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Math 504 Lecture 14

1. Jordan canonical (aka normal) form (cont’d)

1.1. The centralizer of a matrix

Here is a fairly natural question: Which matrices commute with a given square
matrix A ?

Proposition 1.1.1. Let F be a field. Let A ∈ Fn×n be an n× n-matrix. Let f and
g be two polynomials in a single variable t over F. Then, f (A) commutes with
g (A).

Proof. Write f (t) as f (t) =
n
∑

i=0
fiti, and write g (t) as g (t) =

m
∑

j=0
gjtj. Then,

f (A) =
n

∑
i=0

fi Ai and g (A) =
m

∑
j=0

gj Aj.

*Drexel University, Korman Center, 15 S 33rd Street, Philadelphia PA, 19104, USA

1



Math 504 notes page 2

Thus,

f (A) · g (A) =

(
n

∑
i=0

fi Ai

)
·
(

m

∑
j=0

gj Aj

)
=

n

∑
i=0

m

∑
j=0

figj Ai Aj︸ ︷︷ ︸
=Ai+j

=
n

∑
i=0

m

∑
j=0

figj Ai+j.

A similar computation shows that

g (A) · f (A) =
n

∑
i=0

m

∑
j=0

figj Ai+j.

Comparing these two, we obtain f (A) · g (A) = g (A) · f (A), qed.

Thus, in particular, f (A) commutes with A for any polynomial f (because A =
g (A) for g (t) = t).

But are there other matrices that commute with A ?
There certainly can be. For instance, if A = λIn for some λ ∈ F, then every

n × n-matrix commutes with A (but very few matrices are of the form f (A) for
some polynomial f ). This is, in a sense, the “best case scentario”. Only for A = λIn
is it true that every n× n-matrix commutes with A.

Let us study the general case now.

Definition 1.1.2. Let A ∈ Fn×n be an n × n-matrix. The centralizer of A is
defined to be the set of all n × n-matrices B ∈ Fn×n such that AB = BA. We
denote this set by Cent A.

We thus want to know what Cent A is.
We begin with some general properties:

Proposition 1.1.3. Let A ∈ Fn×n be an n× n-matrix. Then, Cent A is a subset of
Fn×n that is closed under addition, scaling and multiplication and contains λIn
for all λ ∈ F. In other words:

(a) For any B, C ∈ Cent A, we have B + C ∈ Cent A.
(b) For any B ∈ Cent A and λ ∈ F, we have λB ∈ Cent A.
(c) For any B, C ∈ Cent A, we have BC ∈ Cent A.
(d) For any λ ∈ F, we have λIn ∈ Cent A.

This implies, in particular, that Cent A is a vector subspace of Fn×n. Furthermore,
it shows that Cent A is an F-subalgebra of Fn×n (in particular, a subring of Fn×n).

Proof of the Proposition. Let me just show part (c); the other parts are even easier.
(c) Let B, C ∈ Cent A. Thus, AB = BA and AC = CA. Now,

AB︸︷︷︸
=BA

C = B AC︸︷︷︸
=CA

= BCA.

This shows that BC ∈ Cent A. Thus, part (c) is proved.
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Now, as an example, let us compute Cent A in the case when A is a single Jordan
cell Jn (0). So we fix an n > 0, and we set

A := Jn (0) =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0

 .

Let B ∈ Fn×n be arbitrary. We want to know when B ∈ Cent A. In other words, we
want to know when AB = BA.

We have

AB =


0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0




B1,1 B1,2 B1,3 · · · B1,n
B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n



=


B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n

0 0 0 · · · 0


and

BA =


B1,1 B1,2 B1,3 · · · B1,n
B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n




0 1 0 · · · 0
0 0 1 · · · 0
0 0 0 · · · 0
...

...
... . . . ...

0 0 0 · · · 0



=


0 B1,1 B1,2 · · · B1,n−1
0 B2,1 B2,2 · · · B2,n−1
0 B3,1 B3,2 · · · B3,n−1
...

...
... . . . . . .

0 Bn,1 Bn,2 · · · Bn,n−1

 .

Thus, AB = BA holds if and only if
B2,1 B2,2 B2,3 · · · B2,n
B3,1 B3,2 B3,3 · · · B3,n

...
...

... . . . ...
Bn,1 Bn,2 Bn,3 · · · Bn,n

0 0 0 · · · 0

 =


0 B1,1 B1,2 · · · B1,n−1
0 B2,1 B2,2 · · · B2,n−1
0 B3,1 B3,2 · · · B3,n−1
...

...
... . . . . . .

0 Bn,1 Bn,2 · · · Bn,n−1

 ,
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i.e., if

B2,j = B1,j−1 for all j ∈ [n] (where B1,0 := 0);

B3,j = B2,j−1 for all j ∈ [n] (where B2,0 := 0);

B4,j = B3,j−1 for all j ∈ [n] (where B3,0 := 0);

. . . ;
Bn,j = Bn−1,j−1 for all j ∈ [n] (where Bn−1,0 := 0);

0 = Bn,j for all j ∈ [n− 1] .

The latter system of equations can be restated as follows:

. . . ;
Bn,n−2 = Bn−1,n−3 = Bn−2,n−4 = · · · = B3,1 = 0;
Bn,n−1 = Bn−1,n−2 = Bn−2,n−3 = · · · = B2,1 = 0;

Bn,n = Bn−1,n−1 = Bn−2,n−2 = · · · = B1,1;
Bn−1,n = Bn−2,n−1 = Bn−3,n−2 = · · · = B1,2;
Bn−2,n = Bn−3,n−1 = Bn−4,n−2 = · · · = B1,3;

. . . .

In other words, it means that the matrix B looks as follows:

B =


b0 b1 b2 · · · bn−1

b0 b1 · · · bn−2
b0 · · · bn−3

. . . ...
b0


(where the empty cells have entries equal to 0). This is called an upper-triangular
Toeplitz matrix. We can also rewrite it as

B = b0 In + b1A + b2A2 + · · ·+ bn−1An−1.

So we have proved the following:

Theorem 1.1.4. Let n > 0. Let A = Jn (0). Then,

Cent A =




b0 b1 b2 · · · bn−1

b0 b1 · · · bn−2
b0 · · · bn−3

. . . ...
b0

 | b0, b1, . . . , bn−1 ∈ F


=
{

b0 In + b1A + b2A2 + · · ·+ bn−1An−1 | b0, b1, . . . , bn−1 ∈ F
}

= { f (A) | f ∈ F [t] is a polynomial of degree ≤ n− 1} .
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So this is the worst-case scenario: The only matrices commuting with A are the
matrices of the form f (A) (which, as we recall, must always commute with A).

What happens for an arbitrary A ? Is the answer closer to the best-case scenario
or to the worst-case scenario? The answer is that the worst-case scenario holds for a
randomly chosen matrix, but we can actually answer the question “what is Cent A
exactly” if we know the Jordan canonical form of A.

We start with simple propositions:

Proposition 1.1.5. Let A ∈ Fn×n and λ ∈ F. Then, Cent (A− λIn) = Cent A.

Proof. Exercise (diff. [1]).

Proposition 1.1.6. Let A, B and S be three n× n-matrices such that S is invertible.
Then,

(B ∈ Cent A) ⇐⇒
(

SBS−1 ∈ Cent
(

SAS−1
))

.

Proof. Exercise (diff. [1]).

Thus, if A is a matrix with complex entries, and if we want to compute Cent A,
it suffices to compute Cent J, where J is the JCF of A.

Therefore, we now focus on centralizers of Jordan matrices.

Proposition 1.1.7. Let A1, A2, . . . , Ak be square matrices with complex entries.
Assume that the spectra of these matrices are disjoint – i.e., if i 6= j, then σ (Ai)∩
σ
(

Aj
)
= ∅.

Then,

Cent


A1

A2
. . .

Ak



=




B1
B2

. . .
Bk

 | Bi ∈ Cent (Ai) for each i ∈ [k]

 .

Proof. The ⊇ inclusion is obvious. We thus need to prove the ⊆ inclusion only.
Let Ai be an ni × ni-matrix for each i ∈ [k].

Let B ∈ Cent


A1

A2
. . .

Ak

. We want to show that B has the form
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
B1

B2
. . .

Bk

 where Bi ∈ Cent (Ai) for each i ∈ [k].

Write B as a block matrix

B =


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 ,

where each B (i, j) is an ni × nj-matrix. Then, by the rule for multiplying block
matrices, we have

A1
A2

. . .
Ak




B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)



=


A1B (1, 1) A1B (1, 2) · · · A1B (1, k)
A2B (2, 1) A2B (2, 2) · · · A2B (2, k)

...
... . . . ...

AkB (k, 1) AkB (k, 2) · · · AkB (k, k)


and 

B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)




A1
A2

. . .
Ak



=


B (1, 1) A1 B (1, 2) A2 · · · B (1, k) Ak
B (2, 1) A1 B (2, 2) A2 · · · B (2, k) Ak

...
... . . . ...

B (k, 1) A1 B (k, 2) A2 · · · B (k, k) Ak

 .

However, these two matrices must be equal, since


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 ∈
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Cent


A1

A2
. . .

Ak

. Thus, we have


A1B (1, 1) A1B (1, 2) · · · A1B (1, k)
A2B (2, 1) A2B (2, 2) · · · A2B (2, k)

...
... . . . ...

AkB (k, 1) AkB (k, 2) · · · AkB (k, k)

 =


B (1, 1) A1 B (1, 2) A2 · · · B (1, k) Ak
B (2, 1) A1 B (2, 2) A2 · · · B (2, k) Ak

...
... . . . ...

B (k, 1) A1 B (k, 2) A2 · · · B (k, k) Ak

 .

Comparing blocks, we can rewrite this as

AiB (i, j) = B (i, j) Aj for all i, j ∈ [k] .

Now, let i, j ∈ [k] be distinct. Consider this equality AiB (i, j) = B (i, j) Aj. We can
rewrite it as AiB (i, j)− B (i, j) Aj = 0. Thus, B (i, j) is an ni× nj-matrix X satisfying
AiX − XAj = 0. However, because σ (Ai) ∩ σ

(
Aj
)
= ∅, a theorem we proved

before (the Sylvester matrix equation) tells us that there is a unique ni × nj-matrix
X satisfying AiX − XAj = 0. Clearly, this unique matrix X must be the 0 matrix
(since the 0 matrix satisfies Ai0− 0Aj = 0). So we conclude that B (i, j) is the 0
matrix. In other words, B (i, j) = 0.

So we have shown that B (i, j) = 0 whenever i and j are distinct. Thus,

B =


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 =


B (1, 1)

B (2, 2)
. . .

B (k, k)

 .

This shows that B is block-diagonal. Now, applying the equation

AiB (i, j) = B (i, j) Aj for all i, j ∈ [k]

to j = i, we obtain AiB (i, i) = B (i, i) Ai, which of course means that B (i, i) ∈

Cent (Ai). Thus, B has the form


B1

B2
. . .

Bk

 where Bi ∈ Cent (Ai) for

each i ∈ [k]. Proof complete.

So we only need to compute Cent J when J is a Jordan matrix with only one
eigenvalue.

We can WLOG assume that this eigenvalue is 0, since we know that Cent (A− λIn) =
Cent A.

So we only need to compute Cent J when J is a Jordan matrix with zeroes on its
diagonal.

If J is just a single Jordan cell, we already know the result (by the above theorem
which describes Cent A for A = Jn (0)). In the general case, we have the following:
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Proposition 1.1.8. Let J be a Jordan matrix whose Jordan blocks are

Jn1 (0) , Jn2 (0) , . . . , Jnk (0) .

Let B be an n× n-matrix, written as a block matrix

B =


B (1, 1) B (1, 2) · · · B (1, k)
B (2, 1) B (2, 2) · · · B (2, k)

...
... . . . ...

B (k, 1) B (k, 2) · · · B (k, k)

 ,

where each B (i, j) is an ni × nj-matrix. Then, B ∈ Cent J if and only if each of
the k2 blocks B (i, j) is an upper-triangular Toeplitz matrix in the wide sense.

Here, we say that a matrix is an upper-triangular Toeplitz matrix in the wide
sense if it

• has the form
(

0 U
)
, where U is an upper-triangular Toeplitz (square)

matrix and 0 is a zero matrix, or

• has the form
(

U
0

)
, where U is an upper-triangular Toeplitz (square) ma-

trix and 0 is a zero matrix.

(The zero matrices are allowed to be empty.)

Proof. Essentially the same argument that we used to prove the theorem about
Jn (0), just with a lot more bookkeeping involved.

We can summarize our results into a single theorem:

Theorem 1.1.9. Let A ∈ Cn×n be an n× n-matrix with Jordan canonical form J.
Then, Cent A is a vector subspace of Cn×n with dimension

∑
λ∈σ(A)

gλ (A) .

Here, for each eigenvalue λ of A, the number gλ (A) is a nonnegative integer de-
fined as follows: Let n1, n2, . . . , nk be the sizes of the Jordan blocks at eigenvalue
λ that appear in J; then, we set

gλ (A) :=
k

∑
i=1

k

∑
j=1

min
{

ni, nj
}

.

Proof. Combine our above results and count the degrees of freedom.
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Now, let us return to the worst-case scenario: When is Cent A = { f (A) | f ∈ C [t]}
? We can answer this, too, although the proof takes longer.

Definition 1.1.10. An n× n-matrix A ∈ Fn×n is said to be nonderogatory if qA =
pA (that is, the minimal polynomial of A equals the characteristic polynomial of
A).

A randomly chosen matrix with complex entries will be nonderogatory with
probability 1; but there are exceptions. It is easy to see that if a matrix A has n
distinct eigenvalues, then A is nonderogatory, but this is not an “if and only if”; a
single Jordan cell is also nonderogatory.

Proposition 1.1.11. An n× n-matrix A ∈ Cn×n is nonderogatory if and only if its
Jordan canonical form has exactly one Jordan block for each eigenvalue.

Proof. HW (difficulty [2]).

Theorem 1.1.12. Let A ∈ Cn×n be an n× n-matrix. Then,

Cent A = { f (A) | f ∈ C [t]}

if and only if f is nonderogatory. Moreover, in this case,

Cent A = { f (A) | f ∈ C [t] is a polynomial of degree ≤ n− 1} .

Proof. Later or exercises?
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