 5.4.10], and the set of all “golden pairs” can be described
explicitly in terms of the Fibonacci sequence [Grinbe21, Exercise 5.4.10].]

Remark 2.5.6. Let R be a ring, and let S be a subring of R. Then, any unit u of S is
also a unit of R (since its inverse belongs to S and therefore to R, and thus u has an
inverse in R). This is in stark contrast to the situation for non-zero-divisors (which
we discussed in Warning 2.4.4).

2.5.2. Some exercises on inverses

The following exercises prove surprising results and make for good practice
with the definition of an inverse24:

Exercise 2.5.6. Let R be a ring. Let a and b be two elements of R.
Prove that if 1 − ab is invertible, then so is 1 − ba.
Better yet, prove the following: If c is an inverse of 1 − ab, then 1 + bca is an

inverse of 1 − ba.

Note that Exercise 2.5.6 yields a well-known result in functional analysis (see
https://math.stackexchange.com/questions/79217 ).

Exercise 2.5.7. Let R be a ring. Let a and b be two units of R such that a + b is a
unit as well.

(a) Prove that a−1 + b−1, too, is a unit, and its inverse is(
a−1 + b−1

)−1
= a · (a + b)−1 · b = b · (a + b)−1 · a.

(b) Show on an example that
(
a−1 + b−1)−1 can be different from ab · (a + b)−1.

24Keep in mind that a ring is not always commutative!

https://math.stackexchange.com/questions/79217
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Let us next define some weaker variants of inverses:

Definition 2.5.7. Let R be a ring. Let a be an element of R.

(a) A left inverse of a shall mean an element b ∈ R satisfying ba = 1.

(b) A right inverse of a shall mean an element b ∈ R satisfying ab = 1.

Thus, an inverse of a is the same as a left inverse of a that simultaneously
is a right inverse of a. It is clear that the notions of “left inverse” and “right
inverse” can be defined in any monoid, not just in a ring, since they rely only on
the multiplication and the unity. As already mentioned, a left or right inverse
doesn’t have to be a (proper) inverse in general, although it is hard to find
examples where it isn’t. The following exercise (a result of Jacobson) might
give a hint as to why:

Exercise 2.5.8. Let R be a ring. Let a and b be two elements of R such that ab = 1
but ba ̸= 1. Let w = 1 − ba.

(a) Prove that aw = wb = 0.

(b) Conclude that a
(
b + wak) = 1 for all k ∈ N.

(c) Prove that the elements b + wak for all k ∈ N are distinct.

(d) Conclude that a has infinitely many right inverses.

(e) Conclude that R cannot be finite.

[Hint: The only hard part here is (c). Show first that wai ̸= 0 for all i ∈ N; then
show that wai ̸= w for all positive integers i.]

The next exercise ([21w, homework set #2, Exercise 1]) provides another
source of units in certain rings:

Exercise 2.5.9. Let R be a ring. An element a ∈ R will be called nilpotent if there
exists some n ∈ N such that an = 0. (For instance, the element 18 ∈ Z/24 is
nilpotent, since 18

3
= 0. Note that the zero 0 is nilpotent in any ring, but other

nilpotent elements may or may not exist. For another example, the element ε ∈ D

in Exercise 2.1.2 is nilpotent.)
Let a ∈ R be a nilpotent element.

(a) Prove that 1 − a ∈ R is a unit.

(b) Let u ∈ R be a unit satisfying ua = au. Prove that u − a ∈ R is a unit.

[Hint: Treat the geometric series
1

1 − x
= 1+ x+ x2 + · · · as an inspiration, noting

that the infinite sum on the right hand side will become a finite sum if the nilpotent
element a is substituted for x.]
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2.5.3. Fields

As we saw, some rings (such as Z) have few units, while other rings (such as
Q) have many. The rings with the most units are the “fields”:

Definition 2.5.8. Let R be a commutative ring. Assume that 0 ̸= 1 in R. We
say that R is a field if every nonzero element of R is a unit.

Examples:

• The rings Q, R and C are fields. The ring Z is not (since 2 is not a unit).

• The ring S of all real numbers of the form a + b
√

5 with a, b ∈ Q (as
defined in Subsection 2.1.2) is a field. Indeed, the inverse of a nonzero
element a + b

√
5 is(

a + b
√

5
)−1

=
1

a + b
√

5
=

a − b
√

5
a2 − b2 · 5

=
a

a2 − 5b2 +
−b

a2 − 5b2

√
5

(the denominators here are nonzero because a + b
√

5 ̸= 0 entails a2 −
5b2 ̸= 0). So this is why they taught you rationalizing denominators in
high school!

• The Hamiltonian quaternions H are not a field, but for a stupid reason:
they are noncommutative. Otherwise, they would be a field. A non-
commutative ring in which each nonzero element is invertible is called a
division ring or skew-field.

• Let n be a positive integer. The ring Z/n is a field if and only if n is prime.
(We will prove this below.)

• The ring F4 constructed in Subsection 2.1.2 as well as the ring F8 defined
in Exercise 2.1.1 are fields.

2.6. Fields and integral domains: some connections
([DumFoo04, §7.1])

2.6.1. Fields vs. integral domains

The notions of fields and integral domains are closely related:

Proposition 2.6.1.

(a) Every field is an integral domain.

(b) Every finite integral domain is a field. (Here, of course, “finite” means
“finite as a set”.)
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Proof. (a) Let F be a field. We must show that F is an integral domain.
Let a, b ∈ F be nonzero. We must show that ab is nonzero.
Indeed, a and b are nonzero, and thus are units (since F is a field). Thus, they

have inverses a−1 and b−1.
Now, if we had ab = 0, then we would have ab︸︷︷︸

=0

b−1a−1 = 0, which would

yield 0 = a bb−1︸︷︷︸
=1

a−1 = aa−1 = 1, which would contradict the fact that 0 ̸= 1

in F (since F is a field). Thus, we cannot have ab = 0. In other words, ab is
nonzero. This proves that F is an integral domain. Thus, Proposition 2.6.1 (a)
is proved.

(b) Let R be a finite integral domain. We must show that R is a field.
Let a ∈ R be nonzero. We must show that a is a unit.
Since R is an integral domain, we know that ab ̸= 0 for any b ̸= 0. Thus,

ax ̸= ay for any two distinct elements x and y of R (because if x and y are two
distinct elements of R, then x − y ̸= 0, and thus the previous sentence yields
a (x − y) ̸= 0; but this rewrites as ax − ay ̸= 0, so that ax ̸= ay). In other words,
the map

R → R, x 7→ ax

is injective. Hence, this map is also bijective (since any injective map between
two finite sets of the same size is bijective – this is one of the Pigeonhole Princi-
ples25). Thus, in particular, this map is surjective, and hence takes 1 as a value.
In other words, there exists an x ∈ R such that ax = 1. Since R is commutative,
this x must be an inverse of a, and thus we conclude that a is a unit. This
finishes the proof of Proposition 2.6.1 (b).

Without the word “finite”, Proposition 2.6.1 (b) would not be true; for in-
stance, Z is an integral domain but no field. The polynomial ring R [x] (con-
sisting of univariate polynomials with real coefficients) is another example of
an integral domain that is not a field. (We will prove this later.)

2.6.2. When is Z/n a field?

Our above study of units of Z/n lets us now easily obtain the following:

Corollary 2.6.2. Let n be a positive integer. Then, the following chain of
equivalences holds:

(Z/n is an integral domain) ⇐⇒ (Z/n is a field) ⇐⇒ (n is prime) .

25To be specific, this is what I call the “Pigeonhole Principle for Injections”. See [Grinbe21,
Theorem 6.1.3], for example.
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Proof. The first of the two ⇐⇒ signs follows from Proposition 2.6.1 (since Z/n
is finite). Let’s now prove the second.
=⇒: Assume that Z/n is a field. Then, every nonzero element of Z/n is

a unit. Hence, the n − 1 residue classes 1, 2, . . . , n − 1 are units of Z/n (since
they are nonzero). Therefore, the n − 1 integers 1, 2, . . . , n − 1 are coprime to n
(by Proposition 2.5.2 (b)). Hence, n is either 1 or prime. However, if n was 1,
then we would have 0 = 1, which would mean that 0 = 1 in Z/n; but this is
forbidden for a field. Thus, n cannot be 1, and therefore must be prime.
⇐=: Assume that n is prime. Then, n > 1, so that 0 ̸= 1. That is, 0 ̸= 1 in

Z/n. Furthermore, if a (for some integer a) is a nonzero element of Z/n, then
the integer a is not divisible by n (since a is nonzero), so that a is coprime to n
(since n is prime), and this entails (by Proposition 2.5.2 (b)) that a is a unit of
Z/n. So we have shown that every nonzero element of Z/n is a unit. In other
words, Z/n is a field.

Note that the positivity of n in Corollary 2.6.2 is important: The ring Z/0 is
an integral domain but not a field. (In fact, this ring is essentially Z, except that
its elements are the singleton sets {a} instead of the integers a themselves.)

2.6.3. Application: Fermat’s Little Theorem

We can use Corollary 2.6.2 to obtain an important result in elementary number
theory:

Theorem 2.6.3 (Fermat’s little theorem, short FℓT). Let p be a prime number.
Let a ∈ Z. Then, ap ≡ a mod p.

For example, a3 ≡ a mod 3 and a5 ≡ a mod 5 for every a ∈ Z.
Before we prove Theorem 2.6.3, let us first show the following property of

the field Z/p:

Proposition 2.6.4 (Fermat’s little theorem in Z/p form). Let p be a prime
number. Let u ∈ Z/p. Then, up = u.

Proof of Proposition 2.6.4. We know that p is prime. Thus, Corollary 2.6.2 (ap-
plied to n = p) yields that Z/p is a field. Hence, every nonzero element of
Z/p is a unit.

We must prove that up = u. If u = 0, then this is obvious (since up = 0p =
0 = u in this case). So let us WLOG assume that u ̸= 0. Hence, the element
u ∈ Z/p is nonzero. Therefore, u is a unit of the ring Z/p (since every nonzero
element of Z/p is a unit). In other words, u ∈ (Z/p)×.

However, the units of the ring Z/p are 1, 2, . . . , p − 1 (again because every
nonzero element of Z/p is a unit). Thus, in particular, there are p − 1 of them.
This shows that the group (Z/p)× has order p − 1. Hence, Lagrange’s theorem
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(from group theory)26 shows that gp−1 = 1 for each g ∈ (Z/p)×. Applying this
to g = u, we obtain up−1 = 1. Hence, up = u up−1︸︷︷︸

=1

= u. This proves Proposition

2.6.4.

We can now easily derive Theorem 2.6.3 from Proposition 2.6.4:

Proof of Theorem 2.6.3. Consider the residue class a ∈ Z/p. Applying Proposi-
tion 2.6.4 to u = a, we obtain ap = a. Thus, ap = ap = a. In other words,
ap ≡ a mod p. Theorem 2.6.3 is thus proven.

We also observe:

Corollary 2.6.5 (Fermat’s little theorem in the non-divisible case). Let p be a
prime number. Let a ∈ Z satisfy p ∤ a. Then, ap−1 ≡ 1 mod p.

Proof. Consider the residue class a ∈ Z/p. Applying Proposition 2.6.4 to u = a,
we obtain ap = a. However, from p ∤ a, we obtain a ̸= 0. In other words, a is
nonzero. Since Z/p is a field (by Corollary 2.6.2), we know that every nonzero
element of Z/p is a unit. Thus, a is a unit (since a is nonzero). Hence, we can
divide both sides of the equality ap = a by a. As a result, we obtain ap−1 = 1. In
other words, ap−1 = 1. In other words, ap−1 ≡ 1 mod p. This proves Corollary
2.6.5.

The following proposition generalizes Proposition 2.6.4 to arbitrary finite
fields:27

Proposition 2.6.6. Let F be a finite field (i.e., a field with finitely many ele-
ments). Let u ∈ F. Then, u|F| = u.

Proof. If u = 0, then this is obvious (since u|F| = 0|F| = 0 = u in this case). So
let us WLOG assume that u ̸= 0. Hence, u ∈ F \ {0}.

However, F is a field, so that every nonzero element of F is a unit. In other
words, F \ {0} ⊆ F×. Conversely, F× ⊆ F \ {0}, since 0 is not a unit of F
(because if 0 were a unit, then 0 · 0−1 would be 1, which contradicts the axiom
0a = 0 for all a ∈ F). Combining these two inclusions, we find F \ {0} = F×.
Hence, |F \ {0}| = |F×|, so that |F×| = |F \ {0}| = |F| − 1.

In other words, the group F× has order |F| − 1. Hence, Lagrange’s theorem
(from group theory) shows that g|F|−1 = 1 for each g ∈ F×. Applying this to
g = u, we obtain u|F|−1 = 1 (since u ∈ F \ {0} = F×). Hence, up = u up−1︸︷︷︸

=1

= u.

This proves Proposition 2.6.6.

26Recall that this theorem says the following: If G is a finite group of order m (for some m ∈ N),
then gm = 1 for each g ∈ G (where we are writing G multiplicatively, so that 1 denotes the
neutral element of G).

27Recall that Z/p is a finite field of size p whenever p is a prime. Moreover, the rings F4 and F8
are finite fields of sizes 4 and 8, respectively. We will see more finite fields in later chapters.
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We note in passing that the converse of Fermat’s little theorem does not hold
in general: There are some non-prime positive integers p > 1 such that all
a ∈ Z satisfy ap ≡ a mod p. These integers p are called Carmichael numbers,
and the smallest of them is 561.

Exercise 2.6.1. Actually prove that 561 is a Carmichael number, i.e., that every
a ∈ Z satisfies a561 ≡ a mod 561.

[Hint: This is not as laborious as it sounds! It is not necessary to try all 561
elements of Z/561. Instead, use the prime factorization 561 = 3 · 11 · 17.]

2.6.4. Division in a commutative ring

Back to the general case. Rings have addition, subtraction and multiplication;
but we can also divide two elements of a ring, as long as the denominator (i.e.,
the element we are dividing by) is a unit. If the ring is noncommutative, this
is somewhat complicated by the fact that there are two kinds of division (“left”
and “right” division); however, for commutative rings, it is as simple as for
numbers:

Definition 2.6.7. Let R be a commutative ring. Let a ∈ R and b ∈ R×. Then,
a
b

means the element ab−1 = b−1a ∈ R. This element is also written a/b, and

is called the quotient of a by b. The operation (a, b) 7→ a/b is called division.

In particular, in a field, we can divide by any nonzero element.
Division satisfies the rules you would expect:

Proposition 2.6.8. Let R be a commutative ring. Then:

(a) For any a, c ∈ R and b, d ∈ R×, we have

a
b
+

c
d
=

ad + bc
bd

(4)

and a
b
· c

d
=

ac
bd

. (5)

(b) For any a ∈ R and b, c, d ∈ R×, we have

a
b

/
c
d
=

ad
bc

.

(c) Division undoes multiplication: Three elements a ∈ R, b ∈ R× and
c ∈ R satisfy

a
b
= c if and only if a = bc. (6)
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Exercise 2.6.2. Prove Proposition 2.6.8.

Exercise 2.6.3. Let p be a prime such that p > 3. Prove that 2p−2 + 3p−2 + 6p−2 ≡
1 mod p.

[Hint: First, show that up−2 =
1
u

for every nonzero u ∈ Z/p. Then, recall (4).]

2.7. Ring morphisms ([DumFoo04, §7.3])

2.7.1. Definition and examples

Groups have group homomorphisms; vector spaces have vector space homo-
morphisms (= linear maps); topological spaces have topological space homo-
morphisms (= continuous maps). No wonder that an analogous concept exists
for rings:28

Definition 2.7.1. Let R and S be two rings.

(a) A ring homomorphism (or, for short, ring morphism, or, more infor-
mally, ring map) from R to S means a map f : R → S that

• respects addition (i.e., satisfies f (a + b) = f (a) + f (b) for all
a, b ∈ R);

• respects multiplication (i.e., satisfies f (ab) = f (a) · f (b) for all
a, b ∈ R);

• respects the zero (i.e., satisfies f (0R) = 0S);

• respects the unity (i.e., satisfies f (1R) = 1S).

(b) A ring isomorphism (or, informally, ring iso) from R to S means an
invertible ring morphism f : R → S whose inverse f−1 : S → R is also
a ring morphism.

(c) The rings R and S are said to be isomorphic (this is written R ∼= S) if
there exists a ring isomorphism from R to S.

Here are some examples:

• Let n ∈ Z. The map

π : Z → Z/n,
a 7→ a

28We follow the modern convention of abbreviating the word “homomorphism” as “mor-
phism”. Thus, for example, a “group morphism” is the same as a group homomorphism.
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that sends each integer a to its residue class a = a + nZ is a ring mor-
phism, because any a, b ∈ Z satisfy the equalities

a + b = a + b, a · b = a · b, 0 = 0Z/n, 1 = 1Z/n.

(These equalities directly follow from the definition of the ring structure
on Z/n.)

• The map Z → Z, a 7→ 2a is not a ring morphism. It respects addition
and the zero, but not multiplication and the unity.

• The map Z → Z, a 7→ 0 is not a ring morphism. It respects addition,
multiplication and the zero, but not the unity.

• However, if T is the zero ring (i.e., the 1-element ring {0}), then the map
Z → T, a 7→ 0 is a ring morphism. Comparing this example with the
preceding one, we see that the ring structure (even a trivial-looking part
like the unity) matters to whether a given map is a ring morphism or not.

• The map Z → Z, a 7→ a2 is not a ring morphism. It respects multiplica-
tion, the zero and the unity, but not addition (since (a + b)2 is usually not
the same as a2 + b2).

• Let S be a subring of a ring R. Let i : S → R be the canonical inclusion;
this is simply the map that sends each a ∈ S to itself. (You can view it
as the restriction of the identity map idR : R → R to S.) Then, i is a ring
morphism. Indeed, it respects multiplication because the multiplication
of S is inherited from R (so that any a, b ∈ S satisfy i (ab) = a︸︷︷︸

=i(a)

b︸︷︷︸
=i(b)

=

i (a) i (b)); for similar reasons, it satisfies the other axioms in the definition
of a ring morphism.

• Consider the map

f : C → R2×2,

a + bi 7→
(

a b
−b a

)
(for a, b ∈ R).

This map f is a ring morphism. Indeed, it is easy to see that it respects
addition, the zero and the unity. To see that it respects multiplication,
you need to check that f (zw) = f (z) · f (w) for any z, w ∈ C. But this is
straightforward: Write z = a + bi and w = c + di and multiply out29.

This can also be proved using linear algebra: The R-vector space C has
basis (1, i). If z ∈ C, then f (z) is the 2 × 2-matrix that represents the

29In more detail: Writing z = a + bi and w = c + di, we have zw = (a + bi) (c + di) =
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“multiply by z” operator (i.e., the map C → C, u 7→ zu) in this basis.
Since the “multiply by zw” operator is the composition of the “multiply
by z” operator with the “multiply by w” operator, it thus follows that
f (zw) = f (z) · f (w) (because composition of linear maps corresponds to
multiplication of their representing matrices).

Note that the image of the map f is precisely the ring M defined in
Exercise 2.4.1.

The ring morphism f is injective, and therefore you can use the matrix
f (z) ∈ R2×2 as a “stand-in” for any complex number z ∈ C. Complex
numbers can thus be “represented” by 2 × 2-matrices with real entries.
In particular, if you believe that the complex numbers are a work of the
devil30, then you can “exorcise” them out of your mathematical work by
replacing every complex number z with the corresponding 2 × 2-matrix
f (z). Since f is injective, this replacement does not cause any informa-
tion to be lost. Furthermore, since f is a ring morphism, addition and
multiplication of complex numbers are reflected perfectly in the addition
and the multiplication of 2 × 2-matrices, so that any calculation involv-
ing complex numbers z, w, u, . . . can be immediately reproduced with the
corresponding matrices f (z) , f (w) , f (u) , . . . instead. Only the commu-
tativity of multiplication is less clear when you work with matrices: Two
arbitrary 2 × 2-matrices don’t usually commute, but of course two 2 × 2-
matrices that are values of f always commute.

• Just like the ring morphism f : C → R2×2 can be used to represent com-
plex numbers as 2 × 2-matrices with real entries, there is another ring
morphism g : H → R4×4 that helps represent Hamilton quaternions as

(ac − bd) + (ad + bc) i and thus

f (zw) =

(
ac − bd ad + bc

− (ad + bc) ac − bd

)
.

However,

f (z) · f (w) =

(
a b
−b a

)(
c d
−d c

)
=

(
ac − bd ad + bc

− (ad + bc) ac − bd

)
.

Comparing these two equalities yields f (zw) = f (z) · f (w).
30Historically, mistrust of complex numbers was widespread centuries after they had been first

introduced. This mistrust was eventually overcome once Hamilton defined them rigorously
as pairs of real numbers (defining a + bi as the pair (a, b)).

https://www.cut-the-knot.org/arithmetic/algebra/HistoricalRemarks.shtml
https://www.cut-the-knot.org/arithmetic/algebra/HistoricalRemarks.shtml
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4 × 4-matrices with real entries. This morphism is

g : H → R4×4,

a + bi + cj + dk 7→


a −b −c −d
b a −d c
c d a −b
d −c b a

 .

Proving that this is a ring morphism is a tedious but doable exercise in
calculation.

• The map R2×2 → R, A 7→ det A is not a ring morphism. It respects
multiplication31 but not addition.

• The map C → C that sends each complex number z = a + bi (with a, b ∈
R) to its complex conjugate z = a − bi is a ring isomorphism.

• Let R be a ring. Let S be any set. Let RS be the ring of all functions from
S to R (with pointwise addition and multiplication). Fix any s ∈ S. Then,
the map

RS → R,
f 7→ f (s)

is a ring morphism.32 This map is known as the evaluation morphism at
s, since all it does is evaluating a function at the constant s.

Time for another warning:

Warning 2.7.2. Our Definition 2.7.1 (a) again differs from [DumFoo04] in how
it treats unities. Namely, [DumFoo04] does not require a ring morphism to
respect the unity. Thus, the map Z → Z, a 7→ 0 is a ring morphism according
to [DumFoo04], but not according to us.

31This is a particular case of the famous formula

det (AB) = det A · det B

whenever A, B ∈ Rn×n are any two n × n-matrices with entries in any commutative ring R.
32This is just a roundabout way of saying that any maps g, h ∈ RS satisfy

(g + h) (s) = g (s) + h (s) ;
(gh) (s) = g (s) · h (s) ;

0 (s) = 0;
1 (s) = 1.

But these equalities follow from our definition of the ring structure on RS (namely: addition
is pointwise; multiplication is pointwise; the zero is the constant-0 function; the unity is the
constant-1 function).
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Exercise 2.7.1. Define A and F as in Exercise 2.3.6.
Let ω : F → F be the map that sends each aA + bI2 (with a, b ∈ Z) to −aA +

(a + b) I2. (This is well-defined, since each element of F can be uniquely written as
aA + bI2 with a, b ∈ Z.)

(a) Prove that ω is a ring morphism.

(b) Prove that ω ◦ ω = id.

(c) Conclude that ω is a ring isomorphism.

Exercise 2.7.2.

(a) Is the map

Z2×2 → Z2×2,

A 7→ AT

(which sends each 2 × 2-matrix A =

(
a b
c d

)
to its transpose AT =(

a c
b d

)
) a ring morphism?

(b) Is the map

Z2×2 → Z2×2,(
a b
c d

)
7→
(

d c
b a

)
a ring morphism?

Exercise 2.7.3. Let R be any ring, and let u be any unit of R. Consider the map

f : R → R,

a 7→ uau−1.

Prove that this map f is a ring isomorphism. (This map f is called conjugation by
u. Despite its name, it has nothing to do with conjugation of complex numbers.)

Exercise 2.7.4. Let R be any ring, and let n ∈ N. Recall that Rn≤n is the subring of
Rn×n consisting of the upper-triangular matrices.
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Consider the map

δ : Rn×n → Rn×n,
a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 7→


a1,1 0 · · · 0
0 a2,2 · · · 0
...

...
. . .

...
0 0 · · · an,n

 ,

which replaces all off-diagonal entries of a matrix by 0 (but keeps the diagonal
entries unchanged).

(a) Is this map δ a ring morphism?

(b) Now, consider the restriction δ |Rn≤n of the map δ to the subring Rn≤n. Is this
restriction δ |Rn≤n a ring morphism?

Exercise 2.7.5. Let R be any ring, and let n ∈ N. For any n × n-matrix A ∈ Rn×n,

we consider the “block-diagonal” matrix
(

A 0
0 A

)
∈ R2n×2n, which is obtained

by arranging two copies of A and two zero matrices in the form suggested by the

notation (for example, if A =

(
a b
c d

)
, then

(
A 0
0 A

)
=


a b 0 0
c d 0 0
0 0 a b
0 0 c d

). (See,

e.g., the Wikipedia for more details about block matrices.)

(a) Prove that the map

Rn×n → R2n×2n,

A 7→
(

A 0
0 A

)
is an injective ring morphism.

(b) Generalize this to find an injective ring morphism from Rn×n to Rkn×kn for
every positive integer k.

The following exercise ([21w, homework set #2, Exercise 2]) assigns to each
ring R a “mirror version” (called the opposite ring of R, and denoted by Rop).
In general, this mirror version is not isomorphic to R, but often enough it is.

Exercise 2.7.6. Let R be a ring. We define a new binary operation ·̃ on R by setting

a ·̃ b = ba for all a, b ∈ R.

(Thus, ·̃ is the multiplication of R, but with the two arguments switched.)

https://en.wikipedia.org/wiki/Block_matrix
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(a) Prove that the set R, equipped with the addition +, the multiplication ·̃, the
zero 0R and the unity 1R, is a ring.

This new ring is called the opposite ring of R, and is denoted by Rop.
Note that the sets R and Rop are identical (so a map from R to R is the same as a

map from R to Rop); but the rings R and Rop are generally not the same (so a ring
morphism from R to R is not the same as a ring morphism from R to Rop).

(b) Prove that the identity map id : R → R is a ring isomorphism from R to Rop if
and only if R is commutative.

(c) Now, assume that R is the matrix ring Sn×n for some commutative ring S and
some n ∈ N. Prove that the map

R → Rop, A 7→ AT

(where AT, as usual, denotes the transpose of a matrix A) is a ring isomor-
phism.

Exercise 2.7.7. Let H be the ring of Hamilton quaternions.

(a) Prove that the map

H → Hop,
a + bi + cj + dk 7→ a + bi + dj + ck (for a, b, c, d ∈ R)

is a ring isomorphism.

(b) Prove that the map

H → Hop,
a + bi + cj + dk 7→ a − bi − cj − dk (for a, b, c, d ∈ R)

is a ring isomorphism as well.

The last two exercises might suggest that every ring R is somehow isomor-
phic to its opposite ring Rop. This is not the case, but a counterexample is tricky
to find; one such counterexample is constructed in Exercise 2.7.10.

2.7.2. Basic properties of ring morphisms

Let us show some basic properties of ring morphisms. We start with the fact
that a composition of two ring morphisms is again a ring morphism:
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Proposition 2.7.3. Let R, S and T be three rings. Let f : S → T and g : R → S
be two ring morphisms. Then, f ◦ g : R → T is a ring morphism.

Proof. This is proved in the same way as the analogous result about groups.

The next proposition shows that the “respects the zero” condition in the def-
inition of a ring morphism is redundant (even though the “respects the unity”
condition is not):

Proposition 2.7.4. Let R and S be two rings. Let f : R → S be a map that
respects addition. Then, f automatically respects the zero.

Proof. Since f respects addition, we have f (0R + 0R) = f (0R) + f (0R). Rewrite
this as f (0R) = f (0R) + f (0R) (since 0R + 0R = 0R). Now, subtract f (0R) from
both sides to get 0S = f (0R). In other words, f respects the zero.

Note that we can restate our definition of a ring morphism as follows:

A ring morphism is a map f : R → S between two rings R and S that
is a group homomorphism from the additive group (R,+, 0) to the
additive group (S,+, 0) and simultaneously a monoid homomor-
phism from the multiplicative monoid (R, ·, 1) to the multiplicative
group (S, ·, 1).

It is easy to see that ring morphisms respect all sorts of operations con-
structed from +, ·, 0 and 1:

Proposition 2.7.5. Let R and S be two rings. Let f : R → S be a ring mor-
phism. Then:

(a) The map f respects finite sums; i.e., we have f (a1 + a2 + · · ·+ an) =
f (a1) + f (a2) + · · ·+ f (an) for any a1, a2, . . . , an ∈ R.

(b) The map f respects finite products; i.e., we have f (a1a2 · · · an) = f (a1) ·
f (a2) · · · · · f (an) for any a1, a2, . . . , an ∈ R.

(c) The map f respects differences; i.e., we have f (a − b) = f (a)− f (b)
for any a, b ∈ R.

(d) The map f respects inverses; i.e., if a is a unit of R, then f (a) is a unit
of S, with inverse ( f (a))−1 = f

(
a−1).

(e) The map f respects integer multiples; i.e., if a ∈ R and n ∈ Z, then
f (na) = n f (a).

(f) The map f respects powers; i.e., if a ∈ R and n ∈ N, then f (an) =
( f (a))n.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 67

Proof. This is pretty straightforward, and you have probably seen the idea in
group theory already. Details LTTR33.

2.7.3. The image of a ring morphism

Recall that the image of a map f : R → S is defined to be the set f (R) =
{ f (r) | r ∈ R}; it is often denoted Im f . This makes sense for arbitrary maps
f between arbitrary sets R and S, not just for ring morphisms between rings.
However, the image of a ring morphism has a special property:

Proposition 2.7.6. Let R and S be two rings. Let f : R → S be a ring mor-
phism. Then, Im f = f (R) is a subring of S.

Proof. Just check the axioms for a subring. For example, let us show that f (R)
is closed under multiplication:

Let x, y ∈ f (R). We must show that xy ∈ f (R). Since x ∈ f (R), there exists
some a ∈ R such that x = f (a). Similarly, there exists some b ∈ R such that
y = f (b). Consider these a and b. From x = f (a) and y = f (b), we obtain

xy = f (a) · f (b) = f (ab) (since f respects multiplication)
∈ f (R) .

This completes the proof that f (R) is closed under multiplication. The other
ring axioms can be verified similarly. Thus, we conclude that f (R) is a subring
of S. Proposition 2.7.6 is proved.

Exercise 2.7.8.

(a) Let R and S be two rings. Let f : R → S and g : R → S be two ring morphisms.
Let Eq ( f , g) be the subset

{r ∈ R | f (r) = g (r)}

of R. This subset is called the equalizer of f and g. Prove that this subset
Eq ( f , g) is a subring of R.

(b) Let ω : C → C be the map sending each complex number z = a + bi to its
complex conjugate z = a − bi. (Recall that this is a ring morphism.) Prove that
the equalizer Eq (idC, ω) is R.

(c) Find a specific example where the equalizer subring Eq ( f , g) is interesting
(i.e., ideally a ring you have not seen before).

33“LTTR” means “left to the reader”.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 68

[Hint: There are many good examples for part (c). For instance, using the notation
Rn≤n from Subsection 2.3.2, consider the two ring morphisms

f : Q3≤3 → Q2≤2,

 a b c
0 d e
0 0 h

 7→
(

a b
0 d

)
and

g : Q3≤3 → Q2≤2,

 a b c
0 d e
0 0 h

 7→
(

d e
0 h

)
.

What is their equalizer?]

2.7.4. Basic properties of ring isomorphisms

We shall now show some fundamental facts about ring isomorphisms.
First, let us give a somewhat simplified characterization of ring isomor-

phisms. According to Definition 2.7.1 (b), if you want to prove that a map
f is a ring isomorphism, you have to check (1) that f is a ring morphism, (2)
that f has an inverse, and (3) that this inverse f−1 is a ring morphism. How-
ever, it turns out that step (3) is unnecessary, since it follows from steps (1) and
(2). Let us state this fact and prove it:

Proposition 2.7.7. Let R and S be two rings. Let f : R → S be an invertible
ring morphism. Then, f is a ring isomorphism.

Proof. This is proved using the same reasoning as for groups (but not for topo-
logical spaces): You need to show that f−1 is a ring morphism. Let me just
show that f−1 respects addition (the proofs of the other axioms are similar). So
let c, d ∈ S; we must show that f−1 (c + d) = f−1 (c) + f−1 (d).

It is clearly sufficient to check that f
(

f−1 (c + d)
)
= f

(
f−1 (c) + f−1 (d)

)
.

Indeed, if we can show this equality, then we can apply f−1 to it and obtain
f−1 (c + d) = f−1 (c) + f−1 (d), which is what we want to prove.

Recall that f respects addition. Thus,

f
(

f−1 (c) + f−1 (d)
)
= f

(
f−1 (c)

)
+ f

(
f−1 (d)

)
= c + d = f

(
f−1 (c + d)

)
.

Hence, f
(

f−1 (c + d)
)
= f

(
f−1 (c) + f−1 (d)

)
is proved.

Incidentally, [DumFoo04] defines ring isomorphisms as invertible ring mor-
phisms. Proposition 2.7.7 shows that this is equivalent to our definition.

We continue with some more straightforward results:

Proposition 2.7.8. Let R, S and T be three rings. Let f : S → T and g : R → S
be two ring isomorphisms. Then, f ◦ g : R → T is a ring isomorphism.

Proof. This is proved in the same way as for groups.
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Proposition 2.7.9. Let R and S be two rings. Let f : R → S be a ring isomor-
phism. Then, f−1 : S → R is a ring isomorphism.

Proof. This is proved in the same way as for groups.

Corollary 2.7.10. The relation ∼= for rings is an equivalence relation.

Proof. Transitivity follows from Proposition 2.7.8. Reflexivity follows from the
obvious fact that id : R → R is a ring isomorphism whenever R is a ring.
Symmetry follows from Proposition 2.7.9.

The most useful property of ring isomorphisms is the following “meta-theorem”:

Isomorphism principle for rings: Let R and S be two isomorphic
rings. Then, any “ring-theoretic” property of R (that is, any property
that does not refer to specific elements, but can be stated entirely in
terms of ring operations) that holds for R must hold for S as well.

This is somewhat nebulous: What exactly makes a property of a ring “ring-
theoretic”? In lieu of a formal definition, let us give some examples of “ring-
theoretic” properties of R (which may or may not hold):

• The ring R has 15 elements.

• The ring R is commutative.

• The ring R is a field.

• For any a, b, c ∈ R, we have 3abc (a + b + c) = 0 (where 0 is the zero of R).

• The center of R has 10 elements.

• There exist two nonzero elements a, b ∈ R satisfying a2 + b2 = 0.

Thus, all of these properties can be automatically transferred from any ring
to any isomorphic ring.

In contrast, here are some examples of properties of R that are not “ring-
theoretic”:

• The elements of R are matrices.

• The set R is disjoint from C.

• The set R contains the complex number i =
√
−1.
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Clearly, an isomorphism can destroy these properties, since it can send ele-
ments to different elements.

To make sure you understand the meaning of ring isomorphisms, pick any
of the above “ring-theoretic” properties of R, and show that it is preserved
by isomorphisms (i.e., if it holds for a ring R, then it holds for any ring S
isomorphic to R). The proof is analogous to the similar argument for groups.

The following exercise shows an example of a non-obvious ring isomor-
phism:

Exercise 2.7.9. Define a subring M of R2×2 as in Exercise 2.4.1. Consider the map

f : C → M,

a + bi 7→
(

a b
−b a

)
(for a, b ∈ R).

(a) Prove that f is a ring isomorphism.

(b) Use this to solve Exercise 2.4.1 (c) again.

2.7.5. Injective morphisms and their images

If f : R → S is an injective map from some set R to some set S, then its
image f (R) is in one-to-one correspondence with its domain R (via the map
R → f (R) that sends each r to f (r)). The same holds for ring morphisms,
except that the one-to-one correspondence is now a ring isomorphism:

Proposition 2.7.11. Let R and S be two rings. Let f : R → S be an injective
ring morphism. Then:

(a) The subring f (R) of S (known from Proposition 2.7.6) is isomorphic to
R.

(b) More specifically: The map

R → f (R) ,
r 7→ f (r)

is a ring isomorphism.

Proof. The map

R → f (R) ,
r 7→ f (r)



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 71

is clearly well-defined (since f (r) ∈ f (R) for each r ∈ R). Let us denote it by
f ′. This map f ′ differs from the map f only in that it goes to f (R) rather than
to S. Hence, this map f ′ is injective (since f is injective) and surjective (since
each element of f (R) has the form f (r) for some r ∈ R by definition, and thus
equals f ′ (r) for the same r ∈ R). Hence, it is bijective, i.e., invertible.

Moreover, f (R) is a subring of S, so that its addition, multiplication, zero
and unity are inherited from S. Hence, from the fact that f is a ring morphism,
we conclude immediately that the map f ′ (which differs from f only in that
it goes to f (R) rather than to S) is a ring morphism as well. Thus, f ′ is an
invertible ring morphism, hence (by Proposition 2.7.7) a ring isomorphism. In
other words, the map

R → f (R) ,
r 7→ f (r)

is a ring isomorphism (since this map is f ′). Hence, f (R) is isomorphic to R.
This proves Proposition 2.7.11.

2.7.6. Advanced exercises on ring isomorphisms

Here are some further exercises on ring isomorphisms.

Exercise 2.7.10. Let F be a commutative ring. Let R be the set of all 3 × 3-matrices

of the form

 a b c
0 d 0
0 0 e

 ∈ F3×3 with a, b, c, d, e ∈ F. It is not hard to see that R is a

subring of F3×3.

(a) Prove that if A, B, C ∈ R are any three matrices in R, then the matrix
C (AB − BA) ∈ R is a scalar multiple of the matrix AB − BA. (A “scalar
multiple” of a matrix M means a matrix of the form λM with λ ∈ F.)

(b) Prove that it is not always true that if A, B, C ∈ R are any three matrices in R,
then the matrix (BA − AB)C ∈ R is a scalar multiple of the matrix BA − AB.

(c) Conclude that R is not isomorphic to Rop when F = Z or F = Z/2.

The next two exercises characterize rings of certain small sizes:

Exercise 2.7.11. Let p be a prime. Let R be a ring of size |R| = p. Prove that R is
isomorphic to the ring Z/p.

[Hint: Prove that the additive group (R,+, 0) must be generated by 1. Argue that
this uniquely determines the multiplication of R.]
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Exercise 2.7.12. Let R be a ring of size |R| = 4. Prove that R is isomorphic to one
of the four rings Z/4, F4, D4 and B4 we have seen in Subsection 2.1.2.

[Hint: As in Exercise 2.3.4, consider the subgroup ⟨1⟩ of (R,+, 0). If this subgroup
is the whole R, then argue that R ∼= Z/4. If not, choose an arbitrary x ∈ R \ ⟨1⟩, and
distinguish cases based on what x2 is.]

2.8. Ideals and kernels ([DumFoo04, §7.1])

2.8.1. Kernels

In linear algebra, the kernel (aka nullspace) of a linear map “measures how
non-injective it is”. The same can be done for ring morphisms:

Definition 2.8.1. Let R and S be two rings. Let f : R → S be a ring morphism.
Then, the kernel of f (denoted ker f or Ker f ) is defined to be the subset

Ker f := {a ∈ R | f (a) = 0S}

of R.

Some examples:

• Let n ∈ Z. The kernel of the ring morphism π : Z → Z/n, a 7→ a is
nZ = {all multiples of n}.

• Let R be a ring. Let S be any set. Recall the ring RS of all functions from
S to R. Fix an element s ∈ S. Then, the kernel of the ring morphism
RS → R, f 7→ f (s) is the set of all functions f ∈ RS that vanish on s.

• The kernel of an injective ring morphism f : R → S is always {0R}.
Indeed, if f : R → S is an injective ring morphism, then f sends 0R to
0S (since f is a ring morphism), and therefore f cannot send any other
element to 0S (since f is injective).

2.8.2. Ideals

As we saw in the above example, the kernel of a ring morphism is not usually a
subring of R, since it normally does not contain 1R. However, it satisfies all the
other axioms for a subring (which is why [DumFoo04] considers it a subring
of R). We can say more, however. The type of a subset that kernels of ring
morphisms are has its own name:

Definition 2.8.2. Let R be a ring. An ideal of R is a subset I of R such that

• we have a + b ∈ I for any a, b ∈ I;
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• we have ab ∈ I and ba ∈ I for any a ∈ R and b ∈ I;

• we have 0 ∈ I (where the 0 means the zero of R).

When R is commutative, of course, the “ab ∈ I” and “ba ∈ I” conditions are
equivalent.

The three conditions in Definition 2.8.2 are called the “ideal axioms”. The
first and the third of them are familiar (they already appeared in the definition
of a subring). The second is new – it is saying that if a factor in a product
belongs to I, then the whole product belongs to I, no matter what the other
factors are.34

Here are some easy consequences of Definition 2.8.2:

Proposition 2.8.3. Let R be a ring. Let I be an ideal of R. Then, I is a
subgroup of the additive group (R,+, 0).

Proof. The first and third “ideal axioms” reveal that I is closed under addition
and contains 0. It remains to show that I is closed under negation – i.e., that
we have −b ∈ I for each b ∈ I. But this is easy: If b ∈ I, then the second “ideal
axiom” (applied to a = −1) yields (−1) b ∈ I and b (−1) ∈ I. But this rewrites
as −b ∈ I, qed.

Theorem 2.8.4. Let R and S be two rings. Let f : R → S be a ring morphism.
Then, the kernel Ker f of f is an ideal of R.

Proof. We need to prove the three “ideal axioms”. Let me only show the second,
as the other two are similar. So let a ∈ R and b ∈ Ker f . We must prove that
ab ∈ Ker f and ba ∈ Ker f .

We have b ∈ Ker f , so that f (b) = 0 (by the definition of Ker f ). Now, the
map f is a ring morphism and thus respects multiplication. Hence, f (ab) =
f (a) · f (b)︸︷︷︸

=0

= f (a) · 0 = 0, so that ab ∈ Ker f (by the definition of Ker f ).

Similarly, ba ∈ Ker f . Thus we have shown the second ideal axiom.

We will soon see a converse of this theorem: Every ideal of a ring R is the
kernel of some ring morphism from R. (Namely, this follows from Theorem
2.9.3 below.)

34This second axiom is sometimes called the “absorption axiom”, referring to the idea that the
ideal I “absorbs” every product as long as even one factor of the product is in the ideal. I
prefer to think of it as “contagiousness”. Another picture in my mind is that I is some kind
of ditch which you can enter but never escape through multiplication with elements of R.
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2.8.3. Principal ideals

The simplest way to construct ideals of a commutative ring is by fixing an
element and taking all its multiples:

Proposition 2.8.5. Let R be a commutative ring.

(a) Let u ∈ R. We define uR to be the set {ur | r ∈ R}. The elements of
this set uR are called the multiples of u (in R).

Then, uR is an ideal of R. This ideal is known as a principal ideal of R.

(b) In particular, 0R = {0R} and 1R = R are therefore principal ideals of
R.

Proof. (a) The only thing to prove is that uR is an ideal of R. But this can be
easily achieved by checking that it satisfies all three ideal axioms:

• We have a + b ∈ uR for any a ∈ uR and b ∈ uR. (Indeed, if a ∈ uR and
b ∈ uR, then there exist x, y ∈ R satisfying a = ux and b = uy (since
a ∈ uR and b ∈ uR), and therefore we have a + b = ux + uy = u (x + y) ∈
uR.)

• We have ab ∈ uR and ba ∈ uR for any a ∈ R and b ∈ uR. (Indeed, if a ∈ R
and b ∈ uR, then there exists an r ∈ R satisfying b = ur (since b ∈ uR),
and thus we have ab = aur = u (ar) ∈ uR and therefore ba = ab ∈ uR.)

• We have 0 ∈ uR (since 0 = u · 0).

Thus, Proposition 2.8.5 (a) is proved.
(b) The equalities 0R = {0R} and 1R = R are obvious (since each r ∈ R

satisfies 0r = 0 and 1r = r). The rest follows from part (a).

For example, 2Z = {all even integers} is an ideal of Z.

Exercise 2.8.1.

(a) Let F be a field. Prove that the only ideals of F are 0F = {0F} and 1F = F.

(b) Conversely, let R be a nontrivial commutative ring that has only two ideals.
Prove that R is a field.

The requirement that R be commutative in Proposition 2.8.5 was not gratu-
itous; the set uR is not always an ideal when R is not commutative. Never-
theless, principal ideals can also be defined for noncommutative rings, but this
is more complicated35. However, we don’t need all of R to be commutative in
order for uR to be an ideal; we can get by with a more local assumption:

35Some details:
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Exercise 2.8.2. Let R be a ring (not necessarily commutative). Let u be a central
element of R. (See Definition 2.3.7 (a) for the meaning of “central”.)

Prove that the set uR (as defined in Proposition 2.8.5) is an ideal of R.

2.8.4. Other examples of ideals

In general, not all ideals of a ring need to be principal. However, in order to
find non-principal ideals, we need to venture beyond the classical number rings
Z, Q, R and C, because the latter rings have the property that all their ideals are
principal (this will follow from Proposition 2.13.3 further below). One way to
construct non-principal ideals is to work with polynomials in several variables
over a field, or even with univariate polynomials over Z. For example:

• The set of all polynomials f ∈ Q [x, y] that have constant term 0 is an ideal
of Q [x, y] that is not principal.

• The set of all polynomials f ∈ Z [x] whose constant term is even is an
ideal of Z [x] that is not principal.

We will come back to this later when we actually have defined polynomials.
For further examples of ideals, one might look into noncommutative rings.

However, matrix rings like Rn×n are rather disappointing in this regard:

Exercise 2.8.3. Let F be a field. Let n ∈ N. Prove that the matrix ring Fn×n has only
two ideals, namely {0} and the whole Fn×n (where 0 stands for the zero matrix).

[Hint: For each i, j ∈ {1, 2, . . . , n}, let Ei,j ∈ Fn×n be the (i, j)-th elementary matrix
– i.e., the n × n-matrix whose (i, j)-th entry is 1 and whose all remaining entries are
0. What happens when you multiply a given matrix A ∈ Fn×n by Ei,j from the left
or from the right? I.e., how can you describe the matrices Ei,j A and AEi,j ?]

Considering matrix rings over a ring R (instead of over a field F) ameliorates
the lack of ideals only slightly – namely, to the extent that R itself has interesting
ideals. For example, for each integer m, the matrix ring Z2×2 has an ideal
consisting of all the matrices whose entries are divisible by m. More generally,
any ideal of a ring R yields an ideal of the matrix Rn×n:

If R is a noncommutative ring, then in general neither uR = {ur | r ∈ R} nor its mirror
analogue Ru = {ru | r ∈ R} are ideals of R. (For example, uR may fail the “ab ∈ uR for
any a ∈ R and b ∈ uR” requirement, because there is no way to move the u to the left of
the a.) This suggests considering the set {rus | r, s ∈ R}, but this is still not an ideal (in
general), since it is not always closed under addition.

However, one can define the “principal ideal” RuR to be

{all finite sums of the form r1us1 + r2us2 + · · ·+ rnusn with ri, si ∈ R} .

This is always an ideal of R.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 76

Exercise 2.8.4. Let R be a ring. Let n ∈ N.
For each subset I of R, let In×n be the subset{

A ∈ Rn×n | all entries of A belong to I
}

of the matrix ring Rn×n. Prove the following:

(a) If I is an ideal of R, then In×n is an ideal of the matrix ring Rn×n.

(b) Any ideal of Rn×n has the form In×n for some ideal I of R.

But we can go beyond matrix rings in search of interesting ideals. Going
beyond matrix rings doesn’t mean extending matrix rings; instead, it suffices
to consider some of their subrings. As we know, the upper-triangular matrices
form a subring of the matrix ring, as do the lower-triangular ones. Here, a
plethora of ideals appears. Some examples follow:

Exercise 2.8.5. Let R be any ring. Recall that Rn≤n denotes the ring of all upper-
triangular n × n-matrices with entries in R. In particular,

R2≤2 =

{(
a b
0 d

)
| a, b, d ∈ R

}
.

(a) Define four subsets I, J, K, L of R2≤2 by

I :=
{(

0 b
0 d

)
| b, d ∈ R

}
;

J :=
{(

a b
0 0

)
| a, b ∈ R

}
;

K :=
{(

0 b
0 0

)
| b ∈ R

}
;

L :=
{(

a 0
0 d

)
| a, d ∈ R

}
.

Prove that I, J and K are ideals of R2≤2, but L is not (unless R is trivial).

(b) For any n ∈ N, prove that the subset{
A ∈ Rn×n | all nonzero entries of A lie in the first row

}
=




a1,1 a1,2 · · · a1,n
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 | a1,1, a1,2, . . . , a1,n ∈ R


is an ideal of Rn≤n, but the subset{

A ∈ Rn≤n | all nonzero entries of A lie in the second row
}

is not (for R nontrivial and n ≥ 2).
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(c) For any n ∈ N, prove that the subset{
A ∈ Rn×n | all nonzero entries of A lie in the first row or the last column

}

=




a1,1 a1,2 a1,3 · · · a1,n
0 0 0 · · · a2,n
0 0 0 · · · a3,n
...

...
...

. . .
...

0 0 0 · · · an,n

 | a1,1, a1,2, . . . , a1,n, a2,n, a3,n, . . . , an,n ∈ R


is an ideal of Rn≤n.

(d) For any n ∈ N, prove that the subset

Rn<n

:=
{

A ∈ Rn≤n | all diagonal entries of A equal 0
}

=
{

A ∈ Rn×n | all nonzero entries of A lie above the main diagonal
}

=




0 a1,2 a1,3 · · · a1,n
0 0 a2,3 · · · a2,n
0 0 0 · · · a3,n
...

...
...

. . .
...

0 0 0 · · · 0

 | ai,j ∈ R for all i < j


is an ideal of Rn≤n. This subset Rn<n is called the set of strictly upper-
triangular n × n-matrices over R.

(e) (For combinatorialists familiar with partially ordered sets:) Consider an n ∈
N. Assume that some cells of an (unfilled) n × n-matrix are colored red. What
combinatorial properties must our coloring satisfy in order for the set{

A ∈ Rn×n | all nonzero entries of A lie in red cells
}

to be an ideal of Rn≤n ?

The next exercise assigns a certain important ideal to every commutative ring
R:

Exercise 2.8.6. Let R be a ring. An element a ∈ R is said to be nilpotent if there
exists an n ∈ N such that an = 0. (For example, the residue class 6 in Z/8Z is
nilpotent, since its 3-rd power is 0.)

(a) If a and b are two nilpotent elements of R satisfying ab = ba, then prove that
a + b is nilpotent as well.

(b) Find a counterexample to part (a) if we don’t assume ab = ba.

(c) Assume that the ring R is commutative. Let N be the set of all nilpotent
elements of R. Prove that N is an ideal of R.
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The ideal N in Exercise 2.8.6 (c) is known as the nilradical of R.

Exercise 2.8.7. Let n be a positive integer with prime factorization n = pa1
1 pa2

2 · · · pak
k ,

where p1, p2, . . . , pk are distinct primes and a1, a2, . . . , ak are positive integers. Let R
be the ring Z/n. Prove that the nilradical of R is the principal ideal p1 p2 · · · pkR.

Exercise 2.8.8. Recall the set N defined in Exercise 2.8.6 (c). Describe this set N

(a) in the case when R is the matrix ring Q2×2;

(b) in the case when R is the upper-triangular matrix ring Q2≤2 (see Section 2.3
for its definition).

Both of these rings R are noncommutative, so that Exercise 2.8.6 (c) does not apply.
Nevertheless, is N an ideal of R in one of these two cases?

Exercise 2.8.9. Let R be a ring. If A, B, C, D are four subsets of R, then the notation(
A B
C D

)
shall denote the set of all 2 × 2-matrices

(
a b
c d

)
∈ R2×2 with a ∈ A,

b ∈ B, c ∈ C and d ∈ D. (For instance,
(

N 2Z

2Z N

)
is the set of all 2 × 2-matrices

whose diagonal entries are nonnegative integers and whose off-diagonal entries are
even integers.)

(a) Let I be a subset of R. Prove that I is an ideal of R if and only if
(

R I
{0} R

)
is a subring of R2×2.

(b) Does the same claim hold for
(

R I
I R

)
instead of

(
R I
{0} R

)
?

(c) Does the same claim hold for
(

R I
R R

)
instead of

(
R I
{0} R

)
?

(d) Does the same claim hold for
(

R R
R I

)
instead of

(
R I
{0} R

)
?

The following exercise gives some examples of principal and non-principal
ideals:

Exercise 2.8.10. Let R be a ring, and let S be a set. Let RS be the ring of all functions
from S to R (with pointwise addition and multiplication).

The support of a function f : S → R is defined to be the set of all x ∈ S such that
f (x) ̸= 0. This support is denoted by Supp f .

(a) Let T be any subset of S. Prove that the set

RS
T := { f : S → R | Supp f ⊆ T}
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is an ideal of RS, and is in fact a principal ideal if R is commutative.

(b) Prove that the set

RS
fin := { f : S → R | Supp f is a finite set}

is an ideal of RS.

(c) Now, assume that R = Q and S = Q. Prove that RS
fin is not a principal ideal of

RS.

Another example of a non-principal ideal comes from real analysis:

Exercise 2.8.11. Let R be the ring of all functions from R to R (with pointwise
addition and pointwise multiplication).

The support of a function f : R → R is defined to be the set of all x ∈ R such that
f (x) ̸= 0.

A subset S of R is said to be null (or to have Lebesgue measure zero) if for every
positive real ε, there exists a countable union of intervals I1 ∪ I2 ∪ I3 ∪ · · · in R such
that S ⊆ I1 ∪ I2 ∪ I3 ∪ · · · and such that the sum of the lengths of these intervals
I1, I2, I3, . . . is smaller than ε. (In particular, any finite or countable subset of R is
null.)

We let I be the set of all functions f : R → R whose support is null. (For example,
the function that sends every rational number to 1 and every irrational number to 0
belongs to I, since its support is Q, which is null.)

(a) Prove that I is an ideal of R.

(b) Prove that this ideal I is not principal.

2.9. Quotient rings ([DumFoo04, §7.3])

We now come to one of the most abstract sections of this course: the definition
and the basic properties of quotient rings.

Before we define this notion rigorously, let me outline what it is meant to
achieve.

Recall the idea behind modular arithmetic (Section 1.4): By passing from the
integers to their residue classes modulo a given integer n, we are essentially
equating n with 0 (so that two integers become “equal” if they differ by a
multiple of n). Thus, these residue classes are “what remains” of the integers if
we equate n with 0.

The same passage can be made in greater generality: We can start with any
ring R and any ideal I of R, and we can equate all elements of I with 0 (so
that two elements of R become “equal” if they differ by an element of I). What
remains is again called “residue classes” (now modulo I instead of modulo n),

https://en.wikipedia.org/wiki/Null_set
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and we can again define addition and multiplication on these residue classes.
The result is a new ring, which is called the quotient ring of R by the ideal
I, and is denoted by R/I. Working in this quotient ring is a natural general-
ization of modular arithmetic to things that aren’t integers. For instance, we
can start with the Gaussian integers and equate 5 with 0, or we can start with
the upper-triangular 2 × 2-matrices36 and equate the strictly upper-triangular
2 × 2-matrices37 with zero. This gives us a new way to build new rings from
old.38

So much for the idea; let us now define the quotient ring R/I formally.
In rigorous mathematics, you cannot just take two distinct elements and de-

clare them to be equal. Thus, “equating” two elements of R is easier said than
done. The right way to do it is by passing from elements to equivalence classes
(just as we did in modular arithmetic, back in Section 1.4). Let us see how this
can be done.

2.9.1. Quotient groups

It turns out that we don’t need to reinvent the wheel: You have already seen
these equivalence classes in group theory, under the name “cosets”. Let me
recall how these were defined and used:

• If H is a subgroup of a group G, then the left cosets of H in G are the
subsets gH := {gh | h ∈ H} for all g ∈ G. There is one left coset gH for
each g ∈ G; but different g ∈ G often lead to the same left coset gH, so
there are usually fewer left cosets than elements of G. The set of all left
cosets of H is denoted by G/H.

• If H is merely a subgroup of a group G, then G/H is merely a “G-set”
(i.e., a set with an action of G). However, when H is a normal subgroup
of G (that is, a subgroup of G satisfying gng−1 ∈ H for each g ∈ G and
n ∈ H), then G/H becomes a group as well, with group operation defined
by

(g1H) (g2H) = g1g2H for all g1, g2 ∈ G. (7)

This group G/H is called the quotient group of G by H. The left cosets
of H in G are just called the cosets of H in G in this case.

• If G is an abelian group, then any subgroup H of G is normal, so G/H
always is a group.

36i.e., the matrices of the form
(

a b
0 c

)
37i.e., the matrices of the form

(
0 b
0 0

)
38For comparison: When you take a subring of a ring R, you are throwing away some elements

of R. In contrast, when you take a quotient ring of R, you are equating some elements of R
with one another. In either case, you end up with a ring smaller than R.
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• Now, assume that G is an additive group (which means that its binary
operation is written as + rather than as ·). This presupposes that G is
abelian, as it is considered gauche to write a non-abelian group additively.
Let H be a subgroup of G. Then, the cosets of H in G are denoted by
g+ H instead of gH (in order to match the additive notation for the group
operation). Likewise, we write + instead of · for the binary operation of
the quotient group G/H. The equality (7) therefore rewrites as

(g1 + H) + (g2 + H) = (g1 + g2) + H for all g1, g2 ∈ G.

Note that the quotient group G/H is an abelian group.

• The most famous example of quotient groups is when G = Z and H =
nZ = {all multiples of n} for some fixed integer n. (Here, the group
operation on G is addition of integers.) In this case, the quotient group
Z/nZ is the cyclic group Z/n, also known as Zn. See [Siksek20, Chapter
XII] for this and other examples.

2.9.2. Quotient rings

Now, piggybacking on the construction of quotient groups we just recalled, we
shall define a similar quotient structure for rings instead of groups. Instead of
normal subgroups, we will use ideals this time:

Definition 2.9.1. Let I be an ideal of a ring R. Thus, I is a subgroup of the
additive group (R,+, 0), hence a normal subgroup (since (R,+, 0) is abelian).
Therefore, the quotient group R/I is a well-defined abelian group. Its ele-
ments are the cosets r + I of I in R. (Note that, since our groups are additive,
we are writing r + I for what would normally be written rI in group theory.)

Note that the addition on R/I is given by

(a + I) + (b + I) = (a + b) + I for all a, b ∈ R. (8)

We now define a multiplication operation on R/I by setting

(a + I) (b + I) = ab + I for all a, b ∈ R. (9)

(See below for a proof that this is well-defined.)
The set R/I, equipped with the addition and the multiplication we just

defined and with the elements 0 + I and 1 + I (as zero and unity), is a ring
(as we will show in a moment). This ring is called the quotient ring of R
by the ideal I; it is also pronounced “R modulo I”. It is denoted R/I (so
when you hear “the ring R/I”, it always means the set R/I equipped with
the structure just mentioned).

The cosets r + I are called residue classes modulo I, and are often denoted
r mod I or [r]I or [r] or r. (The last two notations are used when I is clear
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from the context. We will mostly be using the notations r + I and r.) Thus,
the equalities (8) and (9) can be restated as

a + b = a + b for all a, b ∈ R (10)

and
a · b = ab for all a, b ∈ R, (11)

respectively.

Theorem 2.9.2. Let R and I be as in Definition 2.9.1. Then, the multiplication
on R/I is well-defined, and R/I does indeed become a ring when endowed
with the operations and elements just described.

Before we prove this theorem, let us see some examples:

• Let n ∈ Z. The set nZ = {all multiples of n} is a principal ideal of Z.
The quotient ring Z/nZ is precisely the ring Z/n we discussed above.
Its elements r + nZ are precisely the residue classes r defined in Section
1.4. The equalities (10) and (11) are precisely the standard definitions of
addition and multiplication in Z/n.

Thus, the notion of a quotient ring generalizes the familiar concept of
modular arithmetic. (More precisely, modular arithmetic is arithmetic in
R/I where R = Z and I = nZ.)

• Each ring R has two obvious ideals {0R} and R. The corresponding quo-
tient rings R/ {0R} and R/R are fairly boring:

– The quotient ring R/ {0R} is isomorphic to R (since each coset r +
{0R} is just a 1-element set {r}, and thus the elements of R/ {0R} are
just the elements of R “clothed in set braces”).

– The quotient ring R/R is trivial (since there is only one coset, r+ R =
0 + R = 1 + R = R, and it contains all elements of R).

This generalizes the facts that Z/0 ∼= Z and that Z/1 is trivial.

• Let R be the ring Z [i] = {a + bi | a, b ∈ Z} of Gaussian integers. Con-
sider its principal ideal

3R = {3r | r ∈ R} = {3r | r ∈ Z [i]}
= {3a + 3bi | a, b ∈ Z}
= {c + di | c, d ∈ Z are multiples of 3} .
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What is the quotient ring R/ (3R) ? Each element of this quotient ring
can be written in the form39

a + bi with a, b ∈ {0, 1, 2}

(since any Gaussian integer can be reduced to an a+ bi with a, b ∈ {0, 1, 2}
by subtracting an appropriate Gaussian-integer multiple of 3 40). In
other words,

R/ (3R) =
{

0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i
}

.

It is easy to see that this is a 9-element ring (i.e., the residue classes
0, 1, 2, i, 1 + i, 2 + i, 2i, 1 + 2i, 2 + 2i are distinct41), and a field
(i.e., all the nonzero residue classes are invertible42). So we have found a
finite field with 9 elements.

Let us do some computations in this field: We have

2 + i + 2 + 2i = (2 + i) + (2 + 2i) = 4 + 3i = 1

(since 4 + 3i and 1 belong to the same coset of the ideal 3R, as the differ-
ence (4 + 3i)− 1 = 3 (1 + i) lies in this ideal). We also have

2 + i · 2 + 2i = (2 + i) · (2 + 2i) = 2 + 6i = 2

(since 2 + 6i and 2 belong to the same coset of the ideal 3R). A similar
computation proves that

2 + i · 1 + i = 1,

which reveals that the elements 2 + i and 1 + i of the ring R/ (3R) are
inverses of each other (and thus are units of this ring).

39We are using z to denote the residue class of a Gaussian integer z ∈ R. This should not
be confused with the complex conjugate of z (which is commonly denoted z as well). For-
tunately, this confusion will be avoided in this example, since we will not use complex
conjugates.

40Proof. Let c + di be any Gaussian integer (with c, d ∈ Z). Let qc and rc be the quotient and the
remainder obtained when we divide c by 3. Let qd and rd be the quotient and the remainder
obtained when we divide d by 3. Then, c = 3qc + rc and rc ∈ {0, 1, 2} and d = 3qd + rd and
rd ∈ {0, 1, 2}. Hence,

c + di = (3qc + rc) + (3qd + rd) i = 3 (qc + qdi) + (rc + rdi) .

Thus, by subtracting 3 (qc + qdi) (which is a Gaussian-integer multiple of 3), we can reduce
c + di to the Gaussian integer rc + rdi, which has the form a + bi with a, b ∈ {0, 1, 2}.

For example, 5 + 7i can be reduced to 2 + i by subtracting 3 (1 + 2i). Thus, 5 + 7i = 2 + i.
41In order to verify this, you must show that no two of the Gaussian integers 0, 1, 2, i, 1 +

i, 2 + i, 2i, 1 + 2i, 2 + 2i differ by a Gaussian-integer multiple of 3 (so that their residue
classes are distinct).

42Checking this is Exercise 2.9.1 (a).
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For the curious: If we replace 3 by any other positive integer n, then
R/ (nR) will be a finite ring with n2 elements, but not always a field.
Understanding when it will be a field is a fruitful question in elementary
number theory. (It is a field for some, but not for all, primes n.)

We can also consider quotient rings of the form R/ (zR) for non-real z ∈
R. For example, one such quotient ring is R/ ((1 + i) R). It is much less
obvious how many elements this quotient ring has! (See Exercise 2.9.2
below for the answer.)

Exercise 2.9.1. Let R = Z [i], as in the example we just did.

(a) Confirm that the quotient ring R/ (3R) is a field by finding inverses for all its
eight nonzero elements.

(b) Confirm that the quotient ring R/ (5R) is not a field by checking that 1 + 2i ·
1 − 2i = 0 in this ring.

(c) Confirm that the quotient ring R/ (17R) is not a field either.

[Hint: For part (c), find a similar equality as in part (b).]

Exercise 2.9.2. Let R = Z [i], as in the above example. Prove that the quotient ring
R/ ((1 + i) R) has just 2 elements, and in fact is isomorphic to Z/2.

[Hint: First, show that both 2 and 2i belong to the principal ideal (1 + i) R. Hence,
each element of R can be reduced to the form a + bi with a, b ∈ {0, 1} by subtracting
an appropriate element of this ideal. Thus, the only possible residue classes in
R/ ((1 + i) R) are 0, 1, i and 1 + i. But the difference i − 1 also lies in the principal
ideal (1 + i) R (why?), and thus the classes i and 1 are actually identical. So are the
classes 1 + i and 0. We are left with the two classes 0 and 1, which may or may not
be actually distinct. Prove that they are distinct by arguing that 1 is not a multiple
of 1 + i in R. This shows that R/ ((1 + i) R) has exactly 2 elements.]

Exercise 2.9.3. Let R be the ring of all real numbers of the form a + b
√

5 with
a, b ∈ Z. (This is a ring for the same reasons that the S in Subsection 2.1.2 was a
ring; the only difference is that we now require a, b ∈ Z instead of a, b ∈ Q.)

(a) Is the quotient ring R/ (2R) a field?

(b) Is the quotient ring R/ (3R) a field?

(c) Prove that the quotient ring R/ (5R) is not a field, and in fact the residue
class

√
5 in this quotient is nilpotent. (See Exercise 2.8.6 for the meaning of

“nilpotent”.)

We will see more examples of quotient rings soon (and even more in later
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chapters, after we introduce polynomial rings). For now, however, let us make
good on our debts and prove Theorem 2.9.2:

Proof of Theorem 2.9.2. To see that the multiplication on R/I is well-defined (by
the equation (9)), we must prove that a product xy with x, y ∈ R/I does not
depend on how exactly we write x and y as x = a + I and y = b + I. In other
words, we must show that if four elements a, a′, b, b′ of R satisfy a + I = a′ + I
and b + I = b′ + I, then ab + I = a′b′ + I.

So let a, a′, b, b′ ∈ R be such that a + I = a′ + I and b + I = b′ + I. From
a + I = a′ + I, we obtain a − a′ ∈ I, so that (a − a′) b ∈ I (by the second ideal
axiom, since I is an ideal). In other words, ab − a′b ∈ I. Hence, ab + I = a′b + I.
Similarly, we can obtain a′b + I = a′b′ + I (from b + I = b′ + I). Thus, ab + I =
a′b + I = a′b′ + I, which is just what we need.

So we have shown that the multiplication on R/I is well-defined. Now why
is R/I a ring? This we leave to the reader – it’s a straightforward consequence
of the fact that R is a ring.43

Let me mention some more terminology (some of it informal but fairly pop-
ular):

When R is a ring, and I is an ideal of R, the quotient ring R/I is often just
called the quotient of R by I. It is said to be obtained by quotienting R by I,
or by quotienting I out of R.

2.9.3. More examples of quotient rings

Let us give two further hands-on examples of quotient rings. These are not
strictly necessary for the understanding of what follows, but they give some
extra intuition and practice.

• We recall (from Subsection 2.3.2) that Q3≤3 denotes the ring of all upper-
triangular 3 × 3-matrices with rational entries. Thus,

Q3≤3 =


 a b c

0 d e
0 0 f

 | a, b, c, d, e, f ∈ Q

 .

The addition and the multiplication of this ring are matrix addition and
matrix multiplication; its zero is the zero matrix 03×3; its unity is the
identity matrix I3.

43For example, in order to prove that the multiplication on R/I is associative, we must show
that x · (y · z) = (x · y) · z for any three elements x, y, z ∈ R/I. But this is straightforward: If
we write these three elements x, y, z as x = a + I and y = b + I and z = c + I, then this boils
down to proving that a · (b · c) = (a · b) · c, which follows from associativity in R.
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There is also a ring Q3=3 of all diagonal 3 × 3-matrices with rational en-
tries. That is,

Q3=3 =


 a 0 0

0 d 0
0 0 f

 | a, d, f ∈ Q

 .

This is a subring of Q3≤3.

As in Exercise 2.8.5 (d), we furthermore define Q3<3 to be the set of all
matrices in Q3≤3 whose diagonal entries are 0. Thus,

Q3<3 =


 0 b c

0 0 e
0 0 0

 | b, c, e ∈ Q

 .

The matrices in Q3<3 are known as “strictly upper-triangular 3× 3-matrices”.

We know from Exercise 2.8.5 (d) that Q3<3 is an ideal of Q3≤3 (and of
course, we can also check this directly44). What is the quotient ring
Q3≤3/Q3<3 ?

Any element of this quotient ring is a residue class of the form

A = A + Q3<3 for some A ∈ Q3≤3.

In other words, it is a set that consists of some given matrix A ∈ Q3≤3

and all matrices that can be obtained from A by adding a strictly upper-

44The only interesting part is to check the second ideal axiom, i.e., to show that if A ∈ Q3<3

and B ∈ Q3≤3, then AB and BA belong to Q3<3. Still, we can do this by direct computation:

If A =

 0 x y
0 0 z
0 0 0

 and B =

 a b c
0 d e
0 0 f

 ,

then AB =

 0 dx ex + f y
0 0 f z
0 0 0

 and BA =

 0 ax ay + bz
0 0 dz
0 0 0

 .
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triangular 3 × 3-matrix. For example, if A =

 1 2 3
0 4 5
0 0 6

, then

A = A + Q3<3 =

 1 2 3
0 4 5
0 0 6

+


 0 b c

0 0 e
0 0 0

 | b, c, e ∈ Q


=


 1 2 3

0 4 5
0 0 6

+

 0 b c
0 0 e
0 0 0

 | b, c, e ∈ Q


=


 1 2 + b 3 + c

0 4 5 + e
0 0 6

 | b, c, e ∈ Q


=


 1 x y

0 4 z
0 0 6

 | x, y, z ∈ Q


(here, we have substituted x, y, z for 2 + b, 3 + c, 5 + e, because when b
ranges over Q, so does 2 + b, etc.). So this set A consists of all upper-
triangular 3 × 3-matrices whose diagonal entries are 1, 4, 6 and whose
above-diagonal entries are arbitrary rational numbers. We can thus view
this set A as a “partly undetermined matrix”, in the sense that it is “a
matrix in which some of the entries can be filled in arbitrarily” (although,
of course, formally speaking, it is not a matrix but a set of matrices). From
this point of view, it makes sense to write A as follows:

A =

 1 ? ?
0 4 ?
0 0 6

 ,

where each question mark stands for an undetermined entry (noting that
different question marks are independent, i.e., there are three degrees of
freedom). Formally, such a “partly undetermined matrix” is meant to be
a set of matrices, where each question mark is a variable that can take any
element of Q as value.

More generally, for any matrix A =

 a b c
0 d e
0 0 f

 ∈ Q3≤3, the residue

class A ∈ Q3≤3/Q3<3 is

A =

 a b c
0 d e
0 0 f

 =

 a ? ?
0 d ?
0 0 f

 (12)

(written as a “partly undetermined matrix”). Thus, this class A does not
depend on the above-diagonal entries of A. (This is not surprising: After
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all, when we quotient out the ideal Q3<3, we are equating the strictly
upper-triangular matrices with 0, which amounts to ignoring the above-
diagonal entries.)

Thus, the quotient ring Q3≤3/Q3<3 is the set of “partly undetermined ma-

trices” of the form

 a ? ?
0 d ?
0 0 f

 (that is, upper-triangular 3 × 3-matrices

with fixed entries on the main diagonal and question marks above it).

According to the formula (11), the multiplication on this quotient ring is
given by a b c

0 d e
0 0 f

 ·

 x y z
0 u v
0 0 w

 =

 a b c
0 d e
0 0 f

 ·

 x y z
0 u v
0 0 w


=

 ax bu + ay az + bv + cw
0 du dv + ew
0 0 f w

.

In terms of “partly undetermined matrices”, this can be rewritten in the
following simpler form: a ? ?

0 d ?
0 0 f

 ·

 x ? ?
0 u ?
0 0 w

 =

 ax ? ?
0 du ?
0 0 f w

 . (13)

(As we said, the above-diagonal entries don’t matter, so we don’t need to
even bother computing them.)

Similarly to (13), addition in Q3≤3/Q3<3 is given by the formula a ? ?
0 d ?
0 0 f

+

 x ? ?
0 u ?
0 0 w

 =

 a + x ? ?
0 d + u ?
0 0 f + w

 . (14)

I hope you are disappointed by the formulas (14) and (13). After all, what
is happening in these formulas is just entrywise addition and entrywise
multiplication of the diagonal entries. In other words, the “partly un-

determined matrices”

 a ? ?
0 d ?
0 0 f

 in our quotient ring Q3≤3/Q3<3 are

behaving (under addition and multiplication) just like the diagonal matri-

ces

 a 0 0
0 d 0
0 0 f

 in the ring Q3=3 (since the latter diagonal matrices, too,
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are added and multiplied entrywise45). To state this more precisely, our
quotient ring Q3≤3/Q3<3 turns out to be isomorphic to the ring Q3=3 of
diagonal 3 × 3-matrices, and the isomorphism is just the map

Q3≤3/Q3<3 → Q3=3, a ? ?
0 d ?
0 0 f

 7→

 a 0 0
0 d 0
0 0 f


that replaces all question marks by zeroes. Thus, our “partly undeter-
mined matrices” are just diagonal matrices in a complicated guise, and
our quotient ring Q3≤3/Q3<3 is just an isomorphic copy of the subring
Q3=3. This doesn’t feel worth the trouble of defining quotient rings!

If all quotient rings were as boring as this one, then the whole concept
wouldn’t be of much use. Fortunately, this is not the case: Not all quotient
rings are subrings in disguise, and not all question marks can just be
replaced by zeroes. We will see this in the next example.

• We again consider a quotient ring of Q3≤3, but this time we quotient out
a smaller ideal. Namely, we define the subset

Q3<<3 :=


 0 0 c

0 0 0
0 0 0

 | c ∈ Q


of Q3≤3. This set Q3<<3 is an ideal of Q3≤3 (again, this can be checked
directly46), and thus there is a quotient ring Q3≤3/Q3<<3. In this quotient

45Indeed, addition and multiplication of diagonal matrices are given by the formulas a 0 0
0 d 0
0 0 f

+

 x 0 0
0 u 0
0 0 w

 =

 a + x 0 0
0 d + u 0
0 0 f + w


and  a 0 0

0 d 0
0 0 f

 ·

 x 0 0
0 u 0
0 0 w

 =

 ax 0 0
0 du 0
0 0 f w

 .

These look exactly like the formulas (14) and (13) for our “partly undetermined matrices”,
except that all question marks are replaced by zeroes.

46The only interesting part is to check the second ideal axiom, i.e., to show that if A ∈ Q3<<3
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ring, the residue class A of a matrix A =

 a b c
0 d e
0 0 f

 ∈ Q3≤3 is

A =

 a b c
0 d e
0 0 f

 =

 a b ?
0 d e
0 0 f


=


 a b x

0 d e
0 0 f

 | x ∈ Q

 .

This is a “partly undetermined matrix” like those in the previous example,
but this time only the northeasternmost entry is a question mark, since
that entry is the only one that can be changed by adding a matrix in
Q3<<3.

According to the formula (11), the multiplication on the quotient ring
Q3≤3/Q3<<3 is given by a b ?

0 d e
0 0 f

 ·

 x y ?
0 u v
0 0 w

 =

 ax bu + ay ?
0 du dv + ew
0 0 f w

 .

Again, the question-mark entry needs not be computed. What is new this
time is that we cannot replace the question marks by zeroes. Indeed, the
product a b 0

0 d e
0 0 f

 ·

 x y 0
0 u v
0 0 w

 =

 ax bu + ay bv
0 du dv + ew
0 0 f w


does not usually have a 0 in the northeasternmost position, so that the

matrices of the form

 a b 0
0 d e
0 0 f

 do not form a subring of Q3≤3. Thus,

the multiplication of our “partly undetermined matrices” does not just
reduce to the multiplication of regular matrices in a subring (like it did

and B ∈ Q3≤3, then AB and BA belong to Q3<<3. Still, we can do this by direct computation:

If A =

 0 0 y
0 0 0
0 0 0

 and B =

 a b c
0 d e
0 0 f

 ,

then AB =

 0 0 f y
0 0 0
0 0 0

 and BA =

 0 0 ay
0 0 0
0 0 0

 .
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in the previous example). In other words, Q3≤3/Q3<<3 is not isomorphic
to a subring of Q3≤3 (at least not in an obvious way as in the previous
example), but is a genuinely new ring.

The first of the above two examples can be generalized from 3 × 3-matrices
to n × n-matrices (and from rational entries to entries in an arbitrary ring R):

Exercise 2.9.4. Let R be any ring. Let n ∈ N. Recall that Rn≤n denotes the ring of
all upper-triangular n × n-matrices with entries in R. In Exercise 2.8.5 (d), we have
seen that

Rn<n =
{

A ∈ Rn≤n | all diagonal entries of A equal 0
}

is an ideal of this ring Rn≤n. The elements of Rn<n are called the strictly upper-
triangular matrices.

Let furthermore Rn=n denote the set of all diagonal n × n-matrices in Rn×n. That
is,

Rn=n :=
{

A ∈ Rn×n | all off-diagonal entries of A equal 0
}

=




a1 0 0 · · · 0
0 a2 0 · · · 0
0 0 a3 · · · 0
...

...
...

. . .
...

0 0 0 · · · an

 | a1, a2, . . . , an ∈ R


.

It is easy to see that Rn=n is a subring of Rn×n.
We claim that the quotient ring Rn≤n/Rn<n is isomorphic to Rn=n. Intuitively, this

is reasonable: When you start with all upper-triangular matrices but “equate” all the
strictly upper-triangular matrices to zero, then you should be left with the diagonal
matrices, since all the off-diagonal entries are “being ignored”. Let us make this
rigorous.

Define the map δ : Rn×n → Rn×n as in Exercise 2.7.4. Note that the actual image
of this map δ is Rn=n.

(a) Prove that the map

Rn≤n/Rn<n → Rn=n,

A 7→ δ (A)

is well-defined – i.e., the value δ (A) depends not on the matrix A ∈ Rn≤n but
only on its residue class A ∈ Rn≤n/Rn<n. (In other words, prove that if two
matrices A, B ∈ Rn≤n have the same residue class A = B in Rn≤n/Rn<n, then
δ (A) = δ (B).)

(b) Prove that this map is furthermore a ring morphism.

(c) Prove that this map is invertible.

This shows that the map is a ring isomorphism, and therefore we have
Rn≤n/Rn<n ∼= Rn=n as rings.
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The ideal Q3<<3 of the second example can also be generalized:

Exercise 2.9.5. Let R be any ring. Let n ∈ N. Let k ∈ N. Recall that Rn≤n denotes
the ring of all upper-triangular n × n-matrices with entries in R.

A matrix A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 ∈ Rn×n will be called k-upper-triangular

if all its entries ai,j with i > j + k are zero (i.e., if it satisfies ai,j = 0 for all i, j ∈
{1, 2, . . . , n} satisfying i > j + k).

Let Rn≤n
k denote the set of all k-upper-triangular n × n-matrices in Rn×n. Prove

that Rn≤n
k is an ideal of Rn≤n.

[The ideals Q3<3 and Q3<<3 from the above two examples are Q3≤3
1 and Q3≤3

2 ,
respectively.]

2.9.4. The canonical projection

Ideals of rings are somewhat like normal subgroups of groups: You can “quo-
tient them out” (this is slang for “take a quotient by them”) and get a ring again
(by Theorem 2.9.2).

Now, we are ready to show that any ideal of a ring is the kernel of a ring
morphism:

Theorem 2.9.3. Let R be a ring. Let I be an ideal of R. Consider the map

π : R → R/I,
r 7→ r + I.

Then, π is a surjective ring morphism with kernel I.

Definition 2.9.4. This morphism π is called the canonical projection from R
onto R/I.

Proof of Theorem 2.9.3. To prove that π is a ring morphism, we need to check
that π respects addition, multiplication, zero and unity. All of this is straight-
forward. For example, in order to see that π respects multiplication, we must
show that π (rs) = π (r) · π (s) for all r, s ∈ R; but this follows from

π (r) · π (s) = (r + I) · (s + I) (by the definition of π)

= rs + I
(

by the definition of the
multiplication in R/I

)
= π (rs) (by the definition of π) .

Thus, we can show that π is a ring morphism.
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The surjectivity of π is clear, since any element of R/I has the form r + I =
π (r) for some r ∈ R.

Finally, we need to show that π has kernel I. But this, too, is easy: The kernel
of π consists of those elements r ∈ R that satisfy π (r) = 0R/I . But π (r) = 0R/I
is equivalent to r + I = 0 + I (since π (r) is the coset r + I, whereas 0R/I is the
coset 0 + I), which is tantamount to r ∈ I. Thus, the kernel of π is I.

The canonical projection π in Theorem 2.9.3 can be viewed as “putting a bar
on each element”, since it sends each r ∈ R to the residue class r ∈ R/I.

For example, if we take R = Z and I = 2Z in Theorem 2.9.3, then the
canonical projection π is the map

π : Z → Z/2,
r 7→ r + 2Z = r.

This map π sends each even integer to 0 and each odd integer to 1. In other
words, π assigns to each integer its parity (as an element of Z/2).

The following two exercises ([21w, homework set #2, Exercise 10 (a) and (b)])
illustrate one of many uses of quotient rings:

Exercise 2.9.6. Let R be a commutative ring, and let u and n be two nonnegative in-
tegers. Let x, y ∈ R be two elements such that x − y ∈ uR. (Here, uR := {ur | r ∈ R};
this is a principal ideal of R, since uR = (u1R) R.)

Prove that
xn − yn ∈ guR, where g = gcd (n, u) .

[Hint: Write xn − yn as (x − y)
(
xn−1 + xn−2y + · · ·+ yn−1), and show that the

second factor belongs to gR. The latter is easiest to do by working in the quotient
ring R/gR.]

Exercise 2.9.7. Let ( f0, f1, f2, . . .) be the Fibonacci sequence, defined as in Definition
2.3.4. Prove that

gcd (n, fd) · fd | fdn for any d, n ∈ N.

[Hint: Define the matrices A and B and the commutative ring F as in Exercise
2.3.6, and apply Exercise 2.9.6 to R = F and x = Ad and y = Bd and u = fd.]

2.9.5. The universal property of quotient rings: elementwise form

When trying to understand a quotient ring, it is important to construct ring
morphisms into and out of it. (In the best case scenario, you can find mutually
inverse maps in both directions, and thus obtain an isomorphism to another
ring.)

Constructing morphisms α : S → R/I into a quotient ring R/I is pretty easy
(see Theorem 2.9.3 for an example).

Constructing morphisms β : R/I → S out of a quotient ring R/I is trick-
ier. The main problem is to establish that β is well-defined: An element of a
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quotient ring R/I can be written as r for many different elements r ∈ R, and
therefore, when assigning an output value β (r) for this element, we need to
ensure that this value depends not on the r but only on the r. This can be done
by hand (see Exercise 2.9.4 (a) for an easy example of this), but gets tedious
fairly soon. Is there a more comfortable method?

Yes, and such a method is provided by a theorem known as the “universal
property of quotient rings”. This theorem may appear technical, abstract and
pointless at first sight, but it reveals its usefulness soon after you tire of man-
ually constructing morphisms out of quotient rings. It provides a mechanical
way of constructing a ring morphism f ′ : R/I → S out of a ring morphism
f : R → S, as soon as you can show that f sends all elements of the ideal I to 0.
The well-definedness of f ′ and the fact that f ′ is a ring morphism are automatic
consequences of the theorem, once its assumptions have been satisfied. Here is
the precise statement of the theorem (in one of its forms):

Theorem 2.9.5 (Universal property of quotient rings, elementwise form). Let
R be a ring. Let I be an ideal of R.

Let S be a ring. Let f : R → S be a ring morphism. Assume that f (I) = 0
(this is shorthand for saying that f (a) = 0 for all a ∈ I). Then, the map

f ′ : R/I → S,
r 7→ f (r) (for all r ∈ R)

47 is well-defined (i.e., the value f (r) depends only on the residue class r,
not on r itself) and is a ring morphism.

Before we prove Theorem 2.9.5, let us give an example:

• Consider the canonical projections

π6 : Z → Z/6,
r 7→ r + 6Z

and

π3 : Z → Z/3,
r 7→ r + 3Z.

47Recall that r means the residue class of r in R/I, that is, the coset r + I. Thus, the definition
of f ′ can be rewritten as follows:

f ′ : R/I → S,
r + I 7→ f (r) (for all r ∈ R) .

Roughly speaking, the definition of f ′ says that f ′ sends a residue class where f would
send any element of this residue class. The (slightly) nontrivial part here is to prove that this
is well-defined, i.e., that f takes all elements of the given residue class to the same output
value.
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(Each of these two projections sends each integer r to its residue class r,
but the residue class is a modulo-6 class for π6 and a modulo-3 class for
π3. The notation r can mean either r + 6Z or r + 3Z depending on the
context. Thus, pay attention to the sets to which the elements belong!)

The ideal 6Z of Z satisfies π3 (6Z) = 0 (because any j ∈ 6Z is a multiple
of 6, thus a multiple of 3, and therefore its residue class j + 3Z is 0, and
thus π3 (j) = j + 3Z = 0 = 0Z/3). Thus, by Theorem 2.9.5 (applied to
R = Z, I = 6Z, S = Z/3 and f = π3), we see that the map

π′
3 : Z/6 → Z/3,

r 7→ π3 (r) (that is, r + 6Z 7→ r + 3Z) (15)

is well-defined and is a ring morphism. Explicitly, this morphism π′
3

sends48

the modulo-6 residue classes 0, 1, 2, 3, 4, 5

to the modulo-3 residue classes 0, 1, 2, 3, 4, 5.

In other words, it sends

the modulo-6 residue classes 0, 1, 2, 3, 4, 5

to the modulo-3 residue classes 0, 1, 2, 0, 1, 2

(because in Z/3, we have 3 = 0 and 4 = 1 and 5 = 2). If you don’t
believe in Theorem 2.9.5 yet, you can easily check by hand that this is a
ring morphism.

More generally, if n and m are two integers such that m | n, then the map

Z/n → Z/m,
r 7→ r (that is, r + nZ 7→ r + mZ) (16)

is well-defined and is a ring morphism. This follows from Theorem 2.9.5,
applied to R = Z, I = nZ, S = Z/m and f = πm (the canonical projection
from Z to Z/m), because the condition m | n yields πm (nZ) = 0. The
morphism (16) can be regarded as reducing a modulo-n residue class
“further” to a modulo-m residue class.

Incidentally, this accounts for all ring morphisms that go between two
quotient rings of Z. That is:

– If m and n are two integers such that m | n, then there is only one
ring morphism Z/n → Z/m, and it is the morphism (16).

48A “modulo-6 residue class” r means the residue class r + 6Z, whereas a “modulo-3 residue
class” r means the residue class r + 3Z.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 96

– If m and n are two integers such that m ∤ n, then there is no ring
morphism Z/n → Z/m.

Proving this is a nice (and easy) exercise (Exercise 2.9.11).

Let us now prove the universal property of quotient rings:

Proof of Theorem 2.9.5. We must prove the following two facts:

1. The map

f ′ : R/I → S,
r 7→ f (r) (for all r ∈ R)

is well-defined – i.e., the value f (r) depends only on the residue class r
but not on the specific choice of r. (This will ensure that its definition does
not give two conflicting output values f ′ (x) for one and the same residue
class x ∈ R/I, which would spell doom for the map f ′.)

2. The map f ′ is a ring morphism.

Let us prove Fact 1 first. So let r, r′ ∈ R be such that r = r′. We must show
that f (r) = f (r′).

We do what we can: From r = r′, we obtain r − r′ ∈ I, so that f (r − r′) = 0
because f (I) = 0. However, f is a ring morphism and thus respects differences;
hence, f (r − r′) = f (r) − f (r′). Thus, f (r) − f (r′) = f (r − r′) = 0, so that
f (r) = f (r′). This proves Fact 1.

Let us now prove Fact 2. We need to show that f ′ is a ring morphism. There
are four axioms to check, but we shall only show one of them (since the proofs
of the other three axioms follow the same mold). Namely, we shall show that
f ′ respects multiplication.

So let a, b ∈ R/I. We must show that f ′ (ab) = f ′ (a) · f ′ (b).
Write the residue classes a, b ∈ R/I as a = r and b = s for some r, s ∈ R.

Then, ab = r · s = rs by the formula (11). Hence, f ′ (ab) = f ′ (rs) = f (rs) (by
the definition of f ′). On the other hand, a = r and thus f ′ (a) = f ′ (r) = f (r)
(by the definition of f ′). Similarly, f ′ (b) = f (s). Thus,

f ′ (ab) = f (rs) = f (r)︸︷︷︸
= f ′(a)

· f (s)︸︷︷︸
= f ′(b)

(since f is a ring morphism)

= f ′ (a) · f ′ (b) ,

which is precisely what we wanted to prove. Thus, Fact 2 is proved as well.
So we have shown that our map f ′ : R/I → S is well-defined and is a ring

morphism. Thus, Theorem 2.9.5 is proven.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 97

As we said, the universal property of quotient rings provides a comfortable
way to construct ring morphisms out of a quotient ring R/I. The following
exercises provide some examples of this:

Exercise 2.9.8. Consider the quotient ring Q3≤3/Q3<<3 studied in Subsection 2.9.3.

(a) Prove that the map

f : Q3≤3 → Q2×2, a b c
0 d e
0 0 g

 7→
(

a b
0 d

)

is a ring morphism.

(b) Prove that this morphism f satisfies f
(
Q3<<3) = 0.

(c) Use Theorem 2.9.5 to conclude that there is a ring morphism

f ′ : Q3≤3/Q3<<3 → Q2×2, a b ?
0 d e
0 0 g

 7→
(

a b
0 d

)
,

where the question mark stands for an undetermined entry (as explained in
Subsection 2.9.3).

(d) Use a similar reasoning to prove the existence of a ring morphism

F′ : Q3≤3/Q3<<3 → Q4×4, a b ?
0 d e
0 0 g

 7→


a b 0 0
0 d 0 0
0 0 d e
0 0 0 g

 ,

which is furthermore injective.

(e) Conclude that the ring Q3≤3/Q3<<3 is isomorphic to a subring of Q4×4.

Exercise 2.9.9. Solve parts (a) and (b) of Exercise 2.9.4 again using the universal
property of quotient rings. (This should be much quicker than the original solu-
tions.)

Exercise 2.9.10. For every integer m, define a subring Rm of Q as in Exercise 2.3.2.
Consider the quotient ring R2/3R2.
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(a) Prove that the map

f2 : Z → R2/3R2,
r 7→ r

is a ring morphism that satisfies f2 (3Z) = 0.

(b) Use the universal property of quotient rings to obtain a ring morphism

f ′2 : Z/3 → R2/3R2,
r 7→ r.

(c) Show that this morphism f ′2 is injective.

(d) Show that this morphism f ′2 is surjective.

(e) Conclude that Z/3Z ∼= R2/3R2 as rings.

(f) More generally, let m and n be two coprime integers. Show that there is a ring
isomorphism

Z/n → Rm/nRm,
r 7→ r.

[Hint: Parts (a) and (b) are almost automatic. Part (c) requires showing that an
integer r that is not divisible by 3 cannot lie in 3R2 either. Argue this using the
coprimality of 2 and 3. Part (d) boils down to showing that the map f ′2 takes 1/2 as
a value (why?), but this is easy (why?). Part (f) requires generalizing the previous
parts, using some properties of coprime integers that we have seen before.]

We have also promised another exercise:

Exercise 2.9.11. Let m and n be two integers. Prove the following:

(a) If m | n, then there is only one ring morphism Z/n → Z/m, and it is the
morphism (16).

(b) If m ∤ n, then there is no ring morphism Z/n → Z/m.

[Hint: For part (a), show that every ring morphism g : Z/n → Z/m must satisfy
g (r) = r for each r ∈ N, since r = r · 1Z/n = 1Z/n + 1Z/n + · · ·+ 1Z/n︸ ︷︷ ︸

r times

. For part (b),

argue that the existence of a ring morphism g : Z/n → Z/m forces n · 1Z/m = 0
because n · 1Z/n = 0.]
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2.9.6. The universal property of quotient rings: abstract form

For various reasons, it is helpful to have an alternative formulation of Theo-
rem 2.9.5, which does not refer to specific elements r but instead “implicitly”
describes the morphism f ′ by an equality:

Theorem 2.9.6 (Universal property of quotient rings, abstract form). Let R be
a ring. Let I be an ideal of R. Consider the canonical projection π : R → R/I
(as defined in Theorem 2.9.3).

Let S be a ring. Let f : R → S be a ring morphism. Assume that f (I) = 0
(this is shorthand for saying that f (a) = 0 for all a ∈ I). Then, there is a
unique ring morphism f ′ : R/I → S satisfying f = f ′ ◦ π.

Proof. Theorem 2.9.5 shows that there is a unique ring morphism f ′ : R/I → S
that satisfies

f ′ (r) = f (r) for all r ∈ R. (17)

(Indeed, the equality (17) clearly characterizes f ′ uniquely, since every element
of R/I can be written as r for some r ∈ R. What Theorem 2.9.5 gives us is the
existence of such a morphism f ′.)

We shall now prove that the equality f = f ′ ◦ π is just an equivalent restate-
ment of the condition (17).

Indeed, we have the following chain of equivalences:(
f = f ′ ◦ π

)
⇐⇒

(
f (r) =

(
f ′ ◦ π

)
(r) for all r ∈ R

)  since two maps are equal
if and only if they

agree on each input


⇐⇒

(
f (r) = f ′ (π (r)) for all r ∈ R

) (
since

(
f ′ ◦ π

)
(r) = f ′ (π (r)) for each r

)
⇐⇒

(
f (r) = f ′ (r) for all r ∈ R

)
(since π (r) = r for each r)

⇐⇒
(

f ′ (r) = f (r) for all r ∈ R
)

.

In other words, the equality f = f ′ ◦ π is equivalent to the condition (17).
Now, recall that there is a unique ring morphism f ′ : R/I → S that satisfies

the condition (17). In view of the previous sentence, we can reformulate this as
follows: There is a unique ring morphism f ′ : R/I → S that satisfies f = f ′ ◦ π.
This proves Theorem 2.9.6.

For example:

• We can recover the ring morphism π′
3 : Z/6 → Z/3 constructed in (15)

using Theorem 2.9.6 instead of Theorem 2.9.5. Indeed, applying Theorem
2.9.6 to R = Z, I = 6Z, π = π6, S = Z/3 and f = π3, we see that there is
a unique ring morphism π′

3 : Z/6 → Z/3 such that π3 = π′
3 ◦ π6 (since

π3 (6Z) = 0). This morphism π′
3 is, of course, the same as the one in (15),

since the equality π3 = π′
3 ◦ π6 says precisely that each integer r satisfies

π3 (r) = π′
3 (π6 (r)), that is, r = π′

3 (r).
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A few more remarks are in order.
The equality f = f ′ ◦ π in Theorem 2.9.6 is oftentimes restated as follows:

The diagram
R

π
��

f

&&R/I
f ′

// S

(18)

commutes. Let me explain what this means: In general, a diagram is a bunch
of sets and a bunch of maps between them, drawn as nodes and arrows. (Each
set is drawn as a node, and each map g : A → B is drawn as an arrow from
the A-node to the B-node.) For instance, the diagram (18) shows the three sets
R, R/I and S and the three maps π, f and f ′. A diagram is said to commute
(or be commutative) if any two ways of going between two nodes yield the
same composed map. In the diagram (18), there are two ways of going from
the R-node to the S-node: one direct way (which just uses the f -arrow), and
one indirect way via the R/I-mode (using the π-arrow and the f ′-arrow). The
corresponding composed maps are f (for the direct way) and f ′ ◦ π (for the
indirect way). This is the only pair of two different ways that go between the
same two nodes in the diagram (18); thus, the diagram commutes if and only
if f = f ′ ◦ π.

Note that we have drawn the map f ′ as a dashed arrow in (18), since this
is the map whose existence is claimed, whereas the other two maps are given
and thus drawn as regular arrows. This is a common convention and helps you
distinguish the things you have from the things you are trying to construct.

In general, diagrams are a good way to visualize situations in which there
are several maps going between the same sets. For example, here is a diagram
that shows the rings Z, Z/12, Z/6, Z/4, Z/3, Z/2 and Z/1 (the latter ring is
trivial) as well as various morphisms between them:

Z

��

��

++

��

��

Z/12

zz ��

��

Z/4

��

Z/6

zz $$

��

Z/2

$$

Z/3

zz

Z/1

.

In this diagram, all arrows coming out of the Z-node are canonical projections
Z → Z/n (sending each r ∈ Z to r ∈ Z/n), whereas all the other arrows



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 101

are instances of the morphisms (16) constructed above. Note that we have not
drawn all possible morphisms (e.g., the morphism Z/4 → Z/1 is missing)
to avoid crowding the diagram. This diagram commutes, since each of the
arrows sends each residue class r (or, in the case of Z, each integer r) to the
corresponding residue class r modulo the respective number.

Commutative diagrams become increasingly useful as you go deeper into al-
gebra (and become ubiquitous when you get to category theory or homological
algebra). For us here, they are just convenient visual and mnemonic devices.

2.9.7. Injectivity means zero kernel

Next comes another useful result: a characterization of injectivity in terms of
kernels.

Lemma 2.9.7. Let R and S be two rings. Let f : R → S be a ring morphism.
Then, f is injective if and only if Ker f = {0R}.

Proof. You probably have seen the analogous results for groups or vector spaces.
If so, then you can just recall the analogous result for groups, and apply it to
the additive groups (R,+, 0) and (S,+, 0) (since the ring morphism f is clearly
a group morphism from (R,+, 0) to (S,+, 0)).

If not, here is the proof:
=⇒: Assume that f is injective. Then, each x ∈ Ker f satisfies f (x) = 0S =

f (0R) (since f is a ring morphism) and thus x = 0R because f is injective. In
other words, Ker f ⊆ {0R}. But this entails Ker f = {0R} (since 0R always lies
in Ker f ). This proves the “=⇒” direction of Lemma 2.9.7.
⇐=: Assume that Ker f = {0R}. Now, f is a ring morphism and thus respects

differences. Hence, if a, b ∈ R satisfy f (a) = f (b), then f (a − b) = f (a) −
f (b) = 0 (since f (a) = f (b)) and therefore a − b ∈ Ker f = {0R}, so that
a − b = 0 and thus a = b. But this means that f is injective. This proves the
“⇐=” direction of Lemma 2.9.7, and thus completes the proof of the lemma.

2.9.8. The First Isomorphism Theorem for sets

We now approach another important property of quotient rings: the so-called
“first isomorphism theorem”.

We begin with some basic set theory.
Consider a map f : R → S from some set R to some set S. Then, I claim that

there is a bijection49 hiding inside f .
What do I mean by this?

49“Bijection” means the same as “bijective map” (i.e., a map that is both injective and surjective)
and as “1-to-1 correspondence”. Also, it is worth recalling that a map is bijective if and only
if it is invertible (i.e., has an inverse).
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For an example, let R = {1, 2, 3, 4, 5} and S = {1, 2, 3, 4}, and let f : R → S be
the map that sends 1, 2, 3, 4, 5 to 2, 4, 2, 1, 1, respectively. Here is an illustration
of this map using a standard “blobs and arrows” diagram:

1

2

3

4

5

R

1

2

3

4

S

f

.

As you see, this map f is neither injective nor surjective, thus certainly not bi-
jective. However, I claim that I can make it bijective, by appropriately tweaking
its domain R and its target S as well as the map f itself. Namely:

• First, I make f surjective. To do so, I replace the target50 S by the image
f (R) = { f (r) | r ∈ R} of the map f . This way, I throw away all elements
of S that are not taken as values by the map f . The resulting map

f̃ : R → f (R) ,
r 7→ f (r)

(which differs from f only in its choice of target) is thus surjective.

• Next, I make f (or, more precisely, f̃ ) injective. To do so, I equate every
pair of elements a, b ∈ R that satisfy f (a) = f (b). The rigorous way
to do so is to replace the elements of R by their equivalence classes with
respect to an appropriately chosen equivalence relation. To wit: We define
a binary relation ∼ on the set R by stipulating that two elements a, b ∈ R
should satisfy a ∼ b if and only if f (a) = f (b). This relation ∼ is an
equivalence relation51, and its equivalence classes will be called f -classes.
We will use the notation r for the f -class that contains a given element
r ∈ R. We let R/ f denote the set of all f -classes.

50If g : U → V is a map from a set U to a set V, then V is called the target (or codomain) of g.
51For example, it is transitive because if three elements a, b, c ∈ R satisfy f (a) = f (b) and

f (b) = f (c), then f (a) = f (b).



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 103

Now, consider the map

f ′ : R/ f → f (R) ,
r 7→ f (r) ,

which sends each f -class r to the value f (r). This map f ′ is well-defined,
since f (r) depends not on the element r but only on its f -class r (because
if two elements a, b ∈ R/ f have the same f -class, then a ∼ b and thus
f (a) = f (b) by the very definition of f ).

Just like f̃ , the map f ′ is surjective (since every element of its target f (R)
is taken as a value by f , and thus also by f ′). But f ′ is also injective,
since any two elements a, b of R that satisfy f (a) = f (b) have already
been merged into the same f -class in R/ f . Thus, f ′ is both injective and
surjective, hence bijective.

We might call f ′ the bijectivization of f (although there does not seems to
be a standard name for f ′). In our above example, this map f ′ looks as follows:

{1, 3}

{2}

{4, 5}

R/ f

1

2

4

f (R)

f ′

.

Moreover, the maps f and f ′ fit together into a nice picture with two other
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rather natural maps:

{1, 3}

{2}

{4, 5}

R/ f

1

2

4

f (R)

1

2

3

4

5

R

1

2

3

4

S

π ι

f

f ′

.

Here, π : R → R/ f is the canonical projection (i.e., the map that sends each
r ∈ R to its f -class r), and ι : f (R) → S is the canonical inclusion (i.e., the map
that sends each s ∈ f (R) to s). These four maps f , f ′, π, ι satisfy

f = ι ◦ f ′ ◦ π,

which means (in the language of Subsection 2.9.6) that the diagram

R

π
��

f
// S

R/ f
f ′

// f (R)

ι

OO

is commutative.
For the sake of completeness, let us state this all as a theorem:
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Theorem 2.9.8 (First Isomorphism Theorem for sets). Let R and S be any two
sets, and let f : R → S be any map.

Let ∼ be the binary relation on the set R defined by requiring that two
elements a, b ∈ R satisfy a ∼ b if and only if f (a) = f (b).

(a) This relation ∼ is an equivalence relation.

Let us refer to the equivalence classes of this equivalence relation ∼ as the
f -classes. Let R/ f denote the set of all f -classes. For any r ∈ R, we let r
denote the f -class that contains r.

(b) The image f (R) := { f (r) | r ∈ R} of f is a subset of S.

(c) The map

f ′ : R/ f → f (R) ,
r 7→ f (r)

is well-defined and bijective.

(d) Let π : R → R/ f denote the canonical projection (i.e., the map that
sends each r ∈ R to its f -class r). Let ι : f (R) → S denote the canonical
inclusion (i.e., the map that sends each s ∈ f (R) to s). Then, the map
f ′ defined in part (c) satisfies

f = ι ◦ f ′ ◦ π.

In other words, the diagram

R

π
��

f
// S

R/ f
f ′

// f (R)

ι

OO (19)

is commutative.

Proof. Part (b) is obvious. We explained the proofs of parts (a) and (c) before
even stating this theorem. Just for the sake of completeness, we shall now
repeat the proof of part (c), and then prove part (d):

(c) If a, b ∈ R are two elements satisfying a = b, then f (a) = f (b) 52. In
other words, for any element r ∈ R, the value f (r) depends only on the f -class

52Proof. Let a, b ∈ R be two elements satisfying a = b. The equality a = b shows that a and b
belong to the same f -class (since a denotes the f -class that contains a, whereas b denotes the
f -class that contains b). In other words, a and b belong to the same equivalence class of the
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r and not on r itself. Hence, the map

f ′ : R/ f → f (R) ,
r 7→ f (r)

is well-defined (since each element of R/ f can be written as r for some r ∈ R).
It remains to prove that this map is bijective. To that purpose, we shall now
prove that it is injective and surjective.

Injectivity: Let x, y ∈ R/ f be two elements of R/ f satisfying f ′ (x) = f ′ (y).
We shall prove that x = y.

We know that x is an element of R/ f . In other words, x is an f -class (since
R/ f is the set of all f -classes). Thus, we can write x in the form x = a for some
a ∈ R. Likewise, we can write y in the form y = b for some b ∈ R. Consider
these a and b.

From x = a, we obtain f ′ (x) = f ′ (a) = f (a) (by the definition of f ′). Sim-
ilarly, f ′ (y) = f (b) (since y = b). Hence, f (a) = f ′ (x) = f ′ (y) = f (b). In
other words, a ∼ b (by the definition of the relation ∼). In other words, a and
b belong to the same equivalence class of the equivalence relation ∼. In other
words, a and b belong to the same f -class (since the f -classes are the equiv-
alence classes of this equivalence relation ∼). In other words, a = b (since a
denotes the f -class that contains a, whereas b denotes the f -class that contains
b). In other words, x = y (since x = a and y = b).

Forget that we fixed x and y. We thus have shown that if x, y ∈ R/ f are two
elements of R/ f satisfying f ′ (x) = f ′ (y), then x = y. In other words, the map
f ′ is injective.

Surjectivity: Let z ∈ f (R). Thus, z = f (r) for some r ∈ R. Now, the f -class
r ∈ R/ f satisfies f ′ (r) = f (r) (by the definition of f ′). Comparing this with
z = f (r), we obtain z = f ′ (r). This shows that the map f ′ takes z as a value.

Forget that we fixed z. We thus have shown that the map f ′ takes each
z ∈ f (R) as a value. In other words, the map f ′ is surjective.

We now have proved that f ′ is injective and surjective. Thus, f ′ is bijective,
and the proof of Theorem 2.9.8 (c) is complete.

(d) For each r ∈ R, we have(
ι ◦ f ′ ◦ π

)
(r)

= ι
(

f ′ (π (r))
)

= f ′ (π (r)) (since the definition of ι yields ι (s) = s for each s ∈ f (R))
= f ′ (r) (since the definition of π yields π (r) = r)
= f (r)

(
by the definition of f ′

)
.

In other words, ι ◦ f ′ ◦ π = f . Thus, f = ι ◦ f ′ ◦ π. In other words, the diagram
(19) is commutative. This proves Theorem 2.9.8 (d).

equivalence relation ∼ (since the f -classes are the equivalence classes of this equivalence
relation ∼). In other words, a ∼ b. In other words, f (a) = f (b) (by the definition of the
relation ∼).
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2.9.9. The First Isomorphism Theorem for rings

Now, let us extend the First Isomorphism Theorem to rings and ring morphisms
instead of arbitrary sets and maps.

Theorem 2.9.9 (First Isomorphism Theorem for rings, elementwise form).
Let R and S be two rings, and let f : R → S be a ring morphism. Then:

(a) The kernel Ker f is an ideal of R. Thus, R/ Ker f is a quotient ring of
R. As a set, R/ Ker f is precisely the set R/ f defined in Theorem 2.9.8.
The f -classes (as defined in Theorem 2.9.8) are precisely the cosets of
Ker f .

(b) The image f (R) := { f (r) | r ∈ R} of f is a subring of S.

(c) The map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and is a ring isomorphism.

(d) This map f ′ is precisely the map f ′ defined in Theorem 2.9.8 (c).

(e) Let π : R → R/ Ker f denote the canonical projection (i.e., the map
that sends each r ∈ R to its coset r). Let ι : f (R) → S denote the
canonical inclusion (i.e., the map that sends each s ∈ f (R) to s). Then,
the map f ′ defined in part (c) satisfies

f = ι ◦ f ′ ◦ π.

In other words, the diagram

R

π
��

f
// S

R/ Ker f
f ′

// f (R)

ι

OO (20)

is commutative.

(f) We have R/ Ker f ∼= f (R) as rings.

Proof. (a) We know that Ker f is an ideal of R (by Theorem 2.8.4), and therefore
R/ Ker f is a quotient ring of R.

Let us next prove that the f -classes (as defined in Theorem 2.9.8) are precisely
the cosets of Ker f .
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Indeed, let ∼ be the equivalence relation on R defined in Theorem 2.9.8.
Then, the f -classes are defined as the equivalence classes of this relation ∼. For
any a, b ∈ R, we have f (b)− f (a) = f (b − a) (since f is a ring morphism and
thus respects differences). For any two elements a, b ∈ R, we have the chain of
equivalences

(a ∼ b)
⇐⇒ ( f (a) = f (b)) (by the definition of ∼)

⇐⇒ ( f (b)− f (a) = 0)
⇐⇒ ( f (b − a) = 0) (since f (b)− f (a) = f (b − a))
⇐⇒ (b − a ∈ Ker f ) (by the definition of Ker f ) .

However, if a ∈ R is arbitrary, then

(the f -class that contains a)
= (the equivalence class of the relation ∼ that contains a)

(since the f -classes are the equivalence classes of ∼)

= {b ∈ R | a ∼ b} (by the definition of equivalence classes)
= {b ∈ R | b − a ∈ Ker f }(

by the equivalence (a ∼ b) ⇐⇒ (b − a ∈ Ker f )
that we proved above

)
= {b ∈ R | b ∈ a + Ker f }
= a + Ker f
= (the coset of Ker f that contains a)

(since the coset of Ker f that contains a is a + Ker f by definition). Thus, the
f -classes are precisely the cosets of Ker f .

In other words, the cosets of Ker f are precisely the f -classes. Hence, the set
R/ Ker f is precisely the set R/ f (since the former set consists of the cosets of
Ker f , while the latter set consists of the f -classes). This concludes the proof of
Theorem 2.9.9 (a).

(b) This is just Proposition 2.7.6.

(c) Theorem 2.9.9 (a) yields that R/ f = R/ Ker f , and that the f -classes are
precisely the cosets of Ker f . Hence, the meaning of the notation r in Theorem
2.9.8 is identical with the meaning of this notation in Theorem 2.9.9 (indeed,
the former denotes the f -class that contains r, whereas the latter denotes the
coset of Ker f that contains r; but as we just said, the f -classes are precisely the
cosets of Ker f ). Hence, Theorem 2.9.8 (c) shows that the map

f ′ : R/ f → f (R) ,
r 7→ f (r)
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is well-defined and bijective. Since R/ f = R/ Ker f (as sets), we can restate this
as follows: The map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and bijective. It remains to prove that this map f ′ is a ring
isomorphism.

We shall first show that f ′ is a ring morphism. Indeed, this is an easy conse-
quence of Theorem 2.9.5 (applied to I = Ker f ), since we have f (Ker f ) = 0 (by
the definition of Ker f ). Alternatively, we can prove this by hand as follows:

We must show that f ′ is a ring morphism, i.e., that f ′ respects addition,
multiplication, zero and unity.

To see that f ′ respects multiplication, we must show that f ′ (xy) = f ′ (x) ·
f ′ (y) for any x, y ∈ R/ Ker f . So let x, y ∈ R/ Ker f be arbitrary. Then, we can
write x and y as x = a and y = b for two elements a, b ∈ R. Consider these
a, b. From x = a and y = b, we obtain xy = a · b = ab (by the definition of the
product on R/ Ker f ), so that

f ′ (xy) = f ′
(

ab
)
= f (ab)

(
by the definition of f ′

)
= f (a) · f (b) (since f is a ring morphism) .

Comparing this with

f ′

 x︸︷︷︸
=a

 · f ′

 y︸︷︷︸
=b

 = f ′ (a)︸ ︷︷ ︸
= f (a)
(by the

definition of f ′)

· f ′
(

b
)

︸ ︷︷ ︸
= f (b)
(by the

definition of f ′)

= f (a) · f (b) ,

we obtain f ′ (xy) = f ′ (x) · f ′ (y), just as desired. Thus, we have shown that
f ′ respects multiplication. Similarly, f ′ satisfies all the other axioms in the
definition of a ring morphism.

Thus, we know that f ′ is a ring morphism. Since f ′ is also invertible (because
f ′ is bijective), we conclude that f ′ is an invertible ring morphism. Thus, f ′

is a ring isomorphism (since Proposition 2.7.7 shows that any invertible ring
morphism is a ring isomorphism). Thus, the proof of Theorem 2.9.9 (c) is
finished.

(d) As we have seen in our above proof of Theorem 2.9.9 (c), we have R/ f =
R/ Ker f , and the meaning of the notation r in Theorem 2.9.8 is identical with
the meaning of this notation in Theorem 2.9.9. Thus, the map f ′ in Theorem
2.9.9 (c) is precisely the map f ′ defined in Theorem 2.9.8 (c). This proves Theo-
rem 2.9.9 (d).
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(e) As we have seen in our above proof of Theorem 2.9.9 (c), we have R/ f =
R/ Ker f , and the meaning of the notation r in Theorem 2.9.8 is identical with
the meaning of this notation in Theorem 2.9.9. Therefore, the maps π and ι
defined in Theorem 2.9.9 (e) are precisely the maps π and ι in Theorem 2.9.8
(e). Hence, the claim of Theorem 2.9.9 (e) follows immediately from Theorem
2.9.8 (e) (since R/ f = R/ Ker f ).

(f) This follows directly from Theorem 2.9.9 (c).

As our proof has shown, Theorem 2.9.9 (c) is merely a partial improvement
on the universal property of quotient rings (Theorem 2.9.5): The latter yields a
ring morphism, while the former produces a ring isomorphism (but in a less
general setup: R/ Ker f instead of R/I). Nevertheless, it is a useful result, as it
can be used to identify certain quotient rings as (isomorphic copies of) known
rings.

Here are some examples for what can be done with the first isomorphism
theorem:

• Consider the map53

f : Q4≤4 → Q2≤2,
a b c d
0 u v w
0 0 x y
0 0 0 z

 7→
(

u v
0 x

)
,

which removes the “outer shell” (i.e., the first and the fourth rows and
columns) from an upper-triangular 4 × 4-matrix. This map f is a ring
morphism54.

53See Subsection 2.3.2 for the meaning of the notation Qn≤n (and, more generally, Rn≤n when
R is any ring).

54Proving this is a nice exercise in matrix multiplication! It is obvious that f respects addition,
zero and unity, but you might be skeptical that it respects multiplication. (And indeed, the
analogous map

F : Q4×4 → Q2×2,
a b c d
a′ b′ c′ d′

a′′ b′′ c′′ d′′

a′′′ b′′′ c′′′ d′′′

 7→
(

b′ c′

b′′ c′′

)
,

which removes the “outer shell” from an arbitrary (not upper-triangular) 4× 4-matrix, does
not respect multiplication.) You can convince yourself of this property of f by a straightfor-
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The kernel of this morphism f is

Ker f =




a b c d
0 u v w
0 0 x y
0 0 0 z

 ∈ Q4≤4 |
(

u v
0 x

)
= 0


=




a b c d
0 u v w
0 0 x y
0 0 0 z

 ∈ Q4≤4 | u = v = x = 0


=




a b c d
0 0 0 w
0 0 0 y
0 0 0 z

 ∈ Q4≤4

 .

So you can conclude right away that Ker f is an ideal of Q4≤4. Moreover,
the image f

(
Q4≤4) is the whole Q2≤2 (that is, the map f is surjective).

The First Isomorphism theorem (Theorem 2.9.9 (c)) yields a ring isomor-
phism

f ′ : Q4≤4/ Ker f → f
(

Q4≤4
)

,

r 7→ f (r) .

In other words, it yields a ring isomorphism

f ′ : Q4≤4/ Ker f → Q2≤2,
a b c d
0 u v w
0 0 x y
0 0 0 z

 7→
(

u v
0 x

)

(since f
(
Q4≤4) = Q2≤2). In particular, Q4≤4/ Ker f ∼= Q2≤2.

ward computation:
a b c d
0 u v w
0 0 x y
0 0 0 z




a′ b′ c′ d′

0 u′ v′ w′

0 0 x′ y′

0 0 0 z′

 =


aa′ ab′ + bu′ ac′ + bv′ + cx′ ad′ + bw′ + cy′ + dz′

0 uu′ uv′ + vx′ uw′ + vy′ + wz′

0 0 xx′ xy′ + yz′

0 0 0 zz′


(note the uu′, uv′ + vx′, 0 and xx′ entries, which are precisely the entries of(

u v
0 x

)(
u′ v′

0 x′

)
).
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• We have not properly defined polynomials yet, but once we will, you will
be inundated with good examples for the First Isomorphism Theorem.
Many of these examples will have the form

(a polynomial ring) / (an ideal) ∼= (a ring of numbers) .

For instance, recalling that R [x] is the ring of all polynomials in one in-
determinate x with real coefficients, we have a ring morphism

f : R [x] → C,
p 7→ p (i)

(which sends each polynomial p ∈ R [x] to its value at the imaginary unit
i =

√
−1). This morphism is surjective (that is, f (R [x]) = C) and has

kernel Ker f =
(
x2 + 1

)
R [x] (the principal ideal generated by x2 + 1), so

that the First Isomorphism theorem (Theorem 2.9.9 (f)) yields

R [x] /
((

x2 + 1
)

R [x]
)
∼= C.

Informally, this is saying that if you are working with polynomials in
an indeterminate x over R, but you equate the polynomial x2 + 1 to zero
(that is, you pretend that x2 = −1), then you obtain the complex numbers.
This is the rigorous concept behind the classical idea that “the complex
numbers are what you get if you start with the real numbers and adjoin
a root of the polynomial x2 + 1”. We will make this precise in a later
chapter.

2.9.10. A few remarks on the first isomorphism theorem

Theorem 2.9.9 (specifically, its parts (c) and (e)) is commonly called the first
isomorphism theorem for rings, and is one of the major sources of ring iso-
morphisms in some parts of abstract algebra. Due to its importance, a few more
comments on it are worth making.

The commutative diagram (20) in Theorem 2.9.9 (e) can be rewritten in a
somewhat more expressive form:

R

π

## ##

f
// S

R/ Ker f
∼=
f ′

// f (R)
. �

ι

== .

Let me explain what you are seeing here: On top is the original ring morphism
f : R → S. The other four arrows are
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• the canonical projection π : R → R/ Ker f , sending each r ∈ R to its
residue class r = r + Ker f ∈ R/ Ker f ;

• the canonical inclusion ι : f (R) → S (which just sends each element to
itself);

• the morphism f ′ : R/ Ker f → f (R) claimed by Theorem 2.9.9 (c).

The special shapes of the arrows signify certain properties:

• An arrow of shape ↪→ stands for an injective map. (And indeed, the
canonical inclusion ι : f (R) → S is injective.)

• An arrow of shape ↠ stands for a surjective map. (And indeed, the canon-
ical projection π is surjective.)

• An arrow with a ∼= sign above (or below) it stands for an isomorphism.
(And indeed, our f ′ is an isomorphism.)

Note that all four arrows in our diagram are ring morphisms; we thus say
that our diagram is a diagram of rings.

Thus, the first isomorphism theorem for rings shows that each ring mor-
phism can be decomposed (in a natural way) into a composition of a surjective
ring morphism, a ring isomorphism and an injective ring morphism.

In Theorem 2.9.9 (c), we have defined our isomorphism f ′ explicitly. Alter-
natively, it can be characterized (uniquely) by the equation f = ι ◦ f ′ ◦ π stated
in Theorem 2.9.9 (e):

Theorem 2.9.10 (First isomorphism theorem for rings, abstract form). Let R
and S be two rings. Let f : R → S be a ring morphism. Recall that Ker f is
an ideal of R, and that Im f = f (R) is a subring of S. Then:

(a) There is a unique ring morphism f ′ : R/ Ker f → f (R) that satisfies
the equation f = ι ◦ f ′ ◦ π (that is, for which the diagram (20) is com-
mutative).

(b) This morphism f ′ is a ring isomorphism:

Proof. (a) Theorem 2.9.9 (e) shows that the ring isomorphism f ′ : R/ Ker f →
f (R) constructed in Theorem 2.9.9 (c) satisfies the equation f = ι ◦ f ′ ◦ π.
Hence, there exists at least one ring morphism f ′ : R/ Ker f → f (R) that
satisfies the equation f = ι ◦ f ′ ◦ π (namely, the isomorphism f ′ we were just
talking about). It thus remains to prove that this morphism f ′ is unique.
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To show this, we consider an arbitrary ring morphism f ′ : R/ Ker f → f (R)
that satisfies the equation f = ι ◦ f ′ ◦ π. Then, for any r ∈ R, we have

f (r) =
(
ι ◦ f ′ ◦ π

)
(r)

(
since f = ι ◦ f ′ ◦ π

)
= ι
(

f ′ (π (r))
)

= f ′ (π (r)) (since the definition of ι yields ι (s) = s for each s ∈ S)
= f ′ (r) (since the definition of π yields π (r) = r)

and thus f ′ (r) = f (r). Thus, f ′ must be the map

R/ Ker f → f (R) ,
r 7→ f (r) ,

which has been called f ′ in Theorem 2.9.9 (c). In particular, there is only one
option for f ′. Thus, we have shown that f ′ is unique, and the proof of Theorem
2.9.10 (a) is complete.

(b) As we explained above, the unique ring morphism f ′ : R/ Ker f → f (R)
that satisfies the equation f = ι ◦ f ′ ◦ π is precisely the map that was called f ′

in Theorem 2.9.9 (c). But the latter map is a ring isomorphism (by Theorem
2.9.9 (c)). Hence, Theorem 2.9.10 (b) follows.

There are also second, third and fourth isomorphism theorems. You will
meet them in Section 2.17.

2.10. Direct products of rings ([DumFoo04, §7.6])

2.10.1. Direct products of two rings

Here is a way of building new rings from old55:

Proposition 2.10.1. Let R and S be two rings. Then, the Cartesian product

R × S = {all pairs (r, s) with r ∈ R and s ∈ S}

becomes a ring if we endow it with the entrywise addition and multiplica-
tion operations (i.e., addition defined by (r, s) + (r′, s′) = (r + r′, s + s′), and
multiplication defined by (r, s) · (r′, s′) = (rr′, ss′)) and the zero (0R, 0S) and
the unity (1R, 1S).

Definition 2.10.2. This ring is denoted by R× S and is called the direct prod-
uct of R and S.

55There are several other such ways. We will see a few in this course.
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Proof of Proposition 2.10.1. We must check that the ring axioms are satisfied for
R × S. Each one is straightforward to verify. For example, in order to check the
associativity of multiplication, we need to check that

(r, s)
((

r′, s′
) (

r′′, s′′
))

=
(
(r, s)

(
r′, s′

)) (
r′′, s′′

)
for all (r, s) ,

(
r′, s′

)
,
(
r′′, s′′

)
∈ R × S

(because any element of R × S is a pair). We can do this by computing both
sides and comparing: We have

(r, s)
((

r′, s′
) (

r′′, s′′
))

= (r, s)
(
r′r′′, s′s′′

)
=
(
r
(
r′r′′

)
, s
(
s′s′′

))
and(

(r, s)
(
r′, s′

)) (
r′′, s′′

)
=
(
rr′, ss′

) (
r′′, s′′

)
=
((

rr′
)

r′′,
(
ss′
)

s′′
)

.

The right hand sides of these two equalities are equal, since r (r′r′′) = (rr′) r′′

and s (s′s′′) = (ss′) s′′. Thus, the left hand sides are equal as well; this proves
the associativity of multiplication. All other ring axioms follow similarly.

2.10.2. Direct products of any number of rings

More generally, we can define the direct product R1 × R2 × · · · × Rn of any
number of rings in the same way (but using n-tuples instead of pairs). Even
more generally, we can define the direct product ∏

i∈I
Ri of any family of rings

(including infinite families).
To do so, we recall the notion of a “family”:
A family is a collection of objects (the “entries” of the family) indexed by the

elements of a given set I (the “indexing set”). To be more specific: A family
indexed by a set I means a way of assigning some object xi to each element
i ∈ I. This family is denoted by (xi)i∈I (pronounced “the family consisting of
xi for each i ∈ I”), and the set I is called its indexing set, whereas the objects
xi are called the entries of this family.56 Two families (xi)i∈I and (yi)i∈I are
considered to be equal if each i ∈ I satisfies xi = yi.

For example, the family (Z/n)n∈N consists of all the quotient rings Z/n of
the ring Z with n ∈ N. Its indexing set is N, and its entries are the quotient
rings Z/n. For another example, the family

(
n2)

n∈N
consists of the squares of

all nonnegative integers n. Its indexing set is N, and its entries are the squares
n2.

The notion of a family encompasses several well-known mathematical con-
cepts:

• n-tuples: If I = {1, 2, . . . , n}, then a family (xi)i∈I is the n-tuple (x1, x2, . . . , xn).

• infinite sequences: If I = N = {0, 1, 2, . . .}, then a family (xi)i∈I is the
sequence (x0, x1, x2, . . .).

56Programmers know families under the name “dictionaries” or “associative arrays” (although
the indexing set I is usually finite in any real-life programming situation).

https://en.wikipedia.org/wiki/Associative_array
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• sequences infinite on both sides: If I = Z, then a family (xi)i∈I is the
“infinite-on-both-sides sequence” (. . . , x−2, x−1, x0, x1, x2, . . .).

• maps (i.e., functions): If I and R are any two sets, then a map f : I → R
can be viewed as a family ( f (i))i∈I whose entries are the values of f .
(Fine print: The family ( f (i))i∈I does not “know” the set R, so it does not
fully represent the map f .)

Now, if (Xi)i∈I is a family of sets (i.e., if Xi is a set for each i ∈ I), then
the Cartesian product ∏

i∈I
Xi of these sets is defined to be the set of all families

(xi)i∈I that satisfy xi ∈ Xi for each i ∈ I. For instance, an element of the
Cartesian product ∏

n∈N

(Z/n) is a family (xn)n∈N, where each xn is a residue

class in the corresponding ring Z/n.
We are now ready to define the direct product ∏

i∈I
Ri of an arbitrary family of

rings:

Proposition 2.10.3. Let I be any set. Let (Ri)i∈I be a family of rings (i.e., let
Ri be a ring for each i ∈ I). Then, the Cartesian product

∏
i∈I

Ri =
{

all families (ri)i∈I with ri ∈ Ri for each i ∈ I
}

becomes a ring if we endow it with the entrywise addition and multiplica-
tion operations (i.e., addition defined by (ri)i∈I + (si)i∈I = (ri + si)i∈I , and
multiplication defined by (ri)i∈I · (si)i∈I = (risi)i∈I) and the zero

(
0Ri

)
i∈I and

the unity
(
1Ri

)
i∈I .

Definition 2.10.4. The ring defined in Proposition 2.10.3 is denoted by ∏
i∈I

Ri

and is called the direct product of the rings Ri. In some special cases, there
are alternative notations for it:

• If I = {1, 2, . . . , n} for some n ∈ N, then the ring ∏
i∈I

Ri is also de-

noted by R1 × R2 × · · · × Rn, and we identify each family (ri)i∈I =
(ri)i∈{1,2,...,n} with the n-tuple (r1, r2, . . . , rn). (Thus, the elements of
R1 × R2 × · · · × Rn are n-tuples whose entries belong to R1, R2, . . . , Rn,
respectively.) In particular, for n = 2, this recovers the definition of
R × S in Definition 2.10.2.

• If all the rings Ri are equal to some ring R, then their direct product
∏
i∈I

Ri = ∏
i∈I

R is also denoted RI . Note that this is the same notation

that we previously used for the ring of all functions from I to R (with
pointwise addition and multiplication); however, these two notations
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don’t really clash, since these two rings are the same (at least if we
identify a function f : I → R with the family ( f (i))i∈I). (Pointwise ad-
dition/multiplication of functions corresponds precisely to entrywise
addition/multiplication in the direct product ∏

i∈I
R.)

• If n ∈ N, and if R is a ring, then the ring R{1,2,...,n} = R × R × · · · × R︸ ︷︷ ︸
n times

is also called Rn.

2.10.3. Examples

Here are some examples of direct products:

• The ring Z3 = Z × Z × Z consists of all triples (r, s, t) of integers. They
are added and multiplied entrywise: i.e., we have

(r, s, t) +
(
r′, s′, t′

)
=
(
r + r′, s + s′, t + t′

)
and

(r, s, t) ·
(
r′, s′, t′

)
=
(
rr′, ss′, tt′

)
.

Note that this ring is not an integral domain, since (0, 1, 0) · (1, 0, 0) =
(0, 0, 0).

• If R, S and T are three rings, then the direct products R × S × T and
(R × S) × T are not quite the same (e.g., the former consists of triples
(r, s, t), while the latter consists of nested pairs ((r, s) , t)); but they are
isomorphic through a rather obvious isomorphism: Namely, the map

R × S × T → (R × S)× T,
(r, s, t) 7→ ((r, s) , t)

is a ring isomorphism. This is a quick test of understanding – if you
understand the definitions, then this should be completely obvious to
you. Similarly, the rings R × S × T and R × (S × T) are isomorphic. You
can easily generalize this to direct products of more than three rings. We
say that the direct product of rings is “associative up to isomorphism”.

• The ring C consists of complex numbers, which are defined as pairs of real
numbers (the real part and the imaginary part). Thus, C = R × R as sets.
Since complex numbers are added entrywise, we even have C = R×R as
additive groups (i.e., the additive groups (C,+, 0) and (R × R,+, 0) are
identical). However, C is not R × R as rings (because complex numbers
are not multiplied entrywise). Even worse, C is not even isomorphic to
R × R as rings. One way to see this is by noticing that C is an integral
domain (even a field) whereas R × R is not (for example, (1, 0) · (0, 1) =
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(0, 0)). Another way to see this is by noticing that −1C is a square in C,
but −1R×R = (−1,−1) is not a square in R × R.

Note that these arguments make sense because of the “isomorphism prin-
ciple” (which we stated in Subsection 2.7.4). We recall that this principle
says that isomorphic rings “behave the same” as far as their properties
are concerned – at least those properties that can be stated in terms of the
ring itself. For example, if R and S are two isomorphic rings, and if one
of R and S is a field, then so is the other. For yet another example, if R
and S are two isomorphic rings, and R has (say) 15 units, then so does
S. For yet another example, if R and S are two isomorphic rings, and R
satisfies some property like “x (x + 1R) (x − 1R) = 0 for all x ∈ R”, then
so does S (with 1R replaced by 1S). The only properties of a ring that
are not preserved under isomorphism are properties that refer to specific
“outside” objects (for example, the rings R × S × T and (R × S)× T from
the previous example are isomorphic, but the former contains the triple
(1, 1, 1) whereas the latter doesn’t). This all is a general feature of isomor-
phisms of any sorts of objects – not just of rings but also of groups, vector
spaces and topological spaces.

• Let R be any ring. Let n ∈ N. Let Rn=n be the set of all diagonal matrices
in the matrix ring Rn×n. In other words,

Rn=n =




a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

 | a1, a2, . . . , an ∈ R


= {diag (a1, a2, . . . , an) | a1, a2, . . . , an ∈ R} ,

where we are using the notation

diag (a1, a2, . . . , an) = (the diagonal matrix with diagonal (a1, a2, . . . , an))

=


a1 0 · · · 0
0 a2 · · · 0
...

... . . . ...
0 0 · · · an

 .

(For example,

R2=2 =

{(
a 0
0 b

)
| a, b ∈ R

}
= {diag (a, b) | a, b ∈ R} .

)

It is easy to see that Rn=n is a subring of Rn×n. Moreover, Rn=n ∼= Rn as
rings (where, as we recall, Rn = R × R × · · · × R︸ ︷︷ ︸

n times

= R{1,2,...,n}). Indeed, the
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map

Rn → Rn=n,
(a1, a2, . . . , an) 7→ diag (a1, a2, . . . , an)

is a ring isomorphism. For example, it respects multiplication, since

diag (a1, a2, . . . , an) · diag (b1, b2, . . . , bn) = diag (a1b1, a2b2, . . . , anbn)

for any (a1, a2, . . . , an) , (b1, b2, . . . , bn) ∈ Rn.

It is easy to see that a direct product of commutative rings is commutative.

Exercise 2.10.1. Prove that the direct product (Z/2)2 = (Z/2)× (Z/2) is isomor-
phic to the ring B4 from Subsection 2.1.2.

Exercise 2.10.2. Let R be any ring. Let I be an infinite set. As we recall, the direct
product RI = ∏

i∈I
R consists of all families (ri)i∈I of elements of R. (For instance, if

I = N, then these families are just the infinite sequences (r0, r1, r2, . . .) = (ri)i∈N of
elements of R.)

(a) We say that a family (ri)i∈I is finitary if it has only finitely many nonzero
entries (i.e., if there are only finitely many i ∈ I that satisfy ri ̸= 0). Consider
the set of all finitary families in RI . Is this set a subring of RI ?

(b) We say that a family (ri)i∈I is quasifinitary if it all but finitely many of its
entries are equal (i.e., if there exists some c ∈ R such that only finitely many
i ∈ I that satisfy ri ̸= c). Consider the set of all quasifinitary families in RI . Is
this set a subring of RI ?

(c) We say that a family (ri)i∈I is entry-finite if it has only finitely many distinct
entries (i.e., if the set {ri | i ∈ I} is finite). Consider the set of all entry-finite
families in RI . Is this set a subring of RI ?

(For example, if R = Z and I = N, then the family (3, 1, 0, 0, 0, 0, . . .) (with all
entries after the 1 being zeroes) is finitary; the family (3, 1, 1, 1, . . .) (with all entries
after the 3 being equal to 1) is quasifinitary; the family (1, 2, 1, 2, 1, 2, . . .) (alternating
between 1’s and 2’s) is entry-finite.)

2.10.4. Direct products and idempotents

Direct products of rings are closely related to idempotents. One part of the
connection is easy: If R and S are two rings, then their direct product R × S has
the two idempotents (1R, 0S) and (0R, 1S) which, in a sense, “reveal” its two
factors; in particular, the multiples of (1R, 0S) form a “copy” of R (since these
multiples are precisely the elements of the form (r, 0S) for r ∈ R), whereas the
multiples of (0R, 1S) form a “copy” of S. The following exercise states this claim
precisely:
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Exercise 2.10.3. Let R and S be two rings. Let a := (1R, 0S) ∈ R × S and b :=
(0R, 1S) ∈ R × S. Prove the following:

(a) The principal ideal a (R × S) consists of all elements of the form (r, 0S) with
r ∈ R.

(b) The principal ideal b (R × S) consists of all elements of the form (0R, s) with
s ∈ S.

If the ring R is commutative, then this connection has a converse as well:
Any idempotent in a commutative ring R can be used to split R into a direct
product of two rings!57 Here are the details:

Exercise 2.10.4. Let R be a commutative ring, and let e be an idempotent element
of R. As we know from Exercise 2.2.8 (a) (applied to a = e), the element 1− e is then
idempotent as well.

(a) Show that the principal ideal eR is itself a ring, with addition and multiplica-
tion inherited from R and with zero 0R and with unity e. (This makes eR a
subring of R in the sense of [DumFoo04], but not in our sense, since its unity
is not generally the unity of R.)

(b) Show that the same holds for the principal ideal (1 − e) R (except that its unity
will be 1 − e instead of e).

(c) Consider the map

f : (eR)× ((1 − e) R) → R,
(a, b) 7→ a + b.

Prove that this map f is a ring isomorphism.

Exercise 2.10.4 (c) shows that if a commutative ring R has an idempotent
element e, then R can be decomposed (up to isomorphism) as a direct product
A × B of two rings A and B (namely, A = eR and B = (1 − e) R). If e is not one
of the two trivial idempotents 0 and 1, then these two rings A and B will be
nontrivial, so the decomposition really deserves its name.58

Conversely, as we said above, any direct product of two nontrivial rings has
nontrivial idempotents: If R and S are two rings, then (1R, 0S) and (0R, 1S) are
two idempotent elements of the direct product R × S.

57If the idempotent is 0 or 1, then one of the two factors will be a trivial ring.
58As an example, take R = Z/6Z, and let e be the idempotent element 3 = 3 + 6Z of R (this is

idempotent since 32 = 9 ≡ 3 mod 6 and thus 32
= 32 = 3). Then, eR =

{
0, 3
} ∼= Z/2Z and

(1 − e) R =
{

0, 2, 4
} ∼= Z/3Z. Hence, the ring isomorphism R ∼= (eR)× ((1 − e) R) becomes

a ring isomorphism Z/6Z ∼= (Z/2Z)× (Z/3Z). We will soon revisit this isomorphism (it
is an instance of the Chinese Remainder Theorem).
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Parts (a) and (b) of Exercise 2.10.4 can be generalized somewhat: Instead of
requiring R to be commutative, it suffices to require that er = re for all r ∈ R.
We cannot, however, drop this requirement altogether (for instance, the matrix
ring R2×2 has many idempotents, but cannot be written as a direct product of
two nontrivial rings).

Exercise 2.10.5. Let R be a commutative ring, and n be a positive integer. An
n × n-matrix

A =


a1,1 a1,2 · · · a1,n
a2,1 a2,2 · · · a2,n

...
...

. . .
...

an,1 an,2 · · · an,n

 ∈ Rn×n

is said to be circulant if it has the property that

ai,j = ai′,j′ whenever i − j ≡ i′ − j′ mod n.

In other words, an n × n-matrix A ∈ Rn×n is circulant if and only if each row of A
equals the preceding row of A, cyclically rotated by 1 step to the right. For instance,

a 4 × 4-matrix is circulant if and only if it has the form


a b c d
d a b c
c d a b
b c d a

 for some

a, b, c, d ∈ R.
Let Circn (R) denote the set of all circulant n × n-matrices A ∈ Rn×n.
Let S ∈ Circn (R) be the specific circulant n × n-matrix whose first row is

(0, 1, 0, 0, 0, . . . , 0) (that is, the second entry is 1 while all the other entries are 0).
Thus,

S =



0 1 0 0 · · · 0
0 0 1 0 · · · 0
0 0 0 1 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · 1
1 0 0 0 · · · 0


.

(a) Compute Sn.

(b) Prove that every circulant matrix A ∈ Rn×n can be written as a0S0 + a1S1 +
· · ·+ an−1Sn−1, where a0, a1, . . . , an−1 are the entries of the first row of A (from
left to right).

(c) Prove that

Circn (R) =
{

a0S0 + a1S1 + · · ·+ an−1Sn−1 | a0, a1, . . . , an−1 ∈ R
}

.

(d) Show that Circn (R) is a commutative subring of the matrix ring Rn×n.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 122

(e) Assume that n ≥ 2, and that the element n · 1R of R is invertible. Find an
idempotent e in Circn (R) that is distinct from both the zero matrix 0 and the
identity matrix In.

(f) Under the same assumptions as in part (e), prove that Circn (R) is isomorphic
to a direct product of two rings, one of which is R.

(g) Which of the above claims remain true if we no longer require that R be com-
mutative?

2.10.5. Boolean rings

Another example of rings comes from (fairly basic) set theory. It rests upon the
notion of “symmetric difference”:

Definition 2.10.5. The symmetric difference of two sets A and B is defined
to be the set

(A ∪ B) \ (A ∩ B)
= (A \ B) ∪ (B \ A)

= {x | x belongs to exactly one of the two sets A and B} .

This symmetric difference is denoted by A △ B.

In terms of Venn diagrams, this symmetric difference A △ B is the grey zone
in the following Venn diagram (where the two circles are A and B):

Now, let S be any set. Let P (S) denote the power set of S (that is, the set of
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all subsets of S). It is easy to check that the following ten properties hold:

A △ B = B △ A for any sets A and B;
A ∩ B = B ∩ A for any sets A and B;

(A △ B)△ C = A △ (B △ C) for any sets A, B and C;
(A ∩ B) ∩ C = A ∩ (B ∩ C) for any sets A, B and C;

A △∅ = ∅△ A = A for any set A;
A △ A = ∅ for any set A;
A ∩ S = S ∩ A = A for any subset A of S;
∅∩ A = A ∩∅ = ∅ for any set A;

A ∩ (B △ C) = (A ∩ B)△ (A ∩ C) for any sets A, B and C;
(A △ B) ∩ C = (A ∩ C)△ (B ∩ C) for any sets A, B and C.

Therefore, P (S) becomes a commutative ring, where the addition is defined
to be the operation △, the multiplication is defined to be the operation ∩, the
zero is defined to be the set ∅, and the unity is defined to be the set S. (The ten
properties listed above show that the axioms of a commutative ring are satisfied
for (P (S) ,△,∩,∅, S). In particular, the sixth property shows that every subset
A of S has an additive inverse – namely, itself. Of course, it is unusual for
an element of a commutative ring to be its own additive inverse, but in this
example it happens all the time!)

The commutative ring P (S) has the property that each element a ∈ P (S) is
idempotent (i.e., satisfies a · a = a). (Indeed, this simply means that each A ⊆ S
satisfies A ∩ A = A.)

Exercise 2.10.6.

(a) Prove that the ring P (S) is isomorphic to the direct product (Z/2Z)S =

∏
s∈S

(Z/2Z).

(b) Let F be the set of all finite subsets of S. Prove that F is an ideal of P (S).

(c) Assume that S is infinite. Prove that the ideal F is not principal.

(d) Instead, assume that S is finite. Prove that every ideal of P (S) is principal.

[Hint: For part (d), let I be an ideal of P (S), and pick a subset T ∈ I of largest
size. Argue that each subset of T must also belong to I. Conclude that every set in
I must be a subset of T.]

Forget that we fixed S. As we noticed, the ring P (S) that we have just defined
has the strange-looking property that each of its elements is idempotent. Rings
with this property are called Boolean rings. (Of course, P (S) is the eponymic
example for a Boolean ring; but there are also others.) Let us now study Boolean
rings in general:

https://en.wikipedia.org/wiki/Boolean_ring
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Definition 2.10.6. A Boolean ring means a ring R such that every a ∈ R
satisfies a2 = a (that is, every a ∈ R is idempotent). (Keep in mind that rings
must have a 1 according to our definition.)

Exercise 2.10.7. Let R be a Boolean ring. Prove the following:

(a) We have 2a = 0 for each a ∈ R.

(b) We have −a = a for each a ∈ R.

(c) The ring R is commutative.

(d) If R is finite, then R ∼= (Z/2Z)n for some n ∈ N.

[Hint: In part (a), use a2 = a and (a + 1)2 = a + 1. In part (c), expand (a + b)2

(but don’t use the binomial formula, since you don’t know yet that ab = ba). Finally,
for part (d), use strong induction on |R| as follows: Pick some e ∈ R that is distinct
from 0 and 1 (if no such e exists, the claim is obvious). Then, e is idempotent, so
Exercise 2.10.4 (c) decomposes the ring R as a direct product of two smaller rings.
You can use without proof that direct products are associative up to isomorphism
(so that A1 × A2 × · · · × Am ∼= (A1 × A2 × · · · × Ak)× (Ak+1 × Ak+2 × · · · × Am) for
any rings A1, A2, . . . , Am).]

2.11. A few operations on ideals ([DumFoo04, §7.3])

Next, we shall see three ways to build new ideals of a ring from old. One of
these three ways is intersection: If I and J are two ideals of a ring R, then their
intersection I ∩ J is easily seen to be an ideal as well (see Proposition 2.11.2 (a)
below). Let us now define two other ways:

Definition 2.11.1. Let I and J be two ideals of a ring R.

(a) Then, I + J denotes the subset

{i + j | i ∈ I and j ∈ J} of R.

(b) Next, we define a further subset I J, also denoted I · J. Unlike I + J, this
will not be defined as {i · j | i ∈ I and j ∈ J}. Instead, I J = I · J will
be defined as the set

{all finite sums of (I, J) -products} ,

where an (I, J)-product means a product of the form ij with i ∈ I and
j ∈ J. In other words,

I J = {i1 j1 + i2 j2 + · · ·+ ik jk | k ∈ N and i1, i2, . . . , ik ∈ I and j1, j2, . . . , jk ∈ J} .
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Note that our definition of I J was more complicated than the one of I + J,
as it involved an additional step (viz., taking finite sums). The purpose of this
step is to ensure that I J is closed under addition (which will later be used to
argue that I J is an ideal of R). It is forced to us if we try to construct an ideal
of R that contains all (I, J)-products. We could have added the same step to
our definition of I + J, but it would not have changed anything, since a finite
sum of (I, J)-sums (i.e., of sums of the form i + j with i ∈ I and j ∈ J) can be
rewritten as a single (I, J)-sum:

(i1 + j1) + (i2 + j2) + · · ·+ (ik + jk)
= (i1 + i2 + · · ·+ ik)︸ ︷︷ ︸

∈I
(since I is closed under addition)

+ (j1 + j2 + · · ·+ jk)︸ ︷︷ ︸
∈J

(since J is closed under addition)

.

For (I, J)-products, however, this is not generally the case (although you won’t
find a counterexample for R = Z).

Here is an assortment of facts about the above-defined operations on ideals
(see Exercise 2.11.1 for a proof):59

Proposition 2.11.2. Let R be a ring.

(a) Let I and J be two ideals of R. Then, I + J and I ∩ J and I J are ideals
of R as well.

(b) Let I and J be two ideals of R. Then, I J ⊆ I ∩ J ⊆ I ⊆ I + J and
I J ⊆ I ∩ J ⊆ J ⊆ I + J.

(c) The set of all ideals of R is a monoid with respect to the binary opera-
tion +, with neutral element {0R} = 0R. That is,

(I + J) + K = I + (J + K) for any three ideals I, J, K of R;
I + {0R} = {0R}+ I = I for any ideal I of R.

(d) The set of all ideals of R is a monoid with respect to the binary opera-
tion ∩, with neutral element R = 1R. That is,

(I ∩ J) ∩ K = I ∩ (J ∩ K) for any three ideals I, J, K of R;
I ∩ R = R ∩ I = I for any ideal I of R.

59Recall that if R is any ring, then the one-element set {0R} and the entire ring R are ideals of
R. Both of these ideals are principal ({0R} = 0RR and R = 1RR); they “bookend” all ideals
of R (in the sense that {0R} ⊆ I ⊆ R for each ideal I of R).

(Here, the ideals 0RR and 1RR are defined as in Proposition 2.8.5, even though R is not
required to be commutative.)
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(e) The set of all ideals of R is a monoid with respect to the binary opera-
tion ·, with neutral element R = 1R. That is,

(I J)K = I (JK) for any three ideals I, J, K of R;
IR = RI = I for any ideal I of R.

(f) Addition and intersection of ideals are commutative:

I + J = J + I and I ∩ J = J ∩ I for any ideals I, J of R.

(g) If the ring R is commutative, then I J = J I for any two ideals I and J of
R.

Proposition 2.11.2 shows that the operations +, ∩ and · on the set of all
ideals of R satisfy a number of laws similar to the basic laws of arithmetic. This
is known as ideal arithmetic. However, ideals cannot be subtracted (i.e., there
is no operation that undoes addition of ideals60), and thus the ideals of R do
not form an actual ring. (Likewise, there is no “division” operation on ideals
that undoes multiplication, although something vaguely similar is defined in
Exercise 2.11.6 below.)

Here is a diagram showing the inclusions between the ideals I J, I ∩ J, I +
J, I, J:

I + J

I
�.

==

J
0 P

aa

I ∩ J
0 P

aa

. �

==

I J
?�

OO

(Recall that an arrow of type X ↪→ Y means a canonical inclusion from X to Y,
which entails that X ⊆ Y.)

Exercise 2.11.1. Prove Proposition 2.11.2.

[Hint: You can be terse here, as there is a lot to show, much of it straightfor-
ward. Part (d) is obvious. For part (e), I recommend using the notion of “(I, J)-
products” from Definition 2.11.1; it is often easier to talk abstractly about sums of
(I, J)-products than to write them out as i1 j1 + i2 j2 + · · · + ik jk. For the proof of
(I J)K = I (JK), you can start out by showing that any (I J, K)-product belongs to
I (JK).]

60That is, if I and J are two ideals, then you cannot recover I from J and I + J.
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The following proposition tells us how ideal arithmetic looks like when we
apply it to principal ideals of Z:

Proposition 2.11.3. Let n, m ∈ Z. Let I = nZ and J = mZ. Then:

(a) We have I J = nmZ.

(b) We have I ∩ J = lcm (n, m)Z.

(c) We have I + J = gcd (n, m)Z.

Proof. (a) From n ∈ I and m ∈ J, we see that nm is an (I, J)-product. Thus, nm
is a finite sum of (I, J)-products (of just one, to be specific). In other words,
nm ∈ I J. Since I J is an ideal of Z, this entails that every multiple of nm also
belongs to I J (by the second ideal axiom); in other words, nmZ ⊆ I J.

Conversely: If i ∈ I and j ∈ J, then i = nx for some x ∈ Z (since i ∈ I = nZ)
and j = my for some y ∈ Z (since j ∈ J = mZ) and therefore ij = (nx) (my) =
nm (xy) ∈ nmZ. Thus, every (I, J)-product belongs to nmZ (because an (I, J)-
product always has the form ij for some i ∈ I and j ∈ J). Hence, any sum of
(I, J)-products also belongs to nmZ (since nmZ is closed under addition). In
other words, I J ⊆ nmZ (since any element of I J is a sum of (I, J)-products).
Therefore, I J = nmZ (since we already have seen that nmZ ⊆ I J). This proves
Proposition 2.11.3 (a).

(b) We have

I ∩ J = {all elements of I that also belong to J}
= {all multiples of n that also are multiples of m}(

since I = nZ = {all multiples of n}
and J = mZ = {all multiples of m}

)
= {all common multiples of n and m}
= {all multiples of lcm (n, m)} since a result in elementary number theory

says that the common multiples of n and m
are precisely the multiples of lcm (n, m)


= lcm (n, m)Z.

This proves Proposition 2.11.3 (b).
(c) First, we shall show that I + J ⊆ gcd (n, m)Z. Indeed, any element of

I is a multiple of n (since I = nZ), thus a multiple of gcd (n, m) (since n is a
multiple of gcd (n, m)). Similarly, any element of J is a multiple of gcd (n, m).
Thus, an element of I + J is a sum of two multiples of gcd (n, m), and therefore
itself a multiple of gcd (n, m). In other words, any element of I + J belongs to
gcd (n, m)Z. In other words, I + J ⊆ gcd (n, m)Z.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 128

Now, we need to prove that gcd (n, m)Z ⊆ I + J. For this, it suffices to
show that gcd (n, m) ∈ I + J, because I + J is an ideal (and thus will contain
any multiple of gcd (n, m) once we know it contains gcd (n, m)). But Bezout’s
theorem shows that gcd (n, m) = xn + ym for some integers x and y. Thus,
gcd (n, m) ∈ I + J (since xn = nx ∈ nZ = I and ym = my ∈ mZ = J).
This finishes our proof of gcd (n, m)Z ⊆ I + J. Combining this with I + J ⊆
gcd (n, m)Z, we obtain I + J = gcd (n, m)Z. This proves Proposition 2.11.3
(c).

Exercise 2.11.2. Let R be any nontrivial ring, and consider the ideals I, J, K of the
upper-triangular matrix ring R2≤2 defined in Exercise 2.8.5 (a). Show that I J = {0}
but J I = K. (Thus, I J ̸= J I in this case.)

Exercise 2.11.3. Let R be a ring. Let I, J, K be three ideals of R. Prove that

I (J + K) = I J + IK and (I + J)K = IK + JK.

Exercise 2.11.4. Let R be a commutative ring. Let a and b be two elements of R.
Prove that (a + b) R ⊆ aR + bR.

(Recall that (a + b) R, aR and bR are principal ideals, and the “+” sign in “aR +

bR” is a sum of two ideals, not a sum of two elements of R.)

Exercise 2.11.5. Let R be a commutative ring. Let I be an ideal of R. Let a and b be
two elements of R such that a − b ∈ I. Prove that aR + I = bR + I.

The next exercise defines yet another (less frequently used) operation on ide-
als:

Exercise 2.11.6. Let R be a ring. Let I and J be two ideals of R.
We say that a given element a ∈ R leads J into I if and only if each j ∈ J satisfies

aj ∈ I and ja ∈ I. In other words, an element a ∈ R leads J into I if and only
if multiplying this element with any element of J (from the left or from the right)
produces an element of I.

We let (I : J) be the set of all elements a ∈ R that lead J into I.

(a) Prove that (I : J) is an ideal of R. (This is called the colon ideal of I and J.)

(b) For R = Z, compute the colon ideals (6Z : 2Z) and (6Z : 4Z).

(c) Let I, J and K be three ideals of R. Prove that

(I : J) (J : K) ∩ (J : K) (I : J) ⊆ (I : K) .

(d) Let I, J and K be three ideals of R. Prove that

(I : (J + K)) = (I : J) ∩ (I : K) .
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2.12. The Chinese Remainder Theorem ([DumFoo04, §7.6])

2.12.1. Introduction

In Subsection 2.10.3, we have seen some examples of direct products. These
examples were not very surprising; they were rings defined in a way that makes
the product structure already quite evident. For example, the ring of diagonal
n× n-matrices was a direct product because you can easily see that the diagonal
entries of diagonal matrices don’t “interfere” with each other when the matrices
are multiplied. Keywords like “entrywise”, “pointwise” and “coordinatewise”
tend to signal that some structure is a direct product. The 6-element ring Z/6,
on the other hand, does not look at all like a direct product. Yet, it is isomorphic
to a direct product:

Z/6 ∼= (Z/2)× (Z/3) .

Specifically, there is a ring isomorphism

Z/6 → (Z/2)× (Z/3) ,

which sends

0 7→
(
0, 0
)

(that is, 0 + 6Z 7→ (0 + 2Z, 0 + 3Z)) ,

1 7→
(
1, 1
)

,

2 7→
(
2, 2
)
=
(
0, 2
)

,

3 7→
(
3, 3
)
=
(
1, 0
)

,

4 7→
(
4, 4
)
=
(
0, 1
)

,

5 7→
(
5, 5
)
=
(
1, 2
)

.

The reason why this works is that 2 and 3 are coprime. More generally:

Theorem 2.12.1 (The Chinese Remainder Theorem for two integers). Let n
and m be two coprime integers. Then,

Z/ (nm) ∼= (Z/n)× (Z/m) as rings.

More concretely, there is a ring isomorphism

Z/ (nm) → (Z/n)× (Z/m)

that sends each residue class r to the pair (r, r) (or, to use somewhat
less ambiguous notation, sends each residue class r + nmZ to the pair
(r + nZ, r + mZ)).

Rather than prove this theorem in this form, I will generalize it and then
prove the generalization. After all, this is a course on rings, not just on Z/n.
So I will state and prove a “Chinese Remainder Theorem” for arbitrary rings.
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In this theorem, Z will be replaced by an arbitrary ring R, and the integers n
and m will be replaced by two ideals I and J of R (since ideals are what we can
quotient rings by)61. The condition “n and m are coprime” will be replaced by
the condition “I + J = R”. Indeed, two integers n and m are coprime if and
only if the corresponding principal ideals I = nZ and J = mZ of Z satisfy
I + J = Z (this follows easily from Proposition 2.11.3 (c)62). Two ideals I and J
of a ring R satisfying I + J = R are said to be comaximal:

2.12.2. The Chinese Remainder Theorem for two ideals

Definition 2.12.2. Let I and J be two ideals of a ring R. We say that I and J
are comaximal if I + J = R.

Now we can state the general version of the Chinese Remainder Theorem. We
will state this version in two parts, since they have slightly different assump-
tions (the first part requires R to be commutative, while the second one does
not). Both parts will have to be combined to recover Theorem 2.12.1 later.

Theorem 2.12.3 (The Chinese Remainder Theorem for two ideals: ideal part).
Let I and J be two comaximal ideals of a commutative ring R. (Recall that
“comaximal” means that I + J = R.) Then,

I ∩ J = I J.

Theorem 2.12.4 (The Chinese Remainder Theorem for two ideals: quotient
part). Let I and J be two comaximal ideals of a ring R. (Recall that “comaxi-
mal” means that I + J = R.) Then:

(a) We have
R/ (I ∩ J) ∼= (R/I)× (R/J) .

(b) More concretely, there is a ring isomorphism

R/ (I ∩ J) → (R/I)× (R/J)

that sends each residue class r + (I ∩ J) to the pair (r + I, r + J).

61I could also replace the integers n and m by two elements of R, but that would be less general:
Quotienting by an element is tantamount to quotienting by a principal ideal, and principal
ideals are just one kind of ideals.

62Proof. Let n and m be two integers. Let I = nZ and J = mZ be the corresponding principal
ideals of Z. Then, Proposition 2.11.3 (c) yields I + J = gcd (n, m)Z. If n and m are coprime,
then gcd (n, m) = 1, so this rewrites as I + J = 1Z = Z. Conversely, if I + J = Z, then
1 ∈ Z = I + J = gcd (n, m)Z, which shows that 1 is a multiple of gcd (n, m); but this entails
that gcd (n, m) = 1, and therefore n and m are coprime. Thus, we have shown that n and m
are coprime if and only if I + J = Z.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 131

Let us now prove these theorems. Before we do so, let us agree on a conven-
tion that will save us some parentheses:

Convention 2.12.5. The “/” sign will have higher precedence than the “×”
sign, but lower precedence than the “implied · sign”. Thus, the expression
“(R/I)× (R/J)” can be abbreviated as “R/I × R/J” (without worrying that
it might be misunderstood as “R/ (I × R) /J”, whatever this would mean),
and similarly the expression “R/ (I J)” can be abbreviated as “R/I J” (with-
out worrying that it might be misunderstood as “(R/I) J”).

Proof of Theorem 2.12.3. We have 1 ∈ R = I + J (since I and J are comaximal).
In other words,

there exist i ∈ I and j ∈ J with 1 = i + j.

Consider these i and j.
Proposition 2.11.2 (b) yields I J ⊆ I ∩ J. Thus, we only need to show that

I ∩ J ⊆ I J.
So let a ∈ I ∩ J. Thus, a ∈ I and a ∈ J. Now,

a = a · 1︸︷︷︸
=i+j

= a · (i + j) = ai︸︷︷︸
=ia

(since R is
commutative)

+ aj = ia︸︷︷︸
∈I J

(since i∈I and a∈J)

+ aj︸︷︷︸
∈I J

(since a∈I and j∈J)

∈ I J + I J = I J.

(The last equality relied on the fact that K + K = K for any ideal K of R. This
is an easy consequence of the fact that K is a subgroup of the additive group
(R,+, 0).)

Forget that we fixed a. We thus have shown that a ∈ I J for each a ∈ I ∩ J. In
other words, I ∩ J ⊆ I J. As we said above, this completes the proof of Theorem
2.12.3.

Proof of Theorem 2.12.4. We have 1 ∈ R = I + J (since I and J are comaximal).
In other words,

there exist i ∈ I and j ∈ J with 1 = i + j.

Consider these i and j.
Consider the map63

f : R → R/I × R/J,
r 7→ (r + I, r + J) .

It is straightforward to see that this map f is a ring morphism (from R to the
direct product R/I × R/J).

63Recall that “R/I × R/J” means “(R/I)× (R/J)”.
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Moreover, we claim that Ker f = I ∩ J. Indeed, let x ∈ Ker f . Thus, f (x) =
0R/I×R/J = (0 + I, 0 + J). Since f (x) was defined to be (x + I, x + J), this
means that (x + I, x + J) = (0 + I, 0 + J). In other words, x + I = 0 + I and
x + J = 0 + J. In other words, x ∈ I and x ∈ J. In other words, x ∈ I ∩ J.

Forget that we fixed x. We thus have shown that x ∈ I ∩ J for each x ∈ Ker f .
In other words, Ker f ⊆ I ∩ J. Reading this argument in reverse shows that
I ∩ J ⊆ Ker f . Thus,

Ker f = I ∩ J.

Now, we claim that f is surjective. Indeed, 1 = i + j, so that 1 − i = j ∈ J
and thus 1 + J = i + J. Now, i + I = 0 + I (since i ∈ I) and i + J = 1 + J (since
1+ J = i+ J). But the definition of f yields f (i) = (i + I, i + J) = (0 + I, 1 + J)
(since i + I = 0+ I and i + J = 1+ J). Similarly, f (j) = (1 + I, 0 + J). Now, for
every x ∈ R and y ∈ R, we have

f (yi + xj) = f (y)︸︷︷︸
=(y+I, y+J)

(by the definition of f )

f (i)︸︷︷︸
=(0+I, 1+J)

+ f (x)︸ ︷︷ ︸
=(x+I, x+J)

(by the definition of f )

f (j)︸︷︷︸
=(1+I, 0+J)

(since f is a ring morphism)

= (y + I, y + J) (0 + I, 1 + J)︸ ︷︷ ︸
=((y+I)(0+I), (y+J)(1+J))

(since the multiplication of R/I×R/J
is defined to be entrywise)

+ (x + I, x + J) (1 + I, 0 + J)︸ ︷︷ ︸
=((x+I)(1+I), (x+J)(0+J))

(since the multiplication of R/I×R/J
is defined to be entrywise)

=

(y + I) (0 + I)︸ ︷︷ ︸
=y·0+I
=0+I

, (y + J) (1 + J)︸ ︷︷ ︸
=y·1+J
=y+J

+

(x + I) (1 + I)︸ ︷︷ ︸
=x·1+I
=x+I

, (x + J) (0 + J)︸ ︷︷ ︸
=x·0+J
=0+J


= (0 + I, y + J) + (x + I, 0 + J)

=

(0 + I) + (x + I)︸ ︷︷ ︸
=0+x+I
=x+I

, (y + J) + (0 + J)︸ ︷︷ ︸
=y+0+J
=y+J


(since the addition of R/I × R/J is defined to be entrywise)

= (x + I, y + J) ,

which shows that the pair (x + I, y + J) lies in the image of f .
Thus, every element of the form (x + I, y + J) for some x ∈ R and y ∈ R

lies in the image of f . Since every element of R/I × R/J has this form64, we
thus conclude that every element of R/I × R/J lies in the image of f . In other
words, f is surjective. In other words, f (R) = R/I × R/J.

64because every element of R/I has the form x + I for some x ∈ R, while every element of R/J
has the form y + J for some y ∈ R
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Now, recall the First isomorphism theorem for rings (Theorem 2.9.9 (c)). Ap-
plying it to S = R/I × R/J (and to our ring morphism f : R → R/I × R/J), we
see that the map

f ′ : R/ Ker f → f (R) ,
r 7→ f (r)

is well-defined and is a ring isomorphism.
In our case right now, we have f (R) = R/I × R/J and Ker f = I ∩ J, so that

we can restate this as follows: The map

f ′ : R/ (I ∩ J) → R/I × R/J,
r 7→ f (r)

is well-defined and is a ring isomorphism. This map f ′ sends each residue class
r = r + (I ∩ J) to f (r) = (r + I, r + J) (by the definition of f ). Thus, we have
found a ring isomorphism

R/ (I ∩ J) → R/I × R/J

that sends each residue class r + (I ∩ J) to the pair (r + I, r + J) (namely, f ′).
This proves part (b) of Theorem 2.12.4. Of course, part (a) thus follows.

You can get rid of the commutativity requirement on R in Theorem 2.12.3 if
you replace I J by I J + J I. (Checking this is a nice exercise on making sure you
understand the above proof.)

2.12.3. Application to integers

As a corollary of Theorems 2.12.3 and 2.12.4, we can now prove the good old
number-theoretical Chinese Remainder Theorem (Theorem 2.12.1), which we
will repeat for convenience:

Theorem 2.12.6 (The Chinese Remainder Theorem for two integers). Let n
and m be two coprime integers. Then,

Z/ (nm) ∼= (Z/n)× (Z/m) as rings.

More concretely, there is a ring isomorphism

Z/ (nm) → (Z/n)× (Z/m)

that sends each residue class r to the pair (r, r) (or, to use somewhat
less ambiguous notation, sends each residue class r + nmZ to the pair
(r + nZ, r + mZ)).
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Proof. Let R = Z and I = nZ and J = mZ. Proposition 2.11.3 then yields
I J = nmZ and I ∩ J = lcm (n, m)Z and I + J = gcd (n, m)Z. Since n and m
are coprime, we have gcd (n, m) = 1; thus, I + J = gcd (n, m)︸ ︷︷ ︸

=1

Z = 1Z = Z. In

other words, the ideals I and J of Z are comaximal. Hence, Theorem 2.12.3
yields I ∩ J = I J = nmZ. Furthermore, part (a) of Theorem 2.12.4 yields
R/ (I ∩ J) ∼= (R/I)× (R/J). In view of R︸︷︷︸

=Z

/ (I ∩ J)︸ ︷︷ ︸
=nmZ

= Z/ (nmZ) = Z/ (nm)

and R︸︷︷︸
=Z

/ I︸︷︷︸
=nZ

= Z/ (nZ) = Z/n and R︸︷︷︸
=Z

/ J︸︷︷︸
=mZ

= Z/ (mZ) = Z/m, this

rewrites as Z/ (nm) ∼= (Z/n)× (Z/m). This proves the first claim of Theorem
2.12.6. The “More concretely” claim likewise follows from part (b) of Theorem
2.12.4.

2.12.4. Comaximality for products of ideals

We shall next prove some auxiliary results about comaximal ideals, which will
later help us generalize Theorem 2.12.3 and Theorem 2.12.4 to k ideals instead
of 2 ideals. These can also serve as exercises on ideal arithmetic.

Proposition 2.12.7. Let I, J, K be three ideals of a ring R. Then:

(a) We have (I + K) (J + K) ⊆ I J + K.

(b) If I + K = R and J + K = R, then I J + K = R.

Proof. Using Proposition 2.11.2 (a), we easily see that the sets I + K and J + K
and I J + K are ideals of R. Hence, these sets are closed under addition.

(a) Let x ∈ I + K and y ∈ J + K. We shall show that xy ∈ I J + K.
Indeed, x ∈ I + K. In other words, we can write x in the form x = i + a for

some i ∈ I and a ∈ K. Consider these i and a.
Also, y ∈ J + K. In other words, we can write y in the form y = j + b for

some j ∈ J and b ∈ K. Consider these j and b.
Now, multiplying the two equalities x = i + a and y = j + b, we obtain

xy = (i + a) (j + b) = ij + ib + aj + ab.

From a ∈ K and b ∈ K, we conclude that each of the three products ib, aj, ab
belongs to K (by the second ideal axiom, since K is an ideal). Hence, the sum
of these three products also belongs to K (since K is an ideal and thus is closed
under addition). In other words, ib + aj + ab ∈ K. Furthermore, from i ∈ I and
j ∈ J, we see that ij is an (I, J)-product and therefore a sum of (I, J)-products
(namely, of just one such product). Hence, ij ∈ I J (by the definition of I J). Now,

xy = ij︸︷︷︸
∈I J

+ ib + aj + ab︸ ︷︷ ︸
∈K

∈ I J + K.
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Forget that we fixed x and y. We thus have shown that xy ∈ I J + K for
each x ∈ I + K and y ∈ J + K. In other words, every (I + K, J + K)-product
belongs to I J + K (since every (I + K, J + K)-product has the form xy for some
x ∈ I + K and y ∈ J + K).

Since I J + K is closed under addition, we thus conclude that any finite sum
of (I + K, J + K)-products belongs to I J + K as well. However, the definition of
(I + K) (J + K) yields

(I + K) (J + K) = {all finite sums of (I + K, J + K) -products} ⊆ I J + K

(since any finite sum of (I + K, J + K)-products belongs to I J + K). This proves
Proposition 2.12.7 (a).

(b) Assume that I + K = R and J + K = R. Proposition 2.11.2 (e) yields that
RR = R. Hence,

R = R︸︷︷︸
=I+K

R︸︷︷︸
=J+K

= (I + K) (J + K) ⊆ I J + K (by Proposition 2.12.7 (a)) .

Combined with I J + K ⊆ R (which is obvious), this yields I J + K = R. Thus,
Proposition 2.12.7 (b) is proved.

Exercise 2.12.1.

(a) Recall the following fact from elementary number theory: If a, b, c are three
integers such that each of a and b is coprime to c, then ab is also coprime to c.
How does Proposition 2.12.7 (b) generalize this fact?

(b) What property of greatest common divisors of integers does Proposition 2.12.7
(a) generalize?

Proposition 2.12.7 (b) can be extended by replacing the two ideals I and J by
k ideals I1, I2, . . . , Ik:

Proposition 2.12.8. Let I1, I2, . . . , Ik be k ideals of a ring R. Let K be a further
ideal of R. Assume that

Ii + K = R for each i ∈ {1, 2, . . . , k} . (21)

Then, I1 I2 · · · Ik + K = R.

Proof. We proceed by induction on k:
Base case: The ideal R is the neutral element of the monoid of ideals of R

under multiplication (see Proposition 2.11.2 (e)). Thus, the empty product of
ideals of R is defined to be R.

Now, in the case k = 0, the product I1 I2 · · · Ik is an empty product of ideals
and therefore equals R (by the previous sentence). Hence, in this case, we have
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I1 I2 · · · Ik︸ ︷︷ ︸
=R

+K = R + K = R (this is very easy to check). Thus, Proposition 2.12.8

is proved for k = 0.
Induction step: Let m be a positive integer. Assume (as the induction hypothe-

sis) that Proposition 2.12.8 holds for k = m− 1. We must prove that Proposition
2.12.8 holds for k = m.

So let I1, I2, . . . , Im be m ideals of a ring R. Let K be a further ideal of R.
Assume that

Ii + K = R for each i ∈ {1, 2, . . . , m} . (22)
We must then show that I1 I2 · · · Im + K = R.

The equality (22) holds for each i ∈ {1, 2, . . . , m}, and thus in particular for
each i ∈ {1, 2, . . . , m − 1}. Hence, we can apply Proposition 2.12.8 to k = m − 1
(since our induction hypothesis says that Proposition 2.12.8 holds for k = m −
1). Thus we obtain I1 I2 · · · Im−1 + K = R. Since we also have Im + K = R
(by (22), applied to i = m), we can thus apply Proposition 2.12.7 (b) to I =
I1 I2 · · · Im−1 and J = Im. We thus obain

(I1 I2 · · · Im−1) Im + K = R.

In other words, I1 I2 · · · Im + K = R (since (I1 I2 · · · Im−1) Im = I1 I2 · · · Im). Thus,
we have proved that Proposition 2.12.8 holds for k = m. This completes the
induction step, and thus Proposition 2.12.8 is proved by induction.

Lemma 2.12.9. Let I1, I2, . . . , Ik be k ideals of a ring R. Then, I1 I2 · · · Ik ⊆
I1 ∩ I2 ∩ · · · ∩ Ik.

Proof. We proceed by induction on k:
Base case: In the case k = 0, both I1 I2 · · · Ik and I1 ∩ I2 ∩ · · · ∩ Ik are the ideal

R (indeed, this can be seen as in the proof of Proposition 2.12.8, since R is the
neutral element for both the multiplication and the intersection of ideals of R).
Thus, in the case k = 0, we have I1 I2 · · · Ik ⊆ I1 ∩ I2 ∩ · · · ∩ Ik (since R ⊆ R). In
other words, Lemma 2.12.9 is proved for k = 0.

Induction step: Let m be a positive integer. Assume (as the induction hypoth-
esis) that Lemma 2.12.9 holds for k = m − 1. We must prove that Lemma 2.12.9
holds for k = m.

So let I1, I2, . . . , Im be m ideals of a ring R. We must show that I1 I2 · · · Im ⊆
I1 ∩ I2 ∩ · · · ∩ Im.

We can apply Lemma 2.12.9 to k = m − 1 (since our induction hypothesis
says that Lemma 2.12.9 holds for k = m − 1). Thus we obtain I1 I2 · · · Im−1 ⊆
I1 ∩ I2 ∩ · · · ∩ Im−1.

However, Proposition 2.11.2 (b) yields that I J ⊆ I ∩ J for any two ideals I and
J of R. Applying this to I = I1 I2 · · · Im−1 and J = Im, we obtain

(I1 I2 · · · Im−1) Im ⊆ (I1 I2 · · · Im−1)︸ ︷︷ ︸
⊆I1∩I2∩···∩Im−1

∩Im ⊆ (I1 ∩ I2 ∩ · · · ∩ Im−1) ∩ Im

= I1 ∩ I2 ∩ · · · ∩ Im.
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Since (I1 I2 · · · Im−1) Im = I1 I2 · · · Im, we can rewrite this as

I1 I2 · · · Im ⊆ I1 ∩ I2 ∩ · · · ∩ Im.

Thus, we have proved that Lemma 2.12.9 holds for k = m. This completes the
induction step, and thus Lemma 2.12.9 is proved by induction.

Corollary 2.12.10. Let I1, I2, . . . , Ik be k ideals of a ring R. Let K be a further
ideal of R. Assume that

Ii + K = R for each i ∈ {1, 2, . . . , k} .

Then, (I1 ∩ I2 ∩ · · · ∩ Ik) + K = R.

Proof. Lemma 2.12.9 yields I1 I2 · · · Ik ⊆ I1 ∩ I2 ∩ · · · ∩ Ik.
It is easy to see that if I, J, L are three ideals of R such that I ⊆ J, then

I + L ⊆ J + L. Applying this to I = I1 I2 · · · Ik, J = I1 ∩ I2 ∩ · · · ∩ Ik and L = K,
we obtain

I1 I2 · · · Ik + K ⊆ (I1 ∩ I2 ∩ · · · ∩ Ik) + K

(since I1 I2 · · · Ik ⊆ I1 ∩ I2 ∩ · · · ∩ Ik). Hence,

(I1 ∩ I2 ∩ · · · ∩ Ik) + K ⊇ I1 I2 · · · Ik + K = R (by Proposition 2.12.8) .

Combining this with (I1 ∩ I2 ∩ · · · ∩ Ik) + K ⊆ R (which is obvious), we obtain
(I1 ∩ I2 ∩ · · · ∩ Ik) + K = R. Thus, Corollary 2.12.10 is proven.

2.12.5. The Chinese Remainder Theorem for k ideals

As we already suggested, Theorem 2.12.3 and Theorem 2.12.4 can be general-
ized to k ideals. First, a convention:

Definition 2.12.11. Let I1, I2, . . . , Ik be k ideals of a ring R. We say that these
k ideals I1, I2, . . . , Ik are mutually comaximal if Ii + Ij = R holds for all 1 ≤
i < j ≤ k.

In other words, k ideals I1, I2, . . . , Ik are mutually comaximal if Ii and Ij are
comaximal for every i < j. When k > 2, this is a much stronger statement than
I1 + I2 + · · ·+ Ik = R.

For example, if n1, n2, . . . , nk are k arbitrary integers, then the k principal
ideals n1Z, n2Z, . . . , nkZ are mutually comaximal if n1, n2, . . . , nk are mutually
coprime (that is, if ni is coprime to nj for all i < j). When k > 2, this is a much
stronger statement than gcd (n1, n2, . . . , nk) = 1. Be warned! Lots of mistakes
have been made by mistaking “mutually coprime” for “gcd of all k numbers is
1”.

Enough of the warning labels; here are the theorems:
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Theorem 2.12.12 (The Chinese Remainder Theorem for k ideals: ideal part).
Let I1, I2, . . . , Ik be k mutually comaximal ideals of a commutative ring R.
Then,

I1 ∩ I2 ∩ · · · ∩ Ik = I1 I2 · · · Ik.

Theorem 2.12.13 (The Chinese Remainder Theorem for k ideals: quotient
part). Let I1, I2, . . . , Ik be k mutually comaximal ideals of a ring R. Then:

(a) We have

R/ (I1 ∩ I2 ∩ · · · ∩ Ik) ∼= R/I1 × R/I2 × · · · × R/Ik.

(b) More concretely, there is a ring isomorphism

R/ (I1 ∩ I2 ∩ · · · ∩ Ik) → R/I1 × R/I2 × · · · × R/Ik

that sends each residue class r + (I1 ∩ I2 ∩ · · · ∩ Ik) to the k-tuple
(r + I1, r + I2, . . . , r + Ik).

Proof of Theorem 2.12.12. We proceed by induction on k:
Induction base: You can take k = 1 as a base case (it is utterly trivial), or even

k = 0 if you are brave enough65.
Induction step: Let n be a positive integer. (You can assume n > 1 if it makes

you sleep better.) Assume (as the induction hypothesis) that Theorem 2.12.12
holds for k = n − 1. We must now prove that Theorem 2.12.12 holds for k = n.

So let I1, I2, . . . , In be n mutually comaximal ideals of a commutative ring R.
Then, the induction hypothesis yields that Theorem 2.12.12 holds for I1, I2, . . . , In−1.
In particular, we have

I1 ∩ I2 ∩ · · · ∩ In−1 = I1 I2 · · · In−1. (23)

Recall that the ideals I1, I2, . . . , In are mutually comaximal. Hence, for each
i ∈ {1, 2, . . . , n − 1}, the ideals Ii and In are comaximal, i.e., satisfy Ii + In =
R. Hence, Corollary 2.12.10 (applied to k = n − 1 and K = In) yields that
(I1 ∩ I2 ∩ · · · ∩ In−1) + In = R. In other words, the two ideals I1 ∩ I2 ∩ · · · ∩ In−1
and In are comaximal.

Hence, we can apply Theorem 2.12.3 to I = I1 ∩ I2 ∩ · · · ∩ In−1 and J = In.
We thus obtain

(I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In = (I1 ∩ I2 ∩ · · · ∩ In−1) In. (24)

65Make sure to understand the empty product of ideals of R to be R itself, since R is the neutral
element of the monoid of ideals of R under multiplication (see Proposition 2.11.2 (e)).

Likewise, the empty intersection of ideals of R is R itself, since R is the neutral element
of the monoid of ideals of R under intersection (see Proposition 2.11.2 (d)).
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Now,

I1 ∩ I2 ∩ · · · ∩ In = (I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In

= (I1 ∩ I2 ∩ · · · ∩ In−1) In (by (24))
= (I1 I2 · · · In−1) In (by (23))
= I1 I2 · · · In.

Thus, we have proved that Theorem 2.12.12 holds for k = n. This completes the
induction step. Thus, that Theorem 2.12.12 is proved.

Proof of Theorem 2.12.13. We proceed by induction on k:
Induction base: Again, you can use k = 0 as the base case66 (or k = 1 if you

want to avoid trivialities).
Induction step: Let n be a positive integer. (Again, you can assume n > 1 if

you prefer.) Assume (as the induction hypothesis) that Theorem 2.12.13 holds
for k = n − 1. We must now prove that Theorem 2.12.13 holds for k = n.

So let I1, I2, . . . , In be n mutually comaximal ideals of a ring R. Then, the
induction hypothesis yields that Theorem 2.12.13 holds for I1, I2, . . . , In−1. In
particular, part (a) of Theorem 2.12.13 shows that

R/ (I1 ∩ I2 ∩ · · · ∩ In−1) ∼= R/I1 × R/I2 × · · · × R/In−1. (25)

Furthermore, part (b) of Theorem 2.12.13 shows that there is a ring isomor-
phism

R/ (I1 ∩ I2 ∩ · · · ∩ In−1) → R/I1 × R/I2 × · · · × R/In−1 (26)

that does what you would expect it to do (viz., sends each residue class r +
(I1 ∩ I2 ∩ · · · ∩ In−1) to the (n − 1)-tuple (r + I1, r + I2, . . . , r + In−1)).

Recall that the ideals I1, I2, . . . , In are mutually comaximal. Hence, for each
i ∈ {1, 2, . . . , n − 1}, the ideals Ii and In are comaximal, i.e., satisfy Ii + In =
R. Hence, Corollary 2.12.10 (applied to k = n − 1 and K = In) yields that
(I1 ∩ I2 ∩ · · · ∩ In−1) + In = R. In other words, the two ideals I1 ∩ I2 ∩ · · · ∩ In−1
and In are comaximal.

Hence, we can apply Theorem 2.12.4 to I = I1 ∩ I2 ∩ · · · ∩ In−1 and J = In.
We thus obtain (from part (a) of Theorem 2.12.4) that

R/ ((I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In)
∼= R/ (I1 ∩ I2 ∩ · · · ∩ In−1)× R/In; (27)

furthermore, we obtain (from part (b)) that there is a ring isomorphism

R/ ((I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In)

→ R/ (I1 ∩ I2 ∩ · · · ∩ In−1)× R/In (28)

66Just as in the above proof of Theorem 2.12.12, the empty intersection of ideals of R is R by
definition. Thus, R/ (I1 ∩ I2 ∩ · · · ∩ Ik) = R/R is a trivial ring for k = 0.

Also, keep in mind that an empty direct product (i.e., a direct product of 0 rings) is a
trivial ring whose only element is the 0-tuple ().



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 140

that does what you expect (viz., sends each residue class r+((I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In)
to the pair (r + (I1 ∩ I2 ∩ · · · ∩ In−1) , r + In)).

Now, let us combine the isomorphisms that we have found. This requires a
little bit of yak-shaving. We will need the following lemma:

Lemma 2.12.14. Let A, B, C be three rings.

(a) If A ∼= B, then A × C ∼= B × C.

(b) More specifically: If f : A → B is a ring isomorphism, then the map

f × idC : A × C → B × C

(this is the map that sends each pair (a, c) ∈ A×C to ( f (a) , idC (c)) =
( f (a) , c) ∈ B × C) is a ring isomorphism, too.

This lemma simply says that if you replace a ring in a direct product by an
isomorphic one, then the whole direct product too stays isomorphic. I won’t of-
fend your intellect with the proof of this lemma; it is a purely paint-by-numbers
affair. Such lemmas are a dime a dozen, and you are supposed to invent one
whenever you need it. The idea behind this lemma is simply that isomorphisms
behave like equalities.

So let us go back to our proof of Theorem 2.12.13. We have

R/ (I1 ∩ I2 ∩ · · · ∩ In) = R/ ((I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In)
∼= R/ (I1 ∩ I2 ∩ · · · ∩ In−1)︸ ︷︷ ︸

∼=R/I1×R/I2×···×R/In−1
(by (25))

× R/In (by (27))

∼= (R/I1 × R/I2 × · · · × R/In−1)× R/In

(by Lemma 2.12.14 (a))
∼= R/I1 × R/I2 × · · · × R/In;

this proves part (a) of Theorem 2.12.13 for k = n.
It remains to prove part (b). Here we will need Lemma 2.12.14 (b). Indeed,

(26) gives us a ring isomorphism R/ (I1 ∩ I2 ∩ · · · ∩ In−1) → R/I1 × R/I2 ×
· · · × R/In−1, which we can call f ; thus, Lemma 2.12.14 (b) yields a ring iso-
morphism

R/ (I1 ∩ I2 ∩ · · · ∩ In−1)× R/In → (R/I1 × R/I2 × · · · × R/In−1)× R/In,
(a, c) 7→ ( f (a) , c) .
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Now, we compose the arrows in our quiver:

R/ (I1 ∩ I2 ∩ · · · ∩ In)

= R/ ((I1 ∩ I2 ∩ · · · ∩ In−1) ∩ In)

→ R/ (I1 ∩ I2 ∩ · · · ∩ In−1)× R/In (this is the isomorphism from (28))
→ (R/I1 × R/I2 × · · · × R/In−1)× R/In

(this is the isomorphism we just constructed using Lemma 2.12.14 (b))
→ R/I1 × R/I2 × · · · × R/In.

All these arrows are ring isomorphisms; hence, so is their composition. It re-
mains to show that this isomorphism does what you expect (i.e., sends each
residue class r + (I1 ∩ I2 ∩ · · · ∩ In) to (r + I1, r + I2, . . . , r + In)). This is com-
pletely straightforward, and becomes even more so if you drop the details and
just write r for all possible cosets r + J no matter what J is: Following a coset
r = r + (I1 ∩ I2 ∩ · · · ∩ In) through the above arrows, we obtain

r = r 7→ (r, r) 7→ ((r, r, . . . , r) , r) 7→ (r, r, . . . , r) .

While the different r’s mean different things (namely, they are cosets for dif-
ferent ideals), we are never in any danger of confusing them for one another,
since we know what sets these maps go between. So the (r, r, . . . , r) at the end
of this computation must be (r + I1, r + I2, . . . , r + In), since it is an element
of R/I1 × R/I2 × · · · × R/In. So our isomorphism sends r + (I1 ∩ I2 ∩ · · · ∩ In)
to (r + I1, r + I2, . . . , r + In). Thus, part (b) of Theorem 2.12.13 is proved for
k = n.

Both parts of Theorem 2.12.13 are thus proved for k = n. This completes the
induction step, and thus the proof.

2.12.6. Applying to integers again

We can again apply this to R = Z:

Theorem 2.12.15 (The Chinese Remainder Theorem for k integers). Let
n1, n2, . . . , nk be k mutually coprime integers. (“Mutually coprime” means
that ni is coprime to nj whenever i < j). Then,

Z/ (n1n2 · · · nk) ∼= Z/n1 × Z/n2 × · · · × Z/nk.

More concretely, there is a ring isomorphism

Z/ (n1n2 · · · nk) → Z/n1 × Z/n2 × · · · × Z/nk

that does what you expect (i.e., sends each residue class r + n1n2 · · · nkZ to
the k-tuple (r + n1Z, r + n2Z, . . . , r + nkZ)).
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Proof. This can be derived from Theorem 2.12.12 and Theorem 2.12.13, in the
same way as we derived Theorem 2.12.6 from Theorem 2.12.3 and Theorem
2.12.4. Details are LTTR.

Corollary 2.12.16. Let p1, p2, . . . , pk be k distinct primes. Let i1, i2, . . . , ik be k
nonnegative integers. Then,

Z/
(

pi1
1 pi2

2 · · · pik
k

)
∼= Z/pi1

1 × Z/pi2
2 × · · · × Z/pik

k .

More concretely, there is a ring isomorphism

Z/
(

pi1
1 pi2

2 · · · pik
k

)
→ Z/pi1

1 × Z/pi2
2 × · · · × Z/pik

k

that does what you expect.

Proof. The prime powers pi1
1 , pi2

2 , . . . , pik
k are mutually coprime; thus, we can

apply Theorem 2.12.15 to nj = p
ij
j .

Note that it is important that the primes be distinct in Corollary 2.12.16. For
example, Z/p2 is not isomorphic to Z/p × Z/p (not even as additive groups,
let alone as rings).

The Chinese Remainder Theorem (and Corollary 2.12.16 in particular) has
many down-to-earth consequences. For example, here is one:

Exercise 2.12.2. Let n be a positive integer. Let k be the number of distinct prime
factors of n. (For instance, if n = 360 = 23 · 32 · 5, then k = 3.)

Show that the ring Z/n has exactly 2k idempotent elements.

Let us next use the Chinese Remainder Theorem to revisit Exercise 1.5.5. That
exercise asked you to count how many of the numbers 0, 1, . . . , n − 1 appear as
remainders of a perfect square divided by n, when n is 7 or 14. Let us now ask
ourselves the same question for an arbitrary positive integer n. It is not hard
to see that this question is equivalent to asking how many elements of the ring
Z/n are squares in this ring. Here I am using the following terminology:

Definition 2.12.17. Let R be a ring. An element r ∈ R is said to be a square
(in R) if there exists some u ∈ R such that r = u2.

For example, the squares in R are the nonnegative reals, whereas the squares
in Z are the perfect squares. For another example, the squares in Z/7Z are the
four elements 0, 1, 2, 4. (Indeed, this is equivalent to the answer to Exercise 1.5.5
(a).)

If n is a positive integer, then an element i ∈ {0, 1, . . . , n − 1} is the remainder
of some perfect square divided by n if and only if the element i = i + nZ is a
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square in Z/n. Thus, counting distinct remainders of perfect squares divided
by n is equivalent to counting squares in Z/n.

Now, I claim that the latter can be done easily when the prime factorization
of n is known. The way to do it is in three steps:

1. Answer the question (i.e., “how many squares does Z/n have?”) when n
is prime.

2. Extend the answer to the case when n is a prime power (i.e., a number of
the form pi with p prime and i ∈ N).

3. Finally, extend the answer to all positive integers n.

This three-step program is a standard strategy for answering number-theoretical
questions. Typically, the three steps each have methods tailored to them:

1. When n is prime, the ring Z/n is a field. This makes many tactics avail-
able that would otherwise not work; e.g., Gaussian elimination works over
fields but not generally over arbitrary rings (we will learn more about this
later).

2. There are many tools for “lifting” results about primes to analogous re-
sults about prime powers.

3. Here, the Chinese Remainder Theorem becomes useful. Any positive in-
teger Z/n is a product of finitely many mutually coprime prime powers
pa1

1 , pa2
2 , . . . , pak

k . Thus, the Chinese Remainder Theorem (more precisely,
Corollary 2.12.16) yields

Z/n ∼= Z/pa1
1 × Z/pa2

2 × · · · × Z/pak
k . (29)

For our specific question (counting squares in Z/n), Step 1 is quite easy (see
Exercise 2.12.3 (c) below). (More precisely, that exercise covers the case when n
is odd. But the only even prime is 2, and you can count the squares in Z/2 on
your hands67.) Step 2 is both trickier and more laborious (see Exercises 2.12.5
and 2.12.6 below). Step 3 is now easy (assuming Steps 1 and 2 are done): If
A1, A2, . . . , Ak are rings, then the squares in the direct product A1 × A2 × · · · ×
Ak are just the k-tuples (a1, a2, . . . , ak) where each ai is a square in Ai; thus,

(the number of squares in A1 × A2 × · · · × Ak)

=
k

∏
i=1

(the number of squares in Ai) . (30)

67Not fingers, hands.
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Furthermore, isomorphic rings have the same number of squares (since any
ring morphism sends squares to squares). Thus, (29) yields

(the number of squares in Z/n)

=
(
the number of squares in Z/pa1

1 × Z/pa2
2 × · · · × Z/pak

k

)
=

k

∏
i=1

(
the number of squares in Z/pai

i
)

(by (30)) .

As promised, we shall now compute the number of squares in Z/p when
p is an odd prime. Better even, let us compute the number of squares in any
finite field F that satisfies 2 · 1F ̸= 0F. (This is a more general question, since
Z/p is a finite field whenever p is a prime, and it satisfies 2 · 1F ̸= 0F whenever
p is odd.)

Exercise 2.12.3. Let F be a field.

(a) Prove that if a, b ∈ F satisfy a2 = b2, then a = b or a = −b.

From now on, assume that 2 · 1F ̸= 0F (that is, 1F + 1F ̸= 0F). Note that this is
satisfied whenever F = Z/pZ for a prime p > 2 (but also for various other finite
fields), but fails when F = Z/2Z.

(b) Prove that a ̸= −a for every nonzero a ∈ F.

From now on, assume that F is finite.

(c) Prove that the number of squares in F is
1
2
(|F|+ 1).

(d) Conclude that |F| is odd.

[Hint: For part (c), argue that each nonzero square in F can be written as α2 for
exactly two distinct elements α ∈ F.]

Our next step towards counting squares in Z/n is the following exercise
([21w, homework set #2, Exercise 4]):

Exercise 2.12.4. Let p be a prime number.

(a) Prove that if a and b are two integers such that a2 ≡ b2 mod p2, then a ≡
b mod p2 or a ≡ −b mod p2 or a ≡ b ≡ 0 mod p.

(b) Prove that the number of squares in the ring Z/p2 is
p2 − p

2
+ 1.

When the prime number p is distinct from 2, this can be extended to higher
powers of p:
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Exercise 2.12.5. Let p > 2 be a prime number. Let k be a positive integer.

(a) Prove that if a and b are two integers such that a2 ≡ b2 mod pk, then a ≡
b mod pk or a ≡ −b mod pk or a ≡ b ≡ 0 mod p.

(b) Prove that the number of squares in the ring Z/pk that are units is
pk − pk−1

2
.

(c) Prove that there is a bijection

from the set
{

squares in the ring Z/pk that are not units
}

to the set
{

squares in the ring Z/pk−2
}

whenever k ≥ 2.

(d) Prove that the number of all squares in the ring Z/pk is

1
2

{
pk − pk−1 + pk−2 − pk−3 + pk−4 − pk−5 ± · · · − p1 + 2, if k is even;
pk − pk−1 + pk−2 − pk−3 + pk−4 − pk−5 ± · · · − p0, if k is odd.

Something similar works when p is 2, but there are some nuances:

Exercise 2.12.6. Let k ≥ 2 be an integer.

(a) Prove that if a and b are two integers such that a2 ≡ b2 mod 2k, then a ≡
b mod 2k−1 or a ≡ −b mod 2k−1 or a ≡ b ≡ 0 mod 2.

(b) Conversely, prove that if a and b are two integers such that a ≡ b mod 2k−1 or
a ≡ −b mod 2k−1, then a2 ≡ b2 mod 2k.

(c) Prove that the number of squares in the ring Z/2k that are units is 2k−3 if
k ≥ 3, and is 1 otherwise.

(d) Compute the number of all squares in the ring Z/2k.

2.12.7. Remark on noncommutative rings

Theorem 2.12.12 becomes false if we drop the assumption that R be commutative.
Indeed, even Theorem 2.12.3 becomes false for noncommutative R, as the following
exercise (taken from [vanDal06, Example 4]) shows:

Exercise 2.12.7. Let R be any nontrivial ring, and consider the ideals I, J, K of the
upper-triangular matrix ring R2≤2 defined in Exercise 2.8.5 (a).

(a) Prove that I and J are comaximal (i.e., we have I + J = R2≤2).

(b) Prove that I ∩ J ̸= I J.
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However, we can tweak Theorem 2.12.12 to make it work for noncommutative rings
R as well:

Theorem 2.12.18. Let I1, I2, . . . , Ik be k mutually comaximal ideals of a (not necessar-
ily commutative) ring R. Let I1 ∗ I2 ∗ · · · ∗ Ik denote the sum of all the k! products
J1 J2 · · · Jk, where J1, J2, . . . , Jk are the k ideals I1, I2, . . . , Ik in some order. (For example,
if k = 3, then I1 ∗ I2 ∗ I3 = I1 I2 I3 + I1 I3 I2 + I2 I1 I3 + I2 I3 I1 + I3 I1 I2 + I3 I2 I1.)

Then,
I1 ∩ I2 ∩ · · · ∩ Ik = I1 ∗ I2 ∗ · · · ∗ Ik.

Exercise 2.12.8. Prove Theorem 2.12.18.

[Hint: The proof is a not-too-difficult adaptation of our above proof of Theorem
2.12.12.]

Theorem 2.12.18 can be improved even further. Namely, instead of summing all the
k! products J1 J2 · · · Jk, we can sum the two products I1 I2 · · · Ik and Ik Ik−1 · · · I1 (that
is, we can replace I1 ∗ I2 ∗ · · · ∗ Ik by the sum I1 I2 · · · Ik + Ik Ik−1 · · · I1), and Theorem
2.12.18 will remain true! This fascinating result (and a further generalization) is proved
in Birgit van Dalen’s nicely written bachelor thesis [vanDal05], which is a good reason
to learn Dutch68. As an exercise, we suggest proving its k = 3 case:

Exercise 2.12.9. Let R be a ring. Let I, J, K be three mutually comaximal ideals of
R. Prove that I ∩ J ∩ K = I JK + KJI.

Here are two similar exercises (the first again courtesy of [vanDal05]):

Exercise 2.12.10. Let R be a ring. Let I, J, K be three mutually comaximal ideals of
R. Prove that I ∩ J ∩ K = I JK + JKI + KI J.

Exercise 2.12.11. Let R be a ring. Let I, J, K be three mutually comaximal ideals of
R. Prove that I J + JK + KI = R.

The next exercise shows that comaximality of ideals is passed on from two ideals to
their powers:

Exercise 2.12.12. Let R be a ring. Let I and J be two comaximal ideals of R. Let n
be a positive integer.

(a) Prove that the ideals I and Jn are comaximal as well. (Here, Jn means J J · · · J︸ ︷︷ ︸
n times

,

where we refer to Definition 2.11.1 (b) for the definition of the product of two
ideals.)

(b) Let m be a further positive integer. Prove that the ideals Im and Jn are comax-
imal as well.

68See [vanDal06] for a summary in English.
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(c) By applying this to R = Z, prove that if a and b are two coprime integers, then
their powers am and bn are also coprime whenever m and n are two positive
integers.

2.13. Euclidean rings and Euclidean domains ([DumFoo04,
§8.1])

2.13.1. All ideals of Z are principal

We have talked about ideals of Z a lot (they give rise to modular arithmetic),
but you might have noticed that all of them were principal. This is no accident:

Proposition 2.13.1. Any ideal of Z is principal.

Proof. Let I be an ideal of Z. We must show that I is principal.
If I = {0}, then this is clear (since I = 0Z in this case). So we WLOG

assume that I ̸= {0}. Since I always contains 0, this means that I must contain
a nonzero integer as well. Hence, I contains a positive integer (because if I
contains a negative integer a, then I must also contain (−1) a, which is positive).
Let b ∈ I be the smallest positive integer that I contains. Hence, I cannot
contain any positive integer smaller than b. However, I contains b, and thus
contains every multiple of b (since I is an ideal). In other words, bZ ⊆ I.

We will now show that I ⊆ bZ. Indeed, let a ∈ I. Let r be the remainder
of a divided by b. Then, r ∈ {0, 1, . . . , b − 1} and r ≡ a mod b. Now, from r ≡
a mod b, we obtain b | r − a and thus r − a ∈ bZ ⊆ I. Hence, r = r − a︸ ︷︷ ︸

∈I

+ a︸︷︷︸
∈I

∈

I + I = I (since I is an ideal of Z). Hence, r cannot be a positive integer
smaller than b (since I cannot contain any positive integer smaller than b). In
other words, r /∈ {1, 2, . . . , b − 1}. Contrasting this with r ∈ {0, 1, . . . , b − 1}, we
obtain r = 0. Thus, b | r︸︷︷︸

=0

−a = 0 − a | −a | a, so that a ∈ bZ.

Forget that we fixed a. We thus have shown that a ∈ bZ for each a ∈ I. In
other words, I ⊆ bZ. Combined with bZ ⊆ I, this yields I = bZ. Thus, I is
principal, qed.

The key to making this proof work was clearly the concept of division with
remainder. Not every ring has this feature. However, many rings different from
Z have it; thus, it is worth defining a word for them:

2.13.2. Euclidean rings and Euclidean domains

Definition 2.13.2. Let R be a commutative ring.

(a) A norm on R means a function N : R → N with N (0) = 0.
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(b) A norm N on R is said to be Euclidean if for any a ∈ R and any nonzero
b ∈ R, there exist elements q, r ∈ R with

a = qb + r and (r = 0 or N (r) < N (b)) .

(c) We say that R is a Euclidean ring if R has a Euclidean norm.

(d) We say that R is a Euclidean domain if R is a Euclidean ring and is an
integral domain.

You can think of the norm as a measure of the “size” of an element of R, similar
to the absolute value of an integer or to the degree of a polynomial. (These will
indeed be particular cases.) Note that we are not requiring that the norm have
any nice algebraic properties (such as N (ab) = N (a) N (b), which will be true
for some Euclidean norms but not for others). We are also not requiring the q
and the r in Definition 2.13.2 (b) to be unique. If your familiarity with norms
comes from real analysis, be warned that the concept we have defined here has
nothing in common with the one you know except for the name.

Some examples will help illustrate the definition:

• Any field F is a Euclidean domain. Indeed, any map N : F → N with
N (0) = 0 is a Euclidean norm on F. (To see that it satisfies the condition
of Definition 2.13.2 (b), just set q =

a
b

and r = 0.)

• The ring Z is a Euclidean domain. Indeed, the map

N : Z → N,
a 7→ |a|

is a Euclidean norm on Z. The fact that it is Euclidean follows from
division with remainder69. However, the q and the r in Definition 2.13.2
(b) are not unique! For a = 7 and b = 5, there are two pairs (q, r) ∈ Z×Z

with
a = qb + r and (r = 0 or N (r) < N (b)) .

These two pairs are (1, 2) and (2,−3). The second pair has negative r,
which is why it does not qualify as a quotient-remainder pair in the sense
of high school arithmetic; but this r nevertheless qualifies for the definition
of a Euclidean norm.

69In more detail: We need to show that for any a ∈ Z and any nonzero b ∈ Z, there exist
elements q, r ∈ Z with

a = qb + r and (r = 0 or |r| < |b|) .

To find these q, r, we divide a by |b| with remainder. Let q0 and r0 be the quotient and
the remainder that we obtain. If b is positive, we can then take q = q0 and r = r0. If b is
negative, then we instead take q = −q0 and r = r0 (because b = − |b|).
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• If F is a field, then the ring F [x] of univariate polynomials over F is a
Euclidean domain. We will discuss this later in more detail, when we
study polynomials. However, polynomial rings in more than 1 variable
are not Euclidean; neither are polynomial rings over non-fields.

• The ring Z [i] of Gaussian integers is a Euclidean domain. Indeed, we
claim that the map

N : Z [i] → N,

a + bi 7→ a2 + b2 (for all a, b ∈ Z)

is a Euclidean norm.

To prove this, we must show that for any α ∈ Z [i] and any nonzero
β ∈ Z [i], there exist elements q, r ∈ Z [i] with

α = qβ + r and (r = 0 or N (r) < N (β)) . (31)

So let us fix an α ∈ Z [i] and a nonzero β ∈ Z [i]. We are looking for
elements q, r ∈ Z [i] that satisfy (31). We can even replace the “r = 0
or N (r) < N (β)” condition in (31) by the stronger condition “N (r) <
N (β)”.

To find the elements q, r we are seeking, we make the following observa-
tion: The absolute value |z| of a complex number z = a+ bi (with a, b ∈ R)
is defined as |z| =

√
a2 + b2, whereas the norm N (z) of a Gaussian inte-

ger z = a + bi (with a, b ∈ Z) is defined as N (z) = a2 + b2. Thus, any
z ∈ Z [i] satisfies N (z) = |z|2. Hence, we have the following chain of
equivalences:

(N (r) < N (β)) ⇐⇒
(
|r|2 < |β|2

)
⇐⇒ (|r| < |β|) ⇐⇒

(
|r|
|β| < 1

)
⇐⇒

(∣∣∣∣ r
β

∣∣∣∣ < 1
)

(32)

(since
|z|
|w| =

∣∣∣ z
w

∣∣∣ for any two complex numbers z and w ̸= 0). Moreover,

we have the equivalence

(α = qβ + r) ⇐⇒
(

α

β
= q +

r
β

)
⇐⇒

(
α

β
− q =

r
β

)
. (33)

Now, recall that we are looking for elements q, r ∈ Z [i] that satisfy α =
qβ + r and N (r) < N (β). In view of (32) and (33), this means that we

are looking for elements q, r ∈ Z [i] that satisfy
α

β
− q =

r
β

and
∣∣∣∣ r
β

∣∣∣∣ <
1. Equivalently, we can look for a Gaussian integer q ∈ Z [i] satisfying
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∣∣∣∣αβ − q
∣∣∣∣ < 1 (because once such a q has been found, we can set r = α − qβ

and obtain
r
β
=

α − qβ

β
=

α

β
− q, so that

α

β
− q =

r
β

and
∣∣∣∣ r
β

∣∣∣∣ = ∣∣∣∣αβ − q
∣∣∣∣ <

1). But finding such a q is easy if you remember the geometric meaning
of the Gaussian integers: The Gaussian integers are the lattice points of a
square lattice in the plane:

−2 −1 0 1 2

−2 + i −1 + i 1 + i 2 + ii

−2 − i −1 − i 1 − i 2 − i−i

−2 + 2i −1 + 2i 1 + 2i 2 + 2i2i

−2 − 2i −1 − 2i 1 − 2i 2 − 2i−2i

(imagine the lattice being extended to infinity in all four directions). So a

Gaussian integer q ∈ Z [i] satisfying
∣∣∣∣αβ − q

∣∣∣∣ < 1 simply means a lattice

point at a distance70 less than 1 from the point
α

β
. Geometrically, it is easy

to see that such a lattice point exists (since the point
α

β
must lie in one

of the squares of the lattice, and then have distance <

√
2

2
from one of

70The distance between two complex numbers x and y is defined to be the real number |x − y|.
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the four vertices of the square71; but this entails that
α

β
has distance < 1

from this latter vertex72). This can also be proved algebraically73. Thus,
we have found q.

(A slightly restated version of this proof can be found in the proof of The-
orem 3.1 in Keith Conrad’s The Gaussian integers (see https://kconrad.

71Here is a close-up picture of the square (with one possible location of
α

β
):

1 + i 2 + i

1 + 2i 2 + 2i

α/β

I am claiming that the point
α

β
has distance <

√
2

2
from one of the four vertices of the

square in which it lies. The easiest way to see this geometrically is to draw circles of radius√
2

2
around the vertices of the square, and convince yourself that these circles cover the

entire square:

1 + i 2 + i

1 + 2i 2 + 2i

α/β

.

72since

√
2

2
< 1

73Proof. Write the point
α

β
as x + yi, where x and y are real numbers. Each real number z has

distance ≤ 1
2

from the nearest integer (which is either ⌊z⌋ or ⌈z⌉). Thus, x has distance

≤ 1
2

from some integer n, and likewise y has distance ≤ 1
2

from some integer m. Consider

these n and m. Then, |x − n| ≤ 1
2

and |y − m| ≤ 1
2

. Since n and m are integers, we have

https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
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math.uconn.edu/math5230f12/handouts/Zinotes.pdf ).)

• The ring
Z
[√

−2
]

:=
{

a + b
√
−2 | a, b ∈ Z

}
(this is another subring of C, since

√
−2 =

√
2i) is Euclidean, too. (See

Exercise 2.13.1 for a proof.)

• The ring
Z
[√

−3
]

:=
{

a + b
√
−3 | a, b ∈ Z

}
(this is another subring of C, since

√
−3 =

√
3i) is not Euclidean. (For a

proof, see https://math.stackexchange.com/questions/115934 or Exer-
cise 2.16.6 below.)

However, there is a slightly larger ring that is Euclidean: namely, the so-
called ring of Eisenstein integers, defined as

Z [ω] := {a + bω | a, b ∈ Z}

for ω =
−1 +

√
−3

2
. (See Exercise 2.13.3 below for the proof that this ring

is Euclidean.)

• The ring
Z
[√

2
]

:=
{

a + b
√

2 | a, b ∈ Z
}

n + mi ∈ Z [i], so that n + mi is a lattice point. However,
α

β
= x + yi, so that

α

β
− (n + mi) = (x + yi)− (n + mi) = (x − n) + (y − m) i.

Hence,∣∣∣∣ αβ − (n + mi)
∣∣∣∣ = |(x − n) + (y − m) i|

=

√
(x − n)2 + (y − m)2

 by the definition of the absolute
value of a complex number,

since x − n and y − m are reals


=

√
|x − n|2 + |y − m|2

≤

√(
1
2

)2
+

(
1
2

)2 (
since |x − n| ≤ 1

2
and |y − m| ≤ 1

2

)
=

√
1
2
=

√
2

2
< 1.

Thus, the lattice point n + mi has a distance of < 1 from the point
α

β
.

https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://math.stackexchange.com/questions/115934
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(this is a subring of R) is Euclidean. A Euclidean norm for it is the map

Z
[√

2
]
→ N,

a + b
√

2 7→
∣∣∣a2 − 2b2

∣∣∣ (for a, b ∈ Z) .

(See Exercise 2.13.2 below for a proof.)

• The ring
Z
[√

14
]

:=
{

a + b
√

14 | a, b ∈ Z
}

is Euclidean. A Euclidean norm for it is notoriously hard to construct (in
particular, it is not the map sending each a + b

√
14 to

∣∣a2 − 14b2
∣∣). See

https://math.stackexchange.com/questions/1148364 .

• The ring Z
[√

5
]

:=
{

a + b
√

5 | a, b ∈ Z
}

is not Euclidean.

• For each n ∈ Z, the ring Z/n is Euclidean (but is not a Euclidean domain
in most cases). A Euclidean norm N on this ring is easy to construct (e.g.,
for n > 0, we can define N (a) to be the smallest nonnegative integer in
the residue class a).

Thus, we have now seen multiple examples and non-examples of Euclidean
rings and Euclidean domains. Now, we claim that all Euclidean domains have
a property that we have previously proved for Z:

Proposition 2.13.3. Let R be a Euclidean ring. Then, any ideal of R is princi-
pal.

Proof. The same argument we used for proving Proposition 2.13.1 can easily be
adapted to prove Proposition 2.13.3. The main change is that you now need to
take a nonzero b ∈ I with smallest possible N (b). (Here, N is a fixed Euclidean
norm on R.) For details, see [DumFoo04, §8.1, proof of Proposition 1].

Remark 2.13.4. Euclidean domains are much more well-studied than Eu-
clidean rings. Some authors go as far as using the word “Euclidean ring”
as a synonym for “Euclidean domain” (which, of course, conflicts with our
definition of the former).

See https://kconrad.math.uconn.edu/blurbs/ringtheory/euclideanrk.pdf
for more about Euclidean domains.

Exercise 2.13.1. Prove that the ring

Z
[√

−2
]

:=
{

a + b
√
−2 | a, b ∈ Z

}

https://math.stackexchange.com/questions/1148364
https://kconrad.math.uconn.edu/blurbs/ringtheory/euclideanrk.pdf
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is Euclidean, and that the map

N : Z
[√

−2
]
→ N,

a + b
√
−2 7→ a2 + 2b2 (for a, b ∈ Z)

is a Euclidean norm for it.

[Hint: Imitate the above proof for Z [i].]

Exercise 2.13.2. Prove that the ring

Z
[√

2
]

:=
{

a + b
√

2 | a, b ∈ Z
}

is Euclidean, and that the map

N : Z
[√

2
]
→ N,

a + b
√

2 7→
∣∣a2 − 2b2∣∣ (for a, b ∈ Z)

is a Euclidean norm for it.

[Hint: First, prove that the latter map N is multiplicative – i.e., that it satisfies
N (xy) = N (x) · N (y) for all x, y ∈ Z

[√
2
]
.]

Exercise 2.13.3. Let ω denote the complex number
−1 +

√
−3

2
∈ C.

(a) Prove that ω3 = 1 and ω2 + ω + 1 = 0.

(b) Prove that |a + bω| =
√

a2 − ab + b2 for any a, b ∈ R.

(c) Define a subset Z [ω] of C by

Z [ω] := {a + bω | a, b ∈ Z} .

Prove that Z [ω] is a subring of C. (It is called the ring of Eisenstein integers.)

(d) Prove that Z
[√

−3
]

is a subring of Z [ω].

(e) Prove that the ring Z [ω] is Euclidean, and that the map

N : Z [ω] → N,

a + bω 7→ a2 − ab + b2 (for a, b ∈ Z)

is a Euclidean norm for it.

(f) Find all units of the ring Z [ω].

(g) Show that an element a + bω of Z [ω] (with a, b ∈ Z) belongs to Z
[√

−3
]

if
and only if b is even.
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(h) Consider Z [ω] as an additive group, and Z
[√

−3
]

as a subgroup of Z [ω].
Prove that this subgroup Z

[√
−3
]

has index 2 in Z [ω] (that is, the quotient
group Z [ω] /Z

[√
−3
]

has size 2).

(i) If z ∈ Z [ω] is any Eisenstein integer, then at least one of the three numbers
z, zω, zω2 belongs to Z

[√
−3
]
.

[Hint: Geometrically speaking, the three complex numbers 1, ω, ω2 are the ver-
tices of an equilateral triangle inscribed in the unit circle. The elements of Z [ω]
are the grid points of a triangular lattice that looks as follows (imagine the picture
extended to infinity all on sides):

0 1

−1

√
−3

ω

ω2

ω + 1

−ω

−ω2

(where the red points are the ones that belong to Z
[√

−3
]
).]

Exercise 2.13.4. Fix an integer m. Consider the ring Rm defined in Exercise 2.3.2.
Prove that Rm is a Euclidean domain. More concretely:

(a) For every nonzero r ∈ Rm, we let r̃ be the smallest positive numerator of r.
(A “numerator” of a rational number r means an integer of the form dr with
d ∈ Z. In other words, if we write r as a ratio of two integers, then the
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numerator of this fraction is called a “numerator” of r. For example, 7 is a

numerator of
7
9

, but so are 14 and 21 and −14 and so on.)

Prove that r̃ exists.

(b) Prove that the map

N : Rm → N,
r 7→ r̃ for r ̸= 0,
0 7→ 0

is a Euclidean norm on Rm.

Exercise 2.13.5. Let N2 : Z → N be the map that sends 0 to 0, while sending each
nonzero integer n to ⌊log2 |n|⌋. (Recall that ⌊x⌋ denotes the floor of a real number x
– that is, the largest integer that is ≤ x. Thus, N2 (7) = ⌊log2 |7|⌋ = ⌊2.807 . . .⌋ = 2.)

Prove that N2 is a Euclidean norm on Z.

Exercise 2.13.6. Let A and B be two Euclidean rings. Prove that the ring A × B is
again Euclidean.

Exercise 2.13.7. Let R be a Euclidean ring. Let I be an ideal of R. Show that the
quotient ring R/I is again Euclidean.

[Hint: Let N be a Euclidean norm on R. Define a norm N on R/I by setting
N (x) = min {N (a) | a ∈ x} for all residue classes x ∈ R/I.]

Exercise 2.13.8. Prove that if we replace the condition “r = 0 or N (r) < N (b)” by
“N (r) < N (b)” in Definition 2.13.2, then the resulting notion of a Euclidean ring
will be equivalent to ours (even though a given Euclidean norm N might no longer
qualify as a Euclidean norm).

2.13.3. The (extended) Euclidean algorithm

Imagine that you are given some ideal I of Z. Proposition 2.13.1 then guaran-
tees that this ideal I is principal, i.e., has the form I = cZ for a single integer c.
Now, suppose you want to actually find this c.

Our above proof of Proposition 2.13.1 is of some help here: It guarantees that
I = cZ, where c is the smallest positive integer contained in I (or 0 if no such
integer exists)74. Depending on how much you know about I, this can make
c easy to find. But this is not automatic. Indeed, in some cases (e.g., when
I is given as the set of all integers satisfying some complicated uncomputable

74This c was denoted by b in our proof of Proposition 2.13.1.
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condition), finding an integer c ∈ Z satisfying I = cZ is even algorithmically
impossible75, even though such a c exists for theoretical reasons.

However, if the ideal I is defined in a sufficiently simple way, then this prob-
lem might be algorithmically solvable. A particularly well-behaved example is
when I is given in the form I = aZ + bZ for two explicitly provided integers
a and b. In this case, finding an integer c satisfying I = cZ amounts to finding
the greatest common divisor gcd (a, b) of a and b (because Proposition 2.11.3 (c)
yields that aZ+ bZ = gcd (a, b)Z). The famous Euclidean algorithm computes
this gcd (a, b), thus solving the problem of finding c. Furthermore, a variant of
this algorithm – known as the extended Euclidean algorithm – computes two
integers x and y satisfying gcd (a, b) = xa + yb. These integers x and y “make
the equality aZ + bZ = gcd (a, b)Z explicit” (in the sense that they allow us to
actually express an element of gcd (a, b)Z in the form “a times an integer plus
b times an integer”, rather than merely guaranteeing that such an expression
exists).

These two Euclidean algorithms (the usual one and the extended one) can
be found in any textbook on elementary number theory (see, e.g., [Stein09,
Algorithm 2.3.7] for the extended Euclidean algorithm; the usual can easily be
obtained from it). Here, however, we are interested not in the integers but in
their various generalizations. For what other commutative rings R do such
algorithms (expressing an ideal of the form aR + bR as a principal ideal cR)
exist?76

Let us make this question more precise: We want an algorithm which, if you
input two elements a, b ∈ R, outputs an element c ∈ R that satisfies aR + bR =
cR. Ideally, this algorithm should also provide “evidence” for this equality
aR + bR = cR, that is, a way to express every element of cR as an element of
aR + bR and vice versa. In order to express every element of cR as an element
of aR + bR, it suffices to write c as a sum xa + yb with x, y ∈ R. In order to
express every element of aR + bR as an element of cR, it suffices to write a in
the form a = cu for some u ∈ R, and to write b in the form b = cv for some
v ∈ R. So we want our algorithm to output not only c but also x, y, u and v.
In other words, we want it to output the 5-tuple (x, y, c, u, v) (there is nothing
special about the order in which I listed its entries; I just picked it to put the
most important output, c, in the middle).

Let me give this 5-tuple a name:

75Appreciators of theoretical computer science will easily concoct an ideal I of Z such that
finding an integer c satisfying I = cZ is tantamount to solving the halting problem (which
is known to be algorithmically unsolvable).

76Let me stress that the aR, bR and cR here are ideals. The “+” sign in “aR + bR” stands
for a sum of ideals. Thus, the equality aR + bR = cR has nothing to do with the equality
a+ b = c. (Indeed, the former equality neither implies nor follows from the latter; the ideals
(a + b) R and aR + bR are not the same.)

Translated into the language of elements, the equality aR+ bR = cR says that the elements
that can be written as a multiple of a plus a multiple of b are precisely the multiples of c.

https://en.wikipedia.org/wiki/Halting_problem
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Definition 2.13.5. Let a and b be two elements of a commutative ring R.
Then, a Bezout 5-tuple for (a, b) shall mean

a 5-tuple (x, y, c, u, v) ∈ R5 that satisfies
xa + yb = c and a = cu and b = cv.

Example 2.13.6. Let R = Z and a = 10 and b = 6. Then, (−1, 2, 2, 5, 3) is a
Bezout 5-tuple for (a, b), since it satisfies (−1) a+ 2b = (−1) 10+ 2 · 6 = 2 = c
and a = 10 = 2 · 5 = cu and b = 6 = 2 · 3 = cv. Another Bezout 5-tuple for
(a, b) is (1,−2,−2,−5,−3). Yet another is (2,−3, 2, 5, 3). There are infinitely
many Bezout 5-tuples (x, y, c, u, v) for (a, b), since we can always replace x
and y by x + 3 and y − 5 without changing xa + yb.

For a general commutative ring R, a Bezout 5-tuple for (a, b) will not always
exist. But when it does, it answers all our questions about the ideal aR + bR:

Proposition 2.13.7. Let R be a commutative ring. Let a, b ∈ R be arbitrary,
and let (x, y, c, u, v) be a Bezout 5-tuple for (a, b). Then:

(a) We have aR + bR = cR.

(b) Any element ap + bq of aR + bR can be explicitly expressed as an ele-
ment of cR by rewriting it in the form c (up + vq).

(c) Any element cr of cR can be explicitly expressed as an element of aR +
bR by rewriting it as axr + byr.

Proof. We know that (x, y, c, u, v) is a Bezout 5-tuple for (a, b). Thus, the defini-
tion of a Bezout 5-tuple yields that xa + yb = c and a = cu and b = cv.

Now, any element of aR + bR has the form ap + bq for some p, q ∈ R, and
therefore belongs to cR, since

a︸︷︷︸
=cu

p + b︸︷︷︸
=cv

q = cup + cvq = c (up + vq)︸ ︷︷ ︸
∈R

∈ cR.

This shows that aR + bR ⊆ cR.
On the other hand, any element of cR has the form cr for some r ∈ R, and

therefore belongs to aR + bR, since

c︸︷︷︸
=xa+yb

r = (xa + yb) r = a xr︸︷︷︸
∈R

+b yr︸︷︷︸
∈R

∈ aR + bR.

This shows that cR ⊆ aR + bR. Combining this with aR + bR ⊆ cR, we obtain
aR + bR = cR. Therefore, part (a) is proved.
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Part (b) was proved above (in the process of proving aR + bR ⊆ cR), and part
(c) was proved as well (in the process of showing that cR ⊆ aR + bR). Thus,
Proposition 2.13.7 is fully proved.

Thus, our problem about aR + bR is now reduced to the following: Given
two elements a and b of a commutative ring R, when can we algorithmically
find a Bezout 5-tuple for (a, b) ?

For most rings R, the answer is “no” already because such a Bezout 5-tuple
doesn’t always exist. However, the answer is “yes” when R is a Euclidean ring.
To be more precise, it is “yes” when R is a Euclidean ring satisfying certain
computability requirements:

Theorem 2.13.8. Let R be a Euclidean ring.

(a) Then, for any two elements a, b ∈ R, there exists a Bezout 5-tuple for
(a, b).

(b) Moreover, there exists an algorithm that computes a Bezout 5-tuple
for any pair (a, b) ∈ R2, provided that the Euclideanness of R itself is
algorithmic77.

Proof. (a) Since R is Euclidean, there exists a Euclidean norm N : R → N.
Consider this norm N.

We shall prove Theorem 2.13.8 (a) by strong induction on the nonnegative
integer N (b).

So let n ∈ N. As the induction hypothesis, we assume that Theorem 2.13.8
(a) is true for any pair (a, b) ∈ R2 satisfying N (b) < n. We must now prove
that Theorem 2.13.8 (a) holds for any pair (a, b) ∈ R2 satisfying N (b) = n.

So let (a, b) ∈ R2 be a pair satisfying N (b) = n. Our goal is to prove that
Theorem 2.13.8 (a) holds for this pair, i.e., to prove that there exists a Bezout
5-tuple for (a, b).

To construct this 5-tuple, we distinguish between two cases:

77By “the Euclideanness of R itself is algorithmic”, we mean the following:

• There are algorithms for adding, subtracting and multiplying arbitrary elements of
R.

• There is an algorithm for checking whether two given elements of R are equal.

• There is a Euclidean norm N : R → N that can be computed by an algorithm (i.e.,
there is an algorithm that computes N (a) for each a ∈ R).

• The q and the r in Definition 2.13.2 (b) can be computed an algorithm (i.e., there
exists an algorithm that, if you input an element a ∈ R and a nonzero element b ∈ R,
will output a pair (q, r) ∈ R2 such that a = qb + r and (r = 0 or N (r) < N (b))).

Actually, the computability of the norm N is not even necessary for our algorithm.
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• Case 1: Assume that b = 0. Then, we set (x, y, c, u, v) := (1, 0, a, 1, 0). It is
easy to see that this is a Bezout 5-tuple for (a, b) (since 1a + 0b = a and
a = a · 1 and b = 0 = a · 0). Hence, we have found a Bezout 5-tuple for
(a, b) in Case 1.

• Case 2: Assume that b ̸= 0. Since N is a Euclidean norm, there exist
elements q, r ∈ R with a = qb + r and (r = 0 or N (r) < N (b)) (by Defini-
tion 2.13.2 (b)). Consider these elements q, r. From a = qb + r, we obtain
a − qb = r. We have r = 0 or N (r) < N (b); thus, we can break this case
into two subcases:

– Subcase 2.1: Assume that r = 0. Then, a = qb + r︸︷︷︸
=0

= qb = bq.

Hence, (0, 1, b, q, 1) is a Bezout 5-tuple for (a, b) (since 0a + 1b = b
and a = bq and b = b · 1).

– Subcase 2.2: Assume that N (r) < N (b). Thus, by the induction
hypothesis, Theorem 2.13.8 (a) is true for the pair (b, r) instead of
(a, b). In other words,

there exists a Bezout 5-tuple (x, y, c, u, v) for this pair (b, r) .

Consider this 5-tuple. By the definition of a Bezout 5-tuple, it satisfies
xb + yr = c and b = cu and r = cv.

Now,

(y, x − qy, c, qu + v, u) is a Bezout 5-tuple for the pair (a, b) ,

because

ya + (x − qy) b = ya + xb − qyb = xb + y (a − qb)︸ ︷︷ ︸
=r

= xb + yr = c

and
a = q b︸︷︷︸

=cu

+ r︸︷︷︸
=cv

= qcu + cv = c (qu + v)

and
b = cu.

Thus, we have found a Bezout 5-tuple for (a, b) in Case 2 (since we have
found such a tuple in each of the two subcases).

We have now found a Bezout 5-tuple for the pair (a, b) in each of the above
three cases. Hence, such a 5-tuple always exists. This completes the induction
step, and thus Theorem 2.13.8 (a) is proved.

(b) Our inductive proof of Theorem 2.13.8 (a) above gives a recursive algo-
rithm for finding a Bezout 5-tuple for the pair (a, b). Indeed, depending on the
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case and the subcase, it either solves this problem directly (in Case 1 and in
Subcase 2.1), or reduces it to the analogous problem for a different pair (a, b)
with a smaller value of N (b) (in Subcase 2.2). Thus, by a (finite) sequence of
such reductions, we eventually arrive at a pair for which we can directly find a
Bezout 5-tuple, and thus we can do so for the original pair as well.

Here is this algorithm, spelled out as code (in Python):78

def bezout_5tuple(a, b):
if b == 0: # Case 1

return (1, 0, a, 1, 0)
q, r = quo_rem(a, b)
if r == 0: # Subcase 2.1

return (0, 1, b, q, 1)
# Subcase 2.2
(x, y, c, u, v) = bezout_5tuple(b, r)
return (y, x - q*y, c, q*u + v, u)

This function returns a Bezout 5-tuple for (a, b).

Let us give an example for the algorithm that comes out of our above proof
of Theorem 2.13.8 (b). For simplicity, we use a very familiar ring – namely, Z –
and a very familiar Euclidean norm:

• Let R be the Euclidean ring Z, and let N be the Euclidean norm on Z that
sends each integer a to |a|. We aim to compute a Bezout 5-tuple for the
pair (6, 14).

The existence of such a 5-tuple is guaranteed by Theorem 2.13.8 (a) (ap-
plied to a = 6 and b = 14). Thus, in order to find such a 5-tuple, we
inspect the proof of Theorem 2.13.8 (a) we gave above, in the specific sit-
uation when a = 6 and b = 14. This situation is an instance of Case 2 in
the above proof (since b ̸= 0), so the first step is to find elements q, r ∈ R
with a = qb+ r and (r = 0 or N (r) < N (b)). Such elements q, r are easily
found by standard division with remainder; we obtain q = 0 and r = 6
(since a = 6 = 0︸︷︷︸

=q

· 14︸︷︷︸
=b

+ 6︸︷︷︸
=r

and N (r) = 6 < 14 = N (b)). Note that

there is a different choice as well79, but we pick this one.

Thus, we are in Subcase 2.2 (since r ̸= 0). To continue, we need to find
a Bezout 5-tuple for the pair (b, r) = (14, 6). How do we find such a
5-tuple?

Again, we inspect the above proof of Theorem 2.13.8 (a), but now for
a = 14 and b = 6. This situation is again an instance of Case 2 (since

78The quo_rem function, applied to a pair (a, b), is assumed to return a pair (q, r) of elements
q, r ∈ R that satisfy a = qb + r and (r = 0 or N (r) < N (b)). Such a pair exists, since N is a
Euclidean norm.

79namely, q = 1 and r = −8



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 162

b ̸= 0), so the first step is to find elements q, r ∈ R with a = qb + r and
(r = 0 or N (r) < N (b)). Such elements q, r are easily found by standard
division with remainder; we obtain q = 2 and r = 2 (since a = 2b + 2
and N (2) < N (b)). Thus, we are again in Subcase 2.2 (since r ̸= 0). To
continue, we need to find a Bezout 5-tuple for the pair (b, r) = (6, 2). How
do we find such a 5-tuple?

Again, we inspect the above proof of Theorem 2.13.8 (a), but now for
a = 6 and b = 2. This situation is again an instance of Case 2 (since
b ̸= 0), so the first step is to find elements q, r ∈ R with a = qb + r and
(r = 0 or N (r) < N (b)). Such elements q, r are easily found by standard
division with remainder; we obtain q = 3 and r = 0. Thus, we are in
Subcase 2.1 (since r = 0), and we conclude that (0, 1, b, q, 1) = (0, 1, 2, 3, 1)
is a Bezout 5-tuple for (a, b) = (6, 2).

Having found this Bezout 5-tuple for (6, 2), we can now go back one step
and obtain a Bezout 5-tuple for (14, 6): Namely, as we learned in Subcase
2.2,

if (x, y, c, u, v) is a Bezout 5-tuple for the pair (b, r) (where a = qb + r),
then (y, x − qy, c, qu + v, u) is a Bezout 5-tuple for the pair (a, b) .

Thus, knowing that (0, 1, 2, 3, 1) is a Bezout 5-tuple for the pair (6, 2), we
conclude (with a = 14 and b = 6 and q = 2 and r = 2) that

(1, 0 − 2 · 1, 2, 2 · 3 + 1, 3) = (1, −2, 2, 7, 3)

is a Bezout 5-tuple for the pair (14, 6).

Having found this Bezout 5-tuple for (14, 6), we can now go back one
more step and obtain a Bezout 5-tuple for (6, 14): Namely, as we learned
in Subcase 2.2,

if (x, y, c, u, v) is a Bezout 5-tuple for the pair (b, r) (where a = qb + r),
then (y, x − qy, c, qu + v, u) is a Bezout 5-tuple for the pair (a, b) .

Thus, knowing that (1, −2, 2, 7, 3) is a Bezout 5-tuple for the pair (14, 6),
we conclude (with a = 6 and b = 14 and q = 0 and r = 6) that

(−2, 1 − 0 · (−2) , 2, 0 · 7 + 3, 7) = (−2, 1, 2, 3, 7)

is a Bezout 5-tuple for the pair (6, 14). This is precisely what we were
looking for. (The reader can easily verify that this is really a Bezout 5-
tuple for (6, 14), but our proof makes this verification redundant.)

Note that the computation we just showed has a distinctive “there-and-back-
again” pattern: In its first half, we have been reducing our problem (to find
a Bezout 5-tuple for (6, 14)) step-by-step to a simpler version of it (to find a
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Bezout 5-tuple for (6, 2)), which we then solved directly; then, in its second
half, we have been retracing our steps backwards to transform the solution of
the simpler version into a solution of the original problem. This is typical for
recursive algorithms. In our specific case (when R = Z), the first half of our
computation is just the familiar Euclidean algorithm for computing the greatest
common divisor of two integers a and b. Had we been only looking for this
greatest common divisor (which in our case was 2), we could have stopped
in the middle. However, to find the entire Bezout 5-tuple for the original pair
(a, b), we had to retrace all our steps backwards. Thus, the algorithm we used
to find a Bezout 5-tuple is known as the (generalized) extended Euclidean
algorithm. Euclidean rings owe their name to this very algorithm.

2.14. Principal ideal domains ([DumFoo04, §8.1 and §8.2])

2.14.1. Principal ideal domains

Proposition 2.13.3 is so useful that its conclusion (viz., that any ideal of R is
principal) has been given its own name:

Definition 2.14.1. An integral domain R is said to be a principal ideal do-
main (for short, PID) if each ideal of R is principal.

Thus, Proposition 2.13.3 yields the following:

Proposition 2.14.2. Any Euclidean domain is a PID.

The converse is not true, although counterexamples are hard to find. One of

the simplest is the ring Z [α] = {a + bα | a, b ∈ Z}, where α =
1 +

√
−19

2
(a

complex number). (See [DumFoo04, page 282] for a proof that this ring is a PID
but not a Euclidean domain.)

2.14.2. Divisibility in commutative rings

Much of the basic theory of commutative rings can be viewed as a project to
generalize the classical arithmetic of the integers to wider classes of “numbers”.
As part of this project, we shall now define gcds and lcms in commutative rings.
Our definition will be stated for arbitrary commutative rings, but we will soon
see that they behave particularly well for when the ring is a PID (which is why
we are only doing this definition now). 80

80The notions of “greatest common divisor” and “lowest common multiple” that we will now
introduce are not literal generalizations the corresponding notions from classical arithmetic.
See below for the exact relation.
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Definition 2.14.3. Let R be a commutative ring.
Let a ∈ R.

(a) A multiple of a means an element of the form ac with c ∈ R. In other
words, it means an element of the principal ideal aR.

(b) A divisor of a means an element d ∈ R such that a is a multiple of d
(that is, a ∈ dR). We write “d | a” for “d is a divisor of a”.

Now, let a ∈ R and b ∈ R.

(c) A common divisor of a and b means an element of R that is a divisor
of a and a divisor of b at the same time.

(d) A common multiple of a and b means an element of R that is a multiple
of a and a multiple of b at the same time.

(e) A greatest common divisor (short: gcd) of a and b means a common
divisor d of a and b such that every common divisor of a and b is a
divisor of d.

(f) A lowest common multiple (short: lcm) of a and b means a common
multiple m of a and b such that every common multiple of a and b is a
multiple of m.

The concepts of “multiple” and “divisor” we just introduced are straight-
forward generalizations of the corresponding concepts from arithmetic81. (You
recover the latter concepts if you set R = Z.) The notions of “gcd” and “lcm”
are a bit subtler: If a and b are two integers, then their greatest common divisor
gcd (a, b) in the sense of classical arithmetic is a gcd of a and b in the sense of
Definition 2.14.3 (e); however, so is − gcd (a, b). So our new notion of a gcd
is slightly more liberal than the classical notion, in the sense that it allows for
negative gcds. The same holds for lcms. Thus, gcds and lcms in our sense
are not literally unique. This is one reason why we said “a gcd” and “a lcm”
(rather than “the gcd” and “the lcm”) in Definition 2.14.3. Another reason is
that a and b might not have any gcd to begin with. (We will later see some
examples where this happens.)

Let us first state some basic properties of divisibility:

81Here I am assuming that you are using the “right” definitions of the latter concepts. For
example, every integer (including 0 itself) is a divisor of 0. Some authors dislike this and
prefer to explicitly require 0 to not divide 0; in that case, of course, my definition does not
agree with theirs.
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Proposition 2.14.4. Let R be a commutative ring. Then:

(a) We have a | a for each a ∈ R.

(b) If a, b, c ∈ R satisfy a | b and b | c, then a | c.

(c) If a, b, c ∈ R satisfy a | b and a | c, then a | b + c.

(d) If a, b, c, d ∈ R satisfy a | b and c | d, then ac | bd.

Proof. Easy (and analogous to the classical proofs for R = Z).

2.14.3. Gcds and lcms

Before we explore gcds and lcms in arbitrary commutative rings, let us record
the precise relation between them and the classical arithmetic notions:

Proposition 2.14.5. Let a and b be two integers. Let g = gcd (a, b) and ℓ =
lcm (a, b), where we are using the classical arithmetic definitions of gcd and
lcm. Then:

(a) The gcds of a and b (in the sense of Definition 2.14.3 (e)) are g and −g.

(b) The lcms of a and b (in the sense of Definition 2.14.3 (f)) are ℓ and −ℓ.

Proof. (a) It is known from classical arithmetic that g is a common divisor of
a and b, and that every common divisor of a and b is a divisor of g. In other
words, g is a gcd of a and b in the sense of Definition 2.14.3 (e). It is easy to see
that this property is inherited by −g as well (since divisibilities don’t change
when we replace g by −g). Thus, both numbers g and −g are gcds of a and b
in the sense of Definition 2.14.3 (e). It remains to show that they are the only
gcds of a and b in this sense.

So let u be a gcd of a and b in the sense of Definition 2.14.3 (e). We must
show that u ∈ {g,−g}.

From the way we introduced u, we know that u is a common divisor of a and
b, and that every common divisor of a and b is a divisor of u. The first of these
two facts yields that u | g (since any common divisor of a and b is a divisor of
g); the second yields that g | u (since g is a common divisor of a and b, and
thus is a divisor of u). Combining u | g and g | u, we find u = ±g. In other
words, u ∈ {g,−g}. This finishes our proof of part (a).

(b) The proof is similar to that for part (a).

Now, what about gcds and lcms in other rings? The existence of a gcd is far
from god-given, as the following example shows:
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Example 2.14.6. Let R be the ring

Z
[√

−3
]
=
{

a + b
√
−3 | a, b ∈ Z

}
.

Let a = 4 and b = 2
(
1 +

√
−3
)
. Then, a and b have no gcd in R; nor do they

have an lcm in R. You will prove this in Exercise 2.16.6.

2.14.4. Associate elements

Uniqueness of gcds and lcms is a simpler question: They are rarely unique on
the nose, but they are always unique up to multiplication by a unit when the
ring is an integral domain. Before we show this, let me introduce a word for
this:

Definition 2.14.7. Let R be a commutative ring. Let a, b ∈ R. We say that a is
associate to b in R (and we write a ∼ b) if there exists a unit u of R such that
a = bu.

Instead of saying “a is associate to b”, we shall also say that “a and b are
associate”. (This is justified by the fact – which we will prove in Proposition
2.14.8 – that ∼ is an equivalence relation.)

For example:

• Two integers a and b are associate in Z if and only if a = ±b (that is, if
and only if a = b or a = −b).

• Any two nonzero elements a and b of a field are associate in that field
(since

a
b

is a unit and satisfies a = b · a
b

). The element 0 is associate only
to itself.

• Let F be a field. In the polynomial ring F [x], any nonzero polynomial
f ∈ F [x] is associate to a monic polynomial (since its leading coefficient is
a unit, and dividing f by this coefficient results in a monic polynomial).

• It is not hard to prove that the only units of the ring Z [i] are the four
Gaussian integers 1, i,−1,−i. Thus, two Gaussian integers α and β in
Z [i] are associate if and only if α ∈ {β, iβ,−β,−iβ}.

A general property of associateness is the following:

Proposition 2.14.8. Let R be a commutative ring. The relation ∼ is an equiv-
alence relation.
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Proof. This is fairly straightforward. We need to show that the relation ∼ is
reflexive, symmetric and transitive.

Reflexivity: Any a ∈ R satisfies a ∼ a, since the unity 1R is a unit and satisfies
a = a1R.

Symmetry: If a, b ∈ R satisfy a ∼ b, then they also satisfy b ∼ a. Indeed, a ∼ b
shows that there is a unit u of R such that a = bu; but this unit u clearly has
an inverse u−1, which is itself a unit and satisfies b = au−1. But this shows that
b ∼ a.

Transitivity: If a, b, c ∈ R satisfy a ∼ b and b ∼ c, then they also satisfy a ∼ c.
Indeed, there exist two units u and v of R such that b = cu and a = bv (since
b ∼ c and a ∼ b); but the product uv of these two units is again a unit, and
satisfies a = b︸︷︷︸

=cu

v = cuv, so that a ∼ c.

Note that an element a of a ring R is associate to 1 if and only if a is a unit.
If two elements a and b of a ring R are associate, then each is a multiple of the

other (i.e., we have a | b and b | a). When R is an integral domain, the converse
holds as well:

Proposition 2.14.9. Let R be an integral domain. Let a, b ∈ R be such that
a | b and b | a. Then, a ∼ b.

Proof. From a | b, we see that there exists an x ∈ R such that b = ax. Consider
this x.

From b | a, we see that there exists a y ∈ R such that a = by. Consider this y.
If a = 0, then the claim is easy (indeed, if a = 0, then b = a︸︷︷︸

=0

x = 0, so that

a = 0 = b and thus a ∼ b). Hence, we WLOG assume that a ̸= 0.
Now, a = b︸︷︷︸

=ax

y = axy. In other words, a (1 − xy) = 0. Since a ̸= 0, we thus

conclude 1 − xy = 0 (since R is an integral domain). In other words, xy = 1.
Thus, y is a unit (since R is commutative). Hence, from a = by, we obtain
a ∼ b.

Note that Proposition 2.14.9 becomes false if we drop the “integral domain”
condition. Some sophisticated counterexamples can be found at https://math.
stackexchange.com/questions/14270/ and in Exercise 6.3.3 below.

Associate elements “look the same” to divisibility, by which I mean that a
divisibility relation of the form a | b remains equivalent if we replace a by an
element associate to a or replace b by an element associate to b. In other words:

Proposition 2.14.10. Let R be a commutative ring. Let a, b, a′, b′ ∈ R be such
that a ∼ a′ and b ∼ b′. Then, a | b if and only if a′ | b′.

Proof. =⇒: Assume that a | b. From a ∼ a′, we see that a = a′u for some unit u
of R. Hence, a′ | a. Also, from b ∼ b′, we obtain b′ ∼ b (since Proposition 2.14.8

https://math.stackexchange.com/questions/14270/
https://math.stackexchange.com/questions/14270/
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shows that the relation ∼ is symmetric). In other words, b′ = bv for some unit
v of R. Thus, b | b′. Hence, a′ | a | b | b′. Thus, we have proved the “=⇒”
direction of Proposition 2.14.10.
⇐=: This is analogous to the “=⇒” direction, since Proposition 2.14.8 shows

that the relation ∼ is symmetric.

Exercise 2.14.1. Let R be a commutative ring. Let a, b, c, d ∈ R satisfy a ∼ b and
c ∼ d. Prove that ac ∼ bd.

2.14.5. Uniqueness of gcds and lcms in an integral domain

We can now state the uniqueness of gcds and lcms in the form in which it does
hold:

Proposition 2.14.11. Let R be an integral domain. Let a, b ∈ R. Then:

(a) Any two gcds of a and b are associate (i.e., associate to each other).

(b) Any two lcms of a and b are associate (i.e., associate to each other).

Proof. (a) Let c and d be two gcds of a and b. We must show that c ∼ d.
Any common divisor of a and b is a divisor of c (since c is a gcd of a and b);

however, d is a common divisor of a and b (since d is a gcd of a and b). Thus,
d is a divisor of c. In other words, d | c. The same argument, with the roles
of c and d swapped, yields c | d. Hence, Proposition 2.14.9 (applied to c and d
instead of a and b) yields c ∼ d.

(b) Analogous to part (a).

From Proposition 2.14.11, we recover the fact that gcds and lcms of integers
are unique up to sign (since two integers a and b are associate in Z if and only
if a = ±b).

2.14.6. Existence of gcds and lcms in a PID

We have now talked enough about uniqueness; when do gcds and lcms exist?
The following fact covers one important case:

Theorem 2.14.12. Let R be a PID. Let a, b ∈ R. Then, there exist a gcd and an
lcm of a and b.

This will follow from the following proposition, which characterizes lcms
and partly characterizes gcds in terms of principal ideals:



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 169

Proposition 2.14.13. Let R be a commutative ring. Let a, b, c ∈ R.

(a) If aR + bR = cR, then c is a gcd of a and b.

(b) We have aR ∩ bR = cR if and only if c is an lcm of a and b.

Note that aR + bR = cR is an equality between ideals (the + sign on the left
hand side is a sum of ideals); it is not to be confused with a + b = c. Confus-
ingly, a + b = c does not imply aR + bR = cR (since there is no “distributivity
law” that would equate (a + b) R with aR + bR). Instead, it is easy to see that
“aR + bR = cR” is equivalent to “a and b are multiples of c, and there exist two
elements u, v ∈ R satisfying c = au + bv”.

Note the difference between the two parts of Proposition 2.14.13: Part (b) is
an “if and only if”, while part (a) is only an “if”. This is no accident: Proposition
2.14.13 (a) cannot be extended to an “if and only if” statement. For example, in
the polynomial ring Q [x, y], the two polynomials x and y have gcd 1; however,
1 is not a Q [x, y]-linear combination of x and y.

Proof of Proposition 2.14.13. (a) Assume that aR + bR = cR. Thus, c ∈ cR =
aR + bR. In other words, there exist x, y ∈ R such that c = ax + by. Hence, if r
is a common divisor of a and b, then r | c 82. Thus, we have shown that any
common divisor of a and b is a divisor of c.

We have a ∈ aR ⊆ aR + bR = cR. In other words, c | a. Similarly, c | b.
Hence, c is a common divisor of a and b. Combining this result with the result
of the previous paragraph, we conclude that c is a gcd of a and b. This proves
Proposition 2.14.13 (a).

(b) Recall that an lcm of a and b was defined (in Definition 2.14.3 (f)) to
be a common multiple m of a and b with the property that every common
multiple of a and b is a multiple of m. Hence, we have the following chain of
equivalences:

(c is an lcm of a and b)

⇐⇒
(

c is a common multiple of a and b, and
every common multiple of a and b is a multiple of c

)
⇐⇒ (c ∈ aR ∩ bR and every element of aR ∩ bR is a multiple of c)

(since the common multiples of a and b are precisely the elements of aR ∩ bR).
Now, let us look a bit closer at the statements on the right hand side. The

statement “c ∈ aR ∩ bR” is equivalent to “cR ⊆ aR ∩ bR” (indeed, the set
aR ∩ bR is an ideal of R, and thus it contains the element c if and only if it

82Proof. Let r be a common divisor of a and b. Thus, r | a and r | b. In other words, we can
write a and b in the forms a = ra′ and b = rb′ for some a′, b′ ∈ R. Using these a′, b′, we
obtain c = a︸︷︷︸

=ra′

x + b︸︷︷︸
=rb′

y = ra′x + rb′y = r (a′x + b′y), so that r | c. Qed.
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contains all multiples of c; in other words, it contains the element c if and
only if it contains the subset cR). The statement “every element of aR ∩ bR
is a multiple of c” is equivalent to “aR ∩ bR ⊆ cR” (since cR is the set of all
multiples of c). Thus, our chain of equivalences can be continued as follows:

(c is an lcm of a and b)

⇐⇒

 c ∈ aR ∩ bR︸ ︷︷ ︸
⇐⇒ cR⊆aR∩bR

and every element of aR ∩ bR is a multiple of c︸ ︷︷ ︸
⇐⇒ aR∩bR⊆cR


⇐⇒ (cR ⊆ aR ∩ bR and aR ∩ bR ⊆ cR)
⇐⇒ (aR ∩ bR = cR) .

This proves Proposition 2.14.13 (b).

Proof of Theorem 2.14.12. The sum aR + bR is an ideal of R, and thus is a prin-
cipal ideal (since R is a PID). In other words, aR + bR = cR for some c ∈ R.
Consider this c. Hence, Proposition 2.14.13 (a) yields that c is a gcd of a and b.
Hence, a gcd of a and b exists.

The intersection aR ∩ bR is an ideal of R, and thus is a principal ideal (since
R is a PID). In other words, aR ∩ bR = cR for some c ∈ R. Consider this c.
Hence, Proposition 2.14.13 (b) yields that c is an lcm of a and b. Hence, an lcm
of a and b exists. Theorem 2.14.12 is now proven.

So any two elements of a PID have a gcd and an lcm. If the PID is Euclidean,
then the gcd can be computed by the Euclidean algorithm. Indeed, even more
generally, if a pair (a, b) of two elements of a commutative ring R has a Bezout
5-tuple (see Definition 2.13.5 for the meaning of this notion), then it has a gcd:

Corollary 2.14.14. Let R be a commutative ring. Let a, b ∈ R. Let (x, y, c, u, v)
be a Bezout 5-tuple for (a, b). Then, c is a gcd of a and b.

Proof. Proposition 2.13.7 (a) yields that aR + bR = cR. Hence, Proposition
2.14.13 (a) shows that c is a gcd of a and b. This proves Corollary 2.14.14.

In a Euclidean ring R, we can use the (generalized) extended Euclidean al-
gorithm (as explained in the proof of Theorem 2.13.8 (b)) to compute a Bezout
5-tuple for any pair (a, b) ∈ R × R. Thus, by Corollary 2.14.14, we can com-
pute a gcd of a and b. (See [DumFoo04, pages 275–276] for an example of this
computation.)

2.14.7. More about gcds and lcms

In an integral domain R, the gcd and the lcm of two elements a, b ∈ R determine
one another (up to associates) via the formula

gcd (a, b) · lcm (a, b) ∼ ab.
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This follows from the next exercise ([21w, homework set #2, Exercise 3]), which
also shows that the existence of an lcm implies the existence of a gcd:

Exercise 2.14.2. Let R be an integral domain. Let a ∈ R and b ∈ R. Assume that a
and b have an lcm ℓ ∈ R. Prove that a and b have a gcd g ∈ R, which furthermore
satisfies gℓ = ab.

[Hint: If u and v are two elements of an integral domain R, with v ̸= 0, then

you can use the notation
u
v

(or u/v) for the element w ∈ R satisfying u = vw. This
element w does not always exist, but when it does, it is unique, so the notation
is unambiguous. It is also easy to see that standard rules for fractions, such as
u
v
+

x
y
=

uy + vx
vy

and
u
v
· x

y
=

ux
vy

, hold as long as the fractions
u
v

and
x
y

exist.]

The converse of Exercise 2.14.2 is false: The existence of a gcd of two given elements
a and b of an integral domain R does not imply the existence of an lcm of these two
elements. However, if an integral domain R has a gcd for each pair of two elements a
and b, then it also has an lcm for each pair. This will be stated as Exercise 2.14.4 below.

First, we state a more basic exercise, which generalizes the well-known property
gcd (am, bm) = gcd (a, b) · |m| that holds for any three integers a, b, m:

Exercise 2.14.3. Let R be an integral domain. Let a, b, m ∈ R be arbitrary. Assume
that the elements a and b have a gcd g. Assume that the elements am and bm have a
gcd h. Prove that gm ∼ h.

Exercise 2.14.4. Let R be an integral domain. Assume that for every a, b ∈ R, the
elements a and b have a gcd. Prove that for every a, b ∈ R, the elements a and b have
an lcm.

[Hint: Let a, b ∈ R, and assume WLOG that a, b ̸= 0. Let g be a gcd of a and b. It

suffices to show that
ab
g

is an lcm of a and b. To this purpose, show first that
ab
g

is

a common multiple of a and b. Now, let m be any common multiple of a and b. Let
h be a gcd of am and bm. Argue that ab | h | gm (by Exercise 2.14.3). Conclude that
ab
g

| m.]

Exercise 2.14.5. Let R be a PID. Let a, b, c ∈ R be arbitrary. Prove the following:

(a) If a | bc, then a | gcd (a, b) c. (Here and in the rest of this exercise, gcd (u, v)
means some gcd of u and v. We don’t care which one we choose, since they
are all associate.)

(b) We have gcd (a, b) | gcd (a, bc).

(c) We have gcd (a, bc) | gcd (a, b) gcd (a, c).

(d) We have gcd (a, b) gcd (a, c) | a gcd (b, c).

(e) If gcd (b, c) = 1, then gcd (a, bc) ∼ gcd (a, b) gcd (a, c).
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See https://www.math.columbia.edu/~rf/factorization1.pdf for more about
PIDs.

2.15. Unique factorization domains ([DumFoo04, §8.3])

2.15.1. Irreducible and prime elements

The notions of integral domains, of Euclidean domains and of PIDs are abstrac-
tions for certain properties that hold for the ring Z: The first one abstracts the
fact that products of nonzero integers are nonzero; the second abstracts division
with remainder; the third abstracts the fact that each ideal of Z is principal. As
we have seen, PIDs are a weaker form of Euclidean domains. Even weaker is
the notion of a UFD (short for Unique Factorization Domain). This abstracts
the existence and the uniqueness of a prime factorization for integers. How do
we define it in arbitrary integral domain? What is a good analogue of a prime
number in a general integral domain?

There are at least four such analogues. Let us introduce the first two:83

Definition 2.15.1. Let R be a commutative ring. Let r ∈ R be nonzero and
not a unit.

(a) We say that r is irreducible (in R) if it has the following property:
Whenever a, b ∈ R satisfy ab = r, at least one of a and b is a unit.

(b) We say that r is prime (in R) if it has the following property: Whenever
a, b ∈ R satisfy r | ab, we have r | a or r | b.

Let us see what these concepts mean when R = Z. Both notions “irre-
ducible” and “prime” smell like prime numbers, but it is worth being precise:
Not only the prime numbers 2, 3, 5, 7, 11, . . . themselves, but also their negatives
−2,−3,−5,−7,−11, . . . fit both bills (i.e., they are irreducible and prime in Z).
Let us be more explicit:

Proposition 2.15.2. Let r ∈ Z. Then, we have the following equivalences:

(r is prime in Z) ⇐⇒ (r is irreducible in Z) ⇐⇒ (|r| is a prime number) .

Proof. It suffices to prove the three implications

(r is prime in Z) =⇒ (r is irreducible in Z) ;
(r is irreducible in Z) =⇒ (|r| is a prime number) ;

(|r| is a prime number) =⇒ (r is prime in Z) .

83The other two are not properties of an element of R, but rather properties of an ideal of R.
See Definition 2.17.7 for them.

https://www.math.columbia.edu/~rf/factorization1.pdf
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All of them are LTTR. (The first one is actually a particular case of Proposition
2.15.3 further below. For the other two, it is recommended to WLOG assume
that r ≥ 0, since it is easy to see that none of the three statements involved
changes when r is replaced by −r.)

Thus, in the ring Z, being prime and being irreducible is the same thing.
What about arbitrary integral domains? Here it is not quite the case, as the
following two examples show:

• In the ring Z
[√

−5
]
, the element 3 is irreducible but not prime (in Z

[√
−5
]
).

(See [DumFoo04, §8.3] for the proof.)

• Here is an example using polynomials: Define a subset R of the univariate
polynomial ring Q [x] by84

R =
{

f ∈ Q [x] | the x1-coefficient of f is 0
}

= { f ∈ Q [x] | the derivative of f at 0 is 0}

=
{

a0 + a2x2 + a3x3 + · · ·+ anxn | n ≥ 0 and a0, a2, a3, . . . , an ∈ Q
}

.

It is not hard to see that R is a subring of Q [x]. (Indeed, if f and g are two
polynomials whose x1-coefficients are 0, then the same holds for f + g
and f − g and f g. This is easiest to see by computing f + g and f − g and
f g and checking that there is no way an x1-monomial can appear in the
results.)

When we study polynomials later on, we will prove that Q [x] is an inte-
gral domain.85 Thus, the ring R (being a subring of the integral domain
Q [x]) must itself be an integral domain (since a subring of an integral
domain is always itself an integral domain86).

Now, the ring R contains no polynomials of degree 1. However, if a, b ∈
Q [x] are two polynomials satisfying x3 = ab, then 3 = deg

(
x3) =

deg (ab) = deg a + deg b, which means that one of the polynomials a
and b is either a constant (and thus a unit in R) or has degree 1 (and thus
cannot lie in R). This quickly shows that the element x3 of R is irreducible
in R. However, this element is not prime in R (since x3 | x2x2 but x3 ∤ x2).

In each of these two examples, we found an irreducible element that is not
prime. Can we do the opposite? No, as the following fact shows:

84The “x1-coefficient” of a polynomial f means the coefficient of f before x1. For example, the
x1-coefficient of (x + 1)6 is 6, whereas the x1-coefficient of x2 + 1 is 0.

85This is in fact pretty easy: When you multiply two nonzero polynomials in Q [x], their leading
terms get multiplied, so their degrees get added; thus, the product cannot be 0.

86This is obvious if you recall the definition of an integral domain.
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Proposition 2.15.3. Let R be an integral domain. Then, any prime element of
R is irreducible.

Proof. Let r ∈ R be prime. We must show that r is irreducible.
So let a, b ∈ R satisfy ab = r. We must show that at least one of a and b is a

unit.
We have ab = r, so that r | ab. Since r is prime, we thus obtain r | a or r | b (by

the definition of “prime”). Assume WLOG that r | a (since otherwise, we have
r | b, so we can swap a with b to achieve r | a). Hence, a = rx for some x ∈ R.
Consider this x. Now, r = a︸︷︷︸

=rx

b = rxb, and therefore r (1 − xb) = r − rxb = 0,

and thus 1 − xb = 0 (since r ̸= 0 and since R is an integral domain). In other
words, xb = 1. This shows that b is a unit (since R is commutative). Thus we
have shown that at least one of a and b is a unit. This completes the proof that
r is irreducible.

In a PID, the converse of Proposition 2.15.3 also holds:

Proposition 2.15.4. Let R be a PID. Let r ∈ R. Then, r is prime if and only if
r is irreducible.

Proof. We already showed the “only if” part in Proposition 2.15.3. We thus only
need to prove the “if” part.

Assume that r is irreducible. We must show that r is prime.
Let a, b ∈ R satisfy r | ab. We must prove that r | a or r | b.
Assume the contrary. Thus, we have neither r | a nor r | b.
There is an h ∈ R such that ab = rh (since r | ab). Consider this h.
Since R is a PID, the ideal aR + rR is principal; in other words, there exists

some g ∈ R such that gR = aR + rR. Consider this g. Hence, a ∈ aR ⊆
aR + rR = gR; in other words, g | a.

Also, r ∈ rR ⊆ aR + rR = gR; in other words, g is a divisor of r. However, r
is irreducible, and thus every divisor of r is either a unit or associate to r 87.
Thus, g is either a unit or associate to r (since g is a divisor of r). However, if
g was associate to r, then we would have r | g | a, which would contradict the
fact that we don’t have r | a. Thus, g cannot be associate to r, and so g must be
a unit. Therefore, 1 = gg−1 ∈ gR = aR + rR. Hence, there exist u, v ∈ R such
that 1 = au + rv.

The same argument (using b instead of a) shows that there exist u′, v′ ∈ R
such that 1 = bu′ + rv′.

87Proof. Let d be a divisor of r. We must show that d is either a unit or associate to r.
Indeed, there exists some q ∈ R such that r = dq (since d is a divisor of r). Consider this

q. Since r is irreducible, at least one of d and q is a unit. Hence, d is either a unit or associate
to r (because if q is a unit, then d is associate to r (since r = dq yields r ∼ d and thus d ∼ r)).
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Now, consider these four elements u, v, u′, v′. Multiplying 1 = au + rv with
1 = bu′ + rv′ yields

1 = (au + rv)
(
bu′ + rv′

)
= ab︸︷︷︸

=rh

uu′ + rvbu′ + aurv′ + rvrv′

= rhuu′ + rvbu′ + aurv′ + rvrv′ = r
(
huu′ + vbu′ + auv′ + vrv′

)︸ ︷︷ ︸
∈R

∈ rR.

In other words, there exists some s ∈ R such that 1 = rs. This shows that
r is a unit. This contradicts the fact that r is irreducible. Thus, the proof of
Proposition 2.15.4 is complete.

Exercise 2.15.1. Fix an integer m. Consider the ring Rm from Exercise 2.3.2.
Let r ∈ Rm be nonzero.

(a) Define the m-core of r to be the smallest positive integer that is associate to r in
Rm. Prove that the m-core of r can be obtained as follows: Pick a k ∈ N such
that mkr ∈ Z (such a k exists, since r ∈ Rm). Write the prime factorization
of
∣∣mkr

∣∣ as
∣∣mkr

∣∣ = p1 p2 · · · piq1q2 · · · qj, where p1, p2, . . . , pi are primes that
divide m and where q1, q2, . . . , qj are primes that don’t divide m. (The primes
don’t have to be distinct, and we allow i = 0 or j = 0.) Then, the m-core of r is
q1q2 · · · qj.

(b) Prove that r is prime in Rm if and only if the m-core of r is a prime number (in
the usual number-theoretical sense).

So we have generalized (in two ways, to boot) the notion of a prime number.
Let us now generalize prime factorization:

2.15.2. Irreducible factorizations and UFDs

Definition 2.15.5. Let R be an integral domain.

(a) An irreducible factorization of an element r ∈ R means a tuple
(p1, p2, . . . , pn) of irreducible elements p1, p2, . . . , pn of R such that
r ∼ p1p2 · · · pn. (Note that this tuple (p1, p2, . . . , pn) can be empty; in
this case, the product p1p2 · · · pn is empty and thus equals to 1. Thus,
the empty tuple is an irreducible factorization of any unit of R.)

(b) We say that R is a unique factorization domain (or, for short, UFD) if
each nonzero r ∈ R satisfies the following two statements:

1. There exists an irreducible factorization of r.

2. The irreducible factorization of r is unique up to associates.
This means the following: If (p1, p2, . . . , pn) and (q1, q2, . . . , qm)
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are two irreducible factorizations of r (so that p1, p2, . . . , pn
and q1, q2, . . . , qm are irreducible elements of R satisfying r ∼
p1p2 · · · pn and r ∼ q1q2 · · · qm), then we have n = m and there
is a bijection α : {1, 2, . . . , n} → {1, 2, . . . , m} such that pi ∼ qα(i)
for each i ∈ {1, 2, . . . , n}.

My notion of an irreducible factorization differs slightly from that in [DumFoo04]
(in that [DumFoo04] requires r = p1p2 · · · pn, whereas we only require r ∼
p1p2 · · · pn); I hold mine to be slightly better-behaved (for example, −1 ∈ Z

would not have an irreducible factorization in the [DumFoo04] sense). But my
definition of a UFD is equivalent to the one in [DumFoo04], as can be easily
seen.

Soon, we will see that every PID is a UFD, and there are more UFDs than
PIDs. But first, let us see some examples of UFDs:

• The ring Z is a UFD. This is, of course, a consequence of Euclid’s famous
theorem that says that any positive integer can be uniquely decomposed
into a product of primes. Our definition of an irreducible factorization
differs slightly from the classical notion of a prime factorization in arith-
metic, since our irreducible elements are allowed to be negative and since
we only require r ∼ p1p2 · · · pn (rather than r = p1p2 · · · pn); but it is
pretty easy to conciliate the two concepts by replacing all negative factors
by their absolute values. For example, (−3,−2, 2) is an irreducible factor-
ization of −12, since −12 ∼ (−3) · (−2) · 2; but of course it corresponds
to the classical prime factorization 12 = 3 · 2 · 2 of the positive integer 12.

• Any field is a UFD, since every nonzero element is a unit and thus has
the empty tuple as its only irreducible factorization.

• We shall soon see that every PID is a UFD.

• The polynomial rings Z [x] (consisting of polynomials in one variable with
integer coefficients) and Q [x, y] (consisting of polynomials in two vari-
ables with rational coefficients) are UFDs, even though they are not PIDs.
(Of course, Q [x] is a PID and thus a UFD as well.)

• The rings

Z [2i] = {a + b · 2i | a, b ∈ Z}
= {Gaussian integers with an even imaginary part}

and
Z
[√

−5
]
=
{

a + b
√
−5 | a, b ∈ Z

}
are not UFDs. (See Exercise 2.16.5 for more on the former ring.)
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Previously (in Proposition 2.15.4), we proved that an element of a PID is
prime if and only if it is irreducible. We shall now prove the same result for
UFDs (which is stronger, as we will soon see that every PID is a UFD):

Proposition 2.15.6. Let R be a UFD. Let r ∈ R. Then, r is prime if and only if
r is irreducible.

Proof. =⇒: If r is prime, then r is irreducible (by Proposition 2.15.3).88

⇐=: Assume that r is irreducible. We must show that r is prime.
Let a, b ∈ R satisfy r | ab. We must prove that r | a or r | b.
Assume the contrary. Thus, neither a nor b is a multiple of r. Hence, in par-

ticular, a and b are nonzero (since 0 is a multiple of r). Thus, a and b have irre-
ducible factorizations (since R is a UFD). Let (p1, p2, . . . , pn) and (q1, q2, . . . , qm)
be irreducible factorizations of a and b. Thus, p1, p2, . . . , pn and q1, q2, . . . , qm
are irreducible elements of R satisfying

a ∼ p1p2 · · · pn and b ∼ q1q2 · · · qm.

Multiplying a ∼ p1p2 · · · pn with b ∼ q1q2 · · · qm, we see that

ab ∼ p1p2 · · · pnq1q2 · · · qm (34)

(since a product of two units is again a unit).
However, r | ab. Thus, there exists a q ∈ R such that ab = rq. Consider this q.

Note that ab is nonzero (since a and b are nonzero, but R is an integral domain).
Thus, q is nonzero (since q = 0 would imply ab = r q︸︷︷︸

=0

= 0, which would

contradict the previous sentence). Hence, q has an irreducible factorization
(since R is a UFD). Let (s1, s2, . . . , sk) be an irreducible factorization of q. Thus,
s1, s2, . . . , sk are irreducible elements of R satisfying q ∼ s1s2 · · · sk. From q ∼
s1s2 · · · sk, we obtain rq ∼ rs1s2 · · · sk. Since ab = rq, this rewrites as

ab ∼ rs1s2 · · · sk. (35)

Now, we conclude that the two tuples

(p1, p2, . . . , pn, q1, q2, . . . , qm) and (r, s1, s2, . . . , sk)

are two irreducible factorizations of ab (since all their entries
p1, p2, . . . , pn, q1, q2, . . . , qm and r, s1, s2, . . . , sk are irreducible, and since (34) and
(35) hold). Thus, by the uniqueness condition in the definition of a UFD (which
says that the irreducible factorization of an element is unique up to associates),
these two tuples must be identical up to associates. In particular, every entry
of the second tuple must be associate to some entry of the first. Hence, in

88Note that this holds for any integral domain, not just for any UFD.
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particular, the entry r of the second factorization must be associate to one of
the entries p1, p2, . . . , pn, q1, q2, . . . , qm of the first. In other words, we must have

r ∼ pi for some i ∈ {1, 2, . . . , n} (36)

or
r ∼ qj for some j ∈ {1, 2, . . . , m} . (37)

However, both of these possibilities lead to contradictions: Indeed, if (36) holds,
then we have r | a (since89 r ∼ pi | p1p2 · · · pn ∼ a), which contradicts the fact
that a is not a multiple of r. Likewise, if (37) holds, then we have r | b, which
contradicts the fact that b is not a multiple of r. Thus, we get a contradiction in
either case, and our proof is complete.

If R is a UFD, and if r ∈ R is nonzero, then r is associate to a finite product
p1p2 · · · pn of irreducible elements (by the definition of a UFD). This product
can be simplified by collecting associate factors together. For example, in Z, we
have

−24 = 2 · (−2) · 2 · 3 = −23 · 3.

Here is what we get in general:

Proposition 2.15.7. Let R be a UFD. Let r ∈ R be nonzero. Then:

(a) There exists a list (q1, q2, . . . , qk) of mutually non-associate irreducible
elements q1, q2, . . . , qk ∈ R as well as a list (e1, e2, . . . , ek) of positive
integers such that

r ∼ qe1
1 qe2

2 · · · qek
k .

We shall refer to these two lists as the prime power factorization of r.

(b) These two lists are unique up to associates and up to simultaneous
permutation. (That is, any two prime power factorizations of r can
be transformed into one another by replacing the irreducible elements
q1, q2, . . . , qk by associates, and reordering them while carrying the ex-
ponents e1, e2, . . . , ek along with them.)

Proof of Proposition 2.15.7. (a) Start with an irreducible factorization of r, and
collect associate factors together. For example, if an irreducible factorization of
r has the form (p1, p2, p3, p4, p5, p6) with p1 ∼ p4 and p2 ∼ p5 ∼ p6 (and no
other associate relations between its entries), then

r ∼ p1p2p3p4p5p6 ∼ p1p2p3p1p2p2 = p2
1p3

2p3,

and this is a prime power factorization of r.
(b) This follows from the uniqueness of an irreducible factorization (up to

associates).
89We will use the fact that associates divide each other: i.e., if u and v are two elements of R

satisfying u ∼ v, then u | v.
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Proposition 2.15.8. Let R be a UFD. Let a, b ∈ R be nonzero. Then, there
exists a list (p1, p2, . . . , pn) of mutually non-associate irreducible elements
p1, p2, . . . , pn ∈ R as well as two lists (e1, e2, . . . , en) and ( f1, f2, . . . , fn) of
nonnegative integers such that

a ∼ pe1
1 pe2

2 · · · pen
n and b ∼ p f1

1 p f2
2 · · · p fn

n .

Proof. Proposition 2.15.7 shows that a and b have prime power factorizations

a ∼ qe1
1 qe2

2 · · · qek
k and b ∼ r f1

1 r f2
2 · · · r fm

m .

All we need now is to reconcile these prime power factorizations so that they
contain the same irreducible elements (albeit possibly with 0 exponents). For
this purpose, we do the following steps:

1. If some of the qi are associate to some of the rj, then we replace these qi
by the respective rj.

2. If some of the qi don’t appear among the rj, then we insert q0
i factors into

the prime power factorization of b.

3. If some of the rj don’t appear among the qi, then we insert r0
j factors into

the prime power factorization of a.

For example, if R = Z and a = 12 and b = 45, and if we start with the prime
power factorizations a ∼ 22 · (−3)1 and b ∼ 32 · 51, then Step 1 transforms the
prime power factorization of a into a ∼ 22 · 31 (since the −3 is replaced by
the 3 from the prime power factorization of b); Step 2 then inserts a 20 factor
into the prime power factorization of b (so it becomes b ∼ 20 · 32 · 51); Step 3
then inserts a 50 factor into the prime power factorization of a (so it becomes
a ∼ 22 · 31 · 50). The resulting factorizations are a ∼ 22 · 31 · 50 and b ∼ 20 · 32 · 51,
just as promised by Proposition 2.15.8.

2.15.3. Gcds and lcms in a UFD

Proposition 2.15.9. Let R be a UFD. Let a, b ∈ R be nonzero. Let
(p1, p2, . . . , pn), (e1, e2, . . . , en) and ( f1, f2, . . . , fn) be as in Proposition 2.15.8.
Then:

(a) The element
pmin{e1, f1}

1 pmin{e2, f2}
2 · · · pmin{en, fn}

n

is a gcd of a and b.

(b) The element
pmax{e1, f1}

1 pmax{e2, f2}
2 · · · pmax{en, fn}

n

is an lcm of a and b.
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Proof. This is done just as it is commonly done for integers in elementary
number theory. The details are LTTR. (See, e.g., the proof of Proposition 1.11
in https://www.math.columbia.edu/~rf/factorization1.pdf for some details
on the proof of part (a); the proof of part (b) is similar.)

Corollary 2.15.10. Any two elements in a UFD have a gcd and an lcm.

Proof. Let a and b be two elements of a UFD R. We must show that a and b
have a gcd and an lcm.

If b = 0, then this is easy (just show that a is a gcd of a and 0, and that
0 is an lcm of a and 0). Thus, we WLOG assume that b ̸= 0. For a simi-
lar reason, we WLOG assume that a ̸= 0. Hence, Proposition 2.15.8 shows
that there exists a list (p1, p2, . . . , pn) of mutually non-associate irreducible ele-
ments p1, p2, . . . , pn ∈ R as well as two lists (e1, e2, . . . , en) and ( f1, f2, . . . , fn) of
nonnegative integers such that

a ∼ pe1
1 pe2

2 · · · pen
n and b ∼ p f1

1 p f2
2 · · · p fn

n .

Thus, Proposition 2.15.9 shows that a and b have a gcd and a lcm.

2.15.4. Any PID is a UFD

Finally, as promised, let us state the following theorem, which provides us
many UFDs to apply the above results to:

Theorem 2.15.11. Any PID is a UFD.

I won’t prove Theorem 2.15.11 here; a proof can be found in [DumFoo04, §8.3,
Theorem 14] or in [Mileti20, Corollary 12.2.13] or in [Swanso17, Theorem 36.3].
The proof of the existence of an irreducible factorization is rather philosophical
and non-constructive; it yields no algorithm for actually finding such a factor-
ization. (And indeed, there are UFDs in which finding such a factorization is
algorithmically impossible.)90 The proof of the uniqueness of an irreducible
factorization is an analogue of the proof you know from elementary number
theory (since we know that irreducible elements are prime).

2.15.5. A synopsis

The following corollary combines several results we have seen above in a con-
venient hierarchy:

90However, in many specific PIDs, there are easy (although slow) algorithms for finding ir-
reducible factorizations. For instance, for Z [i], Exercise 2.16.4 asks you to find such an
algorithm.

https://www.math.columbia.edu/~rf/factorization1.pdf
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Corollary 2.15.12. We have

{fields} ⊆ {Euclidean domains} ⊆ {PIDs} ⊆ {UFDs}
⊆ {integral domains} ⊆ {commutative rings} ⊆ {rings} .

Let us illustrate this hierarchy in a symbolic picture:

rings
commutative rings

integral domains

UFDs
PIDs

Euclidean domains
fields

All the “⊆” signs in Corollary 2.15.12 are strict inclusions; let us briefly recall
some examples showing this:

• The rings Z and Z [i] and Z
[√

−2
]

and Z
[√

2
]

and the polynomial ring
Q [x] are Euclidean domains, but not fields.

• The ring Z [α] for α =
1 +

√
−19

2
is a PID, but not a Euclidean domain.

• The polynomial rings Q [x, y] and Z [x] are UFDs, but not PIDs.

• The rings Z [2i] and Z
[√

−3
]

are integral domains, but not UFDs.

• The ring Z/6 ∼= Z/2 × Z/3 is a commutative ring, but not an integral
domain.

• The matrix ring Q2×2 and the ring of quaternions H are not commutative.

2.16. Application: Fermat’s p = x2 + y2 theorem
([DumFoo04, §8.3])

As an application of some of the above, we will show a result of Fermat:91

91The word “prime number” is understood as in classical number theory – i.e., a positive
integer p > 1 whose only positive divisors are 1 and p. In particular, negative numbers are
not allowed as prime numbers, even though they are prime elements of Z.
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Theorem 2.16.1 (Fermat’s two-squares theorem). Let p be a prime number
such that p ≡ 1 mod 4. Then, p can be written as a sum of two perfect
squares.

For example,

5 = 12 + 22;

13 = 22 + 32;

17 = 12 + 42;

29 = 22 + 52.

(Note that the prime 2 can also be written as a sum of two perfect squares:
2 = 12 + 12. But this would distract us from our proof.)

I will prove Theorem 2.16.1 using rings (specifically, using the ring Z/p of
residue classes and the ring Z [i] of Gaussian integers). Some of the steps will
be left as exercises.

First, we shall show a general curious fact about primes, known as Wilson’s
theorem:

Theorem 2.16.2 (Wilson’s theorem). Let p be a prime. Then, (p − 1)! ≡
−1 mod p.

For example, for p = 5, this is saying that 4! ≡ −1 mod 5. And indeed,
4! = 24 ≡ −1 mod 5.

Proof of Theorem 2.16.2. We must show that (p − 1)! ≡ −1 mod p. Equivalently,
we must show that

(p − 1)! = −1 in Z/p. (38)

However, (p − 1)! = 1 · 2 · · · · · (p − 1), so that

(p − 1)! = 1 · 2 · · · · · (p − 1) = 1 · 2 · · · · · p − 1. (39)

Recall that every ring R has a group of units, which is denoted by R×. (See
Theorem 2.5.3 for details.)

But Z/p is a field (as we know, since p is prime) with p elements 0, 1, . . . , p − 1.
Its nonzero elements 1, 2, . . . , p − 1 are thus its units. In other words, its group
of units (Z/p)× is precisely the set

{
1, 2, . . . , p − 1

}
(and all the p − 1 elements

1, 2, . . . , p − 1 are distinct). Hence,

∏
a∈(Z/p)×

a = 1 · 2 · · · · · p − 1. (40)

Recall that (Z/p)× is a group. In particular, any unit has an inverse, which
is again a unit. The units 1 and −1 are their own inverses (since 1 · 1 = 1 · 1 = 1
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and −1 · −1 = (−1) · (−1) = 1), and they are the only units that are their own
inverses (this is Exercise 2.5.1). The inverse of the inverse of a unit a is a. Hence,
in the product ∏

a∈(Z/p)×
a, we can pair up each factor other than 1 and −1 with

its inverse:

∏
a∈(Z/p)×

a =
(

a1 · a−1
1

)
︸ ︷︷ ︸

=1

·
(

a2 · a−1
2

)
︸ ︷︷ ︸

=1

· · · · ·
(

ak · a−1
k

)
︸ ︷︷ ︸

=1

· 1 · −1

= 1 · 1 · · · · · 1 · 1 · −1 = −1. (41)

Now, (39) becomes

(p − 1)! = 1 · 2 · · · · · p − 1 = ∏
a∈(Z/p)×

a (by (40))

= −1 (by (41)) .

This proves (38) and thus Theorem 2.16.2.
(Caveat: The above was a little bit wrong for p = 2; in that case, the factors

1 and −1 are actually one and the same factor. But our proof can easily be
adapted to the above.)

Corollary 2.16.3. Let p be an odd prime (i.e., a prime distinct from 2). Let

u =
p − 1

2
∈ N. Then, u!2 ≡ − (−1)u mod p.

Proof. Exercise (specifically, [21w, homework set #2, Exercise 5 (b)]).

Corollary 2.16.4. Let p be a prime such that p ≡ 1 mod 4. Let u =
p − 1

2
∈ N.

Then, u!2 ≡ −1 mod p.

Proof. From p ≡ 1 mod 4, we obtain 4 | p − 1, so that 2 | p − 1
2

= u. Thus, u is

even, so that (−1)u = 1.
The prime p is odd (since p ≡ 1 mod 4). Hence, Corollary 2.16.3 yields u!2 ≡

− (−1)u︸ ︷︷ ︸
=1

= −1 mod p. This proves Corollary 2.16.4.

Now, recall the ring Z [i] of Gaussian integers. Let N : Z [i] → N be the map
that sends each Gaussian integer a + bi (with a, b ∈ Z) to a2 + b2 ∈ N. It is
straightforward to see:

Proposition 2.16.5. We have N (αβ) = N (α) N (β) for any α, β ∈ Z [i].
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Proof. One way to prove this is by first showing that N (γ) = γγ for each
γ ∈ Z [i] (where γ denotes the complex conjugate of γ). Another is by direct
computation: Writing α and β as α = a + bi and β = c + di, we have αβ =
(a + bi) (c + di) = (ac − bd) + (ad + bc) i and therefore

N (αβ) = N ((ac − bd) + (ad + bc) i) = (ac − bd)2 + (ad + bc)2

= a2c2 − 2acbd + b2d2 + a2d2 + 2adbc + b2c2

= a2c2 + b2d2 + a2d2 + b2c2 =
(

a2 + b2
)

︸ ︷︷ ︸
=N(α)

(
c2 + d2

)
︸ ︷︷ ︸

=N(β)

= N (α) N (β) .

Corollary 2.16.6. If z and w are two Gaussian integers satisfying z | w in
Z [i], then N (z) | N (w) in Z.

Proof. Exercise (specifically, [21w, homework set #2, Exercise 6 (a)]).

Using this fact, we can characterize the units of Z [i]:

Corollary 2.16.7. Let α ∈ Z [i]. Then, we have the following equivalence:

(α is a unit of Z [i]) ⇐⇒ (N (α) = 1) ⇐⇒ (α ∈ {1, i,−1,−i}) .

Proof. Exercise (specifically, [21w, homework set #2, Exercise 6 (d)]).

The next lemma is also easy to see:

Lemma 2.16.8. Let α and β be Gaussian integers such that α ̸= 0. Then, α | β

holds in Z [i] if and only if
β

α
is a Gaussian integer.

Proof. This is proved just as the analogous statement for integers is proved.

Now we can prove Theorem 2.16.1:

Proof of Theorem 2.16.1. Let u =
p − 1

2
. Then, u ∈ N (actually, p ≡ 1 mod 4

implies that u is even). Corollary 2.16.4 shows that u!2 ≡ −1 mod p. That is,

p | u!2 − (−1)︸ ︷︷ ︸
=i2

= u!2 − i2 = (u! − i) (u! + i) .

This is a divisibility in Z, thus also in Z [i].
The number p is a prime number, and thus prime in Z; but this does not

mean that it is prime in Z [i]. And in fact, we claim that it isn’t. Indeed, if p
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was prime in Z [i], then the divisibility p | (u! − i) (u! + i) would entail that
p | u! − i or p | u! + i; however, neither p | u! − i nor p | u! + i is true92.

Thus, we know that p is not prime in Z [i]. But Z [i] is a Euclidean domain
(as we proved in Subsection 2.13.2), and thus a PID (since Proposition 2.14.2
says that any Euclidean domain is a PID). Hence, every irreducible element
of Z [i] is a prime element of Z [i] (by Proposition 2.15.4). Thus, p cannot be
irreducible in Z [i] (since p is not prime in Z [i]).

However, p is nonzero and not a unit of Z [i] (since
1
p

is not a Gaussian

integer). Therefore, since p is not irreducible, there exist two elements α, β ∈
Z [i] that satisfy αβ = p but are not units (by the definition of “irreducible”).
Consider these α and β.

From αβ = p, we obtain N (αβ) = N (p) = N (p + 0i) = p2 + 02 = p2. Thus,
p2 = N (αβ) = N (α) N (β) (by Proposition 2.16.5). However, N (α) and N (β)
are nonnegative integers (since N is a map Z [i] → N). Since p is prime, the
only ways to write p2 as a product of two nonnegative integers are p2 = 1 · p2

and p2 = p2 · 1 and p2 = p · p (by the classical prime factorization theorem from
number theory). Hence, the equality p2 = N (α) N (β) (with N (α) and N (β)
being nonnegative integers) entails that we must be in one of the following two
cases:

Case 1: One of the two numbers N (α) and N (β) is 1, and the other is p2.
Case 2: Both numbers N (α) and N (β) are p.
Let us consider Case 1. In this case, one of the two numbers N (α) and

N (β) is 1. We WLOG assume that N (α) = 1 and N (β) = p2 (since the other
possibility can be transformed into this one by swapping α with β). Now, recall
that N (α) = 1 is equivalent to α being a unit (because of Corollary 2.16.7).
However, α is not a unit. This is a contradiction. Hence, Case 1 is impossible.

Thus, we must be in Case 2. In other words, N (α) = p and N (β) = p.
Now, α is a Gaussian integer, so we can write it as α = x + yi for some

x, y ∈ Z. Therefore, using these x, y, we have N (α) = x2 + y2. Hence, x2 +
y2 = N (α) = p. Thus, p is a sum of two perfect squares; Theorem 2.16.1 is
proven.

We note that Theorem 2.16.1 has a converse as well (which, however, is rather
easy):

Exercise 2.16.1. Let p be a prime. Prove that p can be written as a sum of two
perfect squares if and only if p = 2 or p ≡ 1 mod 4.

92This is easiest to see using Lemma 2.16.8: Indeed, if we had p | u! − i, then Lemma 2.16.8

would entail that
u! − i

p
is a Gaussian integer; however,

u! − i
p

=
u!
p
+

−1
p

i is not a Gaussian

integer (since its imaginary part
−1
p

is not an integer). Thus, we don’t have p | u! − i. For a

similar reason, we don’t have p | u! + i.
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Theorem 2.16.1 is the beginning of a long sequence of more and more com-
plex results, whose discovery and proof spanned several centuries. First of all,
one can ask which integers (rather than which primes) can be written as sums
of two perfect squares. The answer is not too hard at this point:

Theorem 2.16.9. Let n be a positive integer with prime factorization n =

2a pb1
1 pb2

2 · · · pbk
k , where p1, p2, . . . , pk are distinct primes larger than 2, and

where a, b1, b2, . . . , bk are nonnegative integers. (In particular, if n is odd,
then a = 0.)

Then:

(a) The number n can be written as a sum of two perfect squares if and only
if the following condition holds: For each i ∈ {1, 2, . . . , k} satisfying
pi ≡ 3 mod 4, the exponent bi is even.

(b) If this condition holds, then the number of ways to write n as a sum of
two perfect squares (to be more precise: the number of pairs (x, y) ∈
Z × Z satisfying n = x2 + y2) is 4 · ∏

i∈{1,2,...,k};
pi≡1 mod 4

(bi + 1).

For a proof of this theorem, see [Grinbe19, Theorem 4.2.62] or [DumFoo04,
§8.1, Corollary 19]. (The proof again uses Gaussian integers in a rather neat
way.)

Exercise 2.16.2. Prove the “if” part of Theorem 2.16.9 (a). (Keep in mind that 0
counts as a perfect square.)

More about decompositions of integers into sums of perfect squares can be
found

• in [DumFoo04, §8.3];

• in Keith Conrad’s https://kconrad.math.uconn.edu/math5230f12/handouts/
Zinotes.pdf ;

• in [Grinbe19, §4.2].

Instead of writing integers n in the form n = x2 + y2, we can try to write
them in the form x2 + 2y2 or x2 + 3y2 or x2 + 4y2 or x2 + 5y2 or x2 + xy + y2 or∣∣x2 − 2y2

∣∣ or many other such forms. Each time, we can ask when this is pos-
sible, and how many ways there are. These questions vary widely in difficulty,
and even their most basic variants (which prime numbers can be written in a
given form?) can be extremely hard. After having answered the x2 + y2 ques-
tion for primes, the x2 + 4y2 question becomes quite easy (see Exercise 2.16.3

https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
https://kconrad.math.uconn.edu/math5230f12/handouts/Zinotes.pdf
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below), but the x2 + 2y2 question will have to wait until a later chapter (see
Exercise 5.8.5 below). A whole book [Cox22] has been written entirely about
the question of writing prime(!) numbers in the form x2 + ny2 for positive inte-
gers n; just answering these questions for different n requires rather advanced
mathematics. Here is a summary of answers for certain values of n (see [Cox22]
for proofs of these and many more results):

Theorem 2.16.10. Let p be a prime number.

(a) We can write p in the form p = x2 + y2 with x, y ∈ Z if and only if
p = 2 or p ≡ 1 mod 4.

(b) We can write p in the form p = x2 + 2y2 with x, y ∈ Z if and only if
p ≡ 1, 3 mod 8. (The notation “p ≡ 1, 3 mod 8” is shorthand for “p is
congruent to 1 or to 3 modulo 8”. Similar shorthands will be used in
the following parts.)

(c) We can write p in the form p = x2 + 3y2 with x, y ∈ Z if and only if
p = 3 or p ≡ 1 mod 3.

(d) We can write p in the form p = x2 + 4y2 with x, y ∈ Z if and only if
p ≡ 1 mod 4.

(e) We can write p in the form p = x2 + 5y2 with x, y ∈ Z if and only if
p ≡ 1, 9 mod 20.

(f) We can write p in the form p = x2 + 6y2 with x, y ∈ Z if and only if
p ≡ 1, 7 mod 24.

(g) We can write p in the form p = x2 + 14y2 with x, y ∈ Z if and only
if we have p ≡ 1, 9, 15, 23, 25, 39 mod 56 and there exists some integer z
satisfying

(
z2 + 1

)2 ≡ 8 mod p.

(h) We can write p in the form p = x2 + 27y2 with x, y ∈ Z if and only if
we have p ≡ 1 mod 3 and there exists some integer z satisfying z3 ≡
2 mod p.

Part (a) of Theorem 2.16.10 follows from Theorem 2.16.1 and Exercise 2.16.1.
As we said, parts (b) and (d) follow easily from Exercise 5.8.5 and Exercise
2.16.3. Part (c) is similar, but the proof is trickier since Z

[√
−3
]

is not a PID
(or even a UFD); nevertheless, fairly elementary proofs exist, and one such
proof is outlined in Exercise 5.8.693. Part (e) is proved using genus theory of
quadratic forms in [Cox22, (2.22)], and using elementary techniques (quadratic
reciprocity) in [Zhang07]. Part (f) requires class field theory ([Cox22, The-

93See, e.g., https://math.stackexchange.com/a/76917/ for another proof.

https://math.stackexchange.com/a/76917/
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orem 5.33]). Parts (g) and (h) can be proved using elliptic functions from
complex analysis ([Cox22, Chapters 2 and 3]). Note the additional “there
exists some integer z” conditions in parts (g) and (h); such conditions can
be avoided for x2 + ny2 when n is small, but eventually become necessary.
See https://mathoverflow.net/questions/79342/ for more about the need for
such conditions, and see [Cox22, Chapters 2 and 3] for their exact nature.

We can also ask about sums of more than two squares. Lagrange proved that
every nonnegative integer can be written as a sum of four squares (that is, each
n ∈ N can be written as n = x2 + y2 + z2 + w2 for some x, y, z, w ∈ Z). These
days, one of the shortest proofs of this fact uses the so-called Hurwitz quaternions
– a quaternion analogue of Gaussian integers. See https://en.wikipedia.org/
wiki/Lagrange’s_four-square_theorem or [Haensc16] or [Schwar14] for the
proof.

Exercise 2.16.3. Let p be a prime. Prove that p can be written in the form p =

x2 + 4y2 for some x, y ∈ Z if and only if p ≡ 1 mod 4.

Exercise 2.16.4.

(a) Let z = a + bi ∈ Z [i] with a, b ∈ Z. Assume that z ̸= 0. Let n = ⌊|z|⌋ =⌊√
a2 + b2

⌋
. Prove that every divisor of z in Z [i] has the form c + di with

c, d ∈ {−n,−n + 1, . . . , n}.

(b) Without recourse to the general theory of PIDs and UFDs, prove that every
nonzero element of Z [i] has an irreducible factorization.

Exercise 2.16.5. Let R be the ring Z [i] of Gaussian integers. Let S be the ring

Z [2i] = {a + b · 2i | a, b ∈ Z}
= {Gaussian integers with an even imaginary part} .

This ring S is a subring of R.
Define two elements x, y ∈ S by x = 2 + 2i and y = 2 − 2i.

(a) Find the units of S.

(b) Prove that we have x ∼ y in R, but we don’t have x ∼ y in S.

(c) Prove that the ideal xS + yS of S is not principal.

(d) Conclude that S is not a PID.

(e) Show that S is not a UFD either.

[Hint: It may be helpful to write i′ for 2i in order to avoid confusing i for an
element of S.

https://mathoverflow.net/questions/79342/
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
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For part (c), argue that if xS + yS was zS for some z ∈ S, then xR + yR would be
zR as well (why?), but this would force z to be associate to x and y in R (why?), and
this would leave only four possibilities for z (why?).

For part (e), ponder the equality xy = 2 · 2 · 2. Note that any divisor of an element
s ∈ S is also a divisor of the same element s in R = Z [i] (but not always the other
way round).]

Exercise 2.16.6. Consider the ring

Z
[√

−3
]
=
{

a + b
√
−3 | a, b ∈ Z

}
.

This ring is a subring of C, and thus is an integral domain.
Let u = 2 ∈ Z

[√
−3
]

and v = 1 +
√
−3 ∈ Z

[√
−3
]
. Further let a = 2u = 4 and

b = 2v.

(a) Prove that both u and v are common divisors of a and b in Z
[√

−3
]
.

(b) Prove that the only divisors of 4 in Z
[√

−3
]

are ±1, ±2, ±4, ±
(
1 +

√
−3
)
,

and ±
(
1 −

√
−3
)
.

(c) Prove that a and b have no gcd in Z
[√

−3
]
.

[Remark: This shows that Z
[√

−3
]

is not a UFD, thus not a PID and not Eu-
clidean.]

Exercise 2.16.7.

(a) Prove that there are no ring morphisms from Z [i] to Z.

Now, let p be a prime number. Prove the following:

(b) There are no ring morphisms from Z [i] to Z/p if p ≡ 3 mod 4.

(c) There are exactly two ring morphisms from Z [i] to Z/p if p ≡ 1 mod 4.

(d) There is a unique ring morphism from Z [i] to Z/p if p = 2.

More generally, prove the following:

(e) If R is any ring, then the number of ring morphisms from Z [i] to R is the
number of all elements r ∈ R satisfying r2 = −1.

[Hint: If f is a ring morphism from Z [i] to R, then what equation must f (i)
satisfy?]
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2.17. More about ideals and quotient rings

For the sake of completeness, let me mention three more general properties
of quotient rings, known respectively as the second, third and fourth isomor-
phism theorems for rings. The second and third isomorphism theorems claim
isomorphisms between quotient rings; the fourth relates the ideals of a quotient
ring to some ideals of the original ring. We shall not use these theorems, but
they are not hard to prove and are part of an algebraist’s culture.

2.17.1. The second isomorphism theorem for rings

The second isomorphism theorem for rings is all about the interaction between
an ideal and a subring:

Theorem 2.17.1 (Second isomorphism theorem for rings). Let R be a ring.
Let S be a subring of R. Let I be an ideal of R. Define S + I to be the subset
{s + i | s ∈ S and i ∈ I} of R. Then:

(a) This subset S + I is a subring of R.

(b) The set I is an ideal of the ring S + I.

(c) The set S ∩ I is an ideal of the ring S.

(d) We have (S + I) /I ∼= S/ (S ∩ I) (as rings). More concretely, there is a
ring isomorphism S/ (S ∩ I) → (S + I) /I that sends each residue class
s = s + (S ∩ I) to s = s + I.

Proof. See [21w, homework set #2, Exercise 9].

Example 2.17.2. For an example, we

• let R be the polynomial ring Q [x] of all univariate polynomials with
rational coefficients;

• let I =
{

a2x2 + a3x3 + · · ·+ anxn | n ≥ 0 and ai ∈ Q
}

be the ideal con-
sisting of all polynomials divisible by x2 (that is, all polynomials whose
x0-coefficient and x1-coefficient are 0);

• let S be the subring Q of R (which consists of all constant polynomials).

Then, S + I =
{

a0 + a2x2 + a3x3 + · · ·+ anxn | n ≥ 0 and ai ∈ Q
}

is the set
of all polynomials whose x1-coefficient is 0. This is indeed a subring of R, as
we have seen in Subsection 2.15.1 (where we have used this subring to find
an irreducible element that is not prime).

Other interesting examples of S+ I can be obtained using upper-triangular
matrix rings such as Q3≤3.
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2.17.2. The third isomorphism theorem for rings

You might have noticed that the quotient rings R/I of a given ring R stand in
an “antithetical” relationship to the ideals I that produce them: The larger the
ideal I, the smaller the quotient ring R/I. (In particular, the largest ideal of R
is R itself, and the corresponding quotient ring R/R is trivial, which is as small
as a ring can get.)

Can we make this relationship precise? To some extent, we can. Namely,
when two ideals I and J of a ring R satisfy I ⊆ J, the corresponding quotient
rings R/I and R/J are related as well, and specifically, R/J is isomorphic to a
quotient ring of R/I. In other words, the quotient R/J by the “large” ideal J can
be obtained by first quotienting out a “smaller” ideal I and then “quotienting
further”. The third isomorphism theorem for rings states this relationship in
a more concrete way:

Theorem 2.17.3 (Third isomorphism theorem for rings). Let R be a ring. Let
I and J be two ideals of R such that I ⊆ J. Let J/I denote the set of all cosets
j + I ∈ R/I where j ∈ J. Then:

(a) This set J/I is an ideal of R/I.

(b) We have (R/I) / (J/I) ∼= R/J (as rings). More concretely, there is a
ring isomorphism R/J → (R/I) / (J/I) that sends each residue class
r = r + J to r + I = (r + I) + (J/I).

Proof. See [21w, homework set #2, Exercise 8].

Example 2.17.4. For an example, take R = Z and I = 6Z and J = 2Z. In this
case, J/I consists of the “even” residue classes 0, 2, 4 in R/I = Z/6. Theorem
2.17.3 (b) says that if we “quotient them out” of Z/6, then we are left with
(an isomorphic copy of) R/J = Z/2.

2.17.3. The inverse image of an ideal

The following easy fact gives yet another way to construct ideals of rings:

Proposition 2.17.5. Let R and S be two rings. Let f : R → S be a ring
morphism. Let K be an ideal of S.

Then,
f−1 (K) := {r ∈ R | f (r) ∈ K}

is an ideal of R that satisfies Ker f ⊆ f−1 (K).
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Exercise 2.17.1. Prove Proposition 2.17.5.

Here is an example:

• Let S be the ring Z. Let R be the ring Z2≤2 of all upper-triangular 2 × 2-

matrices
(

a b
0 d

)
with integer entries a, b, d ∈ Z. Let f : R → S be the

map that sends each such matrix
(

a b
0 d

)
to its entry d. It is easy to see

that this map f is a ring morphism. Let K be the ideal of S consisting of
all even integers (that is, K = 2Z). Thus, f−1 (K) (as defined in Proposi-

tion 2.17.5) is the set of all upper-triangular 2 × 2-matrices
(

a b
0 d

)
with

integer entries a, b, d ∈ Z such that d is even. Proposition 2.17.5 shows
that this set f−1 (K) is an ideal of R (which the reader can easily check).

2.17.4. The fourth isomorphism theorem for rings

What is the relation between the ideals of a quotient ring R/I and the ideals of
the original ring R ? More generally, what is the relation between the ideals of
two rings S and R when there is a surjective ring morphism f : R → S ? (This is
“more general” since there is always a surjective morphism π : R → R/I from
a ring R to a quotient ring R/I.) The fourth isomorphism theorem for rings
answers this question:

Theorem 2.17.6 (Fourth isomorphism theorem for rings). Let R and S be two
rings. Let f : R → S be a surjective ring morphism. Then:

(a) If J is an ideal of R, then f (J) := { f (j) | j ∈ J} is an ideal of S.

(b) The maps

{ideals J of R satisfying Ker f ⊆ J} → {ideals of S} ,
J 7→ f (J)

and

{ideals of S} → {ideals J of R satisfying Ker f ⊆ J} ,

K 7→ f−1 (K)

(where f−1 (K) is defined as in Proposition 2.17.5) are mutually inverse.
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Exercise 2.17.2. Prove Theorem 2.17.6.

We note that Theorem 2.17.6 (a) becomes false if we drop the “ f is surjective”
assumption.

2.17.5. Prime and maximal ideals

The following definition is rather important for the deeper study of ideals in
commutative rings (and, by extension, for algebraic geometry). We will only
touch on it briefly in this little subsection.

Definition 2.17.7. Let R be a commutative ring. Let I be an ideal of R.

(a) The ideal I is said to be proper if it is a proper subset of R (that is,
I ̸= R).

(b) The ideal I is said to be prime if it is proper and has the following
property: If a, b ∈ R satisfy ab ∈ I, then a ∈ I or b ∈ I.

(c) The ideal I is said to be maximal if it is proper and the only ideals J of
R satisfying I ⊆ J ⊆ R are I and R.

We note that a principal ideal aR of a commutative ring R (with a ∈ R
nonzero) is prime if and only if a is a prime element of R. Thus, the notion
of prime ideals generalizes the notion of prime elements (and, ultimately, that
of prime numbers).

Exercise 2.17.3. Let R be a commutative ring. Let I be an ideal of R. Prove the
following:

(a) The ideal I is prime if and only if the quotient ring R/I is an integral domain.

(b) The ideal I is maximal if and only if the quotient ring R/I is a field.

(c) Any maximal ideal I of R is prime.

[Hint: Theorem 2.17.6 and Exercise 2.8.1 are helpful for part (b).]
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3. Modules ([DumFoo04, Chapter 10])

We now move on from studying rings themselves to studying modules over
rings. In many ways, modules are even more important than rings, as their
definition offers more freedom (and this freedom is widely used throughout
mathematics). Some would argue that the notion of a ring is merely an ancillary
character to that of a module.

3.1. Definition and examples ([DumFoo04, §10.1])

Before we define modules rigorously, let me give a rough idea of what they
stand for.

We can think of a ring is a system of “number-like objects” that can be
“added” (with one another) and “multiplied” (with one another).94

In contrast, a module (over a given ring R) can be thought of a system of
“vector-like objects” that can be “added” (with one another) and “scaled” (by
elements of R). In particular, if R is a field, then the modules over R are just the
vector spaces over R (as defined in any textbook on abstract linear algebra).

To turn this into a proper definition of a module, we just need to decide what
properties of “adding” and “scaling” we want to require as axioms.

3.1.1. Definition of modules

For every ring R, there are two notions of an “R-module”: the “left R-modules”
and the “right R-modules”. Let us first define the left ones:

Definition 3.1.1. Let R be a ring. A left R-module (or a left module over R)
means a set M equipped with

• a binary operation + (that is, a map from M × M to M) that is called
addition;

• an element 0M ∈ M that is called the zero element or the zero vector
or just the zero, and is just denoted by 0 when there is no ambiguity;

• a map from R × M to M that is called the action of R on M, and is
written as multiplication (i.e., we denote the image of a pair (r, m) ∈
R × M under this map by rm or r · m)

such that the following properties (the “module axioms”) hold:

• (M,+, 0) is an abelian group.

• The right distributivity law holds: We have (r + s)m = rm + sm for all
r, s ∈ R and m ∈ M.

94Here I am leaving the zero and the unity unmentioned, for the sake of brevity.
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• The left distributivity law holds: We have r (m + n) = rm + rn for all
r ∈ R and m, n ∈ M.

• The associativity law holds: We have (rs)m = r (sm) for all r, s ∈ R
and m ∈ M.

• We have 0Rm = 0M for every m ∈ M.

• We have r · 0M = 0M for every r ∈ R.

• We have 1m = m for every m ∈ M. (Here, “1” means the unity of R.)

When M is a left R-module, the elements of M are called vectors, and the
elements of R are called scalars.

As the name “left R-module” suggests, there is an analogous notion of a
right R-module:

Definition 3.1.2. Let R be a ring. A right R-module is defined just as a left
R-module was defined in Definition 3.1.1, but with the following changes:

• For a right R-module M, the action is not a map from R × M to M, but
rather a map from M × R to M.

• Accordingly, we use the notation mr (rather than rm) for the image of a
pair (m, r) under this map.

• The axioms for a right R-module are similar to the module axioms
for a left R-module, accounting for the different form of the action.
For example, the associativity law for a right R-module is saying that
m (rs) = (mr) s for all r, s ∈ R and m ∈ M.

When R is commutative, any left R-module becomes a right R-module in a
natural way:

Proposition 3.1.3. Let R be a commutative ring. Then, we can make any left
R-module M into a right R-module by setting

mr = rm for all r ∈ R and m ∈ M. (42)

Similarly, we can make any right R-module M into a left R-module by setting

rm = mr for all r ∈ R and m ∈ M. (43)

These two transformations are mutually inverse, so we shall use them to
identify left R-modules with right R-modules. Thus, we can use the words
“left R-module” and “right R-module” interchangeably, and just speak of
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“R-modules” instead (without specifying whether they are left or right). We
shall liberally do so in what follows. (Note that this is not allowed when R
is not commutative!)

When R is a field, the R-modules are also known as the R-vector spaces.
These are precisely the vector spaces you have seen in a linear algebra class.
A left R-module over an arbitrary ring R is just the natural generalization of
a vector space. But while vector spaces have a very predictable structure (in
particular, a vector space is uniquely determined up to isomorphism by its
dimension), modules can be wild (although the “nice” families of modules,
like Rn for n ∈ N, still exist for every ring). The wilder a ring is, the more
diverse are its modules.

One more remark about Definition 3.1.1: The “0Rm = 0M” and “r · 0M = 0M”
axioms are actually redundant (i.e., they follow from the other axioms). I leave
it to you to check this.

Exercise 3.1.1. Check this!

3.1.2. Submodules and scaling

We will soon see some examples of R-modules; but let us first define R-submodules.
If you have seen subspaces of a vector space, this definition won’t surprise you:

Definition 3.1.4. Let R be a ring. Let M be a left R-module. An R-submodule
(or, to be more precise, a left R-submodule) of M means a subset N of M
such that

• we have a + b ∈ N for any a, b ∈ N;

• we have ra ∈ N for any r ∈ R and a ∈ N;

• we have 0 ∈ N (where 0 means 0M).

All three axioms in Definition 3.1.4 have names: The “a + b ∈ N” axiom is
called “N is closed under addition”; the “ra ∈ N” axiom is called “N is closed
under scaling”; the “0 ∈ N” axiom is called “N contains the zero vector”. The
word “scaling” that we have just used refers to the following operation:

Definition 3.1.5. Let R be a ring. Let M be a left R-module. Let r ∈ R be a
scalar. Then, scaling by r (on the module M) means the map

M → M,
m 7→ rm.
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This map is a group homomorphism from the additive group (M,+, 0) to
itself (since any m, n ∈ M satisfy r (m + n) = rm + rn and r · 0M = 0M). In
particular, scaling by 1 is the identity map idM : M → M (since 1m = m for
each m ∈ M), whereas scaling by 0 sends each vector m ∈ M to the zero vector
0M.

The “ra ∈ N” axiom in Definition 3.1.4 is saying that N is closed under
scaling by every scalar r ∈ R. We will soon see that an R-submodule of M is
the same as a subgroup of the additive group (M,+, 0) that is closed under
scaling by every scalar r ∈ R.

Everything we have said about left R-modules can be equally said (mutatis
mutandis) for right R-modules.

3.1.3. Examples

Here are some examples of modules:

• Let R be any ring. Then, R itself becomes a left R-module: Just define the
action to be the multiplication of R. In this R-module, the elements of R
play both the role of vectors and the role of scalars. Scaling a vector m by
a scalar r just means multiplying m by r (that is, taking the product rm
inside R).

The R-submodules of this left R-module R are the subsets L of R that
are closed under addition and contain 0 and satisfy ra ∈ L for all r ∈ R
and a ∈ L. These subsets are called the left ideals of R. When R is
commutative, these are precisely the ideals of R. For general R, however,
the notion of an ideal is more restrictive than the notion of a left ideal
(since an ideal L has to satisfy not only ra ∈ L but also ar ∈ L for all r ∈ R
and a ∈ L).

For example, if R is the matrix ring Q2×2, then the only ideals of R are
{02×2} and R itself, but R has infinitely many left ideals (for example, the

set of all matrices of the form
(

0 a
0 b

)
is a left ideal).

• Let R be any ring. An R-module (left or right) is said to be trivial if it has
only one element. The one-element set {0} is a trivial left R-module (with
addition given by 0 + 0 = 0, action given by r · 0 = 0, and zero vector 0)
and a trivial right R-module (likewise).

• Let R be any ring, and let n ∈ N. Then, the Cartesian product

Rn = {(a1, a2, . . . , an) | all ai belong to R}
is a left R-module, where addition and action are defined entrywise: i.e.,
the addition is defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

for all a1, a2, . . . , an ∈ R and b1, b2, . . . , bn ∈ R,
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and the action is defined by

r · (a1, a2, . . . , an) = (ra1, ra2, . . . , ran) for all r ∈ R and a1, a2, . . . , an ∈ R.

The zero vector of this R-module Rn is (0, 0, . . . , 0).

If n = 0, then the left R-module Rn is trivial, and its only element is the
0-tuple ().

• Let R be any ring, and let n, m ∈ N. Consider the set Rn×m of all n × m-
matrices with entries in R. This set Rn×m is not a ring unless n = m (since
two n × m-matrices cannot be multiplied unless n = m). However, it is
always a left R-module, where addition and action are defined entrywise:
e.g., the action is defined by

r ·


a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
... . . . ...

an,1 an,2 · · · an,m

 =


ra1,1 ra1,2 · · · ra1,m
ra2,1 ra2,2 · · · ra2,m

...
... . . . ...

ran,1 ran,2 · · · ran,m


for any r, ai,j ∈ R.

The zero vector of this R-module Rn×m is the zero matrix 0n×m.

The set Rn×m is also a right R-module (where addition and action are
again defined entrywise, but the action now results in a matrix whose
entries are ai,jr rather than rai,j).

According to Definition 3.1.1, the elements of this R-module Rn×m can
thus be called “vectors”, even though they are matrices. This shows that
our concept of a “vector” is much more general than the classical notion
of “vectors” from introductory linear algebra classes (i.e., row vectors and
column vectors). This generality might be an acquired taste, but it is quite
useful. For example, we will soon define linear combinations and linear
independence of vectors; thus we will automatically obtain these notions
for matrices.

Note that the zero vector of an R-module is uniquely determined by its ad-
dition (in fact, this is true for any group); thus, we don’t even need to specify it
explicitly when we define an R-module.

Exercise 3.1.2. Let R be a ring, and n ∈ N. Consider the left R-module Rn.

(a) Prove that the set

A := {(a1, a2, . . . , an) ∈ Rn | a1 = a2 = · · · = an}

=


a, a, . . . , a︸ ︷︷ ︸

n times

 | a ∈ R


is an R-submodule of Rn.
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(b) Prove that the set

B := {(a1, a2, . . . , an) ∈ Rn | 1a1 = 2a2 = 3a3 = · · · = nan}

is an R-submodule of Rn.

(c) Prove that the set

C := {(a1, a2, . . . , an) ∈ Rn | a1a2 · · · an = 0}

is an R-submodule of Rn only if R is trivial or n = 1.

(d) Prove that the set

D := {(a1, a2, . . . , an) ∈ Rn | ai = ai−1 + ai−2 for all i ≥ 3}

is an R-submodule of Rn.

3.1.4. Left vs. right R-modules in general

As we said above, the notion of a left R-module is not equivalent to the notion
of a right R-module when R is a noncommutative ring. However, the general
notion of a “left module over a ring” is equivalent to the general notion of a
“right module over a ring”. Indeed, the next exercise ([21w, homework set #2,
Exercise 2 (d)]) provides a way to convert right modules into left modules (over
a different ring):

Exercise 3.1.3. Let R be a ring. Define the opposite ring Rop as in Exercise 2.7.6.
Let M be a right R-module. Prove that M becomes a left Rop-module if we define

an action of Rop on M by

rm = mr for all r ∈ Rop and m ∈ M.

(Here, the left hand side is to be understood as the image of (r, m) under the new
action of Rop on M, whereas the right hand side is the image of (m, r) under the
original action of R on M.)

Similarly, we can translate left R-modules into right Rop-modules. (This is
just a generalization of Proposition 3.1.3 to arbitrary – i.e., not necessarily com-
mutative – rings R.)

Thus, for any ring R, we can translate left R-modules into right Rop-modules
and vice versa. As a consequence, any property of left R-modules can be trans-
lated into a property of right Rop-modules, and vice versa. The same holds with
the words “left” and “right” interchanged. Thus, we can focus our study on left
R-modules, knowing that everything we prove about them will also hold (with
analogous proofs) for right Rop-modules, and thus (if we replace R by Rop) for
right R-modules.
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3.2. A couple generalities

Let us next show a few general properties of modules.

3.2.1. Negation, subtraction and scaling

Recall that when a group is written additively (i.e., its operation is denoted by
+), the inverse of an element a of this group is denoted by −a (and is called its
additive inverse). The following proposition says that the additive inverse of a
vector in an R-module can be obtained by scaling the vector by −1:

Proposition 3.2.1. Let R be a ring. Let M be a left R-module. Then, (−1)m =
−m for each m ∈ M.

Proof. Let m ∈ M. Then, 1m = m (by one of the module axioms). Thus,

(−1)m + m︸︷︷︸
=1m

= (−1)m + 1m

= ((−1) + 1)︸ ︷︷ ︸
=0R

m (by the right distributivity axiom)

= 0Rm = 0M (by one of the module axioms) .

In other words, (−1)m is an additive inverse of m. But the additive inverse
of m is −m. Thus, we conclude that (−1)m = −m. This proves Proposition
3.2.1.

Further properties of negation and scaling can easily be derived from this.
For example:

Proposition 3.2.2. Let R be a ring. Let M be a left R-module. Let r ∈ R and
m ∈ M. Then,

(−r)m = − (rm) = r (−m) (44)

and
(−r) (−m) = rm. (45)

Proof. Left to the reader. (Just as in the proof of Proposition 3.2.1, argue that
both (−r)m and r (−m) are additive inverses of rm. This proves (44). To get
(45), apply (44) to −m instead of m.)

Proposition 3.2.3. Let R be a ring. Let M be a left R-module. Then, any
R-submodule of M is a subgroup of the additive group (M,+, 0).

Proof of Proposition 3.2.3. Let N be an R-submodule of M. Then, N is closed
under addition and under scaling and contains the zero vector. Since N is
closed under scaling, we have (−1)m ∈ N for each m ∈ N. However, each
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m ∈ N satisfies (−1)m = −m (by Proposition 3.2.1, applied to a = m) and
thus −m = (−1)m ∈ N. In other words, N is closed under negation (= taking
additive inverses). Thus, N is a subgroup of (M,+, 0).

Proposition 3.2.4. Let R be a ring. Let M be a left R-module. Then, an R-
submodule of M is the same as a subgroup of the additive group (M,+, 0)
that is closed under scaling by every scalar r ∈ R.

Proof. Any R-submodule of M is a subgroup of the additive group (M,+, 0)
(by Proposition 3.2.3) that is closed under scaling by every scalar r ∈ R (by the
definition of a submodule). Conversely, any subgroup of the additive group
(M,+, 0) that is closed under scaling by every scalar r ∈ R is an R-submodule
of M (since it satisfies all the axioms for a submodule). Thus, Proposition
3.2.4.

Proposition 3.2.5. Let R be a ring. Let M be a left R-module. Then, any R-
submodule of M becomes a left R-module in its own right (just like a subring
of a ring becomes a ring).

Proof. Let N be an R-submodule of M. Then, Proposition 3.2.3 shows that N is
a subgroup of the additive group (M,+, 0). Hence, (N,+, 0) is a group. Since
N is closed under scaling, we furthermore can define an action of R on N in the
obvious way (viz., inheriting it from M). This makes N into a left R-module.
This proves Proposition 3.2.5.

We also have “distributivity laws for subtraction”:

Proposition 3.2.6. Let R be a ring. Let M be a left R-module. Then:

(a) We have (r − s)m = rm − sm for all r, s ∈ R and m ∈ M.

(b) We have r (m − n) = rm − rn for all r ∈ R and m, n ∈ M.

Proof. LTTR. (The fastest way is to derive these properties from the distributiv-
ity laws by strategic application of (44).)

3.2.2. Finite sums

Next, let us recall how we defined finite sums ∑
s∈S

as of elements of a ring. In the

same way, we can define a finite sum ∑
s∈S

as of elements of any additive group,

and thus a finite sum ∑
s∈S

as of elements of any R-module (since any R-module

is an additive group). Thus, in particular, if a1, a2, . . . , an are n elements of an
R-module M, then the finite sum a1 + a2 + · · ·+ an ∈ M is well-defined.

The following “generalized distributivity laws” hold in any left R-module:
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Proposition 3.2.7. Let R be a ring. Let M be a left R-module. Then:

(a) We have

(r1 + r2 + · · ·+ rk)m = r1m + r2m + · · ·+ rkm

for any r1, r2, . . . , rk ∈ R and m ∈ M.

(b) We have

r (m1 + m2 + · · ·+ mi) = rm1 + rm2 + · · ·+ rmi

for any r ∈ R and m1, m2, . . . , mi ∈ M.

Proof. (a) This follows by applying the right distributivity law (one of the mod-
ule axioms) many times. (More precisely, this follows by induction on k; the
right distributivity law is used in the induction step. The induction base follows
from the 0Rm = 0M axiom.)

(b) This follows by applying the left distributivity law (one of the module
axioms) many times. (More precisely, this follows by induction on i; the left
distributivity law is used in the induction step. The induction base follows
from the r · 0M = 0M axiom.)

The following convention is useful when dealing with R-modules. Essen-
tially, it says that (just as with products of multiple elements in a ring or in a
group) we can drop parentheses when we scale an element of an R-module by
several elements of R:

Convention 3.2.8. Let R be a ring. Let M be a left R-module. Let r, s ∈ R
and m ∈ M. Then, (rs)m and r (sm) are the same vector (by the associativity
axiom in the definition of a left R-module). We shall denote this vector by
rsm. Likewise, expressions like r1r2 · · · rkm (for r1, r2, . . . , rk ∈ R and m ∈ M)
will be understood.

Everything we said above about left R-modules can be adapted to right R-
modules in a straightforward way; we leave the details to the reader.

3.2.3. Some exercises

Exercise 3.2.1. Let R be a ring. Let M be a left R-module. Let I be an R-submodule
of M.

For any two elements a, b ∈ M, we write “a ≡ b mod I” (and say that “a is congru-
ent to b modulo I”) if and only if a− b ∈ I. (This is a generalization of congruence of
integers, as it is usually defined in elementary number theory. Indeed, congruence
of integers modulo an integer n is recovered when R = Z and I = nZ.)

Prove the following:
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(a) Each a ∈ M satisfies a ≡ a mod I.

(b) If a, b ∈ M satisfy a ≡ b mod I, then b ≡ a mod I.

(c) If a, b, c ∈ M satisfy a ≡ b mod I and b ≡ c mod I, then a ≡ c mod I.

(d) If a, b, c, d ∈ M satisfy a ≡ b mod I and c ≡ d mod I, then a + c ≡ b + d mod I.

(e) If a, b ∈ M and r ∈ R satisfy a ≡ b mod I, then ra ≡ rb mod I.

Now, we claim a sort of converse:

(f) Let us drop the requirement that I be an R-submodule of M. Instead, we
require that I be any subset of M for which the claims of parts (a), (c) and (e)
of this exercise hold. Prove that I is an R-submodule of M.

Exercise 3.2.1 can be summarized as “modular arithmetic modulo a subset I
of M works if and only if I is a submodule of M”. In other words, roughly
speaking, the submodules of a module M are precisely the subsets I that allow
“working modulo I”. This is most likely the reason why modules are called
“modules”95.

Exercise 3.2.2. Let R be a ring. Let M be a left R-module.
For any subset K of M, let Ann K denote the subset {r ∈ R | rk = 0 for all k ∈ K}

of R. (This is called the annihilator of K.)

(a) Prove that Ann M is an ideal of R.

(b) Let K be any subset of M. Prove that Ann K is a left ideal of R. (Recall that
a left ideal of R means a subset L of R that is closed under addition and
contains 0 and satisfies ra ∈ L for all r ∈ R and a ∈ L.)

(c) Find an example showing that the Ann K in part (b) is not always an ideal of
R.

3.3. More operations on modules and submodules

3.3.1. Direct products and direct sums

Fix a ring R. In Subsection 3.1.1, we have defined left R-modules (recall: these
are essentially additive groups whose elements can be scaled by elements of R),
and afterwards we have seen a few examples of them. Let me briefly repeat the
two simplest examples:

• The ring R itself becomes a left R-module: Just define the action to be
the multiplication of R. This is called the natural left R-module R. The

95The name was coined by Dedekind, although in a less general context.
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R-submodules of this R-module are the left ideals of R. (Every ideal of R
is a left ideal of R, but usually not vice versa.)

• For any n ∈ N, the set

Rn = {(a1, a2, . . . , an) | all ai belong to R}

is a left R-module, with addition and action being entrywise96 and with
the zero vector (0, 0, . . . , 0). This generalizes the Euclidean space Rn from
linear algebra, and many of its analogues.

Here are some more examples:

• The left R-modules Rn (with n ∈ N) tend to have many R-submodules.
When R is a field, this is well-known from linear algebra (where R-
submodules are called R-vector subspaces); in particular, the solution set
of any given system of homogeneous linear equations in n variables is
an R-submodule of Rn. The same applies to any commutative ring R,
but here we have even more freedom: Besides equations, our system can
contain congruences too (as long as they are linear and have no constant
term). For instance, for R = Z, the set{

(x, y, z, w) ∈ Z4 | x ≡ y mod 2 and x + y + z + w ≡ 0 mod 3

and x − y + z − w = 0
}

is a Z-submodule of Z4. To prove this, you need to check the axioms
(“closed under addition”, “closed under scaling” and “contains the zero
vector”). With a bit of practice, you can do this all in your head.

If R is noncommutative, you have to be somewhat careful with the side
on which the coefficients stand in your system. If the coefficients are on
the right of the variables, then the solution set is a left R-module (so,
e.g., if a and b are two elements of R, then

{
(x, y) ∈ R2 | xa + yb = 0

}
is a left R-module); on the other hand, if the coefficients are on the left
of the variables, then the solution set is a right R-module. (Again, this
is not hard to check: e.g., the set

{
(x, y) ∈ R2 | xa + yb = 0

}
is closed

under the scaling maps of a left R-module because xa + yb = 0 implies
rxa + ryb = r (xa + yb)︸ ︷︷ ︸

=0

= 0. Meanwhile, in general, this set is not closed

under the scaling maps of a right R-module, since xa + yb = 0 does not
imply xra + yrb = 0.)

96e.g., the action is defined by

r · (a1, a2, . . . , an) = (ra1, ra2, . . . , ran) for all r ∈ R and a1, a2, . . . , an ∈ R.
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• Just as we defined the left R-module Rn consisting of all n-tuples, we
can define a left R-module “R∞” consisting of all infinite sequences. It
is commonly denoted by RN (since there are different kinds of infinity).
Explicitly, we define the left R-module RN by

RN := {(a0, a1, a2, . . .) | all ai belong to R} ,

where addition and action are defined entrywise.

This left R-module RN has an R-submodule

R(N) :=
{
(a0, a1, a2, . . .) ∈ RN | only finitely many i ∈ N satisfy ai ̸= 0

}
=
{
(a0, a1, a2, . . .) ∈ RN | all but finitely many i ∈ N satisfy ai = 0

}
.

You can check that this is indeed an R-submodule of RN. (For instance,
it is closed under addition, because if only finitely many i ∈ N satisfy
ai ̸= 0 and only finitely many i ∈ N satisfy bi ̸= 0, then only finitely
many i ∈ N satisfy ai + bi ̸= 0.)

For example, if R = Q, then

(1, 1, 1, . . .) ∈ RN \ R(N)

and (0, 0, 0, . . .) ∈ R(N)

and (1, 0, 0, 0, . . .) ∈ R(N)

and

1, 0, 4, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 ∈ R(N)

and

 1, 0, 1, 0, 1, 0, . . .︸ ︷︷ ︸
ones and zeroes in turn

 ∈ RN \ R(N).

Generalizing Rn, here is a way to build modules out of other modules:

Definition 3.3.1. Let n ∈ N, and let M1, M2, . . . , Mn be any n left R-modules.
Then, the Cartesian product M1 × M2 × · · · × Mn becomes a left R-module
itself, where addition and action are defined entrywise: e.g., the action is
defined by

r · (m1, m2, . . . , mn) = (rm1, rm2, . . . , rmn) for all r ∈ R and mi ∈ Mi.

This left R-module M1 × M2 × · · · × Mn is called the direct product of
M1, M2, . . . , Mn.

If all of M1, M2, . . . , Mn are the natural left R-module R, then this direct prod-
uct is precisely the left R-module Rn defined above.
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This direct product M1 × M2 × · · · × Mn can be generalized further, allowing
products of infinitely many modules, too. Just as for rings, the best setting for
this is using families, not lists:97

Proposition 3.3.2. Let I be any set. Let (Mi)i∈I be any family of left R-
modules. Then, the Cartesian product

∏
i∈I

Mi =
{

all families (mi)i∈I with mi ∈ Mi for all i ∈ I
}

becomes a left R-module if we endow it with the entrywise addition (i.e.,
we set (mi)i∈I + (ni)i∈I = (mi + ni)i∈I for any two families (mi)i∈I , (ni)i∈I ∈
∏
i∈I

Mi) and the entrywise scaling (i.e., we set r (mi)i∈I = (rmi)i∈I for any

r ∈ R and any family (mi)i∈I ∈ ∏
i∈I

Mi) and with the zero vector (0)i∈I .

Definition 3.3.3. This left R-module is denoted by ∏
i∈I

Mi and called the direct

product of the left R-modules Mi. In some special cases, there are alternative
notations for it:

• If I = {1, 2, . . . , n} for some n ∈ N, then this left R-module is also
denoted by M1 × M2 × · · · × Mn, and we identify a family (mi)i∈I =
(mi)i∈{1,2,...,n} with the n-tuple (m1, m2, . . . , mn). (Thus, M1 × M2 × · · ·×
Mn is precisely the direct product M1 × M2 × · · · × Mn we defined in
Definition 3.3.1.)

• If all the left R-modules Mi are equal to some left R-module M, then
their direct product ∏

i∈I
Mi = ∏

i∈I
M is also denoted MI . Note that this

generalizes the RN defined above.

• We set Mn = M{1,2,...,n} for each n ∈ N and any left R-module M. This
generalizes the left R-module Rn for n ∈ N discussed above.

This was quite predictable; but there is more. Indeed, we can generalize not
just RN but also its submodule R(N), and the result is at least as important:98

Proposition 3.3.4. Let I be any set. Let (Mi)i∈I be any family of left R-
modules. Define

⊕
i∈I

Mi to be the subset

{
(mi)i∈I ∈ ∏

i∈I
Mi | only finitely many i ∈ I satisfy mi ̸= 0

}
97The proof of Proposition 3.3.2 is easy and LTTR.
98The proof of Proposition 3.3.4 is easy and LTTR.
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of ∏
i∈I

Mi. Then,
⊕
i∈I

Mi is a left R-submodule of ∏
i∈I

Mi, and thus becomes a

left R-module itself (by Proposition 3.2.5).

Definition 3.3.5. This left R-module
⊕
i∈I

Mi is called the direct sum of the

R-modules Mi.
If I = {1, 2, . . . , n} for some n ∈ N, then this left R-module is also denoted

by M1 ⊕ M2 ⊕ · · · ⊕ Mn.

The last part of this definition might raise some eyebrows. In fact, if the set
I is finite, then

⊕
i∈I

Mi = ∏
i∈I

Mi (since the condition “only finitely many i ∈ I

satisfy mi ̸= 0” is automatically satisfied for any family (mi)i∈I when I is finite).
Thus, in particular,

M1 ⊕ M2 ⊕ · · · ⊕ Mn = M1 × M2 × · · · × Mn

for any left R-modules M1, M2, . . . , Mn. So we have introduced two notations
for the same thing (and even worse, one of the notations looks like a sum, while
the other looks like a product!). Nevertheless, both are in use. Direct sums start
differing from direct products when the indexing set I is infinite.

For I = N and Mi = R, the direct sum
⊕
i∈I

Mi =
⊕

i∈N

R is precisely the R-

module R(N) defined above. More generally:

Definition 3.3.6. Let I be a set. Let M be any left R-module. Then, M(I) is
defined to be the left R-module

⊕
i∈I

M.

Exercise 3.3.1. Let I be any set. Let (Mi)i∈I be any family of left R-modules. Let
Ni be an R-submodule of Mi for each i ∈ I.

(a) Prove that ∏
i∈I

Ni is an R-submodule of the left R-module ∏
i∈I

Mi.

(b) Prove that
⊕
i∈I

Ni is an R-submodule of the left R-module
⊕
i∈I

Mi.

3.3.2. Restriction of modules

Here are some more ways to construct modules over rings:

• If R is a subring of a ring S, then S is a left R-module (where the action
of R on S is defined by restricting the multiplication map S × S → S to
R × S) and a right R-module (in a similar way).

Let me restate this in a more down-to-earth way: If R is a subring of a ring
S, then we can multiply any element of R with any element of S (since
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both elements lie in the ring S); this makes S into a left R-module (and
likewise, S becomes a right R-module). Explicitly, the action of R on the
left R-module S is given by

rs = rs for all r ∈ R and s ∈ S

(where the “rs” on the left hand side means the image of (r, s) under the
action, whereas the “rs” on the right hand side means the product of r
and s in the ring S).

Thus, for example, C is an R-module (since R is a subring of C) and also
a Q-module (for similar reasons). (In this sentence, you can just as well
say “vector space” instead of “module”, since R and Q are fields.)

• More generally: If R and S are any two rings, and if f : R → S is a ring
morphism, then S becomes a left R-module (with the action of R on S
being defined by

rs = f (r) s for all r ∈ R and s ∈ S

) and a right R-module (in a similar way). The proof of this is easy. These
R-module structures are sometimes said to be induced by the morphism
f .

Our previous example (in which we made S into an R-module whenever
R is a subring of S) is the particular case of this construction obtained
when f is the canonical inclusion99 of R into S.

Here are some other particular cases:

– Any quotient ring R/I of a ring R (by some ideal I) becomes a left
R-module, because the canonical projection π : R → R/I (which
sends every r ∈ R to its residue class r ∈ R/I) is a ring morphism.
Explicitly, the action of R on R/I is given by

r · u = π (r)︸ ︷︷ ︸
=r

· u = r · u = ru for all r, u ∈ R.

Similarly, R/I becomes a right R-module.

99Recall what “canonical inclusion” means:
If U is a subset of a set V, then the map

U → V,
u 7→ u

is called the canonical inclusion of U into V.
If U is a subring of a ring V, then the canonical inclusion of U into V is furthermore a

ring morphism. (This follows trivially from the definition of a subring.)
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– Here is another particular case (a less transparent one): I claim that
the abelian group Z/5 becomes a Z [i]-module100, if we define the
action by

(a + bi) · m = a + 2b · m for all a + bi ∈ Z [i] and m ∈ Z/5.

To wit, the map

f : Z [i] → Z/5,

a + bi 7→ a + 2b

is a ring morphism (check this!101); and this can be used to turn Z/5
into a Z [i]-module by our above construction; this yields precisely
the action I claimed above (because all a + bi ∈ Z [i] and m ∈ Z/5
satisfy (a + bi) · m = f (a + bi)︸ ︷︷ ︸

=a+2b

·m = a + 2b · m).

This is not the only way to turn Z/5 into a Z [i]-module. We could
just as well use the ring morphism

g : Z [i] → Z/5,

a + bi 7→ a + 3b

instead of f . This would give us a Z [i]-module Z/5 with action
given by

(a + bi) · m = a + 3b · m for all a + bi ∈ Z [i] and m ∈ Z/5.

Thus, we have obtained two different Z [i]-module structures on
Z/5 – that is, two different Z [i]-modules that are equal as sets (and

100As usual, Z [i] denotes the ring of the Gaussian integers, with i =
√
−1.

101Indeed, it is pretty easy to see that this map f respects addition, the zero and the unity. It
remains to show that this map respects multiplication. To show this, we fix any x, y ∈ Z [i].
We then need to show that f (xy) = f (x) f (y).

Write x and y as x = a + bi and y = c + di for some a, b, c, d ∈ Z. Then, xy =
(a + bi) (c + di) = (ac − bd) + (ad + bc) i (by the rule for multiplying complex numbers).
Hence,

f (xy) = f ((ac − bd) + (ad + bc) i) = ac − bd + 2 (ad + bc) (46)

(by the definition of f ). On the other hand, x = a + bi entails f (x) = f (a + bi) = a + 2b,
and similarly we find f (y) = c + 2d. Multiplying these two equalities, we find

f (x) f (y) = a + 2b · c + 2d = (a + 2b) (c + 2d) = ac + 22bd + 2 (ad + bc) (47)

(since (a + 2b) (c + 2d) = ac+ 22bd+ 2 (ad + bc)). Now, the right hand sides of the equalities
(46) and (47) are identical (since 22 ≡ −1 mod 5 and thus 22

= −1, so that 22bd = −bd);
hence, so are the left hand sides. In other words, f (xy) = f (x) f (y). This completes the
proof that the map f respects multiplication; therefore, f is a ring morphism.
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even as additive groups) but different as Z [i]-modules (and not even
isomorphic as such). None of these two module structures is more
natural or otherwise better than the other. Thus, when you speak
of a “Z [i]-module Z/5”, you need to clarify which one you mean.
(Such situations are rather frequent in algebra. “Natural” R-module
structures – i.e., structures that are clearly “the right one” – are rare
in comparison.)

• Even more generally: If R and S are two rings, and if f : R → S is a ring
morphism, then any left S-module M (not just S itself) naturally becomes
a left R-module, with the action defined by

rm = f (r)m for all r ∈ R and m ∈ M.

(You can think of this as letting R act on M “by proxy”: In order to scale
a vector m ∈ M by a scalar r ∈ R, you just scale it by the scalar f (r) ∈ S.)

This method of turning S-modules into R-modules is called restriction of
scalars (or, more specifically, restricting an S-module to R via f ).

If we apply this method to a canonical inclusion (i.e., if R is a subring of
S and if f : R → S is the canonical inclusion), then we conclude that any
module over a ring naturally becomes a module over any subring.102 For
example, any C-module naturally becomes an R-module (this is known
as “decomplexification” in linear algebra103) and a Q-module and a Z-
module.

3.3.3. More examples

Here are some more general constructions of submodules in a given R-module
(similar to some of the above constructions for ideals in a given ring):

Proposition 3.3.7. Let R be a ring. Let M be a left R-module. Let I and J be
two R-submodules of M. Then, I ∩ J is an R-submodule of M as well.

Proposition 3.3.8. Let R be a ring. Let M be a left R-module.

(a) Let I and J be two R-submodules of M. Then,

I + J := {i + j | i ∈ I and j ∈ J}

is an R-submodule of M as well.
102You can think of it as forgetting how to scale vectors by scalars that don’t belong to the

subring.
103Of course, again, linear algebraists speak of vector spaces instead of modules.

From linear algebra, you might also know a procedure going in the other direction: “com-
plexification”, which turns an R-vector space into a C-vector space. We will later learn how
to generalize this to arbitrary ring morphisms.
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(b) If I, J and K are three R-submodules of M, then (I + J) + K = I +
(J + K).

Proposition 3.3.9. Let R be a ring. Let I be an ideal of R. Let M be a left
R-module. An (I, M)-product shall mean a product of the form im with i ∈ I
and m ∈ M. Then,

IM := {finite sums of (I, M) -products}

is an R-submodule of M.

Proof. This is fairly similar to the proof of the fact that the product I J of two
ideals I and J is again an ideal (see Exercise 2.11.1 (a)).

Proposition 3.3.10. Let R be a commutative ring.

(a) Let a ∈ R. Let M be an R-module. Then,

aM := {am | m ∈ M}

is an R-submodule of M.

(b) In particular, 0M = {0M} and 1M = M are R-submodules of M.

Proof. This is a straightforward generalization of Proposition 2.8.5. The proof
is LTTR.

Exercise 3.3.2. Prove Propositions 3.3.7, 3.3.8, 3.3.9 and 3.3.10.

Proposition 3.3.10 (b) holds for noncommutative rings R, too: If M is a left
R-module, then {0M} and M are R-submodules of M. These are the “book-
ends” for the R-submodules of M (in the sense that every R-submodule N of
M satisfies {0M} ⊆ N ⊆ M).

Proposition 3.3.10 (a) holds for noncommutative rings R as well, if we assume
that a is a central element of R. (Of course, “R-module” should then be replaced
by “left R-module”.)

Exercise 3.3.3. Prove this claim.

Here are a few more examples of modules:

• Let n ∈ N, and let R be a ring. The set Rn is not only a left R-module (as
we have seen), but also a right Rn×n-module104, where the action of Rn×n

104Recall that Rn×n is the ring of n × n-matrices over R.
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on Rn is the vector-by-matrix multiplication map

Rn × Rn×n → Rn,
(v, M) 7→ vM

(where we identify n-tuples v ∈ Rn with row vectors).

• More generally, for any n, m ∈ N, the set Rn×m of all n × m-matrices is
a left Rn×n-module and a right Rm×m-module105 (since an n × m-matrix
can be multiplied by an n × n-matrix from the left and by an m × m-
matrix from the right, and since the module axioms follow from the stan-
dard laws of matrix multiplication such as associativity and distributiv-
ity). Even better, this set is a so-called (Rn×n, Rm×m)-bimodule (we will
later define this notion; essentially it means a left and a right module
structure that fit together well).

• Let us study a particular case of this.

Namely, let R be a field F, and let n = 2. So F2 is a left F-module, with
the action given by

λ (a, b) = (λa, λb) for all λ, a, b ∈ F,

and is a right F2×2-module, with the action given by

(a, b)
(

x y
z w

)
= (ax + bz, ay + bw) for all a, b, x, y, z, w ∈ F.

What are the F-submodules of F2 ? These are precisely the F-vector sub-
spaces of F2; as you know from linear algebra, these subspaces are the
whole F2 as well as the zero subspace {0F2} and all lines through the
origin.

What are the F2×2-submodules of F2 ? Only F2 and {0F2}, because any
two nonzero vectors in F2 can be mapped to one another by a 2× 2-matrix.

Now, consider the subring

F2≥2 :=
{(

x 0
z w

)
| x, z, w ∈ F

}
of F2×2. This is the ring of all lower-triangular 2 × 2-matrices over F.
(Yes, it is a subring of F2×2, since the sum and the product of two lower-
triangular matrices are lower-triangular and since the zero and identity
matrices are lower-triangular.) Since F2 is a right F2×2-module, F2 must
also be a right F2≥2-module (by restriction). What are the F2≥2-submodules
of F2 ? Only F2 and {0F2} and {(a, 0) | a ∈ F}. (You might have to prove
this on a future homework set.)

105This is in addition to it being a left R-module and a right R-module!
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Exercise 3.3.4. Let I and J be two ideals of a ring R. Let M be a left R-module.
Prove that (I J) M = I (JM).

[Note that this generalizes the identity (I J)K = I (JK) in Proposition 2.11.2 (e).)

3.4. Abelian groups as Z-modules ([DumFoo04, §10.1])

Now, let us try to understand Z-modules in particular.

3.4.1. The action of Z by repeated addition

Let us recall one of the most basic definitions in elementary mathematics: the
definition of multiplication of integers.

Multiplication of nonnegative integers was defined by repeated addition:
If n, m ∈ N, then nm means m + m + · · ·+ m︸ ︷︷ ︸

n times

. This same formula nm =

m + m + · · ·+ m︸ ︷︷ ︸
n times

can be applied to negative integers m as well, but not to neg-

ative integers n, since there is no such thing as m + m + · · ·+ m︸ ︷︷ ︸
−5 times

. Thus, the

product nm for negative n had to be defined differently; one way to define it is

by setting nm = −

m + m + · · ·+ m︸ ︷︷ ︸
−n times

 (thus using negation to reduce the case

of negative n to the case of positive n). Thus, for arbitrary integers n and m, the
product nm is defined by

nm =


m + m + · · ·+ m︸ ︷︷ ︸

n times

, if n ≥ 0;

−

m + m + · · ·+ m︸ ︷︷ ︸
−n times

 , if n < 0.

The same definition can be adapted to any abelian group:

Proposition 3.4.1. Let A be an abelian group. Assume that A is written
additively (i.e., the operation of A is denoted by +, and the neutral element
by 0). For any n ∈ Z and a ∈ A, define

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0.
(48)



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 214

Thus, we have defined a map

Z × A → A,
(n, a) 7→ na.

We shall refer to this map as the action of Z by repeated addition (due to
the way na was defined in (48)).

(a) The group A becomes a Z-module (where we take this map as the
action of Z on A, and the pre-existing addition of A as the addition).

(b) This is the only Z-module structure on A. That is, if A is any Z-
module, then the action of Z on A is given by the formula (48) (and is
therefore uniquely determined by the abelian group structure on A).

(c) The Z-submodules of A are precisely the subgroups of A.

Proof of Proposition 3.4.1. LTTR. Here are the main ideas:
(a) You have to prove axioms like (n + m) a = na + ma and n (a + b) = na +

nb and (nm) a = n (ma) for all n, m ∈ Z and a, b ∈ A. These facts are commonly
proved for A = Z in standard texts on the construction of the number system;
if you pick the “right” proofs, then you can adapt them to the general case just
by replacing Z by A. The main idea is “reduce to the case when n and m are
nonnegative, and then prove them by induction on n and m”. The details are
rather laborious, as there are several cases to discuss based on the signs of n, m
and n + m.

(b) Given any Z-module structure on A, we must have

na = (1 + 1 + · · ·+ 1)︸ ︷︷ ︸
n times

a = 1a + 1a + · · ·+ 1a︸ ︷︷ ︸
n times

(by Proposition 3.2.7 (a))

= a + a + · · ·+ a︸ ︷︷ ︸
n times

(by the 1a = a axiom)

for any n ∈ N and any a ∈ A. This proves the “top half” of (48). It is not hard
to prove the “bottom half” either (use the right distributivity axiom to see that
na + (−n) a = (n + (−n))︸ ︷︷ ︸

=0

a = 0a = 0).

(c) Proposition 3.2.3 (applied to R = Z and M = A) shows that any Z-
submodule of A is a subgroup of A. Conversely, we must prove that if B is a
subgroup of A, then B is a Z-submodule of A. So let B be a subgroup of A.
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Then, any n ∈ Z and b ∈ B satisfy

nb =


b + b + · · ·+ b︸ ︷︷ ︸

n times

, if n ≥ 0;

−

b + b + · · ·+ b︸ ︷︷ ︸
−n times

 , if n < 0
∈ B

(since B is closed under addition and negation and contains 0). In other words,
B is closed under scaling. Hence, B is a Z-submodule of A (since B is a sub-
group of A and therefore closed under addition and contains 0), qed.

Proposition 3.4.1 reveals what Z-modules really are: In general, when R is
a ring, an R-module is an abelian group A with an extra structure (namely, an
action of R on A); however, for R = Z, this extra structure is redundant (in the
sense that it can always be constructed in a unique way from the abelian group
structure), and so a Z-module is just an abelian group in fancy clothes.106 Thus,
we shall identify abelian groups with Z-modules (at least when the abelian
groups are written additively).

This has a rather convenient consequence: The theory of R-modules is a
generalization of the theory of abelian groups. In particular, anything we have
proved or will prove for R-modules can therefore be applied to abelian groups
(by setting R = Z).

3.4.2. A few words on Q-modules and R-modules

Thus, we have understood what Z-modules are. What about Q-modules? Not
every abelian group can be made into a Q-module:

Example 3.4.2. There is no Q-module structure on Z/2 (that is, there is no
Q-module whose additive group is Z/2).

Proof. This follows from linear algebra (since Q-modules are Q-vector spaces
and thus have dimensions; but Z/2 is too large to have dimension 0 and yet
too small to have dimension > 0). Alternatively, you can do it by hand: Assume
that Z/2 is a Q-module in some way. Then,

1
2
·
(
2 · 1

)
=

(
1
2
· 2
)

︸ ︷︷ ︸
=1

·1 = 1 · 1 = 1,

so that
1 =

1
2
·
(
2 · 1

)︸ ︷︷ ︸
=0

=
1
2
· 0 = 0,

106Don’t get me wrong: “redundant” and “in fancy clothes” doesn’t mean “useless”; it just
means that the scaling is determined by the abelian group structure.
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which contradicts 1 ̸= 0.

Thus we see that not every abelian group can be made into a Q-module
(unlike for Z-modules). However, any abelian group that can be made into a
Q-module can only be made so in one way:

Exercise 3.4.1. Let A be an abelian group (written additively). Prove that there is
at most one map Q × A → A that makes A into a Q-module (where we take this
map as the action of Q on A, and the pre-existing addition of A as the addition).

[Hint: Let ∗1 and ∗2 denote two such maps. Let r, s ∈ Z and a ∈ A with s ̸= 0.

Your goal is to show that
r
s
∗1 a =

r
s
∗2 a. First prove that if two elements u, v ∈ A

satisfy s ∗1 u = s ∗1 v, then u = v.]

What about R-modules? Here, we get neither existence nor uniqueness:
There are abelian groups that cannot be made into R-modules; there are also
abelian groups that can be made into R-modules in multiple different ways. So
the action of R on an R-module cannot be reconstructed from the underlying
group of the latter (unlike for Z and Q). “Most” rings behave more like R than
like Z and Q in this regard.

Exercise 3.4.2.

(a) Prove that any nontrivial R-module is uncountable as a set.

(b) Conclude that Q cannot be an R-module (no matter how we define an action
of R on Q).

[Hint: If M is a nontrivial R-module, and if m ∈ M is nonzero, then argue that
the elements rm for all r ∈ R have to be distinct.]

3.4.3. Repeated addition vs. scaling

If R is any ring and M is any R-module, then M is (in particular) an addi-
tive abelian group, and thus (by Proposition 3.4.1 (a)) becomes a Z-module in
a natural way (using the action of Z by repeated addition). How does this
Z-module structure relate to the original R-module structure on M ? The fol-
lowing proposition shows a certain consistency between the two:

Proposition 3.4.3. Let R be a ring. Let M be a left R-module. Then,

(nr) a = r (na) = n (ra) for all n ∈ Z, r ∈ R and a ∈ M.

Here, we are using both the action of R on M (to make sense of expressions
like ra) and the action of Z by repeated addition (to make sense of expres-
sions like na).
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Proof. LTTR. (For n ≥ 0, this is just saying that

(r + r + · · ·+ r)︸ ︷︷ ︸
n times

a = r (a + a + · · ·+ a)︸ ︷︷ ︸
n times

= ra + ra + · · ·+ ra︸ ︷︷ ︸
n times

,

which easily follows from Proposition 3.2.7. The case of n < 0 can be reduced
to the case of n > 0 using (44).)

3.5. Module morphisms ([DumFoo04, §10.2])

3.5.1. Definition

Module morphisms are defined similarly to ring morphisms, but you probably
already know their definition from linear algebra: they are also known as linear
maps. Let me recall the definition:

Definition 3.5.1. Let R be a ring. Let M and N be two left R-modules.

(a) A left R-module homomorphism (or, for short, left R-module mor-
phism, or left R-linear map) from M to N means a map f : M → N
that

• respects addition (i.e., satisfies f (a + b) = f (a) + f (b) for all
a, b ∈ M);

• respects scaling (i.e., satisfies f (ra) = r f (a) for all r ∈ R and
a ∈ M);

• respects the zero (i.e., satisfies f (0M) = 0N).

You can drop the word “left” (and, e.g., just say “R-module morphism”)
when it is clear from the context.

(b) A left R-module isomorphism (or, informally, left R-module iso) from
M to N means an invertible left R-module morphism f : M → N whose
inverse f−1 : N → M is also a left R-module morphism.

(c) The left R-modules M and N are said to be isomorphic (this is written
M ∼= N) if there exists a left R-module isomorphism f : M → N.

(d) We let HomR (M, N) be the set of all left R-module morphisms from M
to N.

(e) Right R-module morphisms (and isomorphisms) are defined similarly.

It is not hard to show that the “respects the zero” axiom in Definition 3.5.1
(a) is redundant. (In fact, it is “doubly redundant”: It follows from each of the
other two axioms!)
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3.5.2. Simple examples

Here are some examples of R-module morphisms:

• You have seen linear maps between vector spaces in linear algebra. These
are precisely the left R-module morphisms when R is a field.

• Let k ∈ Z. The map

Z → Z,
a 7→ ka

is always a Z-module morphism. (For comparison: It is a ring morphism
only when k = 1.)

• More generally: Let R be a commutative ring. Let k ∈ R. Let M be any
R-module. Then, the map

M → M,
a 7→ ka

is an R-module morphism. (This is the map that we have called “scaling
by k”.)

• Even more generally: Let R be any ring (commutative or not), and let k
be a central element of R. Let M be any left R-module. Then, the map

M → M,
a 7→ ka

is a left R-module morphism. Indeed, this map respects scaling because
we have

k (ra) = (kr)︸︷︷︸
=rk

(since k is central)

a = (rk) a = r (ka) for all r ∈ R and a ∈ M.

It respects addition and the zero for similar reasons.

However, if k is not central, then this map is not a left R-module morphism
in general.

• Let R be a ring. Let n ∈ N. For any i ∈ {1, 2, . . . , n}, the map

πi : Rn → R,
(a1, a2, . . . , an) 7→ ai

is a left R-module morphism.
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More generally: If (Mi)i∈I is a family of left R-modules, and if j ∈ I, then
the map

πj : ∏
i∈I

Mi → Mj,

(mi)i∈I 7→ mj

is a left R-module morphism. This follows immediately from the fact that
the structure of ∏

i∈I
Mi (addition, action and zero) is defined entrywise.

• Let R be a ring. If M and N are two left R-modules, then the map

M × N → N × M,
(m, n) 7→ (n, m)

is an R-module isomorphism.

• If R is any ring, and n, m ∈ N are arbitrary, then the map

Rn×m → Rm×n,

A 7→ AT

(which sends each matrix A to its transpose) is a left R-module isomor-
phism. (Indeed, it is an R-module morphism because of the formulas
(A + B)T = AT + BT and (rA)T = rAT and 0T

n×m = 0m×n. It is an isomor-
phism because its inverse is the analogous map from Rm×n to Rn×m.)

The Z-module morphisms (i.e., the Z-linear maps) are simply the group
morphisms of additive groups:

Proposition 3.5.2. Let M and N be two Z-modules. Then, the Z-module
morphisms from M to N are precisely the group morphisms from (M,+, 0)
to (N,+, 0). In other words,

HomZ (M, N) = {group morphisms (M,+, 0) → (N,+, 0)} .

Proof. We have to show that any group morphism f : (M,+, 0) → (N,+, 0)
automatically respects the scaling – i.e., that it satisfies f (na) = n f (a) for all
n ∈ Z and a ∈ M. This is LTTR.

Exercise 3.5.1. Let R be any ring. Consider the map

S : RN → RN,
(a0, a1, a2, . . .) 7→ (a0, a0 + a1, a0 + a1 + a2, a0 + a1 + a2 + a3, . . .)

= (b0, b1, b2, . . .) where bi = a0 + a1 + · · ·+ ai.
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Consider furthermore the map

∆ : RN → RN,
(a0, a1, a2, . . .) 7→ (a0, a1 − a0, a2 − a1, a3 − a2, . . .)

= (c0, c1, c2, . . .) where c0 = a0 and ci = ai − ai−1 for all i ≥ 1.

(a) Prove that S and ∆ are R-linear maps and are mutually inverse.

(b) Recall the R-submodule

R(N) =
{
(a0, a1, a2, . . .) ∈ RN | only finitely many i ∈ N satisfy ai ̸= 0

}
of RN. Define a further R-submodule R(N)+ of RN by

R(N)+ :=
{
(a0, a1, a2, . . .) ∈ RN | there exists a c ∈ R such that

only finitely many i ∈ N satisfy ai ̸= c} .

(Thus, a sequence (a0, a1, a2, . . .) ∈ RN belongs to R(N)+ if and only if starting
from some point on, all its entries are equal.)

Clearly, R(N) is a proper subset of R(N)+ (unless R is trivial).

Prove that R(N) ∼= R(N)+ as left R-modules, and in fact the restriction of the
map S to R(N) is a left R-module isomorphism from R(N) to R(N)+.

3.5.3. Ring morphisms as module morphisms

Let me give one more, slightly confusing example of module morphisms. Namely,
I claim that any ring morphism is a module morphism, as long as the module
structures are defined correctly (warning: these are often not the module struc-
tures you expect!). To wit:

• Let R and S be two rings. Let f : R → S be a ring morphism. As we have
seen in Subsection 3.3.2, the ring S then becomes a left R-module, with
the action of R on S being defined by

rs = f (r) s for all r ∈ R and s ∈ S.

This action is called the action on S induced by f . It is now easy to see
that f is a left R-module morphism from R to S.

Here is an example. There is a ring morphism f : C → C that sends
each complex number z = a + bi (with a, b ∈ R) to its complex conjugate
z = a − bi. Thus, from the previous paragraph, we can conclude that this
morphism f is a C-module morphism from C to C. But this is only true
if the C-module structure on the target (but not on the domain) is the one
induced by f (so it is given by rs = f (r) s = rs for all r ∈ C and s ∈ C),
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which is of course a rather nonstandard choice of a C-module structure
on C. So f is indeed a C-module morphism from C to C, but these are
two different C-modules C !

Of course, writing things like this is just inviting confusion. To avoid
this confusion, you need to introduce a new notation for the nonstandard
C-module C (the one induced by f ). Namely, let us denote this new
C-module by C, while the unadorned symbol C will always mean the
old, obvious C-module structure on C (in which the action is just the
multiplication). Thus, what we said in the previous paragraph can be
restated as follows: The map f is a C-module morphism from C to C.
Actually, it is easy to see that f is a C-module isomorphism from C to
C. Thus, the C-modules C and C are isomorphic (but still should not be
identified to prevent confusion).

More generally, since f : C → C is a ring morphism, we can restrict any
C-module M to C via f . This means the following: If M is a C-module,
then we define a new C-module structure on M by

rm = f (r)m = rm for all r ∈ C and m ∈ M

(where the “rm” on the left hand side refers to the new C-module struc-
ture, whereas the “ f (r)m” and “rm” refer to the old one). This new
C-module is called M (since calling it M would be asking for trouble). It
is a “twisted version” of M: It is identical to M as an abelian group, but
the action of C on it has been “twisted” (in the sense that scaling by z on
M is the same as scaling by z on M).

Here is a nice thing about these twisted C-modules: If V and W are two C-
modules (i.e., C-vector spaces), then a C-module morphism g : V → W is
what is known as an antilinear map from V to W in linear algebra. Thus,
antilinear maps are “secretly” just linear maps, once you have twisted the
vector space structure on the target.

3.5.4. General properties of linearity

We shall now state a bunch of general facts about module morphisms that are
analogous to some facts we have previously stated for ring morphisms. I won’t
distract you with the proofs, as they are all straightforward.

We fix a ring R.

Proposition 3.5.3. Let M and N be two left R-modules. Let f : M → N be an
invertible left R-module morphism. Then, f is a left R-module isomorphism.

Proposition 3.5.4. Let M, N and P be three left R-modules. Let f : N → P
and g : M → N be two left R-module morphisms. Then, f ◦ g : M → P is a
left R-module morphism.
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Proposition 3.5.5. Let M, N and P be three left R-modules. Let f : N → P
and g : M → N be two left R-module isomorphisms. Then, f ◦ g : M → P is
a left R-module isomorphism.

Proposition 3.5.6. Let M and N be two left R-modules. Let f : M → N
be a left R-module isomorphism. Then, f−1 : N → M is a left R-module
isomorphism.

Corollary 3.5.7. The relation ∼= for left R-modules is an equivalence relation.

Left R-module isomorphisms preserve all “intrinsic” properties of left R-
modules (just like as morphisms do for properties of rings). For example, if M
and N are two isomorphic left R-modules, then M has as many R-submodules
as N does (and there is a one-to-one correspondence between the R-submodules
of M and those of N).

All of this holds just as well for right R-modules; by now this is so obvious
that we don’t even need to say it. (Besides, as you have seen in Exercise 3.1.3,
right R-modules can be transformed into left Rop-modules for a certain ring
Rop. This can also be done in reverse, and thus provides a dictionary between
left modules and right modules, which can always be used to translate a state-
ment about one kind of modules into a statement about the other. Module
morphisms behave as one would expect under this dictionary: When we use
this dictionary to turn two right R-modules M and N into left Rop-modules,
the right R-module morphisms from M to N become the left Rop-module mor-
phisms from M to N. This gives you all excuses you might ever need to ignore
right R-modules and only work with left R-modules, until you actually need
certain “hybrid” modules with both left and right structures.)

3.5.5. Adding, subtracting and scaling R-linear maps

In a way, R-linear maps (i.e., R-module morphisms) behave even better than
ring morphisms: If you add two ring morphisms f and g pointwise (i.e., form
the map that sends every r to f (r) + g (r)), then the resulting map will not
usually be a ring morphism. Meanwhile, R-linear maps can be added and
sometimes scaled:

Exercise 3.5.2. Let R be a ring. Let M and N be two left R-modules. Recall that
HomR (M, N) is the set of all left R-module morphisms from M to N.

Prove the following:

(a) The map

M → N,
m 7→ 0N

is an R-module morphism (i.e., is R-linear). We shall call it the zero morphism
and denote it by 0 (a boldfaced zero).
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(b) If f ∈ HomR (M, N) and g ∈ HomR (M, N) are two R-linear maps from M to
N, then the map

M → N,
m 7→ f (m) + g (m)

is also an R-module morphism. We shall denote the latter map by f + g, and
we shall call it the (pointwise) sum of f and g.

(c) The set HomR (M, N) becomes an additive abelian group if we define addition
pointwise (i.e., for any f ∈ HomR (M, N) and g ∈ HomR (M, N), we define
f + g as in part (b) of this exercise). Its neutral element is the zero morphism
0 : M → N defined in part (a) of this exercise. This group HomR (M, N) is
called the Hom group of M and N.

(d) If r is a central element of R (see Definition 2.3.7 (a) for the meaning of “cen-
tral”), and if f ∈ HomR (M, N) is an R-linear map from M to N, then the
map

M → N,
m 7→ r f (m)

is again R-linear (i.e., belongs to HomR (M, N)). We shall denote this latter
map by r f .

(e) Find an example where the claim of part (d) can go wrong if r is not assumed
to be central.

(f) If R is commutative, then the Hom group HomR (M, N) (defined in part (c))
becomes an R-module, where the action is defined as follows: For any r ∈ R
and any f ∈ HomR (M, N), we define r f ∈ HomR (M, N) as in part (d). (This
is allowed because in a commutative ring R, every element r is central.)

3.5.6. Kernels and images

Next, we shall study kernels and images of module morphisms.
Again, we fix a ring R.

Definition 3.5.8. Let M and N be two left R-modules. Let f : M → N be a
left R-module morphism. Then, the kernel of f (denoted ker f or Ker f ) is
defined to be the subset

Ker f := {a ∈ M | f (a) = 0N}

of M.

Some examples:
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• Let R be a commutative ring. Let b ∈ R. Then, the map

R → R,
r 7→ br

is an R-module morphism (check this!). The kernel of this map is

{r ∈ R | br = 0} .

Assuming that b ̸= 0, we thus conclude that this kernel is {0} if and only
if b is not a zero divisor.

• Both Z3 and Z× (Z/2) are Z-modules (since we have seen in Proposition
3.4.1 that every additive group is a Z-module). The map

Z3 → Z × (Z/2) ,

(a, b, c) 7→
(

a − b, b − c
)

is a Z-module morphism. Its kernel is{
(a, b, c) ∈ Z3 |

(
a − b, b − c

)
= 0Z×(Z/2)

}
=
{
(a, b, c) ∈ Z3 | a − b = 0 and b − c = 0

}
=
{
(a, b, c) ∈ Z3 | a − b = 0 and b − c ≡ 0 mod 2

}
=
{
(a, b, c) ∈ Z3 | a = b and b ≡ c mod 2

}
.

Kernels are a standard concept in linear algebra, where they are also called
nullspaces. The following facts should be familiar from abstract linear algebra
(but are also pretty easy to prove):

Theorem 3.5.9. Let M and N be two left R-modules. Let f : M → N be a left
R-module morphism. Then, the kernel Ker f of f is a left R-submodule of
M, whereas the image Im f = f (M) of f is a left R-submodule of N.

Lemma 3.5.10. Let M and N be two left R-modules. Let f : M → N be a left
R-module morphism. Then, f is injective if and only if Ker f = {0M}.

Note that Lemma 3.5.10 is an analogue of Lemma 2.9.7.

Exercise 3.5.3. Prove Theorem 3.5.9 and Lemma 3.5.10.

3.6. Quotient modules

We fix a ring R for the entirety of Section 3.6.
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3.6.1. Definition

We shall next define quotient modules of left R-modules, in more or less the
same way as we defined quotient rings of rings (but this time we need to estab-
lish an action instead of a multiplication on the quotient):

Definition 3.6.1. Let I be a left R-submodule of a left R-module M. Thus, I is
a subgroup of the additive group (M,+, 0), hence a normal subgroup (since
(M,+, 0) is abelian). Therefore, the quotient group M/I itself becomes an
abelian group. Its elements are the cosets a + I of I in M.

Note that the addition on M/I is given by

(a + I) + (b + I) = (a + b) + I for all a, b ∈ M. (49)

We now define an action of R on M/I by setting

r (a + I) = ra + I for all r ∈ R and a ∈ M. (50)

(See below for a proof that this is well-defined.)
The set M/I, equipped with the addition and the action we just defined

and with the element 0 + I as zero vector, is a left R-module. This left R-
module is called the quotient left R-module of M by the submodule I; it
is also pronounced “M modulo I”. It is denoted M/I (so when you hear
“the left R-module M/I”, it always means the set M/I equipped with the
structure just mentioned).

The cosets a+ I are called residue classes modulo I, and are often denoted
a mod I or [a]I or [a] or a. (The last two notations are used when I is clear
from the context.)

Theorem 3.6.2. Let M and I be as in Definition 3.6.1. Then, the action of R
on M/I is well-defined, and M/I does indeed become a left R-module when
endowed with the operations and elements just described.

Theorem 3.6.2 is an analogue of Theorem 2.9.2 for modules instead of rings,
and its proof is analogous as well.

Using the notation a for the coset a + I, we can rewrite the formulas (49) and
(50) as

a + b = a + b for all a, b ∈ M (51)

and
r · a = ra for all r ∈ R and a ∈ M. (52)

The zero vector 0 + I of the quotient R-module M/I can, of course, be written
as 0.
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Remark 3.6.3. Note that the residue classes a = a+ I in Definition 3.6.1 are precisely
the equivalence classes of the “congruent modulo I” relation defined in Exercise
3.2.1. Thus, the quotient R-module M/I generalizes the classical notion of modular
arithmetic in Z/n.

Theorem 2.9.3, too, has an analogue for modules:

Theorem 3.6.4. Let I be a left R-submodule of a left R-module M. Consider
the map

π : M → M/I,
a 7→ a + I.

Then, π is a surjective R-module morphism with kernel I.

Definition 3.6.5. This morphism π is called the canonical projection from
M onto M/I.

The proof of Theorem 3.6.4 is analogous to the proof of Theorem 2.9.3.

3.6.2. Examples

Examples of quotient modules can be easily created from various sources:

• Quotients of abelian groups are instances of quotient modules, since abelian
groups are Z-modules.

• Quotients of vector spaces are instances of quotient modules, since vector
spaces are modules over a field.

For instance, consider the 3-dimensional vector space (i.e., R-module) R3

over the ring R of real numbers. This vector space R3 is typically viewed
as a model for three-dimensional space. Define a vector subspace (i.e.,
R-submodule) I of R3 by

I =
{
(x, y, z) ∈ R3 | x + y + z = 0

}
.

Geometrically, this is a hyperplane through the origin of R3. Now, con-
sider the quotient R-module (i.e., quotient vector space) R3/I. Its ele-
ments are residue classes of the form (x, y, z), where two vectors (x, y, z)
and (x′, y′, z′) belong to the same residue class if and only if their en-
trywise difference (x − x′, y − y′, z − z′) belongs to I (that is, if we have
(x − x′) + (y − y′) + (z − z′) = 0). For instance, the two residue classes
(3, 0, 0) and (1, 1, 1) are identical (since (3 − 1) + (0 − 1) + (0 − 1) = 0),
but the two residue classes (1, 0, 0) and (2, 0, 0) are not. It is not hard to
see that each element of R3/I can be uniquely written in the form (r, 0, 0)
for some r ∈ R. This shows that the vector space R3/I is 1-dimensional.
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• If R is any ring, and M is any left R-module, then the two obvious R-
submodules {0M} and M of M lead to uninteresting quotient modules:
The quotient module M/ {0M} is isomorphic to M, whereas the quotient
module M/M is trivial (i.e., has only one element).

• Let R be a ring. As we recall from Subsection 3.3.1, the left R-module RN

has an R-submodule R(N). How does the quotient module RN/R(N) look
like? Its elements are residue classes of the form (a0, a1, a2, . . .), where
two infinite sequences (a0, a1, a2, . . .) and (b0, b1, b2, . . .) belong to the same
residue class if and only if their entrywise difference
(a0 − b0, a1 − b1, a2 − b2, . . .) belongs to R(N) (that is, if the two sequences
(a0, a1, a2, . . .) and (b0, b1, b2, . . .) agree at all but finitely many positions).
Thus, we can view an element (a0, a1, a2, . . .) of RN/R(N) as an “infinite
sequence determined up to finite change” (where “finite change” means
changing finitely many entries). This kind of construction is frequent in
analysis: For instance, the limit lim

n→∞
an of a sequence (a0, a1, a2, . . .) of real

numbers does not depend on finite changes (i.e., it does not change if we
change finitely many entries of our sequence), and thus (if it exists) can
be viewed as a property of the residue class (a0, a1, a2, . . .) ∈ RN/R(N).

3.6.3. The universal property of quotient modules

The universal property of quotient rings (Theorem 2.9.5), too, has an analogue
for modules:

Theorem 3.6.6 (Universal property of quotient modules, elementwise form).
Let M be a left R-module. Let I be a left R-submodule of M.

Let N be a left R-module. Let f : M → N be a left R-module morphism.
Assume that f (I) = 0 (this is shorthand for saying that f (a) = 0 for all
a ∈ I). Then, the map

f ′ : M/I → N,
m 7→ f (m) (for all m ∈ M)

is well-defined (i.e., the value f (m) depends only on the residue class m, not
on m itself) and is a left R-module morphism.

The proof of Theorem 3.6.6 is analogous to the proof of Theorem 2.9.5.
The abstract form of the universal property of quotient rings (Theorem 2.9.6)

has an analogue for modules as well:

Theorem 3.6.7 (Universal property of quotient modules, abstract form). Let
M be a left R-module. Let I be a left R-submodule of M. Consider the
canonical projection π : M → M/I.
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Let N be a left R-module. Let f : M → N be a left R-module morphism.
Assume that f (I) = 0 (this is shorthand for saying that f (a) = 0 for all
a ∈ I). Then, there is a unique left R-module morphism f ′ : M/I → N
satisfying f = f ′ ◦ π.

Just to unravel the abstract definition: This morphism f ′ is exactly the mor-
phism f ′ from Theorem 3.6.6, i.e., it sends each coset (= residue class) m =
m + I ∈ M/I to f (m).

The proof of Theorem 3.6.7 is analogous to the proof of Theorem 2.9.6.
The equality f = f ′ ◦ π in Theorem 3.6.7 is oftentimes restated as follows:

The diagram
M

π
��

f

&&
M/I

f ′
// N

commutes.

3.6.4. The First Isomorphism Theorem for modules

The First Isomorphism Theorem for rings (Theorem 2.9.9) also has a counter-
part for R-modules:

Theorem 3.6.8 (First Isomorphism Theorem for modules, elementwise form).
Let M and N be two left R-modules, and let f : M → N be a left R-module
morphism. Then:

(a) The kernel Ker f is an R-submodule of M. Thus, M/ Ker f is a quotient
module of M. As a set, M/ Ker f is precisely the set M/ f defined in
Theorem 2.9.8 (applied to M and N instead of R and S). The f -classes
(as defined in Theorem 2.9.8) are precisely the cosets of Ker f .

(b) The image f (M) := { f (m) | m ∈ M} of f is an R-submodule of N.

(c) The map

f ′ : M/ Ker f → f (M) ,
a 7→ f (a)

is well-defined and is a left R-module isomorphism.

(d) This map f ′ is precisely the map f ′ defined in Theorem 2.9.8 (c) (applied
to M and N instead of R and S).
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(e) Let π : M → M/ Ker f denote the canonical projection (i.e., the map
that sends each m ∈ M to its coset m). Let ι : f (M) → N denote
the canonical inclusion (i.e., the map that sends each n ∈ f (M) to n).
Then, the map f ′ defined in part (c) satisfies

f = ι ◦ f ′ ◦ π.

In other words, the diagram

M

π
��

f
// N

M/ Ker f
f ′

// f (M)

ι

OO (53)

is commutative.

(f) We have M/ Ker f ∼= f (M) as left R-modules.

All results we have stated so far about modules are analogues of known
results about rings. So are their proofs (which is why we have omitted them).
The Second and the Third isomorphism theorem for rings (which you have seen
in Section 2.17) also have analogues for modules.

Remark 3.6.9. If you have done some abstract linear algebra, the formula
M/ Ker f ∼= f (M) in Theorem 3.6.8 (f) might remind you of something.

Indeed, let R be a field. Thus, R-modules are R-vector spaces. Let M and
N be two finite-dimensional R-vector spaces. Let f : M → N be a linear map.
Thus, Theorem 3.6.8 (f) yields that M/ Ker f ∼= f (M) as R-modules (i.e., as
R-vector spaces). However, isomorphic vector spaces have equal dimension.
Hence, from M/ Ker f ∼= f (M), we obtain

dim (M/ Ker f ) = dim ( f (M)) . (54)

However, it is not hard to see (we will see it soon) that dim (M/I) =
dim M − dim I whenever I is a vector subspace of M. (The idea behind this
formula is that when you pass from M to M/I, you are “collapsing” the
“dimensions” contained in I (since you are equating any vector in I with
0), and thus the dimension of the vector space should go down by dim I.
Formally speaking, this can be shown using bases. We will do so below.)

As a consequence of the dim (M/I) = dim M − dim I formula, we have

dim (M/ Ker f ) = dim M − dim (Ker f ) .

Hence,

dim M − dim (Ker f ) = dim (M/ Ker f ) = dim ( f (M)) (by (54)) .
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This is the rank-nullity formula from linear algebra (indeed, dim (Ker f ) is
called the nullity of f , whereas dim ( f (M)) is called the rank of f ).

Here are some more exercises related to quotient modules:107

Exercise 3.6.1. Let R be a commutative ring. Let N be any R-module. For any
R-module M, we define the R-module HomR (M, N) as in Exercise 3.5.2 (f).

(a) Prove that HomR (R, N) ∼= N as R-modules. More precisely, prove that the
map

HomR (R, N) → N,
f 7→ f (1)

(which sends every R-linear map f : R → N to its value f (1)) is an R-module
isomorphism.

(b) Let I be an ideal of R. Let NI be the subset {a ∈ N | ia = 0 for all i ∈ I} of
N. Prove that NI is an R-submodule of N, and that the map

HomR (R/I, N) → NI ,
f 7→ f (1)

is an R-module isomorphism.

Exercise 3.6.2. For any two integers n and m with m ̸= 0, prove that
HomZ (Z/n, Z/m) ∼= Z/ gcd (n, m) as Z-modules. (Here, the Z-module
HomZ (Z/n, Z/m) is defined as in Exercise 3.5.2 (f).)

Exercise 3.6.3. Let I be any set. Let (Mi)i∈I be any family of left R-modules. Let
Ni be an R-submodule of Mi for each i ∈ I.

(a) Prove that
(

∏
i∈I

Mi

)
/
(

∏
i∈I

Ni

)
∼= ∏

i∈I
(Mi/Ni) as left R-modules. (The left

hand side is well-defined by Exercise 3.3.1 (a).)

(b) Prove that
(⊕

i∈I
Mi

)
/
(⊕

i∈I
Ni

)
∼=
⊕
i∈I

(Mi/Ni) as left R-modules. (The left

hand side is well-defined by Exercise 3.3.1 (b).)

An analogue of the Chinese Remainder Theorem (Theorem 2.12.12 and The-
orem 2.12.13) also exists for modules, although it still involves ideals:

107Recall once again that a commutative ring R is an R-module itself, and that its R-submodules
are precisely its ideals.
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Exercise 3.6.4. Prove the Chinese Remainder Theorem for Modules:
Let R be a commutative ring. Let I1, I2, . . . , Ik be k mutually comaximal ideals of

R. Let M be a R-module. Then:

(a) We have I1M ∩ I2M ∩ · · · ∩ Ik M = I1 I2 · · · Ik M. (See Proposition 3.3.9 for the
definition of IM for any ideal I of R. The notation “I1M ∩ I2M ∩ · · · ∩ Ik M”
means “(I1M) ∩ (I2M) ∩ · · · ∩ (Ik M)”.)

(b) There is an R-module isomorphism108

M/ (I1 I2 · · · Ik M) → (M/I1M)× (M/I2M)× · · · × (M/Ik M)

that sends each coset m + I1 I2 · · · Ik M to the k-tuple
(m + I1M, m + I2M, . . . , m + Ik M).

3.7. Spanning, linear independence, bases and free modules
([DumFoo04, §10.3])

Again, let us fix a ring R for the entirety of Section 3.7.

3.7.1. Definitions

We shall now generalize some classical notions from linear algebra (spanning,
linear independence and bases) to arbitrary R-modules.

Definition 3.7.1. Let M be a left R-module. Let m1, m2, . . . , mn be finitely
many vectors in M.

(a) A linear combination of m1, m2, . . . , mn means a vector of the form

r1m1 + r2m2 + · · ·+ rnmn with r1, r2, . . . , rn ∈ R.

(b) The set of all linear combinations of m1, m2, . . . , mn is called the span
of (m1, m2, . . . , mn), and is denoted by span (m1, m2, . . . , mn). (Note that
[DumFoo04] calls it R {m1, m2, . . . , mn}.)

(c) If the span of (m1, m2, . . . , mn) is M, then we say that the vectors
m1, m2, . . . , mn span M (or generate M).

(d) We say that the vectors m1, m2, . . . , mn are linearly independent if the
following holds: If r1, r2, . . . , rn ∈ R satisfy

r1m1 + r2m2 + · · ·+ rnmn = 0,

108The notation “M/IM” (where I is an ideal of R) means “M/ (IM)”.
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then r1 = r2 = · · · = rn = 0. (In other words, the vectors m1, m2, . . . , mn
are said to be linearly independent if the only way to write 0 as a linear
combination of them is 0 = 0m1 + 0m2 + · · ·+ 0mn.)

(e) We say that the n-tuple (m1, m2, . . . , mn) is a basis of the R-module M
if m1, m2, . . . , mn are linearly independent and span M.

(f) All of this terminology depends on R. Thus, if R is not clear from the
context, we will clarify it by saying “R-linear combination” (or “linear
combination over R”) instead of just “linear combination”, and likewise
saying “R-span” or “R-linearly independent” or “R-basis”.

Fine print: The property of n vectors m1, m2, . . . , mn to span M is a joint
property (i.e., it is a property of the list (m1, m2, . . . , mn), not of each single
vector). The same applies to linear independence. Sometimes, we do say that
a single vector m spans M (for example, the vector 1 ∈ Z spans the Z-module
Z); this means that the one-element list (m) spans M.

Definition 3.7.1 was tailored to finite lists of vectors, but we can extend it to
arbitrary (possibly infinite) families of vectors:

Definition 3.7.2. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set).

(a) A linear combination of (mi)i∈I means a vector of the form

∑
i∈I

rimi

for some family (ri)i∈I of scalars (i.e., for some choice of ri ∈ R for each
i ∈ I) with the property that

all but finitely many i ∈ I satisfy ri = 0. (55)

Here, the sum ∑
i∈I

rimi is an infinite sum, but all but finitely many of its

addends are zero (thanks to the condition (55)). Such a sum is simply
defined to be the sum of the nonzero addends. For example, 3 + 2 +
0 + 0 + 0 + · · · = 3 + 2 = 5.

(b) The set of all linear combinations of (mi)i∈I is called the span of
(mi)i∈I , and is denoted by span (mi)i∈I . (Note that [DumFoo04] calls
it R {mi | i ∈ I}.)

(c) If the span of (mi)i∈I is M, then we say that the family (mi)i∈I spans M
(or generates M).
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(d) We say that the family (mi)i∈I is linearly independent if the following
holds: If some family (ri)i∈I of scalars ri ∈ R has the properties that

all but finitely many i ∈ I satisfy ri = 0 (56)

and that
∑
i∈I

rimi = 0,

then ri = 0 for all i ∈ I.

(e) We say that the family (mi)i∈I is a basis of the R-module M if (mi)i∈I
is linearly independent and spans M.

(f) All of this terminology depends on R. Thus, if R is not clear from the
context, we will clarify it by saying “R-linear combination” (or “linear
combination over R”) instead of just “linear combination”, etc..

The infinite sums in this definition are a bit of a distraction, but a necessary
one. Fortunately, when studying these notions, it is often sufficient to work with
finite families (i.e., finite sets I), since they are in some sense representative of
the general case. To wit:

Proposition 3.7.3. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M (with I being any set).

(a) Any linear combination of (mi)i∈I is already a linear combination of
some finite subfamily of (mi)i∈I . (That is: If m is a linear combination
of (mi)i∈I , then there exists some finite subset J of I such that m is a
linear combination of (mi)i∈J .)

(b) The family (mi)i∈I is linearly independent if and only if all its finite
subfamilies (i.e., all families of the form (mi)i∈J with J being a finite
subset of I) are linearly independent.

Proof. (a) Let m be a linear combination of (mi)i∈I . Thus, m has the form

m = ∑
i∈I

rimi

for some family (ri)i∈I of scalars (i.e., for some choice of ri ∈ R for each i ∈ I)
with the property that

all but finitely many i ∈ I satisfy ri = 0.

The latter property can be rewritten as follows: There exists a finite subset J of
I such that all i ∈ I \ J satisfy ri = 0. Consider this J. Then, in the sum ∑

i∈I
rimi,
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all the addends with i /∈ J are 0 (since these addends satisfy i /∈ J, thus i ∈ I \ J,
hence ri = 0 and therefore rimi = 0mi = 0). Hence, we can throw these addends
away and are left with the finite sum ∑

i∈J
rimi. Therefore, ∑

i∈I
rimi = ∑

i∈J
rimi, so

that m = ∑
i∈I

rimi = ∑
i∈J

rimi. This shows that m is a linear combination of the

finite subfamily (mi)i∈J of our original family (mi)i∈I . This proves Proposition
3.7.3 (a).

(b) This is similar to part (a). The details are left to the reader. (Again, the
key is that the condition (56) allows us to restrict ourselves to a finite subset of
I.)

3.7.2. Spans are submodules

Next, we show that the span of a family of vectors is always a submodule:

Proposition 3.7.4. Let M be a left R-module. Let (mi)i∈I be a family of vectors
in M. Then, the span of this family is an R-submodule of M.

Proof. You have to show the following three statements:

1. The sum of two linear combinations of (mi)i∈I is a linear combination of
(mi)i∈I .

2. Scaling a linear combination of (mi)i∈I by an r ∈ R gives a linear combi-
nation of (mi)i∈I .

3. The zero vector is a linear combination of (mi)i∈I .

All three of these statements are easy. For example, let me show the first
statement: Let v and w be two linear combinations of (mi)i∈I . Thus, we can
write v and w as

v = ∑
i∈I

aimi and w = ∑
i∈I

bimi (57)

for some two families (ai)i∈I and (bi)i∈I of scalars (i.e., for some choices of
ai ∈ R and bi ∈ R for each i ∈ I) with the property that

all but finitely many i ∈ I satisfy ai = 0 (58)

and that
all but finitely many i ∈ I satisfy bi = 0. (59)

Now, adding the two equalities in (57) together, we obtain

v + w = ∑
i∈I

aimi + ∑
i∈I

bimi = ∑
i∈I

(aimi + bimi)

= ∑
i∈I

(ai + bi)mi. (60)
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Moreover, combining (58) with (59), we see that all but finitely many i ∈ I
satisfy ai = 0 and bi = 0 at the same time (since the union of two finite sets
is still a finite set). Therefore, all but finitely many i ∈ I satisfy ai + bi = 0
(because if ai = 0 and bi = 0, then ai + bi = 0 + 0 = 0). Hence, (60) shows that
v + w is a linear combination of (mi)i∈I . This proves Statement 1 above. The
proofs of Statements 2 and 3 are even easier.

3.7.3. Free modules

Definition 3.7.5.

(a) A left R-module is said to be free if it has a basis.

(b) Let n ∈ N. A left R-module is said to be free of rank n if it has a basis
of size n (i.e., a basis consisting of n vectors).

Note that a free R-module does not necessarily have a rank, since its basis could
be infinite.109

Let us see some examples of modules that are free and modules that aren’t.
You might want to look at Q-modules at first; but they make for boring

examples, because of the following fact:

Theorem 3.7.6. If F is a field, then every F-module (= F-vector space) is free.

Proof. This is just the famous fact from linear algebra that every vector space has
a basis. In the most important case (which is when the vector space admits a fi-
nite spanning set – i.e., there is a finite list (m1, m2, . . . , mn) of vectors that spans
it110), this has fairly neat elementary proofs (see, e.g., Theorem 2.1 in Keith Con-
rad’s https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
, or [LaNaSc16, Theorem 5.3.4] or [Treil21, Chapter 1, Proposition 2.8]). In the
general case, the proof is tricky and requires the Axiom of Choice (see Theorem
4.1 in Keith Conrad’s https://kconrad.math.uconn.edu/blurbs/zorn1.pdf, or
[Siksek21, Corollary 212] or [Philip23, Theorem 5.23 (b)]).

For example, Theorem 3.7.6 shows that the Q-vector space R is free, i.e., has a
basis. Such bases are called Hamel bases and theoretically exist (if you believe
in the Axiom of Choice). Practically, there is no way to construct one.

To find more interesting examples, we need to consider rings that are not
fields. First of all, let us discuss a family of examples that exists for an arbitrary
ring R:
109For some rings R, there also exist R-modules that are free of several ranks at the same time

– e.g., an R-module can be free of rank 1 and free of rank 2 simultaneously. The simplest
such example is when R is the trivial ring (in which case any R-module is trivial and free
of any rank). More interesting examples exist for certain noncommutative rings – see, e.g.,
https://math.stackexchange.com/questions/72723/ .

110Such vector spaces are called finite-dimensional.

https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
https://kconrad.math.uconn.edu/blurbs/zorn1.pdf
https://math.stackexchange.com/questions/72723/


Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 236

• Consider the left R-module

R2 = {(a, b) | a ∈ R and b ∈ R} .

This R-module R2 is free of rank 2, since the list ((1, 0) , (0, 1)) is a basis
of it. Indeed:

– The vectors (1, 0) , (0, 1) span R2 (because any vector (a, b) can be
written as a (1, 0)+ b (0, 1), and thus is a linear combination of (1, 0) , (0, 1)).

– The vectors (1, 0) , (0, 1) are linearly independent, since a (1, 0) +
b (0, 1) = (a, b) can only be 0 if a = b = 0.

• Likewise, the left R-module R3 has basis ((1, 0, 0) , (0, 1, 0) , (0, 0, 1)).

• More generally: If n ∈ N, then the left R-module Rn has basis

((1, 0, 0, . . . , 0) ,
(0, 1, 0, . . . , 0) ,
(0, 0, 1, . . . , 0) ,

. . . ,
(0, 0, 0, . . . , 1)).

This basis is called the standard basis of Rn, and its n vectors are called
e1, e2, . . . , en (in this order). To make this more rigorous: For each i ∈
{1, 2, . . . , n}, we define ei to be the vector in Rn whose i-th entry is 1 and
whose all remaining entries are 0 (it is an n-tuple, like any vector in Rn).
Then, the list (e1, e2, . . . , en) is a basis of the left R-module Rn. Thus, the
R-module Rn is free of rank n.

• As a particular case, the left R-module R1 is free of rank 1. Note that
R1 ∼= R, because the map R → R1, r 7→ (r) (which merely wraps each
scalar into a list to turn it into a vector) is an R-module isomorphism.
Hence, the left R-module R is free of rank 1. Of course, you can see this
directly as well: The one-element list (1) is a basis of it.

Likewise, the left R-module R0 is free of rank 0. Note that R0 is a trivial
R-module (it consists of just the zero vector); the empty list is a basis
for it (since the only vector in R0 is the zero vector and thus is a linear
combination of nothing). Some authors (e.g., Keith Conrad in the above-
mentioned references) avoid trivial R-modules111, but there is no natural
reason to do so except for the slight weirdness of dealing with empty lists
and empty sums.

111A trivial R-module means an R-module that consists only of the zero vector.
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• More generally: If I is a set, then112

R(I) =
⊕
i∈I

R =
{
(ri)i∈I ∈ RI | all but finitely many i ∈ I satisfy ri = 0

}
is a free R-module. It has a standard basis (ei)i∈I , where each ej is the
family that has a 1 in its j-th position and 0s in all other positions. (That

is, ej =
(
δi,j
)

i∈I , where δi,j =

{
1, if i = j;
0, if i ̸= j

.)

This R-module R(I) is an R-submodule of

RI = ∏
i∈I

R =
{
(ri)i∈I | all ri belong to R

}
.

When I is finite, we actually have R(I) = RI (since the condition “all but
finitely many i ∈ I satisfy ri = 0” is automatically true when I is finite).
In general, however, R(I) is smaller than RI , and the R-module RI = ∏

i∈I
R

is usually not free. (For example, the Z-module ZN is not free. This
is actually not easy to prove! A proof is sketched in [DumFoo04, §10.3,
Exercise 24]. It is easy to see that the standard basis (ei)i∈N of Z(N) is
not a basis of ZN, since (e.g.) the vector (1, 1, 1, 1, . . .) is not a linear
combination of this family113. But it is much harder to show that there is
no basis at all.)

• Let R be a ring. Let n, m ∈ N. Then, the left R-module Rn×m of all n × m-
matrices is free. It has a basis

(
Ei,j
)
(i,j)∈{1,2,...,n}×{1,2,...,m}, which consists

of the so-called elementary matrices Ei,j. For each i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , m}, the respective elementary matrix Ei,j is defined to be the
n × m-matrix whose (i, j)-th entry is 1 while all its other entries are 0.

For example, for n = 2 and m = 3, this basis consists of the six elementary
matrices

E1,1 =

(
1 0 0
0 0 0

)
, E1,2 =

(
0 1 0
0 0 0

)
, E1,3 =

(
0 0 1
0 0 0

)
,

E2,1 =

(
0 0 0
1 0 0

)
, E2,2 =

(
0 0 0
0 1 0

)
, E2,3 =

(
0 0 0
0 0 1

)
.

There are, of course, many other bases of Rn×m too.

112See Definition 3.3.6 for the meaning of the notation R(I) we are using here.
113Of course, you could write

(1, 1, 1, 1, . . .) = 1e0 + 1e1 + 1e2 + 1e3 + 1e4 + · · · ;

however, the sum on the right is properly infinite (with infinitely many nonzero coefficients)
and thus does not count as a linear combination (as it fails the condition (55) from Definition
3.7.2).
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• Let R be a ring. Let n ∈ N. The set of all symmetric n × n-matrices forms
a left R-submodule Rn×n

symm of the left R-module Rn×n. It, too, is free. For
example, for n = 2, it has a basis consisting of the three matrices

E1,1 =

(
1 0
0 0

)
, E1,2 + E2,1 =

(
0 1
1 0

)
, E2,2 =

(
0 0
0 1

)
.

Let us now look at Z-modules. Recall that Z-modules are the same as
abelian groups (see Proposition 3.4.1), so free Z-modules are also known as
free abelian groups (this is not the same as free groups).

• Consider the Z-submodule

U :=
{
(a, b, c) ∈ Z3 | a + b + c = 0

}
of Z3.

Is U free? Can we find a basis for U ?

So we are trying to find a basis for a submodule of Z3 that is determined
by a set of linear equations (in our case, only one linear equation – namely,
a+ b+ c = 0). If we were using a field (e.g., Q or R) instead of Z, then this
would be an instance of a classical problem from linear algebra (solving
a system of homogeneous linear equations114), which can be solved by
Gaussian elimination (see, e.g., [LaNaSc16, §A.3.2]). If we try to perform
Gaussian elimination over Z, we might run into trouble: Denominators
may appear; as a result, we might not actually get vectors with integer
entries. However, for the submodule U above, this does not happen, and
we obtain the basis

((−1, 1, 0) , (−1, 0, 1)) .

So U is indeed free.115

What if we have a more complicated submodule and we do run into de-
nominators? Thus, we do not get a basis using Gaussian elimination.
Does this mean that no basis exists, or does it mean that we have to try
something else? We will soon see.

• The Z-module Z/2 is not free (i.e., does not have a basis). Indeed, if it
had a basis, then this basis would contain at least one vector (since Z/2
is not trivial), but this vector would not be linearly independent, since
scaling it by 2 would give 0.

• More generally, if M is any finite abelian group of size larger than 1, then
M is not free (as a Z-module), since a free Z-module must be either trivial
or infinite.

114more precisely: finding a basis for the solution space of such a system
115See Exercise 3.7.1 for a generalization of this.
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• The Z-module Q is not free (i.e., does not have a basis).

Proof. Assume the contrary. Thus, there exists a Z-basis (mi)i∈I of Q. The
set I must be nonempty (since Q is not trivial); thus, we are in one of the
following two cases:

– Case 1: We have |I| = 1. In this case, I is a 1-element set, so we can
rewrite our basis (mi)i∈I as a list (m) that consists of a single rational
number m. This single rational number m must span the entire Z-
module Q. In other words, every element of Q must be a Z-multiple
of m. But this is absurd (indeed, if m = 0, then 1 is not a Z-multiple

of m; but otherwise,
1
2

m is not a Z-multiple of m).

– Case 2: We have |I| > 1. In this case, there are at least two vectors
mu and mv in this basis (mi)i∈I . However, two rational numbers are
never Z-linearly independent116. Thus, a fortiori, the whole fam-
ily (mi)i∈I cannot be Z-linearly independent (since a subfamily of a
linearly independent family of vectors must always be linearly inde-
pendent). This contradicts the assumption that this family is a basis.

Thus, in each case, we have found a contradiction, and our proof is com-
plete.

• Now, consider the Z-submodule

V :=
{
(a, b) ∈ Z2 | a ≡ b mod 2

}
of Z2.

This Z-submodule V contains the vectors (0, 2) and (1, 1) and (1,−1) and
(4,−2) and many others. Is V free? Can we find a basis for V ?

Let’s try the pair ((2, 0) , (0, 2)). Is this pair a basis for V ? Its span is

span ((2, 0) , (0, 2)) = {c (2, 0) + d (0, 2) | c, d ∈ Z}
= {(2c, 2d) | c, d ∈ Z}

=
{
(a, b) ∈ Z2 | a ≡ b ≡ 0 mod 2

}
.

This is a Z-submodule of V, but not the entire V, since (for example) (1, 1)
belongs to V but not to span ((2, 0) , (0, 2)). So we have “undershot” our
V (by finding a linearly independent family that does not span V).

116Indeed, let p and q be two rational numbers. We claim that there exist integers a, b ∈ Z that
are not both 0 but still satisfy ap + bq = 0. (This will clearly prove that p and q are not
Z-linearly independent.)

Indeed, if p = 0, then we set a = 1 and b = 0 and are done. Something similar works if

q = 0. So we WLOG assume that p ̸= 0 and q ̸= 0. Write p and q as p =
n
d

and q =
m
e

for
some nonzero integers n, d, m, e (we can do this, since p and q are nonzero rational numbers).
Then, dmp + (−en) q = 0 (check this!), so we have found our a and b (namely, a = dm and
b = −en).
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Let’s try the triple ((2, 0) , (0, 2) , (1, 1)). This triple does span V (check
this!), but is not linearly independent, since

1 · (2, 0) + 1 · (0, 2) + (−2) · (1, 1) = 0.

So we have “overshot” V now (by finding a family that spans V but is not
linearly independent).

Let us try to correct this by throwing away (0, 2). So we are left with the
pair ((2, 0) , (1, 1)). And this pair is indeed a basis of V, as can easily be
checked. Indeed, it is linearly independent (you can check this using lin-
ear algebra, since it clearly suffices to prove its Q-linear independence117),
and furthermore spans V because each (a, b) ∈ V can be written as a
linear combination of (2, 0) , (1, 1) as follows:

(a, b) =
a − b

2︸ ︷︷ ︸
∈Z

(since a≡b mod 2)

· (2, 0) + b · (1, 1) .

Another basis for V is the pair ((1, 1) , (1,−1)). Indeed, this pair is lin-
early independent (check this!), and it spans V, because each (a, b) ∈ V
can be written as

(a, b) =
a + b

2︸ ︷︷ ︸
∈Z

· (1, 1) +
a − b

2︸ ︷︷ ︸
∈Z

· (1,−1) ∈ span ((1, 1) , (1,−1)) .

(See Exercise 3.7.2 for a generalization of V.)

Exercise 3.7.1. Let R be any ring. Let n be a positive integer. Let U be the subset

{(a1, a2, . . . , an) ∈ Rn | a1 + a2 + · · ·+ an = 0}

of the left R-module Rn.

(a) Prove that U is an R-submodule of Rn.

(b) Show that U is free, and prove that the n − 1 vectors

(1,−1, 0, 0, . . . , 0) ,
(0, 1,−1, 0, . . . , 0) ,
. . . ,
(0, 0, . . . , 0, 1,−1)

(that is, the n − 1 vectors that consist of a number of 0’s, followed by a 1,
followed by a −1, followed again by a number of 0’s) form a basis of U.

117Or you can check this directly: If a, b ∈ Z satisfy a (2, 0) + b (1, 1) = 0, then 0 = a (2, 0) +
b (1, 1) = (2a + b, b), so that (2a + b, b) = 0 = (0, 0), and therefore 2a + b = 0 and b = 0;
but this quickly yields a = b = 0.
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Exercise 3.7.2. Let n and k be two positive integers. Let V be the subset

{(a1, a2, . . . , an) ∈ Zn | a1 ≡ a2 ≡ · · · ≡ an mod k}

of the Z-module Zn.

(a) Prove that V is a Z-submodule of Zn.

(b) Show that V is free, and find a basis of V.

Exercise 3.7.3. Let R be any ring. Let n ≥ 2 be an integer. Let W be the subset

{(a1, a2, . . . , an) ∈ Rn | ai − ai−1 = ai+1 − ai for each i ∈ {2, 3, . . . , n − 1}}

of the left R-module Rn. (This set W consists of all vectors (a1, a2, . . . , an) ∈ Rn whose
entries “form an arithmetic progression”, i.e., satisfy a2 − a1 = a3 − a2 = a4 − a3 =
· · · = an − an−1.)

(a) Prove that W is an R-submodule of Rn.

(b) Let a = (1, 1, . . . , 1) ∈ Rn and b = (1, 2, . . . , n) ∈ Rn. Prove that (a, b) is a basis
of W.

Exercise 3.7.4.

(a) Let X be the Z-submodule{
(a, b, c) ∈ Z3 | a ≡ b mod 2 and b ≡ c mod 3

}
of Z3. Prove that X is free, and find a basis of X.

(b) Let Y be the Z-submodule{
(a, b, c) ∈ Z3 | a ≡ b mod 2 and b ≡ c mod 3 and c ≡ a mod 5

}
of Z3. Prove that Y is free, and find a basis of Y.

Exercise 3.7.5. Let R be any ring. A square matrix A ∈ Rn×n is said to be antisym-
metric (or skew-symmetric) if AT = −A (where AT is the transpose of A). For each
n ∈ N, we let Rn×n

asym denote the set of all antisymmetric n × n-matrices in Rn×n.

(a) Prove that Rn×n
asym is a left R-submodule of Rn×n for each n ∈ N.

(b) Find a basis of the Q-module Q2×2
asym.

(c) Find a basis of the Z/2-module (Z/2)2×2
asym.
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(d) Prove that the Z/4-module (Z/4)2×2
asym is not free (i.e., has no basis).

(This is somewhat surprising when compared to the R-module Rn×n
symm of sym-

metric n × n-matrices, which module always has a basis. In a sense, it shows
that antisymmetric matrices behave more wildly than symmetric matrices.)

[Hint: What exactly does the condition AT = −A say about the diagonal entries
of a matrix A ?]

Exercise 3.7.6. Let R be any ring. A square matrix A ∈ Rn×n is said to be alternat-
ing if it is antisymmetric (i.e., satisfies AT = −A) and its diagonal entries all equal
0. For each n ∈ N, we let Rn×n

alt denote the set of all alternating n × n-matrices in
Rn×n.

(a) Prove that Rn×n
alt is a left R-submodule of Rn×n for each n ∈ N.

(b) Prove that this R-module Rn×n
alt is always free, and find a basis of this R-

module. (This shows that Rn×n
alt is a “better-behaved” variant of the R-module

Rn×n
asym from Exercise 3.7.5.)

(c) What (fairly simple) condition must R satisfy in order for this R-module Rn×n
alt

to be identical to the R-module Rn×n
asym from Exercise 3.7.5?

Remark 3.7.7. Let n ∈ N. A nontrivial theorem says that every Z-submodule
of Zn is free, i.e., has a basis, and is isomorphic to Zm for some m ∈
{0, 1, . . . , n}. For a proof, see (e.g.) [Knapp16, Theorem 8.25] (which proves
more and in greater generality). Note that the proof is non-constructive, and
there is no general method for finding a basis (or even the rank) of a given
Z-submodule of Zn.

More generally, if R is a PID, then any R-submodule of Rn is free and
isomorphic to Rm for some m ∈ {0, 1, . . . , n}. This does not generalize to
arbitrary rings, though. For example, if R is the polynomial ring Z [x], then
R1 has an R-submodule consisting of the polynomials with an even constant
term. This R-submodule is not free (check this!).

Let us now return to the general case to state a few theorems:

Theorem 3.7.8. Let M be a left R-module. Let n ∈ N. The left R-module M
is free of rank n if and only if M ∼= Rn (as left R-modules).

More concretely:

Theorem 3.7.9. Let M be a left R-module. Let m1, m2, . . . , mn be n vectors in
M. Consider the map

f : Rn → M,
(r1, r2, . . . , rn) 7→ r1m1 + r2m2 + · · ·+ rnmn.
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Then:

(a) This map f is always a left R-module morphism.

(b) The map f is injective if and only if m1, m2, . . . , mn are linearly indepen-
dent.

(c) The map f is surjective if and only if m1, m2, . . . , mn span M.

(d) The map f is an isomorphism118 if and only if (m1, m2, . . . , mn) is a
basis of M.

Note that the map f in Theorem 3.7.9 takes an n-tuple (r1, r2, . . . , rn) of
scalars, and uses these scalars as coefficients to form a linear combination of
m1, m2, . . . , mn. Thus, the values of f are precisely the linear combinations of
m1, m2, . . . , mn.

Proof of Theorem 3.7.9. This is commonly done in linear algebra texts (albeit usu-
ally under the assumption that R is a field, but the proof is the same); thus I
will be brief.

(a) We must prove that f respects addition, respects scaling and respects the
zero. I will only show that it respects addition, since the other two statements
are analogous.

So we must prove that f (a + b) = f (a) + f (b) for all a, b ∈ Rn. Indeed, let
a, b ∈ Rn. Write a and b as

a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) .

Then, the definition of Rn (as the direct product R × R × · · · × R︸ ︷︷ ︸
n times

) yields a+ b =

(a1 + b1, a2 + b2, . . . , an + bn). Hence, the definition of f yields

f (a + b) = (a1 + b1)m1 + (a2 + b2)m2 + · · ·+ (an + bn)mn

= (a1m1 + b1m1) + (a2m2 + b2m2) + · · ·+ (anmn + bnmn)

(by right distributivity)
= (a1m1 + a2m2 + · · ·+ anmn)︸ ︷︷ ︸

= f (a)
(by the definition of f , since a=(a1,a2,...,an))

+ (b1m1 + b2m2 + · · ·+ bnmn)︸ ︷︷ ︸
= f (b)

(by the definition of f , since b=(b1,b2,...,bn))

= f (a) + f (b) ,

which is what we wanted to show.
(b) The map f is an R-module morphism (by part (a)). Thus, it is injective

if and only if Ker f = {0Rn} (by Lemma 3.5.10). Hence, we have the following

118Of course, “isomorphism” means “left R-module isomorphism” here.
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chain of logical equivalences:

( f is injective)
⇐⇒ (Ker f = {0Rn})
⇐⇒ (Ker f ⊆ {0Rn}) (since {0Rn} is clearly a subset of Ker f )
⇐⇒ ({a ∈ Rn | f (a) = 0} ⊆ {0Rn})

(since Ker f = {a ∈ Rn | f (a) = 0} by the definition of Ker f )
⇐⇒ (the only a ∈ Rn satisfying f (a) = 0 is 0Rn)

⇐⇒
(

the only (a1, a2, . . . , an) ∈ Rn satisfying f (a1, a2, . . . , an) = 0
is (0, 0, . . . , 0)

)
(

since any a ∈ Rn can be written in the form (a1, a2, . . . , an) ,
and since 0Rn = (0, 0, . . . , 0)

)
⇐⇒

(
the only (a1, a2, . . . , an) ∈ Rn satisfying a1m1 + a2m2 + · · ·+ anmn = 0

is (0, 0, . . . , 0)

)
(

since f (a1, a2, . . . , an) = a1m1 + a2m2 + · · ·+ anmn
for any (a1, a2, . . . , an) ∈ Rn

)
⇐⇒

(
if a1, a2, . . . , an ∈ R satisfy a1m1 + a2m2 + · · ·+ anmn = 0,

then a1 = a2 = · · · = an = 0

)
⇐⇒ (m1, m2, . . . , mn are linearly independent)

(by the definition of linear independence). This proves part (b) of the theorem.
(c) We have the following chain of logical equivalences:

( f is surjective)
⇐⇒ (each m ∈ M can be written as f (a) for some a ∈ Rn)

⇐⇒
(

each m ∈ M can be written as f (a1, a2, . . . , an)
for some (a1, a2, . . . , an) ∈ Rn

)
(since any a ∈ Rn can be written in the form (a1, a2, . . . , an))

⇐⇒
(

each m ∈ M can be written as a1m1 + a2m2 + · · ·+ anmn
for some (a1, a2, . . . , an) ∈ Rn

)
(

since f (a1, a2, . . . , an) = a1m1 + a2m2 + · · ·+ anmn
for any (a1, a2, . . . , an) ∈ Rn

)
⇐⇒ (each m ∈ M is a linear combination of m1, m2, . . . , mn)

(by the definition of a linear combination)
⇐⇒ (m1, m2, . . . , mn span M) .

This proves part (c) of the theorem.
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(d) We have the following chain of logical equivalences:

( f is an R-module isomorphism)

⇐⇒ ( f is invertible)(
since we know from Proposition 3.5.3 that any

invertible R-module morphism is an isomorphism

)
⇐⇒ ( f is bijective)
⇐⇒ ( f is injective)︸ ︷︷ ︸

⇐⇒ (m1,m2,...,mn are linearly independent)
(by part (b))

∧ ( f is surjective)︸ ︷︷ ︸
⇐⇒ (m1,m2,...,mn span M)

(by part (c))

⇐⇒ (m1, m2, . . . , mn are linearly independent) ∧ (m1, m2, . . . , mn span M)

⇐⇒ ((m1, m2, . . . , mn) is a basis of M)

(by the definition of a basis). This proves part (d) of the theorem.

Proof of Theorem 3.7.8. =⇒: Assume that M is free of rank n. That is, M has
a basis (m1, m2, . . . , mn) of size n. Consider this basis. Consider the map f :
Rn → M defined in Theorem 3.7.9. Thus, Theorem 3.7.9 (d) yields that f is an
isomorphism. Hence, Rn ∼= M as left R-modules. In other words, M ∼= Rn as
left R-modules. This proves the “=⇒” direction of Theorem 3.7.8.
⇐=: Assume that M ∼= Rn as left R-modules. But the left R-module Rn is free

of rank n (as we have seen above). Hence, I claim that the left R-module M is
also free of rank n, since M ∼= Rn. Indeed, this follows from the “isomorphism
principle” for modules – i.e., from the “meta-theorem” that says that module
isomorphisms preserve all “intrinsic” properties of modules (in this case, this
property is “being free of rank n”).

Here is a more pedestrian way to get to the same conclusion: We have M ∼=
Rn, thus Rn ∼= M. In other words, there exists a left R-module isomorphism
g : Rn → M. Consider this g. Now, consider the standard basis (e1, e2, . . . , en)
of the left R-module Rn. Applying g to each vector in this basis, we obtain a
list (g (e1) , g (e2) , . . . , g (en)) of vectors in M. It is straightforward to see that
this new list is a basis of M (indeed, when we apply g to a linear combination
a1e1 + a2e2 + · · ·+ anen of the standard basis (e1, e2, . . . , en) in Rn, then we obtain

g (a1e1 + a2e2 + · · ·+ anen) = a1g (e1) + a2g (e2) + · · ·+ ang (en)

(since g is R-linear) ,

which is the corresponding linear combination of (g (e1) , g (e2) , . . . , g (en));
thus, linear independence of (e1, e2, . . . , en) translates into linear independence
of (g (e1) , g (e2) , . . . , g (en)) (since g sends only 0 to 0), and the same holds for
spanning (since g is bijective)). Hence, M has a basis of size n. In other words,
M is free of rank n.

Either way, the “⇐=” direction of Theorem 3.7.8 is now proved.
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Theorem 3.7.9 can be generalized to bases of arbitrary size:

Theorem 3.7.10. Let M be a left R-module. Let (mi)i∈I be any family of
vectors in M. Consider the map119

f : R(I) → M,

(ri)i∈I 7→ ∑
i∈I

rimi.

(This is well-defined, since any (ri)i∈I ∈ R(I) automatically satisfies the con-
dition (55) because of the definition of R(I).)

Then:

(a) This map f is always a left R-module morphism.

(b) The map f is injective if and only if the family (mi)i∈I is linearly inde-
pendent.

(c) The map f is surjective if and only if the family (mi)i∈I spans M.

(d) The map f is an isomorphism if and only if the family (mi)i∈I is a basis
of M.

Note that the map f here has domain R(I), not RI , since the infinite sum
∑
i∈I

rimi is well-defined for all (ri)i∈I ∈ R(I) but not (in general) for all (ri)i∈I ∈

RI .
The map f in Theorem 3.7.10 takes a family (ri)i∈I of scalars, and uses it to

build a linear combination of (mi)i∈I .

Proof of Theorem 3.7.10. Analogous to Theorem 3.7.9, with the usual caveats about
infinite sums.

Remark 3.7.11. As you will have noticed by now, “free module of rank n” is
a generalization of “vector space of dimension n” to arbitrary rings.

We have been careful to speak of “free modules of rank n”, but never of
“the rank of a free module”. This is due to the somewhat perverse-sounding
fact that there can be modules that are free of several ranks simultaneously
(i.e., modules that have bases of different sizes). One way to get such mod-
ules is by taking R to be a trivial ring (in which case, any R-module is trivial
and is free of every rank simultaneously – seriously). If this was the only
example, one could discount the issue as a formality, but there are less trivial
(pardon) examples as well: [DumFoo04, §10.3, exercise 27] constructs a ring

119Recall that R(I) denotes the direct sum
⊕

i∈I R here. This is the left R-module that consists of
all families (ri)i∈I ∈ RI such that only finitely many i ∈ I satisfy ri ̸= 0.
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R over which Rn ∼= R as left R-modules for each n ∈ {1, 2, 3, . . .} (so R itself
is a free R-module of rank n for each n ∈ {1, 2, 3, . . .}).

If R is a nontrivial commutative ring, then things are nice: The R-
modules R0, R1, R2, . . . are mutually non-isomorphic, so a free R-module
can never have two different ranks at the same time. This is not obvious
(see [DumFoo04, §10.3, exercise 2]). We can actually say more: If R is a
nontrivial commutative ring, then an R-module morphism Rm → Rn can-
not be injective unless m ≤ n (see, e.g., https://math.stackexchange.com/
questions/106786 or [Richma88, Theorem 2]), and cannot be surjective un-
less m ≥ n (see, e.g., https://math.stackexchange.com/questions/20178 or
[Richma88, Theorem 1]). These facts are in line with the intuition you should
have from linear algebra (injective maps cannot quash dimensions; surjec-
tive maps cannot create dimensions) and also with the Pigeonhole Principles
from combinatorics (a map between two finite sets M and N cannot be in-
jective unless |M| ≤ |N|, and cannot be surjective unless |M| ≥ |N|). But
actually proving them takes real work!

3.8. The universal property of a free module ([DumFoo04,
§10.3])

As before, we fix a ring R.
The next proposition shows that linear maps respect linear combinations (in

the sense that if you apply a linear map to a linear combination of some vectors,
then you get the same linear combination of their images):

Proposition 3.8.1. Let M and P be two left R-modules. Let f : M → P be an
R-linear map. Let (mi)i∈I be any family of vectors in M, and let (ri)i∈I be a
family of scalars in R with the property that

all but finitely many i ∈ I satisfy ri = 0. (61)

Then,

f

(
∑
i∈I

rimi

)
= ∑

i∈I
ri f (mi) .

Proof of Proposition 3.8.1. We give a proof by example: We assume that I =
{1, 2, 3}. Thus, the claim we need to prove is saying that

f (r1m1 + r2m2 + r3m3) = r1 f (m1) + r2 f (m2) + r3 f (m3) .

https://math.stackexchange.com/questions/106786
https://math.stackexchange.com/questions/106786
https://math.stackexchange.com/questions/20178
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But this is a consequence of the linearity of f (applied several times):

f (r1m1 + r2m2 + r3m3)

= f (r1m1 + r2m2) + f (r3m3) (since f respects addition)
= f (r1m1) + f (r2m2) + f (r3m3) (since f respects addition)
= r1 f (m1) + r2 f (m2) + r3 f (m3) (since f respects scaling) .

The same reasoning applies to an arbitrary finite set I. (To be fully rigorous,
this is a proof by induction on |I|.)

The case when I is infinite can be reduced to the case when I is finite using
the assumption (61). Indeed, because of (61), there is a finite subset J of I such
that all i ∈ I \ J satisfy ri = 0. Choosing such a J, we then have

∑
i∈I

rimi = ∑
i∈J

rimi and ∑
i∈I

ri f (mi) = ∑
i∈J

ri f (mi) , (62)

since vanishing addends in a sum can be discarded. But since we have already
proved Proposition 3.8.1 in the case of a finite set I, we can apply Proposition

3.8.1 to J, and thus obtain f

(
∑
i∈J

rimi

)
= ∑

i∈J
ri f (mi). In view of (62), this

rewrites as f
(

∑
i∈I

rimi

)
= ∑

i∈I
ri f (mi), so we are done.

One useful feature of bases is that they make it easy to define linear maps out
of a free module: Namely, if M is a module with a basis (mi)i∈I , and you want
to define a linear map f out of M, then it suffices to specify the values f (mi) of
the map on each vector of the basis. These values can be specified arbitrarily;
each possible specification yields a unique linear map f . Here is the theorem
that underlies this strategy:

Theorem 3.8.2 (Universal property of free modules). Let M be a free left R-
module with basis (mi)i∈I . Let P be a further left R-module (not necessarily
free). Let pi ∈ P be a vector for each i ∈ I. Then, there exists a unique
R-linear map f : M → P such that

each i ∈ I satisfies f (mi) = pi. (63)

Proof. Uniqueness: If f : M → P is an R-linear map satisfying (63), then any
R-linear combination ∑

i∈I
aimi of (mi)i∈I (where ai ∈ R and where all but finitely

many i ∈ I satisfy ai = 0) satisfies

f

(
∑
i∈I

aimi

)
= ∑

i∈I
ai f (mi)︸ ︷︷ ︸

=pi
(by (63))

(by Proposition 3.8.1)

= ∑
i∈I

ai pi. (64)
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This equality uniquely determines the value of f on each R-linear combination
of (mi)i∈I . But each element of M can be written as an R-linear combination of
(mi)i∈I (since (mi)i∈I is a basis of M and thus spans M). Thus, the equality (64)
uniquely determines the value of f on each element of M. In other words, it
uniquely determines f . Hence, the R-linear map f satisfying (63) is unique.

Existence: Consider the map

g : R(I) → M,

(ri)i∈I 7→ ∑
i∈I

rimi.

This is the map we called f in Theorem 3.7.10 (of course, we cannot call it f
right now, since we need the letter for something else). Theorem 3.7.10 (d)
yields that the map g is an isomorphism (since the family (mi)i∈I is a basis of
M). In particular, this means that g is bijective. Hence, any element of M can
be written as an R-linear combination ∑

i∈I
rimi of (mi)i∈I for a unique family

(ri)i∈I ∈ R(I).
Thanks to this, we can define a map

f : M → P,

∑
i∈I

rimi 7→ ∑
i∈I

ri pi

(
for (ri)i∈I ∈ R(I)

)
.

Now, it is easy to see that this map f is R-linear and satisfies (63). Hence, the
R-linear map f satisfying (63) exists.

Having proved both existence and uniqueness, we are now done proving
Theorem 3.8.2.

In the proof of the “Uniqueness” part above, we have not used the assump-
tion that the family (mi)i∈I is a basis of M; we have only used that it spans
M. Thus, the uniqueness of f holds even under this weaker condition. Let us
isolate this into a separate theorem:

Theorem 3.8.3 (Linear maps are determined on a spanning set). Let M be a
left R-module. Let (mi)i∈I be a family of vectors in M that spans M. Let P
be a further left R-module. Let f , g : M → P be two R-linear maps such that

each i ∈ I satisfies f (mi) = g (mi) .

Then, f = g.

This theorem is often used to prove that two linear maps are equal.
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3.9. Bilinear maps

When R is a commutative ring, the addition map

add : R × R → R, (a, b) 7→ a + b

is R-linear (where the domain is the direct product of two copies of the left
R-module R). In fact, if (a, b) ∈ R × R and (c, d) ∈ R × R are any two pairs,
then

add

(a, b) + (c, d)︸ ︷︷ ︸
=(a+c,b+d)

 = add ((a + c, b + d)) = (a + c) + (b + d) and

add ((a, b)) + add ((c, d)) = (a + b) + (c + d) = (a + c) + (b + d)

are clearly the same thing. (This just shows that add respects addition; but the
other axioms are just as easy.)

In contrast, the multiplication map

mul : R × R → R, (a, b) 7→ ab

is not R-linear. However, it is linear in the first argument if we fix the second.
In other words, for any given b ∈ R, the map

R → R, a 7→ ab

is R-linear. Likewise, the multiplication map mul : R × R → R is linear in the
second argument if we fix the first. Such maps have a name:

Definition 3.9.1. Let R be a commutative ring. Let M, N and P be three
R-modules. A map f : M × N → P is said to be R-bilinear (or just bilinear)
if it satisfies the following two conditions:

• For any n ∈ N, the map

M → P,
m 7→ f (m, n)

is R-linear. That is, for any n ∈ N, we have

f (m1 + m2, n) = f (m1, n) + f (m2, n) for all m1, m2 ∈ M;
f (rm, n) = r f (m, n) for all r ∈ R, m ∈ M;

f (0, n) = 0.

This is called linearity in the first argument.
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• For any m ∈ M, the map

N → P,
n 7→ f (m, n)

is R-linear. That is, for any m ∈ M, we have

f (m, n1 + n2) = f (m, n1) + f (m, n2) for all n1, n2 ∈ N;
f (m, rn) = r f (m, n) for all r ∈ R and n ∈ N;
f (m, 0) = 0.

This is called linearity in the second argument.

Here are some examples of bilinear maps:120

• As I said, the multiplication map R × R → R, (a, b) 7→ ab is R-bilinear.

• For any n ∈ N, the map

Rn × Rn → R,
((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

is R-bilinear. This map is known as the standard scalar product (also
known as the dot product) on Rn.

• Consider the field C of complex numbers. For any n ∈ N, the standard
inner product

Cn × Cn → C,

((a1, a2, . . . , an) , (b1, b2, . . . , bn)) 7→ a1b1 + a2b2 + · · ·+ anbn

(where z denotes the complex conjugate of a z ∈ C) is R-bilinear but not
C-bilinear (since it is antilinear rather than linear in the second argument).
However, it becomes C-bilinear if you view it as a map Cn ×C

n → C (with
C being the “twisted” C-module C from Subsection 3.5.3).

• The determinant map

det : R2 × R2 → R,
((a, b) , (c, d)) 7→ ad − bc

is R-bilinear. (This is called the determinant map because it sends a 2× 2-
matrix – encoded as pair of pairs – to its determinant.)

120In all these examples, R is assumed to be a commutative ring.
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• Matrix multiplication is bilinear. That is: For any m, n, p ∈ N, the map

Rm×n × Rn×p → Rm×p,
(A, B) 7→ AB

is R-bilinear.

• The cross product map

R3 × R3 → R3,
((a, b, c) , (x, y, z)) 7→ (bz − cy, cx − az, ay − bx)

is R-bilinear.

• For any R-module M, the action map

R × M → M,
(r, m) 7→ rm

is R-bilinear. In fact, it is linear in its first argument since every m ∈ M
satisfies

(r1 + r2)m = r1m + r2m for all r1, r2 ∈ R;
(rs)m = r (sm) for all r, s ∈ R;
0R · m = 0M;

and it is linear in its second argument since every r ∈ R satisfies

r (m1 + m2) = rm1 + rm2 for all m1, m2 ∈ M;
r (sm) = s (rm) for all s ∈ R and m ∈ M;
r · 0M = 0M.

(Here, the equality r (sm) = s (rm) follows from r (sm) = (rs)︸︷︷︸
=sr

m =

(sr)m = s (rm). Note how we relied on the commutativity of R here!)

We have always been assuming that R is commutative in this section. Non-
commutative rings R would be a distraction at this point, but might appear
later on.

Theorem 3.8.2 gave us a way to construct linear maps out of a free module
by specifying their values on a basis. We can do the same for bilinear maps:

Theorem 3.9.2 (Universal property of free modules wrt bilinear maps). Let
R be a commutative ring. Let M be a free R-module with basis (mi)i∈I . Let
N be a free R-module with basis

(
nj
)

j∈J . Let P be a further R-module (not
necessarily free). Let pi,j ∈ P be a vector for each pair (i, j) ∈ I × J. Then,
there exists a unique R-bilinear map f : M × N → P such that

each (i, j) ∈ I × J satisfies f
(
mi, nj

)
= pi,j. (65)
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Proof. This is similar to the proof of Theorem 3.8.2. Here are the details:
Uniqueness: If f : M × N → P is an R-bilinear map satisfying (65), then any

R-linear combination ∑
i∈I

aimi of (mi)i∈I (where ai ∈ R and where all but finitely

many i ∈ I satisfy ai = 0) and any R-linear combination ∑
j∈J

bjnj of
(
nj
)

j∈J

(where bj ∈ R and where all but finitely many j ∈ J satisfy bj = 0) satisfy

f

(
∑
i∈I

aimi, ∑
j∈J

bjnj

)

= ∑
i∈I

ai f

(
mi, ∑

j∈J
bjnj

)
︸ ︷︷ ︸

= ∑
j∈J

bj f (mi,nj)

(by Proposition 3.8.1,
since f is R-linear

in its second argument)

 by Proposition 3.8.1,
since f is R-linear

in its first argument



= ∑
i∈I

ai ∑
j∈J

bj f
(
mi, nj

)︸ ︷︷ ︸
=pi,j

(by (65))

(by Proposition 3.8.1)

= ∑
i∈I

ai ∑
j∈J

bj pi,j = ∑
(i,j)∈I×J

aibj pi,j. (66)

This equality uniquely determines the value of f on each pair (x, y), where x is
an R-linear combination of (mi)i∈I and y is an R-linear combination of

(
nj
)

j∈J .
But each element of M can be written as an R-linear combination of (mi)i∈I

(since (mi)i∈I is a basis of M and thus spans M), and every element of N can
be written as an R-linear combination of

(
nj
)

j∈J (for similar reasons). Thus, the
equality (66) uniquely determines the value of f on each pair (x, y) ∈ M× N. In
other words, it uniquely determines f . Hence, the R-bilinear map f satisfying
(65) is unique.

Existence: As in the above proof of Theorem 3.8.2, we can see that any el-
ement of M can be written as an R-linear combination ∑

i∈I
rimi of (mi)i∈I for

a unique family (ri)i∈I ∈ R(I). Likewise, any element of N can be written as
an R-linear combination ∑

j∈J
sjnj of

(
nj
)

j∈J for a unique family
(
sj
)

j∈J ∈ R(J).

Hence, each pair (x, y) ∈ M × N can be written in the form

(
∑
i∈I

rimi, ∑
j∈J

sjnj

)
for a unique pair of families (ri)i∈I ∈ R(I) and

(
sj
)

j∈J ∈ R(J).
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Thanks to this, we can define a map

f : M × N → P,(
∑
i∈I

rimi, ∑
j∈J

sjnj

)
7→ ∑

(i,j)∈I×J
risj pi,j

(
for (ri)i∈I ∈ R(I) and

(
sj
)

j∈J ∈ R(J)
)

.

Now, it is easy to see that this map f is R-bilinear and satisfies (65). Hence, the
R-bilinear map f satisfying (65) exists.

Having proved both existence and uniqueness, we are now done proving
Theorem 3.9.2.

3.10. Multilinear maps

Linear and bilinear maps are the first two links in a chain of notions. Here is
the general case:

Definition 3.10.1. Let R be a commutative ring. Let M1, M2, . . . , Mn be
finitely many R-modules. Let P be any R-module. A map f : M1 × M2 ×
· · · × Mn → P is said to be R-multilinear (or just multilinear) if it satisfies
the following condition:

• For any i ∈ {1, 2, . . . , n} and any m1, m2, . . . , mi−1, mi+1, mi+2, . . . , mn in
the respective modules (meaning that mk ∈ Mk for each k ̸= i), the map

Mi → P,
mi 7→ f (m1, m2, . . . , mn)

is R-linear. That is, if we fix all arguments of f other than the i-th
argument, then f is R-linear as a function of the i-th argument. This is
called linearity in the i-th argument.

Thus, “bilinear” is just “multilinear for n = 2”, whereas “linear” is “multi-
linear for n = 1”.

Here are some examples of multilinear maps:

• One of the simplest examples of an R-multilinear map is the map

prodn : R × R × · · · × R︸ ︷︷ ︸
n times

→ R,

(a1, a2, . . . , an) 7→ a1a2 · · · an.

More generally, for any r ∈ R, the map

R × R × · · · × R︸ ︷︷ ︸
n times

→ R,

(a1, a2, . . . , an) 7→ ra1a2 · · · an
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is R-multilinear.

• The most famous example of an R-multilinear map is the determinant
function

det : Rn × Rn × · · · × Rn︸ ︷︷ ︸
n times

→ R,

(v1, v2, . . . , vn) 7→ det (v1, v2, . . . , vn) ,

where det (v1, v2, . . . , vn) means the determinant of the n×n-matrix whose
columns are v1, v2, . . . , vn. (See, e.g., [Knapp16, Chapter II, Section 7],
[Ford22, §4.6] or [Leeb20] for a treatment of determinants based on the
concept of multilinearity121.)

There is a universal property of free modules with respect to multilinear
maps (extending Theorem 3.8.2 and Theorem 3.9.2), which says that a mul-
tilinear map from a product of free R-modules can be defined by specifying
its values on all combinations of basis elements (i.e., on all n-tuples whose all
entries belong to the respective bases). I leave it to you to state and prove it.

3.11. Algebras over commutative rings ([DumFoo04, §10.1])

Convention 3.11.1. In this section, we fix a commutative ring R.

3.11.1. Definition

The notion of an R-algebra combines the notions of a ring and of an R-module,
as well as connecting them by an extra axiom:

Definition 3.11.2. An R-algebra is a set A that is endowed with

• two binary operations (i.e., maps from A × A to A) that are called ad-
dition and multiplication and denoted by + and ·,

• a map · from R × A to A that is called action of R on A (and should
not be confused with the multiplication map, which is also denoted by
·), and

• two elements of A that are called zero and unity and denoted by 0 and
1,

such that the following properties (the “algebra axioms”) hold:

121Note that [Knapp16] is rather terse and abstract, but it covers the subject almost painlessly if
one is familiar with the advanced viewpoint he is using. More down-to-earth methods are
used in [Ford22, §4.6], and [Leeb20] is even more elementary (covering only the case when
R is a field; but the same argument can be used in the general case).
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• The addition, the multiplication, the zero and the unity satisfy all the
ring axioms (so that A becomes a ring when equipped with them).

• The addition, the action and the zero satisfy all the module axioms (so
that A becomes an R-module when equipped with them).

• Scale-invariance of multiplication: We have

r (ab) = (ra) b = a (rb) for all r ∈ R and a, b ∈ A.

Here (and in the following), we omit the · signs for multiplication and
action (so “ab” means “a · b”, and “r (ab)” means “r · (ab)”).

Thus, an R-algebra is an R-module that is also a ring at the same time, with
the same addition (i.e., the addition of the R-module must be identical with the
addition of the ring) and the same zero, and satisfying the “scale-invariance”
axiom. In other words, you get the definition of an R-algebra by throwing
the definitions of an R-module and a ring together (without duplicating the
addition and the zero) and requiring that the multiplication plays nice with the
scaling (in the sense that scaling a product is equivalent to scaling one of its
factors). Hence, in order to specify an R-algebra, it is enough to provide a set
with both a ring structure and an R-module structure and show that it satisfies
the “scale-invariance” axiom.

The “scale-invariance” axiom can be restated as “the multiplication map

A × A → A,
(a, b) 7→ ab

is R-bilinear”. More precisely, requiring that the multiplication map A × A →
A be R-bilinear is tantamount to imposing both the scale-invariance axiom and
a few of the ring and module axioms.

3.11.2. Examples

Examples of R-algebras include the following:

• The commutative ring R itself is an R-algebra (with both multiplication
and action being the usual multiplication of R).

• The zero ring {0} is an R-algebra.

• The matrix ring Rn×n is an R-algebra for any n ∈ N (since it is an R-
module and a ring, and the “scale-invariance” axiom is easily seen to
hold).
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• The ring C is an R-algebra (since it is an R-module and a ring, and the
“scale-invariance” axiom is easily seen to hold).

• The ring R is a Q-algebra (for similar reasons).

• More generally: If a commutative ring R is a subring of a commutative
ring S, then S becomes an R-algebra in a natural way. In fact, we already
know from Subsection 3.3.2 that S becomes an R-module, and it is easy
to see that this R-module can be combined with the ring structure on S to
form an R-algebra.

• Even more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then S becomes an R-algebra in a natural
way. In fact, we already know from Subsection 3.3.2 that S becomes an
R-module (this is the R-module structure on S induced by f ), and it is
easy to see that this R-module can be combined with the ring structure
on S to form an R-algebra. This R-algebra structure on S is said to be
induced by the morphism f .

• Yet more generally: If R and S are two commutative rings, and if f :
R → S is a ring morphism, then any S-algebra A becomes an R-algebra
in a natural way. In fact, we already know from Subsection 3.3.2 that A
becomes an R-module (this is the R-module obtained by restricting the S-
module A to R), and it is easy to see that this R-module can be combined
with the ring structure on A to form an R-algebra. This is called the
R-algebra obtained by restricting the S-algebra A to R.

For example, the matrix ring C2×2 is a C-algebra, and thus becomes an
R-algebra (since the inclusion map R → C is a ring morphism).

• The quaternion ring H is an R-algebra. But it is not a C-algebra, even
though it contains C as a subring. Indeed, the “scale-invariance” axiom
for H to be a C-algebra would say that

r (ab) = (ra) b = a (rb) for all r ∈ C and a, b ∈ H;

but this is not true for r = i, a = j and b = 1 because ij ̸= ji.

This does not contradict the previous bullet points! After all, H is not
commutative.

• The polynomial ring R [x] (to be defined soon) is an R-algebra.

Exercise 3.11.1. Recall that the complex numbers were defined as pairs of real
numbers, with entrywise addition and a strange-looking multiplication. Let us now
generalize this construction by replacing real numbers by elements of the given
commutative ring R.
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Thus, we define an R-complex number to be a pair (a, b) ∈ R × R. We define CR
to be the set of all R-complex numbers. We define an addition + and a multiplication
· on this set CR by the formulas

(a, b) + (c, d) = (a + c, b + d) and
(a, b) · (c, d) = (ac − bd, ad + bc)

(these are the same formulas as for the original complex numbers).

(a) Prove that the set CR (equipped with these two operations, with the zero (0, 0)
and the unity (1, 0)) becomes a commutative ring.

We denote this ring by CR, and call it the ring of R-complex numbers. For R = R,
we recover the usual complex numbers: CR = C.

We further turn this ring CR into an R-algebra by defining an action of R on CR
by the equation

r (a, b) = (ra, rb) for any r ∈ R and any (a, b) ∈ CR.

(b) Prove that this does indeed make CR into an R-algebra.

Let i denote the element (0, 1) of CR. (This is the generalization of the imaginary
unit i of C.)

(c) Prove that (a, b) = a · 1CR + bi for each (a, b) ∈ CR.

Now, recall that C is a field. What about its generalized version CR ?

(d) Prove that CC is not a field, but rather CC
∼= C × C as rings.

(e) Prove that CZ/2 is not a field, and in fact is isomorphic to the ring D4 from
Subsection 2.1.2.

(f) Prove that CZ/3 is a field with 9 elements.

(g) Let S be the ring Z [i] of Gaussian integers. Prove that CZ/n
∼= S/ (nS) as

rings for any integer n.

We can similarly generalize the dual numbers (as defined in Exercise 2.1.2):

Exercise 3.11.2. We define an R-dual number to be a pair (a, b) ∈ R× R. We define
DR to be the set of all R-dual numbers. We define an addition + and a multiplication
· on this set DR by the formulas

(a, b) + (c, d) = (a + c, b + d) and
(a, b) · (c, d) = (ac, ad + bc)

(these are the same formulas as for the original dual numbers).
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(a) Prove that the set DR (equipped with these two operations, with the zero (0, 0)
and the unity (1, 0)) becomes a commutative ring.

We denote this ring by DR, and call it the ring of R-dual numbers. For R = R,
we recover the usual dual numbers from Exercise 2.1.2: that is, DR = D.

We further turn this ring DR into an R-algebra by defining an action of R on DR
by the equation

r (a, b) = (ra, rb) for any r ∈ R and any (a, b) ∈ DR.

(b) Prove that this does indeed make DR into an R-algebra.

Let ε denote the element (0, 1) of DR.

(c) Prove that, for any a, b ∈ R, we have (a, b) = a · 1DR + bε in DR.

(d) Prove that ε ∈ DR is nilpotent, and in fact ε2 = 0.

(e) Prove that DZ/2 is isomorphic to the ring D4 from Subsection 2.1.2.

Exercise 3.11.3. Let R be a ring. Let M be an R-module. Recall that the Hom group
HomR (M, M) is an additive abelian group (by Exercise 3.5.2 (a)). Moreover, if R is
commutative, then HomR (M, M) is also an R-module (by Exercise 3.5.2 (b)). Prove
the following:

(a) The Hom group HomR (M, M) becomes a ring if we define multiplication to
be composition (i.e., for any for any f ∈ HomR (M, M) and g ∈ HomR (M, M),
we define f g to be the composition f ◦ g). Its unity is the identity map id :
M → M.

This ring HomR (M, M) is also denoted EndR (M) and known as the endo-
morphism ring122 of M.

(b) If R is commutative, then the endomorphism ring EndR (M) becomes an R-
algebra (with the R-module structure defined as in Exercise 3.5.2 (b)).

(c) Let M = RN; this is the left R-module of all infinite sequences (a0, a1, a2, . . .)
of elements of R. Define two left R-module morphisms f : M → M and
g : M → M by

f (a0, a1, a2, . . .) = (a1, a2, a3, . . .) for any (a0, a1, a2, . . .) ∈ M

and

g (a0, a1, a2, . . .) = (0, a0, a1, a2, . . .) for any (a0, a1, a2, . . .) ∈ M.

Prove that f g = 1 but g f ̸= 1 (unless R is trivial) in the ring EndR (M). (This
gives an example of a left inverse that is not a right inverse.)
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3.11.3. Rings as Z-algebras

The most common algebras are the Z-algebras. In fact, every ring is a Z-algebra
in a natural way:

Proposition 3.11.3. Let A be any ring. Then, A is an abelian group (with re-
spect to addition), so A becomes a Z-module (since we have seen in Propo-
sition 3.4.1 that every abelian group naturally becomes a Z-module). This
Z-module structure can be combined with the ring structure on A, turning
A into a Z-algebra.

Proof. You have to check “scale-invariance”. This is easy and LTTR.

Thus, every ring becomes a Z-algebra (similarly to how any abelian group
becomes a Z-module). This allows us to equate rings with Z-algebras. We shall
do this whenever convenient.

3.11.4. The underlying structures

Every R-algebra A has an underlying ring (i.e., the ring obtained from A by
forgetting the action) and an underlying R-module (i.e., the R-module obtained
from A by forgetting the multiplication and the unity); we will refer to these
simply as the “ring A” and the “R-module A”. So, for example, if A and B
are two R-algebras, then the “ring morphisms from A to B” will simply mean
the ring morphisms from the underlying ring of A to the underlying ring of B.
Similarly the “R-module morphisms from A to B” are to be understood.

3.11.5. Commutative R-algebras

Definition 3.11.4. An R-algebra is said to be commutative if its underlying
ring is commutative (i.e., if its multiplication is commutative).

3.11.6. Subalgebras

Algebras have subalgebras; they are defined exactly as you would expect:

Definition 3.11.5. Let A be an R-algebra. An R-subalgebra of A means a
subset of A that is simultaneously a subring and an R-submodule of A.

In pedestrian terms, this means that an R-subalgebra of A is a subset of A that
is closed under addition, multiplication and scaling and contains the zero and
the unity. Such an R-subalgebra of A clearly becomes an R-algebra in its own
right (since we can restrict all relevant operations from A to this subalgebra).

122An endomorphism is defined to be a morphism from a structure (e.g., a ring or a module or
an algebra) to itself.
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3.11.7. R-algebra morphisms

Just as rings have ring morphisms, and R-modules have R-module morphisms,
there is a notion of R-algebra morphisms:

Definition 3.11.6. Let A and B be two R-algebras.

(a) An R-algebra morphism (or, short, algebra morphism) from A to B
means a map f : A → B that is both a ring morphism and an R-module
morphism (i.e., that respects addition, multiplication, zero, unity and
scaling).

(b) An R-algebra isomorphism (or, informally, algebra iso) from A to B
means an invertible R-algebra morphism f : A → B whose inverse
f−1 : B → A is also an R-algebra morphism.

(c) The R-algebras A and B are said to be isomorphic (this is written A ∼=
B) if there exists an R-algebra isomorphism from A to B.

All the fundamental properties of ring morphisms (stated in Subsection 2.7.2)
and of ring isomorphisms (stated in Subsection 2.7.4) have analogues for R-
algebra morphisms and isomorphisms, respectively. For example, here is the
analogue of Proposition 2.7.6:

Proposition 3.11.7. Let A and B be two R-algebras. Let f : A → B be an
R-algebra morphism. Then, Im f = f (A) is an R-subalgebra of B.

Proof. Analogous to the proof of Proposition 2.7.6.

And here is the analogue of Proposition 2.7.7:

Proposition 3.11.8. Let A and B be two R-algebras. Let f : A → B be an
invertible R-algebra morphism. Then, f is an R-algebra isomorphism.

Proof. Analogous to the proof of Proposition 2.7.7.

An analogue to Proposition 3.5.2 is the following:

Proposition 3.11.9. Let A and B be two Z-algebras. Then, the Z-algebra
morphisms from A to B are precisely the ring morphisms from A to B.

Proof. Analogous to the proof of Proposition 3.5.2.
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3.11.8. Direct products of algebras

The direct product of several R-algebras is defined just as you would expect:
addition, multiplication and scaling are all entrywise. Just for the sake of com-
pleteness, let me give its precise definition:

Proposition 3.11.10. Let I be any set. Let (Ai)i∈I be any family of R-algebras.
Then, their Cartesian product ∏

i∈I
Ai becomes an R-algebra if we endow it

with the entrywise addition (i.e., we set (mi)i∈I + (ni)i∈I = (mi + ni)i∈I
for any two families (mi)i∈I , (ni)i∈I ∈ ∏

i∈I
Ai) and the entrywise multi-

plication (i.e., we set (mi)i∈I · (ni)i∈I = (mi · ni)i∈I for any two families
(mi)i∈I , (ni)i∈I ∈ ∏

i∈I
Ai) and the entrywise scaling (i.e., we set r (mi)i∈I =

(rmi)i∈I for any r ∈ R and any family (mi)i∈I ∈ ∏
i∈I

Ai) and with the zero

(0)i∈I and the unity (1)i∈I . The underlying ring of this R-algebra ∏
i∈I

Ai is

the direct product of the rings Ai, whereas the underlying R-module of this
R-algebra ∏

i∈I
Ai is the direct product of the R-modules Ai.

Definition 3.11.11. This R-algebra is denoted by ∏
i∈I

Ai and called the direct

product of the R-algebras Ai.
The usual notations apply to these direct products: For example, if I =

{1, 2, . . . , n} for some n ∈ N, then the direct product ∏
i∈I

Ai is also denoted by

A1 × A2 × · · · × An; we further set AI = ∏
i∈I

A and An = A{1,2,...,n} for each

n ∈ N.

3.12. Defining algebras: the case of H

You can think of an R-algebra as a ring equipped with an additional piece of
structure – namely, with an action of R on it. Thus, in order to define an R-
algebra, it is natural to start by defining a ring and then defining an action of R
on it (and showing that it satisfies the R-module axioms and scale-invariance).

Often, however, it is easier to proceed differently: First, define an R-module,
and then define the multiplication and the unity to turn it into an R-algebra. If
you do things in this order, you can use the R-module structure as scaffolding
for defining the multiplication. This often turns out to be the simpler way.

Here is an example of how this can work:
Recall the ring H of quaternions, which were “defined” to be “numbers” of

the form a + bi + cj + dk with a, b, c, d ∈ R and with the multiplication rules

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j.
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It is clear how to calculate in H using these rules. But why does this ring H

exist?
Here is a cautionary tale to show why this is a question: Let’s replace k2 = −1

by k2 = 1 in our above “definition” of H (but still require i2 and j2 to be −1).
Then, j2 k2︸︷︷︸

=1

= j2 = −1, so that

−1 = j2k2 = j jk︸︷︷︸
=i

k = j ik︸︷︷︸
=−j

(since −ik=j)

= j (−j) = − j2︸︷︷︸
=−1

= − (−1) = 1.

Adding 1 to this equality, we find 0 = 2, so that 0 = 1 (upon division by 2).
Therefore, the ring is trivial – i.e., all its elements are 0.

Ouch. We tried to expand our number system by introducing new “numbers”
i, j, k, but instead we ended up collapsing it (making all numbers equal to 0).

It should not surprise you that this can happen; after all, the same happens if

you introduce the “number” ∞ :=
1
0

and start doing algebra with it. But why
doesn’t it happen with the quaternions? Why is H actually an extension of our
number system rather than a collapsed version of it?

The simplest way to answer this question is to throw away the wishy-washy
definition of H we gave above (what does “numbers of the form a+ bi+ cj+ dk”
really mean?), and redefine H rigorously.

We want H to be an R-algebra. First, we introduce its underlying R-module
(i.e., R-vector space) structure. This underlying R-module will be a 4-dimensional
R-vector space, i.e., a free R-module of rank 4. So let me define H to be R4 as an
R-module. Let me denote its standard basis by (e, i, j, k) (so that e = (1, 0, 0, 0)
and i = (0, 1, 0, 0) and j = (0, 0, 1, 0) and k = (0, 0, 0, 1)). These four basis vec-
tors e, i, j, k will later become the quaternions 1, i, j, k, but I’m being cautious
for now and avoiding any names that might be too suggestive. The basis vector
e will be the unity of H. Next, we define the multiplication of H to be the
R-bilinear map µ : H × H → H that satisfies123

µ (e, e) = e, µ (e, i) = i, µ (e, j) = j, µ (e, k) = k,
µ (i, e) = i, µ (i, i) = −e, µ (i, j) = k, µ (i, k) = −j,
µ (j, e) = j, µ (j, i) = −k, µ (j, j) = −e, µ (j, k) = i,

µ (k, e) = k, µ (k, i) = j, µ (k, j) = −i, µ (k, k) = −e.

Theorem 3.9.2 guarantees that there is a unique such bilinear map µ. We set
ab = µ (a, b) for all a, b ∈ H.

123These equations are not chosen at random, of course; they are simply the equations

i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j

(as well as the equations 1 · 1 = 1, 1i = i, 1j = j, 1k = k, i · 1 = i, j · 1 = j and k · 1 = k), with
1, i, j, k renamed as e, i, j, k.
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Why is this a ring? All but two of the ring axioms are obvious (they follow
either from the bilinearity of µ or from the module axioms for the R-module
H = R4). The two axioms that are not obvious are the following:

1. Associativity of multiplication.

2. Neutrality of 1 (i.e., the claim that a · e = e · a = a for each a ∈ H).

Fortunately, the bilinearity of µ will make both of these axioms straightforward
to check. Indeed, let me explain how to check the associativity of multiplication.
In other words, let me prove that the map µ is associative – i.e., that

µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ H. (67)

The trick to this is that when a map like µ is bilinear, its associativity can be
checked on a basis – or, more generally, on a spanning set:

Lemma 3.12.1. Let R be a commutative ring. Let M be an R-module. Let
(mi)i∈I be a family of vectors in M that spans M. Let f : M × M → M be an
R-bilinear map. Assume that

f
(

f
(
mi, mj

)
, mk

)
= f

(
mi, f

(
mj, mk

))
for all i, j, k ∈ I. (68)

Then, we have

f ( f (a, b) , c) = f (a, f (b, c)) for all a, b, c ∈ M. (69)

Proof of Lemma 3.12.1. Let a, b, c ∈ M. Since the family (mi)i∈I spans M, we can
write the three vectors a, b, c as

a = ∑
i∈I

aimi, b = ∑
j∈I

bjmj, c = ∑
k∈I

ckmk
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for some coefficients ai, bj, ck ∈ R. Consider these coefficients. Then,124

f ( f (a, b) , c) = f

(
f

(
∑
i∈I

aimi, ∑
j∈I

bjmj

)
, ∑

k∈I
ckmk

)

= ∑
k∈I

ck f

(
f

(
∑
i∈I

aimi, ∑
j∈I

bjmj

)
, mk

)
(since f is linear in its second argument)

= ∑
k∈I

ck f

(
∑
i∈I

ai f

(
mi, ∑

j∈I
bjmj

)
, mk

)
(since f is linear in its first argument)

= ∑
k∈I

ck f

(
∑
i∈I

ai ∑
j∈I

bj f
(
mi, mj

)
, mk

)
(since f is linear in its second argument)

= ∑
k∈I

ck ∑
i∈I

ai ∑
j∈I

bj f
(

f
(
mi, mj

)
, mk

)
(since f is linear in its first argument)

= ∑
i∈I

∑
j∈I

∑
k∈I

aibjck f
(

f
(
mi, mj

)
, mk

)
and similarly

f (a, f (b, c)) = ∑
i∈I

∑
j∈I

∑
k∈I

aibjck f
(
mi, f

(
mj, mk

))
.

The right hand sides of these two equalities are equal by our assumption
(68). Hence, the left hand sides are equal. In other words, f ( f (a, b) , c) =
f (a, f (b, c)). This proves Lemma 3.12.1.

Let us now return to H. We want to prove that

µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ H.

By Lemma 3.12.1 (applied to R = R, M = H, (mi)i∈I = (e, i, j, k) and f = µ), it
suffices to show that

µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ {e, i, j, k} .

This is a finite computation: There are only 64 triples (a, b, c) with a, b, c ∈
{e, i, j, k}, and we can check the equality µ (µ (a, b) , c) = µ (a, µ (b, c)) for each
of these triples directly by computation (using the definition of µ).

124We will use Proposition 3.8.1 multiple times in this computation.
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A computer could do this in the blink of an eye, but we can also do this
by hand. There are some tricks that reduce our work. The first is to notice
that µ (µ (a, b) , c) = µ (a, µ (b, c)) is obvious when one of a, b, c is e (because
µ (x, e) = µ (e, x) = x for each x ∈ {e, i, j, k}). Thus, it suffices to prove the
equality µ (µ (a, b) , c) = µ (a, µ (b, c)) in the case when a, b, c ∈ {i, j, k}. This
leaves 27 triples (a, b, c) to check.

The next trick is to observe a cyclic symmetry. Indeed, the definition of
µ is invariant under cyclic rotation of i, j, k, in the sense that if we replace
i, j, k by j, k, i (respectively), then the definition remains unchanged (for ex-
ample, µ (j, i) = −k becomes µ (k, j) = −i). Thus, when we are proving
µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ {i, j, k}, we can WLOG assume
that a = i (since otherwise, we can achieve this by rotating all of a, b, c until a
becomes i). This leaves 9 triples (a, b, c) to check.

Let me just check one of them: namely, (a, b, c) = (i, k, k). In this case, we
have

µ (µ (a, b) , c) = µ

µ (i, k)︸ ︷︷ ︸
=−j

, k

 = µ (−j, k) = − µ (j, k)︸ ︷︷ ︸
=i

(since µ is bilinear)

= −i

and

µ (a, µ (b, c)) = µ

i, µ (k, k)︸ ︷︷ ︸
=−e

 = µ (i,−e) = − µ (i, e)︸ ︷︷ ︸
=i

(since µ is bilinear)

= −i.

Thus, µ (µ (a, b) , c) = µ (a, µ (b, c)) is proved for this triple. Similarly, the re-
maining 9 − 1 = 8 triples can be checked. Thus, associativity of multiplication
is proved for H.

It remains to prove the neutrality of 1. In other words, it remains to prove that
a · e = e · a = a for each a ∈ H. Once again, the bilinearity of the multiplication
of H can be used to reduce this to the case when a ∈ {e, i, j, k} (here we need to
use Theorem 3.8.3 instead of Lemma 3.12.1); but in this case, the claim follows
from our definition of µ. The details are LTTR.
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4. Monoid algebras and polynomials ([DumFoo04,
Chapter 9])

Convention 4.0.1. Let R be a commutative ring. (This will be a standing
assumption throughout this chapter.)

In Section 3.12, we have learned how to define an R-algebra the “slick” way:
Define an R-module first, and then define an R-bilinear map on it, which will
serve as the multiplication of the algebra. Then show that the multiplication is
associative (this is best done “by linearity”, i.e., using Lemma 3.12.1) and has a
unity (this can again be simplified using linearity).

I illustrated this method on the example of the ring of quaternions (an R-
algebra).

Now let me apply it to define a more important class of algebras: the monoid
algebras, and, as a particular case, the polynomial rings.

4.1. Monoid algebras

4.1.1. Definition

Recall the notion of a monoid: Roughly speaking, it is a “group without in-
verses”. That is, a monoid is a triple (M, ·, 1), where M is a set, · is an asso-
ciative binary operation on M, and 1 is an element of M that is neutral for ·.
We will write mn for m · n whenever m, n ∈ M. Moreover, the element mn will
be called the product of m and n in the monoid M. We will write M for the
monoid (M, ·, 1) if · and 1 are clear from the context. The monoid M is said
to be abelian if mn = nm for all m, n ∈ M. (This generalizes the notion of an
abelian group.) Given a monoid (M, ·, 1), the binary operation · is called the
operation of M, and the element 1 is called the neutral element of M. We say
that the monoid M is written multiplicatively (or, for short, multiplicative)
when its operation is denoted by ·, and we say that it is written additively (or,
for short, additive) when its operation is denoted by +.

Here is the informal idea behind the notion of a monoid algebra: The monoid
algebra R [M] is the R-algebra obtained by “adjoining” the monoid M to the
ring R, which means “inserting” the elements of M “into” R. That is, the
algebra R [M] consists of “formal products” rm with r ∈ R and m ∈ M, as well
as their formal sums. These products are multiplied using the multiplications
of R and M:

(r1m1) · (r2m2) = (r1r2) · (m1m2) .

Let us formalize this:125

125We recall that R is a commutative ring. Furthermore, we recall that if M is any set, then RM

is the R-module {
(ri)i∈M | ri ∈ R for each i ∈ M

}
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Definition 4.1.1. Let M be a monoid, written multiplicatively (so that · de-
notes its operation, and 1 denotes its neutral element).

The monoid algebra of M over R (also known as the monoid ring of M
over R) is the R-algebra R [M] defined as follows: As an R-module, it is the
free R-module R(M). Its multiplication is defined to be the unique R-bilinear
map µ : R(M) × R(M) → R(M) that satisfies

µ (em, en) = emn for all m, n ∈ M. (70)

Here, (em)m∈M is the standard basis of R(M) (that is, em ∈ R(M) is the family
whose m-th entry is 1 and whose all other entries are 0). The unity of this
R-algebra R [M] is e1.

Theorem 4.1.2. This is indeed a well-defined R-algebra.

Proof. Theorem 3.9.2 guarantees that there is a unique R-bilinear map µ : R(M)×
R(M) → R(M) that satisfies (70). It remains to prove that the R-module R(M)

(equipped with the multiplication µ and the unity e1) is an R-algebra.
All we need to show is that µ is associative, and that e1 is a unity. I will only

show the first statement, and leave the second to you.
We need to show that µ (µ (a, b) , c) = µ (a, µ (b, c)) for all a, b, c ∈ R [M].

According to Lemma 3.12.1, it suffices to prove that

µ
(
µ (em, en) , ep

)
= µ

(
em, µ

(
en, ep

))
for all m, n, p ∈ M

(since the family (em)m∈M is a basis of R(M) = R [M]).
Let us do this: If m, n, p ∈ M, then

µ

µ (em, en)︸ ︷︷ ︸
=emn

, ep

 = µ
(
emn, ep

)
= e(mn)p = emnp

and similarly µ
(
em, µ

(
en, ep

))
= emnp, so we indeed have µ

(
µ (em, en) , ep

)
=

µ
(
em, µ

(
en, ep

))
as desired. This completes the proof that µ is associative. Thus,

Theorem 4.1.2 is proven.

(consisting of all families (ri)i∈M of elements of R), whereas R(M) is the R-submodule⊕
i∈M

R =
{
(ri)i∈M ∈ RM | all but finitely many i ∈ M satisfy ri = 0

}
of RM. If the set M is finite, then R(M) = RM.

The R-module R(M) is free, and the standard basis (em)m∈M of R(M) is defined as follows:
For each m ∈ M, the vector em ∈ R(M) is the family whose m-th entry is 1 and whose all
other entries are 0. (If M = {1, 2, . . . , n} for some n ∈ N, then this recovers the classical
linear-algebraic standard basis: e.g., if M = {1, 2, 3}, then e1 = (1, 0, 0) and e2 = (0, 1, 0) and
e3 = (0, 0, 1).)

The standard basis (em)m∈M of R(M) is, of course, a basis of R(M).
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Since the bilinear map µ in Definition 4.1.1 is used as the multiplication of
R [M], we can rewrite the equality (70) as follows:

em · en = emn for all m, n ∈ M. (71)

From the way we defined monoids, it is clear that every group is a monoid.
Monoid algebras of groups have a special name:

Definition 4.1.3. When a monoid M is a group, its monoid algebra R [M] is
called a group algebra (or group ring).

4.1.2. Examples

Let me show a few examples of monoid algebras.

Example 4.1.4. Consider the order-2 cyclic group C2 = {1, u} with u2 = 1
(of course, we write C2 multiplicatively). This group is better known as Z/2,
and its operation is commonly written as addition, not as multiplication; but
we want to write it multiplicatively here, in order to match the way M is
written in Definition 4.1.1.

How does the group algebra Q [C2] look like? As a Q-module (i.e., Q-
vector space), it has a basis (em)m∈C2

= (e1, eu). Thus, any element of Q [C2]
can be written as a e1︸︷︷︸

=1

+beu = a + beu for some unique a, b ∈ Q. (As usual,

we are writing 1 for the unity of our ring Q [C2], which is e1.)
The multiplication on Q [C2] is Q-bilinear and given on the basis by

e1e1 = e1·1 = e1, e1eu = e1·u = eu,
eue1 = eu·1 = eu, eueu = eu·u = eu2 = e1.

Let us use this to compute some products in Q [C2]:

(3 + 2eu) (1 + 2eu) = 3 · 1 + 3 · 2eu + 2eu · 1 + 2eu · 2eu

= 3 + 6eu + 2eu + 4 eueu︸︷︷︸
=e1=1

= 3 + 6eu + 2eu + 4 = 7 + 8eu;

(1 + eu)
2 = 1 + 2eu + e2

u︸︷︷︸
=eueu=e1=1

= 1 + 2eu + 1 = 2 + 2eu;

(1 − eu) (1 + eu) = 1 − e2
u︸︷︷︸

=eueu=e1=1

(
since (1 − x) (1 + x) = 1 − x2

for any x in any ring

)
= 1 − 1 = 0.
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The last of these computations shows that Q [C2] is not an integral domain.
In general, for any a, b, c, d ∈ Q, we have

(a + beu) (c + deu) = ac + adeu + b euc︸︷︷︸
=ceu

(since the
multiplication of Q[C2]

is Q-bilinear)

+ b eud︸︷︷︸
=deu

(since the
multiplication of Q[C2]

is Q-bilinear)

eu

= ac + adeu + bceu + bd eueu︸︷︷︸
=e1=1

= ac + adeu + bceu + bd

= (ac + bd) + (ad + bc) eu. (72)

How does Q [C2] “look like”? Meaning, what known Q-algebras is Q [C2]
isomorphic to (if any)?

I claim that

Q [C2] ∼= Q2 = Q × Q (as Q-algebras) . (73)

(See Definition 3.11.11 for the meaning of Q2 and Q × Q.)
[Proof of (73): First, we observe that Q [C2] is commutative (this is easy to

check), and that the element z :=
1 + eu

2
of Q [C2] is idempotent (since an

easy computation shows z2 = z). Hence, Exercise 2.10.4 (c) shows that the
map

f : (zQ [C2])× ((1 − z)Q [C2]) → Q [C2] ,
(a, b) 7→ a + b

is a ring isomorphism; thus, this map f is invertible. This map f is fur-
thermore Q-linear and thus is a Q-algebra morphism. Since f is invertible,
we thus conclude that f is a Q-algebra isomorphism (by Proposition 3.11.8).
Now, what are zQ [C2] and (1 − z)Q [C2] ? A general element of Q [C2] has
the form a + beu for some a, b ∈ Q. Thus, a general element of zQ [C2] has
the form z (a + beu) for some a, b ∈ Q. Since

z (a + beu) =
1 + eu

2
(a + beu) =

1
2
(1 + eu) (a + beu)︸ ︷︷ ︸
=a+eua+beu+eubeu
=a+aeu+beu+beueu

=
1
2

a + aeu + beu + b eueu︸︷︷︸
=e1=1

 =
1
2
((a + b) + (a + b) eu)

= (a + b) · 1 + eu

2︸ ︷︷ ︸
=z

= (a + b)︸ ︷︷ ︸
∈Q

z,
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we see that any such element is a scalar multiple of z (that is, an element
of the form λz for some λ ∈ Q, not just a multiple of z in the ring Q [C2]).
In other words, any such element belongs to the Q-submodule (= Q-vector
subspace)

Qz := {λz | λ ∈ Q} of Q [C2] .

Thus, zQ [C2] ⊆ Qz. Since we also have Qz ⊆ zQ [C2] (since every λ ∈ Q

satisfies λz = z · (λe1) ∈ zQ [C2]), this entails zQ [C2] = Qz. Hence, in
particular, Qz is a Q-algebra with unity z. However, the map

Q → Qz, λ 7→ λz

is a Q-algebra morphism (indeed, it is clearly Q-linear; it respects multiplica-
tion since (λz) (µz) = λµ z2︸︷︷︸

=z

= λµz for any λ, µ ∈ Q; its respects the unity

since 1z = z is the unity of Qz), and thus is a Q-algebra isomorphism (since
it is easily seen to be bijective). Thus, Qz ∼= Q as Q-algebras. Combining this
with zQ [C2] = Qz, we obtain zQ [C2] = Qz ∼= Q as Q-algebras. Similarly,
we can prove that (1 − z)Q [C2] ∼= Q (indeed, a simple computation shows

that 1 − z =
1 − eu

2
, and thus we can mostly repeat our above argument

with 1 − z instead of z, with the main difference being that some plus signs
become minus signs).

So the isomorphism f results in

Q [C2] ∼= (zQ [C2])︸ ︷︷ ︸
∼=Q

× ((1 − z)Q [C2])︸ ︷︷ ︸
∼=Q

∼= Q × Q = Q2.

This proves (73).]
Retracing our proof of (73), we actually get an explicit Q-algebra isomor-

phism

Q2 → Q [C2] ,

(λ, µ) 7→ f (λz, µ (1 − z)) = λz + µ (1 − z) = λ · 1 + eu

2
+ µ · 1 − eu

2

=
λ + µ

2
+

λ − µ

2
eu.

The inverse of this isomorphism is the Q-algebra isomorphism

Q [C2] → Q2,
a + beu 7→ (a + b, a − b) (for all a, b ∈ Q) .

Note that there are only two Q-algebra isomorphisms from Q [C2] to Q2:
One is the one we just constructed; the other is

Q [C2] → Q2,
a + beu 7→ (a − b, a + b) (for all a, b ∈ Q)
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(which differs from the first only in a + b and a − b being swapped). In
contrast, there are infinitely many Q-module isomorphisms from Q [C2] to
Q2; the simplest one just sends each a + beu to (a, b) (for all a, b ∈ Q).

Example 4.1.5.

(a) We can easily repeat Example 4.1.4 using the field R (or C) instead of Q.
Everything works just as it did for Q. For example, we get an R-algebra
isomorphism R2 → R [C2].

(b) Now, let us try to repeat Example 4.1.4 using the ring Z instead of Q.
The multiplication rule (72) still holds (but now for a, b, c, d ∈ Z). What
about the isomorphism (73) ? The idempotent z no longer exists (since
we had to divide by 2 to construct it, but we cannot divide by 2 in Z),
so our proof of (73) does not work. And indeed, (73) does not hold for
Z. The Z-algebra

Z [C2] = {a + beu | a, b ∈ Z}

is not isomorphic to any direct product of nontrivial Z-algebras. This
can be proved by showing that Z [C2] has no idempotents other than 0
and 1. (In fact, if a + beu ∈ Z [C2] is an idempotent, then (a + beu)

2 =

a + beu. But (72) yields (a + beu)
2 =

(
a2 + b2)+ 2abeu, so this idempo-

tency results in
(
a2 + b2)+ 2abeu = a + beu, and thus a2 + b2 = a and

2ab = b (since e1 = 1 and eu are Z-linearly independent). But the only
integer solutions (a, b) of this system of two equations are (0, 0) and
(1, 0) (check this!); thus, the only idempotents of Z [C2] are 0 + 0eu = 0
and 1 + 0eu = 1.)

Example 4.1.6. Now, let us take the order-3 cyclic group C3 = {1, u, v} with
u3 = 1 and v = u2. (Again, this group is better known as Z/3, but we write it
multiplicatively.) Then, Q [C3] is again commutative, and has an idempotent

z :=
1 + eu + ev

3
; this leads to a Q-algebra isomorphism

Q [C3] ∼= Q × S,

where the Q factor is

zQ [C3] = Qz = {a + aeu + aev | a ∈ Q}
and where the S factor is

(1 − z)Q [C3] = {a + beu + cev | a + b + c = 0} .

The Q factor is 1-dimensional (as a Q-vector space), while the S factor is 2-
dimensional. Can S be decomposed further? How does S “look like”? We
will later see (in Exercise 4.5.3 below).
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Example 4.1.7. Here is a non-example: The ring of quaternions H is not a
monoid algebra. It is pretty close, in that it has a basis (1, i, j, k) (over R)
with the property that the product of any two basis elements is either a basis
element again (for example, ij = k) or the negative of a basis element (for
example, ji = −k). However, for it to be a monoid algebra, it would need
a basis such that the product of any two basis elements is always a basis
element (never the negative of a basis element).126 Such a basis does not exist
for H.

If we remove all the minus signs in the definition of H (that is, we replace
the multiplication rules by i2 = j2 = k2 = 1 and ij = ji = k and jk = kj = i
and ki = ik = j), then we actually do obtain a monoid algebra (namely, the
group algebra of the Klein four-group).

We can find another group algebra closely related to H. Indeed, we define
the quaternion group Q8 to be the subgroup {1, i, j, k,−1,−i,−j,−k} of the
group of units of H. Then, consider the group algebra H′ := R [Q8] of this
group Q8. This group algebra H′ is 8-dimensional as an R-vector space,
whereas H is 4-dimensional; thus, H′ is not quite H (but rather close). The
main difference between H and H′ is that the elements e1 and e−1 of H′

are two different basis elements (thus linearly independent), whereas the
elements 1 and −1 of H are negatives of each other. Even though H′ is not
commutative, we can define a principal ideal (e1 + e−1)H′ of H′ (by Exercise
2.8.2, since e1 + e−1 is a central element of H′), and then it is not hard to
show that the quotient ring H′/ (e1 + e−1)H′ is isomorphic to H. Thus,
while H itself is not a group ring, we can obtain H from the group ring
H′ = R [Q8] by “setting e−1 equal to the negative of e1” (that is, quotienting
out the principal ideal generated by e1 + e−1).

Exercise 4.1.1. Let R be a commutative ring, and n be a positive integer. In Exercise
2.10.5, we have defined the ring Circn of circulant n × n-matrices A ∈ Rn×n.

(a) Prove that this ring Circn is actually an R-subalgebra of Rn×n.

(b) Prove that this R-algebra Circn is isomorphic to the group algebra R [Cn],
where Cn is the order-n cyclic group.

Exercise 4.1.2. Let R be a commutative ring. Let G be a finite group. Let s be the
element ∑

g∈G
eg of the group algebra R [G].

(a) Prove that s2 = |G| · s.

126In general, you can describe a monoid algebra as an algebra that has a basis that contains the
unity (i.e., the unity of the algebra belongs to the basis) and is closed under multiplication
(i.e., the product of any two basis elements is again a basis element).

https://en.wikipedia.org/wiki/Klein_four-group
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(b) If |G| · 1R is invertible in R, then prove that
1
|G| s ∈ R [G] is idempotent.

[This generalizes the idempotents z in Example 4.1.4 and Example 4.1.6.]

Exercise 4.1.3.

(a) Prove the claim made in Example 4.1.4, saying that there are only two Q-
algebra isomorphisms from Q [C2] to Q2.

(b) More generally: Let R be any integral domain. Prove that there are exactly n!
many R-algebra isomorphisms from Rn to Rn, and each of them has the form

Rn → Rn,

(r1, r2, . . . , rn) 7→
(

rσ(1), rσ(2), . . . , rσ(n)

)
for some permutation σ of {1, 2, . . . , n}. (In other words, each of these isomor-
phisms just permutes the entries of the n-tuple.)

[Hint: For part (b), let f be an R-algebra isomorphism Rn → Rn. Consider the
standard basis vectors e1, e2, . . . , en of Rn. Form the n × n-matrix whose rows are the
n vectors f (e1) , f (e2) , . . . , f (en). Show that each row of this matrix has at least one
nonzero entry, but each column has at most one nonzero entry. Furthermore, what
must these entries be?]

4.1.3. Pretending that the elements of M belong to R [M]

Convention 4.1.8. Let R be a commutative ring. Let M be a monoid. The
elements em of the standard basis (em)m∈M of R [M] will often be just denoted
by m (by abuse of notation). Thus, for example, the element a + beu + cev of
Q [C3] (from Example 4.1.6) will be written as a+ bu+ cv. With this notation,
an element of R [M] is (at least notationally) really just a sum of products of
elements of R with elements of M.

Do not use this convention when it can create confusion! In particular, do
not use it when some elements of M include minus (or plus) signs, such as
the elements −1,−i,−j,−k in Example 4.1.7. (Indeed, in Example 4.1.7, it is
crucial that e1 and e−1 are two different basis elements of H′, not negatives
of each other. Denoting them by 1 and −1 would obscure this and risk
confusing the nonzero element e1 + e−1 for the zero sum 1 + (−1) = 0.)

4.1.4. General properties of monoid algebras

We shall now state some general properties of monoid algebras, and agree on
some conventions that will make it easier to work in those algebras.
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Proposition 4.1.9. Let M be an abelian monoid. Then, the monoid ring R [M]
is commutative.

Proof. We must prove that ab = ba for all a, b ∈ R [M]. This is a typical linearity
argument (just as the proof of Lemma 3.12.1): Since (em)m∈M is a basis of the
R-module R [M], we can write a and b as R-linear combinations of this family
(em)m∈M. That is, there exist scalars am ∈ R and bm ∈ R for all m ∈ M such that

a = ∑
m∈M

amem and b = ∑
m∈M

bmem

(and such that am = 0 for all but finitely many m ∈ M, and likewise for the bm).
Multiplying these two equalities, we find

ab =

(
∑

m∈M
amem

)(
∑

m∈M
bmem

)
=

(
∑

m∈M
amem

)(
∑

n∈M
bnen

)
(here, we renamed m as n in the second sum)

= ∑
m∈M

∑
n∈M

ambn emen︸︷︷︸
=emn

(by (71))

(since the multiplication of the R-algebra R [M] is R-bilinear)

= ∑
m∈M

∑
n∈M

ambn emn︸︷︷︸
=enm

(since M is abelian,
so that mn=nm)

= ∑
m∈M

∑
n∈M

ambnenm

and (if we multiply them in the opposite order)

ba =

(
∑

m∈M
bmem

)(
∑

m∈M
amem

)
=

(
∑

n∈M
bnen

)(
∑

m∈M
amem

)
(here, we renamed m as n in the first sum)

= ∑
n∈M

∑
m∈M︸ ︷︷ ︸

= ∑
m∈M

∑
n∈M

bnam︸︷︷︸
=ambn

(since R is commutative)

enem︸︷︷︸
=enm

(by (71))

(since the multiplication of the R-algebra R [M] is R-bilinear)

= ∑
m∈M

∑
n∈M

ambnenm.

The right hand sides of these two equalities are equal; thus, so are the left
hand sides. In other words, ab = ba. This completes the proof of Proposition
4.1.9.
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Proposition 4.1.10. Let M be a monoid with neutral element 1. Then, the
map

R → R [M] ,
r 7→ r · e1

is an injective R-algebra morphism.

Proof. First of all, this map is clearly injective, because the family (em)m∈M is a
basis of R [M] and thus is R-linearly independent (so r · e1 ̸= s · e1 for any two
distinct r, s ∈ R). It remains to prove that this map is an R-algebra morphism.
But this is a particular case of the following general fact: If A is an R-algebra,
then the map

R → A,
r 7→ r · 1A

is an R-algebra morphism. This fact is easy to show (for example, the map
respects multiplication, since any r, s ∈ R satisfy (r · 1A) · (s · 1A) = rs · 1A · 1A =
rs · 1A), and we can apply it to A = R [M] (recalling that 1R[M] = e1) to obtain
precisely the claim we are trying to prove.

Convention 4.1.11. If M is a monoid, then we shall identify each r ∈ R
with r · e1 ∈ R [M]. This identification is harmless127, and turns R into an
R-subalgebra of R [M].

An element of R [M] will be called constant if it lies in this subalgebra
(i.e., if it is of the form r · e1 for some r ∈ R). Thus, we have identified each
constant element of R [M] with the corresponding element of R.

A warning might be in order: In Example 4.1.4, we have seen that Q [C2] ∼=
Q × Q as Q-algebras. Now, in Convention 4.1.11, we have identified Q with a
Q-subalgebra of Q [C2]. But this subalgebra is not one of the two Q factors in
Q [C2] ∼= Q × Q. Indeed, as a Q-subalgebra, it contains the unity of Q [C2], but
none of the two Q factors does.

Proposition 4.1.12. Let M be a monoid. Then, the map

M → R [M] ,
m 7→ em

is a monoid morphism from M to (R [M] , ·, 1).

127Indeed, Proposition 4.1.10 shows that the map R → R [M] sending each r ∈ R to r · e1 is
an injective R-algebra morphism. Thus, this map keeps distinct elements of R distinct in
R [M] (since it is injective), and respects addition and multiplication (since it is an R-algebra
morphism).
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Proof. This map respects multiplication (because of (71)) and sends the neutral
element of M to the unity of R [M] (since e1 is the unity of R [M]). Thus, it is a
monoid morphism.

Note that if we use Convention 4.1.8, then the “m 7→ em” in Proposition 4.1.12
can be rewritten as “m 7→ m”, so the map from Proposition 4.1.12 looks like an
inclusion map. This is merely an artefact of our notation. In truth, the element
m of the monoid M is not literally the same as the corresponding basis element
em of the monoid algebra R [M]; we have just agreed to call both of them m for
brevity. But Proposition 4.1.12 shows that using the same letter for these two
elements is a mostly harmless abuse of notation. The only possible problem it
can cause is when the map in Proposition 4.1.12 fails to be injective, so we might
accidentally equate two distinct elements m, n of M whose corresponding basis
elements em and en are equal. Fortunately, this can only happen if the ring R
is trivial (indeed, for any nontrivial ring R, the basis elements em for m ∈ M
are distinct), and this is not a very interesting case. (This is also an issue that
rarely comes up in practice. The purpose of Convention 4.1.8 is to simplify
computations in R [M], not to “pull” them back into M.)

Exercise 4.1.4. Let n be a positive integer. Consider the symmetric group Sn – that
is, the group of all permutations of the set {1, 2, . . . , n}.

For any two distinct elements i and j of {1, 2, . . . , n}, let ti,j be the permutation
in Sn that swaps i with j while leaving the remaining elements of {1, 2, . . . , n} un-
changed. (This is called a transposition.)

For each i ∈ {1, 2, . . . , n}, define an element Yi ∈ Z [Sn] of the group algebra
Z [Sn] by

Yi :=
i−1

∑
j=1

ti,j = ti,1 + ti,2 + · · ·+ ti,i−1

(where we are using Convention 4.1.8, so that ti,j really means eti,j ). (Thus, Y1 = 0
and Y2 = t2,1 and Y3 = t3,1 + t3,2 and so on.) The n elements Y1, Y2, . . . , Yn are called
the Young-Jucys-Murphy elements of Z [Sn].

(a) Prove that the n elements Y1, Y2, . . . , Yn commute (i.e., that we have YiYj = YjYi
for all i, j ∈ {1, 2, . . . , n}).

(b) Prove that the element Y1 +Y2 + · · ·+Yn = ∑
1≤j<i≤n

ti,j belongs to the center of

Z [Sn].

Exercise 4.1.5. Let G be a finite group. Let R be a nontrivial commutative ring.
Let T be a subset of G. Let sT be the element ∑

t∈T
t of the group algebra R [Sn]

(where we use Convention 4.1.8, so that t means et).
Prove that the element sT of R [G] is central if and only if T is a union of conjugacy

classes of G (that is, if every element of G that is conjugate to an element of T must
itself be an element of T).
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4.2. Polynomial rings

4.2.1. Univariate polynomials

Now, we can effortlessly define polynomial rings. Recall that R is a commuta-
tive ring. Recall also that N = {0, 1, 2, . . .} (so 0 ∈ N).

Definition 4.2.1. Let C be the free monoid with a single generator x. This is
the monoid whose elements are countably many distinct symbols named

x0, x1, x2, x3, . . . ,

and whose operation is defined by

xi · xj = xi+j for all i, j ∈ N.

We write this monoid multiplicatively, but of course it is just the well-known
monoid (N,+, 0) in new clothes (we have renamed each i ∈ N as xi; we have
renamed addition as multiplication). Its neutral element is x0. We set x = x1

(so that xi really is the i-th power of x).
The elements of C are called monomials (in the variable x). The specific

element x is called the indeterminate (or, somewhat imprecisely, the vari-
able).

Now, the univariate polynomial ring over R is defined to be the monoid
algebra R [C]. It is commonly denoted by R [x]. Following Convention 4.1.8,
we simply write m for em when m ∈ C (that is, we write xi for the basis
element exi); thus, R [x] is a free R-module with basis(

x0, x1, x2, x3, . . .
)
=
(

1, x, x2, x3, . . .
)

.

Hence, any p ∈ R [x] can be written as a finite R-linear combination of powers
of x. In other words, any p ∈ R [x] can be written in the form

p = a0x0 + a1x1 + a2x2 + · · ·+ anxn = a0 + a1x + a2x2 + · · ·+ anxn

for some n ∈ N and some a0, a1, . . . , an ∈ R. This representation is unique
up to trailing zeroes (meaning that we can always add 0xn+1 addends – e.g.,
rewriting 4x0 + 3x1 as 4x0 + 3x1 + 0x2 –, but other than that it is unique).

Elements of R [x] are called polynomials in x over R.

Thus, up to notation, the univariate polynomial ring R [x] is just the monoid
ring R [N] of the abelian monoid N = (N,+, 0). Hence, this ring R [x] is
commutative (by Proposition 4.1.9, since the monoid N is abelian). The unity
of the R-algebra R [x] is x0 = 1.
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Example 4.2.2.

(a) Here is an example of a polynomial:

1 + 3x2 + 6x3 = 1ex0 + 3ex2 + 6ex3 ∈ R [x] .

(b) A non-example: The infinite sum 1 + x + x2 + x3 + · · · is not in R [x].
Indeed, polynomials are linear combinations of powers of x, and linear
combinations are finite (by definition); even if you write them as infinite
sums, they are de-facto finite because all but finitely many addends are
0. Infinite sums such as 1 + x + x2 + x3 + · · · thus are not polynomi-
als128; they are instead known as formal power series. There is a way
to define an R-algebra of formal power series, too, but we won’t do so
now.

So we have defined univariate polynomial rings (i.e., polynomial rings in a
single variable). Likewise, we can define multivariate polynomial rings – i.e.,
polynomial rings in several variables. For simplicity, let me restrict myself to
finitely many variables.

4.2.2. Bivariate polynomials

To avoid a barrage of new notations, let me first introduce bivariate polynomial
rings – i.e., polynomial rings in two variables. Their definition is just a particu-
lar case of the definition of multivariate polynomial rings (Definition 4.2.4) that
we will give soon after, but it is somewhat easier to understand as it involves
less complicated notations.

Definition 4.2.3. Let C(2) be the free abelian monoid with two generators x
and y. This is the monoid whose elements are the distinct symbols

x0y0, x0y1, x0y2, x0y3, . . . ,

x1y0, x1y1, x1y2, x1y3, . . . ,

x2y0, x2y1, x2y2, x2y3, . . . ,
. . . ,

that is, the distinct symbols

xayb with a ∈ N and b ∈ N,

and whose operation is defined by(
xayb

)
·
(

xcyd
)
= xa+cyb+d for all a, b, c, d ∈ N.

128You might wonder whether such sums are well-defined in the first place. Yes, they are, if one
correctly defines them. For a complete definition, see (e.g.) [21s, §3.2.2].
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We write this monoid multiplicatively, but of course it is just the monoid
N2 =

(
N2,+, 0

)
in disguise (where the addition on N2 that we are calling

“+” here is entrywise, and 0 means the pair (0, 0)), with each element (a, b)
renamed as xayb and with addition renamed as multiplication. The elements
of C(2) are called monomials in x and y. We define two specific monomials
x and y by

x = x1y0 and y = x0y1.

These two monomials x and y are called the indeterminates (or, somewhat
imprecisely, the variables). It is easy to see that any monomial xayb ∈ C(2) is
indeed the product of the powers xa and yb of these indeterminates, just as
the notation suggests.

Now, the polynomial ring in two variables x and y over R is defined to be
the monoid algebra R

[
C(2)

]
. It is commonly denoted by R [x, y]. Following

Convention 4.1.8, we simply write m for em whenever m ∈ C(2); thus, R [x, y]
is a free R-module with basis (

xayb
)
(a,b)∈N2

.

This means that any p ∈ R [x, y] can be uniquely written as an R-linear
combination

p = ∑
(a,b)∈N2

ra,bxayb

with ra,b ∈ R (such that all but finitely many of these coefficients ra,b are 0).
Elements of R [x, y] are called polynomials in x and y.

Thus, up to notation, the multivariate polynomial ring R [x, y] is just the
monoid algebra R

[
N2] of the abelian monoid N2 =

(
N2,+, 0

)
. The unity of

the R-algebra R [x, y] is x0y0 = 1.
Here are some examples of bivariate polynomials:

• If R = Z, then

3x2y7 − 10x1y1 + 8x0y5 + 2x0y0 = 3x2y7 − 10xy + 8y5 + 2

is a polynomial in x and y, thus belongs to Z [x, y].

• If R = Q, then
2
3

x7y2 − 1
2

x1y1 is a polynomial in x and y, thus belongs

to Q [x, y]. (Of course, we don’t strictly need the coefficients to be non-
integers; the integers are also included in Q. Thus, for example, the poly-
nomial x2y3 − 2x also belongs to Q [x, y].)

• Note that x2 + 7x and y2 + 7y are two (distinct) polynomials in Z [x, y].
They happen to involve only one of the two indeterminates each, but this
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does not make them any less valid. (There are also constant polynomials
in Z [x, y], such as 17x0y0 = 17.)

4.2.3. Multivariate polynomials

We shall now define multivariate polynomial rings (in finitely many variables,
which we name x1, x2, . . . , xn). Their definition is somewhat notationally dense
(subscripts inside superscripts!), but it is just a straightforward generalization of
Definition 4.2.3, except that the indeterminates will now be called x1, x2, . . . , xn
instead of x and y:

Definition 4.2.4. Let n ∈ N. Let C(n) be the free abelian monoid with n
generators x1, x2, . . . , xn. This is the monoid whose elements are the distinct
symbols

xa1
1 xa2

2 · · · xan
n with (a1, a2, . . . , an) ∈ Nn,

and whose operation is defined by(
xa1

1 xa2
2 · · · xan

n
)
·
(

xb1
1 xb2

2 · · · xbn
n

)
= xa1+b1

1 xa2+b2
2 · · · xan+bn

n

for all (a1, a2, . . . , an) ∈ Nn and (b1, b2, . . . , bn) ∈ Nn.

We write this monoid multiplicatively, but of course it is just the monoid
Nn = (Nn,+, 0) in disguise (where the addition on Nn that we are calling
“+” here is entrywise, and 0 means the n-tuple (0, 0, . . . , 0)), with each ele-
ment (a1, a2, . . . , an) renamed as xa1

1 xa2
2 · · · xan

n and with addition renamed as
multiplication. The elements of C(n) are called monomials in x1, x2, . . . , xn.
For each i ∈ {1, 2, . . . , n}, we define a monomial xi by

xi = x0
1x0

2 · · · x0
i−1x1

i x0
i+1x0

i+2 · · · x0
n.

These specific elements x1, x2, . . . , xn are called the indeterminates. It is easy
to see that any monomial xa1

1 xa2
2 · · · xan

n ∈ C(n) is indeed the product of the
powers xa1

1 , xa2
2 , . . . , xan

n , just as the notation suggests.
Now, the polynomial ring in n variables x1, x2, . . . , xn over R is defined to

be the monoid algebra R
[
C(n)

]
. It is commonly denoted by R [x1, x2, . . . , xn].

Following Convention 4.1.8, we simply write m for em whenever m ∈ C(n);
thus, R [x1, x2, . . . , xn] is a free R-module with basis(

xa1
1 xa2

2 · · · xan
n
)
(a1,a2,...,an)∈Nn .

This means that any p ∈ R [x1, x2, . . . , xn] can be uniquely written as an R-
linear combination

p = ∑
(a1,a2,...,an)∈Nn

ra1,a2,...,an xa1
1 xa2

2 · · · xan
n
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with ra1,a2,...,an ∈ R (such that all but finitely many of these coefficients
ra1,a2,...,an are 0).

Elements of R [x1, x2, . . . , xn] are called polynomials in x1, x2, . . . , xn.

Thus, up to notation, the multivariate polynomial ring R [x1, x2, . . . , xn] is just
the monoid algebra R [Nn] of the abelian monoid Nn = (Nn,+, 0).

The multivariate polynomial ring R [x1, x2, . . . , xn] is commutative (by Propo-
sition 4.1.9, since the monoid Nn is abelian).

The univariate polynomial ring R [x] can be viewed as a particular case of
the multivariate polynomial ring R [x1, x2, . . . , xn] (obtained by taking n = 1
and renaming x1 as x) 129. Likewise, the bivariate polynomial ring R [x, y] is
a particular case of the multivariate polynomial ring R [x1, x2, . . . , xn] (obtained
by taking n = 2 and renaming x1 and x2 as x and y).

4.2.4. Evaluation, aka substitution for univariate polynomials

Polynomials as formal linear combinations are already useful and nice. But
they become a much stronger tool once you learn how to evaluate them, i.e.,
substitute things into them. Unlike a function, a univariate polynomial over R
does not have a fixed domain; you can substitute an element of R into it, but
also a square matrix over R or even another polynomial, and more generally,
any element of an R-algebra:

Definition 4.2.5. Let p ∈ R [x] be a univariate polynomial. Let A be any
R-algebra. Let a ∈ A.

We define the element p (a) ∈ A as follows: Write p as

p = ∑
i∈N

pixi

with pi ∈ R (where pi = 0 for all but finitely many i ∈ N), and set

p (a) := ∑
i∈N

piai. (74)

This element p (a) is called the evaluation of p at a; we also say that it is
obtained by substituting a for x in p.

Sometimes I will denote it by p [a] instead of p (a) (for reasons explained
below).

Note that the pi ∈ R in Definition 4.2.5 are unique, since
(
x0, x1, x2, . . .

)
is a

basis of the R-module R [x]. Note also that the infinite sum on the right hand
side of (74) is well-defined, since we have pi = 0 for all but finitely many i ∈ N.

129Strictly speaking, this requires a minor abuse of notation: We need to identify each nonnega-
tive integer n ∈ N with the 1-tuple (n) ∈ N1, so that the free monoid C becomes identified

with C(1), and therefore its monoid ring R [C] becomes R
[
C(1)

]
.
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As I said, A can be any R-algebra in Definition 4.2.5: for example, R itself, or
a matrix ring Rn×n, or the polynomial ring R [x]. In particular, we can substitute
x for x in p, obtaining p (x) = p.

Warning 4.2.6. The notation p (a) in Definition 4.2.5 has potential for con-
fusion: Is p (p + 1) the evaluation of p at p + 1 or the product of p with
p + 1 ? This is why I prefer the notation p [a] instead of p (a). I also recom-
mend using · for products whenever such confusion could arise (thus, write
p · (p + 1) if you mean the product of p with p + 1). When reading algebra
literature, be aware that you will sometimes have to look at the context and
make sanity checks.

Example 4.2.7. Let R = Z/2, and let p be the polynomial x2 + x = x ·(
x + 1

)
∈ R [x]. Let us evaluate p at elements of R:

p
(
0
)
= 02

+ 0 = 0;

p
(
1
)
= 12

+ 1 = 1 + 1 = 2 = 0.

Thus, the polynomial p gives 0 when evaluated at any element of Z/2, even
though p is not zero as a polynomial. If you want a nonzero evaluation of p,
one thing you can do is to evaluate it on a square matrix:

p

((
0 1
1 0

))
=

(
0 1
1 0

)2

+

(
0 1
1 0

)
=

(
1 1
1 1

)
̸= 02×2.

(Or you can evaluate it at x, getting p (x) = p ̸= 0.)

Given an R-algebra A and an element a ∈ A, we can study the operation
of substituting a for x into polynomials p ∈ R [x]. This operation is rather
well-behaved:

Theorem 4.2.8. Let A be an R-algebra. Let a ∈ A. Then, the map

R [x] → A,
p 7→ p [a]

is an R-algebra morphism. In particular, for any two polynomials p, q ∈ R [x],
we have

(pq) [a] = p [a] · q [a] ; (75)
(p + q) [a] = p [a] + q [a] . (76)

The proof of this theorem will be easiest to do after showing the following
simple lemma (compare with Lemma 3.12.1):
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Lemma 4.2.9. Let R be a commutative ring. Let A and B be two R-algebras.
Let f : A → B be an R-linear map. Let (mi)i∈I be a family of vectors in A
that spans A. If we have

f
(
mimj

)
= f (mi) f

(
mj
)

for all i, j ∈ I, (77)

then we have
f (ab) = f (a) f (b) for all a, b ∈ A. (78)

Proof of Lemma 4.2.9. Let a, b ∈ A. Since the family (mi)i∈I spans A, we can
write the two vectors a and b as

a = ∑
i∈I

aimi and b = ∑
j∈I

bjmj (79)

for some coefficients ai and bj in R. Consider these coefficients. Hence,

ab =

(
∑
i∈I

aimi

)(
∑
j∈I

bjmj

)
= ∑

i∈I
∑
j∈I

aibjmimj

(since the multiplication of A is R-bilinear) and thus

f (ab) = f

(
∑
i∈I

∑
j∈I

aibjmimj

)
= ∑

i∈I
∑
j∈I

aibj f
(
mimj

)︸ ︷︷ ︸
= f (mi) f (mj)

(by (77))

(since f is R-linear)

= ∑
i∈I

∑
j∈I

aibj f (mi) f
(
mj
)
=

(
∑
i∈I

ai f (mi)

)(
∑
j∈I

bj f
(
mj
))

(since the multiplication of B is R-bilinear). Comparing this with

f (a) f (b) = f

(
∑
i∈I

aimi

)
f

(
∑
j∈I

bjmj

)
(by (79))

=

(
∑
i∈I

ai f (mi)

)(
∑
j∈I

bj f
(
mj
))

(since f is R-linear) ,

we obtain f (ab) = f (a) f (b). This proves Lemma 4.2.9.

Proof of Theorem 4.2.8. Let f be the map

R [x] → A,
p 7→ p [a] .

We must show that f is an R-algebra morphism.
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It is easy to see that f is R-linear. (For example, in order to show that it
respects addition, you need to check that (p + q) [a] = p [a] + q [a] for any p, q ∈
R [x]. But this is done exactly as you would think: Write p and q as p = ∑

i∈N

pixi

(with pi ∈ R) and q = ∑
i∈N

qixi (with qi ∈ R), and conclude that

p + q = ∑
i∈N

pixi + ∑
i∈N

qixi = ∑
i∈N

(
pixi + qixi

)
= ∑

i∈N

(pi + qi) xi,

so that

(p + q) [a] = ∑
i∈N

(pi + qi) ai (by the definition of (p + q) [a])

= ∑
i∈N

piai + ∑
i∈N

qiai;

but it is just as easy to see that p [a] + q [a] gives the same result.)
It is furthermore clear that the map f respects the unity; indeed, f (1) =

1 [a] = 1 (since substituting a for x in the polynomial 1 = 1x0 + 0x1 + 0x2 + · · ·
results in 1a0 + 0a1 + 0a2 + · · · = 1).

All that now remains is to show that f respects multiplication. In other
words, it remains to show that f (pq) = f (p) f (q) for all p, q ∈ R [x]. Lemma
4.2.9 gives us a shortcut to proving this: Since the family

(
xi)

i∈N
is a basis of

the R-module R [x] (and thus spans this R-module), and since we already know
that f is R-linear, it suffices to show that

f
(

xixj
)
= f

(
xi
)

f
(

xj
)

for all i, j ∈ N (80)

(because if we can show this, then Lemma 4.2.9 will yield that f (pq) = f (p) f (q)
for all p, q ∈ R [x]).

So let us prove (80). Fix i, j ∈ N. Then, xi [a] = ai (because substituting a
for x in the polynomial xi = 0x0 + 0x1 + · · ·+ 0xi−1 + 1xi + 0xi+1 + 0xi+2 + · · ·
results in 0a0 + 0a1 + · · ·+ 0ai−1 + 1ai + 0ai+1 + 0ai+2 + · · · = ai) and similarly
xj [a] = aj and xi+j [a] = ai+j. But xixj = xi+j, so that

f
(

xixj
)
= f

(
xi+j

)
= xi+j [a] (by the definition of f )

= ai+j = ai︸︷︷︸
=xi[a]
= f (xi)

(by the definition of f )

aj︸︷︷︸
=xj[a]
= f (xj)

(by the definition of f )

= f
(

xi
)

f
(

xj
)

.

This proves (80), and thus concludes the proof of Theorem 4.2.8.
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4.2.5. Evaluation, aka substitution for multivariate polynomials

Likewise, we can substitute multiple elements into a multivariate polynomial,
as long as these elements commute:

Definition 4.2.10. Let n ∈ N. Let p ∈ R [x1, x2, . . . , xn] be a multivariate poly-
nomial. Let A be any R-algebra. Let a1, a2, . . . , an ∈ A be n elements of A that
mutually commute (i.e., that satisfy aiaj = ajai for each i, j ∈ {1, 2, . . . , n}).

We define the element p (a1, a2, . . . , an) ∈ A as follows: Write the polyno-
mial p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

with pi1,i2,...,in ∈ R (where pi1,i2,...,in = 0 for all but finitely many
(i1, i2, . . . , in) ∈ Nn), and set

p (a1, a2, . . . , an) := ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in ai1
1 ai2

2 · · · ain
n .

This element p (a1, a2, . . . , an) is called the evaluation of p at a1, a2, . . . , an;
we also say that it is obtained by substituting a1, a2, . . . , an for x1, x2, . . . , xn
in p.

Sometimes, I will denote it by p [a1, a2, . . . , an] instead of p (a1, a2, . . . , an).

Needless to say, this definition generalizes Definition 4.2.5.
It is clear that p (x1, x2, . . . , xn) = p for any polynomial p ∈ R [x1, x2, . . . , xn].
The analogue to Theorem 4.2.8 now is the following:

Theorem 4.2.11. Let n ∈ N. Let A be an R-algebra. Let a1, a2, . . . , an ∈ A be
n elements of A that mutually commute. Then, the map

R [x1, x2, . . . , xn] → A,
p 7→ p (a1, a2, . . . , an)

is an R-algebra morphism.

Proof. This is similar to the proof of Theorem 4.2.8, but more sophisticated due
to the presence of multiple variables. Let f denote the map defined in Theorem
4.2.11. Again, the only nontrivial task is to show that f respects multiplication.
We note that the definition of f easily yields that

f
(

xi1
1 xi2

2 · · · xin
n

)
= ai1

1 ai2
2 · · · ain

n (81)

for every (i1, i2, . . . , in) ∈ Nn. We also observe that every (i1, i2, . . . , in) ∈ Nn
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and (j1, j2, . . . , jn) ∈ Nn satisfy(
ai1

1 ai2
2 · · · ain

n

)
·
(

aj1
1 aj2

2 · · · ajn
n

)
= ai1+j1

1 ai2+j2
2 · · · ain+jn

n . (82)

(This follows with a bit of work from the assumption that a1, a2, . . . , an mutually
commute130.)

To prove that f respects multiplication, we again use Lemma 4.2.9. This time,
instead of proving (80), we need to prove the equality

f
((

xi1
1 xi2

2 · · · xin
n

)
·
(

xj1
1 xj2

2 · · · xjn
n

))
= f

(
xi1

1 xi2
2 · · · xin

n

)
· f
(

xj1
1 xj2

2 · · · xjn
n

)
130Proof sketch. Fix (i1, i2, . . . , in) ∈ Nn and (j1, j2, . . . , jn) ∈ Nn.

First, show that if a given element b ∈ A commutes with each of k given elements
c1, c2, . . . , ck ∈ A, then it also commutes with their product c1c2 · · · ck. Use this to show
that if b and c are two elements of A that commute, then bi and cj commute for all i, j ∈ N.
Conclude that each power aik

k commutes with all the powers aj1
1 , aj2

2 , . . . , ajk−1
k−1 and thus also

with their product aj1
1 aj2

2 · · · ajk−1
k−1. In other words,

aik
k ·
(

aj1
1 aj2

2 · · · ajk−1
k−1

)
=
(

aj1
1 aj2

2 · · · ajk−1
k−1

)
· aik

k (83)

for each k ∈ {1, 2, . . . , n}.
Now, you can show that the equality(

ai1
1 ai2

2 · · · aik
k

)
·
(

aj1
1 aj2

2 · · · ajk
k

)
= ai1+j1

1 ai2+j2
2 · · · aik+jk

k (84)

holds for each k ∈ {0, 1, . . . , n}. Indeed, this equality can be proved by induction on k,
where the induction step (from k − 1 to k) proceeds by the following computation:(

ai1
1 ai2

2 · · · aik
k

)
︸ ︷︷ ︸

=

(
a

i1
1 ai2

2 ···a
ik−1
k−1

)
a

ik
k

·
(

aj1
1 aj2

2 · · · ajk
k

)
︸ ︷︷ ︸

=

(
a

j1
1 aj2

2 ···a
jk−1
k−1

)
a

jk
k

=
(

ai1
1 ai2

2 · · · aik−1
k−1

)
aik

k ·
(

aj1
1 aj2

2 · · · ajk−1
k−1

)
︸ ︷︷ ︸
=

(
a

j1
1 aj2

2 ···a
jk−1
k−1

)
·aik

k

(by (83))

ajk
k

=
(

ai1
1 ai2

2 · · · aik−1
k−1

) (
aj1

1 aj2
2 · · · ajk−1

k−1

)
︸ ︷︷ ︸

=a
i1+j1
1 ai2+j2

2 ···a
ik−1+jk−1
k−1

(by the induction hypothesis)

· aik
k ajk

k︸ ︷︷ ︸
=a

ik+jk
k

=
(

ai1+j1
1 ai2+j2

2 · · · aik−1+jk−1
k−1

)
· aik+jk

k = ai1+j1
1 ai2+j2

2 · · · aik+jk
k .

Thus, (84) is proved.
Now, applying (84) to k = n, we obtain(

ai1
1 ai2

2 · · · ain
n

)
·
(

aj1
1 aj2

2 · · · ajn
n

)
= ai1+j1

1 ai2+j2
2 · · · ain+jn

n ,

qed.
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for all (i1, i2, . . . , in) ∈ Nn and (j1, j2, . . . , jn) ∈ Nn. This equality follows by
comparing

f


(

xi1
1 xi2

2 · · · xin
n

)
·
(

xj1
1 xj2

2 · · · xjn
n

)
︸ ︷︷ ︸

=x
i1+j1
1 xi2+j2

2 ···xin+jn
n

 = f
(

xi1+j1
1 xi2+j2

2 · · · xin+jn
n

)

= ai1+j1
1 ai2+j2

2 · · · ain+jn
n (by (81))

with

f
(

xi1
1 xi2

2 · · · xin
n

)
︸ ︷︷ ︸

=a
i1
1 ai2

2 ···ain
n

(by (81))

· f
(

xj1
1 xj2

2 · · · xjn
n

)
︸ ︷︷ ︸

=a
j1
1 aj2

2 ···ajn
n

(by (81))

=
(

ai1
1 ai2

2 · · · ain
n

)
·
(

aj1
1 aj2

2 · · · ajn
n

)

= ai1+j1
1 ai2+j2

2 · · · ain+jn
n (by (82)) .

Thus, we conclude (using Lemma 4.2.9) that f respects multiplication, and so
the proof of Theorem 4.2.11 is easily completed.

Exercise 4.2.1. Let f ∈ R [x, y] be a polynomial in two variables x and y. Let
g = f (y, x). (This is the evaluation of f at y, x. In other words, g is the result of
replacing each monomial xiyj by yixj in f . For example, if f = x2 + 7xy − y, then
g = y2 + 7yx − x.)

Prove that the difference f − g is divisible by x − y in the ring R [x, y].

[Hint: Use linearity to reduce the general case to the case when f is a single
monomial.]

Exercise 4.2.2. Let n ∈ N. Let P be the multivariate polynomial ring
R [x1, x2, . . . , xn].

A polynomial f ∈ P will be called symmetric if every permutation σ of the set
{1, 2, . . . , n} satisfies

f
(

xσ(1), xσ(2), . . . , xσ(n)

)
= f (x1, x2, . . . , xn) .

(In other words, a polynomial f ∈ P is symmetric if and only if f remains unchanged
whenever the indeterminates are permuted. For example, the polynomials x1 +
x2 + · · · + xn and (3 + x1) (3 + x2) · · · (3 + xn) are symmetric, but the polynomial
x1x2 + x2x3 + · · ·+ xn−1xn is not131.)

Prove that the set of all symmetric polynomials f ∈ P is an R-subalgebra of P.

131unless R is trivial or n ≤ 2
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4.2.6. Constant polynomials

Finally, a few more pieces of notation. We recall the notion of a constant element
of a monoid ring (Convention 4.1.11). Since a polynomial ring is a monoid ring,
we can apply it to polynomial rings, and obtain the following:

Convention 4.2.12. Let n ∈ N. Then, we identify each r ∈ R with r · 1 ∈
R [x1, x2, . . . , xn] (where 1 means the monomial x0

1x0
2 · · · x0

n, which is the unity
of R [x1, x2, . . . , xn]). This identification is harmless, and turns R into an R-
subalgebra of R [x1, x2, . . . , xn].

A polynomial p ∈ R [x1, x2, . . . , xn] is said to be constant if it lies in this
subalgebra (i.e., if it satisfies p = r · 1 for some r ∈ R).

Example 4.2.13. The polynomial 3 = 3x0 ∈ R [x] is constant, but the polyno-
mial 3x = 3x1 is not.

4.2.7. Coefficients

By their definition, polynomials are R-linear combinations of monomials. Let
us introduce a notation for the coefficients in these R-linear combinations:

Definition 4.2.14. Let p ∈ R [x1, x2, . . . , xn] be a polynomial. Let m =
xa1

1 xa2
2 · · · xan

n be a monomial. Then, the coefficient of m in p is the element
[m] p of R defined as follows: If we write p as

p = ∑
(i1,i2,...,in)∈Nn

pi1,i2,...,in xi1
1 xi2

2 · · · xin
n

with pi1,i2,...,in ∈ R, then we set

[m] p := pa1,a2,...,an .

Example 4.2.15.

(a) For univariate polynomials, we have[
x3
] (

(1 + x)5
)
= 10 and

[
x7
] (

(1 + x)5
)
= 0

(since (1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5).

(b) For multivariate polynomials, we have[
x2

1x3
2

] (
(x1 + x2)

5
)
= 10 and [x1]

(
(x1 + x2)

5
)
= 0

(since (x1 + x2)
5 = x5

1 + 5x4
1x2 + 10x3

1x2
2 + 10x2

1x3
2 + 5x1x4

2 + x5
2).
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4.2.8. Renaming indeterminates

Often we will want to use symbols other than x1, x2, . . . , xn for indeterminates.
Thus, we allow ourselves to rename these indeterminates when it pleases us.
For example, we can rename the indeterminates x1 and x2 of the polynomial
ring R [x1, x2] as x and y, so that the equations in Example 4.2.15 (b) become[

x2y3
] (

(x + y)5
)
= 10 and [x]

(
(x + y)5

)
= 0.

When we do this, we shall also rename the ring R [x1, x2] as R [x, y]. More
generally, we can have polynomial rings in any (finite) set of indeterminates;
these rings are written by putting the names of these indeterminates into the
square brackets. For example, R [a, b, x, y] means a polynomial ring in four
indeterminates named a, b, x, y.

Remark 4.2.16. This convention will serve us well in this course, but it even-
tually reveals itself to be inconvenient as you move into more advanced ter-
ritory. In fact, it is better to think of polynomial rings with differently named
indeterminates as being genuinely distinct rather than merely renamed ver-
sions of one another. For example, the two polynomial rings R [x] and R [y]
are best regarded as distinct (even though they are isomorphic). This allows
us to view them both as two different subrings of R [x, y] (where the first one
consists of all polynomials that don’t contain y, such as x3 + 2x + 1, whereas
the second consists of all polynomials that don’t contain x, such as y2 − 2y).
This viewpoint is rather natural, but cannot be rigorously justified as long as
we view y as being the same indetermiate as x in all but name. Our definition
of a multivariate polynomial ring R [x1, x2, . . . , xn] (Definition 4.2.4) depends
only on a ring R and a number n, so that it does not support distinguishing
between different polynomial rings with the same R and the same n.

Thus, it is advisable to have a more flexible definition, which allows us to
arbitrarily specify the names of the indeterminates. For example, we should
be able to define the polynomial rings R [x, y] and R [y, z], which are each iso-
morphic to R [x1, x2], but should not be treated as being the same ring (since
the former has indeterminates x and y whereas the latter has indeterminates
y and z).

Such a definition can be obtained by making some minor changes to our
Definition 4.2.4. Namely, let S be any finite set of symbols, which we want to
use as indeterminates (for example, we can have S = {x, y} or S = {y, z} or
S = {α, w,♣} if we are being ridiculous). Now, instead of using the monoid

C(n) =
{

xa1
1 xa2

2 · · · xan
n | (a1, a2, . . . , an) ∈ Nn}

as the set of monomials, we use the monoid

C(S) :=

{
∏
s∈S

sas | as ∈ N for each s ∈ S

}
,
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where the “product” ∏
s∈S

sas is just a formal symbol that encodes a family

(as)s∈S ∈ NS of nonnegative integers (one for each element s of S). A mono-
mial in C(S) is thus a “formal” product of the form ∏

s∈S
sas (with each factor

being a formal power of one of our indeterminates), and two such monomials
are multiplied by the rule(

∏
s∈S

sas

)
·
(

∏
s∈S

sbs

)
= ∏

s∈S
sas+bs .

The polynomial ring in the set S of indeterminates is then defined as the
monoid ring R

[
C(S)

]
of this monoid C(S). We shall refer to such a ring as a

multivariate polynomial ring with named variables, and just call it R [S].
Thus, for a three-element set S = {x, y, z}, we obtain the ring R [S] =

R
[
C(S)

]
= R [x, y, z], which is the polynomial ring over R in three variables

that are named x, y, z. For instance, x2 + 7y3z − xyz is a polynomial in this
ring R [x, y, z].

Now, of course, this polynomial ring R [x, y, z] is isomorphic to R [x1, x2, x3]
as an R-algebra (via the isomorphism that sends each monomial xaybzc to
xa

1xb
2xc

3). More generally, we have R [S] ∼= R [x1, x2, . . . , xn] whenever S is an n-
element set. Thus, the rings R [x, y], R [y, z] and R [x1, x2] are all isomorphic,
even though they are distinct. Hence, named variables do not introduce
anything genuinely new to our theory as long as we are studying a single
polynomial ring at a time. But their flexibility is helpful when working with
several polynomial rings, e.g., by allowing us to treat R [x] and R [y] as two
different subrings of R [x, y].

This definition of the polynomial ring R [S] with named variables can be
easily adapted to infinite sets S as well, with a slight change: The monoid
C(S) then needs to be defined as{

∏
s∈S

sas | as ∈ N for each s ∈ S, and all but finitely many s ∈ S satisfy as = 0

}
.

(Thus, each monomial contains only finitely many indeterminates in nonzero
powers.)

4.2.9. A remark on noncommutative R

Remark 4.2.17. We have been requiring that the ring R be commutative.
However, it absolutely is possible to define polynomials over a noncommu-
tative ring, if you are sufficiently careful. (In particular, this includes polyno-
mials over matrix rings; these are rather useful in linear algebra. The inde-
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terminates in such polynomials commute with all elements of R.) We have
defined the notion of an R-algebra only for commutative rings R, but there
are ways to adapt it to the general setup; alternatively, it is possible to redo
the construction of the polynomial ring by hand without using R-algebras.
See [ChaLoi21, §1.3] for the latter approach.

4.3. Univariate polynomials

4.3.1. Degrees and coefficients

Let us now take a closer look at univariate polynomials (which are the best-
behaved among the polynomials).

As we recall, if p ∈ R [x] is a polynomial, and if i ∈ N, then
[
xi] p is the

coefficient of xi in p. That is, if p is written as p = ∑
j∈N

pjxj with pj ∈ R, then[
xi] p = pi.

Definition 4.3.1. Let p ∈ R [x] be a univariate polynomial.

(a) For any i ∈ N, the coefficient
[
xi] p is also called the xi-coefficient of p.

(b) If p ̸= 0, then the degree of p is defined to be the largest i ∈ N such
that

[
xi] p ̸= 0. The degree of the zero polynomial 0 ∈ R [x] is defined

to be −∞ (a symbol subject to the rules −∞ < m and −∞ + m = −∞
for any m ∈ Z).

The degree of p is denoted by deg p.

(c) If p ̸= 0, then the leading coefficient of p is defined to be the coefficient[
xdeg p] p ∈ R.

(d) The polynomial p is said to be monic (or, as some say, normalized) if
its leading coefficient is 1.

For example, the polynomial

5x3 + 2x + 1 ∈ Q [x]

has degree 3 and leading coefficient 5, and hence is not monic (since 5 ̸= 1).
The polynomial

5x3 + 2x + 1 ∈ (Z/n) [x] (for a given integer n > 0)

has

• degree 3 if n > 5;
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• degree 1 if n = 5 (because if n = 5, then the 5x3 = 0x3 term disappears);

• degree 3 if n = 2, 3, 4; and

• degree −∞ if n = 1 (since all terms disappear if n = 1).

(Degrees are somewhat degenerate for trivial rings: If R is a trivial ring, then
any polynomial in R [x] is 0 and has degree −∞.)

The polynomial (1 + x)3 = 1 + 3x + 3x2 + x3 is monic (i.e., has leading coef-
ficient 1) and has degree 3.

Let me stress again that the zero polynomial 0 = 0x0 + 0x1 + 0x2 + · · · has
degree −∞ by definition. This −∞ is not a number, but we agree that −∞ is
smaller than any integer and does not change if you add an integer to it (i.e.,
we have (−∞) + m = −∞ for any m ∈ Z).

Here are some properties of degrees:

Remark 4.3.2. Let n ∈ N. Then,

{ f ∈ R [x] | deg f ≤ n}

=
{

f ∈ R [x] | f = a0x0 + a1x1 + · · ·+ anxn for some a0, a1, . . . , an ∈ R
}

= span
(

x0, x1, . . . , xn
)

.

This is clearly an R-submodule of R [x].

Corollary 4.3.3. Let p, q ∈ R [x]. Then,

deg (p + q) ≤ max {deg p, deg q} and (85)
deg (p − q) ≤ max {deg p, deg q} . (86)

Proof. Let n = max {deg p, deg q}. Let N denote the subset { f ∈ R [x] | deg f ≤ n}
of R [x]. Then, we know from Remark 4.3.2 that N is an R-submodule of R [x].
Moreover, the definition of n shows that deg p ≤ n, so that p ∈ N. Similarly,
q ∈ N. Hence, p + q ∈ N (since N is an R-submodule of R [x]); in other words,
deg (p + q) ≤ n. In other words, deg (p + q) ≤ max {deg p, deg q} (since n =
max {deg p, deg q}). Similarly, we can find deg (p − q) ≤ max {deg p, deg q}.
This proves Corollary 4.3.3.

Remark 4.3.4. The polynomials of degree ≤ 0 are precisely the constant poly-
nomials – i.e., the elements of R (embedded into R [x] as explained in Con-
vention 4.2.12).

The following proposition collects some properties of products of univariate
polynomials:
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Proposition 4.3.5. Let p, q ∈ R [x]. Then:

(a) We have deg (pq) ≤ deg p + deg q.

(b) We have deg (pq) = deg p + deg q if p ̸= 0 and the leading coefficient
of p is a unit.

(c) We have deg (pq) = deg p + deg q if R is an integral domain.

(d) If n, m ∈ N satisfy n ≥ deg p and m ≥ deg q, then[
xn+m] (pq) = [xn] (p) · [xm] (q) .

(e) If pq = 0 and p ̸= 0 and if the leading coefficient of p is a unit, then
q = 0.

Corollary 4.3.6. If R is an integral domain, then the polynomial ring R [x] is
an integral domain.

Proof of Proposition 4.3.5. We will give an informal “proof by example”. Rigor-
ous arguments can be found in various places132.

Let p and q be two polynomials of degrees deg p = 2 and deg q = 3. Write p
and q as p = ax2 + bx + c and q = dx3 + ex2 + f x + g (with a, b, c, . . . , g ∈ R).
Then,

pq =
(

ax2 + bx + c
) (

dx3 + ex2 + f x + g
)

= adx5 + (lower powers of x) . (87)

Thus, deg (pq) ≤ 5 = 2 + 3 = deg p + deg q. This proves Proposition 4.3.5 (a).
Moreover, a ̸= 0 (since deg p = 2) and d ̸= 0 (since deg q = 3). If R is an

integral domain, then this entails ad ̸= 0 and therefore deg (pq) = 5 (by (87)).
This proves Proposition 4.3.5 (c). On the other hand, if a is a unit, then we also
have ad ̸= 0 (because otherwise, we would have ad = 0 and thus a−1 ad︸︷︷︸

=0

= 0,

which would contradict a−1ad = d ̸= 0) and therefore deg (pq) = 5 (by (87)).
This proves Proposition 4.3.5 (b) (since a is the leading coefficient of p).

The equality (87) shows that the coefficient of x5 in pq is ad, and no higher
powers of x than x5 appear in pq. That is, we have

[
x5] (pq) = a︸︷︷︸

=[x2](p)

d︸︷︷︸
=[x3](q)

=

132Can they? I’m not so sure any more; apparently everyone just handwaves them away or
leaves them to the reader (e.g., Bourbaki writes about part (a) that “the proof is immediate”).
A while ago I have written up proofs for parts (a) and (d) in [Grinbe20] (where they appear
as parts (a) and (b) of Lemma 3.12), albeit only in the particular case when p is monic (but
the proofs can easily be generalized). A generalization of parts (b) and (c) also appears in
[ChaLoi21, Proposition (1.3.12)].



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 295

[
x2] (p) ·

[
x3] (q), and we have

[
xi] (pq) = 0 for all i > 5. This quickly yields

Proposition 4.3.5 (d).
To prove Proposition 4.3.5 (e), we assume the contrary. Thus, pq = 0 and

p ̸= 0 and the leading coefficient of p is a unit, but q ̸= 0. Then, Proposition
4.3.5 (b) yields deg (pq) = deg p︸ ︷︷ ︸

≥0

+deg q︸ ︷︷ ︸
≥0

≥ 0. However, pq = 0, so deg (pq) =

deg 0 = −∞ < 0. These two inequalities clearly contradict each other, and our
proof of Proposition 4.3.5 (e) is complete.

Proof of Corollary 4.3.6. Assume that R is an integral domain. Let p, q ∈ R [x] be
nonzero. Then, Proposition 4.3.5 (c) yields deg (pq) = deg p︸ ︷︷ ︸

≥0

+deg q︸ ︷︷ ︸
≥0

≥ 0, and

thus pq ̸= 0 (since pq = 0 would yield deg (pq) = deg 0 = −∞ < 0). Thus, we
have shown that pq ̸= 0 for any nonzero p, q ∈ R [x]. In other words, R [x] is an
integral domain.

If R is not an integral domain, then polynomials over R can behave rather
strangely. For example, over Z/4, we have(

1 + 2x
)2

= 1 + 4x + 4x2 = 1
(
since 4 = 0

)
.

So the degree of a polynomial can decrease when it is squared!

Exercise 4.3.1. Let n ∈ N. Prove that we have x2 + x + 1 | x2n + xn + 1 in the
polynomial ring Z [x] if and only if 3 ∤ n in Z.

[Hint: First show that x3 ≡ 1 mod x2 + x + 1 in the ring Z [x]. Here, we are
using the notation a ≡ b mod c (spoken “a is congruent to b modulo c”) for c | a − b
whenever a, b, c are three elements of a commutative ring R. Congruences in R are
a straightforward generalization of congruences of integers (which are known from
elementary number theory), and behave just as nicely; in particular, they can be
added, subtracted and multiplied.]

The equality
(
1 + 2x

)2
= 1 in Z/4 that we observed above is surprising not only

because of the strange “loss of degree” that happens when 1 + 2x is squared, but also
for another reason: It shows that the non-constant polynomial 1 + 2x in (Z/4) [x] is
actually a unit of (Z/4) [x] ! As Proposition 4.3.5 (c) explains, this cannot happen for
polynomials over an integral domain. The following exercise characterizes precisely
when this happens:

Exercise 4.3.2. Let R be a commutative ring. Let f ∈ R [x] be a polynomial. Recall
that the notation

[
xi] f stands for the coefficient of the monomial xi in f .

Prove that f is a unit of the ring R [x] if and only if

• the coefficient
[
x0] f is a unit of R, and

• all the remaining coefficients
[
x1] f ,

[
x2] f ,

[
x3] f , . . . of f are nilpotent.
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[Hint: Exercise 2.8.6 (c) shows that the nilpotent elements of R [x] form an ideal,
whereas Exercise 2.5.9 (b) shows that the difference of a unit and a nilpotent element
is always a unit (in R [x]). This should help with the “if” direction. For the “only if”
direction, let f = f0x0 + f1x1 + · · ·+ fnxn ∈ R [x] be a unit and g = g0x0 + g1x1 +

· · ·+ gmxm ∈ R [x] be its inverse. Use induction on r to show that f r+1
n gm−r = 0 for

each r ∈ {0, 1, . . . , m}. Use this to conclude that fn is nilpotent.]

4.3.2. Division with remainder

The most important feature of univariate polynomials is division with remain-
der:

Theorem 4.3.7 (Division-with-remainder theorem for polynomials). Let b ∈
R [x] be a nonzero polynomial whose leading coefficient is a unit. Let a ∈
R [x] be any polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

The polynomials q and r in Theorem 4.3.7 are called the quotient and the
remainder obtained when dividing a by b. Note that if deg a < deg b, then the
quotient q is 0 whereas the remainder r is a. The quotient and the remainder
become interesting when deg a ≥ deg b.

Example 4.3.8. Let R = Z and a = 3x4 + x2 + 6x − 2 and b = x2 − 3x + 1.
Then, Theorem 4.3.7 (a) shows that there is a unique pair (q, r) of polynomi-
als in R [x] such that

a = qb + r and deg r < deg b.

This pair (q, r) is
(
3x2 + 9x + 25, 72x − 27

)
. Indeed, if you set q = 3x2 +

9x + 25 and r = 72x − 27, then the equality a = qb + r can be verified by a
straightforward computation, whereas the inequality deg r < deg b is obvi-
ous. Thus, the quotient obtained when dividing a by b is q = 3x2 + 9x + 25,
and the remainder is r = 72x − 27.

Example 4.3.9. Let us give a non-example: Let R = Z and b = 2 (a constant
polynomial) and a = x. The leading coefficient of b is not a unit (since 2
is not a unit in Z), so we don’t expect Theorem 4.3.7 to hold. And indeed:
we cannot write a = qb + r with deg r < deg b. Indeed, this would mean
x = q · 2 + r with deg r < 0 (since the constant polynomial 2 has degree
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deg 2 = 0); but this is impossible, since this would entail x = q · 2, which
would contradict the fact that x is not divisible by 2.

Instead of proving Theorem 4.3.7 directly, we will first show the particular
case in which b is required to be monic, and then use it to derive the general
case. The particular case is the following lemma:

Lemma 4.3.10. Let b ∈ R [x] be a monic polynomial. Let a ∈ R [x] be any
polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

Proof. (a) Again, we shall give a proof by example. (For a rigorous proof,
see [Grinbe20, Theorem 3.16 and Lemma 3.19] or [Ford22, Theorem 3.6.4] or
[ChaLoi21, Theorem (1.3.15)] or [Knapp16, Proposition 1.12] or [DumFoo04,
§9.2, Theorem 3]. Note that some of these sources assume that R is a field;
however, the proofs easily adapt to our general case.)

We are doing a proof by example, so let us assume that deg a = 3 and deg b =
2. Thus, we can write a and b as a = cx3 + dx2 + ex + f and b = x2 + gx + h for
some c, d, e, f , g, h ∈ R (since b is monic).

Now, we repeatedly subtract appropriate multiples of b from a in order to
decrease its degree:

a = cx3 + dx2 + ex + f

=⇒ a − (cx) b = (d − cg) x2 + (e − ch) x + f(
here, we have subtracted (cx) b to kill off the cx3 term

)
=⇒ a − (cx) b − (d − cg) b = (e − ch − (d − cg) g) x + ( f − (d − cg) h)(

here, we have subtracted (d − cg) b to kill off
the (d − cg) x2 term

)
.

Thus,

a = (cx) b + (d − cg) b + (e − ch − (d − cg) g) x + ( f − (d − cg) h)
= (cx + (d − cg)) b + (e − ch − (d − cg) g) x + ( f − (d − cg) h) .

Setting q := cx + (d − cg) and r := (e − ch − (d − cg) g) x + ( f − (d − cg) h), we
can rewrite this as

a = qb + r.
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Note that deg r < deg b (since any polynomial of degree ≥ deg b could still be
reduced further by subtracting a multiple of b from it).

Thus we have found a pair (q, r) of polynomials satisfying

a = qb + r and deg r < deg b.

It remains to prove its uniqueness. In other words, we have to prove that if
(q1, r1) and (q2, r2) are two pairs of polynomials satisfying

a = q1b + r1 and deg r1 < deg b and
a = q2b + r2 and deg r2 < deg b,

then (q1, r1) = (q2, r2). To prove this, we fix two such pairs (q1, r1) and (q2, r2).
Then, we have

q1b + r1 = a = q2b + r2,

so that r1 − r2 = q2b − q1b = b (q2 − q1). Hence, b (q2 − q1) = r1 − r2, so that

deg (b (q2 − q1)) = deg (r1 − r2) ≤ max {deg r1, deg r2} (by (86))
< deg b (since deg r1 < deg b and deg r2 < deg b) .

However, the leading coefficient of b is a unit133. Hence, if the polynomial
q2 − q1 was nonzero, then Proposition 4.3.5 (b) would entail

deg (b (q2 − q1)) = deg b + deg (q2 − q1)︸ ︷︷ ︸
≥0

≥ deg b,

which would contradict deg (b (q2 − q1)) < deg b. So q2 − q1 must be zero. In
other words, q2 − q1 = 0, so that q1 = q2. Moreover, r1 − r2 = b (q2 − q1)︸ ︷︷ ︸

=0

= 0,

so that r1 = r2. Hence, (q1, r1) = (q2, r2). This completes the proof of the
uniqueness of (q, r). Thus, Lemma 4.3.10 (a) is proved.

(b) You can obtain Lemma 4.3.10 (b) by a careful analysis of the construction
of the pair (q, r) in our proof of part (a). Indeed, each of the terms of q was
originally a factor that we multiplied with b in order to reduce a; however, the
highest power of x in a was xdeg a, so the factors we used did not contain any
powers of x higher than xdeg a−deg b.

Alternatively, you can prove Lemma 4.3.10 (b) independently of part (a): Let
(q, r) be a pair of polynomials in R [x] such that

a = qb + r and deg r < deg b.

We must prove that deg q ≤ deg a − deg b. Assume the contrary. Thus, deg q >
deg a − deg b. Therefore, in particular, q ̸= 0 (since q = 0 would entail deg q =

133Indeed, this coefficient is 1, since b is monic.
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deg 0 = −∞ ≤ deg a − deg b), so that deg q ≥ 0. However, the leading coeffi-
cient of b is a unit134; thus, Proposition 4.3.5 (b) yields that

deg (bq) = deg b + deg q > deg a (since deg q > deg a − deg b) .

Also,

deg (bq) = deg b + deg q︸ ︷︷ ︸
≥0

≥ deg b > deg r (since deg r < deg b) .

Combining these two inequalities, we obtain

deg (bq) > max {deg a, deg r} .

But from a = qb + r, we obtain a − r = qb = bq, so that bq = a − r. Hence,

deg (bq) = deg (a − r) ≤ max {deg a, deg r} (by (86)) ,

which contradicts deg (bq) > max {deg a, deg r}. This contradiction shows that
our assumption was wrong; thus, Lemma 4.3.10 (b) is proven.

We can now prove the general case:

Proof of Theorem 4.3.7. (a) As in our above proof of Lemma 4.3.10 (a), we can
show that the pair (q, r) is unique. It remains to show that this pair exists.

Let u be the leading coefficient of b. Then, u is a unit (by assumption),
and thus has an inverse u−1. Scaling the polynomial b by u−1 results in a
new polynomial u−1b, which has leading coefficient u−1u (since the leading
coefficient u of b gets multiplied by u−1) and thus is monic (since u−1u = 1).
Hence, we can apply Lemma 4.3.10 (a) to u−1b instead of b. As a result, we
conclude that there is a unique pair (q, r) of polynomials in R [x] such that

a = q
(

u−1b
)
+ r and deg r < deg

(
u−1b

)
.

Let us denote this pair (q, r) by (q̃, r̃). Thus, (q̃, r̃) is a pair of polynomials in
R [x] and satisfies

a = q̃
(

u−1b
)
+ r̃ and deg r̃ < deg

(
u−1b

)
.

Now,
a = q̃

(
u−1b

)
+ r̃ =

(
u−1q̃

)
b + r̃

and deg r̃ < deg
(
u−1b

)
≤ deg b (because scaling a polynomial cannot increase

its degree). Hence, pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b

134Indeed, this coefficient is 1, since b is monic.
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(namely, the pair (q, r) =
(
u−1q̃, r̃

)
). Since we have already shown that such a

pair is unique, we thus have finished proving Theorem 4.3.7 (a).

(b) Our above proof of Lemma 4.3.10 (b) (specifically, the “alternative” proof
that is independent of part (a)) applies to Theorem 4.3.7 (b) as well.

We record an automatic corollary of Theorem 4.3.7:

Corollary 4.3.11. Let F be a field. Let b ∈ F [x] be any nonzero polynomial.
Let a ∈ F [x] be any polynomial.

(a) Then, there is a unique pair (q, r) of polynomials in F [x] such that

a = qb + r and deg r < deg b.

(b) Moreover, this pair satisfies deg q ≤ deg a − deg b.

Proof. The polynomial b is nonzero; thus, its leading coefficient is a unit (since
any nonzero element of the field F is a unit). Hence, Theorem 4.3.7 applies (to
R = F).

The following simple proposition is the polynomial analogue of the classical
fact that a positive integer b divides an integer a if and only if the remainder
that a leaves when divided by b is 0:

Proposition 4.3.12. Let b ∈ R [x] be a nonzero polynomial whose leading
coefficient is a unit. Let a ∈ R [x] be any polynomial. Let q and r be the
quotient and the remainder obtained when dividing a by b. Then, we have
the logical equivalence (r = 0) ⇐⇒ (b | a in R [x]).

Proof. The definition of quotient and remainder yields a = qb + r. Hence, if
r = 0, then a = qb + r︸︷︷︸

=0

= qb and thus b | a in R [x]. This proves the

“=⇒” direction of the required equivalence. It thus remains to prove the “⇐=”
direction.

So we assume that b | a in R [x]. We need to show that r = 0.
We have assumed b | a in R [x]. In other words, there exists a c ∈ R [x] such

that a = cb. Consider this c. We have a = cb = bc = bc + 0 and deg 0 = −∞ <
deg b. Thus, (c, 0) is a pair (q̃, r̃) of polynomials in F [x] such that a = q̃b+ r̃ and
deg r̃ < deg b. But (q, r) is also such a pair (by the definition of quotient and
remainder). However, Lemma 4.3.10 (a) shows that there is a unique such pair.
In particular, any two such pairs must be identical. Thus, the two pairs (q, r)
and (c, 0) must be identical. That is, we have q = c and r = 0. In particular,
r = 0; this completes the proof of the “⇐=” direction. Proposition 4.3.12 is thus
proven.
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Exercise 4.3.3. Let R be any commutative ring. Let n ∈ N.

(a) Find the quotient and the remainder obtained when dividing (x + 1)n by x (in
the polynomial ring R [x]).

(b) Find the quotient and the remainder obtained when dividing xn by x − 1.

(c) Find the remainder obtained when dividing (x + 1)n by x − 1.

[Hint: “Finding” a polynomial here means computing its coefficients. For in-
stance, in part (a), the coefficients of the quotient will be certain binomial coeffi-
cients. I am deliberately not asking for the quotient in part (c), since I don’t know a
closed form for its coefficients that doesn’t use summation signs.]

Exercise 4.3.4. Let R be any commutative ring. Let n ∈ N.
Prove that the remainder obtained when dividing xn by (x − 1)2 in the polynomial

ring R [x] is nx − n + 1.

Exercise 4.3.5. Let R be any commutative ring. Let n be a positive integer.

(a) Prove that (x − 1)3 | x2n − nxn+1 + nxn−1 − 1 in R [x].

(b) Prove that x + 1 | x2n − nxn+1 + nxn−1 − 1 in R [x].

(c) Prove that (x + 1)3 | x2n − nxn+1 + nxn−1 − 1 in R [x] if n is odd.

Exercise 4.3.6. Let R be any commutative ring. Let n ∈ N.
In terms of the Fibonacci numbers (Definition 2.3.4), find the quotient and the

remainder obtained when dividing xn by x2 − x − 1.

[Hint: Compute them (e.g.) for n = 10, and prove the pattern you discover.]

Exercise 4.3.7. Let a ∈ Z [x] and b ∈ Z [x] be two polynomials, with b being
nonzero. Without requiring anything about the leading coefficient of b, we cannot
apply Theorem 4.3.7, so we don’t know whether there exists a pair (q, r) of polyno-
mials in Z [x] such that

a = qb + r and deg r < deg b.

Nevertheless, such a pair might exist.

(a) Does such a pair exist when a = 3x2 + 1 and b = 3x − 1 ?

(b) Does such a pair exist when a = 3x3 + 1 and b = 3x − 1 ?

(c) Does such a pair exist when a = 3x2 + 2x and b = 3x − 1 ?

(Make sure to prove your claims!)
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The following exercise partially generalizes Theorem 4.3.7 to the case when
the leading coefficient of b is not (necessarily) a unit:

Exercise 4.3.8. Let R be any commutative ring. Let b ∈ R [x] be a nonzero polyno-
mial, and let λ ∈ R be its leading coefficient. Let a ∈ R [x] be any polynomial such
that deg a ≥ deg b. Prove that there is a pair (q, r) of polynomials in R [x] such that

λdeg a−deg b+1a = qb + r and
deg r < deg b and deg q ≤ deg a − deg b.

(Note that we can no longer claim that this pair (q, r) is unique.)

4.3.3. Roots

We shall now discuss roots of polynomials.

Definition 4.3.13. Let A be an R-algebra. Let f ∈ R [x]. An element a ∈ A is
said to be a root of f if f (a) = 0 (that is, f [a] = 0).

This is a rather wide notion of roots. For example, the matrix
(

0 1
0 0

)
∈

Q2×2 is a root of the polynomial x2 ∈ Q [x], since the square of this matrix is 0.

For another example, the matrix
(

0 1
1 0

)
∈ Q2×2 is a root of the polynomial

x2 − 1 ∈ Q [x], since

(
x2 − 1

) [( 0 1
1 0

)]
=

(
0 1
1 0

)2

− 1Q2×2 =

(
1 0
0 1

)
−
(

1 0
0 1

)
=

(
0 0
0 0

)
= 0Q2×2 .

The simplest kind of roots, however, are those that lie in the original ring R.
Here are some of their properties:

Proposition 4.3.14. Let f be a polynomial in R [x]. Let a ∈ R. Then, we have
the following logical equivalence:

(a is a root of f ) ⇐⇒ (x − a | f in R [x]) .

Proof of Proposition 4.3.14. The polynomial x − a is monic. Hence, Lemma 4.3.10
(a) (applied to f and x − a instead of a and b) shows that there is a unique pair
(q, r) of polynomials in R [x] such that

f = q · (x − a) + r and deg r < deg (x − a) .
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Consider this pair (q, r). From deg r < deg (x − a) = 1, we see that deg r ≤ 0,
which means that r is a constant. In other words, r ∈ R.

Now, let us substitute a for x on both sides of the equality f = q · (x − a) + r.
Thus we get

f [a] = q [a] · (a − a) + r [a] . (88)

It is worth going through the proof of this equality in some more detail. Namely,
we have f = q · (x − a) + r, so that

f [a] = (q · (x − a) + r) [a]

= (q · (x − a)) [a] + r [a]
(

by (76), applied to R, q · (x − a) and r
instead of A, p and q

)
= q [a] · (x − a) [a]︸ ︷︷ ︸

=a−a
(by the definition
of an evaluation)

+ r [a]
(

by (75), applied to R, q and x − a
instead of A, p and q

)

= q [a] · (a − a) + r [a] .

Thus, (88) has been proven in detail.
Now, (88) becomes

f [a] = q [a] · (a − a)︸ ︷︷ ︸
=0

+ r [a] = r [a] = r (since r is a constant) .

Now, we have the following chain of equivalences:

(a is a root of f ) ⇐⇒ ( f [a] = 0) (by the definition of a root)
⇐⇒ (r = 0) (since f [a] = r)
⇐⇒ (x − a | f in R [x])

(by Proposition 4.3.12, applied to x − a and f instead of b and a). This proves
Proposition 4.3.14.

The following theorem is often known as the easy half of the FTA (Funda-
mental Theorem of Algebra):

Theorem 4.3.15. Let R be an integral domain. Let n ∈ N. Then, any nonzero
polynomial f ∈ R [x] of degree ≤ n has at most n roots in R. (We are not
counting the roots with multiplicity here.)

Proof. We induct on n. The base case (n = 0) is obvious (indeed, a nonzero
polynomial of degree ≤ 0 must be constant, and thus cannot have any roots to
begin with).

Induction step: Let m be a positive integer. Assume (as the induction hypoth-
esis) that Theorem 4.3.15 holds for n = m − 1. We must prove that Theorem
4.3.15 holds for n = m.
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So let f ∈ R [x] be a nonzero polynomial of degree ≤ m. We must prove that
f has at most m roots in R.

Indeed, assume the contrary. Thus, f has m + 1 distinct roots a1, a2, . . . , am+1
in R (and possibly more, but we will only need these m + 1).

In particular, am+1 is a root of f , so that we have x − am+1 | f in R [x] (by
Proposition 4.3.14, applied to a = am+1). That is, there exists a polynomial
q ∈ R [x] such that f = (x − am+1) · q. Consider this q. Now, it is easy to see
that a1, a2, . . . , am are roots of q (indeed, this uses the fact that a1, a2, . . . , am+1 are
distinct roots of f and that R is an integral domain135). Hence, the polynomial
q has at least m roots in R (since these m roots a1, a2, . . . , am are distinct). Also,
the polynomial q is nonzero (since otherwise, we would have q = 0 and thus
f = (x − am+1) · q︸︷︷︸

=0

= 0, contradicting the fact that f is nonzero).

However, Proposition 4.3.5 (c) (or Proposition 4.3.5 (b), if you wish) yields

deg ((x − am+1) · q) = deg (x − am+1)︸ ︷︷ ︸
=1

+deg q = 1 + deg q,

so that

deg q = deg

(x − am+1) · q︸ ︷︷ ︸
= f

− 1 = deg f︸ ︷︷ ︸
≤m

(since f has degree ≤m)

− 1 ≤ m − 1.

In other words, the polynomial q has degree ≤ m − 1. Hence, by the induction
hypothesis, we can apply Theorem 4.3.15 to q and m − 1 instead of f and n. We
thus conclude that q has at most m − 1 roots in R. This contradicts the fact that
q has at least m roots in R (which we have shown above). This contradiction
completes the induction step, and so we are done proving Theorem 4.3.15.

Remark 4.3.16. Theorem 4.3.15 can fail if R is not an integral domain. For
instance, the polynomial x2 − 1 ∈ (Z/8) [x] has degree 2 but has 4 roots in
Z/8 (namely, 1, 3, 5, 7).

135Here is the proof in detail: Let i ∈ {1, 2, . . . , m}. We must show that ai is a root of q. Note that
i ̸= m + 1 (since i ∈ {1, 2, . . . , m}) and thus ai ̸= am+1 (since a1, a2, . . . , am+1 are distinct).
Substituting ai for x in the equality f = (x − am+1) · q, we find

f [ai] = (ai − am+1) · q [ai]

(formally speaking, this relies on a similar argument as we used to prove (88)). Hence,

(ai − am+1) · q [ai] = f [ai] = 0 (since ai is a root of f ) .

Since R is an integral domain, this entails that we have ai − am+1 = 0 or q [ai] = 0. Since
ai − am+1 = 0 is impossible (because ai ̸= am+1), we thus conclude that q [ai] = 0. In other
words, ai is a root of q. Qed.
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Remark 4.3.17. Proposition 4.3.14 and Theorem 4.3.15 are only concerned
with roots in the original ring R. As stated, they don’t apply to roots that
belong to other R-algebras A. And indeed, Theorem 4.3.15 fails quite dra-
matically if we try to apply it to other R-algebras A. For instance, the poly-
nomial x2 − 1 ∈ R [x] has infinitely many roots in the ring of quaternions H

(see Exercise 2.2.6 (b)). Proposition 4.3.14 can be extended to commutative
R-algebras A (thus allowing a ∈ A instead of a ∈ R, and “converting” the
polynomial f into a polynomial in A [x]), although this would not make it
significantly more general, since we can already apply it to A instead of R in
such case (see Exercise 4.3.10).

Remark 4.3.18. Let us say a few words about the weird name of Theorem
4.3.15. The famous fundamental theorem of algebra (short: FTA) says that
any polynomial of degree n in C [x] has exactly n roots in C, if we count
the roots with multiplicity. Despite its name, this theorem is not actually
algebraic in nature, since it relies on the analytic structure of the complex
numbers (and the underlying real numbers), and does not hold (e.g.) for
the Gaussian rationals Q [i]. Accordingly, each proof of the FTA requires
at least a little bit of real analysis (and sometimes far more than a little
bit). Various proofs can be found in [LaNaSc16, Chapter 3], [Aluffi16, The-
orem 7.1], [Knapp16, Chapter IX, §10], [Warner90, Theorem 44.8], [Steinb06,
Theorem 11.6.7] and many other places (some of which prove weaker-
sounding but equivalent versions of the result); more exotic proofs are listed
in https://mathoverflow.net/questions/10535 .

However, one “half” of the FTA – namely, the claim that a polynomial of
degree n in C [x] always has at most n roots in C – actually can be proved
algebraically, and holds not just for C but also for any integral domain R in
its stead. If we drop the notion of multiplicities, then this “half” is precisely
Theorem 4.3.15. Thus, Theorem 4.3.15 is called the “easy half of the FTA”.
Despite being the easy half, it is surprisingly useful, and we will see some
of its applications in the following subsections. In comparison, the “hard
half of the FTA” (the part that really requires C) is rarely used in abstract
algebra (since algebraists prefer to work in settings more general than C),
but it is important (e.g.) in complex linear algebra, where it is responsible
(e.g.) for the fact that each n × n-matrix over C has n eigenvalues (counted
with multiplicities). Thus, the name “FTA” should be regarded as somewhat
of a historical artefact.

Exercise 4.3.9. Let R and S be two commutative rings. Let f : R → S be a ring
morphism. Let f [x] denote the map

R [x] → S [x] ,

∑
i∈N

rixi 7→ ∑
i∈N

f (ri) xi (for all ri ∈ R) .

https://mathoverflow.net/questions/10535
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(This map transforms a polynomial by applying f to each of its coefficients.)
Prove that f [x] is a ring morphism.

Exercise 4.3.10. Let R be a commutative ring, and let A be a commutative R-
algebra. For each polynomial f = ∑

i∈N

fixi ∈ R [x] (with fi ∈ R), we let fA denote

the polynomial ∑
i∈N

( fi · 1A) xi ∈ A [x] (which is simply the polynomial f , with each

coefficient “converted” into an element of A using the standard map R → A, r 7→
r · 1A).

(a) Prove that the map

R [x] → A [x] ,
f 7→ fA

is an R-algebra morphism.

(b) Prove that fA [a] = f [a] for any f ∈ R [x] and any a ∈ A.

The following exercise provides an analogue of Theorem 4.3.15 for polynomials in
two variables. (Analogues for n variables can be obtained similarly, but require some
more cumbersome notation.)

Exercise 4.3.11. Let R be an integral domain.
The x-degree of a nonzero polynomial p ∈ R [x, y] is defined to be the largest

i ∈ N such that there exists some j ∈ N satisfying
[
xiyj] p ̸= 0. This x-degree

is denoted by degx p. Similarly, the y-degree of a nonzero polynomial p ∈ R [x, y]
is defined to be the largest j ∈ N such that there exists some i ∈ N satisfying[
xiyj] p ̸= 0. This y-degree is denoted by degy p. (For example, the polynomial p =

2x6y + 3xy2 − x3 + xy ∈ Z [x, y] has x-degree degx p = 6 and y-degree degy p = 2.)
If p is the zero polynomial, then we set degx p = −∞ and degy p = −∞.

Let n, m ∈ N. Let p ∈ R [x, y] be any polynomial satisfying degx p ≤ n and
degy q ≤ m.

Let a0, a1, . . . , an be n + 1 distinct elements of R. Let b0, b1, . . . , bm be m + 1 distinct
elements of R. Prove the following: If

p
[
ai, bj

]
= 0 for all (i, j) ∈ {0, 1, . . . , n} × {0, 1, . . . , m} ,

then p = 0 in R [x, y].

[Hint: Use Theorem 4.3.15 many times. Specifically, for each j ∈ {0, 1, . . . , m}, ar-
gue that the univariate polynomial p

[
x, bj

]
∈ R [x] has too many roots to be nonzero.

Then, decompose p into p =
n
∑

k=0
pk [y] xk, where p0, p1, . . . , pn are univariate polyno-

mials of degree ≤ m. Apply Theorem 4.3.15 again to each of these polynomials
p0, p1, . . . , pn.]



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 307

4.3.4. Application to Z/p: Wilson revisited

The easy half of the FTA has a surprising plenitude of applications. Let me
show an application to finite fields.

We fix a prime number p for the rest of this subsection.
First, let us reword Fermat’s Little Theorem (Proposition 2.6.4) in the lan-

guage of polynomials. First, we consider the polynomial

xp − x ∈ (Z/p) [x] .

Proposition 2.6.4 yields that all evaluations of this polynomial at elements of
Z/p are 0 (in fact, for each u ∈ Z/p, we have (xp − x) [u] = up − u = 0, since
Proposition 2.6.4 yields up = u). The polynomial itself is not zero, and this is
no surprise: It is a degree-p polynomial, so it can afford to have p roots in Z/p
without being forced by Theorem 4.3.15 to be the zero polynomial. However,
it is “dangerously close”; if its degree was even a little bit smaller than p, then
we would obtain a contradiction. We can exploit this to extract a nice corollary.

To this end, we define the more sophisticated polynomial

f := (xp − x)− ∏
u∈Z/p

(x − u)︸ ︷︷ ︸
=(x−0)(x−1)···(x−(p−1))

∈ (Z/p) [x] .

This polynomial f has degree ≤ p − 1 (check this!136). But it still has (at least)
p roots in Z/p; indeed, all the p elements of Z/p are roots of f , since each
w ∈ Z/p satisfies

f [w] = (wp − w)︸ ︷︷ ︸
=0

(since Proposition 2.6.4
yields wp=w)

− ∏
u∈Z/p

(w − u)︸ ︷︷ ︸
=0

(since one of the factors
in this product is w−w=0)

= 0 − 0 = 0.

If the polynomial f was nonzero, then this would contradict Theorem 4.3.15
(since Z/p is a field and thus an integral domain). Hence, f must be zero. Since
we defined f to be the difference (xp − x) − ∏

u∈Z/p
(x − u), we thus conclude

that xp − x = ∏
u∈Z/p

(x − u). Let us state this as a proposition:

136Proof. Both polynomials xp − x and ∏
u∈Z/p

(x − u) have degree p and leading coefficient 1.

Thus, when you subtract the polynomial ∏
u∈Z/p

(x − u) from xp − x, the xp terms of both

polynomials cancel, and what remains is a linear combination of x0, x1, . . . , xp−1 – that is, a
polynomial of degree ≤ p − 1.
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Proposition 4.3.19. Let p be a prime number. Then,

xp − x = ∏
u∈Z/p

(x − u) in the polynomial ring (Z/p) [x] .

Now, let us milk this for consequences. We have

∏
u∈Z/p

(x − u) =
(
x − 0

) (
x − 1

)
· · ·
(

x − (p − 1)
)

(
since Z/p =

{
0, 1, . . . , p − 1

})
= x

(
x − 1

) (
x − 2

)
· · ·
(

x − (p − 1)
)

︸ ︷︷ ︸
=(−1)(−2)···(−(p−1))·x0+(higher powers of x)

(here, “higher powers of x” means
“any powers of x higher than x0”)

= x
((

−1
) (

−2
)
· · ·
(
−(p − 1)

)
· x0 + (higher powers of x)

)
=
(
−1
) (

−2
)
· · ·
(
−(p − 1)

)
· x1 + (higher powers of x) .

Thus, the coefficient of x1 in the polynomial ∏
u∈Z/p

(x − u) is

(
−1
) (

−2
)
· · ·
(
−(p − 1)

)
= (−1)p−1 · (1 · 2 · · · · · (p − 1))

= (−1)p−1 · (p − 1)!.

On the other hand, the coefficient of x1 in the polynomial xp − x is −1 (since p >
1). But these two coefficients must be equal (since Proposition 4.3.19 says that

the polynomials ∏
u∈Z/p

(x − u) and xp − x are equal). Hence, (−1)p−1 · (p − 1)! =

−1. In other words,

(−1)p−1 · (p − 1)! ≡ −1 mod p.

If we multiply this congruence by (−1)p−1, then the left hand side becomes
(p − 1)! (since (−1)p−1 · (−1)p−1 = 1), and thus we get

(p − 1)! ≡ (−1)p−1 · (−1) = (−1)p ≡ −1 mod p

(by Theorem 2.6.3, applied to a = −1). Thus, we have proved Wilson’s theorem
(Theorem 2.16.2) again!

We note that Proposition 4.3.19 can be generalized to arbitrary finite fields:
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Exercise 4.3.12. Let F be a finite field.

(a) Prove that

x|F| − x = ∏
u∈F

(x − u) in the polynomial ring F [x] .

(b) Prove that the product of all nonzero elements of F equals −1F.

The method by which we obtained Proposition 4.3.19, too, can be generalized:

Exercise 4.3.13. Let R be an integral domain. Let n ∈ N. Let f ∈ R [x] be a nonzero
polynomial that has degree ≤ n. Prove the following:

(a) If a1, a2, . . . , ak are k distinct roots of f in R for some k ∈ N, then

f = q · (x − a1) (x − a2) · · · (x − ak)

for some polynomial q ∈ R [x] with deg q ≤ n − k.

(b) If a1, a2, . . . , an are n distinct roots of f in R, then

f = c (x − a1) (x − a2) · · · (x − an) ,

where c = [xn] f is the coefficient of xn in f .

(c) More generally, let us replace the assumption “Let R be an integral domain”
by “Let R be a commutative ring”. Instead of requiring that a1, a2, . . . , ak (resp.,
a1, a2, . . . , an) be distinct, we now require that the pairwise differences ai − aj
for 1 ≤ i < j ≤ k (resp., 1 ≤ i < j ≤ n) are units of R. Prove that parts (a) and
(b) of this exercise remain valid.

Another application of Theorem 4.3.15 is the following converse to Proposi-
tion 2.6.6:

Exercise 4.3.14. Let F be a finite field (i.e., a field with finitely many elements). Let
i > 1 be an integer such that each u ∈ F satisfies ui = u. Prove that i ≥ |F|.

4.3.5. Application to Z/p: Sum of k-th powers

Here is another surprisingly simple application of Theorem 4.3.15:

Proposition 4.3.20. Let p be a prime. Let k ∈ {0, 1, . . . , p − 2}. Then, the

integer 0k + 1k + · · ·+ (p − 1)k =
p−1
∑

j=0
jk is divisible by p.
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For example, for k = 3 and p = 5, this says that 03 + 13 + 23 + 33 + 43 = 100
is divisible by 5.

Proof of Proposition 4.3.20. This is obvious when k = 0 (because when k = 0, we

have
p−1
∑

j=0
jk︸︷︷︸

=j0=1

=
p−1
∑

j=0
1 = p, which is clearly divisible by p). Thus, we WLOG

assume that k ̸= 0.
In Z/p, we have

p−1

∑
j=0

jk =
p−1

∑
j=0

jk
= ∑

u∈Z/p
uk (89)

(since Z/p =
{

0, 1, . . . , p − 1
}

). Let us denote the sum ∑
u∈Z/p

uk by S. Thus,

(89) becomes
p−1

∑
j=0

jk = S. (90)

If we can show that S = 0, then (90) will simplify to
p−1
∑

j=0
jk = 0, which will mean

that
p−1
∑

j=0
jk is divisible by p; thus, Proposition 4.3.20 will be proved. Hence, it

remains to prove that S = 0.
Define a polynomial f ∈ (Z/p) [x] by f = xk+1 − x. This polynomial is

nonzero (since k ̸= 0) and has degree k + 1 ≤ p − 1 (since k ≤ p − 2). Thus,
Theorem 4.3.15 (applied to R = Z/p and n = p − 1) yields that it has at most
p − 1 roots in Z/p. Hence, there exists at least one a ∈ Z/p such that f [a] ̸= 0
(because otherwise, all the p elements a ∈ Z/p would be roots of f , but this
would give f more than p − 1 roots). Consider this a.

From f = xk+1 − x, we obtain f [a] = ak+1 − a = a
(
ak − 1

)
, so that a

(
ak − 1

)
=

f [a] ̸= 0. Hence, a ̸= 0 and ak − 1 ̸= 0. The element a of Z/p is nonzero (since
a ̸= 0) and thus a unit (since Z/p is a field). It therefore has an inverse a−1.
Hence, the map

Z/p → Z/p,
u 7→ au

is invertible137, i.e., a bijection. We can thus substitute au for u in the sum

137Its inverse is the map

Z/p → Z/p,

u 7→ a−1u.
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∑
u∈Z/p

uk. We obtain

∑
u∈Z/p

uk = ∑
u∈Z/p

(au)k︸ ︷︷ ︸
=akuk

= ∑
u∈Z/p

akuk = ak ∑
u∈Z/p

uk.

In view of ∑
u∈Z/p

uk = S, we can rewrite this equality as S = akS. Hence,

akS − S = 0. In other words,
(
ak − 1

)
S = 0. Since Z/p is an integral domain,

and since ak − 1 ̸= 0, this entails S = 0 (because otherwise, from ak − 1 ̸= 0 and
S ̸= 0, we would obtain

(
ak − 1

)
S ̸= 0). As explained above, this completes the

proof of Proposition 4.3.20.

Corollary 4.3.21. Let p be a prime. Let f ∈ Z [x] be a polynomial (with

integer coefficients!) of degree ≤ p − 2. Then,
p−1
∑

j=0
f (j) ≡ 0 mod p.

Proof. Write the polynomial f in the form

f =
p−2

∑
k=0

akxk (91)

with a0, a1, . . . , ap−2 ∈ Z. (This can be done, since f ∈ Z [x] has degree ≤ p− 2.)
Thus,

p−1

∑
j=0

f (j)︸︷︷︸
=

p−2
∑

k=0
ak jk

(by (91))

=
p−1

∑
j=0

p−2

∑
k=0

ak jk =
p−2

∑
k=0

ak

p−1

∑
j=0

jk

︸ ︷︷ ︸
≡0 mod p

(since Proposition 4.3.20

yields that
p−1
∑

j=0
jk is

divisible by p)

≡
p−2

∑
k=0

ak0 = 0 mod p.

This proves Corollary 4.3.21.

We can generalize Proposition 4.3.20 a little bit:

Exercise 4.3.15. Let p be a prime. Let k ∈ N. Prove that the integer 0k + 1k + · · ·+

(p − 1)k =
p−1
∑

j=0
jk is divisible by p if and only if k is not a positive multiple of p − 1.

Exercise 4.3.16. Let p be a prime. Let k ∈ N be not a multiple of p − 1. Assume

that the rational number
1
1k +

1
2k + · · · + 1

(p − 1)k =
p−1
∑

j=1

1
jk has been written as a

ratio
u
v

of two integers u and v.
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(a) Prove that p | u.

(b) Assume that p > 3 and k = 1. Prove that p2 | u.

[Hint: For part (a), multiply
p−1
∑

j=1

1
jk by (p − 1)!k to obtain an integer; then, work in

Z/p. For part (b), observe that
1
j
+

1
p − j

=
p

j (p − j)
.]

4.3.6. F [x] is a Euclidean domain

Let us go back to the case of polynomials over a general field. We next record
an abstract consequence of Corollary 4.3.11 (a):

Theorem 4.3.22. Let F be a field. Then:

(a) The polynomial ring F [x] is a Euclidean domain. The map

N : F [x] → N,

p 7→ max {deg p, 0} =

{
deg p, if p ̸= 0;
0, if p = 0

is a Euclidean norm on F [x].

(b) Thus, the polynomial ring F [x] is a PID, hence also a UFD.

Proof. (a) Define a map N : F [x] → N by

N (p) = max {deg p, 0} for any p ∈ F [x] .

Then, Corollary 4.3.11 (a) shows that N is a Euclidean norm on the ring F [x].
Hence, F [x] is a Euclidean domain (since Corollary 4.3.6 shows that F [x] is an
integral domain). This proves Theorem 4.3.22 (a).

(b) We know from Proposition 2.14.2 that every Euclidean domain is a PID.
Hence, F [x] is a PID (since F [x] is a Euclidean domain), and therefore a UFD
(since we know from Theorem 2.15.11 that every PID is a UFD).

Note that the “UFD” part of Theorem 4.3.22 (b) is not a very constructive
result; there is no general algorithm for actually finding a prime factorization
of a polynomial (i.e., for factoring a polynomial into irreducible polynomials)
that works over any field. There are reasonably good algorithms for prime
factorization in Q [x], however (see Section 6.5 below for one such algorithm,
although a very inefficient one).

Theorem 4.3.22 entails, in particular, that univariate polynomials over a field
have gcds and lcms (by Theorem 2.14.12). Moreover, the analogue of Bezout’s
theorem holds:
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Theorem 4.3.23 (Bezout’s theorem for polynomials). Let F be a field. Let
a, b ∈ F [x] be two polynomials. Then, for any choice of gcd (a, b), there exist
two polynomials u, v ∈ F [x] such that ua + vb = gcd (a, b).

Proof. This is a general fact that holds in every PID (but not in every UFD). To
wit, let us set R = F [x], and recall that R is a PID (by Theorem 4.3.22 (b)).
Recall how we proved the existence of a gcd (the proof of Theorem 2.14.12):
Namely, we argued that there exists a c ∈ R satisfying aR + bR = cR (since R
is a PID, so that the ideal aR + bR of R must be principal), and then we proved
that this c is a gcd of a and b. Now, assume that we have chosen some gcd of
a and b, and denoted it by gcd (a, b). This gcd (a, b) is not necessarily identical
to c, but it is clearly associate to c, since Proposition 2.14.11 (a) says that any
two gcds of a and b are associate. Thus, gcd (a, b) = cu for some unit u of R.
Consider this u. Now,

gcd (a, b) = c u︸︷︷︸
∈R

∈ cR = aR + bR.

In other words, there exist some u, v ∈ R such that gcd (a, b) = au + bv. In
other words, there exist some u, v ∈ R such that gcd (a, b) = ua + vb. This
proves Theorem 4.3.23.

A few words about computability are in order. If F is a field, and if a, b ∈
F [x] are two polynomials, then we can compute a gcd (a, b) by the extended
Euclidean algorithm (more precisely, the algorithm explained in the proof of
Theorem 2.13.8 (b) computes a Bezout 5-tuple for (a, b), and then Corollary
2.14.14 reveals that the third entry of this 5-tuple is a gcd of a and b). This
is one of the most useful features of univariate polynomials. The following
exercises should give you some practice with this algorithm:

Exercise 4.3.17. Work in the polynomial ring Q [x].

(a) Compute a gcd
(
x3 − x, x5 − 3x + 2

)
. (The indefinite article “a” refers to the

fact that a gcd is unique only up to multiplying by a unit.)

(b) Compute a gcd
(

x4 + x2 + 1, x4 + x3 + x2 + 2
)
.

Exercise 4.3.18. Let F be a field. We will work in the polynomial ring F [x].

(a) Compute a gcd
(

x2 − 1, x3 − 1
)
.

(b) Compute a gcd
(

x2 − 1, x5 − 1
)
.

(c) Compute a gcd
(

x4 − 1, x6 − 1
)
.

(d) Let m, n ∈ N. Prove that gcd (xm − 1, xn − 1) = xgcd(m,n) − 1. (To be more
precise, show that xgcd(m,n) − 1 is a gcd of xm − 1 and xn − 1. Of course,
multiplying this gcd by a nonzero scalar in F will yield another gcd.)
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Exercise 4.3.19. Let F be a field. We will work in the polynomial ring F [x].

(a) Compute a gcd
(

x2 + 1, x3 + 1
)

under the assumption that 2 · 1F ̸= 0F.

(b) Compute a gcd
(

x2 + 1, x3 + 1
)

under the assumption that 2 · 1F = 0F.

(c) Compute a gcd
(
x3 + 1, x5 + 1

)
.

(d) Let m, n ∈ N be odd. Prove that gcd (xm + 1, xn + 1) = xgcd(m,n) + 1.

(e) Let m be an even positive integer, and n an odd positive integer. Prove that
gcd (xm + 1, xn + 1) = 1 if 2 · 1F ̸= 0F.

(f) More generally, prove the following: If m and n are positive integers, and if
a, b ∈ F are two elements satisfying an ̸= bm, then gcd (xm − a, xn − b) = 1.

[Hint: For part (d), a substitution can be helpful. Part (e) is easiest to derive from
part (f).]

Warning 4.3.24. Multivariate polynomial rings (like Q [x, y]) are not PIDs
(and thus not Euclidean domains either). For example, if R = Q [x, y], then
the ideal xR + yR is not principal. (Check this! This ideal is easily seen to
consist of all polynomials whose constant term (= coefficient of x0y0) is 0,
but these polynomials are not the multiples of a single polynomial.) How-
ever, multivariate polynomial rings over fields (and, more generally, over
UFDs) are still UFDs. This is a deeper result than the ones we have proved
above (see, e.g., [DumFoo04, §9.3, Corollary 8] or [Ford22, Theorem 3.7.4] or
[ChaLoi21, Corollary (2.6.7)] or [Knapp16, Corollary 8.21 and Remark after
it] or [Swanso17, Theorem 36.11] for proofs). As a consequence, polynomi-
als over a field (or a UFD) have gcds; however, they don’t generally satisfy
Bezout’s theorem unless the polynomials are univariate polynomials over a
field.

Univariate polynomial rings over non-fields (like Z [x]) behave similarly:
They are not PIDs, but they are UFDs when the base ring is a UFD. (That is,
if R is a UFD, then so is R [x].)

4.3.7. Lagrange interpolation

Theorem 4.3.15 has the following simple corollary:

Corollary 4.3.25 (uniqueness of interpolating polynomial). Let R be an inte-
gral domain. Let n ∈ N. Let a0, a1, . . . , an be n + 1 distinct elements of R. Let
f , g ∈ R [x] be two polynomials of degree ≤ n. Assume that

f [ai] = g [ai] for all i ∈ {0, 1, . . . , n} . (92)

Then, f = g.
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Corollary 4.3.25 is saying that if two univariate polynomials of degree ≤ n
over an integral domain R agree in at least n + 1 distinct positions a0, a1, . . . , an,
then they must be equal. In particular, if two univariate polynomials (of any
degree) over an integral domain R agree at infinitely many distinct positions,
then they must be equal. This is an extremely useful result with applications
all over mathematics.138

Proof of Corollary 4.3.25. Assume the contrary. Thus, f ̸= g, so that f − g ̸= 0.
The nonzero polynomial f − g has degree ≤ n (since each of f and g has degree
≤ n). Thus, Theorem 4.3.15 (applied to f − g instead of f ) shows that f − g has
at most n roots in R.

However, for each i ∈ {0, 1, . . . , n}, the element ai is a root of f − g, since

( f − g) [ai] = f [ai]− g [ai] = 0 (by (92)) .

In other words, the n + 1 elements a0, a1, . . . , an of R are roots of f − g. Since
these elements a0, a1, . . . , an are distinct, this shows that the polynomial f − g
has at least n + 1 roots in R. But this contradicts the fact that f − g has at most
n roots in R. This contradiction shows that our assumption was false. Thus,
Corollary 4.3.25 is proven.

Corollary 4.3.25 can be restated as follows: A univariate polynomial f ∈ R [x]
of degree ≤ n over an integral domain R is uniquely determined by any
n + 1 values f [a0] , f [a1] , . . . , f [an] (provided, of course, that the inputs
a0, a1, . . . , an ∈ R are distinct and known). This is a nice uniqueness state-
ment. Can we find a matching existence statement for it? In other words, if we
are given n+ 1 distinct elements a0, a1, . . . , an of an integral domain R and n+ 1
arbitrary elements b0, b1, . . . , bn of R, then is there necessarily some polynomial
f ∈ R [x] of degree ≤ n that satisfies

f [ai] = bi for all i ∈ {0, 1, . . . , n} ?

A bit of thought reveals that the answer is negative. Indeed, there is no
polynomial f ∈ Z [x] that satisfies f [0] = 0 and f [2] = 1. The reason is a lack
of divisibility: Any polynomial f ∈ Z [x] satisfies a − b | f [a] − f [b] for all
a, b ∈ Z (check this!), but our conditions f [0] = 0 and f [2] = 1 would make
this divisibility false for a = 2 and b = 0. Thus, our alleged existence statement
cannot hold for arbitrary integral domains R.

However, it turns out to be true when R is a field. Moreover, the required
polynomial f can be expressed directly:

138For example, its particular case for R = C is [Grinbe21, Corollary 7.5.7], and is subsequently
used in [Grinbe21, §7.5.3] is used to prove identities for binomial coefficients. Many more
applications exist in a similar vein (see, e.g., [21s, Combinatorial proof of Proposition 6.1.1]);
this technique is known as the “polynomial identity trick”.
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Theorem 4.3.26 (Lagrange interpolation). Let F be a field. Consider the uni-
variate polynomial ring F [x]. Let n ∈ N.

Let a0, a1, . . . , an be n + 1 distinct elements of F. Let b0, b1, . . . , bn be n + 1
arbitrary elements of F. Then:

(a) There is a unique polynomial p ∈ F [x] satisfying deg p ≤ n and

p [ai] = bi for all i ∈ {0, 1, . . . , n}.

(b) This polynomial p is given by

p =
n

∑
j=0

bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

)
(where the “ ∏

k ̸=j
” sign means a product over all k ∈ {0, 1, . . . , n} satisfy-

ing k ̸= j).

For example, if n = 2, then

• Theorem 4.3.26 (a) is saying that there is a unique polynomial p ∈ F [x]
satisfying deg p ≤ 2 and

p [a0] = b0 and p [a1] = b1 and p [a2] = b2,

• and Theorem 4.3.26 (b) is saying that this polynomial p is given by

p = b0
(x − a1) (x − a2)

(a0 − a1) (a0 − a2)
+ b1

(x − a0) (x − a2)

(a1 − a0) (a1 − a2)
+ b2

(x − a0) (x − a1)

(a2 − a0) (a2 − a1)
.

Proof of Theorem 4.3.26. Define a polynomial g ∈ F [x] by

g =
n

∑
j=0

bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) (93)

(where the “ ∏
k ̸=j

” signs means a product over all k ∈ {0, 1, . . . , n} satisfying

k ̸= j). Note that g is well-defined; indeed, all the differences aj − ak appearing
in the denominators are nonzero (because a0, a1, . . . , an are distinct) and thus
are units (since F is a field).
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Each of the n + 1 addends bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) on the right hand side of (93) is a

polynomial of degree ≤ n (since the numerator ∏
k ̸=j

(x − ak) is a product of n

degree-1 polynomials x − ak, whereas the remaining pieces bj and ∏
k ̸=j

(
aj − ak

)
of the expression are elements of F). Hence, their sum must be a polynomial
of degree ≤ n as well (since any sum of polynomials of degree ≤ n is again a
polynomial of degree ≤ n). In other words, g is a polynomial of degree ≤ n
(since (93) shows that g is their sum). That is, we have deg g ≤ n.

If i ∈ {0, 1, . . . , n} and j ∈ {0, 1, . . . , n} satisfy j ̸= i, then we have

∏
k ̸=j

(ai − ak) = 0 (94)

(because in this case, the product ∏
k ̸=j

(ai − ak) contains the factor ai − ai (since

i ̸= j), but this factor is 0, and therefore the whole product is 0).
For each i ∈ {0, 1, . . . , n}, we have

g [ai] =

 n

∑
j=0

bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

)
 [ai] (by the definition of g)

=
n

∑
j=0

bj

∏
k ̸=j

(ai − ak)

∏
k ̸=j

(
aj − ak

)

= bi

∏
k ̸=i

(ai − ak)

∏
k ̸=i

(ai − ak)︸ ︷︷ ︸
=1

+ ∑
j∈{0,1,...,n};

j ̸=i

bj

∏
k ̸=j

(ai − ak)

∏
k ̸=j

(
aj − ak

)
︸ ︷︷ ︸

=0
(by (94))

(here, we have split off the addend for j = i from the sum)

= bi + ∑
j∈{0,1,...,n};

j ̸=i

bj · 0

︸ ︷︷ ︸
=0

= bi.

Hence, g is a polynomial p ∈ F [x] satisfying deg p ≤ n and

p [ai] = bi for all i ∈ {0, 1, . . . , n} (95)

(since we already know that deg g ≤ n).
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(a) We need to prove that there is a unique polynomial p ∈ F [x] satisfying
deg p ≤ n and (95). We already know that such a p exists (because we have
just shown that g is such a p); thus, it remains to prove its uniqueness. In other
words, we need to prove the following claim:

Claim 1: Let p1 and p2 be two polynomials p ∈ F [x] satisfying
deg p ≤ n and (95). Then, p1 = p2.

Proof of Claim 1. We have assumed that p1 is a polynomial p ∈ F [x] satisfying
deg p ≤ n and (95). In other words, p1 ∈ F [x] is a polynomial and satisfies
deg p1 ≤ n and

p1 [ai] = bi for all i ∈ {0, 1, . . . , n} . (96)

Similarly, p2 ∈ F [x] is a polynomial and satisfies deg p2 ≤ n and

p2 [ai] = bi for all i ∈ {0, 1, . . . , n} . (97)

For each i ∈ {0, 1, . . . , n}, we have

p1 [ai] = bi (by (96))
= p2 [ai] (by (97)) .

Hence, Corollary 4.3.25 (applied to R = F, f = p1 and g = p2) yields that
p1 = p2 (since p1 and p2 both have degree ≤ n). This proves Claim 1.

Now, our proof of Theorem 4.3.26 (a) is complete.

(b) In our above proof of Theorem 4.3.26 (a), we have shown not just that
there is a unique polynomial p ∈ F [x] satisfying deg p ≤ n and (95); we have
also shown that g is such a polynomial. But since this p is unique, this means
that g is the only such polynomial. Thus, the only such polynomial is g =

n
∑

j=0
bj

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) . This proves Theorem 4.3.26 (b).

One of many applications of Theorem 4.3.26 (b) is an explicit formula for
recovering a univariate polynomial f of degree ≤ n (over a field) from any
n + 1 values f [a0] , f [a1] , . . . , f [an] of f (provided that the inputs a0, a1, . . . , an
are distinct and known). Let us make this explicit:

Corollary 4.3.27. Let F be a field. Consider the univariate polynomial ring
F [x]. Let n ∈ N.

Let f ∈ F [x] be a polynomial of degree ≤ n.
Let a0, a1, . . . , an be n + 1 distinct elements of F. Then,

f =
n

∑
j=0

f
[
aj
]
·

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

)
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(where the “ ∏
k ̸=j

” sign means a product over all k ∈ {0, 1, . . . , n} satisfying

k ̸= j).

Proof. Theorem 4.3.26 (a) (applied to bi = f [ai]) yields that there is a unique
polynomial p ∈ F [x] satisfying deg p ≤ n and

p [ai] = f [ai] for all i ∈ {0, 1, . . . , n}.

Furthermore, Theorem 4.3.26 (b) (applied to bi = f [ai]) yields that this polyno-
mial p is given by

p =
n

∑
j=0

f
[
aj
]
·

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) .

Combining this, we conclude that if p ∈ F [x] is a polynomial satisfying deg p ≤
n and

p [ai] = f [ai] for all i ∈ {0, 1, . . . , n} ,

then

p =
n

∑
j=0

f
[
aj
]
·

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) .

Applying this to p = f , we obtain

f =
n

∑
j=0

f
[
aj
]
·

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

)
(since f ∈ F [x] is a polynomial satisfying deg f ≤ n and f [ai] = f [ai] for all
i ∈ {0, 1, . . . , n}). This proves Corollary 4.3.27.

Exercise 4.3.20. Let F be a field. Let n ∈ N. Let a0, a1, . . . , an be n + 1 distinct
elements of F. Prove that for each ℓ ∈ {0, 1, . . . , n}, we have

n

∑
j=0

aℓj
∏
k ̸=j

(
aj − ak

) =

{
1, if ℓ = n;
0, if ℓ < n

(where the “ ∏
k ̸=j

” sign means a product over all k ∈ {0, 1, . . . , n} satisfying k ̸= j).

[Hint: Apply Corollary 4.3.27 to f = xℓ and compare the xn-coefficients on both
sides of the equality.]
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Exercise 4.3.21. Let n ∈ N and ℓ ∈ N. Prove that

n

∑
j=0

(−1)n−j
(

n
j

)
jℓ =

{
n!, if ℓ = n;
0, if ℓ < n.

[Hint: Apply Exercise 4.3.20 to F = Q and ai = i.]

Exercise 4.3.22. Let a, b ∈ R and n ∈ N and ℓ ∈ {0, 1, . . . , n}. Prove that

n

∑
j=0

(−1)n−j
(

n
j

)(
aj + b
ℓ

)
=

{
an, if ℓ = n;
0, if ℓ < n.

(Recall that the binomial coefficient
(

u
ℓ

)
is defined to be

u (u − 1) (u − 2) · · · (u − ℓ+ 1)
ℓ!

for each u ∈ R.)

Exercise 4.3.23. Let F be a field. Let n ∈ N. Let a0, a1, . . . , an be n + 1 distinct
elements of F. Let f ∈ F [x] be a polynomial of degree ≤ n. Prove that

n

∑
j=0

f
[
aj
]

∏
k ̸=j

(
aj − ak

) = [xn] f

(where the “ ∏
k ̸=j

” sign means a product over all k ∈ {0, 1, . . . , n} satisfying k ̸= j).

[Hint: Apply Corollary 4.3.27. Then, take the xn-coefficient.]

Exercise 4.3.24. Let F be a field. Let n ∈ N. Let a0, a1, . . . , an be n + 1 distinct
elements of F. Prove that

n

∑
j=0

an+1
j

∏
k ̸=j

(
aj − ak

) = a0 + a1 + · · ·+ an

(where the “ ∏
k ̸=j

” sign means a product over all k ∈ {0, 1, . . . , n} satisfying k ̸= j).

[Hint: Apply Exercise 4.3.23 to f = xn+1 −
n
∏

k=0
(x − ak).]

Exercise 4.3.25. Let F be a field. Let n ∈ N. Let a0, a1, . . . , an be n + 1 distinct
elements of F. Prove that

n

∑
j=0

aj

∏
k ̸=j

(
aj + ak

)
∏
k ̸=j

(
aj − ak

) = a0 + a1 + · · ·+ an

(where the “ ∏
k ̸=j

” sign means a product over all k ∈ {0, 1, . . . , n} satisfying k ̸= j).
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[Hint: Let 2F := 2 · 1F ∈ F. Distinguish between the cases when 2F = 0F and
when 2F ̸= 0F. In the former case, a + b = a − b for all a, b ∈ F (why?), and the claim
becomes very easy. Now, consider the latter case. In this case, 2F is a unit of F, thus

can be cancelled. Now, apply Exercise 4.3.23 to f =
n
∏

k=0
(x + ak)−

n
∏

k=0
(x − ak). Then,

simplify and cancel 2F.]
(This exercise is Crux Mathematicorum problem #4762, proposed by Didier Pin-

chon and George Stoica in issue 49/2.)

Exercise 4.3.26. Let F be a field. Let n ∈ N. Let a0, a1, . . . , an be n + 1 distinct
elements of F. Prove that

n

∑
j=0

∏
k ̸=j

(
aj + ak

)
∏
k ̸=j

(
aj − ak

) =

{
1, if n is even;
0, if n is odd

(where the “ ∏
k ̸=j

” sign means a product over all k ∈ {0, 1, . . . , n} satisfying k ̸= j).

[Hint: Let 2F := 2 · 1F ∈ F. Deal with the case 2F = 0F as in Exercise 4.3.25. In

the remaining case, show that the polynomial
n
∏

k=0
(ak + x) −

n
∏

k=0
(ak − x) ∈ F [x] is

divisible by 2x, and let f be the quotient of this division. Now, apply Exercise 4.3.23
to this f .]

For more identities in the vein of Exercises 4.3.20, 4.3.24, 4.3.26 and 4.3.25, see
[Nica22].

Exercise 4.3.27. Let n ∈ N. Let p ∈ Q [x] be a polynomial of degree ≤ n such that

p [i] = 2i for all i ∈ {0, 1, . . . , n}.

Find p [n + 1].

Exercise 4.3.28. Let n ∈ N. Let p ∈ Q [x] be a polynomial of degree ≤ n such that

p [i] =
1(

n + 1
i

) for all i ∈ {0, 1, . . . , n}.

Find p [n + 1].

The next exercise gives a two-variable version of Lagrange interpolation (to be more
specific, of Theorem 4.3.26):

Exercise 4.3.29. Let F be a field. Consider the polynomial ring F [x, y] in two
variables x and y.

For any polynomial p ∈ F [x, y], define the x-degree degx p and the y-degree
degy p as in Exercise 4.3.11.

https://cms.math.ca/publications/crux/
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Let n, m ∈ N.
Let a0, a1, . . . , an be n + 1 distinct elements of F. Let b0, b1, . . . , bm be m + 1 dis-

tinct elements of F. Let ci,j be an element of F for each pair (i, j) ∈ {0, 1, . . . , n} ×
{0, 1, . . . , m}. Prove the following:

(a) There is a unique polynomial p ∈ F [x, y] satisfying degx p ≤ n and degy p ≤
m and

p
[
ai, bj

]
= ci,j for all (i, j) ∈ {0, 1, . . . , n} × {0, 1, . . . , m} .

(b) This polynomial p is given by

p =
n

∑
k=0

m

∑
ℓ=0

ck,ℓ

∏
u ̸=k

(x − au)

∏
u ̸=k

(ak − au)
·

∏
v ̸=ℓ

(y − bv)

∏
v ̸=ℓ

(bℓ − bv)

(where the “ ∏
u ̸=k

” sign means a product over all u ∈ {0, 1, . . . , n} satisfying

u ̸= k, and where the “ ∏
v ̸=ℓ

” sign means a product over all v ∈ {0, 1, . . . , m}

satisfying v ̸= ℓ).

4.4. Intermezzo: quotients of R-algebras

In preparation for the next section, let me quickly introduce quotients of R-
algebras. I have previously defined quotients of rings modulo ideals, and quo-
tients of R-modules modulo submodules. These two concepts can be combined
to obtain quotients of R-algebras modulo ideals:

Theorem 4.4.1. Let A be an R-algebra. Let I be an ideal of A. Then:

(a) The ideal I is also an R-submodule of A.

(b) The quotient ring A/I and the quotient R-module A/I fit together to
form an R-algebra.

(c) The canonical projection π : A → A/I (which sends each a ∈ A to its
residue class a = a + I) is an R-algebra morphism (from the original
R-algebra A to the R-algebra A/I that we just constructed in part (b)).

Proof. (a) We already know that I is closed under addition and contains zero
(since I is an ideal). So we must only show that I is closed under scaling. In
other words, we must show that ri ∈ I for each r ∈ R and i ∈ I. But this is
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easy: If r ∈ R and i ∈ I, then

r i︸︷︷︸
=1A·i

= r · 1A · i = (r · 1A)︸ ︷︷ ︸
∈A

· i︸︷︷︸
∈I

∈ I (since I is an ideal of A) .

(b) LTTR. (You just need to verify the “scale-invariance of multiplication”
axiom, but this is straightforward.)

(c) We already know that this canonical projection is a ring morphism and an
R-module morphism; thus, it is an R-algebra morphism.

Definition 4.4.2. Let A and I be as in Theorem 4.4.1. Then, the R-algebra A/I
constructed in Theorem 4.4.1 (b) is called the quotient algebra (or quotient
R-algebra) of A by the ideal I.

Let us next recall the universal property of quotient rings (in its two forms:
Theorem 2.9.5 and Theorem 2.9.6). This property is the tool of choice from
constructing ring morphisms out of a quotient ring. We can adapt this theorem
to R-algebras with just trivial modifications (alas, we have to rename R and S
as A and B, since R already means something different):

Theorem 4.4.3 (Universal property of quotient algebras, elementwise form).
Let A be an R-algebra. Let I be an ideal of A.

Let B be an R-algebra. Let f : A → B be an R-algebra morphism. Assume
that f (I) = 0 (this is shorthand for saying that f (a) = 0 for all a ∈ I). Then,
the map

f ′ : A/I → B,
a 7→ f (a) (for all a ∈ A)

is well-defined (i.e., the value f (a) depends only on the residue class a, not
on a itself) and is an R-algebra morphism.

Proof. Adapt the argument that we used to prove Theorem 2.9.5. The only
new thing we need to check is that the map f ′ constructed in the proof is R-
linear; but this is just as straightforward as showing that this map is a ring
morphism.

Theorem 4.4.4 (Universal property of quotient algebras, abstract form). Let
A be an R-algebra. Let I be an ideal of A. Consider the canonical projection
π : A → A/I.

Let B be an R-algebra. Let f : A → B be an R-algebra morphism. Assume
that f (I) = 0 (this is shorthand for saying that f (a) = 0 for all a ∈ I). Then,
there is a unique R-algebra morphism f ′ : A/I → B satisfying f = f ′ ◦ π.

Proof. Adapt the argument that we used to prove Theorem 2.9.6.

The First Isomorphism Theorem for rings (Theorem 2.9.9) also has an ana-
logue for R-algebras. We leave it to the reader to state it.
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4.5. Adjoining roots

4.5.1. Examples

What is a complex number? Nowadays, the complex numbers are commonly
defined as pairs of real numbers; this is a fairly straightforward process (first
you define addition and multiplication and zero and unity; then you show that
the ring axioms hold) and can be found in many textbooks (e.g., [Grinbe19,
§4.1]). But this is the modern definition. When Girolamo Cardano originally
invented complex numbers back in the 16th century, he had a different vision:
Cardano essentially proposed to imagine that there is a new number called i
that satisfies i2 = −1 but otherwise behaves like the numbers we know. Thus,
you’re allowed to form arbitrary polynomials in i, but you have to equate i2 to
−1, so you never end up getting anything more complicated than numbers of
the form a + bi with a, b ∈ R (since any higher power of i can be reduced to ±1
or ±i using the i2 = −1 rule). Thus, it makes sense to encode complex numbers
as pairs of real numbers, but this is merely one way of encoding them.139

Of course, Cardano’s original vision is not a rigorous definition; just as easily
you could introduce a number j satisfying 0j = 1, and thus collapse the entire
number system (since this new number would let you argue that 1 = 0j =
(0 + 0) j = 0j + 0j = 1 + 1 = 2). So, if we want to make Cardano’s definition
rigorous, we have to rewrite it algebraically. One way to do this is to define C

as the quotient ring
R [x] /

(
x2 + 1

)
R [x] .

In fact, we start with R [x] because our complex numbers should be polyno-
mials in a single symbol i (which will be represented by the indeterminate x
in R [x]); but then we quotient out the ideal

(
x2 + 1

)
R [x] since we want i2 + 1

(and thus also each multiple of i2 + 1) to be 0 in our complex numbers.
To be on the safe side, let us show that this quotient ring R [x] /

(
x2 + 1

)
R [x]

is isomorphic to the complex numbers C as we know them (i.e., defined in the
modern way, as pairs of real numbers).

139I am being sloppy with the history here. The relevant source is Girolamo Cardano’s 1545
book Ars magna, specifically its Chapter XXXVII, in which he asks the reader to “imagine√
−15”. Of course, this is not much different from imagining i =

√
−1, since a square root

of −15 could be obtained from a square root of −1 by multiplying with the real number√
15.
Cardano was writing at a time when even the notion of a negative number was far from

widely accepted in the West (though known in India and Persia). Cardano himself called
negative numbers “fictitious” (arguably an improvement from previous European authors,
who called them “absurd”), and did not quite treat them as first-class numbers. His Ars
magna is often considered to be the first serious treatment of negative numbers written in
Europe. That the very same book introduces complex numbers is thus an example of the
“when it rains, it pours” phenomenon in the history of ideas.

Cardano did not introduce the name i for the imaginary unit
√
−1. This was done by

Euler much later.
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First of all, we introduce a shorthand:

Convention 4.5.1. If R is a commutative ring, and if a ∈ R, then the quotient
ring R/aR will be abbreviated as R/a. We are already using a particular case
of this notation, as we are writing Z/n for Z/nZ when n is an integer.

We note that the quotient ring R/a = R/aR is not just a ring, but an R-
algebra as well (by Theorem 4.4.1 (b)). Furthermore, the R-algebra R/a is
commutative (since it is a quotient of R). This all will be tacitly used in what
follows.

So we want to prove that R [x] /
(
x2 + 1

) ∼= C as rings – and even better, as
R-algebras. Let’s be a little bit more precise:

Proposition 4.5.2. We have R [x] /
(
x2 + 1

) ∼= C as R-algebras. More con-
cretely: There is an R-algebra isomorphism

R [x] /
(

x2 + 1
)
→ C,

p 7→ p [i] .

Proof. We already know that C is an R-algebra. Thus, Theorem 4.2.8 (applied
to R = R and A = C and a = i) yields that the map

f : R [x] → C,
p 7→ p [i]

is an R-algebra morphism. This map f sends the principal ideal
(
x2 + 1

)
R [x]

to 0, because for each q ∈ R [x], we have

f
((

x2 + 1
)
· q
)
=
((

x2 + 1
)
· q
)
[i] =

(
i2 + 1

)
︸ ︷︷ ︸

=0

· q [i] = 0.

Hence, Theorem 4.4.3 (applied to R = R, A = R [x], I =
(
x2 + 1

)
R [x] and

B = C) shows that the map

f ′ : R [x] /
(

x2 + 1
)
→ C,

a 7→ f (a)

is well-defined and is an R-algebra morphism. Consider this map f ′. Each
p ∈ R [x] satisfies

f ′ (p) = f (p)
(
by the definition of f ′

)
= p [i] (by the definition of f ) . (98)
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Now, why is f ′ an isomorphism?
It’s not hard to see that f ′ is surjective: Indeed, any z ∈ C can be written as

z = a + bi for some a, b ∈ R, and then we have z = a + bi = f ′
(

a + bx
)

(since

(98) yields f ′
(

a + bx
)
= (a + bx) [i] = a + bi).

Now, how can we prove that f ′ is injective? Since f ′ is R-linear, it suffices to
show that Ker ( f ′) = {0} (by Lemma 3.5.10).

Let u ∈ Ker ( f ′). Thus, u ∈ R [x] /
(
x2 + 1

)
, so that u = p for some p ∈ R [x].

Consider this p.
However, Theorem 4.3.7 (a) (applied to R = R, b = x2 + 1 and a = p) yields

that there is a unique pair (q, r) of polynomials in R [x] such that

p = q ·
(

x2 + 1
)
+ r and deg r < deg

(
x2 + 1

)
.

Consider this pair (q, r). From deg r < deg
(
x2 + 1

)
= 2, we see that the poly-

nomial r can be written as a + bx for some a, b ∈ R. Consider these a, b. From
p = q ·

(
x2 + 1

)
+ r, we obtain p − r = q ·

(
x2 + 1

)
∈
(
x2 + 1

)
R [x]; thus, p = r

in the quotient ring R [x] /
(
x2 + 1

)
. Now,

u = p = r = a + bx (since r = a + bx) , so that

f ′ (u) = f ′
(

a + bx
)
= (a + bx) [i] (by (98))

= a + bi.

Hence, a + bi = f ′ (u) = 0 (since u ∈ Ker ( f ′)). Since a, b ∈ R, this entails
a = b = 0 (since the complex numbers 1 and i are R-linearly independent).
Thus, u = a + bx rewrites as u = 0 + 0x = 0 ∈ {0}.

Forget that we fixed u. We thus have shown that u ∈ {0} for each u ∈
Ker ( f ′). In other words, Ker ( f ′) ⊆ {0}. Since the reverse inclusion {0} ⊆
Ker ( f ′) is obvious, we thus conclude that Ker ( f ′) = {0}. As we have said, this
entails that f ′ is injective.

Now we know that the map f ′ is injective and surjective. Hence, f ′ is bi-
jective, i.e., invertible. Since every invertible R-algebra morphism is an R-
algebra isomorphism (by Proposition 3.11.8), we thus conclude that f ′ is an R-
algebra isomorphism. This proves Proposition 4.5.2 (since the map f ′ satisfies
f ′ (p) = p [i] for each p ∈ R [x], and thus is precisely the alleged isomorphism
claimed in Proposition 4.5.2).

Note the use of polynomial division (with remainder) in our above proof of
Proposition 4.5.2. It has a natural usefulness in the study of quotient rings of
R [x], just as integer division (with remainder) is crucial to the study of quotient
rings of Z.

Similarly to Proposition 4.5.2, we can reveal further quotient rings of polyno-
mial rings as certain rings we know:
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Proposition 4.5.3.

(a) Recall the ring Z [i] of Gaussian integers. We have Z [x] /
(
x2 + 1

) ∼=
Z [i] as Z-algebras. More concretely: There is a Z-algebra isomorphism

Z [x] /
(

x2 + 1
)
→ Z [i] ,

p 7→ p [i] .

(b) Recall the ring S = Q
[√

5
]
=
{

a + b
√

5 | a, b ∈ Q
}

(a subring of R).

We have Q [x] /
(
x2 − 5

) ∼= S as Q-algebras. More concretely: There is
a Q-algebra isomorphism

Q [x] /
(

x2 − 5
)
→ S,

p 7→ p
[√

5
]

.

Proof. (a) Analogous to the proof of Proposition 4.5.2.
(b) Analogous to the proof of Proposition 4.5.2.

Proposition 4.5.2 and Proposition 4.5.3 suggest that when we start with a ring
R and a polynomial b ∈ R [x], then the quotient ring R [x] /b is (in some way)
an “extension” of R by a root of b, in the sense that it contains R as a subring
(at least up to isomorphism) but also contains a root of b (namely, x). Thus, we
can hope that by taking the quotient ring R [x] /b, we can “adjoin” a root of b
to the ring R even if b has no root over R (just as Cardano defined the complex
numbers by “adjoining” a root of x2 + 1 to R). The word “adjoin” here means
something like “insert”, “attach” or “throw in”.

This is a good intuition, but there are nuances: In the process of “adjoining”
our root to our ring R, we may end up making R “smaller”, in the sense that
different elements of R become equal when the root is “adjoined” (and thus
the resulting ring is not really an “extension” of R). The following example (in
which we take a quotient of Z [x] by a constant polynomial) demonstrates this:

Proposition 4.5.4.

(a) We have (Z [x]) /m ∼= (Z/m) [x] as Z-algebras (i.e., as rings) for any
integer m.

(b) The ring (Z [x]) /1 is trivial.

Proof sketch. (a) Let m be an integer. Then, the principal ideal mZ [x] of Z [x]
consists of all polynomials whose all coefficients are multiples of m. Thus, it is
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easy to see that the map

f : (Z [x]) /m → (Z/m) [x] ,

a0x0 + a1x1 + a2x2 + · · · 7→ a0x0 + a1x1 + a2x2 + · · ·

is well-defined and is a Z-algebra isomorphism. This proves Proposition 4.5.4
(a).

(b) More generally: If R is any commutative ring, then the ring R/1 is trivial.
This is because the principal ideal 1R of R is the whole ring R, so there is only
one coset modulo this ideal.

Proposition 4.5.4 (a) (applied to m = 2) shows that if we take the quotient
ring of Z [x] modulo (the principal ideal generated by) the constant polynomial
2, then we don’t get an “extension” of Z; what we instead get is the polynomial
ring (Z/2) [x], in which (unlike in Z) we have 1 + 1 = 0 (so it certainly cannot
contain a copy of Z as a subring). But if you think about this carefully, you will
realize that this perfectly agrees with the idea of “adjoining a root”. Indeed,
to “adjoin” a root of the constant polynomial 2 to Z means to introduce a new
“number” x satisfying 2 = 0. The equation 2 = 0 tells us nothing about the
“number” x (so it remains completely unconstrained), but collapses all even
integers to 0, thus leaving us with the ring (Z/2) [x]. This is precisely what
Proposition 4.5.4 (a) told us. Likewise, “adjoining” a root of 1 to Z causes
1 = 0, which renders the ring trivial (since any element of a ring is a multiple
of 1); this agrees with Proposition 4.5.4 (b).

The examples so far have taught us that – yes – we can “adjoin” a root of any
polynomial to a commutative ring R, but we don’t always get an extension of
R (although we do always get an R-algebra). In Theorem 4.5.9 (c), we will see
a (sufficient) criterion for when we do.

Here is another natural question: What happens if we “adjoin” a root of
a polynomial b that already has a root in R ? For example, let us take the
polynomial x2 − 1 over Q (which has 1 and −1 as roots). It turns out that the
resulting quotient ring Q [x] /

(
x2 − 1

)
is a good friend of ours by now:

Proposition 4.5.5. Recall the group algebra Q [C2] of the cyclic group C2 from
Example 4.1.4. Then,

Q [x] /
(

x2 − 1
)
∼= Q [C2] ∼= Q × Q as Q-algebras.

Proof. In Example 4.1.4, we have seen that the group algebra Q [C2] has a basis
(e1, eu) (as a Q-module). By Convention 4.1.8, we can write 1 and u for e1 and
eu, so that this basis becomes (1, u). We also know (from Example 4.1.4) that
Q [C2] ∼= Q × Q as Q-algebras. It thus remains to prove that Q [x] /

(
x2 − 1

) ∼=
Q [C2].

Note the similarity between Q [C2] and C:
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• The Q-module Q [C2] has basis (1, u), with u2 = 1.

• The R-module C has basis (1, i), with i2 = −1.

This suggests that we just copypaste our above proof of Proposition 4.5.2,
replacing R, C and i by Q, Q [C2] and u and occasionally flipping signs. This is
precisely what we are now going to do (but in a smaller font, to avoid wasting
paper).

Theorem 4.2.8 (applied to R = Q and A = Q [C2] and a = u) yields that the map

f : Q [x] → Q [C2] ,
p 7→ p [u]

is a Q-algebra morphism. This map f sends the principal ideal
(
x2 − 1

)
Q [x] to 0,

because for each q ∈ Q [x], we have

f
((

x2 − 1
)
· q
)
=
((

x2 − 1
)
· q
)
[u] =

(
u2 − 1

)︸ ︷︷ ︸
=0

(since u2=1)

· q [u] = 0.

Hence, Theorem 4.4.3 (applied to R = Q, A = Q [x], I =
(
x2 − 1

)
Q [x] and B = Q [C2])

shows the map

f ′ : Q [x] /
(
x2 − 1

)
→ Q [C2] ,

a 7→ f (a)

is well-defined and is a Q-algebra morphism. Consider this f ′. Each p ∈ Q [x] satisfies

f ′ (p) = f (p)
(
by the definition of f ′

)
= p [u] (by the definition of f ) . (99)

Now, why is f ′ an isomorphism?
It’s not hard to see that f ′ is surjective: Indeed, any z ∈ Q [C2] can be written as

z = a + bu for some a, b ∈ Q, and then we have z = a + bu = f ′
(

a + bx
)

(since (99)

yields f ′
(

a + bx
)
= (a + bx) [u] = a + bu).

Now, how can we prove that f ′ is injective? Since f ′ is Q-linear, it suffices to show
that Ker ( f ′) = {0} (by Lemma 3.5.10).

Let u ∈ Ker ( f ′). Thus, u ∈ Q [x] /
(
x2 − 1

)
, so that u = p for some p ∈ Q [x].

Consider this p.
However, Theorem 4.3.7 (a) (applied to R = Q, b = x2 − 1 and a = p) yields that

there is a unique pair (q, r) of polynomials in Q [x] such that

p = q ·
(

x2 − 1
)
+ r and deg r < deg

(
x2 − 1

)
.

Consider this pair (q, r). From deg r < deg
(
x2 − 1

)
= 2, we see that the polynomial r

can be written as a + bx for some a, b ∈ Q. Consider these a, b. From p = q ·
(
x2 − 1

)
+
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r, we obtain p − r = q ·
(
x2 − 1

)
∈
(
x2 − 1

)
Q [x]; thus, p = r in the quotient ring

Q [x] /
(
x2 − 1

)
. Now,

u = p = r = a + bx (since r = a + bx) , so that

f ′ (u) = f ′
(

a + bx
)
= (a + bx) [u] (by (99))

= a + bu.

Hence, a + bu = f ′ (u) = 0 (since u ∈ Ker ( f ′)). Since a, b ∈ Q, this entails a = b = 0
(since the vectors 1 and u in Q [C2] are Q-linearly independent). Thus, u = a + bx
rewrites as u = 0 + 0x = 0 ∈ {0}.

Forget that we fixed u. We thus have shown that u ∈ {0} for each u ∈ Ker ( f ′). In
other words, Ker ( f ′) ⊆ {0}. Since the reverse inclusion {0} ⊆ Ker ( f ′) is obvious, we
thus conclude that Ker ( f ′) = {0}. As we have said, this entails that f ′ is injective.

Now we know that the map f ′ is injective and surjective. Hence, f ′ is bijective, i.e.,
invertible. Since every invertible Q-algebra morphism is a Q-algebra isomorphism (by
Proposition 3.11.8), we thus conclude that f ′ is an Q-algebra isomorphism. Hence,
Q [x] /

(
x2 − 1

) ∼= Q [C2]. As we said, this proves Proposition 4.5.5.

Exercise 4.5.1. Let R be a commutative ring. Recall the R-algebra DR defined in
Exercise 3.11.2, along with the element ε = (0, 1) ∈ DR defined ibidem. Prove that
there is an R-algebra isomorphism

R [x] /
(
x2)→ DR,

p 7→ p [ε] .

Exercise 4.5.2. Let φ be the golden ratio – i.e., the real number
1 +

√
5

2
≈ 1.618 . . ..

Let Z [φ] be the set of all reals of the form a + bφ with a, b ∈ Z.

(a) Prove that Z [φ] is a subring of R.

(b) Prove that
Z [φ] ∼= F ∼= Z [x] /

(
x2 − x − 1

)
as rings,

where F is the ring defined in Exercise 2.3.6.

Exercise 4.5.3. Let R be the commutative group algebra Q [C3] discussed in Exam-

ple 4.1.6. Consider its idempotent element z =
1 + eu + ev

3
=

1 + u + v
3

. Let S be the

principal ideal (1 − z) R of R. As we know from Exercise 2.10.4 (b) (applied to e = z),
this principal ideal S is itself a ring, with addition and multiplication inherited from
R and with zero 0R and with unity 1 − z.

(a) Prove that this ring S is isomorphic to Q [x] /
(
x2 + x + 1

)
as rings.
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(b) Prove that S is furthermore isomorphic to the subring

Q
[√

−3
]
=
{

a + b
√
−3 | a, b ∈ Q

}
of C.

[Hint: For part (a), first show that

S = {a + bu + cv | a, b, c ∈ Q with a + b + c = 0} .

Then, show that the Q-algebra morphism

f : Q [x] /
(
x2 + x + 1

)
→ S,

p 7→ p [u (1 − z)]

is well-defined and invertible. The quickest way to verify invertibility is using linear
algebra over Q, as f is a Q-linear map between two 2-dimensional Q-vector spaces.

For part (b), find a root of the polynomial x2 + x + 1 in Q
[√

−3
]
.]

In our proofs of Propositions 4.5.2, 4.5.5 and 4.5.3 (even though I left the latter
to the reader), we used that the leading coefficients of the polynomials we were
quotienting out were units. Indeed, this is what allowed us to apply Theorem
4.3.7 (a), which was a crucial step in proving that f ′ is injective. Describing
quotient rings becomes much more complicated when the leading coefficient
of the polynomial is not a unit. Sometimes it is nevertheless possible. Here is a
particularly well-behaved example:

Proposition 4.5.6. Fix a nonzero integer m. Define the ring Rm as in Exercise
2.3.2; that is, Rm is the subring{

r ∈ Z | there exists an m ∈ N satisfying mkr ∈ Z
}

of Q. Then,

Z [x] / (mx − 1) ∼= Rm as Z-algebras (i.e., as rings).

More concretely: There is a Z-algebra isomorphism

Z [x] / (mx − 1) → Rm,

p 7→ p
[

1
m

]
.

Proof sketch. Intuitively, this should be exactly what you expect: According to
our “adjoining roots” philosophy, the ring Z [x] / (mx − 1) is what you get if
you “adjoin” a root of the polynomial mx − 1 to Z. But such a root would

behave like the rational number
1
m

; so it is no surprise that the resulting ring
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would be isomorphic to Rm (since Rm is really just “the numbers you can get if

you start with the integers and also allow multiplying by
1
m

”). This, of course,
is not a proof.

An actual proof can be done along the following lines:

1. Show that a Z-algebra morphism

α : Z [x] / (mx − 1) → Rm,

p 7→ p
[

1
m

]
exists. This is similar to the corresponding part of the proof of Proposition
4.5.2 (where we called the corresponding morphism f ′ rather than α); the
main roles are played by Theorem 4.2.8 and Theorem 4.4.3.

2. (Optional:) Show that this morphism α is surjective. (In fact, each element
of Rm has the form

a
mk for some a ∈ Z and some k ∈ N, and thus equals

α
(

axk
)

.)

3. Don’t waste your time trying to show that α is injective; there is no quick
way to prove this directly.

4. Show that there is a map

β : Rm → Z [x] / (mx − 1) ,
a

mk 7→ axk (where a ∈ Z and k ∈ N) .

(You need to show that this is well-defined – i.e., that if an element of Rm

has been written in the form
a

mk in two different ways, then the resulting

residue classes axk will be equal.)

5. Show that β is a Z-algebra morphism. (This is an exercise in bringing
fractions to a common denominator.)

6. Show that β ◦ α = id. (Indeed, β ◦ α is a Z-algebra morphism, since β and
α are Z-algebra morphisms. Moreover, it is easy to show that (β ◦ α) (x) =

x. Hence, (β ◦ α)

(
n
∑

i=0
cixi
)

=
n
∑

i=0
cixi for each n ∈ N and any coefficients

c0, c1, . . . , cn ∈ Z (since β ◦ α is a Z-algebra morphism). But this is saying
that β ◦ α = id, since every element of Z [x] / (mx − 1) can be written as

n
∑

i=0
cixi for some n ∈ N and some coefficients c0, c1, . . . , cn ∈ Z.)
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7. Show that α ◦ β = id. (Indeed, if you have done Step 2, then this follows
from β ◦ α = id. Otherwise, show it directly.)

8. Conclude from Steps 6 and 7 that the maps α and β are mutually inverse,
and thus α is invertible. Since α is a Z-algebra morphism, this entails that
α is a Z-algebra isomorphism, and you are done.

4.5.2. The general construction

In the previous subsection, we have seen a few examples of the construction in
which we start with a commutative ring R and a polynomial b ∈ R [x], and con-
struct the quotient ring R [x] /b. To recall, the bottom line of this construction is
“throw a new root of b into the ring R and see what happens”. Often, this pro-
duces a ring extension of R – i.e., a larger ring that contains R as a subring. (For
example, this happens if R = R and b = x2 + 1; this is how Cardano defined
the complex numbers.) However, this doesn’t always go well. Sometimes, what
happens instead is that the ring R collapses to a trivial ring (e.g., if b = 1) or at
least becomes smaller (e.g., we have (Z/6) [x] / (2x − 1) ∼= Z/3). Sometimes,
the ring loses some of its properties: e.g., if we throw a new root of x2 − 1 into
the field Q, then the resulting ring Q [x] /

(
x2 − 1

)
not only fails to be a field,

but even fails to be an integral domain (indeed, we have seen that this ring is
isomorphic to Q × Q).

Let us put these things in order. First, let us show that the residue class x in
R [x] /b is a root of b, so that our construction really creates a root of b:

Proposition 4.5.7. Let b ∈ R [x] be a polynomial. (Recall that R is still a fixed
commutative ring.)

(a) The projection map

πb : R [x] → R [x] /b,
p 7→ p

is an R [x]-algebra morphism, and thus an R-algebra morphism.

(b) The map140

R → R [x] /b,
r 7→ r

is an R-algebra morphism.

(c) For any p ∈ R [x], we have p [x] = p in R [x] /b.

(d) The element x ∈ R [x] /b is a root of b.
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None of this is difficult to prove, but the following proposition will make the
proof (even) more comfortable:

Proposition 4.5.8 (“Polynomials commute with algebra morphisms”). Let A
and B be two R-algebras. Let f : A → B be an R-algebra morphism. Let
a ∈ A. Let p ∈ R [x] be a polynomial. Then,

f (p [a]) = p [ f (a)] .

Proof of Proposition 4.5.8. Let us give a proof by example: Set p = 5x4 + x3 + 7x1.
Then, p [a] = 5a4 + a3 + 7a1 and p [ f (a)] = 5 f (a)4 + f (a)3 + 7 f (a)1. Thus, the
claim we have to prove rewrites as

f
(

5a4 + a3 + 7a1
)
= 5 f (a)4 + f (a)3 + 7 f (a)1 .

But this follows easily from the fact that f is an R-algebra morphism: Indeed,

f
(

5a4 + a3 + 7a1
)
= f

(
5a4
)
+ f

(
a3
)
+ f

(
7a1
)

(since f respects addition)

= 5 f
(

a4
)
+ f

(
a3
)
+ 7 f

(
a1
)

(since f respects scaling)

= 5 f (a)4 + f (a)3 + 7 f (a)1 (since f respects powers) .

The rigorous proof in the general case is LTTR.

Proof of Proposition 4.5.7. (a) This follows from the general fact (Theorem 4.4.1
(c)) that the canonical projection from an R-algebra to its quotient is an R-
algebra morphism. Note that we need to apply this fact to R [x] instead of R
here, in order to conclude that the map in question is an R [x]-algebra mor-
phism.

(b) The map

R → R [x] /b,
r 7→ r

is the composition of the projection map πb from part (a) with the inclusion
map

R → R [x] ,

r 7→ r = rx0.

140Note the difference between the maps in part (a) and in part (b): The map in part (a) takes
as input a polynomial p ∈ R [x], whereas the map in part (b) takes as input a scalar r ∈ R
(and treats it as a constant polynomial, i.e., as rx0 ∈ R [x]). If you regard R as a subring of
R [x], you can thus view the map in part (b) as a restriction of the map in part (a).
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Thus, it is a composition of two R-algebra morphisms (since both πb and the
inclusion map are R-algebra morphisms). Hence, it is an R-algebra morphism
itself141. This proves Proposition 4.5.7 (b).

(c) Here is an abstract argument: Let p ∈ R [x]. The projection map πb from
Proposition 4.5.7 (a) is an R-algebra morphism (by Proposition 4.5.7 (a)). Hence,
Proposition 4.5.8 (applied to A = R [x] and B = R [x] /b and a = x and f = πb)
yields

πb (p [x]) = p [πb (x)] . (100)

However, the definition of πb yields πb (p [x]) = p [x] = p (since p [x] = p) and
πb (x) = x. Hence, (100) rewrites as p = p [x]. This proves Proposition 4.5.7 (c).

Alternatively, you can prove it directly by writing p as p =
n
∑

i=0
pixi with

pi ∈ R. (Indeed, if you do this, then the claim rewrites as
n
∑

i=0
pixi =

n
∑

i=0
pixi; but

this is an easy consequence of how the quotient R [x] /b was defined.)
(d) Proposition 4.5.7 (c) (applied to p = b) yields b [x] = b = 0 (since b ∈

bR [x]). In other words, x is a root of b. This proves Proposition 4.5.7 (d).

Next, for a large class of polynomials b ∈ R [x] (including the monic ones, and
all the nonzero polynomials over a field), we are going to show how R [x] /b
looks like as an R-module:

Theorem 4.5.9. Let m ∈ N. Let b ∈ R [x] be a polynomial of degree m such
that its leading coefficient [xm] b is a unit of R. Then:

(a) Each element of R [x] /b can be uniquely written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R.

(b) The m vectors x0, x1, . . . , xm−1 form a basis of the R-module R [x] /b.
Thus, this R-module R [x] /b is free of rank m = deg b.

(c) Assume that m > 0. Then, the R-algebra morphism142

R → R [x] /b,
r 7→ r

is injective. Therefore, R can be viewed as an R-subalgebra (thus a
subring) of R [x] /b if we identify each r ∈ R with its image r ∈ R [x] /b.

(d) In particular, under the assumption that m > 0, there exists a com-
mutative ring that contains R as a subring and that contains a root of
b.

141Indeed, there is an easy fact (which we never stated, but which is completely straightforward
to prove after what we have seen) that any composition of two R-algebra morphisms is itself
an R-algebra morphism.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 336

Proof. (a) Let α ∈ R [x] /b. Then, α = a for some polynomial a ∈ R [x]. Consider
this a. The division-with-remainder theorem for polynomials (Theorem 4.3.7
(a)) tells us that there is a unique pair (q, r) of polynomials in R [x] such that

a = qb + r and deg r < deg b.

Consider this pair (q, r). Then, in R [x] /b, we have a = r (since a = qb + r
entails a − r = qb = bq ∈ bR [x]).

We have deg r < deg b = m; thus, we can write r in the form r = r0x0 + r1x1 +
· · ·+ rm−1xm−1 for some r0, r1, . . . , rm−1 ∈ R. Consider these r0, r1, . . . , rm−1. We
have

α = a = r = r0x0 + r1x1 + · · ·+ rm−1xm−1(
since r = r0x0 + r1x1 + · · ·+ rm−1xm−1

)
= r0x0 + r1x1 + · · ·+ rm−1xm−1

(since the scaling and the addition of the quotient algebra R [x] /b were inher-
ited from R [x]).

Thus, we have represented our α ∈ R [x] /b in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R

(namely, for ai = ri). It remains to show that this representation is unique.
This can be shown by walking the above proof backwards and using the

uniqueness part of the division-with-remainder theorem. Here are the details:
Assume that

α = b0x0 + b1x1 + · · ·+ bm−1xm−1 with b0, b1, . . . , bm−1 ∈ R

is some representation of α in the above form. We must then show that this
representation is actually the representation that we constructed above – i.e.,
that we have bi = ri for each i ∈ {0, 1, . . . , m − 1}.

Indeed, define a polynomial s ∈ R [x] by s = b0x0 + b1x1 + · · ·+ bm−1xm−1.
Then, deg s ≤ m − 1 < m = deg b. Also,

a = α = b0x0 + b1x1 + · · ·+ bm−1xm−1 = b0x0 + b1x1 + · · ·+ bm−1xm−1 = s

(since b0x0 + b1x1 + · · · + bm−1xm−1 = s). In other words, a − s ∈ bR [x]. In
other words,

a − s = bd for some d ∈ R [x] .

Consider this d. Thus, a = bd + s = db + s. Now, the pair (d, s) is a pair of
polynomials in R [x] satisfying a = db + s and deg s < deg b. This means that it
satisfies the exact conditions that the pair (q, r) was asked to satisfy. However,

142This is the map from Proposition 4.5.7 (b).



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 337

the division-with-remainder theorem for polynomials said that the pair (q, r)
satisfying those conditions was unique. Hence, we must have (d, s) = (q, r)
(since (d, s) satisfies the same conditions as (q, r)). Thus, d = q and s = r.

Now,

b0x0 + b1x1 + · · ·+ bm−1xm−1 = s = r = r0x0 + r1x1 + · · ·+ rm−1xm−1.

Comparing coefficients in these polynomials, we conclude that bi = ri for each
i ∈ {0, 1, . . . , m − 1} (since

(
x0, x1, x2, . . .

)
is a basis of the R-module R [x]). This

is what we needed to show. Theorem 4.5.9 (a) is thus proved.
(b) This is just Theorem 4.5.9 (a), rewritten in terms of modules and bases.
In some more detail:

• Each element of R [x] /b can be written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R

(according to Theorem 4.5.9 (a)). In other words, each element of R [x] /b
is an R-linear combination of x0, x1, . . . , xm−1. Thus, the list

(
x0, x1, . . . , xm−1

)
spans the R-module R [x] /b.

• Each element of R [x] /b can be uniquely represented in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R

(according to Theorem 4.5.9 (a)). Hence, in particular, the zero vector
0 ∈ R [x] /b can be uniquely represented in this form. But it is clear how
to represent 0 in this form: We just write

0 = 0x0 + 0x1 + · · ·+ 0xm−1.

Since we have just said that 0 can be uniquely represented in this form, we
thus conclude that this is the only way to represent 0 in this form. In other
words, if 0 has been represented in the form a0x0 + a1x1 + · · ·+ am−1xm−1

with a0, a1, . . . , am−1 ∈ R, then we must have a0 = a1 = · · · = am−1 = 0. In
other words, if a0, a1, . . . , am−1 ∈ R satisfy a0x0 + a1x1 + · · ·+ am−1xm−1 =
0, then a0 = a1 = · · · = am−1 = 0. But this is saying precisely that the list(

x0, x1, . . . , xm−1
)

is R-linearly independent.

Thus, we have shown that the list
(

x0, x1, . . . , xm−1
)

is R-linearly indepen-
dent and spans R [x] /b. In other words, this list is a basis of R [x] /b. This
proves Theorem 4.5.9 (b).

(c) We know (from Proposition 4.5.7 (b)) that the map

R → R [x] /b,
r 7→ r
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is an R-algebra morphism. We only need to show that it is injective. It clearly
suffices to show that its kernel is {0} (because we know that an R-module
morphism is injective if and only if its kernel is {0}).

So let r be in the kernel of this morphism. We must prove that r = 0.
Since r is in the kernel of the above morphism, we have r = 0 in R [x] /b. In

other words, r is a multiple of b. In other words, r = bc for some polynomial c ∈
R [x]. Consider this c. From r = bc, we obtain deg r = deg (bc) = deg b + deg c
(by Proposition 4.3.5 (b), since the leading coefficient of b is a unit). Thus,
deg b + deg c = deg r ≤ 0 (since r is constant). However, deg b = m > 0 by
assumption. Hence, deg b > 0 ≥ deg b + deg c. This entails deg c < 0. This
means that c = 0, whence r = b c︸︷︷︸

=0

= 0.

Forget that we fixed r. We thus have proved that if r is in the kernel of our
morphism, then r = 0. Hence, the kernel of our morphism is {0} (since 0 is
clearly in its kernel). Thus, the morphism is injective, and Theorem 4.5.9 (c) is
proven.

(d) Assume that m > 0. The ring R [x] /b contains a root of b (namely, x,
according to Proposition 4.5.7 (d)), and also contains “a copy of R”, in the sense
that there is an injective ring morphism from R to R [x] /b (namely, the one we
constructed in Theorem 4.5.9 (c)). If we replace this copy of R by the original R
(by replacing each r ∈ R [x] /b with the corresponding r ∈ R), then we obtain
a ring that contains R as a subring but also contains a root of b. This proves
Theorem 4.5.9 (d).

Let us summarize: We have generalized the construction of C. Namely, we
have found a way to “adjoin” a root of a polynomial b ∈ R [x] to a commuta-
tive ring R by forming the quotient ring R [x] /b. This latter ring is always a
commutative ring and an R-algebra. Moreover, if b is “nice” (that is, we have
deg b > 0, and the leading coefficient of b is a unit), then this latter ring R [x] /b
will contain R as a subring (by Theorem 4.5.9 (c)) and also will be a free R-
module of rank deg b (by Theorem 4.5.9 (b)). If b is not as “nice”, then the ring
R [x] /b may fail to contain R as a subring (even though it still is an R-algebra),
and may be smaller than R or even trivial.

4.6. Field extensions from adjoining roots

Let F be a field. Then, any non-constant univariate polynomial b ∈ F [x] is
“nice” in the sense of the preceding paragraph, so that F [x] /b is a commutative
ring that contains F as a subring and that contains a root of b. When will this
ring F [x] /b be a field?

We first state a simple fact about the units of F [x]:

Proposition 4.6.1. Let F be a field. The units of the polynomial ring F [x] are
precisely the nonzero constant polynomials.
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Proof. Any nonzero constant polynomial is a unit of F [x] (since it is a unit of
F). Conversely, any unit of F [x] must be a nonzero constant polynomial143.

Recall (from Theorem 4.3.22) that F [x] is a Euclidean domain, hence a PID
(by Proposition 2.14.2), hence a UFD (by Theorem 2.15.11). Furthermore, an
element p ∈ F [x] is prime144 if and only if it is irreducible (by Proposition
2.15.4, since F [x] is a PID). The notion of “irreducible” in F [x] is precisely the
classical concept of an irreducible polynomial:

Proposition 4.6.2. Let F be a field. Let p ∈ F [x]. Then, p is irreducible
if and only if p is non-constant and cannot be written as a product of two
non-constant polynomials.

Proof. The definition of “irreducible” says that p is irreducible if and only if p is
nonzero and not a unit and has the property that whenever a, b ∈ F [x] satisfy
ab = p, at least one of a and b must be a unit.

In view of Proposition 4.6.1, this can be rewritten as follows: p is irreducible
if and only if p is nonzero and not a nonzero constant polynomial and has the
property that whenever a, b ∈ F [x] satisfy ab = p, at least one of a and b must
be a nonzero constant polynomial.

We can declutter this statement (e.g., “nonzero and not a nonzero constant
polynomial” can be shortened to “non-constant”), and thus obtain the follow-
ing: p is irreducible if and only if p is non-constant and has the property that
whenever a, b ∈ F [x] satisfy ab = p, at least one of a and b must be constant.
In other words, p is irreducible if and only if p is non-constant and cannot be
written as a product of two non-constant polynomials.

Now, we can characterize when a quotient ring of the form F [x] /p is a field:

Theorem 4.6.3. Let F be a field. Let p ∈ F [x] be nonzero. Then, the ring
F [x] /p is a field if and only if p is irreducible.

For example, the irreducible polynomial x2 + 1 over the field R yields the
field R [x] /

(
x2 + 1

)
(which is ∼= C), but the non-irreducible polynomial x2 − 1

over the field R yields the non-field R [x] /
(
x2 − 1

) ∼= R × R.
Theorem 4.6.3 is analogous to the fact that Z/n is a field (for a positive

integer n) if and only if n is prime. Just like the latter fact, it is a particular case
of the following general property of PIDs:
143Proof. Let u be a unit of F [x]. We must show that u is a nonzero constant polynomial.

We know that u is a unit of F [x]; hence, there exists some v ∈ F [x] satisfying uv =
1. Consider this v. From uv = 1 ̸= 0, we obtain u ̸= 0, so that u is nonzero. Hence,
deg (uv) = deg u + deg v (by Proposition 4.3.5 (c), since F is an integral domain). Moreover,
from uv = 1, we obtain deg (uv) = deg 1 = 0, so that 0 = deg (uv) = deg u +deg v︸ ︷︷ ︸

≥0

≥ deg u,

which entails that u is constant. Thus, u is a nonzero constant polynomial, qed.
144See Definition 2.15.1 for the definitions of prime and irreducible elements of an integral

domain.
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Theorem 4.6.4. Let R be a PID. Let p ∈ R be nonzero. Then, the ring R/p is
a field if and only if p is irreducible.

Proof. =⇒: LTTR.
⇐=: Assume that p is irreducible. We must show that R/p is a field.
First of all, p is not a unit (since p is irreducible), so that 1 is not a multiple

of p. Hence, 1 ̸= 0 in R/p. In other words, the ring R/p is not trivial. This ring
is furthermore commutative (since R is commutative).

Now, let α ∈ R/p be a nonzero element. We shall prove that α is a unit.
Write α as a for some a ∈ R. Then, a = α ̸= 0 in R/p (since α is nonzero), so

that p ∤ a.
Now, recall that R is a PID, so that any ideal of R is principal. In particular,

this entails that the ideal aR + pR is principal. In other words, there exists
some g ∈ R such that aR + pR = gR. Consider this g. According to Proposition
2.14.13 (a), we can conclude from aR + pR = gR that g is a gcd of a and p.
Thus, g | a and g | p.

However, p is irreducible; hence, every divisor of p is either a unit or asso-
ciate to p (indeed, this is easily seen to be a consequence of the definition of
“irreducible”145). Thus, g is either a unit or associate to p (since g | p). How-
ever, g cannot be associate to p (because if g was associate to p, then we would
have p | g | a, which would contradict p ∤ a). Hence, g must be a unit. Thus, it
has an inverse g−1.

But g = g · 1 ∈ gR = aR+ pR. In other words, there exist two elements u, v ∈
R such that g = au + pv. Consider these u, v. Then, g = au + pv = ua + pv, so
that

g = ua + pv = ua (since pv ∈ pR)

in R/p. Therefore,

g−1u · a = g−1 · u · a = g−1 · ua︸︷︷︸
=g

= g−1 · g = g−1g = 1.

But this equality shows that g−1u is an inverse of a in the ring R/p (because we
know that R/p is commutative, so that we don’t need to check a · g−1u = 1 as
well). Thus, a is a unit. In other words, α is a unit (since α = a).

Forget that we fixed α. We thus have shown that any nonzero α ∈ R/p is
a unit. In other words, R/p is a field (since R/p is a nontrivial commutative
ring).

Theorem 4.6.3 is a particular case of Theorem 4.6.4 (since F [x] is a PID when
F is a field).

145Indeed: If d is a divisor of p, then there exists an e ∈ R such that p = de. Consider this e.
From p = de, we conclude that d or e is a unit (since p is irreducible). In the first case, d is a
unit; in the second case, d is associate to p.
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As a consequence of Theorem 4.6.3, we can now “adjoin” a root of an irre-
ducible polynomial to a field without destroying its field-ness: Namely, if we
have a field F and some irreducible polynomial b ∈ F [x], then the quotient ring
F [x] /b will be a field that contains F as a subring and that contains a root of
b. This generalizes Cardano’s definition of C, but can also be applied to adjoin
roots to fields other than R.

Example 4.6.5. The polynomial x2 + 1 ∈ (Z/3) [x] is irreducible. (Indeed,
Z/3 being a finite field, we could verify this by going through all nonconstant
polynomials of degree < 2 and checking that none of them divides x2 + 1.)

Thus, Theorem 4.6.3 yields that (Z/3) [x] /
(
x2 + 1

)
is a field. This field is

a free Z/3-module of rank 2 (by Theorem 4.5.9 (b)), and thus is isomorphic
to (Z/3)2 = (Z/3)× (Z/3) as a Z/3-module (but not as a ring, of course).
Hence, the size of this field is

∣∣∣(Z/3)2
∣∣∣ = |Z/3|2 = 32 = 9.

Thus, we have found a finite field of size 9. We have obtained it from Z/3
in the same way as C was obtained from R: by adjoining a square root of
−1.

Incidentally, this field can also be constructed as Z [i] /3.
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5. Finite fields

5.1. Basics

Example 4.6.5 may make you wonder: what finite fields can we find? We know
that for each prime p, the quotient ring Z/p is a field of size p; thus, we know
a finite field of any prime size. Now we have found a finite field of size 9, too.
What other finite fields exist?

Let’s first grab the low-hanging fruit:

Proposition 5.1.1. Let p be a prime number. Then:

(a) There exists an irreducible polynomial b ∈ (Z/p) [x] of degree 2 over
Z/p.

(b) There exists a finite field of size p2.

Example 5.1.2.

(a) Let p = 2. Then, Proposition 5.1.1 (a) yields that there exists an irre-
ducible polynomial b ∈ (Z/2) [x] of degree 2 over Z/2. It is easy to see
that this polynomial b is actually unique; it is b = x2 + x + 1. Further-
more, Proposition 5.1.1 (b) yields that there exists a finite field of size
p2 = 22 = 4. As we will see in the proof of the proposition, this latter
field can be obtained as F [x] /b for the afore-mentioned polynomial b.
It has four elements 0, 1, x, x + 1. It is easy to see that this field is ac-
tually isomorphic to the four-element ring F4 constructed in Subsection
2.1.2. (One possible isomorphism sends its four elements 0, 1, x, x + 1 to
the four elements 0, 1, a, b of the latter.) This explains why the F4 from
Subsection 2.1.2 is a ring!

(b) Let us now take p = 3 instead. Then, Proposition 5.1.1 (a) yields that
there exists an irreducible polynomial b ∈ (Z/3) [x] of degree 2 over
Z/3. Actually, there are three such polynomials:

b1 = x2 + 1; b2 = x2 + x + 2; b3 = x2 + 2x + 2.

We can use them to construct a finite field of size p2 = 32 = 9. Actually,
the three fields obtained turn out to be mutually isomorphic.

Proof of Proposition 5.1.1. We write F for Z/p. Thus, F is a field and satisfies
|F| = |Z/p| = p.

(a) If p = 2, then we can take b = x2 + x + 1; it is easy to check that this b is
irreducible.
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Thus, WLOG assume that p ̸= 2. Hence, p > 2. Thus, 1 ̸= −1 in Z/p. In
other words, 1 ̸= −1 in F (since Z/p = F). The map

F → F,

a 7→ a2

is not injective (since 12
= −12 but 1 ̸= −1), and thus cannot be surjective

(by the pigeonhole principle). Thus, there exists some u ∈ F that is not in the
image of this map. In other words, there exists some u ∈ F that is not a square.
Consider such a u. Then, the polynomial x2 − u has no roots in F.

Now it is not hard to prove that the polynomial x2 − u is irreducible.146 This
proves Proposition 5.1.1 (a) (since x2 − u ∈ (Z/p) [x] is an irreducible polyno-
mial of degree 2).

(b) Proposition 5.1.1 (a) yields that there exists an irreducible polynomial
b ∈ F [x] of degree 2 over F (since Z/p = F). Consider this b. Theorem
4.6.3 (applied to b instead of p) then yields that the ring F [x] /b is a field.
Moreover, F [x] /b is a free F-module of rank 2 (by Theorem 4.5.9 (b)), and thus
is isomorphic to F2 as a F-module, and therefore has size

∣∣F2
∣∣ = |F|2 = p2 (since

|F| = p). Hence, F [x] /b is a finite field of size p2. This proves Proposition 5.1.1
(b).

By more complicated but somewhat similar arguments147, we can also see

146Proof. Assume that we have written x2 − u as a product f g of two non-constant polynomials
f , g ∈ F [x]. We shall derive a contradiction.

Indeed, we have assumed that x2 − u = f g; hence, deg
(
x2 − u

)
= deg ( f g) = deg f +

deg g (since F is an integral domain). Thus, deg f + deg g = deg
(

x2 − u
)
= 2. Since deg f

and deg g are positive integers (because f and g are non-constant), this entails that deg f
and deg g must equal 1 (since the only pair of positive integers that add up to 2 is (1, 1)).
Thus, in particular, deg f = 1. Hence, f = ax + b for some a, b ∈ F with a ̸= 0. Consider

these a, b. From f = ax + b, we obtain f
[
−b
a

]
= a · −b

a
+ b = 0. Thus, the polynomial f

has a root in F (namely,
−b
a

). Hence, the polynomial x2 − u has a root in F as well (indeed,

f | f g = x2 − u, so that every root of f is also a root of x2 − u). This contradicts the fact that
the polynomial x2 − u has no roots in F.

Thus, we have found a contradiction stemming from our assumption that x2 − u is a
product f g of two non-constant polynomials f , g ∈ F [x]. Hence, x2 − u cannot be written
as such a product. In other words, x2 − u is irreducible (since x2 − u is a non-constant
polynomial). Qed.

147Not too similar! It is not true that the map

F → F,

a 7→ a3

is always non-surjective when F = Z/p for p > 3. Instead, you have to argue the existence
of an irreducible polynomial b ∈ (Z/p) [x] of degree 3 over Z/p by a counting argument:
Show that the total number of monic degree-3 polynomials in (Z/p) [x] is p3, whereas the
total number of monic degree-3 polynomials in (Z/p) [x] that can be written as a product of
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that there exists a finite field of size p3 for any prime p. This suggests gener-
alizing to pm; but this is much harder. Indeed, a nonconstant polynomial over
F of degree ≤ 3 will always be irreducible if it has no roots in F (check this!);
however, for polynomials of degree ≥ 4, this is no longer the case (fun exercise:
prove that the polynomial x4 + 4 ∈ Q [x] is not irreducible, despite of course
not having any roots over Q). Thus, our trick for finding irreducible polynomi-
als will no longer work for degrees > 3. We can still find a field of size p4 by
applying our trick twice (first get a finite field of size p2, then proceed to find
an irreducible polynomial of degree 2 over that field), and by induction we can
find fields of sizes p8, p16, p32, . . .. But we don’t get a field of size p5 this way.

So do such fields exist?

5.2. The characteristic of a field

Leaving prime powers aside for a moment, what about fields of size 6 ? It
turns out that such fields don’t exist, for a fairly simple reason. Fields have an
important invariant, the so-called characteristic:

Definition 5.2.1. Let F be a field. The characteristic of F is an integer called
char F, which is defined as follows:

• If there exists a positive integer n such that n · 1F = 0F, then char F is
defined to be the smallest such n.

• If such an n does not exist, then char F is defined to be 0.

Roughly speaking, char F is “how often you have to add 1F to itself to obtain
0F” (with the caveat that we define it to be 0 if you never obtain 0F by adding
1F to itself). Here are some examples:

• We have char Q = 0, since there exists no positive integer n such that
n · 1Q = 0Q. For the same reason, char R = 0 and char C = 0.

• For any prime p, we have char (Z/p) = p. Indeed, p · 1Z/p = p · 1 =

p · 1 = p = 0 in Z/p, but every positive integer n < p satisfies n · 1Z/p =

n · 1 = n · 1 = n ̸= 0 in Z/p.

• For our fields F of size p2 or p3, we also have char F = p, since they
contain Z/p as subrings.

What does a characteristic satisfy in general?

a degree-1 and a degree-2 polynomial is smaller than p3; thus, at least one monic degree-3
polynomial cannot be written as such a product.
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Theorem 5.2.2 (Properties of characteristics). Let F be a field. Let p = char F.
Then:

(a) The field F is a Z/p-algebra. (Remember: Z/0 ∼= Z.)

(b) We have pa = 0 for each a ∈ F.

(c) The number p is either prime or 0.

(d) If F is finite, then p is a prime.

(e) If F is finite, then |F| = pm for some positive integer m.

(f) If p is a prime, then F contains “a copy of Z/p” (meaning: a subring
isomorphic to Z/p).

(g) If p = 0, then F contains “a copy of Q” (meaning: a subring isomorphic
to Q): namely, the map

Q → F,
a
b
7→ a · 1F

b · 1F
(for a, b ∈ Z with b ̸= 0)

is an injective ring morphism.

Proof. We have p · 1F = 0F. Indeed, if p = 0, then this is obvious; but otherwise
it follows from the definition of char F.

(b) Let a ∈ F. Then, a = 1F · a. Thus,

pa = p (1F · a) = (p · 1F)︸ ︷︷ ︸
=0F

· a = 0F · a = 0F = 0.

This proves Theorem 5.2.2 (b).

(a) We define an action of the ring Z/p on F by

k · a = ka for all k ∈ Z and a ∈ F.

Why is this well-defined? In other words, why is it true that if two integers k
and ℓ satisfy k = ℓ, then ka = ℓa for all a ∈ F ?

Let us check this directly: Let k and ℓ be two integers satisfying k = ℓ in Z/p.
This means k ≡ ℓmod p, so that k − ℓ is a multiple of p. That is, k − ℓ = pu for
some u ∈ Z. Consider this u. Now,

ka − ℓa = (k − ℓ)︸ ︷︷ ︸
=pu

a = pua = 0
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(by Theorem 5.2.2 (b), applied to ua instead of a). Thus, ka = ℓa, which is
precisely what we wanted to prove.

Thus, the action of Z/p on F is well-defined. Now, it remains to show that
F is a Z/p-module, and that the “scale-invariance” axiom is satisfied. All of
this is easy and LTTR148. Thus, F becomes a Z/p-algebra. This proves Theorem
5.2.2 (a).

(c) Assume the contrary. Thus, p is neither a prime nor 0. Hence, p is either
1 or a composite149 positive integer (since p is always a nonnegative integer).

Since F is a field, we have 1 ̸= 0 in F. In other words, 1F ̸= 0F. If we
had p = 1, then we would thus have p︸︷︷︸

=1

·1F = 1 · 1F = 1F ̸= 0F, which

would contradict p · 1F = 0F. Thus, we cannot have p = 1. Hence, p must be
composite (since p is either 1 or composite). In other words, p = uv for some
integers u > 1 and v > 1. Consider these integers u and v.

From u > 1 and v > 1 and p = uv, we see that both integers u and v are
smaller than p. Hence, neither u · 1F nor v · 1F can be 0F (since p = char F was
defined to be the smallest positive integer n such that n · 1F = 0F). Since F is
an integral domain (because F is a field), this yields that the product (u · 1F) ·
(v · 1F) is also nonzero.

Now, p · 1F = 0F, so

0F = p︸︷︷︸
=uv

· 1F = uv · 1F = (u · 1F) · (v · 1F) .

This contradicts the fact that the product (u · 1F) · (v · 1F) is nonzero. This
proves Theorem 5.2.2 (c).

(d) Assume that F is finite. We must show that p is a prime.
According to Theorem 5.2.2 (c), it suffices to show that p ̸= 0. So let us show

this. Assume the contrary. Then, p = 0. Hence, none of the elements 1 · 1F,
2 · 1F, 3 · 1F, . . . of F is 0F (by the definition of char F). But F is finite, so two
of these elements must be equal (by the Pigeonhole Principle). In other words,
there exist positive integers u < v such that u · 1F = v · 1F. Consider these u and

148For example, let us prove the associativity law, which says that (rs)m = r (sm) for all r, s ∈
Z/p and m ∈ F. Indeed, let r, s ∈ Z/p and m ∈ F. Write r and s as k and ℓ for some
integers k and ℓ. Then, rs = k · ℓ = kℓ, so that (rs)m = kℓ · m = kℓm (by our definition of
the action of Z/p on F). Also, from r = k and s = ℓ, we obtain

r (sm) = k ·
(
ℓ · m

)
= k

(
ℓ · m

)
(by our definition of the action)

= k (ℓm)
(

since our definition of the action yields ℓ · m = ℓm
)

= kℓm.

Comparing this with (rs)m = kℓm, we obtain (rs)m = r (sm), qed.
149A positive integer is said to be composite if it can be written as a product of two integers

each larger than 1.
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v. Then, v− u is a positive integer, and we have (v − u) · 1F = v · 1F − u · 1F = 0F
(since u · 1F = v · 1F). But (v − u) · 1F is one of the elements 1 · 1F, 2 · 1F, 3 · 1F,
. . . (since u < v), and we just said that none of these elements is 0F. This
contradicts (v − u) · 1F = 0F. Thus, our assumption was false; hence, Theorem
5.2.2 (d) is proven.

(e) First proof of part (e): Assume that F is finite. Thus, by Theorem 5.2.2 (d),
we know that p is prime.

Since F is a field, we have 1 ̸= 0 in F. Hence, |F| > 1.
From Theorem 5.2.2 (a), we know that F is a Z/p-algebra. Thus, in particular,

F is a Z/p-module. But since p is prime, Z/p is a field.
Now, recall that a module over a field is nothing but a vector space. In

particular, every module over a field is free (since any vector space has a ba-
sis150). Thus, in particular, the Z/p-module F is free. In other words, the
Z/p-module F has a basis. This basis must be finite (since F itself is finite).
Thus, F ∼= (Z/p)m as Z/p-modules for some m ∈ N. Consider this m. From
F ∼= (Z/p)m, we obtain |F| =

∣∣(Z/p)m∣∣ = |Z/p|m = pm. It remains to prove
that m is positive. But this is easy: If m was 0, then |F| = pm would imply
|F| = p0 = 1, which would contradict |F| > 1. Thus, the proof of Theorem 5.2.2
(e) is complete.

Second proof of part (e): There is an alternative proof of Theorem 5.2.2 (e),
which avoids any use of linear algebra but instead uses some group theory.
Specifically, we will use Cauchy’s theorem, which says the following: If G is a
finite group, and if q is a prime number that divides the size |G|, then G has
an element of order q. Proofs of this theorem can be found, e.g., in https://
kconrad.math.uconn.edu/blurbs/grouptheory/cauchypf.pdf or in [Sharif22,
Theorem 4.9.4] or [Knapp16, Remark after Theorem 4.59] or [Elman22, Theo-
rem 21.22] or [Ford22, Corollary 2.4.14], just to mention some freely available
sources. (It is also an easy consequence of the first Sylow theorem.)

Now, assume that F is finite. Thus, by Theorem 5.2.2 (d), we know that p is
prime.

Since F is a field, we have 1 ̸= 0 in F. Hence, |F| > 1.
Assume (for the sake of contradiction) that the integer |F| has a prime divisor

q distinct from p. Thus, Cauchy’s theorem (applied to G being the additive
group (F,+, 0)) yields that the additive group (F,+, 0) has an element of order
q. Let a be this element. Then, a ̸= 0 but qa = 0 (since a has order q). However,

150This fact is Theorem 3.7.6.
Once again, I haven’t actually proved this fact in this course, but you can easily bridge

this gap yourself or look it up in any text on linear algebra (or in Keith Conrad’s https://
kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf ). Our situation is simpler
than the general case, since we know that F is finite, so it is clear that there is a finite list of
vectors in F that span F (because you can just take a list of all elements of F). In order to
obtain a basis from such a list, you only need to successively remove vectors that are linear
combinations of other vectors; once no such vectors remain, the list will be a basis (make
sure you understand why!).

https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchypf.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/cauchypf.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
https://kconrad.math.uconn.edu/blurbs/linmultialg/dimension.pdf
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Theorem 5.2.2 (b) yields pa = 0.
However, p and q are two distinct primes, and thus are coprime. Thus,

gcd (p, q) = 1. But Bezout’s theorem shows that there exist two integers x
and y such that xp + yq = gcd (p, q). Consider these x and y. Then,

(xp + yq)︸ ︷︷ ︸
=gcd(p,q)=1

a = 1a = a ̸= 0

contradicts
(xp + yq) a = x pa︸︷︷︸

=0

+ y qa︸︷︷︸
=0

= x0 + y0 = 0.

This contradiction shows that our assumption (that the integer |F| has a prime
divisor q distinct from p) is false.

Hence, the integer |F| has no prime divisor distinct from p. Thus, the only
prime divisor of |F| is p. Therefore, |F| = pm for some m ∈ N. This m must
furthermore be positive (since |F| > 1). Thus, Theorem 5.2.2 (e) is proven again.

(f) Assume that p is a prime. Then, F is a Z/p-algebra (by Theorem 5.2.2 (a)),
so we can define a map

Z/p → F,
α 7→ α · 1F.

It is straightforward to check that this map is a ring morphism151; furthermore,
it is easily seen to be injective152. Hence, its image is a subring of F that is
isomorphic to Z/p (by Proposition 2.7.11 (a)). This proves Theorem 5.2.2 (f).
151For instance, it respects multiplication because (α · 1F) (β · 1F) = αβ · 1F1F︸︷︷︸

=1F

= αβ · 1F for any

α, β ∈ Z/p.
152This is actually best understood as a particular case of the following general fact: Any ring

morphism from a field to a nontrivial ring is injective!
The proof of this general fact is pretty easy: Let f : K → R be a ring morphism from a

field K to a nontrivial ring R. We must show that f is injective.
Assume that a is a nonzero element of Ker f . Then, a is a unit of K (since K is a field, and

thus any nonzero element of K is a unit), and thus a−1 exists. Since f is a ring morphism,
we have

f
(

aa−1
)
= f (a)︸︷︷︸

=0
(since a∈Ker f )

· f
(

a−1
)
= 0,

so that 0 = f

aa−1︸︷︷︸
=1

 = f (1) = 1 (since f is a ring morphism). This entails that the ring R

is trivial, which contradicts our assumption that R is nontrivial.
Forget that we fixed a. We thus obtained a contradiction for any nonzero element a of

Ker f . Hence, no such element exists. In other words, any a ∈ Ker f must be 0. Thus,
Ker f ⊆ {0}, so that Ker f = {0}, and therefore f is injective (by Lemma 2.9.7). This
completes our proof.
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(g) We will be very brief, since we won’t use Theorem 5.2.2 (g) in what fol-
lows.

Assume that p = 0. Then, for any nonzero integer b, the element b · 1F of
F is nonzero (why?) and therefore a unit of F (since F is a field). Hence, for
any rational number

a
b
∈ Q (written in such a way that a, b ∈ Z and b ̸= 0),

the element
a · 1F

b · 1F
∈ F is well-defined. Now, of course, the representation of a

rational number as
a
b

with a, b ∈ Z is not unique (for instance,
6
4

and
3
2

are the

same rational number); however, it is not hard to show that
a · 1F

b · 1F
is uniquely

determined by
a
b

(meaning that if a, b, c, d ∈ Z satisfy
a
b
=

c
d

, then we also have
a · 1F

b · 1F
=

c · 1F

d · 1F
). Thus, the map

Q → F,
a
b
7→ a · 1F

b · 1F
(for a, b ∈ Z with b ̸= 0)

is well-defined. Next, it can be shown that this map is a ring morphism and
is injective153. Hence, its image is a subring of F that is isomorphic to Q. This
proves Theorem 5.2.2 (g).

Parts (f) and (g) of Theorem 5.2.2 show that any field F has at its “core” a
“small” field: either (a copy of) Z/p (if its characteristic is a prime p) or (a copy
of) Q (if its characteristic is 0).

Parts (d) and (e) of Theorem 5.2.2 (in combination) show that the size of any
finite field is a power of a prime. Thus, there are no finite fields of size 6 or 10
or 12.

Hence, we can limit our search for finite fields to those of size pm for p prime
and m > 0. We have already found such fields for m = 1 and for m = 2 (for all
p), and briefly hinted at the cases m = 3 and m = 4, but we are still missing the
case of general m.

5.3. Tools

5.3.1. Splitting polynomials

We will approach the general case indirectly (no easy and direct proofs are
known). We will need a bunch of tools. The first is the notion of a splitting
field. We begin with a definition:

153The injectivity follows just as in part (f).
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Definition 5.3.1. Let R be a commutative ring. Let b ∈ R [x] be a polynomial
over R. We say that b splits over R if there exist elements r1, r2, . . . , rm of R
such that

b = (x − r1) (x − r2) · · · (x − rm) .

Note that in this definition, we must necessarily have deg b = m (unless R
is trivial). Also, a polynomial cannot split unless it is monic. This might differ
from how other authors define the notion of “splitting”, but it is sufficient for
what we will do with it.

Example 5.3.2.

(a) The polynomial x2 − 1 splits over Q, since

x2 − 1 = (x − 1) (x + 1) = (x − 1) (x − (−1)) .

(b) The polynomial x2 + 1 does not split over R (since it has no roots in R),
but it splits over C, since

x2 + 1 = (x − i) (x + i) = (x − i) (x − (−i)) .

(c) The polynomial x2 splits over Q, since x2 = xx = (x − 0) (x − 0).

(d) The polynomial x4 − 9 does not split over R. Indeed, it has a factoriza-
tion

x4 − 9 =
(

x −
√

3
) (

x +
√

3
) (

x2 + 3
)

,

but the x2 + 3 factor is still not of the form x − r and cannot be factored
further over R. However, this polynomial does split over C, since

x4 − 9 =
(

x −
√

3
) (

x +
√

3
) (

x −
√

3i
) (

x +
√

3i
)

.

(e) Any monic polynomial of degree 1 automatically splits over whatever
commutative ring it is defined over. So does the constant polynomial 1
(since it is an empty product).

When a polynomial splits over a field, its roots can be read off directly from
the splitting:

Proposition 5.3.3. Let F be a field. Let r1, r2, . . . , rm ∈ F. Then,

{the roots of the polynomial (x − r1) (x − r2) · · · (x − rm) ∈ F [x] in F}
= {r1, r2, . . . , rm} .
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Proof. The ring F is a field, thus an integral domain. Thus, a product uv of two
elements u, v ∈ F is zero if and only if one of its factors is zero. Hence, a finite
product u1u2 · · · uk of elements of F is zero if and only if one of its factors is
zero154.

Now, we have

{the roots of the polynomial (x − r1) (x − r2) · · · (x − rm) ∈ F [x] in F}
= {a ∈ F | ((x − r1) (x − r2) · · · (x − rm)) [a] = 0}

(by the definition of a “root”)
= {a ∈ F | (a − r1) (a − r2) · · · (a − rm) = 0}(

since the evaluation ((x − r1) (x − r2) · · · (x − rm)) [a]
equals (a − r1) (a − r2) · · · (a − rm)

)
= {a ∈ F | one of a − r1, a − r2, . . . , a − rm is zero}(

since a finite product u1u2 · · · uk of elements of F is zero
if and only if one of its factors is zero

)
= {a ∈ F | a = r1 or a = r2 or · · · or a = rm}
= {r1, r2, . . . , rm} .

This proves Proposition 5.3.3.

Remark 5.3.4. It is worth noting that Proposition 5.3.3 still holds if we re-
place “field” by “integral domain” (and the same proof applies); but it does
not hold when F is just a general commutative ring. For example, if F = Z/4,
then the polynomial (x − 0) (x − 0) (x − 1) (x − 3) ∈ F [x] has roots 0, 1, 2, 3,
rather than just 0, 1, 3 as Proposition 5.3.3 would predict. A similar construc-
tion works for Z/n where n is any composite integer > 1 (see Exercise 5.3.1).

Exercise 5.3.1. Let n > 1 be a composite integer (i.e., an integer that is not prime).
Prove the following:

(a) Each element of Z/n is a root of the polynomial
n−1
∏
i=1

(
x − i

)2 ∈ (Z/n) [x].

(b) If n > 4, then each element of Z/n is a root of the polynomial
n−1
∏
i=1

(
x − i

)
∈

(Z/n) [x].

5.3.2. Splitting fields

The Fundamental Theorem of Algebra says that each monic univariate poly-
nomial over C splits over C. This is not actually a theorem of algebra, since it

154Indeed, this follows easily by induction on k, using the preceding sentence in the induction
step.
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relies on the definition of C (which is analytic); however, it explains some of the
significance of C. In general, a field F is said to be algebraically closed if each
monic univariate polynomial over F splits over F. The field C is not the only
algebraically closed field, but it is perhaps the best-known.

We won’t need algebraically closed fields in this course; we will need a more
“local” notion: that of a splitting field. To introduce it, we make a simple
observation, which we have already (tacitly) used in Example 5.3.2 (as we have
been treating the same polynomial x2 + 1 first as a polynomial in R [x] and then
as a polynomial in C [x]):

Proposition 5.3.5. Let S be a commutative ring. Let R be a subring of S. Then,
any polynomial over R automatically is a polynomial over S as well (since its
coefficients lie in R and therefore also lie in S), and thus the polynomial ring
R [x] becomes a subring of S [x].

For example, R [x] is a subring of C [x]. Polynomials like x2 + 1 might not
split over R, but they split over C. This suggests that if a monic polynomial does
not split over a ring, we might fix this by making the ring larger (“extending”
the ring, possibly by “adjoining” some roots), just as C was constructed from
R in order to make x2 + 1 split. Thus we make the following definition:

Definition 5.3.6. Let F be a field. Let b ∈ F [x] be a monic polynomial over
F. Then, a splitting field of b (over F) means a field S such that

• F is a subring of S;

• the polynomial b (regarded as a polynomial in S [x]) splits over S.

Examples:

• C is a splitting field of x2 + 1 over R.

• C is a splitting field of x2 − 2 over Q, but so is R (since x2 − 2 already
splits over R) or even the smaller field Q

[√
2
]
=
{

a + b
√

2 | a, b ∈ Q
}

.

• Q itself is a splitting field of x2 − 1 over Q.

(Be careful with the literature: Many authors have a more restrictive concept
of a “splitting field”, which requires not only that the polynomial split over it,
but also that the field – in some reasonable way – is minimal with this property.
For example, these authors do not accept R as a splitting field of x2 − 2 over Q,
since the much smaller field Q

[√
2
]

suffices to split the polynomial. But our
definition suffices for our purposes.)

The most important fact about splitting fields is that they always exist:
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Theorem 5.3.7. Let F be a field. Let b ∈ F [x] be a monic polynomial over F.
Then:

(a) We can write b as a product b = c1c2 · · · ck of monic irreducible polyno-
mials c1, c2, . . . , ck ∈ F [x].

(b) If deg b > 0, then there is a field that contains F as a subring and that
contains a root of b.

(c) There exists a splitting field of b over F.

Proof. (a) Any nonzero polynomial in F [x] can be made monic by scaling it
with a nonzero scalar (namely, if g ∈ F [x] is a nonzero polynomial, and if c is
its leading coefficient, then c−1g is a monic polynomial). This scaling does not
interfere with its divisibility properties; thus, if g is irreducible, then it remains
so after the scaling.

Hence, it suffices to show that we can write b as a product b = c1c2 · · · ck of
irreducible polynomials c1, c2, . . . , ck ∈ F [x].

Abstractly, this follows easily from the fact that F [x] is a UFD. In a more
down-to-earth manner, this can be shown just like the classical fact that each
positive integer can be written as a product of primes. The proof proceeds
by strong induction on deg b; the main idea is “either b is itself irreducible, in
which case we are done; or b can be written as a product of two polynomials of
smaller degree, in which case the induction hypothesis applies”.

(Note that this proof is constructive when F is finite, since we can actually
try out all polynomials of degree smaller than deg b and check which of them
divide b.)

Theorem 5.3.7 (a) is thus proved.
(b) Assume that deg b > 0. We must find a field that contains F as a subring

and that contains a root of b.
It is tempting to take F [x] /b, but this might fail to be a field (since b might

fail to be irreducible).
Instead, we use Theorem 5.3.7 (a) to write b as a product b = c1c2 · · · ck of

monic irreducible polynomials c1, c2, . . . , ck ∈ F [x], and then we take the field
F [x] /c1 (which is indeed a field, because c1 is irreducible155). This field will
contain a root of c1, and thus also contain a root of b (since a root of c1 is always
a root of b). So Theorem 5.3.7 (b) is proved.

(Where did I use the assumption deg b > 0 in this proof? Hint: Why is there
a c1 ?)

(c) Here is a proof by example: Assume that deg b = 3.
Theorem 5.3.7 (b) says that there is a field F′ that contains F as a subring

and that contains a root of b. Consider this F′, and let r1 be the root of b

155We are using Theorem 4.6.3 here.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 354

that it contains. Thus, x − r1 | b in F′ [x] (since r1 is a root of b). Hence, the

polynomial
b

x − r1
∈ F′ [x] is well-defined. Moreover, this polynomial

b
x − r1

has degree 3 − 1 = 2 and is monic156.
Now, we apply Theorem 5.3.7 (b) again, but this time to the field F′ and the

monic polynomial
b

x − r1
over it. Thus we conclude that there is a field F′′ that

contains F′ as a subring and that contains a root of
b

x − r1
. Consider this F′′,

and let r2 be the root of
b

x − r1
that it contains. Thus, x − r2 | b

x − r1
in F′′ [x]

(since r2 is a root of
b

x − r1
). Hence, the polynomial

b
x − r1

/ (x − r2) ∈ F′′ [x]

is well-defined. In other words, the polynomial
b

(x − r1) (x − r2)
∈ F′′ [x] is

well-defined. Moreover, this polynomial
b

(x − r1) (x − r2)
has degree 3 − 2 = 1

and is monic.
Now, we apply Theorem 5.3.7 (b) again, but this time to the field F′′ and the

monic polynomial
b

(x − r1) (x − r2)
over it. Thus we conclude that there is a

field F′′′ that contains F′′ as a subring and that contains a root of
b

(x − r1) (x − r2)
.

Consider this F′′′, and let r3 be the root of
b

(x − r1) (x − r2)
that it contains.

Thus, x − r3 | b
(x − r1) (x − r2)

in F′′′ [x]. Hence, the polynomial

b
(x − r1) (x − r2) (x − r3)

∈ F′′′ [x] is well-defined. Furthermore, this polyno-

mial has degree 3− 3 = 0 and is monic. In other words, this polynomial equals
1. In other words, b = (x − r1) (x − r2) (x − r3) in F′′′ [x]. This shows that b
splits over F′′′. Moreover, by construction, F′′′ is a field that contains F as a
subring (since F ⊆ F′ ⊆ F′′ ⊆ F′′′, and each of these “⊆” signs is not just a
subset but actually a subring).

Thus, we have proved Theorem 5.3.7 (c) in our example. Proving it in the
general case is just a matter of formalizing what we did as an induction on
deg b.

156Here, we are using the fact that when we divide a monic polynomial f by a monic polynomial
g with deg g ≤ deg f , the quotient will again be monic. (The proof is LTTR. Note that this
holds even if there is a remainder!)
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5.3.3. The Idiot’s Binomial Formula and the Frobenius endomorphism

Next, to something different. A rather surprising property of fields of posi-
tive characteristic is the following theorem (often called Freshman’s Dream or
Idiot’s Binomial Formula due to its similarity to a popular student mistake):

Theorem 5.3.8 (Idiot’s Binomial Formula, aka Freshman’s Dream). Let p be
a prime number. Let F be a field of characteristic p, or, more generally, any
commutative Z/p-algebra. Then:

(a) We have (a + b)p = ap + bp for any a, b ∈ F.

(b) We have (a + b)pm
= apm

+ bpm
for any a, b ∈ F and m ∈ N.

(c) We have (a − b)p = ap − bp for any a, b ∈ F.

(d) We have (a − b)pm
= apm − bpm

for any a, b ∈ F and m ∈ N.

For example, for p = 3, Theorem 5.3.8 (a) says that (a + b)3 = a3 + b3. And
indeed, we can show this directly: Theorem 5.2.2 (b) shows that 3u = 0 for any
u ∈ F (for p = 3), and the binomial formula yields

(a + b)3 = a3 + 3a2b︸︷︷︸
=0

(since 3u=0
for any u∈F)

+ 3ab2︸︷︷︸
=0

(since 3u=0
for any u∈F)

+ b3 = a3 + b3.

We note that Theorem 5.3.8 says nothing about powers other than p-th or pm-th
powers. So it is not a replacement for the binomial formula!

To prove Theorem 5.3.8 (a) in general, we will argue in the same way as in
the p = 3 example we just showed; we will just need to know that all but
the leftmost and rightmost addends in the binomial formula vanish. This is a
consequence of the following property of binomial coefficients:

Lemma 5.3.9. Let p be a prime number. Let k ∈ {1, 2, . . . , p − 1}. Then,

p |
(

p
k

)
.

Note that this does indeed depend on p being a prime. For example, the

number 4 is not prime, and we do not have 4 |
(

4
2

)
(since

(
4
2

)
= 6).

Proof of Lemma 5.3.9. There is an easy-to-prove formula (see, e.g., [Grinbe15,
Proposition 3.22]) saying that(

p
k

)
=

p
k
·
(

p − 1
k − 1

)
.
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Hence,

k
(

p
k

)
= p

(
p − 1
k − 1

)
.

Hence, k
(

p
k

)
is divisible by p. But k is coprime to p (since p is prime), so

we can cancel k from this divisibility, and conclude that
(

p
k

)
is divisible by p.

Lemma 5.3.9 is proved. (See [Grinbe21, discussion of Exercise 9.1.6] for another
proof.)

Proof of Theorem 5.3.8. (a) Let a, b ∈ F. Then, ab = ba (since F is commutative);
thus, the Binomial Formula yields

(a + b)p =
p

∑
k=0

(
p
k

)
akbp−k = ap +

p−1

∑
k=1

(
p
k

)
akbp−k + bp. (101)

Now, we claim that all the addends in the sum
p−1
∑

k=1

(
p
k

)
akbp−k vanish. In-

deed, let k ∈ {1, 2, . . . , p − 1}. Then, Lemma 5.3.9 tells us that
(

p
k

)
= mp

for some m ∈ Z. Consider this m. Then, each u ∈ F satisfies
(

p
k

)
u =

m pu︸︷︷︸
=0

(by Theorem 5.2.2 (b))

= m · 0 = 0. Hence, in particular, we have

(
p
k

)
akbp−k = 0. (102)

Now, forget that we fixed k. We thus have shown that (102) holds for each
k ∈ {1, 2, . . . , p − 1}. Hence, (101) becomes

(a + b)p = ap +
p−1

∑
k=1

(
p
k

)
akbp−k︸ ︷︷ ︸
=0

(by (102))

+ bp = ap + bp.

This proves Theorem 5.3.8 (a).

(b) This follows by induction on m using Theorem 5.3.8 (a), since any u ∈ F

satisfies upm
=
(

upm−1
)p

.

(c) Let a, b ∈ F. Applying Theorem 5.3.8 (a) to a − b instead of a, we get

((a − b) + b)p = (a − b)p + bp.
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Solving this for (a − b)p, we get

(a − b)p =

(a − b) + b︸ ︷︷ ︸
=a

p

− bp = ap − bp.

This proves Theorem 5.3.8 (c).

(d) This follows by induction on m using Theorem 5.3.8 (c).

Corollary 5.3.10. Let p be a prime number. Let F be a field of characteristic
p, or, more generally, any commutative Z/p-algebra. Then, the map

F → F,
a 7→ ap

is a ring morphism.

Proof. Theorem 5.3.8 (a) says that this map respects addition. But it is also
clear that this map respects multiplication (since (ab)p = apbp for any a, b ∈ F)
and respects zero and unity (since 0p = 0 and 1p = 1). Thus, it is a ring
morphism.

The ring morphism in Corollary 5.3.10 is known as the Frobenius endomor-
phism of F. It exists for arbitrary commutative Z/p-algebras, but it is particu-
larly well-behaved for finite fields. In particular, it is bijective when F is a finite
field:

Exercise 5.3.2. Let p be a prime number. Let F be a finite field of characteristic p.
Let f be the Frobenius endomorphism of F (that is, the map F → F, a 7→ ap). Recall
that f is a ring morphism (by Corollary 5.3.10).

(a) Prove that f is a ring isomorphism from F to F (so it is invertible).

(b) Now, replace the words “field of characteristic p” by the (more general) “com-
mutative Z/p-algebra” in the above. Find an example where the claim of part
(a) becomes false.

We will use the Idiot’s Binomial Formula to construct finite fields, but it has
many other applications. Here is just one:

Exercise 5.3.3. Let p be a prime number.

(a) Prove that (1 + x)ap+c = (1 + xp)a (1 + x)c in the polynomial ring (Z/p) [x]
for any a, c ∈ N.

(b) Prove Lucas’s congruence: Any a, b ∈ N and any c, d ∈ {0, 1, . . . , p − 1} satisfy(
ap + c
bp + d

)
≡
(

a
b

)(
c
d

)
mod p.
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The following exercise is a converse to Lemma 5.3.9:

Exercise 5.3.4. Let n > 1 be an integer that is not prime. Prove that there exists

some k ∈ {1, 2, . . . , n − 1} such that n ∤
(

n
k

)
.

[Hint: Let k be a prime divisor of n.]

5.3.4. The derivative of a polynomial

Our last tool is optional, as we will use it in one proof but avoid it in an al-
ternative proof of the same claim. Nevertheless, it is worth seeing, since its
usefulness is not limited to the cursory use we will put it to. This tool is the
notion of the “formal” (i.e., purely algebraic) derivative of a polynomial (which
is defined over an arbitrary commutative ring, not just over the real or complex
numbers):

Definition 5.3.11. Let R be a commutative ring. Let f ∈ R [x] be a poly-
nomial. The derivative f ′ of f is a polynomial in R [x] defined as follows:
Writing f in the form

f = ∑
k∈N

fkxk = f0x0 + f1x1 + f2x2 + f3x3 + · · ·

for some f0, f1, f2, . . . ∈ R, we set

f ′ = ∑
k>0

fkkxk−1 = f1 · 1x0 + f2 · 2x1 + f3 · 3x2 + f4 · 4x3 + · · ·

For example, if f = 7x4 + 2x + 3, then f ′ = 7 · 4x3 + 2 · 1x0 = 28x3 + 2 (where
we have, of course, ignored zero coefficients).

Definition 5.3.11 is obviously inspired by the formula for the derivative of
a polynomial function in calculus. Unlike in calculus, we are not wasting our
time with little εs and convergence issues; instead, we are just defining f ′ using
the explicit formula that probably took you some time to prove back in calculus.
There is no free lunch here – with this definition, you cannot re-use anything
you have learned about derivatives in your analysis classes (already because
you are working in a much more general setting now, with a commutative ring
R instead of the real numbers); thus, a host of basic properties of derivatives
need to be proven before the notion becomes useful. In particular, the following
needs to be shown:

Proposition 5.3.12. Let R be a commutative ring. Let f , g ∈ R [x]. Then:

(a) We have ( f + g)′ = f ′ + g′.

(b) We have ( f g)′ = f ′g + f g′. (This is called the Leibniz rule.)
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Exercise 5.3.5. Prove Proposition 5.3.12.

[Hint: For part (b), it is easiest to first prove it in the particular case when f = xa

and g = xb for some a and b, and then obtain the general case by interchanging
summations.]

The following corollary is an algebraic analogue of the well-known fact “a
double root of a polynomial is a root of its derivative”:

Corollary 5.3.13. Let R be a commutative ring. Let f ∈ R [x] and r ∈ R. If
(x − r)2 | f in R [x], then x − r | f ′ in R [x].

Proof. Assume that (x − r)2 | f . Thus, we can write f as f = (x − r)2 g for some
g ∈ R [x]. Consider this g. From f = (x − r)2 g, we obtain

f ′ =
(
(x − r)2 g

)′
=
(
(x − r)2

)′
︸ ︷︷ ︸

=2(x−r)
(this is easy to
check directly)

g + (x − r)2 g′ (by the Leibniz rule)

= 2 (x − r) g + (x − r)2 g′ = (x − r)
(
2g + (x − r) g′

)
.

Thus, x − r | f ′, so that Corollary 5.3.13 is proven.

Corollary 5.3.13 can be applied (in its contrapositive) as a sufficient criterion
for a polynomial to have distinct roots. This is exactly how we will soon apply
it. We note that Corollary 5.3.13 also has a converse:

Exercise 5.3.6. Let R be a commutative ring. Let f ∈ R [x] and r ∈ R. If r is a root
of both f and f ′, then prove that (x − r)2 | f in R [x].

Here are some further properties of derivatives of polynomials:

Exercise 5.3.7. Let R be a commutative ring. Let f ∈ R [x] be any polynomial.
Prove the following:

(a) We have deg ( f ′) ≤ deg f − 1.

(b) If R is a Q-algebra and f is not constant, then deg ( f ′) = deg f − 1.

Exercise 5.3.8.

(a) Let R be a commutative ring. Let f , g ∈ R [x] be any two polynomials. Prove
that ( f [g])′ = f ′ [g] · g′. (This is called the chain rule for polynomials, and is
the algebraic analogue of the chain rule in calculus.)

(b) Use this chain rule to give a different proof of the equality
(
(x − r)2

)′
=

2 (x − r) in the above proof of Corollary 5.3.13.
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Exercise 5.3.9. Let R be a commutative ring. Let f ∈ R [x] be a polynomial. Con-
sider also the polynomial ring R [x, y] in two indeterminates x and y.

(a) Prove that there is a unique polynomial g ∈ R [x, y] satisfying f [y]− f [x] =
(y − x) · g.

(b) Prove that this polynomial g satisfies g [x, x] = f ′.

(Because of its definition, the polynomial g can be written as
f [y]− f [x]

y − x
, even

though y − x is not a unit of R [x, y]. However, when computing g [x, x], we cannot

just set y to x in the fraction
f [y]− f [x]

y − x
; instead, we must first expand this frac-

tion into a polynomial. Thus, the claim of part (b) is the algebraic analogue of the

formula f ′ (x) = lim
y→x

f (y)− f (x)
y − x

from calculus.)

Exercise 5.3.10. Let R be a commutative ring. Recall the R-algebra DR of R-dual
numbers from Exercise 3.11.2. Let ε be the element (0, 1) of DR. Let f ∈ R [x] be an
arbitrary polynomial. Prove that

f [(a, b)] =
(

f [a] , b f ′ [a]
)

in DR.

(In other words, prove that f [a + bε] = f [a] + b f ′ [a] ε, where we are identifying
each element r ∈ R with the R-dual number (r, 0) ∈ DR.)

Exercise 5.3.11. Let R be a commutative ring.
Let D : R [x] → R [x] be the map sending each polynomial f to its derivative f ′.

We refer to D as (formal) differentiation. As usual, for any n ∈ N, we let Dn denote
D ◦ D ◦ · · · ◦ D︸ ︷︷ ︸

n times

(which means id if n = 0).

Prove the following:

(a) The map D : R [x] → R [x] is R-linear.

(b) We have Dn (xk) = n!
(

k
n

)
xk−n for all n ∈ N and k ∈ N. Here, the expression

“
(

k
n

)
xk−n” is to be understood as 0 when k < n.

(c) If Q is a subring of R, then every polynomial f ∈ R [x] satisfies

f [x + a] = ∑
n∈N

1
n!

(Dn ( f )) [a] · xn for all a ∈ R.

(The infinite sum on the right hand side has only finitely many nonzero ad-
dends.)

(d) If p is a prime such that p · 1R = 0 (for example, this happens if R = Z/p),
then Dp ( f ) = 0 for each f ∈ R [x].
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Exercise 5.3.12. Let R be a commutative ring such that Q is a subring of R. For
each polynomial

f = ∑
k∈N

fkxk = f0x0 + f1x1 + f2x2 + · · · ∈ R [x] (where fi ∈ R) ,

we define the (formal) integral
∫

f of f to be the polynomial

∑
k∈N

1
k + 1

fkxk+1 =
1
1

f0x1 +
1
2

f1x2 +
1
3

f2x3 + · · · ∈ R [x] .

(This definition imitates the standard procedure for integrating power series in anal-
ysis, but again works for any commutative ring R that contains Q as subring.)

Let J : R [x] → R [x] be the map sending each polynomial f to its integral
∫

f .
Prove the following:

(a) The map J : R [x] → R [x] is R-linear.

(b) We have D ◦ J = id.

(c) We have J ◦ D ̸= id.

5.4. Existence of finite fields

Now we are in walking distance of the existence of fields of size pm:

Theorem 5.4.1. Let p be a prime number. Let m be a positive integer. Then,
there exists a finite field of size pm.

Proof. From p > 1 and m > 0, we obtain pm > 1. Hence, the polynomial
xpm − x is monic. Thus, by Theorem 5.3.7 (c), there exists a splitting field of
this polynomial over Z/p. Let S be such a splitting field. Thus, the polynomial
xpm − x splits over S. In other words, there exist elements r1, r2, . . . , rpm of S
such that

xpm − x = (x − r1) (x − r2) · · ·
(
x − rpm

)
. (103)

Consider these r1, r2, . . . , rpm .
Let

L =
{

r1, r2, . . . , rpm
}

.

Our goal will be to show that L is a finite field of size pm.
Everything in this statement needs proof!157 Even the size is not obvious, let

alone that L is a field. Let us start with the size:

Claim 1: We have |L| = pm.

157Except for the “finite” part, which is obvious but not overly helpful by itself.



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 362

Let us give two proofs of Claim 1:
[First proof: This amounts to showing that r1, r2, . . . , rpm are distinct (since this

will immediately yield that L =
{

r1, r2, . . . , rpm
}

is a pm-element set). Let us
thus do this. Indeed, assume the contrary. Then, ri = rj for some i < j. Hence,
the x − ri and x − rj factors on the right hand side of (103) are identical. Thus,
x − ri appears twice as a factor on this right hand side; consequently, (103)
entails that (x − ri)

2 | xpm − x. Hence, Corollary 5.3.13 (applied to R = S and

f = xpm − x and r = ri) yields x − ri |
(

xpm − x
)′

. But Definition 5.3.11 yields

(
xpm − x

)′
= pmxpm−1︸ ︷︷ ︸

=0
(since pu=0
for any u∈S)

− 1 = −1.

Thus, x − ri |
(

xpm − x
)′

= −1 | 1. But it is impossible for the degree-1
polynomial x − ri to divide the degree-0 polynomial 1 (for degree reasons).
So we have found a contradiction.]

[Second proof: The following proof of Claim 1 (which I have learnt from
[Shifri96, Chapter 5, Theorem 3.3]) avoids the use of derivatives.

Again, it suffices to show that r1, r2, . . . , rpm are distinct. Again, assume the
contrary. Then, ri = rj for some i < j. As before, we then find that (x − ri)

2 |
xpm − x. In other words, xpm − x = (x − ri)

2 · g for some polynomial g ∈ S [x].
Consider this g. Substituting ri for x in the equality xpm − x = (x − ri)

2 · g, we
obtain rpm

i − ri = (ri − ri)
2︸ ︷︷ ︸

=0

· g [ri] = 0. In other words, rpm

i = ri.

Substituting x + ri for x in the equality xpm − x = (x − ri)
2 · g, we obtain

(x + ri)
pm

− (x + ri) =

x + ri − ri︸ ︷︷ ︸
=x

2

· g [x + ri] = x2 · g [x + ri] .

In view of

(x + ri)
pm︸ ︷︷ ︸

=xpm
+rpm

i
(by Theorem 5.3.8 (b))

− (x + ri) = xpm
+ rpm

i︸︷︷︸
=ri

− (x + ri) = xpm
+ ri − (x + ri) = xpm − x,

we can rewrite this as xpm − x = x2 · g [x + ri]. Thus, x2 | xpm − x. But this is
visibly absurd. Thus, we have found a contradiction again.]

Next, let us characterize L somewhat differently:
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Claim 2: We have

L =
{

the roots of xpm − x in S
}
=
{

a ∈ S | apm − a = 0
}

=
{

a ∈ S | apm
= a

}
.

[Proof of Claim 2: The equation (103) yields that{
the roots of xpm − x in S

}
=
{

the roots of (x − r1) (x − r2) · · ·
(
x − rpm

)
in S

}
=
{

r1, r2, . . . , rpm
}

(by Proposition 5.3.3)
= L.

Hence,

L =
{

the roots of xpm − x in S
}
=
{

a ∈ S | apm − a = 0
}

=
{

a ∈ S | apm
= a

}
.

This proves Claim 2.]
Now, why is L a field? First, let us check that L is a ring:

Claim 3: The set L is a subring of S.

[Proof of Claim 3: Claim 2 yields that

L =
{

a ∈ S | apm
= a

}
. (104)

Hence, 0 ∈ L (since 0pm
= 0) and 1 ∈ L (since 1pm

= 1). Furthermore, I claim
that L is closed under addition. Indeed, if a, b ∈ L, then (104) yields apm

= a
and bpm

= b, so that

(a + b)pm
= apm︸︷︷︸

=a

+ bpm︸︷︷︸
=b

(by Theorem 5.3.8 (b))

= a + b,

and this means a + b ∈ L (again because of (104)). This shows that L is closed
under addition For a similar reason, L is closed under subtraction158, so that
L is closed under negation. Finally, L is closed under multiplication, since
(ab)pm

= apm
bpm

for any a, b ∈ L. Hence, L is a subring of S.]
Thus, in particular, L is a commutative ring (since S is a field, thus a commu-

tative ring). Now, let us see that L is a field:

158Use Theorem 5.3.8 (d) instead of Theorem 5.3.8 (b) here.
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Claim 4: The ring L is a field.

[Proof of Claim 4: We know that S is a field, so that 0 ̸= 1 in S, and this of
course means that 0 ̸= 1 in L. It thus remains to show that every nonzero
element of L is a unit.

Let a ∈ L be nonzero. Then, a has an inverse in S, since S is a field. This

inverse a−1 satisfies
(
a−1)pm

=
(

apm
)−1

(indeed, this is a particular case of the

identity
(

g−1)k
=
(

gk)−1
, which holds whenever g is an element of a group

and k is an integer). But a ∈ L and thus apm
= a (by (104)). Hence,

(
a−1
)pm

=

(
apm︸︷︷︸
=a

)−1

= a−1,

so that a−1 ∈ L (by (104) again). Thus, a has an inverse in L; in other words, a
is a unit of L.

Thus, we have shown that every nonzero element of L is a unit. As we said,
this finishes the proof of Claim 4.]

Combining Claims 1 and 4, we conclude that L is a field of size pm. Thus,
such a field exists. This proves Theorem 5.4.1.

So we are done with the first deep result of this course! But some further
questions suggest themselves:

• We have obtained L rather indirectly: First, we took a splitting field S of
the huge polynomial xpm − x; then we carved L out of it by taking the
roots of this polynomial. Could we get L more directly? For example, if
there is an irreducible polynomial f of degree m over Z/p, then we can
just take the field (Z/p) [x] / f . Is there such an f ?

• Can there be several non-isomorphic fields of size pm (for fixed p and m)?
For example, can there be two non-isomorphic fields of size p2 ? It is not
hard to see that any field of size p2 can be obtained (up to isomorphism)
by adjoining a root of an irreducible quadratic polynomial to Z/p; thus,
the question is whether different such polynomials can lead to different
fields.

If we were working with infinite fields, examples of such behavior would
be easy to find. For example, adjoining a root of x2 − 2 to Q yields the field
Q
[√

2
]
, whereas adjoining a root of x2 − 3 to Q yields the field Q

[√
3
]
. It

is not hard to see that Q
[√

2
]

is not isomorphic to Q
[√

3
]

(for example,

you can show that 2 is a square in Q
[√

2
]

but not in Q
[√

3
]
). Can this

happen with Z/p instead of Q ?

These questions will be answered in the next section.
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5.5. Uniqueness of finite fields

Theorem 5.4.1 shows that for any prime power pm, there exists a finite field
of size pm. The next natural question is: How many such fields are there?
Literally, of course, there are infinitely many, since each one has infinitely many
isomorphic (but not literally identical) copies. Of course, the right question to
ask is how many non-isomorphic finite fields there are of a given size.

The answer is surprisingly simple: There is only one. Proving this will take
us some work. (This section is more abstract and notationally dense than many
others, and can be skipped.)

5.5.1. Annihilating polynomials and minimal polynomials

We begin with two fundamental concepts of Galois theory: the notions of “anni-
hilating polynomials” and of “minimal polynomials”. We will not delve deeper
than this into Galois theory, but we will explore these notions in some detail.

Roughly speaking, the main problem of classical algebra is solving polyno-
mial equations: Given a polynomial f , what are its roots? Our abstract view-
point has allowed us to extend the field over which the polynomial is defined,
and in such an extension we can always find a root for any non-constant uni-
variate polynomial (see Theorem 5.3.7 (b)).

We now turn the question around: Given an element a of a field F, what are
the polynomials f that have a as a root? If we want f to belong to F [x], then
this is an easy question, and the answer is “exactly those polynomials that are
divisible by x − a” (see Proposition 4.3.14). But this question becomes more
interesting if we require f to belong to S [x], where S is a smaller field than F.
For instance, a could be the imaginary unit i =

√
−1 ∈ C, and S could be the

field R, so we would be asking about the real polynomials that have i as a root.
Clearly, x2 + 1 is one of these, and thus any multiple of x2 + 1 qualifies as well.
Are there any others?

To study this kind of question, we introduce the notions of annihilating and
minimal polynomials:159

Definition 5.5.1. Let S and F be two fields such that S is a subring of F. (For
example, we can take S = Q and F = R.)

Let a ∈ F be an arbitrary element.

(a) An annihilating polynomial of a shall mean a polynomial f ∈ S [x]
such that a is a root of f . For instance:

• If a ∈ S, then x − a is an annihilating polynomial of a.

• If a is a square root of an element v ∈ S, then x2 − v is an annihi-
lating polynomial of a.

159Mnemonic: The letters S and F refer to “subfield” and “field”.
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• If S = Q and F = R, then x4 − 10x2 + 1 is an annihilating polyno-
mial of

√
2 +

√
3.

• The real number π is known to be transcendental; this means that
there exists no nonzero annihilating polynomial of π (for S = Q

and F = R).

(b) The minimal polynomial of a (over the subfield S) is defined to be the
monic annihilating polynomial of a of smallest possible degree (if such
a polynomial exists).160

It is not yet clear that the minimal polynomial of a really deserves the def-
inite article! Couldn’t there be several monic annihilating polynomials of a of
smallest possible degree? Which of them deserves to be called “the” minimal
polynomial?

Fortunately, this question never arises, since there is only one:

Theorem 5.5.2. Let S and F be two fields such that S is a subring of F. Let
a ∈ F. Then:

(a) The minimal polynomial of a is unique if it exists. That is, if there is
at least one monic annihilating polynomial of a, then only one of these
polynomials has smallest possible degree.

(b) The minimal polynomial of a is always irreducible if it exists.

(c) If f is the minimal polynomial of a, then the map

S [x] / f → F,
g 7→ g [a]

is a (well-defined) S-algebra morphism, and is injective.

(d) Assume that a has a minimal polynomial. Let f be the minimal poly-
nomial of a. Then, the annihilating polynomials of a are precisely the
polynomials g ∈ S [x] that are divisible by f .

Before we prove this, let us show a lemma:

160Thus, the minimal polynomial of a is defined in the exact same way as the minimal polyno-
mial of a square matrix was defined in linear algebra. However, the minimal polynomial
of a matrix is not always irreducible, whereas in our case the minimal polynomial will be
irreducible (see below).
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Lemma 5.5.3. Let S and F be two fields such that S is a subring of F. Let
a ∈ F.

Let f ∈ S [x] be a minimal polynomial of a. (We could say “the minimal
polynomial of a” if we knew that it is unique, but we don’t know this yet; we
will prove this soon.)

Let g ∈ S [x] be any polynomial. Then:

(a) If g [a] = 0, then f | g.

(b) If f | g, then g [a] = 0.

Proof of Lemma 5.5.3. We know that f is a minimal polynomial of a. Thus, f is
a monic annihilating polynomial of a. Hence, a is a root of f ; in other words,
f [a] = 0. Also, the leading coefficient of f is 1 (since f is monic), and thus is a
unit of S. Hence, Theorem 4.3.7 (a) (applied to S, f and g instead of R, b and a)
yields that there is a unique pair (q, r) of polynomials in S [x] such that

g = q f + r and deg r < deg f .

Consider this pair (q, r).

(a) Assume that g [a] = 0. Thus,

0 = g [a] = (q f + r) [a] (since g = q f + r)
= q [a] · f [a]︸︷︷︸

=0

+ r [a] = r [a] .

Hence, r [a] = 0.
We assume (for the sake of contradiction) that r ̸= 0. Hence, r has a leading

coefficient λ. Consider this λ. This λ is nonzero, and thus is a unit of S (since
S is a field). Hence, the polynomial λ−1r is well-defined. Moreover, since λ−1

is a nonzero constant, we have deg
(
λ−1r

)
= deg r < deg f .

However,
(
λ−1r

)
[a] = λ−1 · r [a]︸︷︷︸

=0

= 0. In other words, a is a root of λ−1r.

Thus, λ−1r is an annihilating polynomial of a. Furthermore, this polynomial
λ−1r is monic (since λ is the leading coefficient of r, so that scaling r by λ−1

turns the leading coefficient into 1).
Now, recall that f is a minimal polynomial of a. In other words, f is a

monic annihilating polynomial of a of smallest possible degree. Therefore,
deg

(
λ−1r

)
≥ deg f (since λ−1r, too, is a monic annihilating polynomial of

a). This contradicts deg
(
λ−1r

)
< deg f . This contradiction shows that our

assumption (that r ̸= 0) was false. Hence, r = 0.
Now, g = q f + r︸︷︷︸

=0

= q f , so that f | g. This proves Lemma 5.5.3 (a).
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(b) Assume that f | g. Thus, g = f q for some q ∈ S [x]. Consider this q. From
g = f q, we obtain g [a] = ( f q) [a] = f [a]︸︷︷︸

=0

· q [a] = 0. Thus, Lemma 5.5.3 (b) is

proved.

Proof of Theorem 5.5.2. (a) Assume that a has a minimal polynomial. We must
show that the minimal polynomial of a is unique.

Assume the contrary. Thus, there exist two distinct minimal polynomials f
and g of a. Consider these f and g. Both f and g are minimal polynomials
of a, and thus are monic annihilating polynomials of a. In particular, we have
g [a] = 0 (since g is an annihilating polynomial of a). Hence, Lemma 5.5.3 (a)
yields f | g. The same argument (but with the roles of f and g interchanged)
yields g | f .

We have f | g. In other words, there exists a polynomial q ∈ S [x] such that
g = f q. Consider this q. We have f q = g ̸= 0 (since g is monic) and thus q ̸= 0.
Also, f ̸= 0 (since f is monic). But F is a field and thus an integral domain.
Hence, Proposition 4.3.5 (c) yields deg ( f q) = deg f + deg q. In view of g = f q,
this rewrites as deg g = deg f +deg q. Hence, deg g ≥ deg f (since q ̸= 0 entails
deg q ≥ 0). Similarly, deg f ≥ deg g. Combining these two inequalities, we find
deg f = deg g.

Thus, deg f = deg g = deg f + deg q, so that deg q = 0 (since f ̸= 0 entails
deg f ≥ 0). In other words, q is a nonzero constant.

The leading coefficient of f is 1 (since f is monic). Thus, the leading coeffi-
cient of f q is q (since q is a nonzero constant). In view of f q = g, this rewrites
as follows: The leading coefficient of g is q. However, the leading coefficient of
g is 1 (since g is monic). Comparing the previous two sentences, we conclude
that q = 1. Hence, g = f q︸︷︷︸

=1

= f . This contradicts our assumption that f

and g are distinct. This contradiction shows that our assumption was wrong.
Theorem 5.5.2 (a) is thus proved.

(b) Assume that a has a minimal polynomial. Let f be the minimal polyno-
mial of a. We must show that f is irreducible.

Recall that f is the minimal polynomial of a. In other words, f is a monic
annihilating polynomial of a of smallest possible degree. Thus, a is a root
of f (since f is an annihilating polynomial of a); in other words, f [a] = 0.
Thus, f cannot be a nonzero constant (because this would entail f [a] = f ̸=
0, contradicting f [a] = 0). Hence, f is not a unit of the ring S [x]. (This is
something that needs to be checked if you want to show that f is irreducible.
Don’t forget about this!)

Now, let u, v ∈ S [x] be such that uv = f . We shall show that at least one of u
and v is a unit of S [x].

Indeed, assume the contrary. Thus, neither u nor v is a unit of S [x]. Moreover,
neither u nor v equals 0 (since uv = f ̸= 0). Hence, neither u nor v is constant
(since a constant polynomial is either a unit of S [x] or equals 0). Thus, deg u ≥



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 369

1 and deg v ≥ 1. However, f = uv and thus deg f = deg (uv) = deg u + deg v
(since F is a field and thus an integral domain). Hence, deg f = deg u+deg v︸ ︷︷ ︸

≥1>0

>

deg u, so that deg u < deg f .
Now, f = uv, so that f [a] = (uv) [a] = u [a] · v [a] and therefore u [a] · v [a] =

f [a] = 0. Since F is a field and thus an integral domain, this entails that
u [a] = 0 or v [a] = 0. We WLOG assume that u [a] = 0 (since otherwise, we can
simply swap u with v). Let λ denote the leading coefficient of u (this is well-
defined, since u does not equal 0). Then, the polynomial λ−1u is monic, and is
an annihilating polynomial of a (since

(
λ−1u

)
[a] = λ−1 · u [a]︸︷︷︸

=0

= 0). Thus, the

degree of this polynomial λ−1u must be at least as large as that of f (since f
is a monic annihilating polynomial of a of smallest possible degree). In other
words, deg

(
λ−1u

)
≥ deg f . This contradicts deg

(
λ−1u

)
= deg u < deg f .

This contradiction shows that our assumption was wrong. Hence, at least
one of u and v is a unit of S [x].

Forget that we fixed u, v. We thus have shown that whenever u, v ∈ S [x]
satisfy uv = f , at least one of u and v is a unit of S [x]. Thus, f is irreducible
(since f is not a unit of S [x]). This proves Theorem 5.5.2 (b).

(c) Assume that a has a minimal polynomial. Let f be the minimal polyno-
mial of a. Thus, f is a monic annihilating polynomial of a. Hence, f [a] = 0.

We know that F is an S-algebra (since F is a commutative ring, and S is a
subring of F). The map

φ : S [x] → F,
g 7→ g [a]

is an S-algebra morphism (by Theorem 4.2.8). This map φ sends the principal
ideal f S [x] to 0, because for each q ∈ S [x], we have

φ ( f q) = ( f q) [a] = f [a]︸︷︷︸
=0

· q [a] = 0.

Hence, the universal property of quotient algebras (Theorem 4.4.3, applied to
S, S [x], f S [x], F and φ instead of R, A, I, B and f ) yields that the map

φ′ : S [x] / f → F,
g 7→ φ (g) (for all g ∈ S [x])

is well-defined and is an S-algebra morphism. Consider this φ′. Thus, each
g ∈ S [x] satisfies

φ′ (g) = φ (g)
(
by the definition of φ′)

= g [a] (by the definition of φ) . (105)
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Thus, φ′ is precisely the map

S [x] / f → F,
g 7→ g [a]

that Theorem 5.5.2 (c) is talking about. In particular, we now know that this
map is well-defined and is an S-algebra morphism. It remains to prove that
this map φ′ is injective.

Since φ′ is S-linear, it suffices to show that Ker (φ′) = {0} (by Lemma 3.5.10).
Let u ∈ Ker (φ′). We shall prove that u = 0.
Indeed, we have u ∈ Ker (φ′) ⊆ S [x] / f , so that u = g for some g ∈ S [x].

Consider this g. We have φ′ (g) = 0 (since g = u ∈ Ker (φ′)), so that 0 =
φ′ (g) = g [a] (by (105)). Hence, Lemma 5.5.3 (a) yields f | g. In other words,
g = 0 in S [x] / f . Hence, u = g = 0 ∈ {0}.

Forget that we fixed u. We thus have shown that u ∈ {0} for each u ∈
Ker (φ′). In other words, Ker (φ′) ⊆ {0}. Since the reverse inclusion {0} ⊆
Ker (φ′) is obvious, we thus conclude that Ker (φ′) = {0}. As we have said,
this entails that φ′ is injective. This completes the proof of Theorem 5.5.2 (c).

(d) We must show that the annihilating polynomials of a are precisely the
polynomials g ∈ S [x] that are divisible by f . In other words, we must prove
the following two statements:

Statement 1: Any annihilating polynomial of a is divisible by f .

Statement 2: Any polynomial g ∈ S [x] that is divisible by f is an
annihilating polynomial of a.

Fortunately, Statement 1 is just a restatement of Lemma 5.5.3 (a) (since an
annihilating polynomial of a is precisely a polynomial g ∈ S [x] such that g [a] =
0), and Statement 2 is likewise a restatement of Lemma 5.5.3 (b). Thus, both
Statements 1 and 2 have already been proven, and Theorem 5.5.2 (d) is proved.

Corollary 5.5.4. Let S and F be two fields such that S is a subring of F. Let
a ∈ F.

Let g ∈ S [x] be a monic irreducible polynomial such that g [a] = 0. Then,
g is the minimal polynomial of a (over S).

Proof. We have g [a] = 0. In other words, a is a root of g. In other words,
g is an annihilating polynomial of a. We thus conclude that a has a monic
annihilating polynomial in S [x] (namely, g). Hence, there exists at least one
monic annihilating polynomial of a in S [x]. Thus, there also exists such a
polynomial of smallest degree. In other words, a has a minimal polynomial.

Let f be this minimal polynomial. Thus, f is monic. Moreover, f is irre-
ducible (by Theorem 5.5.2 (b)), and hence cannot be a unit of S [x].
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Furthermore, Lemma 5.5.3 (a) yields that f | g (since g [a] = 0). In other
words, there exists a polynomial q ∈ S [x] such that g = f q. Consider this q.
Since g is irreducible, we conclude that one of f and q is a unit (since g = f q).
Since f cannot be a unit, we thus conclude that q is a unit. In other words, q is
a nonzero scalar. This scalar q must be 1 (since both f and f q = g are monic).
Thus, g = f q︸︷︷︸

=1

= f . Hence, g is the minimal polynomial of a (since f is the

minimal polynomial of a). This proves Corollary 5.5.4.

Exercise 5.5.1. Let S = Q and F = C. Let d ∈ Q. Prove the following:

(a) The minimal polynomial of
√

d (over the field S = Q) is

{
x −

√
d, if

√
d ∈ Q;

x2 − d, otherwise.

(In particular, the minimal polynomial of the imaginary unit i =
√
−1 is x2 +

1.)

(b) The minimal polynomial of 3
√

d (over the field S = Q) is

{
x − 3

√
d, if 3

√
d ∈ Q;

x3 − d, otherwise.

(c) What is the minimal polynomial of 4
√
−4 (over the field S = Q) ?

[Hint: In part (c), the answer is neither a degree-1 polynomial nor a degree-4
polynomial.]

Exercise 5.5.2. Let S = Q and F = R. Let p and q be two positive integers such
that none of p, q and pq is a perfect square (i.e., a square in Z). (For example, we
can take p = 5 and q = 8.) Let a =

√
p +

√
q ∈ F.

Let f denote the polynomial(
x2 − p − q

)2 − 4pq = x4 − 2 (p + q) x2 + (p − q)2 ∈ S [x] .

(a) Show that f is an annihilating polynomial of a (that is, f [a] = 0).

(b) Show that f has no rational root.

(c) Show that f is irreducible (in S [x]).

(d) Conclude that f is the minimal polynomial of a (over the field S = Q).

[Hint: Part (c) is the tricky one. One way to prove it is to decompose f as

f = (x − (
√

p +
√

q)) (x − (
√

p −√
q)) (x − (−√

p +
√

q)) (x − (−√
p −√

q))

in R [x], and show that no two of the four factors here yield a polynomial in Q [x]
when multiplied. Another approach uses the fact that the polynomial f is even –
meaning that f [−x] = f , or, equivalently (since S has characteristic 0) that no odd
powers of x appear in f . This can be used to argue that if f = g1g2 · · · gk is the
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factorization of f into monic irreducible polynomials, then substituting −x for x
into it must yield another factorization f = f [−x] = g1 [−x] g2 [−x] · · · gk [−x] of f
into monic irreducible polynomials (why are they still monic?). Since S [x] is a UFD,
the two factorizations must be identical (up to the order of the factors). This narrows
down the possibilities for g1, g2, . . . , gk substantially.]

Exercise 5.5.3. Let S and F be the subrings

S :=
{(

u 0
0 u

)
| u ∈ Z/4

}
and F :=

{(
u v
0 u

)
| u, v ∈ Z/4

}
of the matrix ring (Z/4)2×2. It is easy to see that F is a commutative ring, and that
S is a subring of F.

Let a be the element
(

0 2
0 0

)
of F.

(a) Prove that a2 = 2a = 02×2.

(b) Let us extend Definition 5.5.1 from fields to commutative rings in the obvious
way (i.e., replacing “field” by “commutative ring” throughout this definition).
Prove that the element a of F has two minimal polynomials, namely x2 and
x2 + 2x.

(c) Conclude that Theorem 5.5.2 (a) no longer holds if we generalize it from fields
to commutative rings.

5.5.2. Minimal polynomials in finite fields

Next, we apply the notion of minimal polynomials to finite fields:

Proposition 5.5.5. Let p be a prime number. Let S be the field Z/p.
Let F be a finite field of characteristic p. Assume that S = Z/p is a subring

of F.
We shall use the terminology from Definition 5.5.1.
Let a ∈ F be arbitrary. Then:

(a) The minimal polynomial of a (over S) exists (i.e., there is always at least
one monic annihilating polynomial of a).

(b) If the minimal polynomial of a has degree k, then apk
= a.

(c) Let m be a positive integer satisfying |F| ≤ pm. If the minimal polyno-
mial of a has degree k, then k ≤ m.

Proof. First, we note that 0 ̸= 1 in F (since F is a field). Thus, F has at least two
distinct elements; that is, we have |F| > 1.
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Note also that |S| = p (since S = Z/p).

(a) Proposition 2.6.6 yields a|F| = a. Thus, a is a root of the polynomial
x|F| − x ∈ S [x]. In other words, x|F| − x ∈ S [x] is an annihilating polynomial
of a. Since this polynomial is monic, we thus conclude that a has a monic
annihilating polynomial in S [x] (namely, x|F| − x). Hence, there exists at least
one monic annihilating polynomial of a in S [x]. Thus, there also exists such a
polynomial of smallest degree. In other words, a has a minimal polynomial.
This proves Proposition 5.5.5 (a).

(b) Let f be the minimal polynomial of a. Let k = deg f . We must show that
apk

= a.
Theorem 5.5.2 (b) shows that the polynomial f is irreducible. Hence, the

quotient ring S [x] / f is a field (by Theorem 4.6.3). On the other hand, the
leading coefficient of f is a unit (since f is monic). Thus, as an S-module,
S [x] / f is free of rank k = deg f (by Theorem 4.5.9 (b)). Hence, S [x] / f ∼= Sk

as an S-module. Hence, |S [x] / f | =
∣∣Sk
∣∣ = |S|k = pk (since |S| = p). Therefore,

the field S [x] / f is finite.
Now, x ∈ S [x] / f is an element of this finite field S [x] / f . Hence, Proposition

2.6.6 (applied to S [x] / f and x instead of F and u) yields x|S[x]/ f | = x. In view
of |S [x] / f | = pk, this rewrites as xpk

= x. In other words, xpk
= x (since

xpk
= xpk

).
Theorem 5.5.2 (c) shows that the map

S [x] / f → F,
g 7→ g [a]

is a (well-defined) S-algebra morphism, and is injective. Applying this map to
both sides of the equality xpk

= x, we obtain xpk
[a] = x [a]. In other words,

apk
= a. This proves Proposition 5.5.5 (b).

(c) Let f be the minimal polynomial of a. Let k = deg f . We must show that
k ≤ m.

We have already shown (in the above proof of part (b)) that |S [x] / f | = pk.
Moreover, we have already shown (in the above proof of part (b)) that the map

S [x] / f → F,
g 7→ g [a]

is injective. Hence, |S [x] / f | ≤ |F| (because if U and V are two finite sets,
and if there exists an injective map from U to V, then |U| ≤ |V|). In view of
|S [x] / f | = pk, this rewrites as pk ≤ |F|. Hence, pk ≤ |F| ≤ pm, and therefore
k ≤ m (since p > 1). This proves Proposition 5.5.5 (c).
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Remark 5.5.6. Proposition 5.5.5 can be proved in many other ways. For example,
part (a) can also be obtained from the pigeonhole principle (to wit: the principle
shows that two of the |F| + 1 elements a0, a1, a2, . . . , a|F| are equal; thus, a has an
annihilating polynomial of the form xi − xj for some i > j ≥ 0). For parts (b) and
(c), it helps to look at the subset

A := {g [a] | g ∈ S [x]}

of F. This subset A is easily seen to be a subring of F, and thus a field (indeed,
any subring of F is a finite integral domain and therefore a field). Moreover, it has
size pk (since the division-with-remainder theorem for polynomials shows that it is
a free Z/p-module with basis

(
a0, a1, . . . , ak−1)). Thus, pk = |A| ≤ |F| ≤ pm, so that

k ≤ m, and this yields part (c) of Proposition 5.5.5. Moreover, part (b) follows by
applying Proposition 2.6.6 to A instead of F (since a ∈ A).

Exercise 5.5.4. Let p, S, F and a be as in Proposition 5.5.5.
Assume that the minimal polynomial of a has degree k. Prove that this minimal

polynomial is

(
x − ap0

) (
x − ap1

)
· · ·
(

x − apk−1
)
=

k−1

∏
i=0

(
x − api

)
.

[Hint: First prove that not only a, but all the k powers ap0
, ap1

, . . . , apk−1
are roots

of the minimal polynomial. Then prove that these k powers are distinct. To do the
latter, consider two integers i, j with 0 ≤ i < j < k. Then, show that the set

Fi,j :=
{

u ∈ F | upi
= upj

}
is a subring of F (why?) and thus is a field (why?), but has size

∣∣Fi,j
∣∣ ≤ pj (why?).

Now apply Proposition 5.5.5 (c) to Fi,j and j instead of F and m to obtain a contra-
diction if a ∈ Fi,j.]

Lemma 5.5.7. Let p be a prime number. Let F be a finite field of characteristic
p. Let m be the positive integer satisfying |F| = pm. (We know from Theorem
5.2.2 (e) that this m exists.)

Then, there exists at least one a ∈ F such that none of the m − 1 powers
ap1

, ap2
, . . . , apm−1

equals a.

Proof. Assume the contrary. Thus, each a ∈ F satisfies at least one of the m − 1
equations

ap1
= a, ap2

= a, . . . , apm−1
= a.

In other words, each a ∈ F is a root of the polynomial(
xp1 − x

) (
xp2 − x

)
· · ·
(

xpm−1 − x
)
∈ F [x] .
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But this polynomial has degree p1 + p2 + · · · + pm−1, and thus has at most
p1 + p2 + · · ·+ pm−1 many roots (by Theorem 4.3.15). Hence, it has fewer than

pm roots (since it is easy to see that p1 + p2 + · · · + pm−1 =
pm − 1
p − 1

− 1 <

pm − 1
p − 1

≤ pm − 1 < pm). However, we just found out that each a ∈ F is a root

of this polynomial; thus, this polynomial has at least pm roots (since |F| = pm).
The preceding two sentences contradict each other. This contradiction shows
that our assumption was wrong; hence, Lemma 5.5.7 is proved.

5.5.3. Each finite field is obtained from Z/p by a single root adjunction

The above results lead to a first interesting property of finite fields:

Theorem 5.5.8. Let p be a prime number. Let S be the field Z/p.
Let F be a finite field of characteristic p.
Let m be the positive integer satisfying |F| = pm. (We know from Theorem

5.2.2 (e) that this m exists.)
Then, there exists at least one monic irreducible polynomial f ∈ S [x] =

(Z/p) [x] of degree m that satisfies F ∼= S [x] / f .

This theorem shows that any finite field can be constructed (up to isomor-
phism) by adjoining a (single) root of an irreducible polynomial to a field of the
form Z/p. It also shows that for any prime p and any positive integer m, there
exists an irreducible polynomial of degree m over Z/p (because Theorem 5.4.1
says that there exists a finite field F of size |F| = pm).

Proof of Theorem 5.5.8. Theorem 5.2.2 (f) shows that the field F contains “a copy
of Z/p” (that is, a subring isomorphic to Z/p). By renaming the elements of
F accordingly, we WLOG assume that this copy is Z/p itself, i.e., that Z/p is a
subring of F. In other words, S is a subring of F (since S = Z/p).

Lemma 5.5.7 shows that there exists at least one a ∈ F such that none of
the m − 1 powers ap1

, ap2
, . . . , apm−1

equals a. Consider this a. Proposition 5.5.5
(a) shows that a has a minimal polynomial (over S). Let f ∈ S [x] be this
polynomial, and let k = deg f be its degree. Theorem 5.5.2 (b) shows that this
minimal polynomial f is irreducible. Thus, f is not constant; hence, its degree
k is positive. That is, we have k ̸= 0.

Proposition 5.5.5 (b) shows that apk
= a; therefore, k /∈ {1, 2, . . . , m − 1} (since

none of the m − 1 powers ap1
, ap2

, . . . , apm−1
equals a). Combining this with

k ̸= 0, we thus obtain k /∈ {0, 1, . . . , m − 1}, so that k ≥ m. However, Proposition
5.5.5 (c) shows that k ≤ m. Combined with k ≥ m, this yields k = m. Thus, f
has degree m (since f has degree deg f = k = m).

It remains to show that F ∼= S [x] / f (as S-algebras).
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As in the proof of Proposition 5.5.5 (b), we can see that |S [x] / f | = pk. In
view of k = m, this rewrites as |S [x] / f | = pm. Compared with |F| = pm, this
yields |S [x] / f | = |F|. Hence, S [x] / f and F are two finite sets of the same size.

Theorem 5.5.2 (c) yields that the map

S [x] / f → F,
g 7→ g [a]

is a (well-defined) S-algebra morphism, and is injective. This map is thus an
injective map between two finite sets of the same size (since S [x] / f and F are
two finite sets of the same size), and therefore is bijective (since the pigeonhole
principle shows that any injective map between two finite sets of the same size
is bijective). In other words, this map is invertible. Since it is an S-algebra
morphism, it is thus an S-algebra isomorphism (by Proposition 3.11.8). Hence,
F ∼= S [x] / f (as S-algebras). This completes the proof of Theorem 5.5.8.

We also observe the following curious fact:

Theorem 5.5.9. Let p be a prime number. Let S be the field Z/p.
Let m be a positive integer.
Then, any irreducible polynomial f ∈ S [x] of degree m divides xpm − x ∈

S [x].

Proof. Let f ∈ S [x] be an irreducible polynomial of degree m. We must show
that f | xpm − x in S [x].

The quotient ring S [x] / f is a field (by Theorem 4.6.3, since f is irreducible).
On the other hand, the leading coefficient of f is a unit (since S is a field, so that
every nonzero element of S is a unit). Thus, as an S-module, S [x] / f is free of
rank m = deg f (by Theorem 4.5.9 (b)). Hence, S [x] / f ∼= Sm as an S-module.
Thus, |S [x] / f | = |Sm| = |S|m = pm (since |S| = p). Therefore, the field S [x] / f
is finite.

Now, let F be this finite field S [x] / f . Let a be the element x ∈ S [x] / f = F.
Then, Proposition 2.6.6 yields a|F| = a. However, F = S [x] / f , so that |F| =
|S [x] / f | = pm. Hence,

a|F| = apm
= xpm

(since a = x)

= xpm ,

so that xpm
= a|F| = a = x. In other words, xpm − x ∈ f S [x]. In other words,

f | xpm − x in S [x]. This proves Theorem 5.5.9.

As a consequence of this theorem, we can show that Theorem 5.5.8 can be
strengthened: Not only is there some monic irreducible polynomial f ∈ S [x] =
(Z/p) [x] of degree m that satisfies F ∼= S [x] / f , but actually any monic irre-
ducible polynomial of this degree will do! Let us state this more carefully:
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Corollary 5.5.10. Let p be a prime number. Let S be the field Z/p.
Let m be a positive integer. Let F be a finite field of characteristic p such

that |F| = pm.
Let f ∈ S [x] be a monic irreducible polynomial of degree m. Then, F ∼=

S [x] / f (as S-algebras).

Proof. We have deg f = m > 0. Hence, Theorem 5.3.7 (b) (applied to b = f )
shows that there is a field that contains F as a subring and that contains a root
of f . Let F′ be this field, and let a be this root. Thus, a ∈ F′ and f [a] = 0.

Our first goal is to prove that a actually belongs to F.
Indeed, Theorem 5.5.9 shows that f divides xpm − x in S [x]. Hence, a is a root

of the polynomial xpm − x (since a is a root of f ). In other words, apm − a = 0.
On the other hand, Proposition 2.6.6 yields that u|F| = u for each u ∈ F.

In other words, upm
= u for each u ∈ F (since |F| = pm). In other words,

upm − u = 0 holds for each u ∈ F. This equality upm − u = 0 holds for u = a
as well (since apm − a = 0). Thus, we conclude that upm − u = 0 holds for each
u ∈ F ∪ {a}. In other words, each u ∈ F ∪ {a} is a root of the polynomial
xpm − x. Therefore, the polynomial xpm − x has at least |F ∪ {a}| many roots in
F′. But this polynomial xpm − x has degree pm (since pm > 1), and thus has at
most pm roots in F′ (by Theorem 4.3.15, applied to F′, pm and xpm − x instead
of R, n and f ). Confronting the preceding two sentences with each other, we
obtain |F ∪ {a}| ≤ pm. In view of pm = |F|, this rewrites as |F ∪ {a}| ≤ |F|.
Since F is a finite set, this inequality yields a ∈ F (since otherwise, we would
have |F ∪ {a}| = |F|+ 1 > |F|). Thus, we have shown that a belongs to F. We
can now forget about F′.

We have deg f = m, and the leading coefficient of f is a unit (since S is a field,
so that every nonzero element of S is a unit). Thus, as an S-module, S [x] / f
is free of rank deg f = m (by Theorem 4.5.9 (b)). Hence, S [x] / f ∼= Sm as an
S-module. Hence, |S [x] / f | = |Sm| = |S|m = pm (since |S| = p). Comparing
this with |F| = pm, we obtain |S [x] / f | = |F|. In other words, S [x] / f and F
are two finite sets of the same size.

Theorem 5.2.2 (f) shows that the field F contains “a copy of Z/p” (that is, a
subring isomorphic to Z/p). By renaming the elements of F accordingly, we
WLOG assume that this copy is Z/p itself, i.e., that Z/p is a subring of F. In
other words, S is a subring of F (since S = Z/p).

The polynomial f is monic and irreducible, and satisfies f [a] = 0. Hence,
Corollary 5.5.4 (applied to g = f ) shows that f is the minimal polynomial of a
(over S). Thus, Theorem 5.5.2 (c) yields that the map

S [x] / f → F,
g 7→ g [a]

is a (well-defined) S-algebra morphism, and is injective. This map is thus an
injective map between two finite sets of the same size (since S [x] / f and F are
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two finite sets of the same size), and therefore is bijective (since the pigeonhole
principle shows that any injective map between two finite sets of the same size
is bijective). In other words, this map is invertible. Since it is an S-algebra
morphism, it is thus an S-algebra isomorphism (by Proposition 3.11.8). Hence,
F ∼= S [x] / f (as S-algebras). This proves Corollary 5.5.10.

Exercise 5.5.5. Let p be a prime number. Let S be the field Z/p.
Let m be a positive integer. Let f ∈ S [x] be an irreducible polynomial.
Prove the following:

(a) If deg f | m, then f | xpm − x in S [x].

(Note that this generalizes Theorem 5.5.9.)

(b) Conversely, if f | xpm − x in S [x], then deg f | m.

Exercise 5.5.6. Let p be a prime number. Let S be the field Z/p. Let m be a positive
integer. Prove that the polynomial xpm − x ∈ S [x] equals the product of all monic
irreducible polynomials f ∈ S [x] satisfying deg f | m.

(For example, for p = 2 and m = 3, this yields

x8 − x = x (x + 1)︸ ︷︷ ︸
irreducible

polynomials
of degree 1

(
x3 + x + 1

) (
x3 + x2 + 1

)︸ ︷︷ ︸
irreducible

polynomials
of degree 3

and

x16 − x = x (x + 1)︸ ︷︷ ︸
irreducible

polynomials
of degree 1

(
x2 + x + 1

)︸ ︷︷ ︸
irreducible

polynomials
of degree 2

(
x4 + x + 1

) (
x4 + x3 + 1

) (
x4 + x3 + x2 + x + 1

)
︸ ︷︷ ︸

irreducible
polynomials
of degree 4

in (Z/2) [x].)

[Hint: First argue that the factorization of xpm − x into monic irreducible polyno-
mials contains no factor more than once. Then use Exercise 5.5.5.]

5.5.4. Proof of the uniqueness

We can now easily prove the uniqueness of a finite field of given size (up to
isomorphism):

Theorem 5.5.11. Any two finite fields that have the same size are isomorphic.

Proof. Let F and F′ be two finite fields that have the same size. Thus, |F| = |F′|.
Our goal is to prove that F ∼= F′.
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Let p = char F. Then, Theorem 5.2.2 (d) shows that p is a prime. Also,
Theorem 5.2.2 (e) shows that |F| = pm for some positive integer m. Consider
this m. Comparing |F| = pm with |F| = |F′|, we find |F′| = pm.

Let q = char (F′). Then, Theorem 5.2.2 (d) shows that q is a prime. Also,
Theorem 5.2.2 (e) shows that |F′| = qn for some positive integer n. Consider
this n. Now, pm = |F| = |F′| = qn. Since p and q are primes (and m and n are
positive integers), this can only happen if p = q and m = n. Thus, we obtain
p = q and m = n. Hence, F′ has characteristic p (since p = q = char (F′)).

Set S = Z/p. Theorem 5.5.8 yields that there exists at least one monic irre-
ducible polynomial f ∈ S [x] = (Z/p) [x] of degree m that satisfies F ∼= S [x] / f .
Consider this f . Recall that |F′| = pm. Hence, Corollary 5.5.10 (applied to F′

instead of F) yields that F′ ∼= S [x] / f (as S-algebras). Combining this with
F ∼= S [x] / f , we obtain F ∼= S [x] / f ∼= F′. As we said, this proves Theorem
5.5.11.

As we observed after Theorem 5.5.8, there exists an irreducible polynomial of any
positive degree m over Z/p for any prime p. Explicitly finding such polynomials is not
at all easy; I am not aware of any general method other than “try all the polynomials
and check for irreducibility” (a finite algorithm, although a rather laborious one).161

However, for specific degrees, there are better methods. In particular, for m = p, there
is an explicit choice:

Exercise 5.5.7. Let p be a prime number. Let S be the field Z/p. Let a ∈ S be
nonzero. Prove that the polynomial xp − x + a ∈ S [x] is irreducible.

[Hint: Assume that xp − x + a = f g for two non-units f , g ∈ S [x]. Argue that
xp = x − a in the quotient ring S [x] / f . Use this to show that xpi

= x − ia for all
i ∈ N. On the other hand, let k = deg f ∈ {1, 2, . . . , p − 1}, and argue that xpk

= x
in S [x] / f . Can these formulas coexist?]

5.6. Lemmas on p-th powers

The following lemma will be used twice in the next section:

Lemma 5.6.1. Let p be a prime. Let F be a field such that Z/p is a subring
of F. Then,

{a ∈ F | ap = a} = Z/p.

This lemma gives a criterion for showing that an element of F lies in Z/p:
namely, just show that ap = a.

Proof of Lemma 5.6.1. For each u ∈ Z/p, we have up = u (by Proposition 2.6.4)
and thus u ∈ {a ∈ F | ap = a}. In other words, Z/p ⊆ {a ∈ F | ap = a}.

161A popular method for choosing these polynomials is known as “Conway polynomials”.

https://en.wikipedia.org/wiki/Conway_polynomial_(finite_fields)
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Now, I claim that |{a ∈ F | ap = a}| ≤ p. Indeed, F is an integral domain.
Thus, the easy half of the FTA (Theorem 4.3.15) yields that if n is a nonnegative
integer, then any nonzero polynomial of degree ≤ n over F has at most n roots
in F. Applying this to the polynomial xp − x (which is nonzero and has degree
p), we conclude that the polynomial xp − x has at most p roots in F. But the
set of all roots of this polynomial xp − x in F is {a ∈ F | ap = a}; hence, the
preceding sentence says that |{a ∈ F | ap = a}| ≤ p. Thus, in particular, the
set {a ∈ F | ap = a} is finite.

However, an easy and fundamental fact in combinatorics says that if X and
Y are two finite sets with X ⊆ Y and |Y| ≤ |X|, then X = Y. Applying this
to X = Z/p and Y = {a ∈ F | ap = a}, we obtain Z/p = {a ∈ F | ap = a}
(since Z/p ⊆ {a ∈ F | ap = a} and |{a ∈ F | ap = a}| ≤ p = |Z/p|). This
proves Lemma 5.6.1.

Exercise 5.6.1. Let p be a prime. Let F be a finite field of size pm, where m is a
positive integer. Assume that Z/p is a subring of F. Let a ∈ F.

(a) Let r = p0 + p1 + · · ·+ pm−1. Prove that ar ∈ Z/p.

(b) Let b = ap0
+ ap1

+ · · ·+ apm−1
. Prove that b ∈ Z/p.

Another useful lemma says (in terms of Subsection 5.3.3) that the Frobenius
endomorphism of a field of characteristic p is always injective:

Lemma 5.6.2. Let p be a prime. Let F be a field of characteristic p. Let a, b ∈ F
satisfy a ̸= b. Then, ap ̸= bp.

Note that this would fail for F = R and p = 2 (because, for example, 1 ̸= −1
but 12 = (−1)2), and also fail for F = C and any p > 1. Thus, this marks one
more of the situations where fields of prime characteristic p behave better than
fields of characteristic 0.

Proof of Lemma 5.6.2. From a ̸= b, we see that the element a − b of F is nonzero.
But F is a field, and thus an integral domain. Hence, it is easy to see (by
induction on k) that any finite product u1u2 · · · uk of nonzero elements of F is
nonzero. Thus, in particular, the product (a − b) (a − b) · · · (a − b)︸ ︷︷ ︸

p times

is nonzero

(since a − b is nonzero). In other words, (a − b)p is nonzero.
However, Theorem 5.3.8 (c) yields (a − b)p = ap − bp, so that ap − bp =

(a − b)p ̸= 0 (since (a − b)p is nonzero). In other words, ap ̸= bp. This proves
Lemma 5.6.2.

At this point, we end (at least for a while) our theoretical study of finite
fields, and instead focus on some of their applications. The reader can learn
more about finite fields from texts such as [LidNie00] and [MulMum07].
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5.7. An application of root adjunction

What are finite fields (particularly the ones that are not just Z/p) good for?
Known applications include error-correcting codes (BCH codes), group theory
(many finite simple groups can be constructed as matrix groups over finite
fields), block designs (roughly speaking, finite structures with symmetries that
resemble geometries) and, of course, number theory (not unexpectedly; number
theory uses everything). Various applications along these lines can be found in
[MulMum07]. Let me show a more humble – but also more self-contained –
application. Namely, by adjoining roots of polynomials to Z/p, we will prove
a curious fact about Fibonacci numbers ([Vorobi02, §25]):

Theorem 5.7.1. Let ( f0, f1, f2, . . .) be the Fibonacci sequence (as defined in
Definition 2.3.4).

Let p be a prime. Then:

(a) If p ≡ ±1 mod 5 (meaning that p is congruent to one of 1 and −1
modulo 5), then p | fp−1.

(b) If p ≡ ±2 mod 5 (meaning that p is congruent to one of 2 and −2
modulo 5), then p | fp+1.

For example:

• For p = 2, Theorem 5.7.1 (b) says that 2 | f3 (since 2 ≡ 2 mod 5), and
indeed we have f3 = 2.

• For p = 7, Theorem 5.7.1 (b) says that 7 | f8 (since 7 ≡ 2 mod 5), and
indeed we have f8 = 21 = 3 · 7.

• For p = 11, Theorem 5.7.1 (a) says that 11 | f10 (since 11 ≡ 1 mod 5), and
indeed we have f10 = 55 = 5 · 11.

Our proof of Theorem 5.7.1 will be inspired by the famous Binet formula for
Fibonacci numbers:

Theorem 5.7.2 (Binet formula for Fibonacci numbers). Let

φ =
1 +

√
5

2
≈ 1.618 and ψ =

1 −
√

5
2

≈ −0.618

be the two roots of the quadratic polynomial x2 − x − 1 in R. Let
( f0, f1, f2, . . .) be the Fibonacci sequence. Then,

fn =
1√
5

φn − 1√
5

ψn for each n ∈ N.

https://en.wikipedia.org/wiki/BCH_code
https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
https://en.wikipedia.org/wiki/Group_of_Lie_type
https://en.wikipedia.org/wiki/Group_of_Lie_type
https://en.wikipedia.org/wiki/Block_design
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This is somewhat mysterious – why should irrational numbers like
√

5 ap-
pear in a formula for an integer sequence like ( f0, f1, f2, . . .) ? Proving Theorem
5.7.2 is an easy exercise in strong induction162. Finding it is trickier – the ma-
trix approach from Exercise 2.3.6 can help here. Indeed, once you know that

the matrix A =

(
0 1
1 1

)
∈ R2×2 satisfies An = fn A + fn−1 I2 for each n (this

was proven in Exercise 2.3.6), you can boil down the computation of fn to the
computation of An. But there is a famous trick for computing powers of a ma-
trix: namely, you diagonalize the matrix and take the powers of its diagonal
entries163. This trick only works if the matrix is diagonalizable; but fortunately,
our matrix A is diagonalizable, so we can compute An using this trick, ulti-
mately obtaining Theorem 5.7.2 stated above. This demystifies the formula:
x2 − x − 1 is just the characteristic polynomial of the matrix A, and φ and ψ are
its eigenvalues.

Anyway, how does this help us proving Theorem 5.7.1? The Binet formula
involves irrational numbers and division; we thus cannot directly draw any
conclusions about divisibility from it.

We can, however, use it as an inspiration. To wit, we shall introduce ana-
logues of φ and ψ in “characteristic p”. These should be roots of the same
polynomial x2 − x − 1, but regarded as a polynomial over Z/p instead of R.
Depending on p, this polynomial may or may not have roots in Z/p, but we
can always construct a splitting field in which it will have roots (see Theorem
5.3.7 (c)). Let us use this to attempt a proof of Theorem 5.7.1:

Proof of Theorem 5.7.1, part 1. First, we WLOG assume that p ̸= 5 (since Theo-
rem 5.7.1 makes no statement about p = 5). Hence, p ∤ 5 (since p is prime), so
that 5 ̸= 0 in Z/p. Furthermore, from p ̸= 5, we obtain 5 ∤ p (since p is prime);
thus, the remainder of p upon division by 5 must be 1, 2, 3 or 4. Therefore, p
must satisfy one of the conditions p ≡ ±1 mod 5 and p ≡ ±2 mod 5.

Let F be a splitting field of the polynomial x2 − x − 1 over Z/p. (We know
from Theorem 5.3.7 (c) that such an F exists, since the polynomial is monic.)
Thus,

x2 − x − 1 = (x − φ) (x − ψ) for some φ, ψ ∈ F.

Consider these φ, ψ. Comparing coefficients in front of the monomials x1 and
x0 in the polynomial identity

x2 − x − 1 = (x − φ) (x − ψ) = x2 − (φ + ψ) x + φψ

yields164

−1 = − (φ + ψ) and − 1 = φψ.

162See [Grinbe21, Proof of Theorem 2.3.1] for the proof in detail.
163Namely: If A = QDQ−1, then An = QDnQ−1 for any n ∈ N. If the matrix D is diagonal,

then Dn is easily computed by taking its diagonal entries to the n-th powers; thus, An can
be obtained as well.

164This is perhaps a good time to recall the warnings about evaluating polynomials over finite
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(Of course, the “1” here stands for 1F.) In other words,

φ + ψ = 1 and φψ = −1.

Define an element
√

5 of F by
√

5 = φ−ψ. This is certainly a strange notation
(this

√
5 is not the actual number

√
5 but just an analogue of it in our field F),

but it is harmless (as we won’t deal with the actual number
√

5 in this proof,
but only with the element

√
5 = φ − ψ that we just introduced). Moreover, it is

justified because

(φ − ψ)2 = φ2 − 2φψ + ψ2 =

φ + ψ︸ ︷︷ ︸
=1

2

− 4 φψ︸︷︷︸
=−1

= 12 − 4 (−1) = 5.

As a consequence,
(√

5
)2

= 5 ̸= 0, so that
√

5 ̸= 0. Thus,
√

5 is a unit of F

(since F is a field), so we can divide by
√

5.
Now, we claim that an analogue of the Binet formula holds in F: Namely, we

have
fn =

1√
5

φn − 1√
5

ψn for each n ∈ N. (106)

This can be proved by the same strong induction argument as the original Binet
formula (Theorem 5.7.2).

Now, we want to show that p | fp−1 for some primes p and that p | fp+1
for other primes p (remember: we have already gotten rid of the p = 5 case).
In other words, we want to show that fp−1 = 0 for some primes p, and that
fp+1 = 0 for other primes p. For now, let us ignore the question of which
primes p satisfy which of these.

Here comes a trick that will look magical, but is actually an instance of a
general method. We have φ2 − φ − 1 = 0 (since φ is a root of the polynomial
x2 − x − 1), so that φ2 = φ+ 1. Taking this equality to the p-th power, we obtain

φ2p = (φ + 1)p = φp + 1p (by Theorem 5.3.8 (a))
= φp + 1.

In other words, φ2p − φp − 1 = 0. Thus, φp is a root of the polynomial x2 −
x − 1 = (x − φ) (x − ψ). In other words, (φp − φ) (φp − ψ) = 0. Since F is an
integral domain, this entails φp − φ = 0 or φp − ψ = 0. In other words, φp = φ
or φp = ψ. In other words, φp ∈ {φ, ψ}. Similarly, ψp ∈ {φ, ψ}.

fields. Two polynomials f and g over a finite field F do not need to be identical just be-
cause their evaluations at all elements of F are identical (for example, the polynomials x2

and x over Z/2 are not identical, but their evaluations on both elements 0 and 1 of Z/2
are identical). However, our two polynomials x2 − x − 1 and x2 − (φ + ψ) x + φψ (whose
coefficients we are comparing here) are known to be identical (not just their evaluations but
the polynomials themselves); thus, we can compare their coefficients.
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Moreover, φ − ψ =
√

5 ̸= 0, so that φ ̸= ψ and therefore φp ̸= ψp (by
Lemma 5.6.2, since F has characteristic p). Combining this with φp ∈ {φ, ψ}
and ψp ∈ {φ, ψ}, we conclude that φp and ψp are two distinct elements of the
set {φ, ψ}. Thus, {φp, ψp} = {φ, ψ}. So we are in one of the following two
cases:

Case 1: We have φp = φ and ψp = ψ.
Case 2: We have φp = ψ and ψp = φ.
Let us consider Case 1. In this case, we have φp = φ and ψp = ψ. Now, φ ̸= 0

(since φ2 = φ + 1 would turn into the absurd equality 0 = 1 if φ was 0); thus,
we can cancel φ from the equality φp = φ (since F is a field). As a result, we
obtain φp−1 = 1. Similarly, ψp−1 = 1. Now, (106) yields

fp−1 =
1√
5

φp−1︸ ︷︷ ︸
=1

− 1√
5

ψp−1︸ ︷︷ ︸
=1

=
1√
5
· 1 − 1√

5
· 1 = 0.

Thus, we have shown that fp−1 = 0 (that is, p | fp−1) in Case 1.
Let us next consider Case 2. In this case, we have φp = ψ and ψp = φ. Thus,

φp+1 = φp︸︷︷︸
=ψ

φ = ψφ = φψ = −1 and similarly ψp+1 = −1. Now, (106) yields

fp+1 =
1√
5

φp+1︸ ︷︷ ︸
=−1

− 1√
5

ψp+1︸ ︷︷ ︸
=−1

=
1√
5
(−1)− 1√

5
(−1) = 0.

Thus, we have shown that fp+1 = 0 (that is, p | fp+1) in Case 2.
So we have shown that we always have p | fp−1 or p | fp+1. But why does

the former hold for p ≡ ±1 mod 5 and the latter for p ≡ ±2 mod 5 ? In other
words, why does our Case 1 correspond to p ≡ ±1 mod 5 and our Case 2 to
p ≡ ±2 mod 5 ?

This will take some more work. We have the following chain of equivalences:

(we are in Case 1)
⇐⇒ (φp = φ and ψp = ψ)

⇐⇒ (φp = φ)

 because if φp = φ,
then ψp cannot be φ (since φp ̸= ψp)

and thus must be ψ (since ψp ∈ {φ, ψ} )


⇐⇒ (φ ∈ {a ∈ F | ap = a})
⇐⇒ (φ ∈ Z/p) (by Lemma 5.6.1)

⇐⇒
(

the polynomial x2 − x − 1 has a root in Z/p
)

. (107)

(In the last equivalence sign, the “=⇒” part is obvious (since φ is a root of x2 −
x − 1). The “⇐=” part can be proved as follows: If the polynomial x2 − x − 1
has a root in Z/p, then this root must be either φ or ψ (because x2 − x − 1 =
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(x − φ) (x − ψ)); however, in either of these cases, we obtain φ ∈ Z/p (because
if ψ ∈ Z/p, then φ = (φ + ψ)︸ ︷︷ ︸

=1∈Z/p

− ψ︸︷︷︸
∈Z/p

∈ Z/p).)

Thus, our question is reduced to asking when the polynomial x2 − x − 1 has
a root in Z/p. In other words, when can we find our φ and ψ in Z/p, and
when do we have to go into a larger field to find them?

We WLOG assume that p ̸= 2 (since the case p = 2 is trivial to do by hand).
Thus, 2 ∈ Z/p is nonzero and thus has an inverse. This allows us to complete
the square (just as in high school, but over the field Z/p now):

x2 − x − 1 =

(
x − 1

2

)2

− 5
4

. (108)

Thus, the polynomial x2 − x − 1 has a root in Z/p if and only if
5
4

is a square in

Z/p. Obviously,
5
4

is a square in Z/p if and only if 5 is a square in Z/p (since

4 = 22 is always a square in Z/p). Thus, in order to prove Theorem 5.7.1, it
remains to prove the following:

Theorem 5.7.3. Let p be a prime such that p ̸= 2. Then:

(a) If p ≡ ±1 mod 5 (meaning that p is congruent to one of 1 and −1
modulo 5), then 5 is a square in Z/p.

(b) If p ≡ ±2 mod 5 (meaning that p is congruent to one of 2 and −2
modulo 5), then 5 is not a square in Z/p.

For example, 5 ∈ Z/p is not a square for p = 7, but is a square for p = 11
(namely, 5 = 42).

I will now prove Theorem 5.7.3; then, I will explain how it helps complete
the above proof of Theorem 5.7.1, and afterwards (perhaps most interestingly)
discuss how to generalize it to other numbers instead of 5.

Proof of Theorem 5.7.3. The following proof (due to Gauss) will again use field
extensions. We WLOG assume that p ̸= 5 (since Theorem 5.7.3 makes no claim
about the case p = 5).

An element z of a field F is said to be a primitive 5-th root of unity if it
satisfies z5 = 1 but z ̸= 1. In other words, the element z is a primitive 5-th root
of unity if it is nonzero and its order in the group F× (this is the group of units
of F) is 5.

For example, R has no primitive 5-th roots of unity (since a real number z sat-
isfying z5 = 1 must necessarily satisfy z = 1), but C has four of them: namely,
e2πik/5 for k ∈ {1, 2, 3, 4}. (See https://upload.wikimedia.org/wikipedia/

https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
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commons/4/40/One5Root.svg for an illustration of the latter on the Argand dia-
gram: The 5 blue points, which are the vertices of a regular pentagon, all satisfy
z5 = 1, and all but one of them are primitive 5-th roots of unity.)

Does Z/p have any primitive 5-th roots of unity? Sometimes yes (e.g., for
p = 11); sometimes no (e.g., for p = 7). We don’t care – we shall just adjoin
one.

To see how, we notice the following: If F is a field of characteristic p, then a
primitive 5-th root of unity in F is just an element z ∈ F that satisfies z4 + z3 +
z2 + z + 1 = 0. 165 Knowing this, we can easily adjoin a primitive 5-th root of
unity to Z/p: Namely, x4 + x3 + x2 + x + 1 ∈ (Z/p) [x] is a monic polynomial
of degree 4 over Z/p. Thus, by Theorem 5.3.7 (b), there exists a field that
contains Z/p as a subring and that contains a root of this polynomial. Let S be
such a field, and let z be this root. Thus, z ∈ S satisfies z4 + z3 + z2 + z + 1 = 0,
and therefore is a primitive 5-th root of unity (by what we have just said). That
is, we have z5 = 1 and z ̸= 1.

Now comes the magic: Set τ = z − z2 − z3 + z4 ∈ S. Then,

τ2 =
(

z − z2 − z3 + z4
)2

= z2 + z4 + z6 + z8 − 2zz2 − 2zz3 + 2zz4 + 2z2z3 − 2z2z4 − 2z3z4

(by expanding the square)

= z2 + z4 + z6 + z8 − 2z3 − 2z4 + 2z5 + 2z5 − 2z6 − 2z7

= z2 + z4 + z + z3 − 2z3 − 2z4 + 2 + 2 − 2z − 2z2(
since z5 = 1 and thus z6 = z and z7 = z2

)
= 4 −

(
z + z2 + z3 + z4

)
= 5 −

(
z4 + z3 + z2 + z + 1

)
︸ ︷︷ ︸

=0

= 5.

Thus, τ is a “square root” of 5 in S (meaning: an element of S whose square is
5). Hence, the only “square roots” of 5 in S are τ and −τ 166.

165Proof. If z is a primitive 5-th root of unity in F, then z5 = 1 but z ̸= 1, so that
z5 − 1
z − 1

=

0 (since the numerator z5 − 1 is 0 but the denominator z − 1 is nonzero), and therefore

z4 + z3 + z2 + z + 1 = 0 (since z4 + z3 + z2 + z + 1 =
z5 − 1
z − 1

).

Conversely, assume that z4 + z3 + z2 + z + 1 = 0. Then, z5 − 1 =

(z − 1)
(

z4 + z3 + z2 + z + 1
)

︸ ︷︷ ︸
=0

= 0, so that z5 = 1. However, if we had z = 1, then we

would have z4 + z3 + z2 + z + 1 = 14 + 13 + 12 + 1 + 1 = 5 ̸= 0, which would contradict
z4 + z3 + z2 + z + 1 = 0 = 0. Hence, we must have z ̸= 1. Thus we have shown that z5 = 1
and z ̸= 1; in other words, z is a primitive 5-th root of unity.

166This is a particular case of the following general fact: If R is an integral domain, and if u, v ∈
R satisfy u2 = v, then the only “square roots” of v in R are u and −u. (To check this, argue

https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
https://upload.wikimedia.org/wikipedia/commons/4/40/One5Root.svg
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This suggests that studying τ should help understand whether 5 is a square
in Z/p. Indeed, if τ belongs to Z/p, then 5 is a square in Z/p (since τ2 = 5).
Conversely (but less obviously), if τ does not belong to Z/p, then 5 is not a
square in Z/p (because the only “square roots” of 5 in S are τ and −τ, and
neither of them belongs to Z/p 167). Now, how can we tell whether τ belongs
to Z/p ?

Inspired by Lemma 5.6.1, we compute τp. From τ = z − z2 − z3 + z4, we
obtain

τp =
(

z − z2 − z3 + z4
)p

= zp − z2p − z3p + z4p

(by parts (a) and (c) of Theorem 5.3.8, applied several times). The right hand
side of this can be greatly simplified if you know the remainder of p upon
division by 5. Indeed, we have z5 = 1, so that z6 = z and z7 = z2 and more
generally zk = zℓ for any two integers k and ℓ satisfying k ≡ ℓmod 5. Hence, in
order to simplify the right hand side, we distinguish the following four cases:

Case 1: We have p ≡ 1 mod 5.
Case 2: We have p ≡ 2 mod 5.
Case 3: We have p ≡ 3 mod 5.
Case 4: We have p ≡ 4 mod 5.
(There is no Case 0, since 5 ∤ p entails p ̸≡ 0 mod 5.)
In Case 2, we have

τp = zp︸︷︷︸
=z2

(since p≡2 mod 5)

− z2p︸︷︷︸
=z4

(since 2p≡4 mod 5)

− z3p︸︷︷︸
=z1

(since 3p≡1 mod 5)

+ z4p︸︷︷︸
=z3

(since 4p≡3 mod 5)

= z2 − z4 − z1 + z3 = −
(

z − z2 − z3 + z4
)

︸ ︷︷ ︸
=τ

= −τ.

Similarly, we get τp = −τ in Case 3, and we get τp = τ in Cases 1 and 4.
Thus, in Cases 1 and 4, we have τp = τ and therefore τ ∈ {a ∈ F | ap = a} =

Z/p (by Lemma 5.6.1), and thus 5 is a square in Z/p (since τ2 = 5). On the
other hand, in Cases 2 and 3, we have τp = −τ ̸= τ (since 2τ ̸= 0 168) and
therefore τ /∈ {a ∈ F | ap = a} = Z/p (by Lemma 5.6.1), and thus 5 is not a
square in Z/p (as explained above). This proves Theorem 5.7.3.

The “magical” use of z (a primitive 5-th root of unity) to construct a square
root of

√
5 is connected to the ubiquity of

√
5 in the geometry of regular pen-

tagons. But it is not specific to the number 5: Gauss has shown that
√

p can be

as follows: If w is a square root of v in R, then (w − u) (w + u) = w2︸︷︷︸
=v

− u2︸︷︷︸
=v

= v − v = 0,

so that w − u = 0 or w + u = 0 (since R is an integral domain), so that w = u or w = −u.)
167Indeed, from τ /∈ Z/p, we obtain −τ /∈ Z/p (since otherwise, τ = − (−τ) would yield

τ ∈ Z/p).
168This can be shown as follows: From τ2 = 5 ̸= 0, we obtain τ ̸= 0. Moreover, p ̸= 2 shows

that 2 ̸= 0 in Z/p. Now, F is an integral domain; hence, from 2 ̸= 0 and τ ̸= 0, we obtain
2τ ̸= 0. In other words, 2τ ̸= 0.

https://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
https://en.wikipedia.org/wiki/Pentagon#Regular_pentagons
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similarly constructed from a primitive p-th root of unity for any prime p > 2.
This will be explained in Theorem 5.8.12 (c) below.169

Next, let us use Theorem 5.7.3 to complete our above proof of Theorem 5.7.1:

Proof of Theorem 5.7.1, part 2. Recall the two Cases 1 and 2 that appeared in part
1 of this proof. We extend the equivalence (107) as follows:

(we are in Case 1)

⇐⇒
(

the polynomial x2 − x − 1 has a root in Z/p
)

⇐⇒
(

the polynomial
(

x − 1
2

)2

− 5
4

has a root in Z/p

)
(by (108))

⇐⇒
(

5
4

is a square in Z/p
)

⇐⇒
(
5 is a square in Z/p

)(
since

5
4
= a2 is equivalent to 5 = (2a)2

)
⇐⇒ (p ≡ ±1 mod 5) (109)

(by Theorem 5.7.3, since p must satisfy one of the conditions p ≡ ±1 mod 5
and p ≡ ±2 mod 5). But we have shown that if we are in Case 1, then p |
fp−1. Thus, we conclude using (109) that if p ≡ ±1 mod 5, then p | fp−1. This
proves Theorem 5.7.1 (a). Likewise, if p ≡ ±2 mod 5, then we do not have
p ≡ ±1 mod 5, so that we are not in Case 1 (by (109)), and thus we are in
Case 2; hence, as we proved above, we must have p | fp+1 in this case. Thus,
Theorem 5.7.1 (b) is proved again.

5.8. Quadratic residues: an introduction

5.8.1. Definitions and examples

We have touched upon an interesting subject, so let us delve deeper. Theorem
5.7.3 answers the question for which primes p the residue class 5 ∈ Z/p is a
square in Z/p; but we can ask the same question about the residue class a of
any a ∈ Z.

169A reasonably elementary exposition of the connection between primitive p-th roots of unity
and the square root

√
p can be found in [Stein09, §4.4] (where it is only stated for the field

C, but most other fields can be handled similarly).
Just to whet your appetite a bit more: Recall that the equilateral triangle inscribed in the

unit circle has sidelength
√

3/2. This is the p = 3 case of this connection.
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Definition 5.8.1. Let p be a prime. Let a be an integer not divisible by p.
Then, a is said to be a quadratic residue modulo p (short: a QR mod p) if

the residue class a ∈ Z/p is a square (or, equivalently, if there is an integer b
such that a ≡ b2 mod p).

Otherwise, a is said to be a quadratic nonresidue modulo p (short: a QNR
mod p).

For instance, if p = 7, then the three integers 1, 2 and 4 are QRs mod 7 (since
1 = 12 and 2 = 32 and 4 = 22 in Z/7), and therefore any integers that are
congruent to any of these three integers modulo 7 are QRs mod 7 as well. The
integers 3, 5 and 6 (and any integers congruent to them modulo 7) are QNRs
mod 7. Integers divisible by 7 (such as 0) count neither as QRs nor as QNRs
mod 7.

Definition 5.8.2. Let p be a prime. Let a be an integer. The Legendre symbol(
a
p

)
(do not mistake this for a fraction! this is not a fraction!) is the integer

defined as follows:

(
a
p

)
=


0, if p | a;
1, if a is a QR mod p;
−1, if a is a QNR mod p.

Note that the Legendre symbol
(

a
p

)
depends only on the prime p and on

the residue class a ∈ Z/p, but not on the integer a itself. In other words, if a
prime p ̸= 2 and two integers a and b satisfy a ≡ b mod p, then(

a
p

)
=

(
b
p

)
mod p. (110)

For example,
(
−1
p

)
=

(
p − 1

p

)
for any prime p. Here are some more exam-

ples of Legendre symbols:

• 2 is a QR mod 7, since 2 ≡ 32 mod 7. Thus,
(

2
7

)
= 1.

• 2 is a QNR mod 5, since the squares in Z/5 are 0, 1, 4. Thus,
(

2
5

)
= −1.

• −1 is a QR mod 5, since −1 ≡ 22 mod 5. Thus,
(
−1
5

)
= 1.

• −1 is a QNR mod 3. Thus,
(
−1
3

)
= −1.
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• Theorem 5.7.3 says that every prime p ̸= 2 satisfies

(
5
p

)
=


0, if p = 5;
1, if p ≡ ±1 mod 5;
−1, if p ≡ ±2 mod 5.

This might whet an appetite: can we find similarly simple expressions for(
2
p

)
or
(

3
p

)
or
(
−1
p

)
? What can we say about Legendre symbols in general?

5.8.2. Counting squares

We begin by counting the squares in Z/p:

Proposition 5.8.3. Let p ̸= 2 be a prime. Then:

(a) The number of nonzero squares in Z/p is (p − 1) /2.

(b) The number of squares in Z/p is (p + 1) /2.

(c) The number of elements of Z/p that are not squares is (p − 1) /2.

Proof. This is a particular case of something that was proved in the solution
of Exercise 2.12.3 (c); but let us show the proof here to keep this section self-
contained:

(a) Given any element v ∈ Z/p, we define a square root of v to be an element
u ∈ Z/p that satisfies u2 = v. It is easy to see that each nonzero square
v ∈ Z/p has exactly two (distinct) square roots170, and these two square roots
are themselves nonzero (since 02

= 0). Thus, each nonzero square v ∈ Z/p has
exactly two nonzero square roots.

170Proof. Let v ∈ Z/p be a nonzero square. Then, v = c2 for some c ∈ Z/p. Consider this c.
Since c2 = v is nonzero, we see that c is nonzero. However, 2 ∈ Z/p is also nonzero (since
p ̸= 2 is a prime), and thus 2 · c ̸= 0 (since Z/p is an integral domain, and since 2 and c are
nonzero). Thus, c + c = 2 c︸︷︷︸

=1Z/pc

= 2 · 1Z/p︸ ︷︷ ︸
=2

c = 2 · c ̸= 0. Subtracting c from both sides of

this non-equality, we obtain c ̸= −c.
Now, both c and −c are square roots of v (since c2 = v and (−c)2 = c2 = v). Conversely,

any square root d of v must be one of c and −c (because it satisfies d2 = v and thus
(d − c) (d + c) = d2︸︷︷︸

=v

− c2︸︷︷︸
=v

= v − v = 0, which entails (since Z/p is an integral domain)

that d − c or d + c must be 0, which in turn means that d is either c or −c). This shows that
c and −c are the only square roots of v. Since c ̸= −c, we thus conclude that v has exactly
two square roots. Qed.
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If c ∈
{

1, 2, . . . , p − 1
}

, then c ̸= 0 and thus c2 ̸= 0 (since Z/p is an integral
domain), so that c2 is a nonzero square. Hence, there is a map{

1, 2, . . . , p − 1
}
→ {nonzero squares v ∈ Z/p} ,

c 7→ c2.

This map is a 2-to-1 correspondence (i.e., each element of the set
{nonzero squares v ∈ Z/p} has exactly two preimages under this map), be-
cause each nonzero square v ∈ Z/p has exactly two nonzero square roots.
Thus, ∣∣{1, 2, . . . , p − 1

}∣∣ = 2 · |{nonzero squares v ∈ Z/p}| .

Therefore,

|{nonzero squares v ∈ Z/p}| = 1
2
·
∣∣{1, 2, . . . , p − 1

}∣∣︸ ︷︷ ︸
=p−1

=
1
2
· (p − 1) = (p − 1) /2.

This proves Proposition 5.8.3 (a).
(b) The squares in Z/p are of two kinds: the zero squares and the nonzero

squares. Of the former kind, there is only one (namely, 0, which is a square
because 0 = 02). Of the latter kind, there are (p − 1) /2 (by Proposition 5.8.3
(a)). Thus, in total, there are 1 + (p − 1) /2 = (p + 1) /2 squares in Z/p. This
proves Proposition 5.8.3 (b).

(c) The ring Z/p has p elements, and exactly (p + 1) /2 of them are squares
(by Proposition 5.8.3 (b)). Hence, exactly p − (p + 1) /2 = (p − 1) /2 of its
elements are not squares. This proves Proposition 5.8.3 (c).

5.8.3. Euler’s QR criterion

Next, we will show a simple yet surprising rule, which was discovered by Euler:

Theorem 5.8.4 (Euler’s QR criterion). Let p ̸= 2 be a prime. Let a be an
integer. Then, (

a
p

)
≡ a(p−1)/2 mod p.

Proof. Since p is prime and satisfies p ̸= 2, we see that p is odd and ≥ 3. Hence,
(p − 1) /2 is a positive integer. Thus, 0(p−1)/2 = 0.

We must prove that
(

a
p

)
≡ a(p−1)/2 mod p. If p | a, then this boils down to

showing that 0 ≡ 0 mod p (since 0(p−1)/2 = 0). Thus, we WLOG assume that
p ∤ a.
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Let u = a ∈ Z/p; thus, u is nonzero (since p ∤ a). Hence, the definition of(
a
p

)
yields

(
a
p

)
=

{
1, if a is a QR mod p;
−1, if a is a QNR mod p

=

{
1, if u is a square;
−1, if u is not a square

(by the definition of QRs and QNRs) and thus(
a
p

)
=

{
1, if u is a square;
−1, if u is not a square.

(111)

Also,
a(p−1)/2 = a(p−1)/2 = u(p−1)/2 (112)

(since a = u). Now, we have the following chain of equivalences.((
a
p

)
≡ a(p−1)/2 mod p

)
(this is the claim we are proving)

⇐⇒
((

a
p

)
= a(p−1)/2

)
⇐⇒

(
a(p−1)/2 =

(
a
p

))

⇐⇒
(

u(p−1)/2 =

{
1, if u is a square;
−1, if u is not a square

)

(by (111) and (112)). Hence, it remains to prove that

• we have u(p−1)/2 = 1 if u is a square;

• we have u(p−1)/2 = −1 if u is not a square.

Equivalently, we shall prove the following three claims:

Claim 1: Any nonzero element v ∈ Z/p satisfies v(p−1)/2 = 1 or
v(p−1)/2 = −1.

Claim 2: Any nonzero square v ∈ Z/p satisfies v(p−1)/2 = 1.

Claim 3: Any element v ∈ Z/p that is not a square satisfies v(p−1)/2 ̸=
1.

This will prove the two bullet points we claimed above: The first bullet point
will follow from Claim 2, while the second will follow from Claims 1 and 3. So
it remains to prove the three Claims 1, 2 and 3.
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Proof of Claim 1. Let v ∈ Z/p be a nonzero element. Then, Proposition 2.6.4
(applied to v instead of u) yields vp = v. We can cancel v from this equal-
ity (since v is nonzero and Z/p is a field), and thus obtain vp−1 = 1. Since

p − 1 is even, we have
(

v(p−1)/2
)2

= vp−1 = 1, so that
(

v(p−1)/2
)2

− 1 = 0.

In view of
(

v(p−1)/2
)2

− 1 =
(

v(p−1)/2 − 1
) (

v(p−1)/2 + 1
)

, this rewrites as(
v(p−1)/2 − 1

) (
v(p−1)/2 + 1

)
= 0. Since Z/p is an integral domain, this en-

tails v(p−1)/2 − 1 = 0 or v(p−1)/2 + 1 = 0. In other words, v(p−1)/2 = 1 or
v(p−1)/2 = −1. This proves Claim 1.

Proof of Claim 2. Let v ∈ Z/p be a nonzero square. Thus, v = w2 for some
w ∈ Z/p. Consider this w. Now, w ̸= 0 (since w2 = v is nonzero). But
Proposition 2.6.4 (applied to w instead of u) yields wp = w. We can cancel w
from this equality (since w ̸= 0 and Z/p is a field), and thus obtain wp−1 = 1.
Now, from v = w2, we obtain v(p−1)/2 =

(
w2)(p−1)/2

= wp−1 = 1 = 1. This
proves Claim 2.

Proof of Claim 3. Here we take a bird’s eye view (as in our above proof of Lemma
5.6.1), rather than treating a single element v. Indeed, Z/p is an integral do-
main. Thus, the easy half of the FTA (Theorem 4.3.15) yields that if n is a
nonnegative integer, then any nonzero polynomial of degree ≤ n over Z/p
has at most n roots in Z/p. Applying this to the polynomial x(p−1)/2 − 1
(which is nonzero and has degree (p − 1) /2), we conclude that the polyno-
mial x(p−1)/2 − 1 has at most (p − 1) /2 roots in Z/p. But the set of all roots of
this polynomial x(p−1)/2 − 1 in Z/p is

{
v ∈ Z/p | v(p−1)/2 = 1

}
; hence, the

preceding sentence says that
∣∣∣{v ∈ Z/p | v(p−1)/2 = 1

}∣∣∣ ≤ (p − 1) /2.

On the other hand, {nonzero squares v ∈ Z/p} ⊆
{

v ∈ Z/p | v(p−1)/2 = 1
}

(by Claim 2) and |{nonzero squares v ∈ Z/p}| = (p − 1) /2 (by Proposition
5.8.3 (a)).

However, an easy and fundamental fact in combinatorics says that if X and
Y are two finite sets with X ⊆ Y and |Y| ≤ |X|, then X = Y. Applying this
to X = {nonzero squares v ∈ Z/p} and Y =

{
v ∈ Z/p | v(p−1)/2 = 1

}
, we

obtain

{nonzero squares v ∈ Z/p} =
{

v ∈ Z/p | v(p−1)/2 = 1
}

(since {nonzero squares v ∈ Z/p} ⊆
{

v ∈ Z/p | v(p−1)/2 = 1
}

and∣∣∣{v ∈ Z/p | v(p−1)/2 = 1
}∣∣∣ ≤ (p − 1) /2 = |{nonzero squares v ∈ Z/p}|).

Thus, every v ∈ Z/p satisfying v(p−1)/2 = 1 must be a nonzero square. By
taking the contrapositive of this statement, we obtain Claim 3.
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Having proved Claims 1, 2 and 3, we thus have completed the proof of The-
orem 5.8.4.

We note that Theorem 5.8.4 has a generalization to squares in arbitrary fields:

Exercise 5.8.1. Let F be a finite field of size q, where q is odd. Let u ∈ F be a
nonzero element. Prove that:

(a) If u is a square in F (that is, if u = v2 for some v ∈ F), then u(q−1)/2 = 1.

(b) If u is not a square in F, then u(q−1)/2 = −1.

5.8.4. The arithmetic of Legendre symbols

Euler’s criterion has a surprising corollary:

Corollary 5.8.5 (Multiplicativity of the Legendre symbol). Let p ̸= 2 be a
prime. Let a, b ∈ Z. Then, (

ab
p

)
=

(
a
p

)(
b
p

)
.

To prove this, we will need the following near-trivial lemma (yes, we will;
just wait):

Lemma 5.8.6. Let p ̸= 2 be a prime. Let u, v ∈ {0, 1,−1} be two integers
satisfying u ≡ v mod p. Then, u = v.

Proof. We have p > 2 (since p ̸= 2 and since p is a prime). Thus, neither 1
nor 2 nor −1 nor −2 is divisible by p. Therefore, the three integers 0, 1,−1 are
pairwise incongruent171 modulo p. In other words, if two of them are congruent
modulo p, then these two integers are just equal. Hence, from u ≡ v mod p, we
obtain u = v (since u, v ∈ {0, 1,−1}). This proves Lemma 5.8.6.

Proof of Corollary 5.8.5. Theorem 5.8.4 yields(
ab
p

)
≡ (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 mod p. (113)

But Theorem 5.8.4 also yields
(

a
p

)
≡ a(p−1)/2 mod p and

(
b
p

)
≡ b(p−1)/2 mod p.

Multiplying these two congruences, we obtain(
a
p

)(
b
p

)
≡ a(p−1)/2b(p−1)/2 mod p.

171“Incongruent” means “not congruent”.
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Comparing this congruence with (113), we find(
ab
p

)
≡
(

a
p

)(
b
p

)
mod p. (114)

But we want an equality, not a congruence! Luckily, the congruence (114)
turns out to entail the equality. Indeed, both sides of the congruence (114)
equal 0 or 1 or −1 (since any Legendre symbol is either 0 or 1 or −1, and
the same holds for a product of Legendre symbols). Hence, their congruence
implies their equality (by Lemma 5.8.6). This proves Corollary 5.8.5.

Corollary 5.8.5 has two nice corollaries of its own:

Corollary 5.8.7. Let p ̸= 2 be a prime. The map

(Z/p)× → {1,−1} ,

a 7→
(

a
p

)
is a group morphism (i.e., a homomorphism of groups).

Proof. The map is well-defined, since (as we have explained above)
(

a
p

)
de-

pends only on p and on a ∈ Z/p (but not on a itself). Let us now show that
this map is a group morphism.

In order to show that a map between two groups is a group morphism,
it suffices to show that this map respects multiplication (this is well-known).
Thus, it suffices to show that our map respects multiplication. In other words, it

suffices to show that
(

ab
p

)
=

(
a
p

)(
b
p

)
for any a, b ∈ Z that are not divisible

by p (since any two elements of the group (Z/p)× can be written in the forms a
and b for two such a, b ∈ Z, and then their product will be ab). But this follows
from Corollary 5.8.5.

Corollary 5.8.8. Let p ̸= 2 be a prime. Let u, v ∈ Z/p be two nonzero residue
classes. Then:

(a) If u and v are squares, then uv is a square.

(b) If only one of u and v is a square, then uv is not a square.

(c) If none of u and v is a square, then uv is a square.

Note that Corollary 5.8.8 (c) would fail if we replaced Z/p by Q. For exam-
ple, none of the rational numbers 2 and 3 is a square, but neither is 2 · 3. But it
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does hold in Z/p (as we shall now show), and (more generally) in finite fields,
as well as in R (since the non-squares in R are precisely the negative reals, but
a product of two negative reals is always positive).

Proof of Corollary 5.8.8. We shall only prove part (c), for two reasons: First of all,
parts (a) and (b) hold for any field (unlike part (c), as we just discussed), and
can easily be proved using nothing but the field axioms. Also, the proof we
will give for part (c) can easily be adapted to the other two parts.

(c) Assume that none of u and v is a square. Write u and v in the form u = a
and v = b for some integers a and b. Then, a is a QNR mod p (since a = u

is not a square and thus nonzero), and thus
(

a
p

)
= −1 (by the definition of

the Legendre symbol). Similarly,
(

b
p

)
= −1. Hence, Corollary 5.8.5 yields(

ab
p

)
=

(
a
p

)
︸ ︷︷ ︸
=−1

(
b
p

)
︸ ︷︷ ︸
=−1

= (−1) (−1) = 1. In other words, ab is a QR mod p (by

the definition of the Legendre symbol). In other words, ab is nonzero and a
square. In view of ab = a · b = uv (since a = u and b = v), this yields that uv is
a square. Thus, Corollary 5.8.8 (c) is proven.

Exercise 5.8.2. Let F be a finite field. Prove that the polynomial x4 + 1 ∈ F [x] is
not irreducible.

[Hint: It suffices to consider the case F = Z/p for a prime p. In this case, assume
further that p ̸= 2, since the p = 2 case is easily done by hand. Use Corollary 5.8.8
(c) to show that at least one of the residue classes −1, 2 and −2 is a square in Z/p.
In each of these cases, factor x4 + 1.]

5.8.5. When −1 is a QR

Let us now return to the computation of Legendre symbols. Thanks to Corol-

lary 5.8.5, we have (for example)
(

6
p

)
=

(
2
p

)(
3
p

)
and

(
−6
p

)
=

(
−1
p

)(
2
p

)(
3
p

)
for any prime p. But how do we compute

(
−1
p

)
,
(

2
p

)
and

(
3
p

)
?

We begin with
(
−1
p

)
, which is probably the easiest one:

Theorem 5.8.9. Let p ̸= 2 be a prime. Then, −1 is a QR mod p (that is,
−1 ∈ Z/p is a square) if and only if p ≡ 1 mod 4. In other words,(

−1
p

)
=

{
1, if p ≡ 1 mod 4;
−1, if p ≡ 3 mod 4.
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Proof. Since p is a prime satisfying p ̸= 2, the number p is odd. Hence,
(p − 1) /2 ∈ Z.

Theorem 5.8.4 yields the congruence(
−1
p

)
≡ (−1)(p−1)/2 mod p.

Lemma 5.8.6 shows that this congruence must actually be an equality, since
both of its sides are 0 or 1 or −1. In other words,(

−1
p

)
= (−1)(p−1)/2 . (115)

Now, p must satisfy p ≡ 1 mod 4 or p ≡ 3 mod 4 (since p is odd). In the former
case, (−1)(p−1)/2 is 1; in the latter, −1. Hence, (115) can be rewritten as(

−1
p

)
=

{
1, if p ≡ 1 mod 4;
−1, if p ≡ 3 mod 4.

5.8.6. Quadratic reciprocity

So we have simple formulas for
(
−1
p

)
and

(
5
p

)
. What about

(
a
p

)
for a

general a ? We only need to know a formula for
(

q
p

)
for each prime q (because,

as per Corollary 5.8.5 above, we can then get a general formula for
(

a
p

)
by

decomposing a into a product of primes and possibly −1, and multiplying).
Here is one:

Theorem 5.8.10 (Quadratic Reciprocity Law).

(a) Let p ̸= 2 be a prime. Then,(
2
p

)
= (−1)(p2−1)/8 =

{
1, if p ≡ ±1 mod 8;
−1, if p ≡ ±3 mod 8.

(b) Let p and q be two distinct primes distinct from 2. Then,(
q
p

)
= (−1)(p−1)(q−1)/4

(
p
q

)
.
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For example, if p ̸= 2 is any prime distinct from 5, then Theorem 5.8.10 (b)
(applied to q = 5) yields(

5
p

)
= (−1)(p−1)(5−1)/4︸ ︷︷ ︸

=1
(since 5−1=4 and thus

(p−1)(5−1)/4=p−1 is even)

( p
5

)
=
( p

5

)

=

{
1, if p ∈ Z/5 is a square;
−1, if p ∈ Z/5 is not a square

=

{
1, if p ≡ ±1 mod 5;
−1, if p ≡ ±2 mod 5

(the last equality follows from the fact that the nonzero squares in Z/5 are 1
and −1); this recovers the claim of Theorem 5.7.3. So Theorem 5.7.3 was merely
the tip of an iceberg.

Theorem 5.8.10 is known as the law of quadratic reciprocity172, and is one
of the most classical theorems in mathematics – discovered by Euler, proved
by Gauss. By now, it has received over 250 proofs (see https://www.rzuser.
uni-heidelberg.de/~hb3/rchrono.html for a list), and new proofs keep get-
ting published. You’ll get to prove its part (a) in the following exercise, inspired
by the q = 5 case we proved above:

Exercise 5.8.3. Let p be an odd prime. Let ζ be a root of the polynomial x4 + 1 ∈
(Z/p) [x] in a commutative Z/p-algebra A. Thus, ζ4 = −1, so that ζ is a unit (with
inverse −ζ3). Let τ ∈ A be defined by τ = ζ + ζ−1. Prove the following:

(a) We have τ2 = 2. (Here, 2 stands for 2 · 1A ∈ A.)

(b) We have τp =

(
2
p

)
τ, where

(
2
p

)
means a Legendre symbol.

(c) If p ≡ ±1 mod 8 (that is, if p is congruent to 1 or to −1 modulo 8), then τp = τ.

(d) If p ≡ ±3 mod 8 (that is, if p is congruent to 3 or to −3 modulo 8), then
τp = −τ.

(e) Prove Theorem 5.8.10 (a).

[Hint: For part (b), start out by writing τp =
(
τ2)(p−1)/2

τ.]

Hopefully, Exercise 5.8.3 sheds some light on the strange definition of τ.
The rest of this section will be devoted to proving Theorem 5.8.10 (b). Before

we embark on the actual proof, we shall show a few auxiliary results, which
are themselves of some interest.

172Some authors refer only to Theorem 5.8.10 (b) as the law of quadratic reciprocity; they corre-
spondingly call Theorem 5.8.10 (a) the “second supplementary law of quadratic reciprocity”.
(The name “first supplementary law” then refers to Theorem 5.8.9.)

https://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html
https://www.rzuser.uni-heidelberg.de/~hb3/rchrono.html
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5.8.7. A sum of Legendre symbols

The first auxiliary result is a classical formula for a certain sum of Legendre
symbols:

Proposition 5.8.11. Let p ̸= 2 be a prime. Let k ∈ Z. Then:

(a) If p | k, then
p−1
∑

i=0

(
i (i − k)

p

)
= p − 1.

(b) If p ∤ k, then
p−1
∑

i=0

(
i (i − k)

p

)
= −1.

Proof. We first observe that
(

0 (0 − k)
p

)
=

(
0
p

)
= 0 (since p | 0). In other

words, the i = 0 addend of the sum
p−1
∑

i=0

(
i (i − k)

p

)
is 0. Hence, we can remove

this addend from the sum, and obtain

p−1

∑
i=0

(
i (i − k)

p

)
=

p−1

∑
i=1

(
i (i − k)

p

)
. (116)

We also note that p is odd (since p ̸= 2 is a prime), and thus (p − 1) /2 ∈ N.

(a) Assume that p | k. Then, k ≡ 0 mod p, so that k = 0 in Z/p.
Let i ∈ {1, 2, . . . , p − 1}. Then, p ∤ i, so that i ̸= 0 in Z/p. Hence, i2 ̸= 0 in

Z/p as well (since Z/p is an integral domain). However, in Z/p, we have

i (i − k) = i

i − k︸︷︷︸
=0

 = i
(
i − 0

)
= i2 ̸= 0,

so that i (i − k) is not divisible by p. Furthermore, the element i (i − k) of Z/p
is a square (since i (i − k) = i2

), so that i (i − k) is a QR mod p (since i (i − k) is

not divisible by p). Therefore,
(

i (i − k)
p

)
= 1.

Forget that we fixed i. We thus have proved the equality
(

i (i − k)
p

)
= 1 for

each i ∈ {1, 2, . . . , p − 1}. Summing this equality over all i ∈ {1, 2, . . . , p − 1},

we obtain
p−1
∑

i=1

(
i (i − k)

p

)
=

p−1
∑

i=1
1 = p − 1. Hence, (116) can be rewritten as

p−1
∑

i=0

(
i (i − k)

p

)
= p − 1. This proves Proposition 5.8.11 (a).
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(b) Assume that p ∤ k. We consider the polynomial

f := (x (x − k))(p−1)/2 − xp−1 ∈ Z [x]

(this is well-defined, since (p − 1) /2 ∈ N). We claim that this polynomial
f has degree ≤ p − 2. Indeed, f is the difference of the two polynomials
(x (x − k))(p−1)/2 and xp−1, both of which have degree p − 1 and leading co-
efficient 1 (this is obvious for xp−1, and for (x (x − k))(p−1)/2 it follows from
Proposition 4.3.5 (d)173). When we subtract these two polynomials, the leading
terms cancel out (since the leading coefficients are equal), and thus we are left
with a polynomial of degree ≤ p − 2. In other words, the polynomial f has
degree ≤ p − 2.

Hence, Corollary 4.3.21 yields
p−1
∑

j=0
f (j) ≡ 0 mod p. In other words,

p−1

∑
j=0

(
(j (j − k))(p−1)/2 − jp−1

)
≡ 0 mod p

(since the definition of f yields f (j) = (j (j − k))(p−1)/2 − jp−1 for each j ∈ Z).
In other words,

p−1

∑
j=0

(j (j − k))(p−1)/2 −
p−1

∑
j=0

jp−1 ≡ 0 mod p.

Hence,

p−1

∑
j=0

(j (j − k))(p−1)/2 ≡
p−1

∑
j=0

jp−1 = 0p−1︸︷︷︸
=0

(since p−1>0)

+
p−1

∑
j=1

jp−1︸︷︷︸
≡1 mod p

(by Corollary 2.6.5,
since p∤j)

≡ 0 +
p−1

∑
j=1

1 = p − 1 ≡ −1 mod p.

173In more detail: An easy consequence of Proposition 4.3.5 (d) is that if g is a monic polynomial
of degree i, then gm is a monic polynomial of degree mi for each m ∈ N. Applying this
to g = x (x − k) and i = 2 and m = (p − 1) /2, we conclude that (x (x − k))(p−1)/2 is a
monic polynomial of degree (p − 1) /2 · 2 = p − 1. In other words, (x (x − k))(p−1)/2 is a
polynomial with degree p − 1 and leading coefficient 1.
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Now,

p−1

∑
i=0

(
i (i − k)

p

)
︸ ︷︷ ︸

≡(i(i−k))(p−1)/2 mod p
(by Theorem 5.8.4,

applied to a=i(i−k))

≡
p−1

∑
i=0

(i (i − k))(p−1)/2 =
p−1

∑
j=0

(j (j − k))(p−1)/2

≡ −1 mod p. (117)

This is very close to the thing we want to prove, but we are not quite there yet:
We want to prove that the two sides of (117) are identical, not just congruent

modulo p. Thus, we need an extra argument. Let s :=
p−1
∑

i=0

(
i (i − k)

p

)
. This s is

a sum of p Legendre symbols, each of which is either 0 or 1 or −1 (since any
Legendre symbol is either 0 or 1 or −1). Hence, s is an integer between −p and
p (inclusive). However, we can show something slightly better: We can show
that s is an integer between − (p − 2) and p − 2.

In order to show this, we let ℓ be the remainder obtained when dividing k by
p. Then, ℓ ∈ {0, 1, . . . , p − 1} and ℓ ̸= 0 (since p ∤ k) and ℓ ≡ k mod p. Hence,

ℓ− k is divisible by p, so that ℓ (ℓ− k) is divisible by p. Thus,
(
ℓ (ℓ− k)

p

)
= 0

by Definition 5.8.2.
Now, the sum

s =
p−1

∑
i=0

(
i (i − k)

p

)
(118)

has at least two addends that equal 0: namely, the i = 0 addend (which is(
0 (0 − k)

p

)
= 0) and the i = ℓ addend (which is

(
ℓ (ℓ− k)

p

)
= 0). These are

two distinct addends (since ℓ ̸= 0). The remaining p − 2 addends in the sum s
are Legendre symbols, so each of them is either 0 or 1 or −1. Hence, the entire
sum s is an integer between − (p − 2) and p − 2 (inclusive).

We have now encircled s from all sides: On the one hand, we know that

s =
p−1
∑

i=0

(
i (i − k)

p

)
≡ −1 mod p (by (117)), so that s is congruent to −1 modulo

p. On the other hand, we know that s is an integer between − (p − 2) and
p − 2 (inclusive). However, the only integer between − (p − 2) and p − 2 that
is congruent to −1 modulo p is the integer −1 itself (since p − 1 is too large,

while −p − 1 is too small). Thus, s must be −1. In other words,
p−1
∑

i=0

(
i (i − k)

p

)
must be −1 (by (118)). This proves Proposition 5.8.11 (b).

The following exercise (a result of Jacobsthal from 1907, see [Jacobs07]) gen-
eralizes Proposition 5.8.11:
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Exercise 5.8.4. Let p ̸= 2 be a prime. Let a, b ∈ Z. Prove that

p−1

∑
i=0

(
i2 + ai + b

p

)
=

{
p − 1, if a2 ≡ 4b mod p;
−1, else.

5.8.8. Gaussian sums

In our above proof of Theorem 5.7.3, we did some seemingly unmotivated
things: We adjoined an element z satisfying z4 + z3 + z2 + z + 1 = 0 to our
field (which was Z/p, but this is not important); then, we defined τ = z − z2 −
z3 + z4; then, we showed (by computation) that τ2 = 5.

This element τ was not chosen at random; its definition can be rewritten
using Legendre symbols as

τ =
4

∑
i=0

(
i
5

)
zi

(since
4
∑

i=0

(
i
5

)
zi =

(
0
5

)
︸ ︷︷ ︸
=0

z0 +

(
1
5

)
︸ ︷︷ ︸
=1

z1 +

(
2
5

)
︸ ︷︷ ︸
=−1

z2 +

(
3
5

)
︸ ︷︷ ︸
=−1

z3 +

(
4
5

)
︸ ︷︷ ︸
=1

z4 = 0z0 +

1z1 +(−1) z2 +(−1) z3 + 1z4 = z− z2 − z3 + z4). This suggests a generalization:
Replacing 5 by an arbitrary prime p ̸= 2, we can adjoin an element z satisfying
zp−1 + zp−2 + · · ·+ z0 = 0 to our field (which, as we said, can be arbitrary), and

define an element τ =
p−1
∑

i=0

(
i
p

)
zi. The square τ2 of this element will then be

(−1)(p−1)/2 p instead of 5. This was found by Gauss, and we shall prove this as
part of the following theorem:

Theorem 5.8.12 (square of the Gaussian sum). Let p ̸= 2 be a prime. Let A
be a commutative ring. Let z ∈ A be an element satisfying

zp−1 + zp−2 + · · ·+ z0 = 0. (119)

Then:

(a) We have zp = 1A.

(b) If u, v ∈ N satisfy u ≡ v mod p, then zu = zv.

(c) Define an element τ ∈ A by

τ =
p−1

∑
i=0

(
i
p

)
zi.

Then,
τ2 = (−1)(p−1)/2 p · 1A.
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The τ defined in Theorem 5.8.12 (c) is known as a Gaussian sum. The best-
known particular case of Theorem 5.8.12 is when A = C and z = e2πi/p =

cos
2π

p
+ i sin

2π

p
; in this case, the claim of Theorem 5.8.12 (c) is saying that

τ2 = (−1)(p−1)/2 p. This implies that τ = ±
√
(−1)(p−1)/2 p in this case, and

one can wonder whether the ± sign is a + or a −. This question has been
answered (the sign is always a + sign), but the proof is tricky and would take
us further afield than I’d like. You can find it in [Elman22, Theorem F.2]. To us,
this question is not important, since it only concerns the case A = C, whereas
we will apply Theorem 5.8.12 to a different ring A.

Proof of Theorem 5.8.12. (a) Multiplying both sides of the equality (119) by z, we
obtain z ·

(
zp−1 + zp−2 + · · ·+ z0) = 0. In other words,

zp + zp−1 + · · ·+ z1 = 0.

Subtracting this equality from the original equality (119) (and cancelling all the
addends that appear in both), we obtain z0 − zp = 0. In other words, z0 = zp.
Hence, zp = z0 = 1A. This proves Theorem 5.8.12 (a).

(b) Let u, v ∈ N satisfy u ≡ v mod p. We must prove that zu = zv.
We WLOG assume that u ≥ v (otherwise, swap u with v). Thus, u − v ∈ N.

Since u ≡ v mod p, we also have p | u − v, so that
u − v

p
∈ Z and therefore

u − v
p

∈ N (since u − v ∈ N). Let us denote this number
u − v

p
by m. Thus,

m =
u − v

p
∈ N. Also, solving the equation m =

u − v
p

for u, we find u =

mp + v. Hence, zu = zmp+v = (zp)m zv. However, Theorem 5.8.12 (a) yields
zp = 1A. Thus, (zp)m = 1m

A = 1A and therefore zu = (zp)m︸ ︷︷ ︸
=1A

zv = zv. Thus,

Theorem 5.8.12 (b) is proved.

(c) From (119), we obtain

0 = zp−1 + zp−2 + · · ·+ z0 =
(

zp−1 + zp−2 + · · ·+ z1
)
+ z0︸︷︷︸

=1A

=
(

zp−1 + zp−2 + · · ·+ z1
)
+ 1A.

In other words,
zp−1 + zp−2 + · · ·+ z1 = −1A. (120)

We have τ =
p−1
∑

i=0

(
i
p

)
zi and τ =

p−1
∑

i=0

(
i
p

)
zi =

p−1
∑

j=0

(
j
p

)
zj. Multiplying
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these two equalities, we obtain

ττ =

(
p−1

∑
i=0

(
i
p

)
zi

)(
p−1

∑
j=0

(
j
p

)
zj

)
=

p−1

∑
i=0

p−1

∑
j=0

(
i
p

)
zi
(

j
p

)
zj

=
p−1

∑
i=0

p−1

∑
j=0︸ ︷︷ ︸

= ∑
(i,j)∈{0,1,...,p−1}2

(
i
p

)(
j
p

)
zizj = ∑

(i,j)∈{0,1,...,p−1}2

(
i
p

)(
j
p

)
zizj

=
p−1

∑
k=0

∑
(i,j)∈{0,1,...,p−1}2;

i+j≡k mod p

(
i
p

)(
j
p

)
zizj︸︷︷︸

=zi+j=zk

(by Theorem 5.8.12 (b),
since i+j≡k mod p) because for each (i, j) ∈ {0, 1, . . . , p − 1}2 , there exists a

unique k ∈ {0, 1, . . . , p − 1} that satisfies i + j ≡ k mod p
(namely, this k is the remainder of i + j upon division by p)


=

p−1

∑
k=0

∑
(i,j)∈{0,1,...,p−1}2;

i+j≡k mod p

(
i
p

)(
j
p

)
zk. (121)

Now, let k ∈ {0, 1, . . . , p − 1} be a number, and let (i, j) ∈ {0, 1, . . . , p − 1}2

be a pair satisfying i + j ≡ k mod p. Then, Corollary 5.8.5 yields(
ij
p

)
=

(
i
p

)(
j
p

)
. (122)

However, from i + j ≡ k mod p, we obtain j ≡ k − i mod p and thus ij ≡

i (k − i) = (−1) i (i − k)mod p. Hence,
(

ij
p

)
=

(
(−1) i (i − k)

p

)
(by (110),

applied to a = ij and b = (−1) i (i − k)). Comparing this with (122), we obtain(
i
p

)(
j
p

)
=

(
(−1) i (i − k)

p

)
=

(
−1
p

)
︸ ︷︷ ︸

=(−1)(p−1)/2

(by (115))

(
i (i − k)

p

)

(by Corollary 5.8.5, applied to a = −1 and b = i (i − k))

= (−1)(p−1)/2
(

i (i − k)
p

)
. (123)

Forget that we fixed k and (i, j). We thus have proved (123) for each k ∈
{0, 1, . . . , p − 1} and each pair (i, j) ∈ {0, 1, . . . , p − 1}2 satisfying i+ j ≡ k mod p.
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Therefore, (121) becomes

ττ =
p−1

∑
k=0

∑
(i,j)∈{0,1,...,p−1}2;

i+j≡k mod p

(
i
p

)(
j
p

)
︸ ︷︷ ︸

=(−1)(p−1)/2

 i (i − k)
p


(by (123))

zk

= (−1)(p−1)/2
p−1

∑
k=0

∑
(i,j)∈{0,1,...,p−1}2;

i+j≡k mod p︸ ︷︷ ︸
=

p−1
∑

i=0
∑

j∈{0,1,...,p−1};
i+j≡k mod p

=
p−1
∑

i=0
∑

j∈{0,1,...,p−1};
j≡k−i mod p

(since the congruence i+j≡k mod p
is equivalent to j≡k−i mod p)

(
i (i − k)

p

)
zk

= (−1)(p−1)/2
p−1

∑
k=0

p−1

∑
i=0

∑
j∈{0,1,...,p−1};

j≡k−i mod p

(
i (i − k)

p

)
zk. (124)

Now, fix two numbers k, i ∈ {0, 1, . . . , p − 1}. Then, there is a unique number
j ∈ {0, 1, . . . , p − 1} that satisfies j ≡ k − i mod p (namely, the remainder of

k − i upon division by p). Hence, the sum ∑
j∈{0,1,...,p−1};

j≡k−i mod p

(
i (i − k)

p

)
has exactly 1

addend, and therefore simplifies to
(

i (i − k)
p

)
.

Forget that we fixed k, i. We thus have shown that

∑
j∈{0,1,...,p−1};

j≡k−i mod p

(
i (i − k)

p

)
=

(
i (i − k)

p

)
(125)
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for each k, i ∈ {0, 1, . . . , p − 1}. Thus,

p−1

∑
k=0

p−1

∑
i=0

∑
j∈{0,1,...,p−1};

j≡k−i mod p

(
i (i − k)

p

)
︸ ︷︷ ︸

=

 i (i − k)
p


(by (125))

zk

=
p−1

∑
k=0

p−1

∑
i=0

(
i (i − k)

p

)
zk

=
p−1

∑
i=0

(
i (i − 0)

p

)
︸ ︷︷ ︸

=p−1
(by Proposition 5.8.11 (a),

applied to k=0)

z0︸︷︷︸
=1A

+
p−1

∑
k=1

p−1

∑
i=0

(
i (i − k)

p

)
︸ ︷︷ ︸

=−1
(by Proposition 5.8.11 (b),

since k∈{1,2,...,p−1} entails p∤k)

zk

(here, we have split off the addend for k = 0 from the sum)

= (p − 1) · 1A +
p−1

∑
k=1

(−1) zk

= (p − 1) · 1A −
p−1

∑
k=1

zk

︸ ︷︷ ︸
=zp−1+zp−2+···+z1=−1A

(by (120))

= (p − 1) · 1A − (−1A) = p · 1A.

Therefore, we can rewrite (124) as

ττ = (−1)(p−1)/2 p · 1A.

In other words, τ2 = (−1)(p−1)/2 p · 1A. This proves Theorem 5.8.12 (c).

5.8.9. Proof of quadratic reciprocity for two odd primes

We are now ready to prove the Quadratic Reciprocity Law for two odd primes
(i.e., part (b) of Theorem 5.8.10):

Proof of Theorem 5.8.10 (b). Let F be the field Z/q. (This is a field, since q is
prime.) We have q ∤ p (since p and q are two distinct primes); thus, the residue
class p in Z/q is nonzero. Since Z/q is a field, this shows that p is a unit.

Now, we shall extend the field F to a ring by adjoining an element z that
satisfies zp−1 + zp−2 + · · ·+ z0 = 0.
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Indeed, the polynomial xp−1 + xp−2 + · · ·+ x0 ∈ F [x] is a monic polynomial
of degree p− 1 over F, so that its leading coefficient is a unit. Thus, by Theorem
4.5.9 (d) (applied to R = F and b = xp−1 + xp−2 + · · ·+ x0 and m = p− 1), there
exists a commutative ring that contains F as a subring and that contains a root
of xp−1 + xp−2 + · · ·+ x0.

Let A be this ring, and let z be this root that it contains. Thus, z ∈ A satisfies
zp−1 + zp−2 + · · ·+ z0 = 0. (Note that we could use Theorem 5.3.7 (b) to obtain
a field instead of this ring A, but we will have no need for this, so we have
applied the less advanced Theorem 4.5.9 (d).)

Note that A is a commutative Z/q-algebra (since A is a commutative ring
that contains F = Z/q as a subring).

Define an element τ ∈ A by

τ =
p−1

∑
i=0

(
i
p

)
zi. (126)

Then, Theorem 5.8.12 (c) yields174

τ2 = (−1)(p−1)/2 p · 1A︸︷︷︸
=1

(in Z/q)

= (−1)(p−1)/2 p · 1

= (−1)(p−1)/2 p (127)

= (−1)(p−1)/2 · p.

This shows that τ2 is a unit of Z/q (since (−1)(p−1)/2 and p are units of Z/q).
We shall now compute τq−1.
First, q is odd (since q ̸= 2 is a prime), and thus (q − 1) /2 ∈ N. Taking the

equality (127) to the (q − 1) /2-th power, we obtain

(
τ2
)(q−1)/2

=

(
(−1)(p−1)/2 p

)(q−1)/2

=
(
(−1)(p−1)/2 p

)(q−1)/2

=
(
(−1)(p−1)/2

)(q−1)/2
p(q−1)/2 =

(
(−1)(p−1)/2

)(q−1)/2
· p(q−1)/2.

In view of
(
τ2)(q−1)/2

= τq−1 and
(
(−1)(p−1)/2

)(q−1)/2
= (−1)(p−1)(q−1)/4, we

can rewrite this as

τq−1 = (−1)(p−1)(q−1)/4 · p(q−1)/2. (128)

174Here and in the rest of this proof, the notation r always means the residue class of an integer
r in Z/q.
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However, Theorem 5.8.4 (applied to q and p instead of p and a) yields
(

p
q

)
≡

p(q−1)/2 mod q. In other words,
(

p
q

)
= p(q−1)/2 in Z/q. Hence, we can rewrite

(128) as

τq−1 = (−1)(p−1)(q−1)/4 ·
(

p
q

)
= (−1)(p−1)(q−1)/4

(
p
q

)
. (129)

On the other hand, define a map

f : A → A,
a 7→ aq.

Then, Corollary 5.3.10 (applied to A and q instead of F and p) shows that f is
a ring morphism (since A is a commutative Z/q-algebra). Applying this map f
to both sides of (126), we find

f (τ) = f

(
p−1

∑
i=0

(
i
p

)
zi

)

=
p−1

∑
i=0

(
i
p

)
f
(

zi
)

︸ ︷︷ ︸
=(zi)

q

(by the definition of f)

(since f is a ring morphism)

=
p−1

∑
i=0

(
i
p

)(
zi
)q

︸ ︷︷ ︸
=ziq

=
p−1

∑
i=0

(
i
p

)
ziq.

Since f (τ) = τq (by the definition of f), we can rewrite this as

τq =
p−1

∑
i=0

(
i
p

)
ziq. (130)

We shall now rewrite τ in a different way. To this purpose, we consider the
map

{0, 1, . . . , p − 1} → {0, 1, . . . , p − 1} ,
i 7→ (iq)%p,

where (iq)%p denotes the remainder that iq leaves upon division by p. This
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map is easily seen to be bijective175. Thus, we can substitute (iq)%p for i in the

sum
p−1
∑

i=0

(
i
p

)
zi. We thus obtain

p−1

∑
i=0

(
i
p

)
zi =

p−1

∑
i=0

(
(iq)%p

p

)
︸ ︷︷ ︸

=

( iq
p

)
(by (110),

since (iq)%p≡iq mod p)

z(iq)%p︸ ︷︷ ︸
=ziq

(by Theorem 5.8.12 (b),
since (iq)%p≡iq mod p)

=
p−1

∑
i=0

(
iq
p

)
︸ ︷︷ ︸

=

( i
p

)( q
p

)
(by Corollary 5.8.5)

ziq =

(
q
p

)
·

p−1

∑
i=0

(
i
p

)
ziq

︸ ︷︷ ︸
=τq

(by (130))

=

(
q
p

)
· τq.

In view of (126), we can rewrite this as

τ =

(
q
p

)
· τq.

Multiplying both sides of this equality by τ, we obtain

τ2 =

(
q
p

)
· τq+1︸︷︷︸
=τq−1·τ2

=

(
q
p

)
· τq−1 · τ2

=

(
q
p

)
· (−1)(p−1)(q−1)/4

(
p
q

)
· τ2 (by (129)) .

Since τ2 is a unit of Z/q, we can cancel τ2 from both sides of this equality (by
multiplying by its inverse). Thus, we obtain

1 =

(
q
p

)
· (−1)(p−1)(q−1)/4

(
p
q

)
=

(
q
p

)
· (−1)(p−1)(q−1)/4

(
p
q

)
= (−1)(p−1)(q−1)/4

(
p
q

)(
q
p

)
.

175Proof. It suffices to show that this map is injective (because an injective map between two
finite sets of the same size is automatically bijective). So let us show this.

Let i1, i2 be two distinct elements of {0, 1, . . . , p − 1}. We must prove that (i1q)%p ̸=
(i2q)%p.

Assume the contrary. Thus, (i1q)%p = (i2q)%p. Hence, i1q ≡ i2q mod p (because two
integers leave the same remainder upon division by p if and only if they are congruent
modulo p). In other words, p | i1q − i2q. In other words, p | (i1 − i2) q. Since p is a prime,
this entails that either p | i1 − i2 or p | q (or both). Since p | q is impossible (because p and
q are two distinct primes), we thus conclude that p | i1 − i2. In other words, i1 ≡ i2 mod p.
However, since i1, i2 ∈ {0, 1, . . . , p − 1}, this entails i1 = i2, which contradicts the fact that
i1, i2 are distinct. This contradiction shows that our assumption was false, qed.
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In other words,

1 ≡ (−1)(p−1)(q−1)/4
(

p
q

)(
q
p

)
mod q.

Thus, Lemma 5.8.6 (applied to q, 1 and (−1)(p−1)(q−1)/4
(

p
q

)(
q
p

)
instead of

p, u and v) shows that

1 = (−1)(p−1)(q−1)/4
(

p
q

)(
q
p

)
(131)

(because both 1 and (−1)(p−1)(q−1)/4
(

p
q

)(
q
p

)
are elements of {0, 1,−1}).

However, p ∤ q (since p and q are two distinct primes), and thus
(

q
p

)
is either

1 or −1. Hence, in either case, we have
(

q
p

)2

= 1. Now, multiplying both sides

of the equality (131) by
(

q
p

)
, we obtain

(
q
p

)
= (−1)(p−1)(q−1)/4

(
p
q

)(
q
p

)2

︸ ︷︷ ︸
=1

= (−1)(p−1)(q−1)/4
(

p
q

)
.

This proves Theorem 5.8.10 (b).

See [Burton11, Chapter 9] or [Stein09, Chapter 4] (or almost any text on
elementary number theory) for more about quadratic residues. A collection
of proofs of Theorem 5.8.10 has also been published as a book ([Baumga15]);
one of the most elementary proofs is presented in [KeeGui20, §3.12]. See also
[Schroe09, particularly Chapter 16] for an application of quadratic residues to
the acoustics of concert halls.

Exercise 5.8.5. Let p ̸= 2 be a prime. Prove the following:

(a) We have (
−2
p

)
=

{
1, if p ≡ 1 mod 8 or p ≡ 3 mod 8;
−1, if p ≡ −1 mod 8 or p ≡ −3 mod 8.

(b) If p ≡ 1 mod 8 or p ≡ 3 mod 8, then p can be written in the form x2 + 2y2 for
some x, y ∈ Z.

[Hint: For part (b), recall Exercise 2.13.1 and Section 2.16.]
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Exercise 5.8.6. Let p > 3 be a prime. Prove the following:

(a) We have (
−3
p

)
=

{
1, if p ≡ 1 mod 3;
−1, if p ≡ −1 mod 3.

(b) If p ≡ 1 mod 3, then p can be written in the form u2 − uv + v2 for some u, v ∈
Z.

(c) If p ≡ 1 mod 3, then p can be written in the form x2 + 3y2 for some x, y ∈ Z.

[Hint: For parts (b) and (c), recall Exercise 2.13.3 and Section 2.16. This time,
Z
[√

−3
]

is the wrong ring to be working in, since it is not Euclidean; but Z [ω] acts
its part well enough for part (b). In order to obtain part (c), use part (b) and then

rewrite u2 − uv + v2 as
(u

2
− v
)2

+ 3
(u

2

)2
if u is even, or as

(v
2
− u

)2
+ 3

(v
2

)2
if v

is even, or as
(

u + v
2

)2

+ 3
(

u − v
2

)2

in the remaining case.]

5.8.10. Jacobsthal’s explicit formulas for p = x2 + y2

Legendre symbols are useful not only for studying squares in Z/p. A surprising
application was found by Jacobsthal in 1907 [Jacobs07, Seite 240]: Recall that Theorem
2.16.1 says that each prime p satisfying p ≡ 1 mod 4 can be written as a sum of two
perfect squares. Jacobsthal used Legendre symbols to not only prove this theorem in
a new way, but also to give “explicit” formulas for two perfect squares that sum to p.
We are using scare quotes around the word “explicit”, since using these formulas to
compute the squares is much slower than searching for the squares by brute force (let
alone than an actually efficient algorithm, such as the one given in [Stein09, §5.7]), but
the formulas are fascinating in their own right.

Jacobsthal’s theorem can be stated as follows:

Theorem 5.8.13 (Jacobsthal’s formulas). Let p be a prime such that p ≡ 1 mod 4. For
any integer h, define

W (h) :=
p−1

∑
i=0

(
i
(
i2 + h

)
p

)
∈ Z. (132)

Let m be a QNR mod p (that is, an integer such that m ∈ Z/p is not a square). Let
a = W (1) and b = W (m). Then:

(a) The integers a and b are even.

(b) We have p = (a/2)2 + (b/2)2.

Take a moment to appreciate this theorem as a miracle, before we somewhat dispel
the mystery through the proof. First, an example:
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• Let p = 13 (a prime that satisfies p ≡ 1 mod 4), and let m = 5 (a QNR mod p).
Then, using the notation of Theorem 5.8.13, we have

a = W (1) =
p−1

∑
i=0

(
i
(
i2 + 1

)
p

)

=

(
0
(
02 + 1

)
13

)
+

(
1
(
12 + 1

)
13

)
+ · · ·+

(
12
(
122 + 1

)
13

)
= 0 + (−1) + 1 + 1 + 1 + 0 + 1 + 1 + 0 + 1 + 1 + 1 + (−1)
= 6

and

b = W (m) = W (5) =
p−1

∑
i=0

(
i
(
i2 + 5

)
p

)

=

(
0
(
02 + 5

)
13

)
+

(
1
(
12 + 5

)
13

)
+ · · ·+

(
12
(
122 + 5

)
13

)
= 0 + (−1) + (−1) + 1 + (−1) + (−1) + 1 + 1

+ (−1) + (−1) + 1 + (−1) + (−1)
= −4,

so that a and b are indeed even and we indeed have p = (a/2)2 + (b/2)2 (since
(a/2)2 + (b/2)2 = (6/2)2 + (−4/2)2 = 9 + 4 = 13 = p).

The numbers W (h) in Theorem 5.8.13 (and several similarly defined numbers) are
known as Jacobsthal sums.

A sequence of lemmas will pave our way to the proof of Theorem 5.8.13. First,
however, we introduce a simple piece of notation:

Definition 5.8.14. Let p ̸= 2 be a prime. Let u ∈ Z/p. Then, Kp (u) shall denote

the Legendre symbol
(

a
p

)
, where a is an integer satisfying a = u. This Legendre

symbol is well-defined, i.e., it depends only on u (not on a), because if a and b are

two integers satisfying a = b, then a ≡ b mod p and therefore
(

a
p

)
=

(
b
p

)
(by

(110)).

For example, K5
(
7
)
=

(
7
5

)
= −1 and K5

(
10
)
=

(
10
5

)
= 0.

We fix a prime p ̸= 2 for the rest of this subsection (but we don’t require that
p ≡ 1 mod 4). From Definition 5.8.14, it follows that

Kp (a) =
(

a
p

)
for any a ∈ Z. (133)

As a warm-up, we shall prove some facts about the Kp (u), many of which are mere
restatements of known properties of Legendre symbols using our new notation for
them:
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Lemma 5.8.15. Let u ∈ Z/p. Then:

(a) If u = 0, then Kp (u) = 0.

(b) If u ̸= 0 but u is a square, then Kp (u) = 1.

(c) If u is not a square, then Kp (u) = −1.

(d) If u ̸= 0, then Kp (u) ≡ 1 mod 2.

(e) We always have
(
Kp (u)

)3
= Kp (u).

(f) If u ̸= 0, then
(
Kp (u)

)2
= 1.

Proof. Write the residue class u in the form u = a for some a ∈ Z. Then, Kp (u) =
(

a
p

)
(by Definition 5.8.14).

(a) We must prove that Kp (0) = 0. However, the zero of Z/p is the residue class 0.

That is, 0 = 0. Hence, Kp (0) = Kp
(
0
)
=

(
0
p

)
(by (133)), so that Kp (0) =

(
0
p

)
= 0

(by Definition 5.8.2, since p | 0). This proves Lemma 5.8.15 (a).
(b) Assume that u ̸= 0 and that u is a square. Then, a = u ̸= 0 in Z/p, so that a is

not divisible by p. Moreover, a = u is a square in Z/p. Hence, a is a QR mod p (by the

definition of a QR). Therefore,
(

a
p

)
= 1 (by the definition of the Legendre symbol).

Now, Kp (u) =
(

a
p

)
= 1. This proves Lemma 5.8.15 (b).

(c) Assume that u is not a square. Then, a = u ̸= 0 in Z/p (since 0 is a square but u
is not), so that a is not divisible by p. Moreover, a = u is not a square in Z/p. Hence, a

is a QNR mod p (by the definition of a QNR). Therefore,
(

a
p

)
= −1 (by the definition

of the Legendre symbol). Now, Kp (u) =
(

a
p

)
= −1. This proves Lemma 5.8.15 (c).

(d) Assume that u ̸= 0. Then, parts (b) and (c) of Lemma 5.8.15 show that Kp (u) is
either 1 or −1. In either case, Kp (u) is odd, i.e., we have Kp (u) ≡ 1 mod 2. This proves
Lemma 5.8.15 (d).

(e) The number Kp (u) is a Legendre symbol (by its definition) and thus belongs
to the set {0, 1,−1} (since any Legendre symbol belongs to this set). In other words,
Kp (u) ∈ {0, 1,−1}.

However, each number x ∈ {0, 1,−1} satisfies x3 = x (just check this for each of the
values 0, 1 and −1). Applying this to x = Kp (u), we obtain

(
Kp (u)

)3
= Kp (u) (since

Kp (u) ∈ {0, 1,−1}). This proves Lemma 5.8.15 (e).
(f) Assume that u ̸= 0. Then, parts (b) and (c) of Lemma 5.8.15 show that Kp (u) is

either 1 or −1. In either case,
(
Kp (u)

)2
= 1. This proves Lemma 5.8.15 (f).

Lemma 5.8.16. Let u ∈ Z/p. Then,176

Kp (u) =
(
# of elements x ∈ Z/p such that x2 = u

)
− 1.
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Proof. Write the residue class u as u = a for some integer a. We are in one of the
following three cases:

Case 1: We have u = 0.
Case 2: We have u ̸= 0, but u is a square in Z/p.
Case 3: The element u is not a square in Z/p.
Let us first consider Case 1. In this case, u = 0. Thus, Lemma 5.8.15 (a) yields

Kp (u) = 0. On the other hand, Z/p is an integral domain. Thus, there is only one
element x ∈ Z/p such that x2 = 0 (namely, 0). Thus,(

# of elements x ∈ Z/p such that x2 = 0
)
= 1.

In other words, (
# of elements x ∈ Z/p such that x2 = u

)
= 1

(since u = 0). Hence,(
# of elements x ∈ Z/p such that x2 = u

)
− 1 = 0 = Kp (u)

(since Kp (u) = 0). Thus, Lemma 5.8.16 is proved in Case 1.
Let us now consider Case 2. In this case, we have u ̸= 0, but u is a square in Z/p.

Hence, Lemma 5.8.15 (b) yields Kp (u) = 1.
We have u = y2 for some y ∈ Z/p (since u is a square). Consider this y. Then,

y ̸= 0 (since y2 = u ̸= 0). Also, 2 ̸= 0 in Z/p (since p ̸= 2 is a prime). Now,
2y =

(
2 · 1Z/p

)︸ ︷︷ ︸
=2

y = 2y ̸= 0 (since 2 ̸= 0 and y ̸= 0, and since Z/p is an integral

domain). Subtracting y from this non-equation, we obtain y ̸= −y.
Now, {

x ∈ Z/p | x2 = y2} =
{

x ∈ Z/p | x2 − y2 = 0
}

= {x ∈ Z/p | (x − y) (x + y) = 0}(
since x2 − y2 = (x − y) (x + y)

)
= {x ∈ Z/p | x − y = 0 or x + y = 0}

(since Z/p is an integral domain)
= {x ∈ Z/p | x = y or x = −y}
= {y,−y} . (134)

However, u = y2, and thus(
# of elements x ∈ Z/p such that x2 = u

)
=
(
# of elements x ∈ Z/p such that x2 = y2)

=
∣∣{x ∈ Z/p | x2 = y2}∣∣ = |{y,−y}| (by (134))

= 2 (since y ̸= −y) ,

so that (
# of elements x ∈ Z/p such that x2 = u

)
− 1 = 2 − 1 = 1 = Kp (u)

176The symbol “#” means “number”. For instance, (# of odd integers i ∈ {0, 1, . . . , 10}) = 5.
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(since Kp (u) = 1). Thus, Lemma 5.8.16 is proved in Case 2.
Finally, let us consider Case 3. In this case, the element u is not a square in Z/p.

Thus, Lemma 5.8.15 (c) yields Kp (u) = −1. Also, there exist no elements x ∈ Z/p
such that x2 = u (since u is not a square). Hence,(

# of elements x ∈ Z/p such that x2 = u
)
= 0,

so that (
# of elements x ∈ Z/p such that x2 = u

)
− 1 = 0 − 1 = −1 = Kp (u)

(since Kp (u) = −1). Thus, Lemma 5.8.16 is proved in Case 3.
We have now proved Lemma 5.8.16 in all three cases, so that Lemma 5.8.16 is really

proved.

Lemma 5.8.17. We have
∑

u∈Z/p
Kp (u) = 0.

Proof. By Lemma 5.8.16, we have

∑
u∈Z/p

Kp (u) = ∑
u∈Z/p

((
# of elements x ∈ Z/p such that x2 = u

)
− 1
)

= ∑
u∈Z/p

(
# of elements x ∈ Z/p such that x2 = u

)
︸ ︷︷ ︸

=(# of all elements x∈Z/p)
(since each x∈Z/p satisfies x2=u for exactly one u∈Z/p)

− ∑
u∈Z/p

1︸ ︷︷ ︸
=|Z/p|

= (# of all elements x ∈ Z/p)︸ ︷︷ ︸
=|Z/p|

− |Z/p| = |Z/p| − |Z/p| = 0.

This proves Lemma 5.8.17.

Lemma 5.8.18. Let u, v ∈ Z/p. Then, Kp (uv) = Kp (u) · Kp (v).

Proof. This is just a restatement of Corollary 5.8.5. In more detail:
Write the residue classes u and v in the forms u = a and v = b for some a, b ∈ Z.

Then, uv = a · b = ab. Hence,

Kp (uv) = Kp

(
ab
)
=

(
ab
p

)
(by (133), applied to ab instead of a)

=

(
a
p

)(
b
p

)
(by Corollary 5.8.5) .

Comparing this with

Kp

 u︸︷︷︸
=a

Kp

 v︸︷︷︸
=b

 = Kp (a)︸ ︷︷ ︸
=

( a
p

)
(by (133))

Kp

(
b
)

︸ ︷︷ ︸
=

 b
p


(by (133))

=

(
a
p

)(
b
p

)
,

we find Kp (uv) = Kp (u) · Kp (v). This proves Lemma 5.8.18.
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Lemma 5.8.19. Let y ∈ Z/p be nonzero. Then,

∑
x∈Z/p;
x2=y2

Kp (xy) = 1 + (−1)(p−1)/2 .

Proof. Let u = y2. Then, u = y2 = yy is nonzero (since y is nonzero, and since Z/p is
an integral domain). Thus, as in the proof of Lemma 5.8.16 (specifically, in Case 2), we
can see that

{
x ∈ Z/p | x2 = y2} = {y,−y} and y ̸= −y. This shows that the sum

∑
x∈Z/p;
x2=y2

Kp (xy) has only two addends, namely the addends for x = y and for x = −y.

Hence,

∑
x∈Z/p;
x2=y2

Kp (xy) = Kp

 yy︸︷︷︸
=y2

+ Kp

(−y) y︸ ︷︷ ︸
=(−1)y2

 = Kp
(
y2)+ Kp

(
(−1) y2)︸ ︷︷ ︸

=Kp(−1)Kp(y2)
(by Lemma 5.8.18)

= Kp
(
y2)+ Kp (−1)Kp

(
y2) = (1 + Kp (−1)

)
Kp

 y2︸︷︷︸
=u


=
(
1 + Kp (−1)

)
Kp (u) . (135)

However, u is a square (since u = y2) and satisfies u ̸= 0 (since u is nonzero). Thus,
Lemma 5.8.15 (b) yields Kp (u) = 1. Moreover, in Z/p, we have −1 = −1, so that

Kp (−1) = Kp
(
−1
)
=

(
−1
p

)
(by (133))

=

{
1, if p ≡ 1 mod 4;
−1, if p ≡ 3 mod 4

(by Theorem 5.8.9)

= (−1)(p−1)/2 .

Thus, (135) becomes

∑
x∈Z/p;
x2=y2

Kp (xy) =
(
1 + Kp (−1)

)
Kp (u)︸ ︷︷ ︸

=1

= 1 + Kp (−1)︸ ︷︷ ︸
=(−1)(p−1)/2

= 1 + (−1)(p−1)/2 .

This proves Lemma 5.8.19.

For each d ∈ Z/p, we define an integer W (d) by

W (d) = ∑
u∈Z/p

Kp
(
u
(
u2 + d

))
.
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Thus, for each h ∈ Z, we have

W
(

h
)
= ∑

u∈Z/p
Kp

(
u
(

u2 + h
))

=
p−1

∑
i=0

Kp

i
(

i
2
+ h
)

︸ ︷︷ ︸
=i(i2+h)


 here, we have substituted i for u in the sum,

since the map {0, 1, . . . , p − 1} → Z/p
that sends each i to i is a bijection


=

p−1

∑
i=0

Kp

(
i (i2 + h)

)
︸ ︷︷ ︸
=

 i
(
i2 + h

)
p


(by (133))

=
p−1

∑
i=0

(
i
(
i2 + h

)
p

)
. (136)

The right hand side here is precisely what was called W (h) in Theorem 5.8.13.
Now, we shall prove the following lemmas about these values W (d):

Lemma 5.8.20. The residue class 0 ∈ Z/p satisfies W
(
0
)
= 0.

Proof. By definition of W
(
0
)
, we have

W
(
0
)
= ∑

u∈Z/p
Kp

u
(
u2 + 0

)︸ ︷︷ ︸
=u2

 = ∑
u∈Z/p

Kp
(
uu2)︸ ︷︷ ︸

=Kp(u)·Kp(u2)
(by Lemma 5.8.18)

= ∑
u∈Z/p

Kp (u) · Kp
(
u2)︸ ︷︷ ︸

=Kp(uu)
=Kp(u)·Kp(u)

(by Lemma 5.8.18)

= ∑
u∈Z/p

Kp (u) · Kp (u) · Kp (u)︸ ︷︷ ︸
=(Kp(u))

3

=Kp(u)
(by Lemma 5.8.15 (e))

= ∑
u∈Z/p

Kp (u) = 0

(by Lemma 5.8.17). This proves Lemma 5.8.20.

Lemma 5.8.21. For any d ∈ Z/p, the integer W (d) is even.

Proof. We know that p ̸= 2 is a prime; hence, p is odd. In other words, p ≡ 1 mod 2.
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Let d ∈ Z/p. The definition of W (d) yields

W (d) = ∑
u∈Z/p

Kp
(
u
(
u2 + d

))
= ∑

u∈Z/p;
u(u2+d)=0

Kp
(
u
(
u2 + d

))︸ ︷︷ ︸
=0

(by Lemma 5.8.15 (a),
applied to u(u2+d) instead of u)

+ ∑
u∈Z/p;

u(u2+d) ̸=0

Kp
(
u
(
u2 + d

))︸ ︷︷ ︸
≡1 mod 2

(by Lemma 5.8.15 (d),
applied to u(u2+d) instead of u)

≡ ∑
u∈Z/p;

u(u2+d)=0

0

︸ ︷︷ ︸
=0

+ ∑
u∈Z/p;

u(u2+d) ̸=0

1 = ∑
u∈Z/p;

u(u2+d) ̸=0

1

=
∣∣{u ∈ Z/p | u

(
u2 + d

)
̸= 0

}∣∣ · 1

=
∣∣{u ∈ Z/p | u

(
u2 + d

)
̸= 0

}∣∣
= |Z/p|︸ ︷︷ ︸

=p
≡1 mod 2

−
∣∣{u ∈ Z/p | u

(
u2 + d

)
= 0

}∣∣
(

since the set
{

u ∈ Z/p | u
(
u2 + d

)
̸= 0

}
is the

complement of
{

u ∈ Z/p | u
(
u2 + d

)
= 0

}
within Z/p

)
≡ 1 −

∣∣{u ∈ Z/p | u
(
u2 + d

)
= 0

}∣∣mod 2. (137)

We shall now prove that the number
∣∣{u ∈ Z/p | u

(
u2 + d

)
= 0

}∣∣ is odd.
Indeed, assume the contrary. Thus,

∣∣{u ∈ Z/p | u
(
u2 + d

)
= 0

}∣∣ is even. In other
words, the number of all u ∈ Z/p satisfying u

(
u2 + d

)
= 0 is even. In other words,

the number of roots of the polynomial x
(
x2 + d

)
∈ (Z/p) [x] in Z/p is even.

The polynomial x
(
x2 + d

)
∈ (Z/p) [x] has degree 3, and thus has ≤ 3 roots in Z/p

(by Theorem 4.3.15, since Z/p is an integral domain). In other words, its number of
roots is ≤ 3. Since we also know that this number is even, we thus conclude that this
number is 0 or 2 (since the only even nonnegative integers ≤ 3 are 0 and 2). In other
words, the polynomial x

(
x2 + d

)
∈ (Z/p) [x] has either 0 or 2 roots in Z/p. Since it

cannot have 0 roots in Z/p (because 0 is clearly a root of this polynomial), we thus
conclude that it has 2 roots in Z/p. One of these 2 roots is 0 (since 0 is clearly a root
of this polynomial); let r be the other root. Thus, r ̸= 0 and r

(
r2 + d

)
= 0. Hence,

(−r)
(
(−r)2 + d

)
= − r

(
r2 + d

)︸ ︷︷ ︸
=0

= 0. This shows that −r is a root of the polynomial

x
(
x2 + d

)
∈ (Z/p) [x] in Z/p. Since the only roots of this polynomial are 0 and

r, we thus conclude that −r must be either 0 or r. Since −r cannot be 0 (because
r ̸= 0), we thus conclude that −r = r. Adding r to both sides of this equality, we find
0 = 2r =

(
2 · 1Z/p

)︸ ︷︷ ︸
=2

r = 2r. However, 2 ̸= 0 in Z/p (since p ̸= 2 is a prime) and r ̸= 0.

Since Z/p is an integral domain, these entail that 2r ̸= 0. This contradicts 0 = 2r.
This contradiction shows that our assumption was wrong. Hence, we have shown

that
∣∣{u ∈ Z/p | u

(
u2 + d

)
= 0

}∣∣ is odd. In other words,∣∣{u ∈ Z/p | u
(
u2 + d

)
= 0

}∣∣ ≡ 1 mod 2.
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Thus, (137) becomes

W (d) ≡ 1 −
∣∣{u ∈ Z/p | u

(
u2 + d

)
= 0

}∣∣︸ ︷︷ ︸
≡1 mod 2

≡ 1 − 1 = 0 mod 2.

In other words, W (d) is even. This proves Lemma 5.8.21.

Lemma 5.8.22. Let d, c ∈ Z/p. Then, W
(
c2d
)
= Kp (c)W (d).

Proof. We have Kp
(
0
)
= 0 (by Lemma 5.8.15 (a), applied to u = 0). Furthermore,

02d = 0, and therefore

W
(

02d
)
= W

(
0
)
= 0 (by Lemma 5.8.20)

= Kp
(
0
)

W (d)

since Kp
(
0
)︸ ︷︷ ︸

=0

W (d) = 0

 .

Thus, Lemma 5.8.22 is proved in the case when c = 0. For the rest of this proof, we
thus WLOG assume that c ̸= 0. Hence, c is a nonzero element of Z/p, and thus is a
unit (since Z/p is a field). Hence, the map

Z/p → Z/p,
u 7→ cu (138)

is a bijection. Furthermore, c ̸= 0 = 0 entails c2 ̸= 0 (since Z/p is an integral domain),
and clearly c2 is a square. Hence, Lemma 5.8.15 (b) (applied to u = c2) shows that
Kp
(
c2) = 1.

Now, the definition of W
(
c2d
)

yields

W
(
c2d
)
= ∑

u∈Z/p
Kp
(
u
(
u2 + c2d

))
= ∑

u∈Z/p
Kp

(cu)
(
(cu)2 + c2d

)
︸ ︷︷ ︸

=c3u(u2+d)


(

here, we have substituted cu for u in the sum,
since the map (138) is a bijection

)

= ∑
u∈Z/p

Kp
(
c3u

(
u2 + d

))︸ ︷︷ ︸
=Kp(c3)Kp(u(u2+d))

(by Lemma 5.8.18)

= Kp

 c3︸︷︷︸
=cc2

 ∑
u∈Z/p

Kp
(
u
(
u2 + d

))
︸ ︷︷ ︸

=W(d)
(by the definition of W(d))

= Kp
(
cc2)︸ ︷︷ ︸

=Kp(c)Kp(c2)
(by Lemma 5.8.18)

W (d) = Kp (c)Kp
(
c2)︸ ︷︷ ︸

=1

W (d) = Kp (c)W (d) .

This proves Lemma 5.8.22.
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Lemma 5.8.23. Let g ∈ Z/p be an element of Z/p that is not a square. Let d ∈ Z/p
be a further element. Then:

(a) If d ∈ Z/p is a nonzero square, then (W (d))2 =
(
W
(
1
))2

.

(b) If d ∈ Z/p is not a square, then (W (d))2 = (W (g))2.

Proof. (a) Assume that d ∈ Z/p is a nonzero square. Thus, d = c2 for some c ∈ Z/p.
Consider this c. Then, c ̸= 0 (since c2 = d ̸= 0). Thus, Lemma 5.8.15 (f) (applied to
u = c) shows that

(
Kp (c)

)2
= 1. However, Lemma 5.8.22 (applied to 1 instead of d)

yields W
(
c2 · 1

)
= Kp (c)W

(
1
)
. In view of c2 · 1 = c2 = d, we can rewrite this as

W (d) = Kp (c)W
(
1
)
. Squaring this equality, we obtain

(W (d))2 =
(
Kp (c)W

(
1
))2

=
(
Kp (c)

)2︸ ︷︷ ︸
=1

(
W
(
1
))2

=
(
W
(
1
))2

.

This proves Lemma 5.8.23 (a).
(b) Assume that d ∈ Z/p is not a square. Thus, d ̸= 0. Lemma 5.8.15 (c) yields

Kp (d) = −1 (since d is not a square). Also, Lemma 5.8.15 (c) yields Kp (g) = −1 (since
g is not a square).

We have g ̸= 0 (since g is not a square). Hence,
d
g
∈ Z/p is well-defined (since Z/p

is a field). We have d =
d
g
· g, so that

Kp (d) = Kp

(
d
g
· g
)
= Kp

(
d
g

)
· Kp (g) (by Lemma 5.8.18) .

In view of Kp (d) = −1, this rewrites as −1 = Kp

(
d
g

)
· Kp (g)︸ ︷︷ ︸

=−1

= −Kp

(
d
g

)
, so that

Kp

(
d
g

)
= 1.

However, if
d
g

was not a square, then Lemma 5.8.15 (c) would yield Kp

(
d
g

)
= −1,

which would contradict Kp

(
d
g

)
= 1. Thus,

d
g

must be a square. In other words,

d
g
= c2 for some c ∈ Z/p. Consider this c. Then, c2g = d ̸= 0, so that c ̸= 0. Thus,

Lemma 5.8.15 (f) (applied to u = c) show that
(
Kp (c)

)2
= 1. However, Lemma 5.8.22

(applied to g instead of d) yields W
(
c2g
)
= Kp (c)W (g). In view of c2g = d, we can

rewrite this as W (d) = Kp (c)W (g). Squaring this equality, we obtain

(W (d))2 =
(
Kp (c)W (g)

)2
=
(
Kp (c)

)2︸ ︷︷ ︸
=1

(W (g))2 = (W (g))2 .

This proves Lemma 5.8.23 (b).
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Lemma 5.8.24. Let g ∈ Z/p be an element of Z/p that is not a square. Then,

∑
d∈Z/p

(W (d))2 =
p − 1

2

((
W
(
1
))2

+ (W (g))2
)

.

Proof. We have

∑
d∈Z/p

(W (d))2 =
(
W
(
0
))2︸ ︷︷ ︸

=0
(since Lemma 5.8.20

yields W(0)=0)

+ ∑
d∈Z/p;

d ̸=0

(W (d))2 = ∑
d∈Z/p;

d ̸=0

(W (d))2

= ∑
d∈Z/p;

d ̸=0;
d is a square

(W (d))2︸ ︷︷ ︸
=(W(1))

2

(by Lemma 5.8.23 (a))

+ ∑
d∈Z/p;

d ̸=0;
d is not a square︸ ︷︷ ︸
= ∑

d∈Z/p;
d is not a square

(since the condition “d ̸=0”
follows from the

condition “d is not a square”)

(W (d))2︸ ︷︷ ︸
=(W(g))2

(by Lemma 5.8.23 (b))

= ∑
d∈Z/p;

d ̸=0;
d is a square

(
W
(
1
))2

+ ∑
d∈Z/p;

d is not a square

(W (g))2

=
∣∣{d ∈ Z/p | d ̸= 0, and d is a square

}∣∣︸ ︷︷ ︸
=(number of nonzero squares in Z/p)

=(p−1)/2
(by Proposition 5.8.3 (a))

·
(
W
(
1
))2

+ |{d ∈ Z/p | d is not a square}|︸ ︷︷ ︸
=(number of elements of Z/p that are not squares)

=(p−1)/2
(by Proposition 5.8.3 (c))

· (W (g))2

= ((p − 1) /2) ·
(
W
(
1
))2

+ ((p − 1) /2) · (W (g))2

=
p − 1

2

((
W
(
1
))2

+ (W (g))2
)

.

This proves Lemma 5.8.24.

Lemma 5.8.25. Let x, y ∈ Z/p. Then,

∑
d∈Z/p

Kp
((

x2 + d
) (

y2 + d
))

= −1 +

{
p, if x2 = y2;
0, otherwise.

Proof. Write the residue classes x and y as x = a and y = b for some a, b ∈ Z. Let
k := b2 − a2 ∈ Z. Thus, in Z/p, we have k = b2 − a2 = b

2 − a2 = y2 − x2 (since a = x
and b = y).
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The map

Z/p → Z/p,

v 7→ v − y2

is a bijection. Hence, we can substitute v− y2 for d in the sum ∑
d∈Z/p

Kp
((

x2 + d
) (

y2 + d
))

.

Thus, we find

∑
d∈Z/p

Kp
((

x2 + d
) (

y2 + d
))

= ∑
v∈Z/p

Kp

(x2 +
(
v − y2))︸ ︷︷ ︸

=v−(y2−x2)

(
y2 +

(
v − y2))︸ ︷︷ ︸
=v



= ∑
v∈Z/p

Kp

(v −
(
y2 − x2)) v︸ ︷︷ ︸

=v(v−(y2−x2))

 = ∑
v∈Z/p

Kp

v

v −
(
y2 − x2)︸ ︷︷ ︸

=k




= ∑
v∈Z/p

Kp

(
v
(

v − k
))

=
p−1

∑
i=0

Kp

i
(

i − k
)

︸ ︷︷ ︸
=i(i−k)


 here, we have substituted i for v in the sum,

since the map {0, 1, . . . , p − 1} → Z/p that
sends each i to i is a bijection


=

p−1

∑
i=0

Kp

(
i (i − k)

)
︸ ︷︷ ︸
=

 i (i − k)
p


(by (133))

=
p−1

∑
i=0

(
i (i − k)

p

)

=

{
p − 1, if p | k;
−1, if p ∤ k

(by Proposition 5.8.11)

=

{
p − 1, if p | k;
−1, otherwise

= −1 +

{
p, if p | k;
0, otherwise.

(139)

However, the statement “p | k” is equivalent to “x2 = y2” (because we have the
following chain of logical equivalences:

(p | k) ⇐⇒
(

k = 0 in Z/p
)

⇐⇒
(
y2 − x2 = 0 in Z/p

) (
since k = y2 − x2

)
⇐⇒

(
y2 = x2) ⇐⇒

(
x2 = y2)
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). Thus, we can rewrite (139) as

∑
d∈Z/p

Kp
((

x2 + d
) (

y2 + d
))

= −1 +

{
p, if x2 = y2;
0, otherwise.

This proves Lemma 5.8.25.

Lemma 5.8.26. We have

∑
d∈Z/p

(W (d))2 = p (p − 1)
(

1 + (−1)(p−1)/2
)

.

Proof. For each d ∈ Z/p, we have

(W (d))2 =

(
∑

u∈Z/p
Kp
(
u
(
u2 + d

)))2

(by the definition of W (d))

=

(
∑

u∈Z/p
Kp
(
u
(
u2 + d

)))(
∑

u∈Z/p
Kp
(
u
(
u2 + d

)))

=

(
∑

x∈Z/p
Kp
(
x
(
x2 + d

)))(
∑

y∈Z/p
Kp
(
y
(
y2 + d

)))
(here, we have renamed both summation indices)

= ∑
(x,y)∈(Z/p)2

Kp
(
x
(

x2 + d
))

· Kp
(
y
(
y2 + d

))︸ ︷︷ ︸
=Kp(x(x2+d)·y(y2+d))

(by Lemma 5.8.18,
applied to u=x(x2+d) and v=y(y2+d))

= ∑
(x,y)∈(Z/p)2

Kp

x
(
x2 + d

)
· y
(
y2 + d

)︸ ︷︷ ︸
=(xy)((x2+d)(y2+d))


= ∑

(x,y)∈(Z/p)2

Kp
(
(xy)

((
x2 + d

) (
y2 + d

)))︸ ︷︷ ︸
=Kp(xy)·Kp((x2+d)(y2+d))

(by Lemma 5.8.18)

= ∑
(x,y)∈(Z/p)2

Kp (xy) · Kp
((

x2 + d
) (

y2 + d
))

.
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Summing this equality over all d ∈ Z/p, we obtain

∑
d∈Z/p

(W (d))2 = ∑
d∈Z/p

∑
(x,y)∈(Z/p)2

Kp (xy) · Kp
((

x2 + d
) (

y2 + d
))

= ∑
(x,y)∈(Z/p)2

Kp (xy) ∑
d∈Z/p

Kp
((

x2 + d
) (

y2 + d
))

︸ ︷︷ ︸
=−1+

p, if x2 = y2;
0, otherwise

(by Lemma 5.8.25)

= ∑
(x,y)∈(Z/p)2

Kp (xy)

(
−1 +

{
p, if x2 = y2;
0, otherwise

)

= ∑
(x,y)∈(Z/p)2

Kp (xy) (−1) + ∑
(x,y)∈(Z/p)2

Kp (xy)

{
p, if x2 = y2;
0, otherwise.

Let us now simplify the two sums on the right hand side separately.
First, we note that

∑
(x,y)∈(Z/p)2

Kp (xy) (−1) = − ∑
(x,y)∈(Z/p)2

Kp (xy)

= − ∑
x∈Z/p

∑
y∈Z/p

Kp (xy)︸ ︷︷ ︸
=Kp(x)·Kp(y)

(by Lemma 5.8.18)

= − ∑
x∈Z/p

∑
y∈Z/p

Kp (x) · Kp (y)

= − ∑
x∈Z/p

Kp (x) ∑
y∈Z/p

Kp (y)︸ ︷︷ ︸
= ∑

u∈Z/p
Kp(u)=0

(by Lemma 5.8.17)

= − ∑
x∈Z/p

Kp (x) 0︸ ︷︷ ︸
=0

= 0.
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The second sum is not much trickier by now. We have

∑
(x,y)∈(Z/p)2

Kp (xy)

{
p, if x2 = y2;
0, otherwise

= ∑
(x,y)∈(Z/p)2;

x2=y2

Kp (xy) p
(

since all the addends in this sum are 0
except for those with x2 = y2

)

= ∑
(x,y)∈(Z/p)2;

x2=y2;
y=0

Kp

 xy︸︷︷︸
=0

(since y=0)

 p + ∑
(x,y)∈(Z/p)2;

x2=y2;
y ̸=0

Kp (xy) p

= ∑
(x,y)∈(Z/p)2;

x2=y2;
y=0

Kp (0)︸ ︷︷ ︸
=0

(by Lemma 5.8.15 (a))

p + ∑
(x,y)∈(Z/p)2;

x2=y2;
y ̸=0

Kp (xy) p

= ∑
(x,y)∈(Z/p)2;

x2=y2;
y=0

0p

︸ ︷︷ ︸
=0

+ ∑
(x,y)∈(Z/p)2;

x2=y2;
y ̸=0

Kp (xy) p

= ∑
(x,y)∈(Z/p)2;

x2=y2;
y ̸=0

Kp (xy) p = ∑
y∈Z/p;

y ̸=0

∑
x∈Z/p;
x2=y2

Kp (xy)

︸ ︷︷ ︸
=1+(−1)(p−1)/2

(by Lemma 5.8.19)

p

= ∑
y∈Z/p;

y ̸=0

(
1 + (−1)(p−1)/2

)
p = (p − 1)

(
1 + (−1)(p−1)/2

)
p

(since this sum has p − 1 addends).
Now, we combine all we have found: We have

∑
d∈Z/p

(W (d))2 = ∑
(x,y)∈(Z/p)2

Kp (xy) (−1)

︸ ︷︷ ︸
=0

+ ∑
(x,y)∈(Z/p)2

Kp (xy)

{
p, if x2 = y2;
0, otherwise︸ ︷︷ ︸

=(p−1)
(

1+(−1)(p−1)/2
)

p

= (p − 1)
(

1 + (−1)(p−1)/2
)

p = p (p − 1)
(

1 + (−1)(p−1)/2
)

.

This proves Lemma 5.8.26.

Proof of Theorem 5.8.13. We have 4 | p− 1 (since p ≡ 1 mod 4), so that (p − 1) /2 is even.
Thus, (−1)(p−1)/2 = 1.

Comparing the equalities (132) and (136), we see that

W
(

h
)
= W (h) for each h ∈ Z.
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Thus, in particular, W
(
1
)
= W (1) = a and W (m) = W (m) = b. Moreover, m ∈ Z/p

is not a square (by the definition of m).
Lemma 5.8.26 yields

∑
d∈Z/p

(W (d))2 = p (p − 1)

1 + (−1)(p−1)/2︸ ︷︷ ︸
=1

 = p (p − 1) (1 + 1) = 2p (p − 1) .

Hence,

2p (p − 1) = ∑
d∈Z/p

(W (d))2 =
p − 1

2

((
W
(
1
))2

+ (W (m))2
)

(by Lemma 5.8.24, applied to g = m). Dividing both sides of this equality by 2 (p − 1),
we obtain

p =
1
4


W

(
1
)︸ ︷︷ ︸

=a

2

+

W (m)︸ ︷︷ ︸
=b

2
 =

1
4
(
a2 + b2) = (a/2)2 + (b/2)2 .

This proves Theorem 5.8.13 (b).
(a) We have a = W

(
1
)
, which is even (by Lemma 5.8.21). Also, we have b = W (m),

which is even (by Lemma 5.8.21). Thus, Theorem 5.8.13 (a) is proven.

Of course, Theorem 5.8.13 gives a new proof of Theorem 2.16.1 (because Theorem
5.8.13 (a) shows that a/2 and b/2 are integers, and Theorem 5.8.13 (b) shows that p is
the sum of the squares of these two integers).

Some curious variants of Theorem 5.8.13 have been found recently by Chan, Long
and Yang [ChLoYa11] and less recently by Whiteman [Whitem52]; I suspect that there
is more to be discovered.

Exercise 5.8.7. Make the same assumptions and definitions as in Theorem 5.8.13.
Prove that

W (h) ≡ −h(p−1)/4
(
(p − 1) /2
(p − 1) /4

)
mod p for any h ∈ Z.
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6. Polynomials II

We shall now resume the study of polynomials.

Convention 6.0.1. We fix a commutative ring R. This convention will remain
in force for the entire chapter.

6.1. Multivariate polynomials again

Let us repeat Theorem 4.5.9 (in a slightly shortened version):

Theorem 6.1.1. Let m ∈ N. Let b ∈ R [x] be a polynomial of degree m such
that its leading coefficient [xm] b is a unit. Then, each element of R [x] /b can
be uniquely written in the form

a0x0 + a1x1 + · · ·+ am−1xm−1 with a0, a1, . . . , am−1 ∈ R.

Equivalently, the m vectors x0, x1, . . . , xm−1 form a basis of the R-module
R [x] /b. Thus, this R-module R [x] /b is free of rank m = deg b. If m > 0,
then the ring R [x] /b contains “a copy of R”.

Thus we understand quotients of univariate polynomials rings rather well
when the leading coefficient is a unit. They are less predictable when it is
not a unit. If R is a field, however, then the leading coefficient of a nonzero
polynomial b ∈ R [x] is always a unit, so we don’t need to worry about this
issue.

But can we do this with multivariate polynomials?
Consider, for example, the two-variable polynomial ring R [x, y]. How does

R [x, y] /b look like for a polynomial b ∈ R [x, y] ? Keep in mind that the “idea”
behind quotienting out b is that we are setting b to 0. So R [x, y] /b is “the ring
of polynomials in x and y subject to the assumption that b (x, y) = 0”.

Let us first try to answer this question for some special polynomials b; we
will then look for a pattern. There is a lot to be learned from the examples.

6.1.1. Example 1: R [x, y] /y

What is R [x, y] /y ? We expect this to be isomorphic to R [x], because setting y
to 0 in a polynomial f (x, y) should give f (x, 0) ∈ R [x].

This is indeed true, and the formal proof is essentially just a formalization of
this informal argument:

Proposition 6.1.2. We have R [x, y] /y ∼= R [x] as R-algebras.
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Proof. Define a map

α : R [x, y] /y → R [x] ,

f 7→ f (x, 0) .

First, we need to check that this map α is well-defined. In other words, we need
to check the following:

Claim 1: If f , g ∈ R [x, y] are two polynomials satisfying f = g in
R [x, y] /y, then f (x, 0) = g (x, 0).

[Proof of Claim 1: Let f , g ∈ R [x, y] be two polynomials satisfying f = g in
R [x, y] /y. Then, f = g means that f − g ∈ yR [x, y]; in other words, f − g =
yp for some polynomial p ∈ R [x, y]. Consider this p. Now, evaluating both
sides of the equality f − g = yp at (x, 0) (that is, substituting 0 for y) yields
f (x, 0)− g (x, 0) = 0p (x, 0) = 0 and thus f (x, 0) = g (x, 0). This proves Claim
1.]

Having proved Claim 1, we thus know that the map α is well-defined. It
is straightforward to see that α is an R-algebra morphism (because the map
R [x, y] → R [x] , f 7→ f (x, 0) is an R-algebra morphism177).

In the opposite direction, define a map

β : R [x] → R [x, y] /y,

g 7→ g [x].

It is again clear that this is an R-algebra morphism.
Now, we shall show that the maps α and β are mutually inverse. To prove

this, we need to check that α ◦ β = id and β ◦ α = id. Checking α ◦ β = id is the
easy part. The “hard part” is showing that β ◦ α = id. There are two ways to
do this:

[First proof of β ◦ α = id: To show this, we need to prove that (β ◦ α)
(

f
)
= f

for each f ∈ R [x, y]. So let us fix an f ∈ R [x, y]. Then,

(β ◦ α)
(

f
)
= β

(
α
(

f
))

= β ( f (x, 0))
(

since α
(

f
)

was defined to be f (x, 0)
)

= ( f (x, 0)) [x] (by the definition of β)

= f (x, 0) (since ( f (x, 0)) [x] = f (x, 0)) .

Thus, it remains to show that f (x, 0) = f (because we want to show that
(β ◦ α)

(
f
)
= f ). In other words, it remains to show that f − f (x, 0) ∈ yR [x, y].

177This is a particular case of Theorem 4.2.11.
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We do this directly: Write f in the form f = ∑
i,j∈N

ai,jxiyj (with ai,j ∈ R). Then,

f (x, 0) = ∑
i,j∈N

ai,jxi0j = ∑
i∈N

ai,jxi 00︸︷︷︸
=1

+ ∑
i,j∈N;

j>0

ai,jxi 0j︸︷︷︸
=0

(since j>0) here, we have split the sum into two parts:
one that contains all terms with j = 0

and one that contains all terms with j > 0


= ∑

i∈N

ai,jxi = ∑
i,j∈N;

j=0

ai,jxiyj
(

since yj = 1 for j = 0
)

.

Subtracting this from f = ∑
i,j∈N

ai,jxiyj, we find

f − f (x, 0) = ∑
i,j∈N

ai,jxiyj − ∑
i,j∈N;

j=0

ai,jxiyj = ∑
i,j∈N;

j>0

ai,jxi yj︸︷︷︸
=yyj−1

(we can do this
because j>0)

= ∑
i,j∈N;

j>0

ai,jxiyyj−1 = y ∑
i,j∈N;

j>0

ai,jxiyj−1 ∈ yR [x, y] ,

as we wanted to prove. Thus, f (x, 0) = f , so that (β ◦ α)
(

f
)
= f (x, 0) = f .

This proves β ◦ α = id.]
[Second proof of β ◦ α = id: Here is a more “cultured” proof. We know that

β and α are R-algebra morphisms, hence are R-linear maps. Thus, β ◦ α and id
are two R-linear maps from R [x, y] /y to R [x, y] /y. Our goal is to prove that
these two R-linear maps β ◦ α and id are equal. As we have learned in Theorem
3.8.3, there is a shortcut for proving that two R-linear maps are equal: It suffices
to pick a family of vectors that spans the domain (in our case, the R-module
R [x, y] /y), and to show that the two maps agree on the vectors of this family.
In our case, there is a rather natural choice of such a family: the family of
monomials, or rather of their cosets. That is, we choose the family

(
xiyj

)
i,j∈N

.

This family spans the R-module R [x, y] /y (since the family
(
xiyj)

i,j∈N
spans

the R-module R [x, y], and since the canonical projection onto R [x, y] /y clearly
preserves their spanning property). Thus, we only need to show that the two
maps β ◦ α and id agree on the vectors of this family – i.e., to show that

(β ◦ α)
(

xiyj
)
= id

(
xiyj

)
for any i, j ∈ N.

But this is straightforward: We fix i, j ∈ N, and set out to show that (β ◦ α)
(

xiyj
)
=

id
(

xiyj
)

. If j > 0, then xiyj = 0 (since xiyj ∈ yR [x, y] in this case) and therefore
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both (β ◦ α)
(

xiyj
)

and id
(

xiyj
)

must be 0 in this case (since R-linear maps al-

ways send 0 to 0). If, on the other hand, j = 0, then xiyj = xiy0 = xi and
therefore α

(
xiyj

)
= α

(
xi
)
= xi (since substituting 0 for y does not change the

monomial xi) and thus (β ◦ α)
(

xiyj
)
= β

(
xi) = xi = xiyj = id

(
xiyj

)
. Hence,

in both cases, we have shown that (β ◦ α)
(

xiyj
)
= id

(
xiyj

)
. This completes

the proof of β ◦ α = id.]
Either way, we have now shown that β ◦ α = id. Combined with α ◦ β = id,

this yields that the two maps α and β are mutually inverse. Thus, α is an
invertible R-algebra morphism, hence an R-algebra isomorphism. This proves
Proposition 6.1.2.

We can easily generalize this to multiple variables:

Proposition 6.1.3. For any n > 0, we have

R [x1, x2, . . . , xn] /xn ∼= R [x1, x2, . . . , xn−1] as R-algebras.

Proof. Same idea as for Proposition 6.1.2, but requiring more subscripts to jug-
gle.

6.1.2. Example 2: R [x, y] /
(
x2 + y2 − 1

)
How does R [x, y] /

(
x2 + y2 − 1

)
look like?

This is a fairly useful R-algebra; it can be viewed as the algebra of polynomial
functions on the unit circle. Indeed, any element f ∈ R [x, y] /

(
x2 + y2 − 1

)
can

be “evaluated” at a point (a, b) on the unit circle (meaning, a pair of elements
a, b ∈ R with a2 + b2 = 1).

There are various interesting ring-theoretical questions to be asked about
the quotient ring R [x, y] /

(
x2 + y2 − 1

)
; however, let us restrict ourselves to

studying it as an R-module. As an R-module, is R [x, y] /
(
x2 + y2 − 1

)
free?

What is a basis? This boils down to asking whether (and how) we can divide
polynomials with remainder by x2 + y2 − 1.

Here we will be helped by the following fact:

Proposition 6.1.4. We have

R [x, y] ∼= (R [x]) [y] as R-algebras.

More concretely, the map

φ : R [x, y] → (R [x]) [y] ,

∑
i,j∈N

ai,jxiyj 7→ ∑
j∈N

(
∑

i∈N

ai,jxi

)
yj (

where ai,j ∈ R
)
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is an R-algebra isomorphism.

Proof. First of all, you are excused for wondering what the deal is: Isn’t the

above map φ just the identity map, since ∑
j∈N

(
∑

i∈N

ai,jxi
)

yj is the same polyno-

mial as ∑
i,j∈N

ai,jxiyj (just rewritten)?

Essentially yes, but there is a technical difference between the rings R [x, y]
and (R [x]) [y]. The former is a polynomial ring in two indeterminates x, y over
R, whereas the latter is a polynomial ring in one indeterminate y over the ring
R [x]. Hence,

• the elements of R [x, y] are polynomials in two variables x, y with coeffi-
cients in R, whereas

• the elements of (R [x]) [y] are polynomials in one variable y with coeffi-
cients in R [x] (that is, their coefficients themselves are polynomials in one
variable x over R).

Thus, even if a polynomial in R [x, y] and a polynomial in (R [x]) [y] look ex-
actly the same (such as, for example, the polynomials 2x2y3 in both rings), they
are technically different. (The polynomial 2x2y3 in R [x, y] has the monomial
x2y3 appear in it with coefficient 2, whereas the polynomial 2x2y3 in (R [x]) [y]
has the monomial y3 appear in it with coefficient 2x2.) The map φ thus sends
each polynomial in R [x, y] to the identically-looking polynomial in (R [x]) [y].

This being said, the claim we are proving is saying precisely that the differ-
ence between R [x, y] and (R [x]) [y] is only a technicality; in essence the two
rings are the same. The proof is rather straightforward. The simplest way is as
follows: The map φ defined in the proposition is easily seen to be well-defined
and an R-module isomorphism. Thus, it remains to prove that this map φ re-
spects multiplication and respects the unity. It is clear enough that φ respects
the unity (since the unities of both rings equal x0y0), so we only need to check
that φ respects multiplication. According to Lemma 4.2.9, it suffices to prove
this on a family of vectors that spans the R-module R [x, y]; in other words, we
only need to find a family (mi)i∈I of vectors in R [x, y] that spans R [x, y], and
show that

φ
(
mimj

)
= φ (mi) φ

(
mj
)

for all i, j ∈ I.

Fortunately, the family of monomials
(
xiyj)

(i,j)∈N2 is such a family of vectors
(even better, it is a basis of the R-module R [x, y]); thus, we only need to prove
that

φ
(

xiyu · xjyv
)
= φ

(
xiyu

)
· φ
(

xjyv
)

for all (i, u) , (j, v) ∈ N2.

But this is easy (the left and right hand sides both equal xi+jyu+v ∈ (R [x]) [y]).
Thus, we conclude that φ respects multiplication; as we said above, this com-
pletes the proof of Proposition 6.1.4.
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Now, in view of Proposition 6.1.4, we have the R-algebra isomorphism

R [x, y] /
(

x2 + y2 − 1
)
∼= (R [x]) [y] /

(
x2 + y2 − 1

)
(140)

(since the isomorphism φ from Proposition 6.1.4 sends the polynomial x2 +
y2 − 1 ∈ R [x, y] to the identically-looking polynomial x2 + y2 − 1 ∈ (R [x]) [y]).

The ring on the right hand side of (140) is a quotient ring of the univari-
ate polynomial ring (R [x]) [y] modulo the monic polynomial x2 + y2 − 1 =

y2 +
(

x2 − 1
)

︸ ︷︷ ︸
constant term in R[x]

in the variable y. Thus, Theorem 6.1.1 (applied to 2,

R [x], y and x2 + y2 − 1 instead of m, R, x and b) shows that this quotient ring
(R [x]) [y] /

(
x2 + y2 − 1

)
has a basis

(
y0, y1

)
as an R [x]-module. This means

that any element of (R [x]) [y] /
(
x2 + y2 − 1

)
can be uniquely written as

αy0 + βy1 for some α, β ∈ R [x] .

Since elements of R [x] themselves can be uniquely written as R-linear combina-
tions of powers of x, we thus conclude that any element of (R [x]) [y] /

(
x2 + y2 − 1

)
can be uniquely written as(

α0x0 + α1x1 + α2x2 + · · ·
)

y0 +
(

β0x0 + β1x1 + β2x2 + · · ·
)

y1

= (α0x0 + α1x1 + α2x2 + · · · ) y0 + (β0x0 + β1x1 + β2x2 + · · · ) y1

= α0x0y0 + α1x1y0 + α2x2y0 + · · ·+ β0x0y1 + β1x1y1 + β2x2y1 + · · ·

for some α0, α1, α2, . . . , β0, β1, β2, . . . ∈ R (with all but finitely many of these
coefficients α0, α1, α2, . . . , β0, β1, β2, . . . being 0).

Thus, as an R-module, (R [x]) [y] /
(
x2 + y2 − 1

)
has a basis(

x0y0, x1y0, x2y0, . . . , x0y1, x1y1, x2y1, . . .
)

.

In view of the R-algebra isomorphism (140) (which sends each xiyj to xiyj), we
can thus conclude that, as an R-module, R [x, y] /

(
x2 + y2 − 1

)
has a basis(

x0y0, x1y0, x2y0, . . . , x0y1, x1y1, x2y1, . . .
)

. (141)

6.1.3. Indeterminates one at a time

We digress from our series of examples in order to make a few comments about
Proposition 6.1.4. We first observe the following:
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Proposition 6.1.5. The map φ : R [x, y] → (R [x]) [y] from Proposition 6.1.4 is
not just an R-algebra isomorphism, but also an R [x]-algebra isomorphism.
Here, we view R [x, y] as an R [x]-algebra via the ring morphism

R [x] → R [x, y] ,
f 7→ f [x] .

Proof. LTTR. (It only needs to be shown that φ ( f g) = f φ (g) for any f ∈ R [x]
and g ∈ R [x, y].)

The order in which we list the variables doesn’t matter much in a polyno-
mial ring; thus, Proposition 6.1.4 has the following analogue (which is proved
similarly):

Proposition 6.1.6. We have

R [x, y] ∼= (R [y]) [x] as R-algebras.

More concretely, the map

φ : R [x, y] → (R [y]) [x] ,

∑
i,j∈N

ai,jxiyj 7→ ∑
i∈N

(
∑

j∈N

ai,jyj

)
xi (

where ai,j ∈ R
)

is an R-algebra isomorphism.

Again, this isomorphism is an R [y]-algebra isomorphism (similarly to Propo-
sition 6.1.5).

Proposition 6.1.4 can also be generalized to more than 2 variables:

Proposition 6.1.7. For any n > 0, we have

R [x1, x2, . . . , xn] ∼= (R [x1, x2, . . . , xn−1]) [xn] as R-algebras.

More concretely, the map

φ : R [x1, x2, . . . , xn] → (R [x1, x2, . . . , xn−1]) [xn] ,

∑
(i1,i2,...,in)∈Nn

ai1,i2,...,in xi1
1 xi2

2 · · · xin
n 7→ ∑

j∈N

 ∑
(i1,i2,...,in−1)∈Nn−1

ai1,i2,...,in−1,jx
i1
1 xi2

2 · · · xin−1
n−1

 xj
n(

where ai1,i2,...,in ∈ R
)

is an R-algebra isomorphism.
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Proof. Generalize the proof of Proposition 6.1.4 (same idea, more subscripts).

As in Proposition 6.1.5, the map φ in Proposition 6.1.7 is not just an R-algebra
isomorphism but also an R [x1, x2, . . . , xn−1]-algebra isomorphism.

6.1.4. More examples?

Having understood the R-modules R [x, y] /y and R [x, y] /
(
x2 + y2 − 1

)
, we

move on to further examples.
How does R [x, y] / (xy) look like? We cannot answer this using the methods

used above, since the polynomial xy is neither monic in y when considered as
a polynomial in (R [x]) [y] nor monic in x when considered as a polynomial in
(R [y]) [x].

What about R [x, y] / (xy (x − y)) ? Can we divide (x + y)3 by xy (x − y) with
remainder? What is the remainder? Should we replace x2y by xy2 or vice versa?

To make things more complicated (but also more useful), let’s not forget that
we can quotient a ring by an ideal, not just by a single element. Even if R is a
field, the polynomial ring R [x, y] is not a PID (unlike R [x] for a field R), so not
every ideal is principal.

The following shorthand will be useful:

Definition 6.1.8. Let S be a commutative ring. Let a1, a2, . . . , ak be elements
of S. Then, the ideal a1S + a2S + · · ·+ akS (this is the set of all S-linear com-
binations of a1, a2, . . . , ak) is called the ideal generated by a1, a2, . . . , ak. The
quotient ring S/ (a1S + a2S + · · ·+ akS) will be denoted by S/ (a1, a2, . . . , ak).

(Many authors actually write (a1, a2, . . . , ak) for the ideal a1S + a2S + · · · +
akS, but this risks confusion since (a1, a2, . . . , ak) also means the k-tuple.)

Informally, S/ (a1, a2, . . . , ak) is what is obtained from S if you set all of
a1, a2, . . . , ak to 0.

For an example, we can look at R [x, y] / (x + y, x − y). This behaves differ-
ently depending on R:

• If R = Q, then

R [x, y] / (x + y, x − y) = Q [x, y] / (x + y, x − y) = Q [x, y] / (x, y)

(since it is easy to see that the Q [x, y]-linear combinations of x + y and
x − y are precisely the Q [x, y]-linear combinations of x and y), and thus

R [x, y] / (x + y, x − y) = Q [x, y] / (x, y) ∼= Q.
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• If R = Z/2, then

R [x, y] / (x + y, x − y) = (Z/2) [x, y] /

 x + y︸ ︷︷ ︸
=x−y

(since we are in
characteristic 2)

, x − y


= (Z/2) [x, y] / (x − y, x − y)
= (Z/2) [x, y] / (x − y) ∼= (Z/2) [x] .

We can easily come up with more complicated examples:

• What is R [x, y, z] /
(
x2 − yz, y2 − zx, z2 − xy

)
? What lies in the ideal(

x2 − yz
)

R [x, y, z] +
(
y2 − zx

)
R [x, y, z] +

(
z2 − xy

)
R [x, y, z] ?

• What is R [x, y, z] /
(
x2 + xy, y2 + yz, z2 + zx

)
? What lies in the ideal(

x2 + xy
)

R [x, y, z] +
(
y2 + yz

)
R [x, y, z] +

(
z2 + zx

)
R [x, y, z] ? For exam-

ple, I claim that z4 lies in this ideal, but z3 does not. How do I know?
How can you tell?

In theory, you could imagine that there are ideals that do not even have a
finite list of elements generating them. There are rings that have such ideals.
For example, the polynomial ring Z [x1, x2, x3, . . .] in infinitely many variables
has such ideals (see Exercise 6.1.1 below). But polynomial rings in finitely many
variables over a field are not this bad. Indeed:

Theorem 6.1.9 (Hilbert’s basis theorem). Let F be a field. Let S be the poly-
nomial ring F [x1, x2, . . . , xn] for some n ∈ N. Then, any ideal I of S is finitely
generated (this means that there is a finite list (a1, a2, . . . , ak) of elements of I
such that I = a1S + a2S + · · ·+ akS).

Proof. See [DumFoo04, §9.6, Corollary 22] or [Laurit09, Corollary 5.4.8] or (for
a more general result) [Swanso17, Theorem 36.12].

Warning 6.1.10. If n = 1, then the ideal I in Theorem 6.1.9 is principal (since
F [x1] is a PID), so you can get by with a length-1 list (i.e., with k = 1).
However, if n = 2, then the list can be arbitrarily large. You cannot always
find a length-2 list. For example, in the polynomial ring F [x, y], the ideal
generated by all monomials of degree p (that is, by xp, xp−1y, xp−2y2, . . . , yp)
cannot be generated by p or fewer elements.
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Exercise 6.1.1. Let S∞ be the polynomial ring Z [x1, x2, x3, . . .] in infinitely many
variables. Strictly speaking, we have never defined this ring, but you can easily
produce its definition: It still is a monoid ring, but each monomial now has the form
xa1

1 xa2
2 xa3

3 · · · for some infinite sequence (a1, a2, a3, . . .) of nonnegative integers with
the property that only finitely many of the exponents ak are nonzero. (Thus, there
are infinitely many indeterminates, but each single monomial can only use finitely
many of them. For instance, infinite monomials like x1x2x3 · · · are not allowed. As a
consequence, a polynomial in S∞ must also use only a finite set of indeterminates.)

Let J be the set of all polynomials in S∞ whose constant term (i.e., coefficient of
the monomial x0

1x0
2x0

3 · · · ) is 0.

(a) Show that J is an ideal of S∞.

(b) Show that J is not an ideal generated by any finite list of elements of S∞.

6.2. Degrees and the deg-lex order

Let us now attempt a more general approach.

Convention 6.2.1. From now on, for the rest of this chapter, we fix a commu-
tative ring R and an n ∈ N.

We let P denote the polynomial ring R [x1, x2, . . . , xn].

As we recall, a monomial is an element of the free abelian monoid C(n) with n
generators x1, x2, . . . , xn; it has the form xa1

1 xa2
2 · · · xan

n for some (a1, a2, . . . , an) ∈
Nn.

6.2.1. Degrees

Our first goal is to define the degree of a polynomial in n variables. We begin
by defining the degree of a monomial:

Definition 6.2.2. The degree of a monomial m = xa1
1 xa2

2 · · · xan
n ∈ C(n) is de-

fined to be the number a1 + a2 + · · ·+ an ∈ N. It is denoted by degm.

For example, the monomial x5
1x2x2

4 = x5
1x1

2x0
3x2

4 has degree 5 + 1 + 0 + 2 = 8.

Definition 6.2.3. A monomial m is said to appear in a polynomial f ∈ P if
[m] f ̸= 0. (Recall that [m] f means the coefficient of m in f .)

For example, the monomial x2y appears in (x + y)3 ∈ R [x, y] (if 3 ̸= 0 in R),
but the monomial xy does not.
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Definition 6.2.4. The degree (or total degree) of a nonzero polynomial f ∈ P
is the largest degree of a monomial that appears in f .

For example:

• The polynomial (x + y + 1)3 ∈ Q [x, y] has degree 3.

• The polynomial (x + y + 1)3 − (x + y)3 ∈ Q [x, y] has degree 2, since it
equals 3x2 + 3y2 + 6xy + 3x + 3y + 1.

• The polynomial
(
x + y + 1

)3 − (x + y)3 ∈ (Z/3) [x, y] has degree 0, since
it equals 1.

Definition 6.2.4 generalizes our old definition of degree for nonzero univari-
ate polynomials.

The following proposition generalizes a fact that we previously proved for
univariate polynomials (parts (a) and (c) of Proposition 4.3.5):

Proposition 6.2.5 (Degree-of-a-product formula). Let R be a commutative
ring. Let p, q ∈ P be nonzero.

(a) We have deg (pq) ≤ deg p + deg q.

(b) We have deg (pq) = deg p + deg q if R is an integral domain.

Part (a) of this proposition is pretty clear. (The reason is that deg (mn) =
degm+ deg n for any monomials m, n.)

What about part (b)? We proved this for univariate polynomials using lead-
ing coefficients. What is a leading coefficient when several monomials can have
the same degree? In order to define it, we need to break ties (i.e., establish an
ordering on monomials of equal degrees) in a way that will be compatible with
products178. To that aim, we shall introduce a total order on the set C(n) of all
monomials.

6.2.2. The deg-lex order

Recall that a total order (or, to be more precise, a strict total order) on a set S
is a binary relation ≺ on S that is

• asymmetric (meaning that no two elements a and b of S satisfy a ≺ b and
b ≺ a at the same time);

• transitive (meaning that if a, b, c ∈ S satisfy a ≺ b and b ≺ c, then a ≺ c);

178I will explain what this means later.
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• trichotomous (meaning that for any two elements a and b of S, we have
a ≺ b or a = b or b ≺ a).

Here are some examples of total orders:

• The relation < on the set N or on the set Z or on the set R is a total order.

• So is the relation > on each of these three sets.

• If S is a finite set, and if (s1, s2, . . . , sk) is a list of all elements of S, with
each element of S appearing exactly once in this list, then we can define
a total order ≺ on S as follows: We declare that two elements u, v ∈ S
satisfy u ≺ v if and only if u appears prior to v in this list (s1, s2, . . . , sk)
(that is, if u = si and v = sj for some i < j).

• On the other hand, the relation ⊆ on the power set P (X) of a set X is not
a total order unless |X| ≤ 1. (Indeed, it is asymmetric and transitive, but
not trichotomous, because if α and β are two distinct elements of X, then
we have neither {α} ⊆ {β} nor {α} = {β} nor {β} ⊆ {α}.)

If ≺ is a total order on a set S, then we view relations of the form a ≺ b as
saying that a is in some sense smaller than b. We will use the notations ≼, ≻
and ≽ accordingly; this means that

• we write “a ≼ b” for “a ≺ b or a = b”.

• we write “a ≻ b” for “b ≺ a”.

• we write “a ≽ b” for “a ≻ b or a = b”.

So we all know a total order on the set R of all real numbers. But what
about other sets? For example, how can we find a total order on the set of
words in the English language? A long time ago, creators of dictionaries and
encyclopedias were faced with this very problem, because it would be hard
to look a word up in a dictionary if there was no well-known total order in
which the words appeared in the dictionary. The total order commonly used in
dictionaries is known as the lexicographic order (or dictionary order): Words
are ordered by their first letter (e.g., “ant” ≺ “bear”); ties are broken using
the second letter (“ant” ≺ “armadillo”); remaining ties are broken using the
third letter (“camel” ≺ “cat”); and so on; absent letters at the end are treated as
being smaller than present letters (e.g., “ant” ≺ “anteater”). We use this as an
inspiration for defining a total order on C(n), but we shall use the degree as the
first level of comparison.
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Definition 6.2.6. We define a total order ≺ (called the degree-lexicographic
order, or – for short – the deg-lex order) on the set C(n) of all monomials as
follows:

For two monomials m = xa1
1 xa2

2 · · · xan
n and n = xb1

1 xb2
2 · · · xbn

n , we declare
that m ≺ n if and only if

• either degm < deg n;

• or degm = deg n and the following holds: There is an i ∈ {1, 2, . . . , n}
such that ai ̸= bi, and the smallest such i satisfies ai < bi.

In words:

• If two monomials have different degrees, then we declare the monomial
with smaller degree to be the smaller one.

• If they have equal degrees, then we look at the first variable that has
different exponents in the two monomials, and we declare the monomial
with the smaller exponent on this variable to be smaller.

For example:

• We have x2
1 ≺ x2x2

3, since deg
(
x2

1
)
= 2 < 3 = deg

(
x2x2

3
)
.

• We have x5
1x2x3x2

4 ≺ x5
1x2x2

3x4, since the two monomials have the same
degree, and the first variable that has different exponents in these two
monomials is x3, and this variable appears with a smaller exponent in
x5

1x2x3x2
4 (namely, with exponent 1) than in x5

1x2x2
3x4 (namely, with expo-

nent 2).

• We have x1x2
3 ≺ x1x2x3, since the first variable that has different exponents

in these two monomials is x2, and this variable appears with a smaller
exponent in x1x2

3 (namely, with exponent 0) than in x1x2x3 (namely, with
exponent 1).

• The reader may easily check that x3
3 ≺ x1x2x2

3 ≺ x1x2
2x3 ≺ x2

1x2x3 ≺ x5
3 ≺

x2
1x2

2x2
3 ≺ x6

1.

You can intuitively think of the deg-lex order as follows: A monomial be-
comes larger (in this order) if you multiply it by a variable, and also becomes
larger if you replace an xi factor by an xj factor with j < i.

The deg-lex order has several good properties:

Proposition 6.2.7.

(a) The deg-lex order really is a total order on C(n).
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(b) If m, n, p ∈ C(n) satisfy m ≺ n, then mp ≺ np.

(c) We have 1 ≼ m for any m ∈ C(n).

(d) Let m ∈ C(n) be any monomial. Then, there are only finitely many
monomials p such that p ≺ m.

(e) There are no infinite decreasing chains m0 ≻ m1 ≻ m2 ≻ · · · of mono-
mials.

(f) If T is a nonempty finite set of monomials, then T has a largest element
with respect to ≺ (that is, an element t ∈ T such that m ≼ t for all
m ∈ T).

(g) If T is a nonempty set of monomials, then T has a smallest element with
respect to ≺ (that is, an element t ∈ T such that m ≽ t for all m ∈ T).

Note that we require T to be finite in Proposition 6.2.7 (f) but not in Propo-
sition 6.2.7 (g). This is similar to the situation for sets of nonnegative integers
(viz., any nonempty set of nonnegative integers has a smallest element, but
only finite nonempty sets of nonnegative integers have largest elements).

Hints to the proof of Proposition 6.2.7. (a), (b), (c), (d) LTTR.
(e) This follows from (d).
(f) This holds for any total order on any set.
(g) This is easily proved using (d) (or, less easily, using (e)). LTTR.

(Proposition 6.2.7 (b) is what I meant when I said that the deg-lex order is
“compatible with products”.)

6.2.3. Leading coefficients, monomials and terms

Now, we can define leading coefficients of multivariate polynomials:

Definition 6.2.8. Let f ∈ P be a nonzero polynomial.

(a) The leading monomial of f means the largest (with respect to ≺) mono-
mial that appears in f . It is denoted by LM f .

(b) The leading coefficient of f means the coefficient [LM f ] f . It is denoted
by LC f .

(c) The leading term of f means the product LC f · LM f . It is denoted by
LT f .
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For example, if 3 ̸= 0 in R, then

LM
(
(x1 + x2 + 1)3 − x3

1

)
= x2

1x2;

LC
(
(x1 + x2 + 1)3 − x3

1

)
= 3;

LT
(
(x1 + x2 + 1)3 − x3

1

)
= 3x2

1x2.

Two simple consequences of this definition are:

Proposition 6.2.9. Let f ∈ P be a nonzero polynomial. Then, f − LT f = 0 or
else LM ( f − LT f ) ≺ LM f .

Proof. By Definition 6.2.8, we have

f = LT f + (an R-linear combination of monomials m with m ≺ LM f ) .

Hence, f − LT f is an R-linear combination of monomials m with m ≺ LM f .
Therefore, f − LT f = 0 or else LM ( f − LT f ) ≺ LM f .

Proposition 6.2.10. Let f , g ∈ P be nonzero polynomials such that LC f is not
a zero divisor in R. Then,

LM ( f g) = LM f · LM g and LC ( f g) = LC f · LC g.

Proof. LTTR. (Use Proposition 6.2.7 (b).)

Now we can easily prove Proposition 6.2.5 (b). (The details are LTTR.)
From Proposition 6.2.5 (b), we obtain the following:

Corollary 6.2.11. If R is an integral domain, then the polynomial ring P =
R [x1, x2, . . . , xn] is an integral domain.

(Alternatively, this can also be proved by induction on n, using Proposition
6.1.7.)

6.3. Division with remainder and Gröbner bases

By defining leading monomials and leading coefficients, we have recovered one
piece of the nice theory of univariate polynomials in the multivariate case. Can
we do more? Can we define division with remainder?

6.3.1. The case of principal ideals

We can divide with remainder by a single polynomial179:

179Recall that P = R [x1, x2, . . . , xn].
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Theorem 6.3.1 (Division-with-remainder theorem for multivariate polynomi-
als). Let b ∈ P be a nonzero polynomial whose leading coefficient LC b is a
unit of R. Let a ∈ P be any polynomial.

Then, there is a unique pair (q, r) of polynomials in P such that

a = qb + r and r is LM b-reduced.

Here, a polynomial r ∈ P is said to be m-reduced (where m is a monomial) if
no monomial divisible by m appears in r.

This generalizes the division-with-remainder theorem for univariate poly-
nomials (Theorem 4.3.7 (a)); indeed, if n = 1, then the condition “r is LM b-
reduced” is equivalent to “deg r < deg b” (which is familiar from the case of
univariate polynomials). The entries q and r of the pair (q, r) in Theorem 6.3.1
will be called the quotient and the remainder of the division of a by b.

Let us illustrate Theorem 6.3.1 on an example:

• Let n = 2 and R = Z, and let us rename the indeterminates x1, x2 as
x, y. Thus, P = Z [x, y]. Let b = xy (x − y) ∈ P. Thus, LM b = x2y and
LC b = 1.

Let a = (x + y)4. We want to divide a by b with remainder. That is, we
want to find the pair (q, r) in Theorem 6.3.1.

Theorem 6.3.1 says that a can be written as a multiple of b plus some
LM b-reduced polynomial. In other words, it says that by subtracting an
appropriate multiple of b from a, we can obtain an LM b-reduced polyno-
mial. How do we find the right multiple to subtract?

In the univariate case, “LM b-reduced” was simply saying that deg r <
deg b, and we achieved this by repeatedly subtracting multiples of b from
a in order to chip away at the leading term (reducing the degree by at
least 1 in each step). We can do this similarly in the multivariate case:
We simply check whether a is already LM b-reduced. As long as it isn’t,
we find some monomial divisible by LM b that appears in a, and we clear
it out by subtracting an appropriate multiple of b (so that this monomial
no longer appears in a). More precisely, we clear out the highest such
monomial that appears in a. We keep doing this until no such monomials
remain (which means that a has become LM b-reduced).

Let us actually do this in our above example: We start with

a = (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Two monomials that are multiples of LM b = x2y appear on the right
hand side: x3y and x2y2. The highest of them is x3y, so we clear it out
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by subtracting an appropriate multiple of b. This appropriate multiple is
4xb, since we want to clear out a 4x3y term. So we get

a − 4xb =
(

x4 + 4x3y + 6x2y2 + 4xy3 + y4
)
− 4x · xy (x − y)

= x4 + 10x2y2 + 4xy3 + y4.

Now we still have one monomial left that is a multiple of LM b = x2y,
namely x2y2. We clear it out by subtracting 10yb, and we end up with

a − 4xb − 10yb =
(

x4 + 10x2y2 + 4xy3 + y4
)
− 10y · xy (x − y)

= x4 + 14xy3 + y4.

The right hand side of this equality is LM b-reduced, so it is the remainder
we were looking for. That is, the r in our pair (q, r) is x4 + 14xy3 + y4.
The q in this pair we find by collecting the multiples of b that we have
subtracted; thus, we get q = 4x + 10y (since we have subtracted 4xb and
10yb). Hence, our pair (q, r) is

(q, r) =
(

4x + 10y, x4 + 14xy3 + y4
)

.

This example was somewhat simplistic. In more complicated cases, it can
happen that subtracting a multiple of b will create new monomials that
are not LM b-reduced. However, if we keep following our method, all
those new monomials will eventually get removed as well.

Hints to the proof of Theorem 6.3.1. The existence of the pair (q, r) is proved by
the same idea as in the example we just did. All we need to do is to explain why
our procedure terminates (i.e., doesn’t keep running forever). This is not hard:
We observe that, as we keep subtracting appropriate multiples of b from a, the
highest monomial that is a multiple of LM b and appears in a becomes smaller
and smaller (because each subtraction clears out the highest such monomial,
and can only introduce lower such monomials). Thus, if our procedure would
run forever, then we would obtain an infinite decreasing chain m0 ≻ m1 ≻
m2 ≻ · · · of monomials; but this would contradict Proposition 6.2.7 (e). Thus,
the algorithm eventually terminates, and this proves the existence of (q, r).

To prove the uniqueness of (q, r), it suffices to show that no nonzero multiple
of b is LM b-reduced180. But this follows easily from Proposition 6.2.10.

As a consequence of Theorem 6.3.1 (or, more precisely, of the algorithm for
the construction of (q, r) that we demonstrated in the above example), we obtain

180Indeed, if (q1, r1) and (q2, r2) are two pairs (q, r) satisfying the claim of Theorem 6.3.1, then
r1 − r2 = (q2 − q1) b is a multiple of b that is LM b-reduced (since r1 and r2 are LM b-
reduced).
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an algorithmic way to tell whether a polynomial a ∈ P is divisible by b or not
(whenever b ∈ P is a nonzero polynomial whose leading coefficient LC b is a
unit of R). Namely, we compute the pair (q, r) from Theorem 6.3.1, and check
whether r = 0. The uniqueness of this pair easily yields that b | a if and only if
r = 0.

Another consequence of Theorem 6.3.1 is the following corollary that explic-
itly constructs a basis of the R-module P/b:

Corollary 6.3.2. Let b ∈ P be a nonzero polynomial whose leading coefficient
LC b is a unit of R. Then, each element of P/b can be uniquely written in the
form

∑
m is a monomial

not divisible by LM b

amm with am ∈ R

(where all but finitely many m satisfy am = 0). Equivalently, the family
(m)m is a monomial not divisible by LM b is a basis of the R-module P/b. If b is not
constant, then the ring P/b contains “a copy of R”.

Corollary 6.3.2 generalizes Theorem 6.1.1 (and is proved in the same way, ex-
cept that we use Theorem 6.3.1 instead of the univariate division-with-remainder
theorem). Here are some examples:

• Let us take P = R [x, y] and b = y in Corollary 6.3.2. Then, LM b = y, so
that Corollary 6.3.2 yields that the family (m)m is a monomial not divisible by y
is a basis of the R-module P/b = R [x, y] /y. Since the monomials not
divisible by y are precisely the powers of x (that is, x0, x1, x2, . . .), we can
rewrite this as follows: The family

(
xi
)

i∈N
=
(

x0, x1, x2, . . .
)

is a basis

of the R-module P/b = R [x, y] /y. This is in line with Proposition 6.1.2
(indeed, the isomorphism R [x, y] /y → R [x] sends this family to the stan-
dard basis

(
x0, x1, x2, . . .

)
of R [x]).

• Let us take P = R [x, y] and b = x2 + y2 − 1 in Corollary 6.3.2. Then,
LM b = x2, so that Corollary 6.3.2 yields that the family
(m)m is a monomial not divisible by x2 is a basis of the R-module
P/b = R [x, y] /

(
x2 + y2 − 1

)
. Since the monomials not divisible by x2 are

precisely the monomials xiyj with i < 2, we can rewrite this as follows:
The family(

xiyj
)
(i,j)∈N2; i<2

=
(

x0y0, x0y1, x0y2, . . . , x1y0, x1y1, x1y2, . . .
)

is a basis of the R-module P/b = R [x, y] /
(
x2 + y2 − 1

)
. This is not the

basis that we obtained back in (141), but rather is obtained from the latter
by interchanging x and y. Of course, it is no surprise that interchanging x
and y turns a basis into a basis; indeed, the variables x and y clearly play
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symmetric roles in R [x, y] /
(
x2 + y2 − 1

)
, so every basis that treats them

unequally has a “mirror” version with x and y interchanged.

• Let us take P = R [x, y] and b = xy in Corollary 6.3.2. Then, LM b = xy, so
that Corollary 6.3.2 yields that the family (m)m is a monomial not divisible by xy
is a basis of the R-module P/b = R [x, y] / (xy). Since the monomials not
divisible by xy are precisely the monomials 1, x1, x2, x3, . . . , y1, y2, y3, . . .
(that is, the monomials that are powers of a single indeterminate), we can
rewrite this as follows: The family(

1, x1, x2, x3, . . . , y1, y2, y3, . . .
)

is a basis of the R-module P/b = R [x, y] / (xy). This can be obtained in
more direct ways, too.

• Likewise, applying Corollary 6.3.2 to P = R [x, y] and b = xy (x − y)
yields that the family

(m)m is a monomial not divisible by x2y

=
(

1, x1, x2, x3, . . . , y1, y2, y3, . . . , xy1, xy2, xy3, . . .
)

is a basis of the R-module R [x, y] / (xy (x − y)).

Exercise 6.3.1. Consider the setting of Theorem 6.3.1. Prove that the remainder of
the division of a by b is the unique LM b-reduced polynomial p ∈ P that satisfies
a − p ∈ bP.

Exercise 6.3.2. Let R = Z, and let us rename the variables x1, x2, x3, x4 as x, y, z, w.
Let n be a positive integer.

(a) Find the remainder of the division of (x + y)n by xy (x − y).

(b) Find the remainder of the division of xn by (x − y)2.

(c) Find the remainder of the division of (xz)n by (x − y) (z − w).

Exercise 6.3.3. Let R be any commutative ring. Let S be the ring R [x, y] /
(
xy2).

(a) Prove that the family

(m)m is a monomial not divisible by xy2

=
(

1, x, x2, x3, . . . , y, xy, x2y, x3y, . . . , y2, y3, y4, . . .
)

is a basis of the R-module S.
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(b) Prove that the maps

S → R [x] ,

f 7→ f [x, 0] (“substituting 0 for y”)

and

S → R [y] ,

f 7→ f [0, y] (“substituting 0 for x”)

are R-algebra morphisms.

(c) Assume that R is a field. Prove that the units of S are precisely the elements
of the form λ + xy f for f ∈ R [x, y] and λ ∈ R×.

Now, define two elements a = x and b = x + xy in this ring S.

(d) Prove that aS = bS.

(e) Prove that a is not associate to b in S if R is a field. (The notion of “associate”
is defined in Definition 2.14.7.)

(f) Conclude that Proposition 2.14.9 becomes false if we don’t require R to be an
integral domain.

[Hint: For part (c), use Exercise 2.5.9 (observing that xy ∈ S is nilpotent) and then
show that an element of the form f for an xy-reduced polynomial f can only be a
unit if f is constant (because otherwise, one of the two morphisms from part (b)
would send this element to a non-constant univariate polynomial).

For part (d), compute x + xy · 1 − y in S.]

6.3.2. The case of arbitrary ideals

Now what if we want to know how P/I looks like for a non-principal ideal I,
say I = b1P + b2P + · · · + bkP for some b1, b2, . . . , bk ∈ P ? Can we divide a
polynomial by I with remainder? Can we check whether a polynomial belongs
to I ? (Remember: If I = bP is a principal ideal, then this means checking
whether the polynomial is divisible by b. We have seen how to do this using
Theorem 6.3.1.)

We can try to replicate the above “division with remainder” logic.

Example 6.3.3. Let n = 2, and let us write x, y for the indeterminates x1, x2.
Let R = Q (just to be specific), and let I = b1P + b2P with

b1 = xy + 1,
b2 = y + 1.
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Let a ∈ P be any polynomial. We try to divide a by I with remainder. This
means writing a in the form a = i + r where i ∈ I and r is a “remainder”.
Here, a “remainder” (modulo b1 and b2) means a polynomial that is both
LM b1-reduced and LM b2-reduced, i.e., that contains neither multiples of
LM b1 nor multiples of LM b2 among its monomials. We can achieve this by
subtracting multiples of b1 and multiples of b2 from a until no such remain.
In more detail: Whenever some monomial that is a multiple of LM b1 appears
in our polynomial, we can subtract an appropriate multiple of b1 from our
polynomial to remove this monomial. (Namely, the multiple of b1 that we
choose is the one whose leading term would cancel the multiple of LM b1 we
want to remove from our polynomial.) Similarly we get rid of multiples of
LM b2. When no more monomials that are multiples of LM b1 or multiples of
LM b2 remain in our polynomial, then we have found our “remainder”.

We refer to this procedure as the division-with-remainder algorithm.
Note that this is a nondeterministic algorithm, in the sense that you often
have a choice of which step you make. For instance, if your polynomial con-
tains a monomial that is a multiple of both LM b1 and LM b2 at the same time,
do you remove it by subtracting a multiple of b1 or by subtracting a multiple
of b2 ? Thus, the “remainder” at the end might fail to be unique.

Let us check this on a specific example. Let a = xy − y ∈ P. Here is one
way to perform our division-with-remainder algorithm:

a = xy − y
subtract 1b1−→

to get rid of the xy monomial
(xy − y)− (xy + 1) = −y − 1

subtract −1b2−→
to get rid of the y monomial

(−y − 1)− (−1) (y + 1) = 0.

Here is another way to do it:

a = xy − y
subtract xb2−→

to get rid of the xy monomial
(xy − y)− x (y + 1) = −x − y

subtract −1b2−→
to get rid of the y monomial

(−x − y)− (−1) (y + 1) = −x − 1.

Both results we have obtained are both LM b1-reduced and LM b2-reduced,
so they qualify as “remainders” of a modulo b1 and b2. However, they are not
equal! So the remainder is not unique this time (unlike in Theorem 6.3.1). In
particular, the first remainder we obtained was 0, which showed that a ∈ I
(because this remainder was obtained from a by subtracting multiples of
b1 and b2, and of course these multiples all belong to I); but the second
remainder was not 0, thus allowing no such conclusion. So we don’t have
a sure way of telling whether a polynomial belongs to I or not; if we are
unlucky, we get a nonzero remainder even for a polynomial that does belong
to I.
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This is bad! But it gets even worse:

Example 6.3.4. A simpler example: Let n = 2 and I = b1P + b2P with

b1 = xy + x,
b2 = xy + y.

The polynomial x − y lies in I (since x − y = b1 − b2), but it is both LM b1-
reduced and LM b2-reduced, so we cannot see this from our division-with-
remainder algorithm no matter what choices we make (because the algorithm
does nothing: x − y already is a “remainder”). We could, of course, subtract
b1 from x − y (to obtain (x − y)− (xy + x) = −y − xy), but this would be a
“step backwards”, as it would increase the leading monomial (and even the
degree) of our polynomial. The idea of the division-with-remainder algo-
rithm is to reduce the polynomial step by step, always “walking downhill”,
rather than having to “cross a mountain” first (temporarily increasing the
leading monomial).

Example 6.3.4 might give you an idea of what is standing in our way here:
It is the fact that when we compute b1 − b2, the leading terms xy cancel. It
means, in a sense, that our b1 and b2 are “unnecessarily convoluted”; we should
perhaps fix this by replacing b2 by the smaller polynomial b2 − b1 = y − x. This
simplifies b2 but does not change I (since b1P + b2P = b1P + (b2 − b1) P 181).
This is similar to one of the row-reduction steps involved in bringing a matrix
to row echelon form.

What does it mean in general that a list (b1, b2, . . . , bk) of polynomials is “un-
necessarily convoluted”? The xy cancellation in b1 − b2 above was easy to see;
what other cancellations can lurk in a list of polynomials?

Let me formalize this question. The following definition will be a bit long-
winded but it is just giving names to the kind of observations you would have
made when trying to discuss the above algorithm:

Definition 6.3.5. Let b = (b1, b2, . . . , bk) be a list of nonzero polynomials in P
whose leading coefficients are units of R.

(a) Given two polynomials c, d ∈ P, we write c −→
b

d (and say “c can be

reduced to d in a single step using b”) if

• some monomial m appearing in c is a multiple of LM bi for some
i ∈ {1, 2, . . . , k};

• we have

d = c − [m] c
LC bi

· m

LM bi
· bi.

181This is a consequence of Exercise 2.11.5 (applied to b2, b2 − b1 and b1P instead of a, b and I).
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(This equation essentially says that we obtain d from c by subtract-
ing the appropriate multiple of bi to get rid of the monomial m.

The multiple is
[m] c
LC bi

· m

LM bi
· bi, since the

m

LM bi
factor is needed

to turn the leading monomial of bi into m, whereas the
[m] c
LC bi

factor

serves to make the coefficient of this monomial the same as that in

c. Note that the fraction
[m] c
LC bi

∈ R is well-defined since LC bi is a

unit, whereas the fraction
m

LM bi
∈ C(n) is well-defined since m is

a multiple of LM bi.)

For instance, using the notations of Example 6.3.3 and setting b =
(b1, b2), we have

xy − y −→
b

−x − y,

because we obtain −x − y from xy − y by subtracting the multiple 1b1
of b1 (which kills the xy monomial). Likewise, for the same b, we have

5x2y3 −→
b

−5xy2,

because we obtain −5xy2 from 5x2y3 by subtracting the multiple 5xy2b1
of b1 (which kills the x2y3 monomial).

(b) Given two polynomials c, d ∈ P, we write c ∗−→
b

d (and say “c can be re-

duced to d in many steps using b”) if there is a sequence (c0, c1, . . . , cm)
of polynomials in P such that c0 = c and cm = d and

ci −→
b

ci+1 for each i ∈ {0, 1, . . . , m − 1} .

Note that this sequence can be trivial (i.e., we can have m = 0), in which
case of course we have c = d. Thus, c ∗−→

b
c for any c ∈ P. (Like any

true algebraists, we understand “many steps” to allow “zero steps”.)
We also can have m = 1; thus, c ∗−→

b
d holds if c −→

b
d. (That is, “many

steps” allows “one step”.)

As an example of a nontrivial many-steps reduction, we observe that
using the notations of Example 6.3.3 and setting b = (b1, b2), we have

5x2y3 −→
b

−5xy2 −→
b

5y −→
b

−5

and thus 5x2y3 ∗−→
b

−5.
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(c) We say that a polynomial r ∈ P is b-reduced if it is LM bi-reduced
for all i ∈ {1, 2, . . . , k}. This is equivalent to saying that there exists no
polynomial s ∈ P with r −→

b
s (that is, “r cannot be reduced any further

using b”).

(d) A remainder of a polynomial a ∈ P modulo b means a b-reduced
polynomial r ∈ P such that a ∗−→

b
r. Such a remainder always exists

(this is not hard to show), but is not always unique (as we have seen in
Example 6.3.3).

(e) We say that the list b is a Gröbner basis if any a ∈ P has a unique
remainder modulo b.

(Don’t take the word “basis” in “Gröbner basis” to heart. It is closer to
“generating set” or “spanning set” than to any sort of “basis” in linear algebra.
In particular, a Gröbner basis can be R-linearly dependent or even contain the
same polynomial twice.)

So we have seen that not every list of nonzero polynomials is a Gröbner basis.
This leads to the following two questions:

• Can we tell whether a list of nonzero polynomials is a Gröbner basis? (We
cannot afford to check every a ∈ P and every way of reducing it modulo
b.)

• If a list is not a Gröbner basis, can we at least find a Gröbner basis that
generates the same ideal as the list?

If R is not a field, then the answers to these questions are “no” for reasons
that should be familiar from the univariate case (non-unit leading coefficients).

When R is a field, Bruno Buchberger has answered both questions in the
positive in the 1960s. The algorithms he found are one of the pillars of modern
computer algebra. I will state the main results without proof, but you can find
proofs in the literature (e.g., [DumFoo04, §9.6] or [deGraa20, Chapter 1]).

We will need the notion of an S-polynomial:

Definition 6.3.6. Let f , g ∈ P be nonzero polynomials whose leading coeffi-
cients are units of R.

Let p = xp1
1 xp2

2 · · · xpn
n = LM f and q = xq1

1 xq2
2 · · · xqn

n = LM g be their lead-
ing monomials, and let λ = LC f and µ = LC g be their leading coefficients.
So

f = λp+ (smaller terms) ;
g = µq+ (smaller terms) .



Rings and fields (Math 332 Winter 2023), version February 21, 2024 page 451

Let
m = xmax{p1,q1}

1 xmax{p2,q2}
2 · · · xmax{pn,qn}

n .

(This is the lcm of p and q among the monomials; it is the smallest-degree
monomial that is divisible by both p and q.) Note that

m

p
and

m

q
are well-

defined monomials (since p | m and q | m).
The S-polynomial (short for syzygy polynomial) of f and g is defined to

be the polynomial

S ( f , g) :=
1
λ
· m
p
· f − 1

µ
· m
q
· g ∈ P.

Here is the intuition behind this: S ( f , g) is the simplest way to form a
P-linear combination of f and g in which the leading terms of f and g can-
cel. Namely, in order to obtain such a P-linear combination, we must first
rescale f and g so that their leading coefficients become equal (this can be

achieved by scaling f by
1
λ

and scaling g by
1
µ

); then we must multiply them

with appropriate monomials to make their leading monomials equal (this
can be achieved by multiplying f by

m

p
and multiplying g by

m

q
, so that

both leading monomials become m). The resulting two polynomials have
equal leading terms (namely, m), so their leading terms cancel out when we
subtract them. The result of this subtraction is S ( f , g). To be more spe-
cific, when we multiplied f and g with appropriate monomials to make their
leading monomial equal, we made sure to choose the latter monomials as
low-degree as possible; this is why we took m to be the lcm of p and q and
not some other monomial divisible by p and q (such as the product pq).

Example 6.3.7. For n = 2 (and denoting x1, x2 by x, y as usual), we have

S
(

x2y + 1, xy2 + 1
)
= y

(
x2y + 1

)
− x

(
xy2 + 1

)
= y − x

and
S (xy + 1, 2x) = 1 (xy + 1)− 1

2
· y · 2x = 1.

Note that the cancellation of the leading terms in the construction of S ( f , g)
is precisely the sort of cancellation that prevented us from having a unique
remainder in our above examples.

The following crucial theorem says that these cancellations are a canary in
the mine: If they don’t happen, then the list is a Gröbner basis.
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Theorem 6.3.8 (Buchberger’s criterion). Let b = (b1, b2, . . . , bk) be a list of
nonzero polynomials in P whose leading coefficients are units of R.

Then, b is a Gröbner basis if and only if every i < j satisfy

S
(
bi, bj

) ∗−→
b

0.

The idea behind this theorem is that a list of polynomials (whose leading
coefficients are units) is a Gröbner basis if and only if any S-polynomial of two
polynomials in the list reduces to 0 modulo the list. Note that “reduces to 0
modulo the list” means that there is some way to get the remainder 0 when ap-
plying the division-with-remainder algorithm to this S-polynomial; we are not
requiring that every way of applying the division-with-remainder algorithm to
it will give 0. (But this will follow automatically if we have shown that b is a
Gröbner basis.)

Example 6.3.9. Let n = 2, and write x, y for x1, x2. Let I = b1P + b2P, where

b1 = xy + 1,
b2 = y + 1.

We already know from Example 6.3.3 that (b1, b2) is not a Gröbner basis, but
let us now see this using Buchberger’s criterion:

S (b1, b2) = 1 (xy + 1)− x (y + 1) = 1 − x.

This polynomial 1− x is already b-reduced (where b = (b1, b2)), and it is not
0, so we don’t have S (b1, b2)

∗−→
b

0. Thus, Theorem 6.3.8 confirms again that

our b is not a Gröbner basis.

Example 6.3.10. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P +
b3P, where

b1 = x2 − yz,

b2 = y2 − zx,

b3 = z2 − xy.

Is b := (b1, b2, b3) a Gröbner basis? We check this using Buchberger’s cri-
terion. First, we rewrite b1, b2, b3 in a way that their leading terms are up
front:

b1 = x2 − yz,

b2 = −zx + y2,

b3 = −xy + z2.
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(It is generally advised to always write the terms of a polynomial in the deg-
lex order, from highest to lowest, when performing division-with-remainder
or computing S-polynomials. Otherwise, it is too easy to get confused about
which terms are leading!)

Now, we compute remainders of S
(
bi, bj

)
modulo b for all i < j:

• We have

S (b1, b2) = S
(

x2 − yz, −zx + y2
)

= z
(

x2 − yz
)
− (−x)

(
−zx + y2

)
= xy2 − yz2

−→
b

(
xy2 − yz2

)
− (−y)

(
−xy + z2

)
(

here, we subtracted − yb3

in order to remove the xy2 monomial

)
= 0,

so that S (b1, b2)
∗−→
b

0.

• We have

S (b1, b3) = S
(

x2 − yz, −xy + z2
)

= y
(

x2 − yz
)
− (−x)

(
−xy + z2

)
= xz2 − y2z

−→
b

(
xz2 − y2z

)
− (−z)

(
−zx + y2

)
(

here, we subtracted − zb2

in order to remove the xz2 monomial

)
= 0,

so that S (b1, b3)
∗−→
b

0.

• We have

S (b2, b3) = S
(
−zx + y2, −xy + z2

)
= y

(
−zx + y2

)
− z

(
−xy + z2

)
= y3 − z3 is b-reduced and not 0.

Thus, we do not have S (b2, b3)
∗−→
b

0. This shows that (b1, b2, b3) is not

a Gröbner basis.

(This example was a bit unusual in that our many-step reductions were
actually one-step reductions. But it is certainly not unusual in that we have
wasted a lot of work before getting the answer “no”.)
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Buchberger’s criterion is proved (e.g.) in [DumFoo04, p. 324], in [Laurit09,
Theorem 5.6.8] and in [deGraa20, proof of Theorem 1.1.33]. The “only if” part
is obvious; the “if” part is interesting.

Gröbner bases help us better understand ideals of P:

Definition 6.3.11. Let I be an ideal of P. A Gröbner basis of I means a
Gröbner basis (b1, b2, . . . , bk) that generates I (that is, that satisfies I = b1P +
b2P + · · ·+ bkP).

Corollary 6.3.12 (Macaulay’s basis theorem). Let b = (b1, b2, . . . , bk) be a
list of nonzero polynomials in P whose leading coefficients are units of R.
Assume that b is a Gröbner basis.

Let I be the ideal b1P + b2P + · · ·+ bkP of P. Then, each element of P/I
can be uniquely written in the form

∑
m is a b-reduced

monomial

amm with am ∈ R

(where all but finitely many m satisfy am = 0). Equivalently, the family
(m)m is a b-reduced monomial is a basis of the R-module P/I. If none of the poly-
nomials b1, b2, . . . , bk is constant, then the ring P/b contains “a copy of R”.

Proof. LTTR.

To summarize: If we know a Gröbner basis of an ideal I of P, then we know
a lot about I (in particular, we can tell when a polynomial belongs to I, and we
can find a basis for P/I). But how do we find a Gröbner basis of an ideal? Is
there always one?

Not for arbitrary R. But if R is a field, then yes:

Theorem 6.3.13 (Buchberger’s theorem). Let R be a field. Let I be an ideal of
the polynomial ring P = R [x1, x2, . . . , xn]. Then, I has a Gröbner basis.

Moreover, if b1, b2, . . . , bk are nonzero polynomials such that I = b1P +
b2P + · · ·+ bkP, then we can construct a Gröbner basis of I by the following
algorithm (Buchberger’s algorithm):

• Initially, let b be the list (b1, b2, . . . , bk).

• As long as there exist two entries of b whose S-polynomial has a
nonzero remainder modulo b, we append this remainder to the list.
(It is enough to compute one remainder for each pair of entries of b.)

• Once no such two entries exist any more, we are done: b is a Gröbner
basis of I.

This algorithm always terminates after finitely many steps (i.e., we don’t
keep adding new entries to b forever).
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We won’t prove this, but we will give an example:

Example 6.3.14. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P +
b3P, where

b1 = x2 − yz,

b2 = y2 − zx,

b3 = z2 − xy.

We want to find a Gröbner basis of this ideal I.
As we have seen in Example 6.3.10, the list b := (b1, b2, b3) is not a Gröbner

basis, since S (b2, b3) = y3 − z3 does not have remainder 0 modulo b. Its re-
mainder is y3 − z3 itself. Thus, following Buchberger’s algorithm, we append
this remainder to the list. That is, we set b4 = y3 − z3, and continue with the
list (b1, b2, b3, b4). We call this list b again.

Since b has grown, we must now also check whether the new S-
polynomials

S (b1, b4) , S (b2, b4) , S (b3, b4)

reduce to 0 modulo b. Fortunately, they do. Thus, our new list b =
(b1, b2, b3, b4) is a Gröbner basis of I.

Example 6.3.15. Let n = 3, and write x, y, z for x1, x2, x3. Assume that R = Q.
Let I = b1P + b2P + b3P, where

b1 = x2 + xy,

b2 = y2 + yz,

b3 = z2 + zx.

Then, again, it is not hard to see that (b1, b2, b3) is not a Gröbner basis of I.
Using Buchberger’s algorithm, we can easily compute its Gröbner basis. For
example, I has Gröbner basis(

x2 + xy, y2 + yz, xz + z2, yz2 − z3, z4
)

.

(Note that the Gröbner basis of an ideal is not unique, so you might get a
different one if you perform Buchberger’s algorithm differently. When there
are several pairs

(
bi, bj

)
whose S-polynomial does not reduce to 0, you have

a choice of which of these pairs you handle first.)
This Gröbner basis reveals that z4 ∈ I but z3 /∈ I (since z3 is reduced

modulo the above Gröbner basis). Just working from the original definition
of I, this would be far from obvious!

You can do Gröbner basis computations with most computer algebra sys-
tems (e.g., SageMath, Mathematica, Singular, SymPy). For example, here is

https://sagecell.sagemath.org/?z=eJwL0LOp0FGo1FGoslOwVQjIz6nMy8_NTMwJysxL1wgM1OTyBAnrZaakJuZoVMQZKWgrVGgBlVeCmZVaVUCdYGaVVgVQsV56UX5qUl5qUXxSYnFmsYYmAFkYHJ0=&lang=sage&interacts=eJyLjgUAARUAuQ==
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SageMath code for the Gröbner basis of the above ideal. Note that we took
R = Q in this computation (the “QQ” means the field of rational numbers),
but the same computation works over any field R (and, because our ideal is
rather nice, even over any commutative ring R; this is not automatic).

Exercise 6.3.4. Let n = 3, and let us rename the indeterminates x, y, z as x1, x2, x3.
Define two polynomials b1 and b2 in P by

b1 = x2 − y and b2 = x3 − z.

Let I = b1P + b2P. Find a Gröbner basis of I. (Feel free to assume that R = Q for
simplicity.)

Exercise 6.3.5. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P + b3P,
where

b1 = x + xyz,
b2 = y + xyz,
b3 = z + xyz.

Find a Gröbner basis of I. (Feel free to assume that R = Q for simplicity.)

Exercise 6.3.6. Let n = 3, and write x, y, z for x1, x2, x3. Let I = b1P + b2P + b3P,
where

b1 = x2 + yz,

b2 = y2 + zx,

b3 = z2 + xy.

Find a Gröbner basis of I. (Feel free to assume that R = Q for simplicity.)

6.3.3. Monomial orders

We have so far been using the deg-lex order on the monomials. There are many
other total orders that share most of its nice properties and are often more
suited for specific problems.

Let me only mention the lexicographic order, which is defined just as the
deg-lex order but without taking the degree into account. That is:

Definition 6.3.16. We define a total order ≺ (called the lexicographic order,
or – for short – the lex order) on the set C(n) of all monomials as follows:

For two monomials m = xa1
1 xa2

2 · · · xan
n and n = xb1

1 xb2
2 · · · xbn

n , we declare
that m ≺ n if and only if

• there is an i ∈ {1, 2, . . . , n} such that ai ̸= bi, and the smallest such i
satisfies ai < bi.
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Several properties of the deg-lex order were collected in Proposition 6.2.7.
All of those properties except for Proposition 6.2.7 (d) hold for the lex order
as well. Proposition 6.2.7 (d) fails for the lex order (for n > 1), because x1 is
larger (with respect to the lex order) than any power of x2 (and, of course, there
are infinitely many powers of x2). Proposition 6.2.7 (e) is still true for the lex
order, but its proof is harder. However, the theory of Gröbner bases does not
use Proposition 6.2.7 (d), so it still can be done with the lex order. This yields
new (in general, different) Gröbner bases.

Example 6.3.17. Let n = 3 and let I =
(
x2 − y

)
P +

(
y2 − z

)
P +

(
z2 − x

)
P

(where we write x, y, z for x1, x2, x3). Then, a Gröbner basis of I with respect
to the deg-lex order is (

x2 − y, y2 − z, z2 − x
)

(this is precisely the list of generators that we started with). But this is not
a Gröbner basis with respect to the lex order. Instead, a Gröbner basis of I
with respect to the lex order is(

x − z2, y − z4, z8 − z
)

.

Example 6.3.18. Let n = 3 and let I =
(
x2 − y3) P +

(
y4 − z2) P +

(
z2 − x5) P

(where we write x, y, z for x1, x2, x3). Then, a Gröbner basis of I with respect
to the deg-lex order is(

z6 − yz2, x3z2 − yz2, xy2z2 − z2, xz4 − y2z2,

yz4 − xz2, x4 − y2z2, x2y − z2, y3 − x2
)

.

But a Gröbner basis of I with respect to the lex order is(
x2 − y3, xz2 − z8, y4 − z2, yz2 − z6, z16 − z2

)
.

In the SageMath computer algebra system, you can signal the use of the lex
order (as opposed to the deg-lex order, which is used by default) by replacing
“PolynomialRing(QQ)” by “PolynomialRing(QQ, order="lex")”.

This last example illustrates one reason to vary the total order on monomials:
Gröbner bases can often be rather long (even if the ideal is easy to write down).
The size of a Gröbner basis can be doubly exponential in the number of gener-
ators of I (I believe). In real life, this worst case doesn’t happen very often, but
when it does, switching to a different monomial order will often make it easier.
(Think of it as a way to re-roll the dice if you got an unlucky roll.)
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Exercise 6.3.7. Let n = 3, and let us rename the indeterminates x, y, z as x1, x2, x3.
Define two polynomials b1 and b2 in P by

b1 = x2 − yz and b2 = x − y2.

Let I = b1P + b2P.

(a) Find a Gröbner basis of I with respect to the deg-lex order.

(b) Find a Gröbner basis of I with respect to the lex order.

The following exercise generalizes Example 6.3.17 from n = 3 to arbitrary n:

Exercise 6.3.8. Let n be a positive integer. Define n polynomials b1, b2, . . . , bn in P
by setting

bi = x2
i − xi+1 for each i ∈ {1, 2, . . . , n − 1} and

bn = x2
n − x1.

Let I = b1P + b2P + · · ·+ bnP.

(a) Find a Gröbner basis of I with respect to the deg-lex order. (This should go
very quick!)

(b) Find a Gröbner basis of I with respect to the lex order.

[Hint: For part (b), compute the answer for some small values of n and spot the
pattern.]

6.4. Solving polynomial systems using Gröbner bases

Another occasion to use Gröbner bases (and the lex order in particular) is solv-
ing systems of polynomial equations. Polynomial equations are closely con-
nected to ideals:

Definition 6.4.1. Let b1, b2, . . . , bk be k polynomials in P, and let A be a
commutative R-algebra. Then, a root (or, alternatively, a common root) of
(b1, b2, . . . , bk) in A means an n-tuple (a1, a2, . . . , an) ∈ An such that

bi (a1, a2, . . . , an) = 0 for all i ∈ {1, 2, . . . , k} .

This definition generalizes the standard notion of a root of a polynomial to
multiple variables and multiple polynomials.

Thus, solving systems of polynomial equations means finding roots of lists
of polynomials. It turns out that the list of polynomials doesn’t really matter;
what does is the ideal it generates:
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Proposition 6.4.2. Let b1, b2, . . . , bk be k polynomials in P, and let A be a
commutative R-algebra.

Then, the roots of (b1, b2, . . . , bk) in A depend only on the ideal generated
by b1, b2, . . . , bk, rather than on the polynomials b1, b2, . . . , bk themselves.

More concretely: If I = b1P + b2P + · · ·+ bkP is the ideal of P generated
by b1, b2, . . . , bk, then the roots of (b1, b2, . . . , bk) are precisely the n-tuples
(a1, a2, . . . , an) ∈ An such that

f (a1, a2, . . . , an) = 0 for all f ∈ I.

Proof. Easy, LTTR. (You have to prove that if (a1, a2, . . . , an) ∈ An is a root of
(b1, b2, . . . , bk), then f (a1, a2, . . . , an) = 0 for all f ∈ I. But this is easy: Each
f ∈ I is a P-linear combination c1b1 + c2b2 + · · · + ckbk of (b1, b2, . . . , bk), and
therefore satisfies

f (a1, a2, . . . , an)

= c1 (a1, a2, . . . , an) b1 (a1, a2, . . . , an)︸ ︷︷ ︸
=0

+ c2 (a1, a2, . . . , an) b2 (a1, a2, . . . , an)︸ ︷︷ ︸
=0

+ · · ·+ ck (a1, a2, . . . , an) bk (a1, a2, . . . , an)︸ ︷︷ ︸
=0

= 0.

The converse is even more obvious, since the polynomials b1, b2, . . . , bk all be-
long to I.)

Thus, if we want to find the roots of (b1, b2, . . . , bk), we can replace (b1, b2, . . . , bk)
by any other tuple of polynomials that generates the same ideal of P. (This is
just the polynomial analogue of the classical “addition” strategy for solving
systems of linear equations.)

One of the most useful ways to do this is to replace (b1, b2, . . . , bk) by a Gröb-
ner basis of the ideal it generates – particularly, by a Gröbner basis with respect
to the lex order. Let us see how this helps on an example:

Example 6.4.3. Recall Exercise 1.5.6:

Solve the following system of equations:

a2 + b + c = 1,

b2 + c + a = 1,

c2 + a + b = 1

for three complex numbers a, b, c.
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Let us formalize this in terms of polynomials and roots. We set R = Q and
n = 3, and we write x, y, z for x1, x2, x3. Thus, the exercise is asking for the
roots of (

x2 + y + z − 1, y2 + z + x − 1, z2 + x + y − 1
)

in the Q-algebra C.
Let I be the ideal of P = Q [x, y, z] generated by the three polynomials

x2 + y + z − 1, y2 + z + x − 1, z2 + x + y − 1. Using a computer (or a lot
of patience), we can easily find a Gröbner basis of I with respect to the lex
order. We get(

x + y + z2 − 1, y2 − y − z2 + z, yz2 +
1
2

z4 − 1
2

z2, z6 − 4z4 + 4z3 − z2
)

.

We observe that the last polynomial in this Gröbner basis only involves the
variable z ! Thus, the c entry in each of the solutions (a, b, c) of our system
must be a root of this polynomial z6 − 4z4 + 4z3 − z2. We can therefore find all
possibilities for c by finding the roots of this polynomial (I am here assuming
that you can solve univariate polynomials; we will learn a bit more about this
in Section 6.5 perhaps). In our concrete case, we can easily do this:

z6 − 4z4 + 4z3 − z2 = z2 (z − 1)2
(

z2 + 2z − 1
)

.

Thus, the options for c are 0, 1,
√

2 − 1,
√

2 + 1.
Now let us find b. Either we use the symmetry of the original system to

argue that the options for b must be the same as for c; or we use the second-
to-last polynomial in our Gröbner basis (or the second one) to compute b
now that c is known. At last, we get to a in a similar way.

In the end, we get finitely many options for (a, b, c). We need to check
which of these options actually are solutions of the original system. This is a
lot of work, but a computer can do it.

Of course, there are more elegant ways to solve the above exercise (otherwise,
I would not have posed it). However, the way we just showed is generalizable.
In general, if a system of polynomial equations over C has only finitely many
solutions, then we can find them all in this way (provided that we have an algo-
rithm for finding all roots of a univariate polynomial).182 Thus, using Gröbner

182If a system of polynomial equations has infinitely many solutions, then this strategy usually
will not work. For example, if we try to use it to solve the system

ab = 0,
bc = 0,
ca = 0,

then we find the Gröbner basis (xy, yz, xz), which doesn’t get us any closer to the solutions.
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bases with respect to the lex order, we can (often) reduce solving systems of
polynomial equations in multiple variables to solving polynomial equations in
a single variable. (See [Laurit09, §5.9] for more details on this.)

Some things don’t look like systems of polynomial equations, but yet boil
down to such systems. Here is an example:

Example 6.4.4. Recall Exercise 1.5.2:

Simplify 3
√

2 +
√

5 + 3
√

2 −
√

5.

There are various ways of solving this using some creativity or lucky ideas.
Let us try to be more methodical here. We set

a =
3
√

2 +
√

5, b =
3
√

2 −
√

5, c =
3
√

2 +
√

5 +
3
√

2 −
√

5.

Thus, we want to find a simpler expression for c. A good first step would be
to find a polynomial whose root c is (since we would then have a chance of
finding c by root-finding techniques). We see that a, b, c satisfy the following
system of equations: (

a3 − 2
)2

− 5 = 0,(
b3 − 2

)2
− 5 = 0,

a + b − c = 0.

(Indeed, the first equation comes from “unraveling” a =
3
√

2 +
√

5, and like-
wise for the second; the third comes from the obvious fact that c = a + b.)

We try to solve this system using Gröbner bases. Thus, we consider the
ideal

I :=
((

x3 − 2
)2

− 5
)

P +

((
y3 − 2

)2
− 5
)

P + (x + y − z) P

of the polynomial ring P = Q [x, y, z]. Using SageMath, we can easily find
a Gröbner basis of this ideal I with respect to the lex order. Its last entry is
a polynomial that involves only the variable z, so we can narrow down the
options for c to the roots of this polynomial.

This looks nice in theory, but in practice you will realize that this last entry
is

z21 − 40z18 + 218z15 − 72z12 − 9931z9 − 5216z6 + 19136z3 − 4096.

Blame this on the problem, not on the Gröbner basis: The system has a more complicated
combinatorial structure (its solution set is the union of the three axes in 3D space; there are
infinitely many options for each of a, b, c).
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Eek. With a good computer algebra system, you can factor this polynomial,
but there will be some degree-4 factors irreducible over Q. The polynomial
has 5 real roots, so c must be one of them, but we need some harder work to
find out which one. This is all not very convenient.

But our approach can be salvaged. We have been “throwing away” in-
formation about our a, b, c; no wonder that we got so many options for c.
Indeed, the equation

(
a3 − 2

)2 − 5 = 0 doesn’t really mean a =
3
√

2 +
√

5; it
only means that a is some cube root of (2 plus some square root of 5). Here,
we are using the word “root” in the wider sense, so a nonzero complex num-
ber has two square roots and three cube roots; thus, there are 6 possibilities
in total for a. Likewise for b. Our system of equations above allows c to be a
sum of any of the 6 possible a’s with any of the 6 possible b’s. Unsurprisingly,
this leaves lots of different options for c.

Thus, we need to integrate a bit more information about the actual values
of a, b into our system. Of course, we know that a is the real cube root of
the positive square root of 5. But this is not the kind of information we can
easily integrate into a system of equations.

However, we can observe that

ab =
3
√

2 +
√

5 · 3
√

2 −
√

5 = 3

√(
2 +

√
5
)
·
(

2 −
√

5
)

(
since 3

√
u · 3

√
v = 3

√
uv for any u, v ∈ R

)
= 3

√
−1 = −1.

Thus, we can extend our system to(
a3 − 2

)2
− 5 = 0,(

b3 − 2
)2

− 5 = 0,

a + b − c = 0,
ab + 1 = 0.

This is a different system and has a smaller set of solutions than the previous
one, but that’s good news, since the solution we are looking for is one of its
solutions.

Now, solving this new system using the Gröbner basis technique, we find
that c is a root of the polynomial z3 + 3z − 4 (since this polynomial is the last
entry of the Gröbner basis we find). But the roots of this polynomial are easy
to find: The factorization

z3 + 3z − 4 = (z − 1)
(

z2 + z + 4
)

︸ ︷︷ ︸
always positive on R

shows that its only real root is 1, so that c must be 1 (since c is real by
definition). Thus our exercise is solved.
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See [CoLiOs15] for more about solving systems of polynomial equations, and
for further applications of Gröbner bases.

6.5. Factorization of polynomials

In Example 6.4.4, we used a computer to factor a polynomial. Let me say
some words about the algorithms that are used for this (or, at least, about an
algorithm that could theoretically be used for this, but is too slow in practice;
actual computers use faster algorithms).

6.5.1. Factoring univariate polynomials

Let F be a field.
Recall that the ring F [x] is a UFD; thus, each polynomial in F [x] has an essen-

tially unique factorization into irreducible polynomials. (“Essentially” means
“up to order and up to associates”. Keep in mind that the units of F [x] are pre-
cisely the nonzero constant polynomials, so that two polynomials f , g ∈ F [x]
are associate if and only if there exists some λ ∈ F \ {0} satisfying g = λ f .)

How do we find this factorization (into irreducible polynomials)?
When F is finite, we can just check all possibilities by brute force. Indeed,

any factor in the factorization of a nonzero polynomial f must be a polynomial
of degree ≤ deg f , and this leaves finitely many options for it when F is finite.

For general fields F, there is no algorithm that finds the factorization of every
polynomial.183 But what about well-known fields like Q, R and C ?

Over R and C you cannot “really” factor polynomials, because this is not a
numerically stable problem. For example, the polynomial x2 − 2x + 1 factors
over R (as (x − 1)2), but x2 − 1.999x + 1 does not (nontrivially at least). Ap-
proximate algorithms that work for sufficiently non-singular inputs exist, but
this is more a question of numerical analysis than of algebra.

What about polynomials over Q ? There is an algorithm, whose main ingre-
dient is the following fact:

Proposition 6.5.1 (Gauss’s lemma in one of its forms). Let f ∈ Z [x]. If f is
irreducible in Z [x], then f is irreducible in Q [x].

Proof. Assume the contrary. Thus, f = gh for some nonconstant polynomials
g, h ∈ Q [x] (since the units of Q [x] are precisely the nonzero constant polyno-
mials). By multiplying the two polynomials g and h with the lowest common
denominators of their coefficients, we obtain two nonconstant polynomials u
and v in Z [x]. These two polynomials u and v satisfy uv = Ngh for some posi-
tive integer N (since u and v are positive integer multiples of g and h). Consider
this N. We have uv = N gh︸︷︷︸

= f

= N f , so that N f = uv.

183See https://mathoverflow.net/a/350877/ for an outline of the proof.

https://mathoverflow.net/a/350877/
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Thus, we have found two nonconstant polynomials u, v ∈ Z [x] and a positive
integer N such that

N f = uv. (142)

We WLOG assume that N is minimal with the property such that such u, v
exist. (In other words, among all triples (u, v, N) of two nonconstant polynomi-
als u, v ∈ Z [x] and a positive integer N satisfying (142), we pick one in which
N is minimal. This might not be the one that we obtained from g and h above.)

If N = 1, then (142) rewrites as f = uv, which contradicts the assumption
that f is irreducible (since u and v are nonconstant and thus non-units). Hence,
we cannot have N = 1. Thus, there exists a prime p that divides N. Consider
such a p. Recall that Z/p is a field (since p is prime). Therefore, Z/p is an
integral domain, so that the polynomial ring (Z/p) [x] is an integral domain as
well (by Corollary 4.3.6).

We shall now show a way to turn any polynomial s ∈ Z [x] into a polynomial
s ∈ (Z/p) [x]. It is as simple as you can imagine: We simply replace each
coefficient by its residue class modulo p. In other words, if s = s0x0 + s1x1 +
· · ·+ snxn is a polynomial in Z [x] (with si ∈ Z), then we define a polynomial
s := s0x0 + s1x1 + · · ·+ snxn ∈ (Z/p) [x] (where si means the residue class of si

modulo p). For example, if p = 5, then 2x3 + 7 = 2x3 + 7 = 2x3 + 2. It is easy
to see that the map

Z [x] → (Z/p) [x] ,
s 7→ s

is a ring morphism (since the rules for adding and multiplying polynomials are
the same over Z and over Z/p). Thus, uv = u · v.

Now, f ∈ Z [x]; hence, all coefficients of the polynomial N f are divisible by
N, and thus also divisible by p (since p divides N). Thus, N f = 0 in (Z/p) [x].
However, (142) entails N f = uv = u · v. Thus, u · v = N f = 0. Since (Z/p) [x]
is an integral domain, this shows that u = 0 or v = 0. We WLOG assume that
u = 0 (since otherwise, we can simply swap u with v).

Now, u = 0 means that all coefficients of u are multiples of p. In other words,
1
p

u ∈ Z [x]. Now, the equality (142) yields

N
p

f =

(
1
p

u
)

v.

Since
N
p

is a positive integer (because p divides N) and since
1
p

u ∈ Z [x], this

equality shows that
(

1
p

u, v,
N
p

)
is a triple of two nonconstant polynomials

1
p

u, v ∈ Z [x] and a positive integer
N
p

satisfying (142) (with u and N replaced
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by
1
p

and
N
p

). But recall that among all such triples, we chose (u, v, N) to be

one with minimal N. Thus, N ≤ N
p

. Therefore, p ≤ 1 (since N is a positive

integer). This contradicts the assumption that p is prime. This contradiction
completes the proof.

Let us now address two computational problems for polynomials with inte-
ger or rational coefficients.

Problem 1: Let f , g ∈ Z [x] be two polynomials with g ̸= 0. Check
whether g divides f in Z [x].

Solution (sketched). The leading coefficient of g may or may not be a unit of Z;
however, it is always a unit of Q. Thus, we can use division with remainder to
check whether g divides f in the (larger) ring Q [x]. If the answer is “no”, then
(a fortiori) g cannot divide f in Z [x] (since Z [x] is a subring of Q [x]). If the

answer is “yes”, then we compute the quotient
f
g
∈ Q [x] and check whether it

belongs to Z [x] (that is, whether its coefficients are integers). If yes, then the
answer is “yes”; if no, then the answer is “no”. Problem 1 is thus solved.

Problem 2: Let f ∈ Z [x] be a nonzero polynomial. Construct a list
of all divisors of f in Z [x].

Solution (sketched). Let n = deg f . Pick n + 1 integers a0, a1, . . . , an that are not
roots of f . (Such n + 1 integers can always be found, since f is a nonzero
polynomial of degree n and thus has at most n roots in the integral domain Z.
Thus, for example, among the 2n + 1 numbers −n,−n + 1, . . . , n, at least n + 1
many are not roots of f .)

For each i ∈ {0, 1, . . . , n}, let Di be the set of all divisors of the integer f [ai]
(recall that f [a] is our notation for the evaluation of f at a; this is commonly
denoted f (a)). This set Di is finite (since f [ai] ̸= 0), and its elements can be
explicitly listed. Hence, the set D0 × D1 × · · · × Dn is finite as well, and its
elements can be explicitly listed.

Now, let g be a divisor of f in Z [x]. Then, g ∈ Z [x], and there exists a
further polynomial h ∈ Z [x] such that f = gh. Consider this h. From f = gh,
we obtain deg f = deg (gh) = deg g+deg h︸ ︷︷ ︸

≥0

≥ deg g, so that deg g ≤ deg f = n.

In other words, the polynomial g must have degree ≤ n.
For each i ∈ {0, 1, . . . , n}, we have

f [ai] = g [ai] h [ai] (since f = gh)

and thus g [ai] | f [ai], so that g [ai] ∈ Di. Hence,

(g [a0] , g [a1] , . . . , g [an]) ∈ D0 × D1 × · · · × Dn.
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Thus, for each divisor g of f in Z [x], we know that the (n + 1)-tuple
(g [a0] , g [a1] , . . . , g [an]) belongs to the finite set D0 × D1 × · · · × Dn (which
does not depend on g and can be explicitly found). Hence, we have finitely
many options for this (n + 1)-tuple.

However, given the (n + 1)-tuple (g [a0] , g [a1] , . . . , g [an]), we can uniquely
reconstruct the polynomial g. (Indeed, we know that g has degree ≤ n, so that

Corollary 4.3.27 (applied to g instead of f ) yields g =
n
∑

j=0
g
[
aj
]
·

∏
k ̸=j

(x − ak)

∏
k ̸=j

(
aj − ak

) .

This is an explicit formula for g in terms of the (n + 1)-tuple
(g [a0] , g [a1] , . . . , g [an])). Therefore, given the (n + 1)-tuple
(g [a0] , g [a1] , . . . , g [an]) for a divisor g of f , we can uniquely reconstruct g.)

Thus, we have finitely many options for g (since we have finitely many op-
tions for this (n + 1)-tuple). Usually, only few of these options will actually
produce a polynomial g ∈ Z [x] that divides f (indeed, many of them will
produce polynomials with non-integer coefficients; and even among the poly-
nomials that do have integer coefficients, many will fail to divide f ). However,
we can check which of these options do produce a polynomial g ∈ Z [x] that
divides f (our above solution to Problem 1 helps here). Thus, we end up with
a list of all divisors of f in Z [x]. This solves Problem 2.

Problem 3: Let f ∈ Q [x] be a nonzero polynomial. Find a factoriza-
tion of f into a product of irreducible polynomials.

Solution sketch. WLOG assume that f ∈ Z [x] (otherwise, multiply f with the
lowest common denominator of its coefficients). Furthermore, WLOG assume
that the gcd of the coefficients of f is 1 (otherwise, divide f by this gcd). We
find a list of all divisors of f in Z [x] (using the solution to Problem 2). If the
only such divisors are ±1 and ± f , then f is irreducible in Z [x] and thus also
irreducible in Q [x] (by Proposition 6.5.1), so we are done. Else, we find a divisor
g of f that is neither ±1 nor ± f , and thus we can decompose f as a product
gh of two nonconstant polynomials g, h ∈ Z [x]. In that case, we have reduced
the problem to the same problem with the (lower-degree) polynomials g and h.
Thus, recursively iterating the procedure, we end up with a factorization of f
into a product of irreducible polynomials.

Our solution to Problem 3 is a theoretical algorithm for factoring a polyno-
mial in Q [x] into irreducible polynomials. The algorithm is too computation-
ally intensive to be viable in practice, so computers use different methods (often
using Z/p as a stand-in for Z and using the Chinese Remainder Theorem to
“glue” the factorizations over different Z/p’s together).
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6.5.2. Factoring multivariate polynomials

Factoring multivariate polynomials over Q can be done similarly using multi-
variate Lagrange interpolation184. (The word “similarly” is doing some heavy
duty here.) Alternatively, it can be reduced to the univariate case by the fol-
lowing trick: If f ∈ Q [x, y] is a polynomial of degree < N (for some N ∈ N),
then the univariate polynomial f

(
x, xN) “carries all the information of f ” (in

the sense that no two different terms of f get merged when we substitute xN

for y). For example, if f = x2 + xy + y2 and N = 5, then

f
(

x, xN
)
= f

(
x, x5

)
= x2 + xx5 +

(
x5
)2

= x2 + x6 + x10.

Thus, in order to factor f , it suffices to factor f
(
x, xN) (a univariate polyno-

mial), and then try to lift the factorization back by “substituting y for xN”. This
trick is justified by the following exercise:

Exercise 6.5.1. Let R be a commutative ring. Let P be the polynomial ring R [x, y].
Fix N ∈ N. Let PN be the R-submodule

{ f ∈ P | f = 0 or deg f < N}

of P. (This is an R-submodule, since it is the span of the family
(
xiyj)

(i,j)∈N2; i+j<N .)

(a) Consider the R-algebra morphism

S : P → R [x] ,

f 7→ f
(

x, xN
)

.

(This is the map that substitutes xN for y in any polynomial f ∈ P. It is an
R-algebra morphism, as we know from Theorem 4.2.11.)

Prove that the restriction of S to PN is injective.

(b) Assume that R is a field. Let f ∈ PN be such that the polynomial S ( f ) ∈ R [x]
is irreducible. Show that f ∈ P = R [x, y] is irreducible.

[Remark: The converse of part (b) does not hold. For example, if R = Q and
N = 2, then the polynomial f := 1 + 2x + y ∈ P is irreducible, but the polynomial
S ( f ) = 1 + 2x + x2 = (1 + x)2 ∈ R [x] is not.]

This trick (of substituting xN for y) is easily generalized to polynomials in
more than two variables. For example, a polynomial in 4 variables x, y, z, w can
be transformed into a polynomial in 3 variables x, y, z by substituting zN for w.

184See Exercise 4.3.29 for Lagrange interpolation in the case of 2 variables. The case of n vari-
ables is conceptually similar, though there are many more subscripts to deal with.
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7. Modules over a PID (specifically, over Z)

Modules over a field are rather well-behaved: they are all free, i.e., they have
bases and thus are isomorphic to “direct sum powers” of the field.

Modules over an arbitrary ring can be rather wild.
Studying modules over a PID is a middle ground: they are not that wild, but

still sufficiently frequent in “real life”.
I will just give a taste of their theory. The only PID I will work with is Z, and

the only modules I will discuss are finite, but you will see some germs of more
general arguments in my brief treatment of this rather special case.

7.1. Classifying finite abelian groups

7.1.1. The classification theorem

Classifying finite groups is notoriously hard. Even the so-called “simple” groups
have a classification that spans a page (and takes a dozen of books to prove).
The finite abelian groups, on the other hand, do have a rather manageable
classification:

Theorem 7.1.1 (Classification of finite abelian groups). Let G be a finite
abelian group.

(a) Then, G is isomorphic to a direct product of finitely many finite cyclic
groups.

In other words, there exist positive integers n1, n2, . . . , nk such that

G ∼= (Z/n1)× (Z/n2)× · · · × (Z/nk) .

(b) Moreover, we can choose these n1, n2, . . . , nk in such a way that they are
> 1 and satisfy

n1 | n2 | · · · | nk.

(c) Finally, if we choose them in such a way, then they are unique.

I will outline a proof of parts (a) and (b) of this theorem using modules over
Z. (There are other proofs, e.g., using group theory.) A proof of Theorem 7.1.1
(c) is outlined in Exercise 7.1.3 below.

https://en.wikipedia.org/wiki/Classification_of_finite_simple_groups
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7.1.2. On modules and matrices

How do modules come into play here in the first place? Recall from Proposi-
tion 3.4.1 that abelian groups are Z-modules185; thus, classifying finite abelian
groups is the same as classifying finite Z-modules.

One other thing that will be crucial is good old matrices. Recall from linear
algebra that matrices over a field F correspond to linear maps between F-vector
spaces. Likewise, matrices over an arbitrary commutative ring R correspond to
linear maps between free R-modules. Specifically:

Convention 7.1.2. For any commutative ring R and any n ∈ N, we identify

the n-tuples (a1, a2, . . . , an) ∈ Rn with the column vectors


a1
a2
...

an

 ∈ Rn×1.

Thus, Rn becomes the R-module Rn×1 of column vectors of size n.

Proposition 7.1.3. Let R be a commutative ring.

(a) If A ∈ Rn×m is an n × m-matrix over R, then the map

Rm → Rn,
v 7→ Av (143)

is an R-linear map.

(b) Moreover, any R-linear map from Rm to Rn has the form (143) for a
unique n × m-matrix A ∈ Rn×m.

(c) Thus, there is a 1-to-1 correspondence between n × m-matrices over R
and linear maps from Rm to Rn.

Proof. As in linear algebra. (See [Grinbe19, Theorem 6.8.4] for part (a), and see
[Grinbe19, Proposition 6.8.5] for part (b).)

Definition 7.1.4. Let R be a commutative ring. Let A ∈ Rn×m be an n × m-
matrix over R.

(a) We set

Col A : = {Av | v ∈ Rm}
= (the image of the linear map (143))
= (the span of the columns of A) .

185and we know from Proposition 3.5.2 that the group morphisms between these abelian groups
are exactly the Z-module morphisms
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This is an R-submodule of Rn, and is called the column space of A.
(This is all exactly as in linear algebra.)

(b) The cokernel of A is defined to be the quotient R-module Rn/ Col A.

Definition 7.1.5. Let R be a commutative ring. An R-module is said to be
finitely presented if it is isomorphic to the cokernel of some matrix over R.

Remark 7.1.6. This latter definition might appear somewhat random. Here
is some intuition for those who know a bit about groups, specifically about
their presentations. An R-module is finitely presented if it can be “defined
by finitely many generators and finitely many relations”. For example, recall
that the R-module R4 can be viewed as the R-module consisting of all “for-
mal” R-linear combinations ax + by + cz + dw of four independent symbols
x, y, z, w. Likewise, the R-module

R4/ Col A for A =


3 2
4 7
−5 0
−6 −4


can be expressed as the R-module consisting of all “formal” R-linear combi-
nations ax + by + cz + dw but subject to the relations 3x + 4y = 5z + 6w and
2x + 7y = 4w. Here, the “generators” x, y, z, w are the cosets e1 +Col A, e2 +
Col A, e3 +Col A, e4 +Col A of the four standard basis elements e1, e2, e3, e4
of R4; they satisfy the relations 3x + 4y = 5z + 6w and 2x + 7y = 4w because
we have factored out the submodule

Col A = span




3
4
−5
−6

 ,


2
7
0
−4




= span (3e1 + 4e2 − 5e3 − 6e4, 2e1 + 7e2 − 4e4) .

7.1.3. Every finite Z-module is finitely presented

Our first step towards the classification theorem is the following:

Lemma 7.1.7. Let G be a finite Z-module. (“Finite” means that the set G is
finite.) Then, G is finitely presented.

Proof. The set G is finite and nonempty (since it contains 0); thus, its size |G| is
a positive integer. Let us denote this positive integer by n.

https://en.wikipedia.org/wiki/Presentation_of_a_group
https://en.wikipedia.org/wiki/Presentation_of_a_group
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The abelian group (G,+, 0) is finite; thus, Lagrange’s theorem yields that
|G| · a = 0 for each a ∈ G. In other words,

na = 0 for each a ∈ G (144)

(since n = |G|).
Let (m1, m2, . . . , mn) be a list of all the n elements of G (each listed exactly

once). Thus, G = {m1, m2, . . . , mn}.
Consider the free Z-module Zn with its standard basis (e1, e2, . . . , en). The

map

f : Zn → G,
(r1, r2, . . . , rn) 7→ r1m1 + r2m2 + · · ·+ rnmn

is a Z-module morphism (according to Theorem 3.7.9 (a)). Moreover, this map
f satisfies f (ei) = mi for each i ∈ {1, 2, . . . , n}, and thus its image contains all of
m1, m2, . . . , mn; thus, this map f is surjective (since G = {m1, m2, . . . , mn}). The
First isomorphism theorem for modules (Theorem 3.6.8 (f), applied to M = Zn

and N = G) yields

Zn/ Ker f ∼= f (Zn) = G (since f is surjective) . (145)

Now, we shall construct an n × k-matrix (for some k ∈ N) satisfying Ker f =
Col A.

Indeed, we consider the following two kinds of vectors in Zn:

• The n-stretched basis vectors shall mean the n vectors ne1, ne2, . . . , nen.
These n vectors belong to Ker f , since each i ∈ {1, 2, . . . , n} satisfies

f (nei) = nmi (by the definition of f )
= 0 (by (144), applied to a = mi)

and thus nei ∈ Ker f .

• The reduced kernel vectors shall mean the vectors

(r1, r2, . . . , rn) ∈ {0, 1, . . . , n − 1}n

that belong to Ker f . There are finitely many such vectors, since the set
{0, 1, . . . , n − 1}n is finite.

We have just shown that all n-stretched basis vectors and all reduced kernel
vectors belong to Ker f . Hence, any Z-linear combination of n-stretched basis
vectors and reduced kernel vectors belongs to Ker f (because Ker f is a Z-
submodule of Zn, and thus is closed under linear combination). Conversely,
using division with remainder, it is not hard to see that any vector in Ker f is a
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Z-linear combination of n-stretched basis vectors and reduced kernel vectors186.
Hence, Ker f is precisely the set of all Z-linear combinations of n-stretched
basis vectors and reduced kernel vectors. In other words, Ker f is the span of
the vectors we just mentioned.

Now, let A be the matrix whose columns are precisely the n-stretched basis
vectors and the reduced kernel vectors. (This is well-defined, since there are
only finitely many of these vectors.) Then, Col A is the span of the vectors
we just mentioned. But we have seen in the previous paragraph that Ker f
is the span of these vectors. Comparing these two results, we conclude that
Ker f = Col A. Hence, (145) rewrites as

Zn/ Col A ∼= G.

In other words, G is isomorphic to the cokernel of A. Hence, G is finitely
presented. This proves Lemma 7.1.7.

7.1.4. Understanding cokernels of diagonal matrices

Recall that we still want to prove Theorem 7.1.1 (a), which claims that every
finite Z-module G is isomorphic to a direct product of finitely many finite
cyclic groups. Lemma 7.1.7 shows that G is finitely presented. How does this
help us?

Well, G is finitely presented, i.e., isomorphic to the cokernel of a matrix. If
this matrix happens to be diagonal, then we are basically done! Indeed, for

186Proof. Let v = (v1, v2, . . . , vn) be a vector in Ker f . We must show that v is a Z-linear
combination of n-stretched basis vectors and reduced kernel vectors.

For each i ∈ {1, 2, . . . , n}, we write vi = qin + ri, where qi and ri are the quotient and the
remainder obtained when dividing vi by n. Then,

v = (v1, v2, . . . , vn) = (q1n + r1, q2n + r2, . . . , qnn + rn)

= q1ne1 + q2ne2 + · · ·+ qnnen + (r1, r2, . . . , rn) ,

so that
(r1, r2, . . . , rn) = v − (q1ne1 + q2ne2 + · · ·+ qnnen) ∈ Ker f

(since the vector v as well as all the n vectors ne1, ne2, . . . , nen belong to Ker f , and since Ker f
is a Z-submodule of Zn). Thus, (r1, r2, . . . , rn) is a reduced kernel vector (since the definition
of the ri as remainders ensures that ri ∈ {0, 1, . . . , n − 1} for all i, and thus (r1, r2, . . . , rn) ∈
{0, 1, . . . , n − 1}n). Thus, from

v = q1ne1 + q2ne2 + · · ·+ qnnen + (r1, r2, . . . , rn) ,

we conclude that v is a Z-linear combination of n-stretched basis vectors and reduced kernel
vectors. Qed.
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example, here is how the cokernel of a diagonal 3 × 3-matrix looks like:

Z3/ Col

 a 0 0
0 b 0
0 0 c


= Z3/ span

 a
0
0

 ,

 0
b
0

 ,

 0
0
c


= Z3/ span (ae1, be2, ce3)(

where e1, e2, e3 are the standard basis vectors of Z3
)

∼= (Z/a)× (Z/b)× (Z/c) .

(The “∼=” sign here is a nice exercise in understanding quotients of modules.
Explicitly, it stems from the map

Z3/ span (ae1, be2, ce3) → (Z/a)× (Z/b)× (Z/c) ,

(u, v, w) 7→ (u, v, w) ,

which is easily seen to be a Z-module isomorphism. The intuition is sim-
ply that when we take the quotient of the free Z-module Z3 by its submod-
ule span (ae1, be2, ce3), we end up identifying any two vectors (u, v, w) and
(u′, v′, w′) that satisfy u ≡ u′ mod a and v ≡ v′ mod b and w ≡ w′ mod c; but
this is tantamount to replacing the first entry of our vector by a residue class
modulo a, the second by a residue class modulo b, and the third by a residue
class modulo c.)

Usually, the matrix whose cokernel we need will be rectangular, not square;
however, even for rectangular matrices there is a notion of being diagonal:

Definition 7.1.8. Let R be a ring. A rectangular matrix A ∈ Rn×m is said to
be diagonal if its (i, j)-th entry is 0 whenever i ̸= j.

This is a looser notion of “diagonal” than the one you learnt in linear alge-
bra, since we are not requiring that n = m. For example, a diagonal 2 × 4-

matrix looks like
(

a 0 0 0
0 b 0 0

)
, whereas a diagonal 4 × 2-matrix looks like

a 0
0 b
0 0
0 0

.

Proposition 7.1.9. Let A ∈ Zn×m be diagonal. Then, its cokernel Zn/ Col A
is isomorphic to a direct product of finitely many cyclic groups (which, how-
ever, are not necessarily finite).
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Proof of Proposition 7.1.9 (sketched). We give a “proof by example”, or rather a
proof by two (hopefully representative) examples:

Z2/ Col
(

a 0 0 0
0 b 0 0

)
= Z2/ span (ae1, be2, 0, 0) = Z2/ span (ae1, be2)

∼= (Z/a)× (Z/b)

and

Z4/ Col


a 0
0 b
0 0
0 0

 = Z4/ span (ae1, be2) ∼= (Z/a)× (Z/b)× Z × Z.

7.1.5. The proof strategy

This suggests a somewhat daring strategy for proving parts (a) and (b) of The-
orem 7.1.1:

1. Let G be a finite abelian group. Thus, G is a finite Z-module.

2. By Lemma 7.1.7, the Z-module G is finitely presented. In other words,
there is a matrix A ∈ Zn×m (for some m ∈ N) such that G ∼= Zn/ Col A.

3. Tweaking this matrix A in a strategic way, we can make it diagonal with-
out changing Zn/ Col A too much (to be precise: Zn/ Col A stays isomor-
phic to G).

4. Then, we use Proposition 7.1.9 to argue that Zn/ Col A is isomorphic to
a direct product of finitely many cyclic groups (which are not necessarily
finite).

5. We notice that these cyclic groups must be finite, because their direct
product is finite (after all, this direct product is isomorphic to G, which is
finite).

6. Thus, G ∼= (Z/n1) × (Z/n2) × · · · × (Z/nk) for some positive integers
n1, n2, . . . , nk. (This proves Theorem 7.1.1 (a).)

7. We WLOG assume that n1, n2, . . . , nk are > 1, since any ni that equals
1 only contributes a trivial factor Z/1 to the direct product (Z/n1) ×
(Z/n2) × · · · × (Z/nk) (and of course such a factor can simply be re-
moved from the product).

8. Finally, by fudging the n1, n2, . . . , nk appropriately, we ensure that n1 | n2 |
· · · | nk. (This proves Theorem 7.1.1 (b).)
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Steps 1, 2, 4, 5, 6, 7 should be rather clear by now. But Steps 3 and 8 sound
rather ambitious. How can we turn an arbitrary matrix into a diagonal one?
How can we pull n1 | n2 | · · · | nk out of thin air?

7.1.6. Row and column operations and congruent matrices

To make Step 3 a reality, the tool of choice are row operations and column
operations. These are a mild generalization of the row and column operations
that you know from linear algebra. Here is one way to define them:

Definition 7.1.10.

(a) A square matrix A ∈ Zk×k is said to be invertible if it has an inverse
matrix in Zk×k (that is, an inverse matrix with integer entries). In other
words, it is said to be invertible if it is a unit of the matrix ring Zk×k.

For example,
(

1 1
1 −1

)
∈ Z2×2 is not invertible. It has an inverse in

Q2×2, but that doesn’t count!

(b) A row operation means an operation transforming a matrix A ∈ Zn×m

into BA, where B ∈ Zn×n is some invertible n × n-matrix.

(c) A column operation means an operation transforming a matrix A ∈
Zn×m into AC, where C ∈ Zm×m is some invertible m × m-matrix.

(d) Two matrices A, A′ ∈ Zn×m are said to be congruent if there exist
invertible matrices B ∈ Zn×n and C ∈ Zm×m such that A′ = BAC. In
other words, A, A′ are said to be congruent if A can be transformed
into A′ using row and column operations.

You know all these notions in the case of a field; we are just adapting them
to the case of Z.

Remark 7.1.11.

(a) Any row operation can be undone by another row operation.

(b) Adding a multiple of a row to another row is a row operation.

(c) Swapping two rows is a row operation.

(d) Scaling a row by −1 is a row operation. (But scaling a row by 2 is not!)

(e) The analogues of all these statements for columns instead of rows hold.
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Proof. Part (a) is obvious (since multiplying a matrix by an invertible matrix
B can be undone by multiplying it by B−1). The other parts are proved as in
linear algebra.

Proposition 7.1.12. If two matrices A, A′ ∈ Zn×m are congruent, then their
cokernels Zn/ Col A and Zn/ Col A′ are isomorphic.

Proof. Let A, A′ ∈ Zn×m be two matrices that are congruent. Thus, there exist
invertible matrices B ∈ Zn×n and C ∈ Zm×m such that A′ = BAC. Consider
these B and C.

I claim that the map

f : Zn/ Col A → Zn/ Col A′,

v 7→ Bv

is well-defined and is a Z-module isomorphism.
First of all, let me prove that f is well-defined. Indeed, let v, w ∈ Zn be such

that v = w in Zn/ Col A. We must prove that Bv = Bw in Zn/ Col A′.
From v = w in Zn/ Col A, we obtain v − w ∈ Col A. In other words, v − w =

Au for some u ∈ Zm (since Col A = {Au | u ∈ Zm}). Consider this u. We
have C−1 ∈ Zm×m (since C is invertible) and thus C−1u ∈ Zm. Now,

Bv − Bw = B (v − w)︸ ︷︷ ︸
=Au

= BA︸︷︷︸
=A′C−1

(since BAC=A′)

u = A′ C−1u︸ ︷︷ ︸
∈Zm

∈ Col A′

(since Col A′ = {A′z | z ∈ Zm}). In other words, Bv = Bw in Zn/ Col A′,
which is precisely what we wanted to show.

Thus, we have shown that f is well-defined.
It is straightforward to see that f is a Z-module morphism. Next, in order to

show that f is invertible, I will construct an inverse.
Indeed, I claim that the map

g : Zn/ Col A′ → Zn/ Col A,

v 7→ B−1v

is well-defined and is inverse to f . The “well-defined” part of this claim is left
to the reader (the proof is analogous to the proof that f is well-defined, since
A′ = BAC entails A = B−1A′C−1). The “inverse to f ” part is straightforward
(we have BB−1v = v and B−1Bv = v for any v).

Now, f is invertible (since g is inverse to f ), and thus is a Z-module isomor-
phism (since f is a Z-module morphism). Hence, the Z-modules Zn/ Col A
and Zn/ Col A′ are isomorphic. This proves Proposition 7.1.12.
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7.1.7. The Smith normal form algorithm

The following theorem will be crucial for Step 3:

Theorem 7.1.13 (Smith normal form, weak version). Each rectangular matrix
A ∈ Zn×m is congruent to a diagonal matrix (i.e., can be transformed into a
diagonal matrix via row and column operations).

This theorem, combined with Proposition 7.1.12, suffices to complete Step 3
of our plan. Thus, we need to prove Theorem 7.1.13. Here is a very rough
outline of the proof:

Proof of Theorem 7.1.13 (sketched). Again, we give a “proof by example”. We start

with the matrix

 4 6
3 2
2 2

 ∈ Z3×2, and we try to transform it into a diagonal

matrix by a sequence of row operations and column operations. Note that this
is in some sense a subtler version of Gaussian elimination (subtler because we
are not allowed to scale rows or columns by any numbers other than −1, and
because we can only add Z-multiples of rows/columns to other row/columns,

rather than Q-multiples). We shall use the “ R−→” arrow for “row operation”
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and the “ C−→” arrow for “column operation”. 4 6
3 2
2 2

 C−→

 4 2
3 −1
2 0

 (here we subtracted column 1 from column 2)

C−→

 0 2
5 −1
2 0

 (here we subtracted 2 · column 2 from column 1)

C−→

 2 0
−1 5
0 2

 (here we swapped columns 1 and 2)

R−→

 2 0
1 −5
0 2

 (here we scaled row 2 by − 1)

R−→

 0 10
1 −5
0 2

 (here we subtracted 2 · row 2 from row 1)

R−→

 1 −5
0 10
0 2

 (here we swapped rows 1 and 2)

C−→

 1 0
0 10
0 2

 (here we added 5 · column 1 to column 2)

R−→

 1 0
0 0
0 2

 (here we subtracted 5 · row 3 from row 2)

R−→

 1 0
0 2
0 0

 (here we swapped rows 2 and 3) ,

and this is a diagonal matrix.
The general procedure is as follows (you can check that this is precisely what

we have done in the example above):

• We first “clear out” the 1st row; this means turning it into (g, 0, 0, . . . , 0),
where g is the gcd of its entries. This is achieved as follows: We first en-
sure that all entries in the 1st row are nonnegative by appropriate column
operations (namely, whenever an entry is negative, we scale the respec-
tive column by −1). Then, as long as the 1st row contains at least two
distinct nonzero entries, we subtract the column that contains the smaller
one (or, better, an appropriate multiple of this column) from the column
that contains the larger one. Note that this is essentially the Euclidean
algorithm (or, to be more precise, a variant thereof for multiple integers).
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Finally, when there is only one nonzero entry left in the 1st row, we move
this entry into the position (1, 1) by another column operation (swapping
its column with the first column).

• Then, we use the same method (but using row operations instead of col-
umn operations) to clear out the 1st column. Note that this might mess up
the 1st row again (i.e., some entries of the 1st row that were previously 0
might become nonzero again); in this case, we again clear out the 1st row,
then again clear out the 1st column, and so on, until neither the 1st row
nor the 1st column contain any nonzero entries except for the (1, 1)-entry.

I claim that this loop cannot go on forever, at least if we do things right.
To see why, you should note that each of the “clean out the 1st row” and
“clean out the 1st column” subroutines causes the (1, 1)-entry to be re-
placed by a gcd of several entries, one of which is the (1, 1)-entry. Clearly,
such a replacement cannot make the (1, 1)-entry larger (at least in absolute
value) [EDIT: This is not completely correct; the (1, 1)-entry will become
larger if it was 0. But this case is special and can be handled separately.].
Moreover, it will make it strictly smaller unless the (1, 1)-entry was the
gcd of all the entries in its row/column to begin with; but in this latter
case, we can “break out of the loop” by cleaning out the 1st row without
messing up the 1st column or vice versa (just make sure to subtract appro-
priate multiples of the 1st column/row from all the other columns/rows,
without ever modifying the 1st column/row).

• Once this is done, the 1st row and the 1st column only contain a single
nonzero entry (if any!), which is the (1, 1)-entry. Thus, we forget about the
1st row and the 1st column, and play the same game with the rest of the
matrix. (So we are working recursively. Note that whatever operations
we do with the rest of the matrix, the 1st row and the 1st column will
be unaffected, because they are filled with 0s everywhere apart from the
(1, 1)-entry. Thus, we won’t ever have to clean them up again.)

• At the end of the procedure, the matrix will be diagonal.

Thus, after a sequence of row operations and column operations, our matrix
has become diagonal. This proves Theorem 7.1.13.

This completes Step 3 of our plan.

7.1.8. A few words on arbitrary rings

Before I move on to Step 8, let me say a few words about generalizing Theo-
rem 7.1.13 to other rings. In our proof of Theorem 7.1.13, we seemingly used
the fact that the entries of our matrix are integers (since we argued that a non-
negative integer cannot keep decreasing indefinitely). However, the proof is
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easily adapted to any Euclidean domain instead of Z (we just need to argue
that the Euclidean norm of the (1, 1)-th entry decreases, instead of that entry
itself). In truth, Theorem 7.1.13 holds even more generally, with Z replaced
by a PID. This level of generality is a tad too advanced for us, but proofs of
this version of Theorem 7.1.13 can be found in various algebra texts (e.g., in
[ChaLoi21, Theorem (5.3.10)]). Note that the diagonal matrix in Theorem 7.1.13
is not unique.

Remark 7.1.14. When the base ring is a field, the Smith normal form (this is
how the diagonal matrix in Theorem 7.1.13 is called) becomes the rank nor-
mal form (see, e.g., https://math.stackexchange.com/questions/371497/
).

7.1.9. Solving systems of linear equations over Z

Remark 7.1.15. Incidentally, Theorem 7.1.13 also helps solve systems of linear
equations in integer unknowns (as in Exercise 1.5.3). To wit, if two matrices
A, A′ ∈ Zn×m are congruent, and if B ∈ Zn×n and C ∈ Zm×m are two
invertible matrices satisfying A′ = BAC, and if v ∈ Zn is any vector, then
there is a bijection

{w ∈ Zm | Aw = v} →
{

y ∈ Zm | A′y = Bv
}

,

w 7→ C−1w

(check this!). Thus, solving the equation Aw = v for an unknown vector
w ∈ Zm is tantamount to solving the equation A′y = Bv for an unknown
vector y ∈ Zm. But Theorem 7.1.13 tells us that we can choose A′ to be
diagonal, and then the equation A′y = Bv is rather easy to solve. Thus, we
obtain an algorithm for solving a vector equation of the form Aw = v for an
unknown vector w ∈ Zm; that is, we obtain an algorithm for solving systems
of linear equations in integer unknowns.

7.1.10. Step 8: streamlining direct products of Z/n’s

Let us return to our multi-step plan for proving Theorem 7.1.1. Step 8 is fun.
Let me first discuss it in the case when k = 2. In this case, I need to explain
how a direct product of the form (Z/n1)× (Z/n2) with two positive integers
n1 and n2 can be rewritten (up to isomorphism) as a direct product of the form
(Z/n′

1)× (Z/n′
2) with n′

1 | n′
2. For simplicity, let me rename n1 and n2 as n and

m; then I claim that n′
1 and n′

2 can be chosen to be gcd (n, m) and lcm (n, m),
respectively (these clearly satisfy n′

1 | n′
2, since gcd (n, m) | n | lcm (n, m)). In

order to prove this claim, I need to show the following lemma:

https://math.stackexchange.com/questions/371497/
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Lemma 7.1.16. Let n, m ∈ Z. Let g = gcd (n, m) and ℓ = lcm (n, m).

(a) Then, the matrices(
n 0
0 m

)
and

(
g 0
0 ℓ

)
in Z2×2 are congruent.

(b) As a consequence,

(Z/n)× (Z/m) ∼= (Z/g)× (Z/ℓ)

as groups.

Proof. This is so enjoyable that you should probably try to prove this on your
own! Read on at your own spoiler risk.

(a) We WLOG assume that g ̸= 0 (since otherwise, we have n = m = 0, and
thus the two matrices in question both equal the zero matrix).

Bezout’s theorem shows that there exist integers x, y such that g = xn + ym
(since g = gcd (n, m)). Consider these x, y. Moreover, there exists some u ∈ Z

such that n = gu (since g | n). Likewise, there exists some v ∈ Z such that
m = gv (since g | m). Consider these u and v.

Furthermore, it is known that gcd (n, m) · lcm (n, m) = |nm|. In other words,
gℓ = |nm|. Thus, gℓ = ± n︸︷︷︸

=gu

m = ±gum. Cancelling g from this equality, we

find ℓ = ±um (since g ̸= 0). Thus, um = ±ℓ, so that −um = − (±ℓ) = ∓ℓ.

Now, we transform the matrix
(

n 0
0 m

)
as follows (using the “ R−→” arrow
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for “row operation” and the “ C−→” arrow for “column operation”):(
n 0
0 m

)
C−→
(

n xn
0 m

)
(here we added x · column 1 to column 2)

R−→
(

n xn + ym
0 m

)
(here we added y · row 2 to row 1)

=

(
gu g
0 m

)
(since n = gu and xn + ym = g)

C−→
(

0 g
−um m

)
(here we subtracted u · column 2 from column 1)

=

(
0 g

−um gv

)
(since m = gv)

R−→
(

0 g
−um 0

)
(here we subtracted v · row 1 from row 2)

C−→
(

g 0
0 −um

)
(here, we swapped column 1 with column 2)

=

(
g 0
0 ∓ℓ

)
(since − um = ∓ℓ) .

If the ∓ℓ here is a +ℓ, then we have thus obtained the matrix
(

g 0
0 ℓ

)
, so

that we conclude that the two matrices
(

n 0
0 m

)
and

(
g 0
0 ℓ

)
are congruent,

as we wanted to show. If it is a −ℓ instead, then we need one more column
operation (viz., scaling the second column by −1) in order to get to the same
result and therefore to the same conclusion. Thus, Lemma 7.1.16 (a) is proved.

(b) Lemma 7.1.16 (a) yields that the matrices(
n 0
0 m

)
and

(
g 0
0 ℓ

)
in Z2×2 are congruent. Hence, Proposition 7.1.12 yields that their cokernels

Z2/ Col
(

n 0
0 m

)
and Z2/ Col

(
g 0
0 ℓ

)
are isomorphic. In view of

Z2/ Col
(

n 0
0 m

)
= Z2/ span (ne1, me2) ∼= (Z/n)× (Z/m)

and

Z2/ Col
(

g 0
0 ℓ

)
= Z2/ span (ge1, ℓe2) ∼= (Z/g)× (Z/ℓ) ,

this means that (Z/n) × (Z/m) and (Z/g) × (Z/ℓ) are isomorphic (as Z-
modules, and thus as groups). This proves Lemma 7.1.16 (b).
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Lemma 7.1.16 (b) is sufficient to complete Step 8 in the case when k = 2 (that
is, when G is a direct product of two cyclic groups). In the general case, we
can try to use Lemma 7.1.16 (b) multiple times; in fact, applying Lemma 7.1.16
(b) to any pair of consecutive factors Z/ni and Z/ni+1 in the direct product
(Z/n1) × (Z/n2) × · · · × (Z/nk) will replace these two factors by Z/n′

i and
Z/n′

i+1 with n′
i | n′

i+1. For example, if k = 3, then we can thus construct the
following chain of isomorphisms:

(Z/n1)× (Z/n2)︸ ︷︷ ︸
∼=(Z/n′

1)×(Z/n′
2)

for n′
1=gcd(n1,n2) and n′

2=lcm(n1,n2)
(by Lemma 7.1.16 (b))

× (Z/n3)

∼=
(
Z/n′

1
)
×

(
Z/n′

2
)
× (Z/n3)︸ ︷︷ ︸

∼=(Z/n′′
2 )×(Z/n′′

3 )
for n′′

2=gcd(n′
2,n3) and n′′

3=lcm(n′
2,n3)

(by Lemma 7.1.16 (b))

∼=
(
Z/n′

1
)
×
(
Z/n′′

2
)︸ ︷︷ ︸

∼=(Z/n′′′
1 )×(Z/n′′′

2 )
for n′′′

1 =gcd(n′
1,n′′

2 ) and n′′′
2 =lcm(n′

1,n′′
2 )

(by Lemma 7.1.16 (b))

×
(
Z/n′′

3
)

∼=
(
Z/n′′′

1
)
×
(
Z/n′′′

2
)
×
(
Z/n′′

3
)

.

It takes some thought to confirm that the resulting numbers n′′′
1 , n′′′

2 , n′′
3 really

do satisfy n′′′
1 | n′′′

2 | n′′
3 . (Indeed, n′′′

1 | n′′′
2 follows from the definitions of n′′′

1
and n′′′

2 as gcd and lcm of one and the same pair of integers. As for proving
n′′′

2 | n′′
3 , you have to first argue that combining

n′
1 = gcd (n1, n2) | lcm (n1, n2) = n′

2 | lcm
(
n′

2, n3
)
= n′′

3 and

n′′
2 = gcd

(
n′

2, n3
)
| lcm

(
n′

2, n3
)
= n′′

3

leads to lcm (n′
1, n′′

2 ) | n′′
3 , so that n′′′

2 = lcm (n′
1, n′′

2 ) | n′′
3 .) It might not be

obvious, but this generalizes to arbitrary k:

• First apply Lemma 7.1.16 (b) to the first two factors of the direct product,
then to the second and third factors, then to the third and fourth factors,
and so on, until you have reached the right end of the direct product.
After this, the numbers n1, n2, . . . , nk−1 will all divide nk.

• Then do the same, but stop just before the last factor (i.e., leave the last
factor untouched). After this, the numbers n1, n2, . . . , nk−2 will all divide
nk−1, but the numbers n1, n2, . . . , nk−1 will still all divide nk.

• Then do the same, but stop just before the second-to-last factor (i.e., leave
the last two factors untouched). After this, the numbers n1, n2, . . . , nk−3
will all divide nk−2, but the previously mentioned divisibilities will re-
main intact.
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• And so on, until at the end there are no more factors left to apply Lemma
7.1.16 (b) to. At that point, you will have n1 | n2 | · · · | nk.

(Fun fact: There are many other ways to achieve n1 | n2 | · · · | nk by a sequence of
moves of the form “replace ni and ni+1 by gcd (ni, ni+1) and lcm (ni, ni+1)”. Indeed,
any sufficiently long sequence of such moves will eventually come to a halt – at least
if we make sure to only apply such a move to pairs (ni, ni+1) that don’t already satisfy
ni | ni+1 – and the resulting numbers will satisfy n1 | n2 | · · · | nk. Moreover, the
resulting numbers will not depend on the sequence of moves. Proving this all is Prob-
lem A3 on the Putnam contest 2008: problem statements and solutions. Our specific
choreographed sequence above was merely the easiest one to analyze.)

Thus we have outlined a proof of parts (a) and (b) of Theorem 7.1.13.

Did Lemma 7.1.16 (b) remind you of the Chinese Remainder Theorem? There is
indeed a connection, although it is not as obvious as one might expect:

Exercise 7.1.1. Let n, m ∈ Z. Let g = gcd (n, m) and ℓ = lcm (n, m).
Lemma 7.1.16 (b) shows that (Z/n)× (Z/m) ∼= (Z/g)× (Z/ℓ) as groups.

(a) Prove that (Z/n)× (Z/m) ∼= (Z/g)× (Z/ℓ) as rings as well.

(b) Use this to prove Theorem 2.12.6 again.

[Hint: Part (a) is easiest to solve using the prime factorizations of n and m. In
particular, this yields a new proof of Lemma 7.1.16 (b).]

Note that Exercise 7.1.1 cannot be generalized to the extent Theorem 2.12.6 was
generalized to Theorem 2.12.4. In general, if I and J are two ideals of a commutative
ring R, then the rings (R/I) × (R/J) and (R/ (I + J)) × (R/ (I ∩ J)) are usually not
isomorphic. However, Exercise 7.1.1 (a) can be generalized slightly by replacing Z by
an arbitrary PID.

7.1.11. Uniqueness of the SNF

The next two exercises contain a do-it-yourself proof of Theorem 7.1.13 (c) (see
also [ChaLoi21, last claim of Corollary (5.4.4)] for a more general result).

Exercise 7.1.2. Let G be a Z-module. Let n1, n2, . . . , nk be k positive integers such
that G ∼= (Z/n1)× (Z/n2)× · · · × (Z/nk) and n1 | n2 | · · · | nk. Let p be a prime
number, and let i ∈ N. Prove that∣∣∣piG/pi+1G

∣∣∣ = p(the number of all j∈{1,2,...,k} such that pi+1|nj)

(where we are regarding G as a Z-module, so that piG =
{

pig | g ∈ G
}

and
pi+1G =

{
pi+1g | g ∈ G

}
).

https://kskedlaya.org/putnam-archive/2008.pdf
https://kskedlaya.org/putnam-archive/2008s.pdf
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Exercise 7.1.3. Prove Theorem 7.1.13 (c).

[Hint: Assume that G ∼= (Z/n1)× (Z/n2)× · · · × (Z/nk) and n1 | n2 | · · · | nk
and n1, n2, . . . , nk > 1. Prove that knowing the numbers(

the number of all j ∈ {1, 2, . . . , k} such that pi+1 | nj

)
for all primes p and all i ∈ N uniquely characterizes n1, n2, . . . , nk. Now use Exercise
7.1.2.]

7.2. Application: Primitive roots

Theorem 7.1.1 has a curious (and actually rather useful) application to finite
fields.

We begin with a fun observation:
The sequence of residue classes 1, 2, . . . , 6 in Z/7 is an arithmetic sequence

(in the sense that there exists some “difference” d ∈ Z/7 such that each entry
of this sequence equals the preceding entry plus d).

I claim that you can permute this sequence so that it becomes a geometric
sequence (in the sense that there exists some “quotient” q ∈ Z/7 such that
each entry of the permuted sequence equals the preceding entry times q) !

Namely, 1, 3, 2, 6, 4, 5 is a geometric sequence. Its “quotient” is 3, meaning
that each entry equals the preceding entry times 3:

3 = 1 · 3, 2 = 3 · 3, 6 = 2 · 3, . . . .

This can be generalized: For any prime p, we can arrange the residue classes
1, 2, . . . , p − 1 in a geometric sequence. Here is another way to put it:

Theorem 7.2.1 (Gauss). Let p be a prime. Then, there exists some g ∈ (Z/p)×

such that its p − 1 powers g0, g1, . . . , gp−2 are distinct and satisfy

(Z/p)× =
{

g0, g1, . . . , gp−2
}

.

Such a g is called a primitive root modulo p.

More generally:

Theorem 7.2.2. Let F be any finite field. Then, the group F× = F \ {0} is
cyclic.

Even more generally:
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Theorem 7.2.3. Let F be any field. Let G be a finite subgroup of its group
F× = F \ {0} of units. Then, G is cyclic.

Proof of Theorem 7.2.3. The group G is finite and abelian. Thus, by Theorem
7.1.1 (parts (a) and (b)), we have

G ∼= (Z/n1)× (Z/n2)× · · · × (Z/nk) (146)

for some positive integers n1, n2, . . . , nk > 1 satisfying n1 | n2 | · · · | nk. Con-
sider these n1, n2, . . . , nk.

Our goal is to show that k ≤ 1 (because then, (146) will show that G is cyclic).
In order to prove this, we assume the contrary. Thus, k > 1, so k ≥ 2.

Now, G is not just a random abelian group. It has a peculiar property:
Namely, for any positive integer d, the group G has no more than d elements
g satisfying gd = 1. (Indeed, all such elements g must be roots of the degree-d
polynomial xd − 1 ∈ F [x], but we know that a degree-d polynomial over a field
has no more than d roots.)

Applying this to d = n1, we conclude that G has no more than n1 elements g
satisfying gn1 = 1.

However, the Z/n1 factor on the right hand side of (146) contributes n1 such
elements (indeed, each element g of Z/n1 becomes 0 when multiplied by n1,
and thus – if we rewrite the group multiplicatively – satisfies gn1 = 1), and
the Z/n2 factor also contributes n1 such elements (since n1 | n2, so that every
of the n1 multiples of n2/n1 in Z/n2 is such an element). These two factors
overlap only in the identity element. Thus, we have found at least 2n1 − 1
many elements g ∈ G satisfying gn1 = 1. But there are no more than n1 such
elements, as we have seen above. Thus, 2n1 − 1 ≤ n1, or, equivalently, n1 ≤ 1.
This contradicts n1 > 1. This contradiction shows that our assumption was
wrong, and this completes the proof of Theorem 7.2.3.

Proof of Theorem 7.2.2. Apply Theorem 7.2.3 to G = F×.

Proof of Theorem 7.2.1. Apply Theorem 7.2.2 to F = Z/p. This yields that the
group (Z/p)× is cyclic. In other words, there exists some g ∈ (Z/p)× such
that its powers g0, g1, . . . , g|(Z/p)×|−1 are distinct and satisfy

(Z/p)× =
{

g0, g1, . . . , g|(Z/p)×|−1
}

.

In view of |(Z/p)|× = p − 1, this rewrites as follows: There exists some g ∈
(Z/p)× such that its p − 1 powers g0, g1, . . . , gp−2 are distinct and satisfy

(Z/p)× =
{

g0, g1, . . . , gp−2
}

.

This proves Theorem 7.2.1.
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See Keith Conrad’s note https://kconrad.math.uconn.edu/blurbs/grouptheory/
cyclicmodp.pdf for various other proofs of Theorem 7.2.1.

Exercise 7.2.1. Let p be a prime. Prove that the group (Z/ (2p))× is cyclic (even
though Z/ (2p) is not a field).

[Hint: There is a ring morphism π : Z/ (2p) → Z/p that sends each a to a. Like
any ring morphism, this morphism sends units to units, and thus its restriction to
(Z/ (2p))× is a group morphism (Z/ (2p))× → (Z/p)×. Prove that the latter group
morphism is an isomorphism whenever p > 2. Deal with the p = 2 case by hand.
Alternatively, use the Chinese Remainder Theorem.]

Exercise 7.2.2.

(a) Prove that the group (Z/8)× is not cyclic.

(b) More generally: Let k be a positive integer. Prove that the group
(
Z/2k)× is

cyclic if and only if k ≤ 2.

[Hint: For part (b), if k > 3, find at least two distinct elements of
(
Z/2k)× that

have order 2.]

Exercise 7.2.3. Let p ̸= 2 be a prime. Prove that the group
(
Z/p2)× is cyclic (even

though Z/p2 is not a field).

[Hint: This group has size p2 − p = p (p − 1). Thus, it suffices to find an element
of this group whose order is p (p − 1).

Pick a ∈ Z such that a is a generator of the cyclic group (Z/p)×. Show first
that (a + p)p−1 ≡ ap−1 − pap−2 mod p2. Conclude that at least one of the integers
ap−1 and (a + p)p−1 is not congruent to 1 modulo p2. In other words, there exists
a b ∈ {a, a + p} such that bp−1 ̸≡ 1 mod p2. Now, show that the corresponding
element b of Z/p2 belongs to the group

(
Z/p2)× and has order p (p − 1) in this

group.]

Exercise 7.2.4. Let p ̸= 2 be a prime. Let k be a positive integer. Prove that the
group

(
Z/pk)× is cyclic (even though Z/pk is not a field).

[Hint: Induct on k. Exercise 7.2.3 yields that there exists an a ∈ Z such that a
is a generator of the cyclic group

(
Z/p2)×. Consider such an a. Show that ap−1 ≡

1 mod p but ap−1 ̸≡ 1 mod p2, and thus ap−1 = 1+ pu for some integer u not divisible
by p. Use this to show that apk−2(p−1) ̸≡ 1 mod pk. Also show that apk−1u ̸≡ 1 mod pk

for any proper divisor u of p − 1. Use these non-congruences to conclude that
a ∈ Z/pk has order pk−1 (p − 1) in the group

(
Z/pk)×, and therefore the latter

group is cyclic.]

With all these exercises, we can finally characterize for which numbers n the
group (Z/n)× is cyclic:

https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf
https://kconrad.math.uconn.edu/blurbs/grouptheory/cyclicmodp.pdf
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Exercise 7.2.5. Let n be a positive integer. Prove that the group (Z/n)× is cyclic if
and only if

n ∈ {1, 2, 4} ∪
{

pk | p ̸= 2 is a prime, and k is a positive integer
}

∪
{

2pk | p ̸= 2 is a prime, and k is a positive integer
}

.

[Hint: For the “if” direction: What is the connection between the groups (Z/m)×

an (Z/ (2m))× when m is odd?
For the “only if” direction: Argue that (Z/n)× has more than 2 elements of order

2 if n does not belong to the given set.]
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