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Math 530 Spring 2022, Lecture 7: multigraphs

website: https://www.cip.ifi.lmu.de/~grinberg/t/22s

1. Multigraphs

1.1. Definitions

So far, we have been working with simple graphs. We shall now introduce
several other kinds of graphs, starting with the multigraphs.

Definition 1.1.1. Let V be a set. Then, P1,2 (V) shall mean the set of all
1-element or 2-element subsets of V. In other words,

P1,2 (V) := {S ⊆ V | |S| ∈ {1, 2}}
= {{u, v} | u, v ∈ V not necessarily distinct} .

For instance,

P1,2 ({1, 2, 3}) = {{1} , {2} , {3} , {1, 2} , {1, 3} , {2, 3}} .

We can now define multigraphs:

Definition 1.1.2. A multigraph is a triple (V, E, φ), where V and E are two
finite sets, and φ : E → P1,2 (V) is a map.

Example 1.1.3. Here is a multigraph:

1

2

3

4 5

λ

α
β

γ

δ

ε

κ

Formally speaking, this multigraph is the triple (V, E, φ), where

V = {1, 2, 3, 4, 5} , E = {α, β, γ, δ, ε, κ, λ} ,

and where φ : E → P1,2 (V) is the map that sends α, β, γ, δ, ε, κ, λ to
{1, 2} , {2, 3} , {2, 3} , {4, 5} , {4, 5} , {4, 5} , {1}, respectively. (Of course, you
can write {1} as {1, 1}.)

https://www.cip.ifi.lmu.de/~grinberg/t/22s
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This suggests the following terminology (most of which is a calque of our
previously defined terminology for simple graphs):

Definition 1.1.4. Let G = (V, E, φ) be a multigraph. Then:

(a) The elements of V are called the vertices of G.

The set V is called the vertex set of G, and is denoted V (G).

(b) The elements of E are called the edges of G.

The set E is called the edge set of G, and is denoted E (G).

(c) If e is an edge of G, then the elements of φ (e) are called the endpoints
of e.

(d) We say that an edge e contains a vertex v if v ∈ φ (e) (in other words, if
v is an endpoint of e).

(e) Two vertices u and v are said to be adjacent if there exists an edge e ∈ E
whose endpoints are u and v.

(f) Two edges e and f are said to be parallel if φ (e) = φ ( f ). (In the above
example, any two of the edges δ, ε, κ are parallel.)

(g) We say that G has no parallel edges if G has no two distinct edges that
are parallel.

(h) An edge e is called a loop (or self-loop) if φ (e) is a 1-element set (i.e.,
if e has only one endpoint). (In Example 1.1.3, the edge λ is a loop.)

(i) We say that G is loopless if G has no loops (among its edges).

(j) The degree deg v (also written degG v) of a vertex v of G is defined to
be the number of edges that contain v, where loops are counted twice.
In other words,

deg v =degG v
:= |{e ∈ E | v ∈ φ (e)}|︸ ︷︷ ︸

this counts all edges
that contain v

+ |{e ∈ E | φ (e) = {v}}|︸ ︷︷ ︸
this counts all loops

that contain v once again

.

(Note that, unlike in the case of a simple graph, deg v is not the number
of neighbors of v, unless it happens that v is not contained in any loops
or parallel edges.)

(For example, in Example 1.1.3, we have deg 1 = 3 and deg 2 = 3 and
deg 3 = 2 and deg 4 = 3 and deg 5 = 3.)
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(k) A walk in G means a list of the form

(v0, e1, v1, e2, v2, . . . , ek, vk) (with k ≥ 0) ,

where v0, v1, . . . , vk are vertices of G, where e1, e2, . . . , ek are edges of G,
and where each i ∈ {1, 2, . . . , k} satisfies

φ (ei) = {vi−1, vi}

(that is, the endpoints of each edge ei are vi−1 and vi). Note that we
have to record both the vertices and the edges in our walk, since we
want the walk to “know” which edges it traverses. (For instance, in
Example 1.1.3, the two walks (1, α, 2, β, 3) and (1, α, 2, γ, 3) are distinct.)

The vertices of a walk (v0, e1, v1, e2, v2, . . . , ek, vk) are v0, v1, . . . , vk; the
edges of this walk are e1, e2, . . . , ek. This walk is said to start at v0 and
end at vk; it is also said to be a walk from v0 to vk. Its starting point is
v0, and its ending point is vk. Its length is k.

(l) A path means a walk whose vertices are distinct.

(m) The notions of “path-connected” and “connected” and “component”
are defined exactly as for simple graphs. The symbol ≃G still means
“path-connected”.

(n) A closed walk (or circuit) means a walk (v0, e1, v1, e2, v2, . . . , ek, vk) with
vk = v0.

(o) A cycle means a closed walk (v0, e1, v1, e2, v2, . . . , ek, vk) such that

• the vertices v0, v1, . . . , vk−1 are distinct;

• the edges e1, e2, . . . , ek are distinct;

• we have k ≥ 1.

(Note that we are not requiring k ≥ 3 any more, as we did for sim-
ple graphs. Thus, in Example 1.1.3, both (2, β, 3, γ, 2) and (1, λ, 1) are
cycles, but (2, β, 3, β, 2) is not. The purpose of the “k ≥ 3” require-
ment for cycles in simple graphs was to disallow closed walks such as
(2, β, 3, β, 2) from being cycles; but they are now excluded by the “the
edges e1, e2, . . . , ek are distinct” condition.)

(p) Hamiltonian paths and cycles are defined as for simple graphs.

(q) We draw a multigraph by drawing each vertex as a point, each edge as
a curve, and labeling both the vertices and the edges (or not, if we don’t
care about what they are). An example of such a drawing appeared in
Example 1.1.3.



Lecture 7, version April 16, 2025 page 4

So there are two differences between simple graphs and multigraphs:

1. A multigraph can have loops, whereas a simple graph cannot.

2. In a simple graph, an edge e is a set of two vertices, whereas in a multi-
graph, an edge e has a set of two vertices (possibly two equal ones, if e is a
loop) assigned to it by the map φ. This not only allows for parallel edges,
but also lets us store some information in the “identities” of the edges.

Nevertheless, the two notions have much in common; thus, they are both
called “graphs”:

Convention 1.1.5. The word “graph” means either “simple graph” or “multi-
graph”. The precise meaning should usually be understood from the context.
(I will try not to use it when it could cause confusion.)

Fortunately, simple graphs and multigraphs have many properties in com-
mon, and often it is not hard to derive a result about multigraphs from the
analogous result about simple graphs or vice versa. We will soon explore how
some of the properties we have seen in the previous lectures can be adapted
to multigraphs. First, however, let us explain how to convert multigraphs into
simple graphs and vice versa.

1.2. Conversions

We can turn each multigraph into a simple graph, but at a cost of losing some
information:

Definition 1.2.1. Let G = (V, E, φ) be a multigraph. Then, the underlying
simple graph Gsimp of G means the simple graph

(V, {φ (e) | e ∈ E is not a loop}) .

In other words, it is the simple graph with vertex set V in which two distinct
vertices u and v are adjacent if and only if u and v are adjacent in G. Thus,
Gsimp is obtained from G by removing loops and “collapsing” parallel edges
to a single edge.

For example, the underlying simple graph of the multigraph G in Example
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1.1.3 would be

1

2

3

4 5 .

Conversely, each simple graph can be viewed as a multigraph:

Definition 1.2.2. Let G = (V, E) be a simple graph. Then, the corresponding
multigraph Gmult is defined to be the multigraph

(V, E, ι) ,

where ι : E → P1,2 (V) is the map sending each e ∈ E to e itself.

Example 1.2.3. If

1

2

3 4G = ,

then

1

2

3 4Gmult =

{1, 2} {2, 3}

{1, 3}

{3, 4}

.

As we said, the “underlying simple graph” construction G 7→ Gsimp destroys
information, so it is irreversible. This being said, the two constructions G 7→
Gsimp and G 7→ Gmult come fairly close to undoing one another:1

1In the following proposition, we will use the notion of an “isomorphism of multigraphs”. A
rigorous definition of this notion is given in Definition 1.3.8 further below (but it is more
or less what you would expect: it is a way to relabel the vertices and the edges of one
multigraph to obtain those of another).
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Proposition 1.2.4.

(a) If G is a simple graph, then
(
Gmult)simp

= G.

(b) If G is a loopless multigraph that has no parallel edges, then(
Gsimp)mult ∼= G. (This is just an isomorphism, not an equality, since the

“identities” of the edges of G have been forgotten in Gsimp and cannot
be recovered.)

(c) If G is a multigraph that has loops or (distinct) parallel edges, then
the multigraph

(
Gsimp)mult has fewer edges than G and thus is not

isomorphic to G.

Proof. A matter of understanding the definitions.

We will often identify a simple graph G with the corresponding multigraph
Gmult. This may be dangerous, because we have defined notions such as ad-
jacency, walks, paths, cycles, etc. both for simple graphs and for multigraphs;
thus, when we identify a simple graph G with the multigraph Gmult, we are
potentially inviting ambiguity (for example, does “cycle of G” mean a cycle of
the simple graph G or of the multigraph Gmult ?). Fortunately, this ambiguity is
harmless, because whenever G is a simple graph, any of the notions we defined
for G is equivalent to the corresponding notion for the multigraph Gmult. For
example, for the notions of a cycle, we have the following:

Proposition 1.2.5. Let G be a simple graph. Then:

(a) If (v0, e1, v1, e2, v2, . . . , ek, vk) is a cycle of the multigraph Gmult, then
(v0, v1, . . . , vk) is a cycle of the simple graph G.

(b) Conversely, if (v0, v1, . . . , vk) is a cycle of the simple graph G, then
(v0, {v0, v1} , v1, {v1, v2} , v2, . . . , vk−1, {vk−1, vk} , vk) is a cycle of the
multigraph Gmult.

Proof. This is not completely obvious, since our definitions of a cycle of a simple
graph and of a cycle of a multigraph were somewhat different. The proof boils
down to checking the following two statements:

1. If (v0, v1, . . . , vk) is a cycle of the simple graph G, then its edges
{v0, v1} , {v1, v2} , . . . , {vk−1, vk} are distinct.

2. If (v0, e1, v1, e2, v2, . . . , ek, vk) is a cycle of the multigraph Gmult, then k ≥ 3.
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Checking statement 2 is easy (we cannot have k = 1 since Gmult has no loops,
and we cannot have k = 2 since this would lead to e1 = e2). Statement 1
is also clear, since the distinctness of the k vertices v0, v1, . . . , vk−1 forces the 2-
element sets formed from these k vertices to also be distinct (and since the edges
{v0, v1} , {v1, v2} , . . . , {vk−1, vk} = {vk−1, v0} are such 2-element sets).

For all other notions discussed above, it is even more obvious that there is no
ambiguity.

1.3. Generalizing from simple graphs to multigraphs

Now, as promised, we shall revisit the results of the first 6 lectures, and see
which of them also hold for multigraphs instead of simple graphs.

1.3.1. Lecture 1

In Lecture 1, we proved the following:

Proposition 1.3.1. Let G be a simple graph with |V (G)| ≥ 6 (that is, G has at
least 6 vertices). Then, at least one of the following two statements holds:

• Statement 1: There exist three distinct vertices a, b and c of G such that
ab, bc and ca are edges of G.

• Statement 2: There exist three distinct vertices a, b and c of G such that
none of ab, bc and ca is an edge of G.

This is still true for multigraphs2, because replacing a multigraph G by the
underlying simple graph Gsimp does not change the meaning of the statement.

1.3.2. Lecture 2

In Lecture 2, we defined the degree of a vertex v in a simple graph G = (V, E)
by

deg v := (the number of edges e ∈ E that contain v)
= (the number of neighbors of v)
= |{u ∈ V | uv ∈ E}|
= |{e ∈ E | v ∈ e}| .

These equalities no longer hold when G is a multigraph. Parallel edges corre-
spond to the same neighbor, so the number of neighbors of v is only a lower
bound on deg v.

2Of course, we should understand it appropriately: i.e., we should read “ab is an edge” as
“there is an edge with endpoints a and b”.
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Here is another proposition we proved in Lecture 2:

Proposition 1.3.2. Let G be a simple graph with n vertices. Let v be a vertex
of G. Then,

deg v ∈ {0, 1, . . . , n − 1} .

This proposition, too, no longer holds for multigraphs, because you can have
arbitrarily many edges in a multigraph with just 1 or 2 vertices. (You can even
have parallel loops!)

We also proved the following:

Proposition 1.3.3 (Euler 1736). Let G be a simple graph. Then, the sum of
the degrees of all vertices of G equals twice the number of edges of G. In
other words,

∑
v∈V(G)

deg v = 2 · |E (G)| .

Is this true for multigraphs? Yes, because we have said that loops should
count twice in the definition of the degree. The proof needs some tweaking,
though. Let me give a slightly different proof; but first, let me state the claim
for multigraphs as a proposition of its own:

Proposition 1.3.4 (Euler 1736 for multigraphs). Let G be a multigraph. Then,
the sum of the degrees of all vertices of G equals twice the number of edges
of G. In other words,

∑
v∈V(G)

deg v = 2 · |E (G)| .

Proof. Write G as G = (V, E, φ); thus, V (G) = V and E (G) = E.
For each edge e, let us (arbitrarily) choose one endpoint of e and denote it

by α (e). The other endpoint will be called β (e). If e is a loop, then we set
β (e) = α (e). Then, for each vertex v, we have

deg v = (the number of e ∈ E such that v = α (e))
+ (the number of e ∈ E such that v = β (e))

(note how loops get counted twice on the right hand side, because if e ∈ E is a
loop, then v is both α (e) and β (e) at the same time). Summing up this equality
over all v ∈ V, we obtain

∑
v∈V

deg v = ∑
v∈V

(the number of e ∈ E such that v = α (e))

+ ∑
v∈V

(the number of e ∈ E such that v = β (e)) .
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However,

∑
v∈V

(the number of e ∈ E such that v = α (e)) = |E| ,

since each edge e ∈ E is counted in exactly one addend of this sum. Similarly,

∑
v∈V

(the number of e ∈ E such that v = β (e)) = |E| .

Thus, the above equality becomes

∑
v∈V

deg v = ∑
v∈V

(the number of e ∈ E such that v = α (e))︸ ︷︷ ︸
=|E|

+ ∑
v∈V

(the number of e ∈ E such that v = β (e))︸ ︷︷ ︸
=|E|

= |E|+ |E| = 2 · |E| .

This proves Proposition 1.3.4.

This is a good motivation for counting loops twice in the definition of a
degree.

Here is another fact we saw in Lecture 2:

Corollary 1.3.5 (handshake lemma). Let G be a simple graph. Then, the
number of vertices v of G whose degree deg v is odd is even.

This still holds for multigraphs, and it follows from Proposition 1.3.4 in the
same way as for simple graphs.

Here is another result from Lecture 2:

Proposition 1.3.6. Let G be a simple graph with at least two vertices. Then,
there exist two distinct vertices v and w of G that have the same degree.

This proposition fails for multigraphs. For example, the multigraph

1 2 3 has three vertices with degrees 1, 2, 3. Fortunately,
this proposition was more of a curiosity than a useful fact.

What about Mantel’s theorem?
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Theorem 1.3.7 (Mantel’s theorem). Let G be a simple graph with n vertices
and e edges. Assume that e > n2/4. Then, G has a triangle (i.e., three distinct
vertices that are pairwise adjacent).

This theorem fails for multigraphs, because we can join two vertices with a
lot of parallel edges and thus satisfy e > n2/4 for stupid reasons without ever
creating a triangle. Thus, Turan’s theorem also fails for multigraphs.

Graph isomorphy (and isomorphisms) can still be defined for multigraphs,
but the definition is not the same as for simple graphs. Graph isomorphisms
can no longer be defined merely as bijections between the vertex sets, since we
also need to specify what they do to the edges. Instead, we define them as
follows:

Definition 1.3.8. Let G = (V, E, φ) and H = (W, F, ψ) be two multigraphs.

(a) A graph isomorphism (or isomorphism) from G to H means a pair
(α, β) of bijections

α : V → W and β : E → F

with the property that if e ∈ E, then the endpoints of β (e) are the im-
ages under α of the endpoints of e. (This property can also be restated
as a commutative diagram

E
β

//

φ
��

F

ψ
��

P1,2 (V)
P(α)

// P1,2 (W)

,

where P (α) is the map from P1,2 (V) to P1,2 (W) that sends each sub-
set {u, v} ∈ P1,2 (V) to {α (u) , α (v)} ∈ P1,2 (W). If you are used to
category theory, this restatement may look more natural to you.)

(b) We say that G and H are isomorphic (this is written G ∼= H) if there
exists a graph isomorphism from G to H.

Again, isomorphy of multigraphs is an equivalence relation.

1.3.3. Lecture 3

In Lecture 3, we defined the complete graphs Kn, the path graphs Pn and the
cycle graphs Cn as simple graphs. Thus, all of them can be viewed as multi-
graphs if one so desires (since each simple graph G gives rise to a multigraph
Gmult).
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However, using multigraphs, we can extend our definition of n-th cycle
graphs Cn to the case n = 1 and also tweak it in the case n = 2 to make it
more natural. We do this as follows:

Definition 1.3.9. We modify the definition of cycle graphs as follows:

(a) We redefine the 2-nd cycle graph C2 to be the multigraph with two
vertices 1 and 2 and two parallel edges with endpoints 1 and 2. (We
don’t care what the edges are, only that there are two of them and each

has endpoints 1 and 2.) Thus, it looks as follows: 1 2 .

(b) We define the 1-st cycle graph C1 to be the multigraph with one vertex
1 and one edge (which is necessarily a loop). Thus, it looks as follows:

1 .

This has the effect that the n-th cycle graph Cn has exactly n edges for each
n ≥ 1 (rather than having 1 edge for n = 2, as it did back when it was a simple
graph).

Next, let us define submultigraphs of a multigraph:

Definition 1.3.10. A submultigraph of a multigraph G = (V, E, φ) is a multi-
graph of the form (W, F, ψ), where W ⊆ V and F ⊆ E and ψ = φ |F.

With these definitions, we can now identify cycles in a multigraph with sub-
graphs isomorphic to a cycle graph: A cycle of length n in a multigraph G is
“the same as” a submultigraph of G isomorphic to Cn. (We leave the details to
the reader.)
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