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1. Introduction

This file contains notes for the Math 4281 class (“Introduction to Modern Algebra”)
I have taught at the University of Minnesota in Spring 2019. Occasionally, it also
includes material that did not appear in the lectures.

The website of the class is https://www.cip.ifi.lmu.de/~grinberg/t/19s/index.
html ; you will find homework sets and midterms there.

1.1. Status

The first few chapters of these notes are finished. The rest are at various degrees of
completion (mostly readable, but sometimes not completely polished).

1.2. Literature

Many books have been written about abstract algebra. I have only a passing fa-
miliarity with most of them. Some of the “bibles” of the subject (bulky texts cov-
ering lots of material) are Dummit/Foote [DumFoo04], Knapp [Knapp16a] and
[Knapp16b] (both freely available), van der Waerden [Waerde91a] and [Waerde91b]
(one of the oldest texts on modern algebra, thus rather dated, but still as readable
as ever).

Of course, any book longer than 200 pages likely goes further than our course
will (unless it is full of details or solved exercises or printed in really large letters,
like this one will be once it is finished). Thus, let me recommend some more intro-
ductory sources. Siksek’s lecture notes [Siksek15] are a readable introduction that
is a lot more amusing than I had ever expected an algebra text to be. Goodman’s
free book [Goodma16] combines introductory material with geometric motivation
and applications, such as the classification of regular polyhedra and 2-dimensional
crystals. In a sense, it is a great complement to our ungeometric course. Pinter’s
[Pinter10] often gets used in classes like ours. Armstrong’s notes [Armstr18] cover
a significant part of what we do. Childs’s [Childs00] comes the closest to what we
are setting out to do here, that is, give an example-grounded introduction to basic
abstract algebra.

Keith Conrad’s blurbs [Conrad*] are not a book, as they only cover selected
topics. But at pretty much every topic they cover, they are one of the best sources
(clear, full of examples, and often going fairly deep). We shall follow one of them
particularly closely: the one on Gaussian integers [ConradG].

We will use some basic linear algebra, all of which can be found in Hefferon’s
book [Heffer17] (but we won’t need all of this book). As far as determinants are
concerned, we will briefly build up their theory; we refer to [Strick13, Section 12
& Appendix B] for proofs (and to [Grinbe15, Chapter 6] for a really detailed and
formal treatment).

This course will begin (after some motivating questions) with a survey of ele-
mentary number theory. This is in itself a deep subject (despite the name) with a

https://www.cip.ifi.lmu.de/~grinberg/t/19s/index.html
https://www.cip.ifi.lmu.de/~grinberg/t/19s/index.html
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long history (perhaps as old as mathematics), and of course we will just scratch the
surface. Books like [NiZuMo91], [Burton10] and [UspHea39] cover a lot more than
we can do. The Gallier/Quaintance survey [GalQua17] covers a good amount of
basics and more.

We assume that the reader is familiar with the commonplaces of mathematical ar-
gumentation, such as induction (including strong induction), “WLOG” arguments,
proof by contradiction, summation signs (∑) and polynomials (a vague notion of
polynomials will suffice; we will give a precise definition when it becomes nec-
essary). If not, several texts can be helpful in achieving such familiarity: e.g.,
[LeLeMe18, particularly Chapters 1–5], [Hammac18], [Day16].

I thank the students of the Math 4281 class for discovering and reporting errors
in previous versions of these notes. Some of the discussion of variants of Gaussian
integers (and the occasional correction) is due to Keith Conrad; the discussion of
Gaussian integers itself owes much to his [ConradG].

These notes include some excerpts from [Grinbe16] and slightly rewritten sec-
tions of [Grinbe15].

1.3. The plan

The material I am going to cover is mostly standard. However, the order in which
I will go through it is somewhat unusual: I will spend a lot of time studying the
basic examples before defining abstract notions such as “group”, “monoid”, “ring”
and “field”. This way, once I come to these notions, you’ll already have many
examples to work with. (Don’t be fooled by the word “example”: We will prove a
lot about them, much of which is neither straightforward nor easy.)

First, I will show some motivating questions that are easy to state yet require
abstract algebra to answer. We will hopefully see their answers by the end of this
class. (Some of them can also be answered elementarily, without using abstract
algebra, but such answers usually take more work and are harder to find.)

1.4. Motivation: n = x2 + y2

A perfect square means the square of an integer. Thus, the perfect squares are

02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16, . . . .

Here is an old problem (first solved by Pierre de Fermat in 1640, but apparently
already studied by Diophantus in the 3rd Century):

Question 1.4.1. What integers can be written as sums of two perfect squares?

For example, 5 can be written in this way, since 5 = 22 + 12.
So can 4, since 4 = 22 + 02. (Keep in mind that 0 is a perfect square.)
However, 7 cannot be written in this way. In fact, if we had 7 = a2 + b2 for two

integers a and b, then a2 and b2 would have to be ≤ 7 (since a2 and b2 are always

https://en.wikipedia.org/wiki/Plimpton_322
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≥ 0, no matter what sign a and b have); but the only perfect squares that are ≤ 7
are 0, 1, 4, and there is no way to write 7 as a sum of two of these perfect squares
(just check all the possibilities).

For a similar but simpler reason, no negative number can be written as a sum of
two perfect squares.

We can of course approach Question 1.4.1 using a computer: It is easy to check,
for a given integer n, whether n is a sum of two perfect squares. (Just check all
possibilities for a and b for the validity of the equation n = a2 + b2. You only
need to try a and b belonging to

{
0, 1, . . . ,

⌊√
n
⌋}

, where byc (for a real number y)
denotes the largest integer that is less or equal than y (also known as “y rounded
down”).) If you do this, you will see that among the first 101 nonnegative integers,
the ones that can be written as sums of two perfect squares are precisely

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29,
32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64,
65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100.

Having this data, you can look up the sequence in the Online Encyclopedia of In-
teger Sequences (short OEIS), and see that the sequence of these integers is known
as OEIS Sequence A001481. In the “Comments” field, you can read a lot of what is
known about it (albeit in telegraphic style).

For example, one of the comments says “Closed under multiplication”. This is
short for “if you multiply two entries of the sequence, then the product will again
be an entry of the sequence”. In other words, if you multiply two integers that
are sums of two perfect squares, then you get another sum of two perfect squares.
Why is this so?

It turns out that there is a “simple” reason for this: the identity(
a2 + b2

) (
c2 + d2

)
= (ad + bc)2 + (ac− bd)2 , (1)

which holds for arbitrary reals a, b, c, d (and thus, in particular, for integers). This is
known as the Brahmagupta-Fibonacci identity, and of course can easily be proven
by expanding both sides. But how would you come up with such an identity?

If you stare at the above sequence long enough, you may also discover another
pattern: An integer of the form 4k+ 3 with integer k (that is, an integer that is larger
by 3 than a multiple of 4) can never be written as a sum of two perfect squares.
(Thus, 3, 7, 11, 15, 19, 23, . . . cannot be written in this way.) This does not account
for all integers that cannot be written in this way, but it does provide some clues
to the answer that we will later see. In order to prove this observation, we shall
need basic modular arithmetic (or at least division with remainder); we will see
this proof very soon (see Exercise 2.7.2 (c)).

We will resolve Question 1.4.1 using the theory of Gaussian integers in Chapter
4. For a survey of different approaches to Question 1.4.1 (including a full answer
using finite fields), see [AigZie18, Chapter 4].

https://oeis.org/
https://oeis.org/
https://oeis.org/A001481
https://en.wikipedia.org/wiki/Brahmagupta-Fibonacci_identity
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Further questions can be asked. One of them is: Given an integer n, how many
ways are there to represent n as a sum of two perfect squares? This is actually
several questions masquerading as one, since it is not so clear what a “way” is. Do
5 = 12 + 22 and 5 = 22 + 12 count as two different ways? What about 5 = 12 + 22

versus 5 = (−1)2 + 22 (here, the perfect squares are the same, but do we really
want to count the squares or rather the numbers we are squaring?).

Let me formalize the question as follows:

Question 1.4.2. Let n be an integer.
(a) How many pairs (a, b) ∈ N2 are there that satisfy n = a2 + b2 ? Here, and

in the following, N denotes the set {0, 1, 2, . . .} of all nonnegative integers.
(b) How many pairs (a, b) ∈ Z2 are there that satisfy n = a2 + b2 ? Here, and

in the following, Z denotes the set {. . . ,−2,−1, 0, 1, 2, . . .} of all integers.
(c) How do these counts change if we count unordered pairs instead (i.e.,

count (a, b) and (b, a) as one only)?

Note that when I say “pair”, I always mean “ordered pair” by default, unless I
explicitly say “unordered pair”.

Again, a little bit of programming easily yields answers to all three parts of this
question for small values of n, and the resulting data can be plugged into the OEIS
and yields lots of information.

Note that sums of squares have a geometric meaning (going back to Pythagoras):
Two real numbers a and b satisfy a2 + b2 = n (for a given integer n ≥ 0) if and only
if the point with Cartesian coordinates (a, b) lies on the circle with center 0 and
radius

√
n. This will actually prove a valuable insight that will lead us to the

answers to the above questions.
Just as a teaser: There are formulas for all three parts of Question 1.4.2, in terms

of divisors of n of the forms 4k + 1 and 4k + 3. We will see these formulas after we
have properly understood the concept of Gaussian integers.

1.5. Motivation: Algebraic numbers

A real number z is said to be algebraic if there exists a nonzero polynomial P with
rational coefficients such that P (z) = 0. In other words, a real number z is algebraic
if and only if it is a root of a nonzero polynomial with rational coefficients.

(If you know the complex numbers, you can replace “real” by “complex” in this
definition; but we shall only see real numbers in this little motivational section.)

Here are a few examples:

• Each rational number a is algebraic (being a root of the nonzero polynomial
x− a with rational coefficients).

• The number
√

2 is algebraic (being a root of the nonzero polynomial x2 − 2).

• The number 3
√

5 is algebraic (being a root of x3 − 5).
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• All the roots of the polynomial f (x) :=
3
2

x4 + 17x3− 12x +
9
4

(whatever they
are) are algebraic.
Speaking of these roots, what are they? Using a computer, one can show that
this polynomial f (x) has 4 real roots (−11.269 . . . ,−0.960 . . . , 0.198 . . . , 0.697 . . .),
which can be written as complicated expressions with radicals (i.e., k

√ signs),
though complex numbers appear in these expressions (despite the roots being
real!). All this does not matter to the fact that they are algebraic ··

^

• All the roots of the polynomial g (x) := x7 − x5 + 1 are algebraic.
This polynomial has only one real root. This root cannot be written as an
expression with radicals (as can be proven using Galois theory – indeed, the
discovery of this theory greatly motivated the development of abstract al-
gebra). Nevertheless, it is algebraic, by definition. (The same holds for the
remaining 6 complex roots of g – we are working with real numbers here only
for the sake of familiarity.)

• The most famous number that is not algebraic is π. This is a famous result
of Lindemann, but it belongs to analysis, not to algebra, because π is not
defined algebraically in the first place (it is defined as the length of a curve or
as an area of a curved region – but either of these definitions boils down to a
limit of a sequence).

• The second most famous number that is not algebraic is Euler’s number e
(the basis of the natural logarithm). Again, analysis is needed to define e, and
thus also to prove its non-algebraicity.

Numbers that are not algebraic are called transcendental. We shall not study
them much, since most of them do not come from algebra. Instead, we shall try
our hands at the following question:

Question 1.5.1. (a) Is the sum of two (or, more generally, finitely many) algebraic
numbers always algebraic?

(b) What if we replace “sum” by “difference” or “product”?

Let me motivate why this is a natural question to ask. The sum of two integers
is still an integer; the sum of two rational numbers is still a rational number. These
facts are fundamental; without them we could hardly work with integers and ra-
tional numbers. If a similar fact would not hold for algebraic numbers, it would
mean that the algebraic numbers are not a good “number system” to work in; on
a practical level, it would mean that (e.g.) if we defined a function on the set of all
algebraic numbers, then we could not plug a sum of algebraic numbers into it.

https://en.wikipedia.org/wiki/Galois_theory
https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Transcendental_number
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1.6. Motivation: Shamir’s Secret Sharing Scheme

1.6.1. The problem

Adi Shamir is one of the founders of modern mathematical cryptography (famous
in particular for the RSA cryptosystem, which we will discuss in Subsection 3.8.1).

Shamir’s Secret Sharing Scheme is a way in which a secret a (a piece of data –
e.g., nuclear launch codes) can be distributed among n people in such a way that

• any k of them can (if they come together) reconstruct it uniquely, but

• any k− 1 of them (if they come together) cannot gain any insight about it (i.e.,
not only cannot they reconstruct it, but they cannot even tell that some values
are more likely than others to be a).

Here n and k are fixed positive integers.
Understanding this scheme completely will require some abstract algebra, but

we can already start thinking about the problem and get reasonably far.
So we have n people 1, 2, . . . , n, a positive integer k ∈ {1, 2, . . . , n} and a secret

piece of data a. We assume that this data a is encoded as a bitstring – i.e., a finite
sequence of bits. A bit is an element of the set {0, 1}. Thus, examples of bitstrings
are (0, 1, 1, 0) and (1, 0) and (1, 1, 0, 1, 0, 0, 0) as well as the empty sequence (). When
writing bitstring, we shall usually omit both the commas and the parentheses;
thus, e.g., the bitstring (1, 1, 0, 1, 0, 0, 0) will become 1101000. Make sure you don’t
mistake it for a number. Our goal is to give each of the n people 1, 2, . . . , n some
bitstring in such a way that:

• Requirement 1: Any k of the n people can (if they come together) reconstruct
a uniquely.

• Requirement 2: Any k− 1 of the n people are unable to gain any insight about
a (even if they collaborate).

We denote the bitstrings given to the people 1, 2, . . . , n by a1, a2, . . . , an, respec-
tively.

We assume that the length of our secret bitstring a is known in advance to all
parties; i.e., it is not a secret. Thus, when we say “k − 1 persons cannot gain any
insight about a”, we do not mean that they don’t know the length; and when we
say “some values are more likely than others to be a”, we only mean values that fit
this length.

1.6.2. The k = 1 case

One simple special case of our problem is when k = 1. In this case, it suffices to
give each of the n people the full secret a (that is, we set ai = a for all i). Then,
Requirement 1 is satisfied (since any 1 of the n people already knows a), while
Requirement 2 is satisfied as well (0 people know nothing).

https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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1.6.3. The k = n case: what doesn’t work

Let us now consider the case when k = n. This case will not help us solve the
general problem, but it will show some ideas that we will encounter again and
again in abstract algebra.

We want to ensure that all n people needed to reconstruct the secret a, while any
n− 1 of them will be completely clueless.

It sounds reasonable to split a into n parts, and give each person one of these
parts1 (i.e., we let ai be the i-th part of a for each i ∈ {1, 2, . . . , n}). This method
satisfies Requirement 1 (indeed, all n people together can reconstruct a simply by
fusing the n parts back together), but fails Requirement 2 (indeed, any n− 1 people
know n− 1 parts of the secret a, which is a far from being clueless about a). So this
method doesn’t work. It is not that easy.

1.6.4. The XOR operations

One way to solve the k = n case is using the XOR operation.
Let us first define some basic language. A binary operation on a set S is (informally

speaking) a function that takes two elements of S and assigns a new element of S
to them. More formally:

Definition 1.6.1. A binary operation on a set S is a map f from S× S to S. When
f is a binary operation on S and a and b are two elements of S, we shall write
a f b for the value f (a, b).

Example 1.6.2. Addition, subtraction and multiplication of integers are three
binary operations on the set Q (the set of all rational numbers). For example,
addition is the map from Q×Q to Q that sends each pair (a, b) ∈ Q×Q to a+ b.

Division is not a binary operation on the set Q. Indeed, if it was, then it would
send the pair (1, 0) to some integer called 1/0; but there is no such integer.

There are myriad more complicated binary operations around waiting for
someone to name them. For example, you could define a binary operation ,

on the set Q by a,b =
a− b

1 + a2 + b2 . Indeed, you can do this because 1 + a2 + b2

is always nonzero when a, b ∈ Q (after all, squares are nonnegative, so that
1 + a2︸︷︷︸

≥0

+ b2︸︷︷︸
≥0

≥ 1 > 0). I am not saying that you should...

Now, we define some specific binary operations on the set {0, 1} of all bits, and
on the set {0, 1}n of all length-n bitstrings (for a given n).

1assuming that a is long enough for that
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Definition 1.6.3. We define a binary operation XOR on the set {0, 1} by setting

0 XOR 0 = 0,
0 XOR 1 = 1,
1 XOR 0 = 1,
1 XOR 1 = 0.

This is a valid definition, because there are only four pairs (a, b) ∈ {0, 1}× {0, 1},
and we have just defined a XOR b for each of these four options. We can also
rewrite this definition as follows:

a XOR b =

{
1, if a 6= b;
0, if a = b

=

{
1, if exactly one of a and b is 1;
0, otherwise.

For lack of a better name, we refer to a XOR b as the “XOR of a and b”.

The name “XOR” is short for “exclusive or”. In fact, if you identify bits with
boolean truth values (so the bit 0 stands for “False” and the bit 1 stands for “True”),
then a XOR b is precisely the truth value for “exactly one of a and b is True”, which
is also known as “a exclusive-or b”.

Definition 1.6.4. Let m be a nonnegative integer. We define a binary operation
XOR on the set {0, 1}m (this is the set of all length-m bitstrings) by

(a1, a2, . . . , am)XOR (b1, b2, . . . , bm) = (a1 XOR b1, a2 XOR b2, . . . , am XOR bm) .

In other words, if a and b are two length-m bitstrings, then a XOR b is obtained
by taking the XOR of each entry of a with the corresponding entry of b, and
packing these m XORs into a new length-m bitstring.

For example,

(1001)XOR (1100) = 0101;
(11011)XOR (10101) = 01110;
(11010)XOR (01011) = 10001;

(1)XOR (0) = 1;
()XOR () = () .

Note that if a and b are two length-m bitstrings, then the 0’s in the bitstring
a XOR b are at the positions where a and b have equal entries, and the 1’s in
a XOR b are at the positions where a and b have different entries. Thus, a XOR b
essentially pinpoints the differences between a and b.
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We observe the following simple properties of these operations XOR on bits and
on bitstrings2:

• We have a XOR 0 = a for any bit a. (This can be trivially checked by consider-
ing both possibilities for a.)

• Thus, a XOR 0 = a for any bitstring a, where 0 denotes the bitstring 00 · · · 0 =
(0, 0, . . . , 0) (of appropriate length – i.e., of the same length as a).

• We have a XOR a = 0 for any bit a. (This can be trivially checked by consider-
ing both possibilities for a.)

• Thus, a XOR a = 0 for any bitstring a. We shall refer to this as the self-
cancellation law.

• We have a XOR b = b XOR a for any bits a, b. (Again, this is easy to check by
going through all four options for a and b.)

• Thus, a XOR b = b XOR a for any bitstrings a, b.

• We have a XOR (b XOR c) = (a XOR b)XOR c for any bits a, b, c. (Again, this is
easy to check by going through all eight options for a, b, c.)

• Thus, a XOR (b XOR c) = (a XOR b)XOR c for any bitstrings a, b, c.

• Thus, for any bitstrings a and b, we have

(a XOR b)XOR b = a XOR (b XOR b)︸ ︷︷ ︸
=0

(by the self-cancellation law)

= a XOR 0 = a.

This observation gives rise to a primitive cryptosystem (known as a one-time
pad): If you have a secret bitstring a that you want to encrypt, and another
secret bitstring b that can be used as a key, then you can encrypt a by XORing
it with b (that is, you transform it into a XOR b). Then, you can decrypt
it again by XORing it with b again; indeed, if you do this, you will obtain
(a XOR b)XOR b = a. This is a highly safe cryptosystem as long as you
can safely communicate the key b to whomever needs to be able to decrypt
(or encrypt) your secrets, and as long as you are able to generate uniformly
random keys b of sufficient length. Its only weakness is its impracticality (in
many situations): If the secret you want to encrypt is long (say, a whole book),
your key will need to be equally long. Even storing such keys can become
difficult.

2As a mnemonic, we shall try to use boldfaced letters like a and b for bitstrings and regular italic
letters like a and b for single bits.

https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/One-time_pad
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We shall refer to the properties a XOR b = b XOR a and a XOR b = b XOR a
as laws of commutativity, and we shall refer to the properties a XOR (b XOR c) =
(a XOR b)XOR c and a XOR (b XOR c) = (a XOR b)XOR c as laws of associativity.
These are, of course, similar to well-known facts like α + β = β + α and α +
(β + γ) = (α + β) + γ for numbers α, β, γ (which is why we are giving them the
same names). This similarity is not coincidental. Just as for addition or multiplica-
tion of numbers, these laws lead to a notion of “XOR-products”:

Proposition 1.6.5. Let m be a positive integer. Let a1, a2, . . . , am be m bitstrings.
Then, the “XOR-product” expression

a1 XOR a2 XOR a3 XOR · · ·XOR am

is well-defined, in the sense that it does not depend on the parenthesization.

What do we mean by “parenthesization”? To clarify things, let us set m = 4.
In this case, we want to make sense of the expression a1 XOR a2 XOR a3 XOR a4.
This expression does not make sense a priori, since it is a XOR of four bitstrings,
whereas we have defined only the XOR of two bitstrings. But there are five ways
to put parentheses around some of its sub-expressions such that the expression
becomes meaningful:

(a1 XOR a2)XOR (a3 XOR a4) ,
((a1 XOR a2)XOR a3)XOR a4,
a1 XOR ((a2 XOR a3)XOR a4) ,
a1 XOR (a2 XOR (a3 XOR a4)) ,
(a1 XOR (a2 XOR a3))XOR a4.

Each of these five parenthesizations (= placements of parentheses) turns our ex-
pression a1 XOR a2 XOR a3 XOR a4 into a combination of XOR’s of two bitstrings
each, and thus gives it meaning. The question is: Do these five parenthesizations
give it the same meaning?

Well, let us calculate:

(a1 XOR a2)XOR (a3 XOR a4)

= a1 XOR (a2 XOR (a3 XOR a4))︸ ︷︷ ︸
=(a2 XOR a3)XOR a4

= a1 XOR ((a2 XOR a3)XOR a4)

= (a1 XOR (a2 XOR a3))︸ ︷︷ ︸
=(a1 XOR a2)XOR a3

XOR a4

= ((a1 XOR a2)XOR a3)XOR a4,

where we used the law of associativity in each step. This shows that our five
parenthesizations yield the same result. Thus, they all give our “XOR-product”
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expression a1 XOR a2 XOR a3 XOR a4 the same meaning; so we can say that this
expression is well-defined. This confirms Proposition 1.6.5 for m = 4.

Of course, proving Proposition 1.6.5 is less simple. Such a proof appears in
Exercise 4 on homework set #0 (for more general binary operations than XOR).

1.6.5. The k = n case: an answer

Let us now return to our problem. We have n persons 1, 2, . . . , n and a secret a
(encoded as a bitstring). We want to give each person i some bitstring ai such that
only all n of them can recover a but any n − 1 of them cannot gain any insight
about a.

We let a1, a2, . . . , an−1 be n− 1 uniformly random bitstrings of the same length
as a. (Think of them as random gibberish.) Set

an = a XOR a1 XOR a2 XOR · · ·XOR an−1.

(This expression makes sense because of Proposition 1.6.5.)
Then,

an XOR an−1 XOR an−2 XOR · · ·XOR a1

= (a XOR a1 XOR a2 XOR · · ·XOR an−1)XOR an−1 XOR an−2 XOR · · ·XOR a1

= a XOR a1 XOR a2 XOR · · ·XOR an−1 XOR an−1︸ ︷︷ ︸
=0

XOR an−2 XOR · · ·XOR a1

= a XOR a1 XOR a2 XOR · · ·XOR an−2 XOR 0︸ ︷︷ ︸
=an−2

XOR an−2 XOR · · ·XOR a1

= a XOR a1 XOR a2 XOR · · ·XOR an−2 XOR an−2︸ ︷︷ ︸
=0

XOR · · ·XOR a1

= · · ·
= a

(here, we have been unravelling the big XOR-product from the middle on, by can-
celling equal bitstrings using the self-cancellation law and then removing the re-
sulting 0 using the a XOR 0 = a law). Hence, the n people together can decrypt the
secret a.

Can n − 1 people gain any insight about it? The n − 1 people 1, 2, . . . , n − 1
certainly cannot, since all they know are the random bitstrings a1, a2, . . . , an−1. But
the n− 1 people 2, 3, . . . , n cannot gain any insight about a either: In fact, all they
know are the random bitstrings a2, a3, . . . , an−1 and the bitstring

an = a XOR a1 XOR a2 XOR · · ·XOR an−1;

therefore, all the information they have about a and a1 comes to them through
a XOR a1, which says nothing about a as long as they know nothing about a1.
(We used a bit of handwaving in this argument, but then again we never formally

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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defined what it means to “gain no insight”; this is done in courses on cryptography
and information theory.) Similar arguments show that any other choice of n − 1
persons remains equally clueless about a. So we have solved the problem in the
case k = n.

1.6.6. The k = 2 case

The next simple case is when k = 2. So we want to ensure that any 2 of our n
people can together recover the secret, but no 1 person can learn anything about it
alone.

A really nice approach was suggested by Nathan (a student in class): We pick n
random bitstrings x1, x2, . . . , xn−1 of the same length as a. Set

xn = a XOR x1 XOR x2 XOR · · ·XOR xn−1;

thus, as in the k = n case, we have

xn XOR xn−1 XOR xn−2 XOR · · ·XOR x1 = a. (2)

Each person i now receives the bitstring

ai = x1x2 · · · xi−1xi+1xi+2 · · · xn,

where the product stands for concatenation (i.e., the bitstring ai is formed by writing
down all of the bitstrings x1, x2, . . . , xn one after the other but skipping xi). Thus,
each person i can recover all the n − 1 bitstrings x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn
(because their lengths are the length of a, which is known), but knows nothing
about xi (his “blind spot”). Hence, 2 people together can recover all the n bitstrings
x1, x2, . . . , xn and therefore recover the secret a (by (2)). On the other hand, each
single person has no insight about a (this is proven similarly to the k = n case). So
again, the problem is solved in this case.

1.6.7. The k = 3 case

Now, let us come to the case when k = 3. Here, I think, the usefulness of the XOR
approach has come to its end: at least, I don’t know how to make it work here.
Instead, out of the blue, I will invoke something completely different: polynomials
(let’s say with rational coefficients).

Recall a fact you might have heard in high school:

Proposition 1.6.6. A polynomial f (x) = cx2 + bx + a of degree ≤ 2 is uniquely
determined by any three of its values. More precisely: If u, v, w are three fixed
distinct numbers, then a polynomial f (x) = cx2 + bx + a of degree ≤ 2 is
uniquely determined by the values f (u) , f (v) , f (w).
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More precisely: If u, v, w are three fixed distinct numbers, and if p, q, r are
three arbitrary numbers, then there is a unique polynomial f (x) = cx2 + bx + a
of degree ≤ 2 satisfying

f (u) = p, f (v) = q, and f (w) = r.

Here, the word “number” is deliberately left ambiguous, but you can think of
rational or real numbers (Proposition 1.6.6 is definitely true for them).

Also recall that any bitstring of given length N can be encoded as an integer in{
0, 1, . . . , 2N − 1

}
: Just read it as a number in binary. More precisely, any bitstring

aN−1aN−2 · · · a0 of length N becomes the integer aN−1 · 2N−1 + aN−2 · 2N−2 + · · ·+
a0 · 20 ∈

{
0, 1, . . . , 2N − 1

}
. For example, the bitstring 010110 of length 6 becomes

the integer

0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 22 ∈
{

0, 1, . . . , 26 − 1
}

.

Choose two uniformly random bitstrings c and b (of the same length as a) and
encode them as numbers c and b (as just explained). Encode the secret a as a
number a as well (in the same way). Define the polynomial f (x) = cx2 + bx + a.
Reveal to each person i ∈ {1, 2, . . . , n} the value f (i) – or, rather, a bitstring that
encodes it in binary – as ai.

Any three of the n values f (i) uniquely determine the polynomial f (because of
Proposition 1.6.6). Thus, any three people can use their bitstrings ai to recover three
values f (i) and therefore f and therefore a (as the constant term of f) and therefore
a (by decoding a). So our method satisfies Requirement 1.

Now, let us see whether it satisfies Requirement 2. Any 2 people can recover
two values f (i), which generally do not determine f uniquely. It is not hard to
show that they do not even determine a uniquely; thus, they do not determine a
uniquely. What’s better: If you know just two values of f, there are infinitely many
possible choices for f, and all of them have distinct constant terms (unless one of
the two values you know is f (0), which of course pins down the constant term)3.
So we get infinitely many possible values for a, and thus infinitely many possible
values for a. This means that our 2 people don’t gain any insight about a, right?

Not so fast! We cannot really have “infinitely many possible values for a”, since
a is bound to be a bitstring of a given length – there are only finitely many of
those! You can only get infinitely many possible values for f if you forget how f
was constructed (from c, b and a) and pretend that f is just a “uniformly random”
polynomial (whatever this means). But no one can force the 2 people to do this;
it is certainly not in their interest! Here are some things they might do with this
knowledge:

3Prove this! (Hint: The constant term of a polynomial is just its value at 0. Thus, if you know two
values of f at points other than 0 and also the constant term of f, then you simply know three
values of f.)
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• Let N be the length of a (which, as we said, is known). Thus, c and b are
bitstrings of length N, so that c and b are integers in

{
0, 1, . . . , 2N − 1

}
. As-

sume that one of the 2 people is person 2. Now, person 2 knows f (2) =
c22 + b2+ a = 4c + 2b + a, and thus knows whether a is even or odd (because
a is even resp. odd if and only if 4c + 2b + a is even resp. odd). This means
she knows the last bit of the secret a. This is not “clueless”.

• You might try to fix this by picking c and b to be uniformly random rational
numbers instead (rather than using uniformly random bitstrings c and b).

Unfortunately, there is no such thing as a “uniformly random rational num-
ber” (in the sense that, e.g., larger numbers aren’t less likely to be picked
than smaller numbers). Any probability distribution will make some num-
bers more likely than others, and this will usually cause information about
a to “leak”. For example, if c and b are chosen from the interval

[
0, 2N − 1

]
,

then person 1’s knowledge of f (1) = c12 + b1 + a = c + b + a will sometimes
reveal to person 1 that a ≥ 0.5 ·

(
2N − 1

)
(namely, this will happen when

f (1) ≥ 2.5 ·
(
2N − 1

)
, which occasionally happens). This, again, is nontrivial

information about the secret a, which a single person (or even two people)
should not be having.

So we cannot make Requirement 2 hold, and the culprit is that there are too
many numbers (namely, infinitely many). What would help is a finite “number
system” in which we can add, subtract, multiply and divide (so that we can define
polynomials over it, and a polynomial of degree ≤ 2 is still uniquely determined
by any 3 values). Assuming that this “number system” is large enough that we can
encode bitstrings using “numbers” of this system (instead of integers), we can then
play the above game using this “number system” and obtain actually uniformly
random numbers.

It turns out that such “number systems” exist. They are called finite fields, and
we will construct them later in this course.

Assuming that they can be constructed, we thus obtain a method of solving the
problem for k = 3. A similar method works for arbitrary k, using polynomials of
degree ≤ k− 1. This is called Shamir’s Secret Sharing Scheme.

2. Elementary number theory

Let us now begin a systematic introduction to algebra. We start with studying
integers and their divisibility properties – the beginnings of number theory. Part
of these will be used directly in what will follow; part of these will inspire more
general results and proofs.
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2.1. Notations

Definition 2.1.1. Let N = {0, 1, 2, . . .} be the set of nonnegative integers.
Let P = {1, 2, 3, . . .} be the set of positive integers.
Let Z = {. . . ,−1, 0, 1, . . .} be the set of integers.
Let Q be the set of rational numbers.
Let R be the set of real numbers.

Be careful with the notation N: While I use it for {0, 1, 2, . . .}, various other authors
use it for {1, 2, 3, . . .} instead. There is no consensus in sight on what N should
mean.

Same holds for the word “natural number” (which I will avoid): It means “ele-
ment of N”, so again its ultimate meaning depends on the author.

The word “list” shall always mean “ordered finite list” unless declared otherwise.
Examples of lists of numbers are (2, 5, 2), (1, 9), the one-entry list (9) (not the same
as the number 9 itself) and the empty list (). The word “tuple” means the same as
“list”, but more specifically, the word “k-tuple” (for some k ∈ N) means “list with
exactly k entries”. For instance, (5, 1, 5) is a 3-tuple. The word “sequence” means
an ordered, but not necessarily finite, list.

2.2. Divisibility

We now go through the basics of divisibility of integers.

Definition 2.2.1. Let a and b be two integers. We say that a | b (or “a divides b” or
“b is divisible by a” or “b is a multiple of a”) if there exists an integer c such that
b = ac.

We furthermore say that a - b if a does not divide b.

Some authors define the “divisibility” relation a bit differently, in that they for-
bid a = 0. From the viewpoint of abstract algebra, this feels like an unnecessary
exception, so we don’t follow them.

Example 2.2.2. (a) We have 4 | 12, since 12 = 4 · 3.
(b) We have a | 0 for any a ∈ Z, since 0 = a · 0.
(c) An integer b satisfies 0 | b only when b = 0, since 0 | b implies b = 0c = 0

(for some c ∈ Z).
(d) We have a | a for any a ∈ Z, since a = a · 1.
(e) We have 1 | b for each b ∈ Z, since b = 1 · b.

I apologize in advance for the next proposition, in which vertical bars stand both
for the “divides” relation and for the absolute value of a number. Unfortunately,



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 21

both of these uses are standard notation. Confusion is possible, but hopefully will
not happen often4.

Proposition 2.2.3. Let a and b be two integers.
(a) We have a | b if and only if |a| | |b|. (Here, “|a| | |b|” means “|a| divides
|b|”.)

(b) If a | b and b 6= 0, then |a| ≤ |b|.
(c) Assume that a 6= 0. Then, a | b if and only if

b
a
∈ Z.

Before we prove this proposition, let us recall a well-known fact: We have

|xy| = |x| · |y| (3)

for any two integers5 x and y. (This can be easily proven by case distinction: x is
either nonnegative or negative, and so is y.)

Proposition 2.2.3 (a) shows that both a and b in the statement “a | b” can be
replaced by their absolute values. Thus, when we talk about divisibility of integers,
the sign of the integers does not really matter – it usually suffices to work with
nonnegative integers. We will often use this (tacitly, after a while) in proofs.

The next proposition shows some basic properties of the divisibility relation:

Proposition 2.2.4. (a) We have a | a for every a ∈ Z. (This is called the reflexivity
of divisibility.)

(b) If a, b, c ∈ Z satisfy a | b and b | c, then a | c. (This is called the transitivity
of divisibility.)

(c) If a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2, then a1a2 | b1b2.

Exercise 2.2.1. Let a ∈ Z.
(a) Prove that a | |a|. (This means “a divides |a|”.)
(b) Prove that |a| | a. (This means “|a| divides a”.)

Exercise 2.2.2. Let a and b be two integers such that a | b and b | a. Prove that
|a| = |b|.

Exercise 2.2.3. Let a, b, c be three integers such that c 6= 0. Prove that a | b holds
if and only if ac | bc.

4Unfortunately, the use of vertical bars for absolute values alone suffices to generate confusion! Just
think of the meaning of “|a| b |c|” when a, b and c are three numbers. Does it stand for “(|a|) ·
b · (|c|)” (where I am using parentheses to make the ambiguity disappear) or for “|(a · |b| · c)|”?
If you see any expressions in my notes that allow for more than one meaningful interpretation,
please let me know!

5or real numbers
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Exercise 2.2.4. Let n ∈ Z. Let a, b ∈N be such that a ≤ b. Prove that na | nb.

Exercise 2.2.5. Let g be a nonnegative integer such that g | 1. Prove that g = 1.

Exercise 2.2.6. Let a, b ∈ Z be such that a | b. Let k ∈N. Prove that ak | bk.

2.3. Congruence modulo n

The next definition is simple but crucial:

Definition 2.3.1. Let n, a, b ∈ Z. We say that a is congruent to b modulo n if and
only if n | a− b. We shall use the notation “a ≡ b mod n” for “a is congruent to
b modulo n”.

We furthermore shall use the notation “a 6≡ b mod n” for “a is not congruent
to b modulo n”.

Example 2.3.2. (a) Is 3 ≡ 7 mod 2 ? Yes, since 2 | 3− 7 = −4.
(b) Is 3 ≡ 6 mod 2 ? No, since 2 - 3− 6 = −3. So we have 3 6≡ 6 mod 2.
Now, let a and b be two integers.
(c) We have a ≡ b mod 0 if and only if a = b. (Indeed, a ≡ b mod 0 is defined

to mean 0 | a− b, but the latter divisibility happens only when a− b = 0, which
is tantamount to saying a = b.)

(d) We have a ≡ b mod 1 always, since 1 | a − b always holds (remember: 1
divides everything).

Note that being congruent modulo 2 means having the same parity: i.e., two
even numbers will be congruent modulo 2, and two odd numbers will be, but an
even number will never be congruent to an odd number modulo 2. (To be rigorous:
This is not quite obvious at this point yet; but it will be easy once we have properly
introduced division with remainder. See Exercise 2.7.1 (i) below for the proof.)

The word “modulo” in the phrase “a is congruent to b modulo n” originates
with Gauss and means something like “with respect to”. You should think of “a is
congruent to b modulo n” as a relation between all three of the numbers a, b and
n, but a and b are the “main characters” and n sets the scene.

Exercise 2.3.1. Let a, b ∈ Z. Prove that a + b ≡ a− b mod 2.

We begin with a proposition so fundamental that we will always use it without
saying:

Proposition 2.3.3. Let n ∈ Z and a ∈ Z. Then, a ≡ 0 mod n if and only if n | a.

Next come some staple properties of congruences:

https://en.wikipedia.org/wiki/Modulo_(jargon)
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Proposition 2.3.4. Let n ∈ Z.
(a) We have a ≡ a mod n for every a ∈ Z.
(b) If a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.
(c) If a, b ∈ Z satisfy a ≡ b mod n, then b ≡ a mod n.
(d) If a1, a2, b1, b2 ∈ Z satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n, then

a1 + a2 ≡ b1 + b2 mod n; (4)
a1 − a2 ≡ b1 − b2 mod n; (5)

a1a2 ≡ b1b2 mod n. (6)

(e) Let m ∈ Z be such that m | n. If a, b ∈ Z satisfy a ≡ b mod n, then
a ≡ b mod m.

In the above proof, we took care to explicitly cite Definition 2.2.1 and Definition
2.3.1 whenever we used them; in the following, we will omit references like this.

Proposition 2.3.4 (d) is saying that congruences modulo n (for a fixed integer n)
can be added, subtracted and multiplied together. This does not mean that you can
do everything with them that you can do with equalities. The next exercise shows
that dividing congruences and taking a congruence to the power of another does
not generally work:

Exercise 2.3.2. Let n, a1, a2, b1, b2 ∈ Z satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n.
Then, in general, neither a1/a2 ≡ b1/b2 mod n nor aa2

1 ≡ bb2
1 mod n is necessarily

true. Of course, this is partly due to the fact that a1/a2, b1/b2 and aa2
1 and bb2

1 are
not always integers in the first place (and being congruent modulo n only makes
sense for integers, at least for now). But even when a1/a2, b1/b2 and aa2

1 and bb2
1

are integers, the congruences a1/a2 ≡ b1/b2 mod n and aa2
1 ≡ bb2

1 mod n are often
false. Find examples of n, a1, a2, b1, b2 such that a1/a2, b1/b2 and aa2

1 and bb2
1 are

integers but the congruences a1/a2 ≡ b1/b2 mod n and aa2
1 ≡ bb2

1 mod n are false.

However, we can divide a congruence a ≡ b mod n by a nonzero integer d when
all of a, b, n are divisible by d:

Exercise 2.3.3. Let n, d, a, b ∈ Z, and assume that d 6= 0. Assume that d divides
each of a, b, n, and assume that a ≡ b mod n. Prove that a/d ≡ b/d mod n/d.

We can also take a congruence to the k-th power when k ∈N:

Exercise 2.3.4. Let n, a, b ∈ Z be such that a ≡ b mod n. Prove that ak ≡ bk mod n
for each k ∈N.

(Note that the “n” is not being taken to the k-th power here.)
We can add not just two, but any finite number of congruences:



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 24

Exercise 2.3.5. Let n be an integer. Let S be a finite set. For each s ∈ S, let as and
bs be two integers. Assume that

as ≡ bs mod n for each s ∈ S. (7)

(a) Prove that
∑
s∈S

as ≡ ∑
s∈S

bs mod n. (8)

(b) Prove that
∏
s∈S

as ≡∏
s∈S

bs mod n. (9)

(Keep in mind that if the set S is empty, then ∑
s∈S

as = ∑
s∈S

bs = 0 and ∏
s∈S

as =

∏
s∈S

bs = 1; this holds by the definition of empty sums and of empty products.)

Exercise 2.3.6. Is it true that if a1, a2, b1, b2, n1, n2 ∈ Z satisfy a1 ≡ b1 mod n1 and
a2 ≡ b2 mod n2, then a1a2 ≡ b1b2 mod n1n2 ?

Exercise 2.3.7. Let a, b, n ∈ Z. Prove that a ≡ b mod n if and only if there exists
some d ∈ Z such that b = a + nd.

Exercise 2.3.8. Let a, b, c, n ∈ Z. Prove that we have a− b ≡ c mod n if and only
if a ≡ b + c mod n.

Exercise 2.3.9. Let a, b, n ∈ Z. Prove that a ≡ b mod n if and only if a ≡ b mod−n.

2.4. Chains of congruences

Convention 2.4.1. For this whole Section 2.4, we fix an integer n.

Chains of equalities are a fundamental piece of notation used throughout mathe-
matics. For example, here is a chain of equalities:

(ad + bc)2 + (ac− bd)2

= (ad)2 + 2ad · bc + (bc)2 + (ac)2 − 2ac · bd + (bd)2

= a2d2 + 2abcd + b2c2 + a2c2 − 2abcd + b2d2

= a2c2 + a2d2 + b2c2 + b2d2

=
(

a2 + b2
) (

c2 + d2
)

(where a, b, c, d are arbitrary numbers). This chain proves the equality (1). But why
does it really? If we look closely at this chain of equalities, we see that it has the
form “A = B = C = D = E”, where A, B, C, D, E are five numbers (namely, A =
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(ad + bc)2 + (ac− bd)2 and B = (ad)2 + 2ad · bc + (bc)2 + (ac)2 − 2ac · bd + (bd)2

and so on). This kind of statement is called a “chain of equalities”, and, a priori, it
simply means that any two adjacent numbers in this chain are equal: A = B and
B = C and C = D and D = E. Without as much as noticing it, we have concluded
that any two numbers in this chain are equal; thus, in particular, A = E, which is
precisely the equality (1) we wanted to prove.

That this kind of “chaining” is possible is one of the most basic facts in mathe-
matics. Let us define a chain of equalities formally:

Definition 2.4.2. If a1, a2, . . . , ak are k objects6, then the statement “a1 = a2 =
· · · = ak” shall mean that

ai = ai+1 holds for each i ∈ {1, 2, . . . , k− 1} .

(In other words, it shall mean that a1 = a2 and a2 = a3 and a3 = a4 and · · · and
ak−1 = ak. This is vacuously true when k ≤ 1. If k = 2, then it simply means that
a1 = a2.)

Such a statement will be called a chain of equalities.

Proposition 2.4.3. Let a1, a2, . . . , ak be k objects such that a1 = a2 = · · · = ak. Let
u and v be two elements of {1, 2, . . . , k}. Then, au = av.

So we have defined a chain of equalities to be true if and only if any two adjacent
terms in this chain are equal (i.e., if “each equality sign in the chain is satisfied”).
Proposition 2.4.3 shows that in such a chain, any two terms are equal. This is
intuitively rather clear, but can also be formally proven by induction using the
basic properties of equality (transitivity7, reflexivity8 and symmetry9).

But our goal is to understand basic number theory, not to scrutinize the founda-
tions of mathematics. So let us recall that we have fixed an integer n, and consider
congruences modulo n. We claim that these can be chained just as equalities:

Definition 2.4.4. If a1, a2, . . . , ak are k integers, then the statement “a1 ≡ a2 ≡
· · · ≡ ak mod n” shall mean that

ai ≡ ai+1 mod n holds for each i ∈ {1, 2, . . . , k− 1} .

(In other words, it shall mean that a1 ≡ a2 mod n and a2 ≡ a3 mod n and a3 ≡
a4 mod n and · · · and ak−1 ≡ ak mod n. This is vacuously true when k ≤ 1. If
k = 2, then it simply means that a1 ≡ a2 mod n.)

Such a statement will be called a chain of congruences modulo n.

6“Objects” can be numbers, sets, tuples or any other well-defined things in mathematics.
7Transitivity of equality says that if a, b, c are three objects satisfying a = b and b = c, then a = c.
8Reflexivity of equality says that every object a satisfies a = a.
9Symmetry of equality says that if a, b are two objects satisfying a = b, then b = a.
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Proposition 2.4.5. Let a1, a2, . . . , ak be k integers such that a1 ≡ a2 ≡ · · · ≡
ak mod n. Let u and v be two elements of {1, 2, . . . , k}. Then, au ≡ av mod n.

Proposition 2.4.5 shows that any two terms in a chain of congruences modulo n
must be congruent to each other modulo n. Again, this can be formally proven by
induction; see [Grinbe15, proof of Proposition 2.16]. The ingredients of the proof
are basic properties of congruence modulo n: transitivity, reflexivity and symmetry.
These are fancy names for parts (b), (a) and (c) of Proposition 2.3.4.

We will use Proposition 2.4.5 tacitly (just as you would use Proposition 2.4.3):
i.e., every time we prove a chain of congruences like a1 ≡ a2 ≡ · · · ≡ ak mod n,
we assume that the reader will automatically conclude that any two of its terms
are congruent to each other modulo n (and will remember this conclusion). For
instance, if we show that 1 ≡ 4 ≡ 34 ≡ 334 ≡ 304 mod 3, then we automatically get
the congruences 1 ≡ 304 mod 3 and 334 ≡ 1 mod 3 and 4 ≡ 334 mod 3 and several
others out of this chain.

Chains of congruences can also include equality signs. For example, if a, b, c, d
are integers, then “a ≡ b = c ≡ d mod n” means that a ≡ b mod n and b = c and
c ≡ d mod n. Such a chain is still a chain of congruences, because b = c implies
b ≡ c mod n (by Proposition 2.3.4 (a)).

Just as there are chains of equalities and chains of congruences, there are chains
of divisibilities:

Definition 2.4.6. If a1, a2, . . . , ak are k integers, then the statement “a1 | a2 | · · · |
ak” shall mean that

ai | ai+1 holds for each i ∈ {1, 2, . . . , k− 1} .

(In other words, it shall mean that a1 | a2 and a2 | a3 and a3 | a4 and · · · and
ak−1 | ak. This is vacuously true when k ≤ 1. If k = 2, then it simply means that
a1 | a2.)

Such a statement will be called a chain of divisibilities.

Proposition 2.4.7. Let a1, a2, . . . , ak be k integers such that a1 | a2 | · · · | ak. Let u
and v be two elements of {1, 2, . . . , k} such that u ≤ v. Then, au | av.

Note that we had to require u ≤ v in this proposition, unlike the analogous
propositions for chains of equalities and chains of congruences, because there is no
“symmetry of divisibility” (i.e., if a | b, then we don’t generally have b | a). The
proof of Proposition 2.4.7 relies on the reflexivity of divisibility (Proposition 2.2.4
(a)) and on the transitivity of divisibility (Proposition 2.2.4 (b)).

Again, chains of divisibilities can include equality signs. For example, 4 | 3 · 4 =
12 = 2 · 6 | 4 · 6 = 24.
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2.5. Substitutivity for congruences

In Section 2.4, we have learnt that congruences modulo an integer n can be chained
together like equalities. A further important feature of congruences is the princi-
ple of substitutivity for congruences. This is yet another way in which congruences
behave like equalities. We are not going to state it fully formally (as it is a meta-
mathematical principle), but will merely explain its meaning. Later on, once we
understand what the rings Z/n (for integer n) are, we will no longer need this
principle, since it will just boil down to “equal things can be substituted for one
another” (the whole point of Z/n is to “make congruent numbers equal”); but for
now, we cannot treat “congruent modulo n” as “equal”, so we have to state it.

You are probably used to making computations like these:

(a + b)2︸ ︷︷ ︸
=a2+2ab+b2

+ (a− b)2︸ ︷︷ ︸
=a2−2ab+b2

=
(

a2 + 2ab + b2
)
+
(

a2 − 2ab + b2
)

= a2 + a2︸ ︷︷ ︸
=2a2

+ b2 + b2︸ ︷︷ ︸
=2b2

= 2a2 + 2b2

(for any two numbers a and b). What is going on in these underbraces (like
“ (a + b)2︸ ︷︷ ︸
=a2+2ab+b2

”)? Something pretty simple is going on: You are replacing a num-

ber (in this case, (a + b)2) by an equal number (in this case, a2 + 2ab + b2). This
relies on a fundamental principle of mathematics (called the principle of substitutiv-
ity for equalities), which says that an object in an expression can indeed be replaced
by any object equal to it (without changing the value of the expression). (This is
also known as Leibniz’s equality law.) To be precise, we are using this principle twice
in some of our equality signs above, since we are making several replacements at
the same time; but this is fine (we can just do the replacement one by one instead).

We would like to have a similar principle for congruences modulo n: We would
like to be able to replace any integer by an integer congruent to it modulo n. For
example, we would like to be able to say that if seven integers a, a′, b, b′, c, c′, n
satisfy a ≡ a′mod n and b ≡ b′mod n and c ≡ c′mod n, then

b︸︷︷︸
≡b′mod n

c︸︷︷︸
≡c′mod n

+ c︸︷︷︸
≡c′mod n

a︸︷︷︸
≡a′mod n

+ a︸︷︷︸
≡a′mod n

b︸︷︷︸
≡b′mod n

≡ b′c′ + c′a′ + a′b′mod n.

We have to be careful with this: For example, we run into troubles if division is
involved in our expressions. For example, we have 6 ≡ 9 mod 3, but we do not have

6︸︷︷︸
≡9 mod 3

/3 ≡ 9/3 mod 3. Similarly, exponentiation can be problematic. So we need

to state the principle we are using here in clearer terms, so that we know what we
can do.
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Convention 2.5.1. For this whole Section 2.5, we fix an integer n.

The principle of substitutivity for equalities says the following:

Principle of substitutivity for equalities (PSE): If two objects x and x′ are
equal, and if we have any expression A that involves the object x, then
we can replace this x (or, more precisely, any arbitrary appearance of x
in A) in A by x′; the value of the resulting expression A′ will equal the
value of A.

Here are two examples of how this principle can be used:

• If a, b, c, d, e, c′ are numbers such that c = c′, then the PSE says that we can
replace c by c′ in the expression a (b− (c + d) e), and the value of the resulting
expression a (b− (c′ + d) e) will equal the value of a (b− (c + d) e); that is, we
have

a (b− (c + d) e) = a
(
b−

(
c′ + d

)
e
)

. (10)

• If a, b, c, a′ are numbers such that a = a′, then

(a− b) (a + b) =
(
a′ − b

)
(a + b) , (11)

because the PSE allows us to replace the first a appearing in the expression
(a− b) (a + b) by an a′. (We can also replace the second a by a′, of course.)

More generally, we can make several such replacements at the same time.
The PSE is one of the headstones of mathematical logic; it is the essence of what

it means for two objects to be equal.
The principle of substitutivity for congruences is similar, but far less fundamental; it

says the following:

Principle of substitutivity for congruences (PSC): If two numbers x and x′

are congruent to each other modulo n (that is, x ≡ x′mod n), and if we
have any expression A that involves only integers, addition, subtraction
and multiplication, and involves the object x, then we can replace this x
(or, more precisely, any arbitrary appearance of x in A) in A by x′; the
value of the resulting expression A′ will be congruent to the value of A
modulo n.

This principle is less general than the PSE, since it only applies to expressions
that are built from integers and certain operations (note that division is not one of
these operations). But it still lets us prove analogues of our above examples (10)
and (11):
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• If a, b, c, d, e, c′ are integers such that c ≡ c′mod n, then the PSC says that
we can replace c by c′ in the expression a (b− (c + d) e), and the value of
the resulting expression a (b− (c′ + d) e) will be congruent to the value of
a (b− (c + d) e) modulo n; that is, we have

a (b− (c + d) e) ≡ a
(
b−

(
c′ + d

)
e
)

mod n. (12)

• If a, b, c, a′ are integers such that a ≡ a′mod n, then

(a− b) (a + b) ≡
(
a′ − b

)
(a + b)mod n, (13)

because the PSC allows us to replace the first a appearing in the expression
(a− b) (a + b) by an a′. (We can also replace the second a by a′, of course.)

We shall not prove the PSC, since we have not formalized it (after all, we have not
defined what an “expression” is). But we shall prove the specific congruences (12)
and (13) using Proposition 2.3.4; the way in which we prove these congruences is
symptomatic: Every congruence obtained from the PSC can be proven in a manner
like these. Thus, the proofs of (12) and (13) given below can serve as templates
which can easily be adapted to any other situation in which an application of the
PSC needs to be justified.

As we said, these two proofs are exemplary: Any congruence obtained from the
PSC can be proven in such a way (starting with the congruence x ≡ x′mod n, and
then “wrapping” it up in the expression A by repeatedly adding, multiplying and
subtracting congruences that follow from Proposition 2.3.4 (a)).

When we apply the PSC, we shall use underbraces to point out which integers
we are replacing. For example, when deriving (12) from this principle, we shall
write

a

b−

 c︸︷︷︸
≡c′mod n

+d

 e

 ≡ a
(
b−

(
c′ + d

)
e
)

mod n,

in order to stress that we are replacing c by c′. Likewise, when deriving (13) from
the PSC, we shall write a︸︷︷︸

≡a′mod n

−b

 (a + b) ≡
(
a′ − b

)
(a + b)mod n,

in order to stress that we are replacing the first a (but not the second a) by a′.
The PSC allows us to replace a single integer x appearing in an expression by

another integer x′ that is congruent to x modulo n. Applying this principle many
times, we thus conclude that we can also replace several integers at the same time
(because we can get to the same result by performing these replacements one at a
time, and Proposition 2.4.5 shows that the value of the final result will be congruent
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to the value of the original result). For example, if seven integers a, a′, b, b′, c, c′, n
satisfy a ≡ a′mod n and b ≡ b′mod n and c ≡ c′mod n, then

bc + ca + ab ≡ b′c′ + c′a′ + a′b′mod n, (14)

because we can replace all the six integers b, c, c, a, a, b in the expression bc + ca +
ab (listed in the order of their appearance in this expression) by b′, c′, c′, a′, a′, b′,
respectively. If we want to derive this from the PSC, then we must perform the
replacements one at a time, e.g., as follows:

b︸︷︷︸
≡b′mod n

c + ca + ab ≡ b′ c︸︷︷︸
≡c′mod n

+ca + ab ≡ b′c′ + c︸︷︷︸
≡c′mod n

a + ab

≡ b′c′ + c′ a︸︷︷︸
≡a′mod n

+ab ≡ b′c′ + c′a′ + a︸︷︷︸
≡a′mod n

b

≡ b′c′ + c′a′ + a′ b︸︷︷︸
≡b′mod n

≡ b′c′ + c′a′ + a′b′mod n.

Of course, we shall always just show the replacements as a single step:

b︸︷︷︸
≡b′mod n

c︸︷︷︸
≡c′mod n

+ c︸︷︷︸
≡c′mod n

a︸︷︷︸
≡a′mod n

+ a︸︷︷︸
≡a′mod n

b︸︷︷︸
≡b′mod n

≡ b′c′ + c′a′ + a′b′mod n.

The PSC can be extended: The expression A can be allowed to involve not only
integers, addition, subtraction, multiplication and x, but also k-th powers for k ∈N

(as long as k remains unchanged in our replacement) as well as finite sums and
products (as long as the bounds of the sums and products are unchanged). This
follows from Exercise 2.3.4 and Exercise 2.3.5.

Exercise 2.5.1. Let n ∈N. Show that 7 | 32n+1 + 2n+2.

2.6. Division with remainder

The following fact you likely remember from high school:

Theorem 2.6.1. Let n be a positive integer. Let u ∈ Z. Then, there exists a unique
pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

We shall refer to this as the “division-with-remainder theorem for integers”. Before
we prove this theorem, let us introduce the notations that it justifies:

Definition 2.6.2. Let n be a positive integer. Let u ∈ Z. Theorem 2.6.1 shows
that there exists a unique pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.
Consider this pair.

(a) We denote the integer q by u//n, and refer to it as the quotient of the division
of u by n.

(b) We denote the integer r by u%n, and refer to it as the remainder of the division
of u by n.
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The words “quotient” and “remainder” are standard, but the notations “u//n”
and “u%n” are not (I have taken them from the Python programming language);
be prepared to see other notations in the literature (e.g., the notations “quo (u, n)”
and “rem (u, n)” for u//n and u%n, respectively).

Example 2.6.3. (a) We have 14//3 = 4 and 14%3 = 2, because (4, 2) is the unique
pair (q, r) ∈ Z× {0, 1, 2} satisfying 14 = q · 3 + r.

(b) We have 18//3 = 6 and 18%3 = 0, because (6, 0) is the unique pair (q, r) ∈
Z× {0, 1, 2} satisfying 18 = q · 3 + r.

(c) We have (−2) //3 = −1 and (−2)%3 = 1, because (−1, 1) is the unique
pair (q, r) ∈ Z× {0, 1, 2} satisfying −2 = q · 3 + r.

(d) For each u ∈ Z, we have u//1 = u and u%1 = 0, because (u, 0) is the
unique pair (q, r) ∈ Z× {0} satisfying u = q · 1 + r.

But we have gotten ahead of ourselves: We need to prove Theorem 2.6.1 before
we can use the notations “u//n” and “u%n”.

Let us split Theorem 2.6.1 into two parts: existence and uniqueness:

Lemma 2.6.4. Let n be a positive integer. Let u ∈ Z. Then, there exists at least
one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

Lemma 2.6.5. Let n be a positive integer. Let u ∈ Z. Then, there exists at most
one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

We begin by proving Lemma 2.6.5 (which is the easier one):
But we also need to prove Lemma 2.6.4. This lemma can be proven by induction

on u, but not without some complications: Since it is stated for all integers u (rather
than just for nonnegative or positive integers), the classical induction principle
(with an induction base and a “u to u + 1” step) cannot prove it directly. Instead,
we have to either add a “u to u − 1” step to our induction (resulting in a “two-
sided induction” or “up- and down-induction” argument), or to treat the case of
negative u separately. A proof using the first of these two methods can be found
in [Grinbe15, proof of Proposition 2.150] (where n and u are denoted by N and
n). We shall instead give a proof using the second method; thus, we first state the
particular case of Lemma 2.6.4 when u is nonnegative:

Lemma 2.6.6. Let n be a positive integer. Let u ∈ N. Then, there exists at least
one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

This lemma can be proven by induction on u as in [Grinbe15, proof of Proposition
2.150]. Let us instead prove it by strong induction on u. See [Grinbe15, §2.8] for an
introduction to strong induction; in particular, recall that a strong induction needs
no induction base (but often contains a case distinction in its “induction step” that,
in some way, does give the first few values a special treatment). The proof of
Lemma 2.6.6 that we give below follows a stupid but valid method of finding the
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pair (q, r): Keep subtracting n from u until u becomes < n; then r will be the
resulting number, whereas q will be the number of times you have subtracted n.

In order to derive Lemma 2.6.4 from Lemma 2.6.6 (that is, to extend Lemma 2.6.6
to the case of negative u), we shall need a simple but important trick: By adding
a sufficiently high multiple of the positive integer n to u, we eventually obtain a
nonnegative integer v (to which we can then apply Lemma 2.6.6). This trick can be
crystallized in the following lemma:

Lemma 2.6.7. Let n be a positive integer. Let u ∈ Z. Then, there exists a v ∈ N

such that u ≡ v mod n.

Remark 2.6.8. We can visualize Theorem 2.6.1 as follows: Mark all the multiples
of n on the real line. These multiples are evenly spaced points, with a distance of
n between any two neighboring multiples. Thus, they subdivide the real line into
infinitely many intervals of length n. More precisely, for each a ∈ Z, let Ia be the
interval [an, (a + 1) n) = {x ∈ R | an ≤ x < (a + 1) n}; then, every real belongs
to exactly one of these intervals Ia. (This is intuitively clear – I am not saying
this is a rigorous proof.) Thus, in particular, u belongs to Iq for some q ∈ Z.
This q is precisely the q in the unique pair (q, r) ∈ Z×{0, 1, . . . , n− 1} satisfying
u = qn + r. Moreover, the r from this pair specifies the relative position of u in
the interval Iq.

(Unfortunately, it is not clear to me whether this intuition can be turned into a
proper proof of Theorem 2.6.1, since it relies on the fact that every real number
belongs to exactly one of the intervals Ia, which fact may well require Theorem
2.6.1 for its proof.)

The following properties of the quotient and the remainder are simple but will
be used all the time:

Corollary 2.6.9. Let n be a positive integer. Let u ∈ Z.
(a) Then, u%n ∈ {0, 1, . . . , n− 1} and u%n ≡ u mod n.
(b) We have n | u if and only if u%n = 0.
(c) If c ∈ {0, 1, . . . , n− 1} is such that c ≡ u mod n, then c = u%n.
(d) We have u = (u//n) n + (u%n).

Before we prove this corollary, let us explain its purpose. Corollary 2.6.9 (a) says
that u%n is a number in the set {0, 1, . . . , n− 1} that is congruent to u modulo n.
Corollary 2.6.9 (c) says that u%n is the only such number (as it says that any further
such number c must be equal to u%n). Corollary 2.6.9 (b) gives an algorithm to
check whether n | u holds (namely, compute u%n and check whether u%n =
0). Corollary 2.6.9 (d) is a trivial consequence of the definition of quotient and
remainder.
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Exercise 2.6.1. Let n be a positive integer. Let u and v be integers. Prove that
u ≡ v mod n if and only if u%n = v%n.

The following exercise provides an analogue of Theorem 2.6.1, in which r is re-
quired to be an integer satisfying |r| ≤ n/2 rather than an element of {0, 1, . . . , n− 1}.
Note, however, that r is not always unique in this case.

Exercise 2.6.2. Let n be a positive integer. Let u ∈ Z.
(a) Prove that there exists a pair (q, r) ∈ Z × Z such that u = qn + r and
|r| ≤ n/2.

(b) Prove that this pair is not unique in general (i.e., find n and u for which it
is not unique).

Remark 2.6.10. There is a simple visualization that makes Exercise 2.6.2 (a) intu-
itively obvious: Mark all the multiples of n on the real line. These multiples are
evenly spaced points, with a distance of n between any two neighboring multi-
ples. Hence, every point on the real line is at most a distance of n/2 away from
the closest multiple of n. Applying this to the point u, we conclude that u is
at most a distance of n/2 away from the closest multiple of n. In other words,
if qn is the closest multiple of n to u (or one of the two closest multiples of n,
if u is in the middle between two multiples), then |u− qn| ≤ n/2. Thus, if we
set r = u − qn, then u = qn + r and |r| ≤ n/2. This proves Exercise 2.6.2 (a)
intuitively.

This point of view also makes Exercise 2.6.2 (b) evident: When the point u
is exactly in the middle of one of the length-n intervals between multiples of n,
then there are two multiples of n equally close to u, and we can pick either of
them; hence, the pair (q, r) is not unique.

Convention 2.6.11. The symbols // and % will be granted higher precedence (in
the sense of operator precedence) than addition. This means that an expression
of the form “c + a//n + b” will always be interpreted as “c + (a//n) + b”, rather
than as “(c + a) // (n + b)” (or in any other way). Likewise, an expression of the
form “c + a%n + b” will always be interpreted as “c + (a%n) + b”, rather than as
“(c + a)% (n + b)”.

Exercise 2.6.3. Let u and v be two integers. Let n be a positive integer.
(a) Prove that u%n + v%n− (u + v)%n ∈ {0, n}.
(b) Prove that (u + v) //n− u//n− v//n ∈ {0, 1}.

Exercise 2.6.4. Let n be a positive integer. Prove the following:
(a) The map

Z× {0, 1, . . . , n− 1} → Z,
(q, r) 7→ qn + r

https://en.wikipedia.org/wiki/Order_of_operations
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is a bijection.
(b) The map

N× {0, 1, . . . , n− 1} →N,
(q, r) 7→ qn + r

is a bijection.
(c) Any q ∈ Z and r ∈ {0, 1, . . . , n− 1} satisfy (qn + r) //n = q.
(d) Any q ∈ Z and r ∈ {0, 1, . . . , n− 1} satisfy (qn + r)%n = r.

2.7. Even and odd numbers

Recall the following:

Definition 2.7.1. Let u be an integer.
(a) We say that u is even if u is divisible by 2.
(b) We say that u is odd if u is not divisible by 2.

So an integer is either even or odd (but not both at the same time). The following
exercise collects various properties of even and odd integers:

Exercise 2.7.1. Let u be an integer.
(a) Prove that u is even if and only if u%2 = 0.
(b) Prove that u is odd if and only if u%2 = 1.
(c) Prove that u is even if and only if u ≡ 0 mod 2.
(d) Prove that u is odd if and only if u ≡ 1 mod 2.
(e) Prove that u is odd if and only if u + 1 is even.
(f) Prove that exactly one of the two numbers u and u + 1 is even.
(g) Prove that u (u + 1) ≡ 0 mod 2.
(h) Prove that u2 ≡ −u ≡ u mod 2.
(i) Let v be a further integer. Prove that u ≡ v mod 2 holds if and only if u and

v are either both odd or both even.

Exercise 2.7.2. (a) Prove that each even integer u satisfies u2 ≡ 0 mod 4.
(b) Prove that each odd integer u satisfies u2 ≡ 1 mod 4.
(c) Prove that no two integers x and y satisfy x2 + y2 ≡ 3 mod 4.
(d) Prove that if x and y are two integers satisfying x2 + y2 ≡ 2 mod 4, then x

and y are both odd.

Exercise 2.7.2 (c) establishes our previous experimental observation that an inte-
ger of the form 4k + 3 with integer k (that is, an integer that is larger by 3 than a
multiple of 4) can never be written as a sum of two perfect squares.
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Exercise 2.7.3. (a) Prove that the map

{i ∈N | i is even} → {d ∈N | d ≡ 1 mod 4} ,
i 7→ 2i + 1

is well-defined and is a bijection.
(b) Prove that the map

{i ∈N | i is odd} → {d ∈N | d ≡ 3 mod 4} ,
i 7→ 2i + 1

is well-defined and is a bijection.

Note that the map defined in Exercise 2.7.3 (a) sends 0, 2, 4, 6, 8, . . . to 1, 5, 9, 13, 17, . . .,
while the map defined in Exercise 2.7.3 (b) sends 1, 3, 5, 7, 9, . . . to 3, 7, 11, 15, 19, . . ..

2.8. The floor function

We shall now briefly introduce the floor function (following [Grinbe16]), as it is
closely connected to division with remainder.

Definition 2.8.1. Let x be a real number. Then, bxc is defined to be the unique
integer n satisfying n ≤ x < n + 1. This integer bxc is called the floor of x, or the
integer part of x.

Remark 2.8.2. (a) Why is bxc well-defined? I mean, why does the unique integer
n in Definition 2.8.1 exist, and why is it unique? This question is trickier than
it sounds and relies on the construction of real numbers. However, in the case
when x is rational, the well-definedness of bxc follows from Proposition 2.8.3
below.

(b) What we call bxc is typically called [x] in older books (such as
[NiZuMo91]). I suggest avoiding the notation [x] wherever possible; it has too
many different meanings (whereas bxc almost always means the floor of x).

(c) The map R → Z, x 7→ bxc is called the floor function or the greatest integer
function.

There is also a ceiling function, which sends each x ∈ R to the unique integer n
satisfying n− 1 < x ≤ n; this latter integer is called dxe. The two functions are
connected by the rule dxe = − b−xc (for all x ∈ R).

The floor and the ceiling functions are some of the simplest examples of dis-
continuous functions.

(d) Here are some examples of floors:

bnc = n for every n ∈ Z;
b1.32c = 1; bπc = 3; b0.98c = 0;
b−2.3c = −3; b−0.4c = −1.
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(e) You might have the impression that bxc is “what remains from x if the
digits behind the comma are removed”. This impression is highly imprecise. For
one, it is completely broken for negative x (for example, b−2.3c is −3, not −2).
But more importantly, the operation of “removing the digits behind the comma”
from a number is not well-defined; in fact, the periodic decimal representations
0.999 . . . and 1.000 . . . belong to the same real number (1), but removing their
digits behind the comma leaves us with different integers.

(f) A related map is the map R→ Z, x 7→
⌊

x +
1
2

⌋
. It sends each real x to the

integer that is closest to x, choosing the larger one in the case of a tie. This is one
of the many things that are commonly known as “rounding” a number.

Proposition 2.8.3. Let a and b be integers such that b > 0. Then,
⌊ a

b

⌋
is well-

defined and equals a//b.

See [Grinbe16] and [NiZuMo91, §4.1] for further properties of the floor function.

2.9. Common divisors, the Euclidean algorithm and the Bezout
theorem

We are next going to define and study the divisors of an integer, as well as the
common divisors of several integers. These concepts form the backbone of most of
number theory, and will later be extended to some more complicated notions than
integers (e.g., Gaussian integers and polynomials).

2.9.1. Divisors

Definition 2.9.1. Let b ∈ Z. The divisors of b are defined as the integers that
divide b.

Be aware that some authors use a mildly different definition of “divisors”; namely,
they additionally require them to be positive. We don’t make such a requirement.

For example, the divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6. Of course, the negative
divisors of an integer b are merely the reflections of the positive divisors through
the origin10 (this follows easily from Proposition 2.2.3 (a)); thus, the positive divi-
sors are usually the only ones of interest.

Here are some basic properties of divisors:

Proposition 2.9.2. (a) If b ∈ Z, then 1 and b are divisors of b.
(b) The divisors of 0 are all the integers.
(c) Let b ∈ Z be nonzero. Then, all divisors of b belong to the set
{− |b| ,− |b|+ 1, . . . , |b|} \ {0}.

10“Reflection through the origin” is just a poetic way to say “negative”; i.e., the reflection of a
number a through the origin is −a.
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Thanks to Proposition 2.9.2, we have a method to find all divisors of an integer b:
If b = 0, then Proposition 2.9.2 (b) directly yields the result; otherwise, Proposition
2.9.2 (c) shows that there is only a finite set of numbers we have to check. When b is
large, this is slow, but to some extent that is because the problem is computationally
hard (or at least suspected to be hard).

2.9.2. Common divisors

It is somewhat more interesting to consider the common divisors of two or more
integers:

Definition 2.9.3. Let b1, b2, . . . , bk be integers. Then, the common divisors of
b1, b2, . . . , bk are defined to be the integers a that satisfy

(a | bi for all i ∈ {1, 2, . . . , k}) (15)

(in other words, that divide all of the integers b1, b2, . . . , bk). We let
Div (b1, b2, . . . , bk) denote the set of these common divisors.

Note that the concept of common divisors encompasses the concept of divisors:
The common divisors of a single integer b are merely the divisors of b. Thus,
Div (b) is the set of all divisors of b whenever b ∈ Z. (Of course, speaking of
“common divisors” of just one integer is like speaking of a conspiracy of just one
person. But the definition fits, and we algebraists don’t exclude cases just because
they are ridiculous.)

(Also, the common divisors of an empty list of integers are all the integers, be-
cause the requirement (15) is vacuously true for k = 0. In other words, Div () = Z.)

Here are some more interesting examples of common divisors:

Example 2.9.4. (a) The common divisors of 6 and 8 are −2,−1, 1, 2. (In order to
see this, just observe that the divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6, whereas
the divisors of 8 are −8,−4,−2,−1, 1, 2, 4, 8; now you can find the common di-
visors of 6 and 8 by taking the numbers common to these two lists.) Thus,

Div (6, 8) = {−2,−1, 1, 2} .

(b) The common divisors of 6 and 14 are −2,−1, 1, 2 again. (In order to see
this, just observe that the divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6, whereas the
divisors of 14 are −14,−7,−2,−1, 1, 2, 7, 14.)

(c) The common divisors of 6, 10 and 15 are −1 and 1. (In order to see this,
note that:

• The divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6.

• The divisors of 10 are −10,−5,−2,−1, 1, 2, 5, 10.

• The divisors of 15 are −15,−5,−3,−1, 1, 3, 5, 15.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 38

The only numbers common to these three lists are −1 and 1.) However:

• The common divisors of 6 and 10 are −2,−1, 1, 2.

• The common divisors of 6 and 15 are −3,−1, 1, 3.

• The common divisors of 10 and 15 are −5,−1, 1, 5.

This illustrates the fact that three numbers can have pairwise nontrivial com-
mon divisors (where “nontrivial” means “distinct from 1 and −1”), but the only
common divisors of all three of them may still be just 1 and −1.

Proposition 2.9.5. Let b1, b2, . . . , bk be finitely many integers that are not all 0.
Then, the set Div (b1, b2, . . . , bk) has a largest element, and this largest element is
a positive integer.

The following exercise shows that the set Div (b1, b2, . . . , bk) depends only on
the set {b1, b2, . . . , bk}, but not on the numbers b1, b2, . . . , bk themselves. Thus,
for example, any integers a, b and c satisfy Div (a, b, c, a) = Div (c, a, b) (since
{a, b, c, a} = {c, a, b}) and Div (a, a, b, a) = Div (a, b, b) (since {a, a, b, a} = {a, b, b}).

Exercise 2.9.1. Let b1, b2, . . . , bk be finitely many integers. Let c1, c2, . . . , c` be
finitely many integers. Prove that if

{b1, b2, . . . , bk} = {c1, c2, . . . , c`} ,

then
Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`) .

2.9.3. Greatest common divisors

Proposition 2.9.5 allows us to make a crucial definition:

Definition 2.9.6. Let b1, b2, . . . , bk be finitely many integers. The greatest common
divisor of b1, b2, . . . , bk is defined as follows:

• If b1, b2, . . . , bk are not all 0, then it is defined as the largest element of the
set Div (b1, b2, . . . , bk). This largest element is well-defined (by Proposition
2.9.5), and is a positive integer (by Proposition 2.9.5 again).

• If b1, b2, . . . , bk are all 0, then it is defined to be 0. (This is a slight abuse of
the word “greatest common divisor”, because 0 is not actually the greatest
among the common divisors of b1, b2, . . . , bk in this case. In fact, when
b1, b2, . . . , bk are all 0, every integer is a common divisor of b1, b2, . . . , bk, so
that there is no greatest among these common divisors, because there is no
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“greatest integer”. Nevertheless, defining the greatest common divisor of
b1, b2, . . . , bk to be 0 in this case will prove to be a good decision, as it will
greatly reduce the number of exceptions in our results.)

Thus, in either case, this greatest common divisor is a nonnegative integer. We
denote it by gcd (b1, b2, . . . , bk). (Some authors also call it (b1, b2, . . . , bk), which
is rather dangerous as the same notation stands for a k-tuple. We shall avoid
this notation at all cost, but you should be aware of it when reading number-
theoretical literature.)

We shall also use the word “gcd” as shorthand for “greatest common divisor”.

The greatest common divisors you will most commonly see are those of two
integers. Indeed, any other gcd can be rewritten in terms of these: for example,

gcd (a, b, c, d, e) = gcd (a, gcd (b, gcd (c, gcd (d, e))))

for all a, b, c, d, e ∈ Z. This is, in fact, a consequence of Proposition 2.9.21 (d) (which
we will prove later), applied several times.

First, let us observe several properties of greatest common divisors:

Proposition 2.9.7. (a) We have gcd (a, 0) = gcd (a) = |a| for all a ∈ Z.
(b) We have gcd (a, b) = gcd (b, a) for all a, b ∈ Z.
(c) We have gcd (a, ua + b) = gcd (a, b) for all a, b, u ∈ Z.
(d) If a, b, c ∈ Z satisfy b ≡ c mod a, then gcd (a, b) = gcd (a, c).
(e) If a, b ∈ Z are such that a is positive, then gcd (a, b) = gcd (a, b%a).
(f) We have gcd (a, b) | a and gcd (a, b) | b for all a, b ∈ Z.
(g) We have gcd (−a, b) = gcd (a, b) for all a, b ∈ Z.
(h) We have gcd (a,−b) = gcd (a, b) for all a, b ∈ Z.
(i) If a, b ∈ Z satisfy a | b, then gcd (a, b) = |a|.
(j) The greatest common divisor of the empty list of integers is gcd () = 0.

Proposition 2.9.7 is not difficult and we could start proving it right away. How-
ever, such a proof would require some annoying case distinctions due to the special
treatment that the “b1, b2, . . . , bk are all 0” case required in Definition 2.9.6. Fortu-
nately, we can circumnavigate these annoyances by stating a simple rule for how
the gcd of k integers b1, b2, . . . , bk can be computed from their set of common divi-
sors (including the case when b1, b2, . . . , bk are all 0):

Lemma 2.9.8. Let b1, b2, . . . , bk be finitely many integers. Then,

gcd (b1, b2, . . . , bk) =

{
max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk) .

(Here, max S denotes the largest element of a set S of integers, whenever this
largest element exists.)
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A corollary of Lemma 2.9.8 is the following:

Lemma 2.9.9. Let b1, b2, . . . , bk be finitely many integers. Let c1, c2, . . . , c` be
finitely many integers. If

Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`) ,

then
gcd (b1, b2, . . . , bk) = gcd (c1, c2, . . . , c`) .

Lemma 2.9.9 tells us that in order to prove that two lists of integers have the
same gcd, it suffices to check that they have the same set of common divisors.
Since many of the claims of Proposition 2.9.7 are equalities between gcds, we can
thus reduce them to equalities between sets of common divisors. Let us state these
equalities as a lemma, which we will then use as a stepping stone in our proof of
Proposition 2.9.7:

Lemma 2.9.10. (a) We have Div (a, 0) = Div (a) for all a ∈ Z.
(b) We have Div (a, b) = Div (b, a) for all a, b ∈ Z.
(c) We have Div (a, ua + b) = Div (a, b) for all a, b, u ∈ Z.
(d) If a, b, c ∈ Z satisfy b ≡ c mod a, then Div (a, b) = Div (a, c).
(e) If a, b ∈ Z are such that a is positive, then Div (a, b) = Div (a, b%a).
(f) We have Div (a, b) ⊆ Div (a) and Div (a, b) ⊆ Div (b) for all a, b ∈ Z.
(g) We have Div (−a, b) = Div (a, b) for all a, b ∈ Z.
(h) We have Div (a,−b) = Div (a, b) for all a, b ∈ Z.
(i) If a, b ∈ Z satisfy a | b, then Div (a, b) = Div (a).
(j) The set of common divisors of the empty list of integers is Div () = Z.

Remark 2.9.11. Proposition 2.9.7 (c) says that if we add a multiple of a to b, then
gcd (a, b) does not change. Similarly, if we add a multiple of b to a, then gcd (a, b)
does not change (i.e., we have gcd (vb + a, b) = gcd (a, b) for all a, b, v ∈ Z).

However, if we simultaneously add a multiple of a to b and a multiple of b
to a, then gcd (a, b) may well change: i.e., we may have gcd (vb + a, ua + b) 6=
gcd (a, b) for all a, b, u, v ∈ Z. Examples are easy to find (just take v = 1 and
u = 1).

Proposition 2.9.7 gives a quick way to compute gcd (a, b) for two nonnegative
integers a and b, by repeatedly applying division with remainder. For example, let



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 41

us compute gcd (210, 45) as follows:

gcd (210, 45) = gcd (45, 210) (by Proposition 2.9.7 (b))

= gcd

45, 210%45︸ ︷︷ ︸
=30

 (by Proposition 2.9.7 (e))

= gcd (45, 30)
= gcd (30, 45) (by Proposition 2.9.7 (b))

= gcd

30, 45%30︸ ︷︷ ︸
=15

 (by Proposition 2.9.7 (e))

= gcd (30, 15)
= gcd (15, 30) (by Proposition 2.9.7 (b))

= gcd

15, 30%15︸ ︷︷ ︸
=0

 (by Proposition 2.9.7 (e))

= gcd (15, 0) = |15| (by Proposition 2.9.7 (a))
= 15.

This method of computing gcd (a, b) is called the Euclidean algorithm, and is usually
much faster than the divisors of a or the divisors of b can be found!

The following exercise shows that the number gcd (b1, b2, . . . , bk) depends only
on the set {b1, b2, . . . , bk}, but not on the numbers b1, b2, . . . , bk themselves. Thus,
for example, any integers a, b and c satisfy gcd (a, b, c, a) = gcd (c, a, b) (since
{a, b, c, a} = {c, a, b}) and gcd (a, a, b, a) = gcd (a, b, b) (since {a, a, b, a} = {a, b, b}).

Exercise 2.9.2. Let b1, b2, . . . , bk be finitely many integers. Let c1, c2, . . . , c` be
finitely many integers. Prove that if

{b1, b2, . . . , bk} = {c1, c2, . . . , c`} ,

then
gcd (b1, b2, . . . , bk) = gcd (c1, c2, . . . , c`) .

2.9.4. Bezout’s theorem

The following fact about gcds is one of the most important facts in number theory:

Theorem 2.9.12. Let a and b be two integers. Then, there exist integers x ∈ Z

and y ∈ Z such that
gcd (a, b) = xa + yb.
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Theorem 2.9.12 is often stated as follows: “If a and b are two integers, then
gcd (a, b) is a Z-linear combination of a and b”. The notion “Z-linear combination
of a and b” simply means “a number of the form xa + yb with x ∈ Z and y ∈ Z”
(this is exactly the notion of a “linear combination” in linear algebra, except that
now the scalars must come from Z), so this is just a restatement of Theorem 2.9.12.

Theorem 2.9.12 is known as Bezout’s theorem (or Bezout’s identity)11. We shall
prove it in several steps. The first step is to show it when a and b are nonnegative:

Lemma 2.9.13. Let a ∈N and b ∈N. Then, there exist integers x ∈ Z and y ∈ Z

such that
gcd (a, b) = xa + yb.

Next, we shall prove Theorem 2.9.12 when a ∈N but b may be negative:

Lemma 2.9.14. Let a ∈N and b ∈ Z. Then, there exist integers x ∈ Z and y ∈ Z

such that
gcd (a, b) = xa + yb.

Now, we can prove the whole Theorem 2.9.12:

Exercise 2.9.3. Let u be an integer.
(a) Prove that ub− 1 ≡ ua− 1 mod ub−a− 1 for any a ∈N and b ∈N satisfying

b ≥ a.
(b) Prove that gcd

(
ua − 1, ub − 1

)
=
∣∣∣ugcd(a,b) − 1

∣∣∣ for all a ∈N and b ∈N.

2.9.5. First applications of Bezout’s theorem

An important corollary of Theorem 2.9.12 is the following fact:

Theorem 2.9.15. Let a, b ∈ Z. Then:
(a) For each m ∈ Z, we have the following logical equivalence:

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) . (16)

(b) The common divisors of a and b are precisely the divisors of gcd (a, b).
(c) We have Div (a, b) = Div (gcd (a, b)).

The three parts of this theorem are saying the same thing from slightly different
perspectives; the importance of the theorem nevertheless justifies this repetition.
To prove the theorem, we first show the following:

11or Bezout’s theorem for integers if you want to be more precise (as there are similar theorems for
other objects)
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Lemma 2.9.16. Let m, a, b ∈ Z be such that m | a and m | b. Then, m | gcd (a, b).

The following corollary of Theorem 2.9.12 lets us “combine” two divisibilities
a | c and b | c. In fact, Proposition 2.2.4 (c) would already allow us to “combine”
them to form ab | cc = c2; but we can also “combine” them to ab | gcd (a, b) · c
using the following fact:

Theorem 2.9.17. Let a, b, c ∈ Z satisfy a | c and b | c. Then, ab | gcd (a, b) · c.

Example 2.9.18. Let a = 6 and b = 10 and c = 30. Then, a = 6 | 30 = c and
b = 10 | 30 = c. Thus, Theorem 2.9.17 yields ab | gcd (a, b) · c. And indeed, this is
true, since ab = 6 · 10 | 2 · 30 = gcd (a, b) · c (because gcd (a, b) = gcd (6, 10) = 2).
Note that this latter divisibility is actually an equality: we have 6 · 10 = 2 · 30.
Note also that we do not obtain ab | c (and indeed, this does not hold).

Here is another corollary of Theorem 2.9.12 whose usefulness will become clearer
later on:

Theorem 2.9.19. Let a, b, c ∈ Z satisfy a | bc. Then, a | gcd (a, b) · c.

At this point, you should see that Theorem 2.9.19 allows “strengthening” divisi-
bilities: You give it a “weak” divisibility a | bc, and obtain a “stronger” divisibility
a | gcd (a, b) · c from it (stronger because gcd (a, b) is usually smaller than b).

Theorem 2.9.20. Let s, a, b ∈ Z. Then,

gcd (sa, sb) = |s| gcd (a, b) .

Exercise 2.9.4. Let a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2. Prove that

gcd (a1, a2) | gcd (b1, b2) .

Exercise 2.9.5. Let a, b ∈ Z.
(a) Prove that gcd (a, |b|) = gcd (a, b).
(b) Prove that gcd (|a| , b) = gcd (a, b).
(c) Prove that gcd (|a| , |b|) = gcd (a, b).

2.9.6. gcds of multiple numbers

The following theorem generalizes some of the previous facts to gcds of multiple
integers:
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Theorem 2.9.21. Let b1, b2, . . . , bk be integers.
(a) For each m ∈ Z, we have the following logical equivalence:

(m | bi for all i ∈ {1, 2, . . . , k}) ⇐⇒ (m | gcd (b1, b2, . . . , bk)) .

(b) The common divisors of b1, b2, . . . , bk are precisely the divisors of
gcd (b1, b2, . . . , bk).

(c) We have Div (b1, b2, . . . , bk) = Div (gcd (b1, b2, . . . , bk)).
(d) If k > 0, then

gcd (b1, b2, . . . , bk) = gcd (gcd (b1, b2, . . . , bk−1) , bk) .

Theorem 2.9.21 (d) is the reason why most properties of gcds of multiple num-
bers can be derived from corresponding properties of gcds of two numbers. For
example, we can easily prove the following analogue of Theorem 2.9.20 for gcds of
three numbers:

Exercise 2.9.6. Let s, a, b, c ∈ Z. Prove that gcd (sa, sb, sc) = |s| gcd (a, b, c).

More generally, Theorem 2.9.20 can be generalized to any finite number of inte-
gers:

Exercise 2.9.7. Let s ∈ Z, and let a1, a2, . . . , ak be integers. Prove that
gcd (sa1, sa2, . . . , sak) = |s| gcd (a1, a2, . . . , ak).

Bezout’s theorem (Theorem 2.9.12) also holds for any finite number of integers:

Theorem 2.9.22. Let b1, b2, . . . , bk be integers. Then, there exist integers
x1, x2, . . . , xk such that

gcd (b1, b2, . . . , bk) = x1b1 + x2b2 + · · ·+ xkbk.

Once again, we can restate Theorem 2.9.22 by using the concept of a Z-linear
combination. Let us define this concept finally:

Definition 2.9.23. Let b1, b2, . . . , bk be numbers. A Z-linear combination of
b1, b2, . . . , bk shall mean a number of the form x1b1 + x2b2 + · · · + xkbk, where
x1, x2, . . . , xk are integers.

Thus, Theorem 2.9.22 can be restated as follows:

Theorem 2.9.24. Let b1, b2, . . . , bk be integers. Then, gcd (b1, b2, . . . , bk) is a Z-
linear combination of b1, b2, . . . , bk.

For future reference, let us restate Theorem 2.9.21 (a) as follows:
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Corollary 2.9.25. Let b1, b2, . . . , bk be integers. For each m ∈ Z, we have the
following logical equivalence:

(m | b1 and m | b2 and · · · and m | bk) ⇐⇒ (m | gcd (b1, b2, . . . , bk)) .

Theorem 2.9.26. Let b1, b2, . . . , bk be integers, and let c1, c2, . . . , c` be integers.
Then,

gcd (b1, b2, . . . , bk, c1, c2, . . . , c`)
= gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`)) .

Our proof of this theorem will rely on a simple trick, which we state as a lemma:

Lemma 2.9.27. Let a and b be two integers.
(a) If each m ∈ Z satisfies the implication (m | a) =⇒ (m | b), then a | b.
(b) If each m ∈ Z satisfies the equivalence (m | a)⇐⇒ (m | b), then |a| = |b|.

Lemma 2.9.27 (b) says that the divisors of an integer a uniquely determine |a|
(that is, they uniquely determine a up to sign). Thus, when you want to prove that
two integers have the same absolute values, it suffices to prove that they have the
same divisors. If you know that your two integers are nonnegative, then you can
prove this way that they are equal (since their absolute values are just themselves).
This is exactly how we will prove that the left and right hand sides in Theorem
2.9.26 are equal.

Lemma 2.9.27 is a simple case of what is known in category theory as the Yoneda
lemma.

2.9.7. On converses of Bezout’s theorem

Some words of warning are in order. Theorem 2.9.12 says that if a and b are two
integers, then gcd (a, b) is a Z-linear combination of a and b. Note the indefinite
article “a” here: There are (usually) many Z-linear combinations of a and b, but
only one gcd. It is definitely not true that every Z-linear combination of a and b
must be gcd (a, b). However, all these Z-linear combinations are multiples of the
gcd, as the following (simple) proposition says:

Proposition 2.9.28. Let a and b be two integers. Then, any integers x and y satisfy
gcd (a, b) | xa + yb.

A similar proposition holds for Z-linear combinations of any number of integers
b1, b2, . . . , bk.
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2.10. Coprime integers

2.10.1. Definition

The concept of a gcd leads to one of the most important notions of number theory:

Definition 2.10.1. Let a and b be two integers. We say that a is coprime to b if and
only if gcd (a, b) = 1.

Instead of “coprime”, some authors say “relatively prime” or even “prime” (but
the latter language risks confusion with a more standard notion of “prime” that we
will see later on).

Example 2.10.2. (a) The number 2 is coprime to 3, since gcd (2, 3) = 1.
(b) The number 6 is not coprime to 15, since gcd (6, 15) = 3 6= 1.
(c) Let a be an integer. We claim (as a generalization of part (a)) that the

number a is coprime to a + 1. To prove this, we note that

gcd

a, a︸︷︷︸
=1a

+1

 = gcd (a, 1a + 1) = gcd (a, 1)

(by Proposition 2.9.7 (c), applied to u = 1 and b = 1)
| 1 (by Proposition 2.9.7 (f), applied to b = 1) ,

and thus gcd (a, a + 1) = 1 (by Exercise 2.2.5, since gcd (a, a + 1) is a nonnegative
integer), which means that a is coprime to a + 1.

(d) Let a be an integer. When is a coprime to a + 2? If we try to compute
gcd (a, a + 2), we find

gcd

a, a︸︷︷︸
=1a

+2

 = gcd (a, 1a + 2) = gcd (a, 2)

(by Proposition 2.9.7 (c), applied to u = 1 and b = 2) .

It remains to find gcd (a, 2). Proposition 2.9.7 (f) (applied to b = 2) yields
gcd (a, 2) | a and gcd (a, 2) | 2. Since gcd (a, 2) is a nonnegative integer and
is a divisor of 2 (because gcd (a, 2) | 2), we see that gcd (a, 2) must be either 1
or 2 (since the only nonnegative divisors of 2 are 1 and 2). If a is even, then 2
is a common divisor of a and 2, and thus must be the greatest common divisor
of a and 2 (because a common divisor of a and 2 cannot be greater than 2); in
other words, we have gcd (a, 2) = 2 in this case. On the other hand, if a is odd,
then 2 is not a common divisor of a and 2 (since 2 does not divide a), and thus
cannot be the greatest common divisor of a and 2; hence, in this case, we have
gcd (a, 2) 6= 2 and thus gcd (a, 2) = 1. Summarizing, we conclude that

gcd (a, 2) =

{
2, if a is even;
1, if a is odd.
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Now, recall that gcd (a, a + 2) = gcd (a, 2) =

{
2, if a is even;
1, if a is odd.

Hence, a is co-

prime to a + 2 if and only if a is odd.

Following the book [GrKnPa94], we introduce a slightly quaint notation:

Definition 2.10.3. Let a and b be two integers. We write “a ⊥ b” to signify that a
is coprime to b.

Note that the “⊥” relation is symmetric:

Proposition 2.10.4. Let a and b be two integers. Then, a ⊥ b if and only if b ⊥ a.

Definition 2.10.5. Let a and b be two integers. Proposition 2.10.4 shows that a
is coprime to b if and only if b is coprime to a. Hence, we shall sometimes use
a more symmetric terminology for this situation: We shall say that “a and b are
coprime” to mean that a is coprime to b (or, equivalently, that b is coprime to a).

Exercise 2.10.1. Let a ∈ Z. Prove the following:
(a) We have 1 ⊥ a.
(b) We have 0 ⊥ a if and only if |a| = 1.

2.10.2. Properties of coprime integers

We can now state multiple theorems about coprime numbers. The first one states
that we can “cancel” a factor b from a divisibility a | bc as long as this factor is
coprime to a:

Theorem 2.10.6. Let a, b, c ∈ Z satisfy a | bc and a ⊥ b. Then, a | c.

I like to think of Theorem 2.10.7 as a way of removing “unsolicited guests” from
divisibilities. Indeed, it says that we can remove the factor b from a | bc if we know
that b is “unrelated” (i.e., coprime) to a.

The next theorem lets us “combine” two divisibilities a | c and b | c to ab | c as
long as a and b are coprime:

Theorem 2.10.7. Let a, b, c ∈ Z satisfy a | c and b | c and a ⊥ b. Then, ab | c.

Theorem 2.10.7 can be restated as follows: If a and b are two coprime divisors
of an integer c, then ab is also a divisor of c. This is often helpful when proving
divisibilities where the left hand side (i.e., the number in front of the “|” sign) can
be split into a product of two mutually coprime factors. Similar reasoning works
with several coprime factors (see Exercise 2.10.3 below).

The next theorem (still part of the fallout of Bezout’s theorem) is important, but
we will not truly appreciate it until later:
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Theorem 2.10.8. Let a, n ∈ Z.
(a) There exists an a′ ∈ Z such that aa′ ≡ gcd (a, n)mod n.
(b) If a ⊥ n, then there exists an a′ ∈ Z such that aa′ ≡ 1 mod n.
(c) If there exists an a′ ∈ Z such that aa′ ≡ 1 mod n, then a ⊥ n.

If a, n ∈ Z, then an integer a′ ∈ Z satisfying aa′ ≡ 1 mod n is called a modular
inverse of a modulo n. The word “modular inverse” is chosen in analogy to the
usual concept of an “inverse” in Z (which stands for an integer a′ ∈ Z satisfying
aa′ = 1; this exists if and only if a equals 1 or −1). Theorem 2.10.8 (b) shows
that such a modular inverse always exists when a ⊥ n; Theorem 2.10.8 (c) is the
converse of this statement (i.e., it says that if a modular inverse of a modulo n
exists, then a ⊥ n).

Theorem 2.10.9. Let a, b, c ∈ Z such that a ⊥ c and b ⊥ c. Then, ab ⊥ c.

Let us generalize Theorem 2.10.9 to products of several numbers instead of just
the two numbers a and b:

Exercise 2.10.2. Let c ∈ Z. Let a1, a2, . . . , ak be integers such that each i ∈
{1, 2, . . . , k} satisfies ai ⊥ c. Prove that a1a2 · · · ak ⊥ c.

We can similarly generalize Theorem 2.10.7 to show that the product of several
mutually coprime divisors of an integer c must again be a divisor of c:

Exercise 2.10.3. Let c ∈ Z. Let b1, b2, . . . , bk be integers that are mutually coprime
(i.e., they satisfy bi ⊥ bj for all i 6= j). Assume that bi | c for each i ∈ {1, 2, . . . , k}.
Prove that b1b2 · · · bk | c.

Exercise 2.10.4. Let a, b ∈ Z be such that a ⊥ b. Let n, m ∈N. Prove that an ⊥ bm.

The above results have one important application to congruences. Recall that
if a, b, c are integers satisfying ab = ac, then we can “cancel” a from the equality
ab = ac to obtain b = c as long as a is nonzero. Something similar is true for
congruences modulo n, but the condition “a is nonzero” has to be replaced by “a
is coprime to n”:

Lemma 2.10.10. Let a, b, c, n be integers such that a ⊥ n and ab ≡ ac mod n. Then,
b ≡ c mod n.

Lemma 2.10.10 says that we can cancel an integer a from a congruence ab ≡
ac mod n as long as a is coprime to n. Let us give two proofs of this lemma, to
illustrate the uses of some of the previous results:

For future use, let us restate Exercise 2.10.2 in a form that uses “unordered” finite
products ∏

i∈I
bi instead of a1a2 · · · ak:
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Exercise 2.10.5. Let c ∈ Z. Let I be a finite set. For each i ∈ I, let bi be an integer
such that bi ⊥ c. Prove that ∏

i∈I
bi ⊥ c.

Exercise 2.10.6. Let a, b, c be three integers such that a ≡ b mod c. Prove that if
a ⊥ c, then b ⊥ c.

Exercise 2.10.7. Let a, b ∈ Z. Prove that b− a ⊥ b holds if and only if a ⊥ b.

2.10.3. An application to sums of powers

Let us show an application of Theorem 2.10.7. First, we shall prove a simple lemma:

Lemma 2.10.11. Let d ∈N. Let x and y be integers.
(a) We have x− y | xd − yd.
(b) We have x + y | xd + yd if d is odd.

Next, let us recall a basic fact from combinatorics (the “Little Gauss” sum):

Proposition 2.10.12. Let n ∈N. Then,

1 + 2 + · · ·+ n =
n (n + 1)

2
.

Proposition 2.10.12 tells us what the sum 1 + 2 + · · · + n of the first n positive
integers is. One might also ask what the sum 12 + 22 + · · · + n2 of their squares
is, and similarly for higher powers. While this is tangential to our course, let us
collect some formulas for this:

Proposition 2.10.13. Let n ∈N. Then:

(a) We have 1 + 2 + · · ·+ n =
1
2

n (n + 1).

(b) We have 12 + 22 + · · ·+ n2 =
1
6

n (n + 1) (2n + 1).

(c) We have 13 + 23 + · · ·+ n3 =
1
4

n2 (n + 1)2.

(d) We have 14 + 24 + · · ·+ n4 =
1

30
n (2n + 1) (n + 1)

(
3n + 3n2 − 1

)
.

(e) We have 15 + 25 + · · ·+ n5 =
1

12
n2 (n + 1)2 (2n + 2n2 − 1

)
.

Each part of Proposition 2.10.13 can be straightforwardly proven by induction on
n; we don’t need ingenious arguments like the one we gave above for Proposition
2.10.12 (and in fact, such arguments cannot always be found).

You probably see a pattern in Proposition 2.10.13: It appears that for each positive inte-
ger d, there exists some polynomial pd (x) of degree d + 1 with rational coefficients such
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that each n ∈ N satisfies 1d + 2d + · · · + nd = pd (n). This is indeed the case. Indeed,
this is proven (e.g.) in [Galvin17, Proposition 23.2] and in [Grinbe17, Theorem 3.7]. The
polynomial pd (x) is uniquely determined for each d, and can be explicitly computed via
the formula

pd (x) =
d

∑
k=1

k!
{

d
k

}(
x + 1
k + 1

)
,

where
(

x + 1
k + 1

)
=

(x + 1) x (x− 1) · · · (x− k + 1)
(k + 1)!

and where
{

d
k

}
is a Stirling number of the

2nd kind. Without going into the details of what Stirling numbers of the 2nd kind are, let

me say that k!
{

d
k

}
is the number of surjective maps from {1, 2, . . . , d} to {1, 2, . . . , k}. For

example,

p2 (x) =
2

∑
k=1

k!
{

2
k

}(
x + 1
k + 1

)
= 1!

{
2
1

}
︸ ︷︷ ︸

=1

(
x + 1

2

)
+ 2!

{
2
2

}
︸ ︷︷ ︸

=2

(
x + 1

3

)

=

(
x + 1

2

)
+ 2
(

x + 1
3

)
=

(x + 1) x
2

+ 2 · (x + 1) x (x− 1)
6

=
1
6

x (x + 1) (2x + 1) ,

and thus

12 + 22 + · · ·+ n2 = p2 (n) =
1
6

n (n + 1) (2n + 1) for each n ∈N.

This recovers the claim of Proposition 2.10.13 (b). The combinatorial proof presented in
[Galvin17, Proposition 23.2] is highly recommended reading for anyone interested in this
kind of formulas.

Let us note that the polynomials pd (x) do not have integer coefficients, but nevertheless
all their values pd (n) for n ∈N are integers.

Let us now show the power of Theorem 2.10.7 on the following exercise:

Exercise 2.10.8. Let n ∈N. Let d be an odd positive integer. Prove that

1 + 2 + · · ·+ n | 1d + 2d + · · ·+ nd.

[Hint: Use Proposition 2.10.12 to reduce the claim to proving that n (n + 1) |
2
(
1d + 2d + · · ·+ nd). But Theorem 2.10.7 shows that in order to prove this,

it suffices to prove n | 2
(
1d + 2d + · · ·+ nd) and n + 1 | 2

(
1d + 2d + · · ·+ nd),

because n ⊥ n + 1.]

2.10.4. More properties of gcds and coprimality

The following is a random collection of further exercises on gcds.
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Exercise 2.10.9. Let a, b, x, y be integers such that xa + yb = 1. Prove that a ⊥ b.

Exercise 2.10.10. Let u, v, x, y ∈ Z. Prove that gcd (u, v) · gcd (x, y) =
gcd (ux, uy, vx, vy).

Exercise 2.10.11. Let a, b, c ∈ Z.
(a) Prove that gcd (a, b) · gcd (a, c) = gcd (ag, bc), where g = gcd (a, b, c).
(b) Prove that gcd (a, b) · gcd (a, c) = gcd (a, bc) if b ⊥ c.

Exercise 2.10.12. Let a and b be two integers that are not both zero. Let g =

gcd (a, b). Prove that
a
g

and
b
g

are integers satisfying
a
g
⊥ b

g
.

Exercise 2.10.13. Let a and b be two integers. Let k ∈N. Prove that gcd
(
ak, bk) =

(gcd (a, b))k.

The next exercise is simply claiming the well-known fact that any rational num-
ber can be written as a reduced fraction:

Exercise 2.10.14. Let r ∈ Q. Prove that there exist two coprime integers a and b
satisfying r = a/b.

As an application of some of the preceding results, we can prove that certain
numbers are irrational:

Exercise 2.10.15. Prove the following:
(a) If a positive integer u is not a perfect square12, then

√
u is irrational.

(b) If u and v are two positive integers, then
√

u +
√

v is irrational unless both
u and v are perfect squares.

Exercise 2.10.15 invites a rather natural generalization: If u1, u2, . . . , uk are several
positive integers that are not all perfect squares, then must

√
u1 +

√
u2 + · · ·+

√
uk

always be irrational? It turns out that the answer is “yes”, but this is not as easy
to prove anymore as the two cases k = 1 and k = 2 that we handled in Exercise
2.10.15. Proofs of the general version can be found in [Boreic08] (actually, a stronger
statement is proven there, although it takes some work to derive ours from it).

Let us generalize Exercise 2.10.10 a bit:

Exercise 2.10.16. Let x, y ∈ Z, and let a1, a2, . . . , ak be finitely many integers.
Prove that

gcd (a1, a2, . . . , ak) · gcd (x, y) = gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky) .

12A perfect square means the square of an integer.
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We can extend this exercise further to several integers instead of x and y, but this
extension would be notationally awkward, so we only state it for the case of three
integers:

Exercise 2.10.17. Let x, y, z ∈ Z, and let a1, a2, . . . , ak be finitely many integers.
Prove that

gcd (a1, a2, . . . , ak) · gcd (x, y, z)
= gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky, a1z, a2z, . . . , akz) .

We leave it to the reader to state and solve an exercise generalizing Exercise
2.10.16 and Exercise 2.10.17.

Exercise 2.10.18. Let a, b, c ∈ Z. Prove that

gcd (b, c) · gcd (c, a) · gcd (a, b) = gcd (a, b, c) · gcd (bc, ca, ab) .

Exercise 2.10.19. Let n be a positive integer. Let [n] denote the set {1, 2, . . . , n}.
Let Z be the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x + y > n. (For
example, if n = 5, then

Z = {(1, 5) , (2, 5) , (3, 4) , (3, 5) , (4, 3) , (4, 5) , (5, 1) , (5, 2) , (5, 3) , (5, 4)} . )

Prove that

∑
(x,y)∈Z

1
xy

= 1.

2.11. Lowest common multiples

Common multiples are, in a sense, a “mirror version” of common divisors. Here is
their definition:

Definition 2.11.1. Let b1, b2, . . . , bk be integers. Then, the common multiples of
b1, b2, . . . , bk are defined to be the integers a that satisfy

(bi | a for all i ∈ {1, 2, . . . , k}) .

(In other words, a common multiple of b1, b2, . . . , bk is an integer that is a multiple
of each of b1, b2, . . . , bk.) We let Mul (b1, b2, . . . , bk) denote the set of these common
multiples.
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Example 2.11.2. The common multiples of 4, 6 are
. . . ,−36,−24,−12, 0, 12, 24, 36, . . ., that is, all multiples of 12.

The common multiples of 1, 2, 3 are all multiples of 6.

Note that the common multiples of a single integer b are simply the multiples of
b. (Also, the common multiples of an empty list of integers are all the integers; in
other words, Mul () = Z.)

Note that the definition of common multiples of b1, b2, . . . , bk (Definition 2.11.1) is
the same as the definition of common divisors of b1, b2, . . . , bk except that the divis-
ibility has been flipped (i.e., it says “bi | a” instead of “a | bi”). This is why common
multiples are a “mirror version” of common divisors. This analogy is not perfect
– in particular, (for example) two nonzero integers have infinitely many common
multiples but only finitely many common divisors. We shall now introduce lowest
common multiples, which correspond to greatest common divisors in this analogy.
However, we have to prove a simple proposition first:

Proposition 2.11.3. Let b1, b2, . . . , bk be finitely many nonzero integers. Then, the
set Mul (b1, b2, . . . , bk) has a smallest positive element.

Proposition 2.11.3 is similar to Proposition 2.9.5 (and will play a similar role), but
note the differences: It requires all of b1, b2, . . . , bk to be nonzero (unlike Proposi-
tion 2.9.5, which needed only one of them to be nonzero), and it does not claim
finiteness of any set.

Definition 2.11.4. Let b1, b2, . . . , bk be finitely many integers. The lowest common
multiple of b1, b2, . . . , bk is defined as follows:

• If b1, b2, . . . , bk are all nonzero, then it is defined as the smallest positive
element of the set Mul (b1, b2, . . . , bk). This smallest positive element is well-
defined (by Proposition 2.11.3), and is a positive integer (obviously).

• If b1, b2, . . . , bk are not all nonzero (i.e., at least one of b1, b2, . . . , bk is zero),
then it is defined to be 0.

Thus, in either case, this lowest common multiple is a nonnegative integer. We
denote it by lcm (b1, b2, . . . , bk). (Some authors also call it [b1, b2, . . . , bk].)

We shall also use the word “lcm” as shorthand for “lowest common multiple”.

Some authors say “least common multiple” instead of “lowest common multiple”.
We are slightly abusing the word “lowest common multiple”, of course; it would

be more precise to say “lowest positive common multiple”, and even this would
only hold for the case when b1, b2, . . . , bk are all nonzero. Taken literally, a “lowest
common multiple” of 2 and 3 would not exist, since 2 and 3 have infinitely many
negative common multiples.
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Note that the lcm of a single number is the absolute value of this number: i.e.,
we have lcm (a) = |a| for each a ∈ Z. (This is easy to prove.) Also, the lcm of an
empty list of numbers is 1: that is, lcm () = 1.

We observe a trivial property of lcms, which (for the sake of brevity) we only
state for two integers a and b despite it holding for any number of integers (with
the same proof):

Proposition 2.11.5. Let a, b ∈ Z.
(a) We have 0 ∈ Mul (a, b).
(b) We have lcm (a, b) ∈ Mul (a, b).
(c) We have a | lcm (a, b) and b | lcm (a, b).

The following theorem yields a good way of computing lcms of two numbers
(since we already know how to compute gcds via the Euclidean algorithm):

Theorem 2.11.6. Let a, b ∈ Z. Then, gcd (a, b) · lcm (a, b) = |ab|.

Next, we state an analogue of Theorem 2.9.15 (with all divisibilities flipped):

Theorem 2.11.7. Let a, b ∈ Z. Then:
(a) For each m ∈ Z, we have the following logical equivalence:

(a | m and b | m) ⇐⇒ (lcm (a, b) | m) . (17)

(b) The common multiples of a and b are precisely the multiples of lcm (a, b).
(c) We have Mul (a, b) = Mul (lcm (a, b)).

Again, the three parts of this theorem are saying the same thing from slightly
different perspectives. Our proof of Theorem 2.11.7 will rely on the following
lemma:

Lemma 2.11.8. Let m, a, b ∈ Z be such that a | m and b | m. Then, lcm (a, b) | m.

Lemma 2.11.8 is similar to Lemma 2.9.16, but its proof is not:
Our next claim is an analogue of Theorem 2.9.21:

Theorem 2.11.9. Let b1, b2, . . . , bk be integers.
(a) For each m ∈ Z, we have the following logical equivalence:

(bi | m for all i ∈ {1, 2, . . . , k}) ⇐⇒ (lcm (b1, b2, . . . , bk) | m) .

(b) The common multiples of b1, b2, . . . , bk are precisely the multiples of
lcm (b1, b2, . . . , bk).

(c) We have Mul (b1, b2, . . . , bk) = Mul (lcm (b1, b2, . . . , bk)).
(d) If k > 0, then

lcm (b1, b2, . . . , bk) = lcm (lcm (b1, b2, . . . , bk−1) , bk) .
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Exercise 2.11.1. Let a, b ∈ Z.
(a) Prove that lcm (a, b) = lcm (b, a).
(b) Prove that lcm (−a, b) = lcm (a, b).
(c) Prove that lcm (a,−b) = lcm (a, b).
(d) Prove the following: If a | b, then lcm (a, b) = |b|.
(e) Let s ∈ Z. Prove that lcm (sa, sb) = |s| lcm (a, b).

Exercise 2.11.2. Let a, b, c be three integers.
(a) Prove that gcd (a, b, c) · lcm (bc, ca, ab) = |abc|.
(b) Prove that lcm (a, b, c) · gcd (bc, ca, ab) = |abc|.

2.12. The Chinese remainder theorem (elementary form)

Theorem 2.12.1. Let m and n be two coprime integers. Let a, b ∈ Z.
(a) There exists an integer x ∈ Z such that

(x ≡ a mod m and x ≡ b mod n) .

(b) If x1 and x2 are two such integers x, then x1 ≡ x2 mod mn.

Theorem 2.12.1 is known as the Chinese remainder theorem. More precisely, there
is a sizeable cloud of results that share this name; Theorem 2.12.1 is one of the
most elementary and basic of these results. A more general result is Theorem
2.12.4 further below. However, the strongest and most general “Chinese remainder
theorems” rely on concepts from abstract algebra such as rings and ideals; it will
take us a while to get to them.

Theorem 2.12.1 has gotten its name from the fact that a first glimpse of it appears
in “Master Sun’s Mathematical Manual” from the 3rd century AD; it took centuries
until it become a theorem with proof and precise statement.

The claim of Theorem 2.12.1 (b) is often restated as “This integer x (i.e., the
integer x satisfying (x ≡ a mod m and x ≡ b mod n)) is unique modulo mn”. The
“modulo mn” here signifies that what we are not claiming literal uniqueness (which
would mean that if x1 and x2 are two such integers x, then x1 = x2), but merely
claiming a weaker form (namely, that if x1 and x2 are two such integers x, then
x1 ≡ x2 mod mn).

Example 2.12.2. Theorem 2.12.1 (a) (applied to m = 5, n = 6 and a = 3 and
b = 2) shows that there exists an integer x ∈ Z such that

(x ≡ 3 mod 5 and x ≡ 2 mod 6) .

We will soon find such an integer, after we have proved Theorem 2.12.1.

https://en.wikipedia.org/wiki/Chinese_remainder_theorem#History
https://en.wikipedia.org/wiki/Chinese_remainder_theorem#History
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Example 2.12.3. Assume that we want to find an x ∈ Z such that

(x ≡ 3 mod 5 and x ≡ 2 mod 6) .

To compute such an x, let us follow the proof of Theorem 2.12.1 (a) above.
We need a modular inverse 5′ of 5 modulo 6. Such an inverse is 5, since 5 · 5 ≡

1 mod 6. (In this particular case, finding this modular inverse was easy, because
all we had to do is to test the 6 numbers 0, 1, 2, 3, 4, 5; it is clear that a modular
inverse of a modulo m, if it exists, can be found within the set {0, 1, . . . , m− 1}.
In general, there is a quick way to find a modular inverse of an integer a modulo
an integer m using the “Extended Euclidean algorithm”.)

We need a modular inverse 6′ of 6 modulo 5. Such an inverse is 1, since
6 · 1 ≡ 1 mod 5.

Now, the proof of Theorem 2.12.1 (a) tells us that x0 = 6 · 6′ · 3 + 5 · 5′ · 2 is an
integer x ∈ Z such that (x ≡ 3 mod 5 and x ≡ 2 mod 6). This x0 is

6 · 6′ · 3 + 5 · 5′ · 2 = 6 · 1 · 3 + 5 · 5 · 2 = 68.

So we have found an x ∈ Z such that (x ≡ 3 mod 5 and x ≡ 2 mod 6), namely
x = 68. (We can easily check this: 68 ≡ 3 mod 5 since 68 − 3 = 5 · 13; and
68 ≡ 2 mod 6 since 68− 2 = 6 · 11.)

There is also a version of Theorem 2.12.1 for multiple integers:

Theorem 2.12.4. Let m1, m2, . . . , mk be k mutually coprime integers. Let
a1, a2, . . . , ak ∈ Z.

(a) There exists an integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , k}) . (18)

(b) If x1 and x2 are two such integers x, then x1 ≡ x2 mod m1m2 · · ·mk.

Again, Theorem 2.12.4 (b) is often stated in the form “This integer x is unique
modulo m1m2 · · ·mk”.

Clearly, Theorem 2.12.1 is the particular case of Theorem 2.12.4 obtained for
k = 2.

2.13. Primes

2.13.1. Definition and the Sieve of Eratosthenes

Definition 2.13.1. Let p be an integer greater than 1. We say that p is prime if
the only positive divisors of p are 1 and p. A prime integer is often just called a
prime.

Note that we required p to be greater than 1 here. Thus, 1 does not count as prime
even though its only positive divisor is 1 itself.

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse#Computation
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse#Computation


Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 57

Example 2.13.2. (a) The only positive divisors of 7 are 1 and 7. Thus, 7 is a prime.
(b) The positive divisors of 14 are 1, 2, 7 and 14. These are more than just 1

and 14. Thus, 14 is not a prime.
(c) None of the numbers 4, 6, 8, 10, 12, 14, 16, . . . (that is, the multiples of 2 that

are larger than 2) is a prime. Indeed, if p is any of these numbers, then p has a
positive divisor other than 1 and p (namely, 2), and therefore does not meet the
definition of “prime”.

(d) None of the numbers 6, 9, 12, 15, 18, . . . (that is, the multiples of 3 that are
larger than 3) is a prime. Indeed, if p is any of these numbers, then p has a
positive divisor other than 1 and p (namely, 3), and therefore does not meet the
definition of “prime”.

Parts (c) and (d) of Example 2.13.2 suggest a method for finding all primes up to
a given integer:

Example 2.13.3. Let us say we want to find all primes that are ≤ 30.
Step 1: All such primes must lie in {2, 3, . . . , 30} (since a prime is always an

integer greater than 1); thus, let us first write down all elements of {2, 3, . . . , 30}:

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

.

(We are using a table just in order to fit these elements on a page.)
We now plan to remove non-prime numbers from this table until only primes

are left.
Step 2: First, let us remove all multiples of 2 that are larger than 2 from our

table, because none of them is a prime (see Example 2.13.2 (c)). We thus are left
with

2 3 5 7 9
11 13 15 17 19
21 23 25 27 29

.

Step 3: Next, let us remove all multiples of 3 that are larger than 3 from our
table, because none of them is a prime (see Example 2.13.2 (d)). We thus are left
with

2 3 5 7
11 13 17 19

23 25 29
.

(Note that some of these multiples have already been removed in Step 2.)
Step 4: Next, let us remove all multiples of 4 that are larger than 4 from our

table, because none of them is a prime (for similar reasons). It turns out that this
does not change the table at all, because all such multiples have already been
removed in Step 2. This is not a coincidence: Since 4 itself has been removed, we
know that 4 was a multiple of some number d < 4 (in this case, d = 2) whose
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multiples have been removed; therefore, all multiples of 4 are also multiples of d
and thus have been removed along with 4.

Step 5: Next, let us remove all multiples of 5 that are larger than 5 from our
table, because none of them is a prime (for similar reasons). We thus are left with

2 3 5 7
11 13 17 19

23 29
.

Step 6: Next, let us remove all multiples of 6 that are larger than 6 from our
table, because none of them is a prime. Just as Step 4, this does not change the
table, since all such multiples have already been removed in Step 2.

Step 7: Next, let us remove all multiples of 7 that are larger than 7 from our
table, because none of them is a prime. Again, this does not change the table,
since all such multiples have already been removed.

Proceed likewise until Step 30, at which point the table has become

2 3 5 7
11 13 17 19

23 29
.

(You are reading it right: None of the steps from Step 6 to Step 30 causes any
changes to the table, since all multiples that these steps attempt to remove have
already been removed beforehand.)

The resulting table has the following property: If p is an element of this table,
then p cannot be a multiple of any d ∈ {2, 3, . . . , p− 1} (because if it was such a
multiple, then it would have been removed from the table in Step d or earlier).
In other words, if p is an element of this table, then p cannot have any divisor
d ∈ {2, 3, . . . , p− 1}. In other words, if p is an element of this table, then the
only positive divisors of p are 1 and p. In other words, if p is an element of
this table, then p is prime. Conversely, any prime ≤ 30 is in our table, since the
only numbers we have removed from the table were guaranteed to be non-prime.
Thus, the table now contains all the primes ≤ 30 and only them. So we conclude
that the primes ≤ 30 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

This method of finding primes is known as the sieve of Eratosthenes. We could
have made it more efficient using the following two tricks:

• If a number d ∈ {2, 3, . . . , 30} has been removed from the table before Step
d, then we know immediately that Step d will not change the table (because
all multiples of d have already been removed before this step). Thus, we
do not need to make this step.

• If d ∈ {2, 3, . . . , 30} satisfies d2 > 30, then Step d will not change the table13.
Thus, we only need to take the Steps d with d2 ≤ 30.

Together, these tricks tell us that the only steps we need to take are the Steps
2, 3 and 5.
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2.13.2. Basic properties of primes

Proposition 2.13.4. Let p be a prime. Then, each i ∈ {1, 2, . . . , p− 1} is coprime
to p.

Note that this proposition characterizes primes: If p > 1 is an integer such that
each i ∈ {1, 2, . . . , p− 1} is coprime to p, then p is prime. (The proof of this is left
as an easy exercise.)

Proposition 2.13.5. Let p be a prime. Let a ∈ Z. Then, either p | a or p ⊥ a.

We note that a converse of Proposition 2.13.5 holds as well: If p > 1 is an integer
such that each a ∈ Z satisfies either p | a or p ⊥ a, then p is a prime. This is easy
to prove and left to the reader.

Exercise 2.13.1. Let p and q be two distinct primes. Prove that p ⊥ q.

Theorem 2.13.6. Let p be a prime. Let a, b ∈ Z such that p | ab. Then, p | a or
p | b.

Again, Theorem 2.13.6 has a converse:

Exercise 2.13.2. Let p > 1 be an integer. Assume that for every a, b ∈ Z satisfying
p | ab, we must have p | a or p | b. Prove that p is prime.

There is also a version of Theorem 2.13.6 for products of multiple integers:

13Proof. Let d ∈ {2, 3, . . . , 30} be such that d2 > 30. We must show that Step d will not change the
table.

Indeed, at Step d, we remove all multiples of d that are larger than d from our table. But all
these multiples (at least the ones that appear in our table) have already been removed from this
table before Step d.

Here is why: Let m ∈ {2, 3, . . . , 30} be a multiple of d that is larger than d. Then, d | m (since
m is a multiple of d) and thus m/d ∈ Z. Hence, m/d is a positive integer (since m/d is clearly
positive) and m/d > 1 (since m is larger than d). Furthermore, m/d | m (since m = (m/d) d),
so that m is a multiple of m/d. But d > 1 (since d ∈ {2, 3, . . . , 30}) and thus m/d < m. In other
words, m > m/d. Hence, m is a multiple of m/d that is larger than m/d.

Furthermore, d2 > 30 ≥ m (since m ∈ {2, 3, . . . , 30}). Dividing both sides of this inequality by
d, we obtain d > m/d. Hence, m/d < d, so that m/d ∈ {2, 3, . . . , d− 1} (since m/d > 1). Thus,
before Step d begins, Step m/d has already happened. Of course, Step m/d has removed m from
the table (since m is a multiple of m/d that is larger than m/d). Therefore, the number m has
already been removed from the table before Step d.

Now, forget that we fixed m. We thus have shown that if m ∈ {2, 3, . . . , 30} is a multiple of
d that is larger than d, then m has already been removed from the table before Step d. In other
words, all multiples of d that we try to remove at Step d have already been removed before Step
d. Therefore, Step d does not change our table.
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Proposition 2.13.7. Let p be a prime. Let a1, a2, . . . , ak be integers such that p |
a1a2 · · · ak. Then, p | ai for some i ∈ {1, 2, . . . , k}.

We could prove Proposition 2.13.7 by induction on k. But here is a more direct
argument:

Exercise 2.13.3. Let p be a prime. Let k be a positive integer. Let a ∈ Z. Prove
that a ⊥ pk holds if and only if p - a.

2.13.3. Prime factorization I

The next simple proposition says that every integer n > 1 is divisible by at least
one prime:

Proposition 2.13.8. Let n > 1 be an integer. Then, there exists at least one prime
p such that p | n.

Definition 2.13.9. Let n be an integer. A prime factor of n means a prime p such
that p | n. Some say “prime divisor” instead of “prime factor”.

Thus, Proposition 2.13.8 says that each integer n > 1 has at least one prime
divisor.

Proposition 2.13.10. Let n be a positive integer. Then, n can be written as a
product of finitely many primes.

Example 2.13.11. (a) The integer 60 can be written as a product of four primes:
namely, 60 = 2 · 2 · 3 · 5.

(b) The integer 1 is the product of 0 many primes (because a product of 0
many primes is the empty product, which is defined to be 1).

Proposition 2.13.10 shows that every positive integer n can be represented as a
product of finitely many primes. Such a representation – or, more precisely, the
list of the primes it contains – will be called the prime factorization of n. Rigorously
speaking, this means that we make the following definition:

Definition 2.13.12. Let n be a positive integer. A prime factorization of n means a
tuple (p1, p2, . . . , pk) of primes such that n = p1p2 · · · pk.

Keep in mind that “tuple” always means “ordered tuple” unless we say other-
wise.
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Example 2.13.13. (a) The prime factorizations of 12 are

(2, 2, 3) , (2, 3, 2) , (3, 2, 2) .

Indeed, these three 3-tuples are prime factorizations of 12 because 12 = 2 · 2 · 3 =
2 · 3 · 2 = 3 · 2 · 2. It is not hard to check that they are the only prime factorizations
of 12.

(b) If p is a prime, then the only prime factorization of p is the 1-tuple (p).
(c) If p is a prime and i ∈ N, then the only prime factorization of pi is the

i-tuple

p, p, . . . , p︸ ︷︷ ︸
i times

. This is not quite obvious at this point (though it is not

hard to derive from Proposition 2.13.7).
(d) The only prime factorization of 1 is the 0-tuple ().

This example suggests that all prime factorizations of a given positive integer n
are equal to each other up to the order of their entries (i.e., are permutations of
each other). This is indeed true, and we are going to prove this soon (in Theorem
2.13.31 below).

2.13.4. Permutations

First of all: what is a “permutation”, and what exactly does “equal to each other
up to the order of their entries” mean?

Informally speaking, a permutation of a tuple14 (a1, a2, . . . , ak) is a tuple obtained
from (a1, a2, . . . , ak) by rearranging its entries (without inserting new entries, or
removing or duplicating existing entries). To be rigorous, we need to encode this
rearrangement via a bijective map σ : {1, 2, . . . , k} → {1, 2, . . . , k} which will tell us
which entry of our original tuple will go to which position in the rearranged tuple.
Such bijective maps, too, are called permutations – but permutations of sets, not
of tuples. So let us first define permutations of a set, and then use this to define
permutations of a tuple:

Definition 2.13.14. Let A be a set. A permutation of A means a bijective map
A→ A.

Example 2.13.15. (a) The map {1, 2, 3, 4} → {1, 2, 3, 4} that sends 1, 2, 3, 4 to
3, 1, 4, 2 (respectively) is a permutation of {1, 2, 3, 4}.

(b) The map {1, 2, 3} → {1, 2, 3} that sends 1, 2, 3 to 2, 3, 1 (respectively) is a
permutation of {1, 2, 3}.

(c) For each set A, the identity map id : A→ A is a permutation of A.

Thus, we have defined permutations of a set. We shall later study such permu-
tations in more detail, at least for finite sets A.
14Recall: a prime factorization is a tuple.
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Now we can define permutations of a tuple:

Definition 2.13.16. Let (p1, p2, . . . , pk) be a k-tuple. A permutation of
(p1, p2, . . . , pk) means a k-tuple of the form

(
pσ(1), pσ(2), . . . , pσ(k)

)
where σ is

a permutation of the set {1, 2, . . . , k}. A permutation of (p1, p2, . . . , pk) is also
known as a rearrangement of (p1, p2, . . . , pk).

Example 2.13.17. (a) The 4-tuple (1, 3, 1, 2) is a permutation of the 4-tuple
(3, 2, 1, 1). In fact, if we denote the 4-tuple (3, 2, 1, 1) by (p1, p2, p3, p4), then
there exists a permutation σ of the set {1, 2, 3, 4} such that (1, 3, 1, 2) =(

pσ(1), pσ(2), pσ(3), pσ(4)

)
. (Actually, there exist two such permutations σ: One

of them sends 1, 2, 3, 4 to 3, 1, 4, 2, while the other sends 1, 2, 3, 4 to 4, 1, 3, 2.)
(b) Any k-tuple is a permutation of itself. Indeed, if (p1, p2, . . . , pk) is any k-

tuple, then (p1, p2, . . . , pk) =
(

pσ(1), pσ(2), . . . , pσ(k)

)
if we let σ be the identity

map id : {1, 2, . . . , k} → {1, 2, . . . , k}.

The following fact is easy and fundamental:

Proposition 2.13.18. Let (p1, p2, . . . , pk) be a k-tuple. If (q1, q2, . . . , qk) is a permu-
tation of (p1, p2, . . . , pk), then (p1, p2, . . . , pk) is a permutation of (q1, q2, . . . , qk).

Now, we can say what we mean when we say that two tuples differ only in the
order of their entries:

Definition 2.13.19. We say that two tuples differ only in the order of their entries if
they are permutations of each other.

The next lemma that we shall use is a basic fact from elementary combinatorics:

Lemma 2.13.20. Let P be a set. Let (a1, a2, . . . , ak) and (b1, b2, . . . , b`) be two tuples
of elements of P. Assume that for each p ∈ P, we have

(the number of times p appears in (a1, a2, . . . , ak))

= (the number of times p appears in (b1, b2, . . . , b`)) . (19)

Then, the two tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) differ only in the order of
their entries (i.e., are permutations of each other). (In other words, we have k = `,
and there exists a permutation σ of the set {1, 2, . . . , `} such that (a1, a2, . . . , ak) =(

bσ(1), bσ(2), . . . , bσ(`)

)
.)

Lemma 2.13.20 is an intuitively obvious fact: It says that if two tuples (of any
objects – e.g., numbers) have the property that any object occurs as often in the first
tuple as it does in the second tuple, then the two tuples differ only in the order of
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their entries. From the formal point of view, though, it is a statement that needs
proof. Let us merely sketch how such a proof can be obtained, without going into
the details:

Lemma 2.13.20 has a converse that is much simpler:

Lemma 2.13.21. Let P be a set. Let (a1, a2, . . . , ak) and (b1, b2, . . . , b`) be two tuples
of elements of P. Assume that these two tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`)
differ only in the order of their entries (i.e., are permutations of each other).
Then, for each p ∈ P, we have

(the number of times p appears in (a1, a2, . . . , ak))

= (the number of times p appears in (b1, b2, . . . , b`)) .

We leave the proof of this lemma to the reader.

2.13.5. p-valuations

Now, let us come back to number theory. We first claim that a nonzero integer n
can only be divisible by finitely many powers of a given prime p. More precisely:

Lemma 2.13.22. Let p be a prime. Let n be a nonzero integer. Then, there exists
a largest m ∈N such that pm | n.

The proof of this lemma will rely on a simple inequality, which we leave as an
exercise:

Exercise 2.13.4. Let p be an integer such that p > 1. Prove that pk > k for each
k ∈N.

Definition 2.13.23. Let p be a prime.
(a) Let n be a nonzero integer. Then, vp (n) shall denote the largest m ∈ N

such that pm | n. This is well-defined (by Lemma 2.13.22). This nonnegative
integer vp (n) will be called the p-valuation (or the p-adic valuation) of n.

(b) We extend this definition of vp (n) to the case of n = 0 as follows: Set
vp (0) = ∞, where ∞ is a new symbol. This symbol ∞ is supposed to model
“positive infinity”; in particular, we take it to satisfy the following rules:

• We have k + ∞ = ∞ + k = ∞ for all integers k.

• We have ∞ + ∞ = ∞.

• Each integer k satisfies k < ∞ and ∞ > k (and thus k ≤ ∞ and ∞ ≥ k).

• No integer k satisfies k ≥ ∞ or ∞ ≤ k (or k > ∞ or ∞ < k).
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• If S is a nonempty set of integers, then min (S ∪ {∞}) = min S (provided
that min S exists).

• We have min {∞} = ∞.

• If S is any set of integers, then max (S ∪ {∞}) = ∞.

(Note, however, that ∞ is not supposed to be a “first class citizen” of the
number system. In particular, ∞ −∞ is not defined. More generally, k −∞ is
never defined, whatever k is. Indeed, any definition of k−∞ would break some
of the familiar rules of arithmetic. The only operations that we shall subject ∞
to are addition, minimum and maximum.)

Note that the rules for the symbol ∞ yield that

k + ∞ = ∞ + k = max {k, ∞} = ∞

and
min {k, ∞} = k

for each k ∈ Z ∪ {∞}. It is not hard to see that basic properties of inequalities
(such as “if a ≤ b and b ≤ c, then a ≤ c”) and of addition (such as “(a + b) + c =
a + (b + c)”) and of the interplay between inequalities and addition (such as “if
a ≤ b, then a + c ≤ b + c”) are still valid in Z ∪ {∞} (that is, they still hold if we
plug ∞ for one or more of the variables). However, of course, we cannot “cancel”
∞ from equalities (i.e., we cannot cancel ∞ from a + ∞ = b + ∞ to obtain a = b) or
inequalities.

Example 2.13.24. (a) We have v5 (50) = 2. Indeed, 2 is the largest m ∈ N such
that 5m | 50 (because 52 = 25 | 50 but 53 = 125 - 50).

(b) We have v5 (51) = 0. Indeed, 0 is the largest m ∈ N such that 5m | 51
(because 50 = 1 | 51 but 51 = 5 - 51).

(c) We have v5 (55) = 1. Indeed, 1 is the largest m ∈ N such that 5m | 55
(because 51 = 5 | 55 but 52 = 25 - 55).

(d) We have v5 (0) = ∞ (by Definition 2.13.23 (b)).

Definition 2.13.23 (a) can be restated in the following more intuitive way: Given
a prime p and a nonzero integer n, we let vp (n) be the number of times we can
divide n by p without leaving Z. Definition 2.13.23 (b) is consistent with this
picture, because we can clearly divide 0 by p infinitely often without leaving Z.
From this point of view, the following lemma should be obvious:

Lemma 2.13.25. Let p be a prime. Let i ∈ N. Let n ∈ Z. Then, pi | n if and only
if vp (n) ≥ i.
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Corollary 2.13.26. Let p be a prime. Let n ∈ Z. Then, vp (n) = 0 if and only if
p - n.

Here is another property of p-valuations that is useful in their study:

Lemma 2.13.27. Let p be a prime. Let n ∈ Z be nonzero. Then:
(a) There exists a nonzero integer u such that u ⊥ p and n = upvp(n).
(b) If i ∈N and w ∈ Z are such that w ⊥ p and n = wpi, then vp (n) = i.

Before we prove this formally, let us show the idea behind this lemma. Recall
that, given a prime p and a nonzero integer n, the number vp (n) counts how often
we can divide n by p without leaving Z. What happens after we have divided n
by p this many times? We get a number u that is still an integer, but is no longer
divisible by p, and thus must be coprime to p (by Proposition 2.13.5). This is what
Lemma 2.13.27 (a) says. Lemma 2.13.27 (b) is a converse statement: It says that if
we divide n by p some number of times (say, i times) and obtain an integer coprime
to p, then i must be vp (n).

The next property of p-adic valuations is crucial, as it reveals how they can be
computed and bounded:

Theorem 2.13.28. Let p be a prime.
(a) We have vp (ab) = vp (a) + vp (b) for any two integers a and b.
(b) We have vp (a + b) ≥ min

{
vp (a) , vp (b)

}
for any two integers a and b.

(c) We have vp (1) = 0.

(d) We have vp (q) =

{
1, if q = p;
0, if q 6= p

for any prime q.

Note that Theorem 2.13.28 (a) gives a formula for vp (ab) in terms of vp (a) and
vp (b), but there is no such formula for vp (a + b) (since vp (a) and vp (b) do not
uniquely determine vp (a + b)). Thus, Theorem 2.13.28 (b) only gives a bound.

Corollary 2.13.29. Let p be a prime. Let a1, a2, . . . , ak be k integers. Then,
vp (a1a2 · · · ak) = vp (a1) + vp (a2) + · · ·+ vp (ak).

Exercise 2.13.5. Let p be a prime. Let n ∈ Z. Prove that vp (|n|) = vp (n).

Exercise 2.13.6. Let p be a prime. Let a ∈ Z and k ∈ N. Prove that vp
(
ak) =

kvp (a).

Exercise 2.13.7. Let p1, p2, . . . , pu be finitely many distinct primes. Let
a1, a2, . . . , au be nonnegative integers.

(a) Prove that vpi

(
pa1

1 pa2
2 · · · p

au
u
)
= ai for each i ∈ {1, 2, . . . , u}.

(b) Prove that vp
(

pa1
1 pa2

2 · · · p
au
u
)

= 0 for each prime p satisfying p /∈
{p1, p2, . . . , pu}.
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2.13.6. Prime factorization II

Proposition 2.13.30. Let n be a positive integer. Let (a1, a2, . . . , ak) be a prime
factorization of n. Let p be a prime. Then,

(the number of times p appears in the tuple (a1, a2, . . . , ak))

= (the number of i ∈ {1, 2, . . . , k} such that ai = p)
= vp (n) .

We are finally ready to prove the so-called Fundamental Theorem of Arithmetic:

Theorem 2.13.31. Let n be a positive integer.
(a) There exists a prime factorization of n.
(b) Any two such factorizations differ only in the order of their entries (i.e.,

are permutations of each other).

2.13.7. The canonical factorization

You have seen finite products such as15

∏
i∈{1,2,3,4,5}

i = 1 · 2 · 3 · 4 · 5 = 5! = 120 and

∏
i∈{3,5,7}

(
i2 + 1

)
=
(

32 + 1
)
·
(

52 + 1
)
·
(

72 + 1
)
= 13000.

Sometimes, infinite products (i.e., products ranging over infinite sets) also make
sense. Many examples of well-defined infinite products arise from analysis and
have to do with convergence. Here, we are doing algebra and thus shall only
consider a very elementary, non-analytic meaning of convergence. Namely, we will
consider infinite products that have only finitely many factors different from 1. For
example, the product 2 · 7 · 4 · 1 · 1 · 1 · 1 · · · ·︸ ︷︷ ︸

infinitely many 1’s

is of such form. It is easy to give

a meaning to such products: Just throw away all the 1’s (since multiplying by 1
does not change a number) and take the product of the remaining (finitely many)
numbers. So, for example, our product 2 · 7 · 4 · 1 · 1 · 1 · 1 · · · ·︸ ︷︷ ︸

infinitely many 1’s

should evaluate to

2 · 7 · 4 = 56.

15Here and in the following, n! denotes the product 1 · 2 · · · · ·n whenever n ∈N. Thus, in particular,

0! = (empty product) = 1, 1! = 1, 2! = 1 · 2 = 2,
3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24, 5! = 1 · 2 · 3 · 4 · 5 = 120.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 67

This is indeed a meaningful and useful definition. For example, the set of all
prime numbers is infinite (by Theorem 2.13.43 below), but nevertheless, for each
nonzero integer n, the product ∏

p prime
pvp(n) (where the “ ∏

p prime
” symbol means a

product ranging over all primes p) is well-defined due to having only finitely many
factors different from 1:

Lemma 2.13.32. Let n be a nonzero integer.
(a) We have vp (n) = 0 for every prime p > |n|. (Note that “for every prime

p > |n|” is shorthand for “for every prime p satisfying p > |n|”.)
(b) The product ∏

p prime
pvp(n) has only finitely many factors different from 1.

(Here and in the following, the “ ∏
p prime

” symbol means a product ranging over

all primes p.)

Corollary 2.13.33. Let n be a positive integer. Then,

n = ∏
p prime

pvp(n).

Here, the infinite product ∏
p prime

pvp(n) is well-defined (according to Lemma

2.13.32 (b)).

This expression n = ∏
p prime

pvp(n) is called the canonical factorization of n.

The next exercise says that a nonnegative integer n is uniquely determined by
the family

(
vp (n)

)
p prime of its p-valuations for all primes p:

Exercise 2.13.8. Let n and m be two nonnegative integers. Assume that

vp (n) = vp (m) for every prime p. (20)

Prove that n = m.

Corollary 2.13.34. Let n be a nonzero integer. Then,

|n| = ∏
p prime

pvp(n).

Here, the infinite product ∏
p prime

pvp(n) is well-defined (according to Lemma

2.13.32 (b)).

We can furthermore use p-adic valuations to check divisibility of integers:
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Proposition 2.13.35. Let n and m be integers. Then, n | m if and only if each
prime p satisfies vp (n) ≤ vp (m).

Let us extract one of the steps of our above proof into a separate lemma, since
we shall use the same reasoning later on:

Lemma 2.13.36. For each prime p, let ap and bp be nonnegative integers such
that

ap ≤ bp. (21)

Assume that all but finitely many primes p satisfy bp = 0. Then, the products
∏

p prime
pap and ∏

p prime
pbp are both well-defined and satisfy

∏
p prime

pap | ∏
p prime

pbp . (22)

Corollary 2.13.37. For each prime p, let bp be a nonnegative integer. Assume
that all but finitely many primes p satisfy bp = 0. Let n = ∏

p prime
pbp . Then,

vq (n) = bq for each prime q.

Exercise 2.13.9. Let n be a nonzero integer. Let a and b be two integers. Assume
that

a ≡ b mod pvp(n) for every prime p. (23)

Prove that a ≡ b mod n.

Canonical factorizations can also be used to describe gcds and lcms:

Proposition 2.13.38. Let n and m be two nonzero integers. Then,

gcd (n, m) = ∏
p prime

pmin{vp(n),vp(m)} (24)

and
lcm (n, m) = ∏

p prime
pmax{vp(n),vp(m)}. (25)

Example 2.13.39. For this example, set n = 32 · 5 · 78 and m = 2 · 33 · 72. Let us
compute gcd (n, m) and lcm (n, m) using Proposition 2.13.38.

From n = 32 · 5 · 78, we obtain (using Corollary 2.13.37) that

v3 (n) = 2, v5 (n) = 1, v7 (n) = 8, and
vp (n) = 0 for each prime p /∈ {3, 5, 7} .
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Similarly, from m = 2 · 33 · 72, we obtain

v2 (m) = 1, v3 (m) = 3, v7 (m) = 2, and
vp (n) = 0 for each prime p /∈ {2, 3, 7} .

Now, (24) yields

gcd (n, m)

= ∏
p prime

pmin{vp(n),vp(m)}

= 2min{v2(n),v2(m)}︸ ︷︷ ︸
=2min{0,1}=20

· 3min{v3(n),v3(m)}︸ ︷︷ ︸
=3min{2,3}=32

· 5min{v5(n),v5(m)}︸ ︷︷ ︸
=5min{1,0}=50

· 7min{v7(n),v7(m)}︸ ︷︷ ︸
=7min{8,2}=72

· ∏
p prime;

p/∈{2,3,5,7}

pmin{vp(n),vp(m)}︸ ︷︷ ︸
=1

(since vp(n)=0 and vp(m)=0
and thus min{vp(n),vp(m)}=min{0,0}=0)

= 20 · 32 · 50 · 72 = 32 · 72.

Likewise, (25) yields

lcm (n, m)

= ∏
p prime

pmax{vp(n),vp(m)}

= 2max{v2(n),v2(m)}︸ ︷︷ ︸
=2max{0,1}=21

· 3max{v3(n),v3(m)}︸ ︷︷ ︸
=3max{2,3}=33

· 5max{v5(n),v5(m)}︸ ︷︷ ︸
=5max{1,0}=51

· 7max{v7(n),v7(m)}︸ ︷︷ ︸
=7max{8,2}=78

· ∏
p prime;

p/∈{2,3,5,7}

pmax{vp(n),vp(m)}︸ ︷︷ ︸
=1

(since vp(n)=0 and vp(m)=0
and thus max{vp(n),vp(m)}=max{0,0}=0)

= 21 · 33 · 51 · 78.

Proposition 2.13.38 can be generalized to the case of k integers b1, b2, . . . , bk in-
stead of two integers n, m:

Proposition 2.13.40. Let b1, b2, . . . , bk be finitely many nonzero integers, with k >
0. Then,

gcd (b1, b2, . . . , bk) = ∏
p prime

pmin{vp(b1),vp(b2),...,vp(bk)} (26)

an
lcm (b1, b2, . . . , bk) = ∏

p prime
pmax{vp(b1),vp(b2),...,vp(bk)}. (27)
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We can use Propositions 2.13.38 and 2.13.40 to reprove certain facts about lcms
and gcds. For example, let us prove Theorem 2.11.6 and solve Exercise 2.11.2:

Exercise 2.13.10. Let n and m be two integers. Let p be a prime.
(a) Prove that vp (gcd (n, m)) = min

{
vp (n) , vp (m)

}
.

(b) Prove that vp (lcm (n, m)) = max
{

vp (n) , vp (m)
}

.

Exercise 2.13.11. Let a, b, c be three integers.
(a) Prove that gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)).
(b) Prove that lcm (a, gcd (b, c)) = gcd (lcm (a, b) , lcm (a, c)).

The two parts of Exercise 2.13.11 can be regarded as “distributivity laws”, but
for the binary operations gcd and lcm (or lcm and gcd, respectively) instead of +
and ·.

2.13.8. Coprimality through prime factors

Proposition 2.13.41. Let n and m be two integers. Then, n ⊥ m if and only if
there exists no prime p that divides both n and m.

Corollary 2.13.42. Let n and m be two nonzero integers. Then:
(a) The infinite sum ∑

p prime
vp (n) vp (m) is well-defined (i.e., all but finitely

many primes p satisfy vp (n) vp (m) = 0).
(b) We have n ⊥ m if and only if

∑
p prime

vp (n) vp (m) = 0.

Corollary 2.13.42 (b) is the reason for the notation “⊥” that we are using for co-
primality. In fact, when n is a positive integer, we can regard the p-valuations
vp (n) as the “coordinates” of n in an (infinite-dimensional) Cartesian coordinate
system. Then, the sum ∑

p prime
vp (n) vp (m) in Corollary 2.13.42 is something like a

“dot product” between n and m. Thus, Corollary 2.13.42 (b) shows that two inte-
gers n and m are coprime if and only if their “dot product” is 0. But for vectors
in a Euclidean space, the dot product is 0 if and only if the vectors are orthogonal.
Thus, coprime integers are like orthogonal vectors. Of course, this analogy should
be taken with a grain of salt; in particular, our “dot product” is far from being
bilinear16.
16Or, rather, it is bilinear with respect to multiplication: If we denote ∑

p prime
vp (n) vp (m) by 〈n, m〉,

then we have

〈n1n2, m〉 = 〈n1, m〉+ 〈n2, m〉 and 〈n, m1m2〉 = 〈n, m1〉+ 〈n, m2〉

for arbitrary integers n1, n2, m, n, m1, m2.

https://en.wikipedia.org/wiki/Dot_product
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2.13.9. There are infinitely many primes

Theorem 2.13.43. There are infinitely many primes.

Note that our proof of Theorem 2.13.43 is constructive: It gives an algorithm to
construct arbitrarily many distinct primes. This algorithm is not very efficient,
since p1p2 · · · pk + 1 can be very large even if p1, p2, . . . , pk are fairly small. In
practice, the sieve of Eratosthenes is much better for generating primes. Much
faster algorithms are known.

Exercise 2.13.12. Let p be a prime. Let a ∈ Z be such that a2 ≡ 1 mod p. Prove
that a ≡ 1 mod p or a ≡ −1 mod p.

Exercise 2.13.13. Let p be a prime. Let k ∈ N. Prove that the nonnegative
divisors of pk are p0, p1, . . . , pk.

2.14. Euler’s totient function (φ-function)

2.14.1. Definition and some formulas

Recall that P stands for the set of all positive integers.

Definition 2.14.1. We define a function φ : P → N as follows: For each n ∈ P,
we let φ (n) be the number of all i ∈ {1, 2, . . . , n} that are coprime to n. In other
words,

φ (n) = |{i ∈ {1, 2, . . . , n} | i ⊥ n}| . (28)

This function φ is called Euler’s totient function or just φ-function.

Example 2.14.2. (a) We have φ (12) = 4, since the number of all i ∈ {1, 2, . . . , 12}
that are coprime to 12 is 4 (indeed, these i are 1, 5, 7 and 11).

(b) We have φ (13) = 12, since the number of all i ∈ {1, 2, . . . , 13} that are
coprime to 13 is 12 (indeed, these i are 1, 2, . . . , 12).

(c) We have φ (14) = 6, since the number of all i ∈ {1, 2, . . . , 14} that are
coprime to 14 is 6 (indeed, these i are 1, 3, 5, 9, 11, 13).

(d) We have φ (1) = 1, since the number of all i ∈ {1, 2, . . . , 1} that are coprime
to 1 is 1 (indeed, the only such i is 1).

The φ-function φ is denoted by ϕ by some authors.

Proposition 2.14.3. Let p be a prime. Then, φ (p) = p− 1.

Proposition 2.14.3 can be generalized as follows:

https://en.wikipedia.org/wiki/Generating_primes
https://en.wikipedia.org/wiki/Generating_primes
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Exercise 2.14.1. Let p be a prime. Let k be a positive integer. Prove that φ
(

pk) =
(p− 1) pk−1.

Theorem 2.14.4. Let m and n be two coprime positive integers. Then, φ (mn) =
φ (m) · φ (n).

We will prove Theorem 2.14.4 later (in Section 2.16.3).

Theorem 2.14.5. Let n be a positive integer. Then,

φ (n) = ∏
p prime;

p|n

(
(p− 1) pvp(n)−1

)
= n · ∏

p prime;
p|n

(
1− 1

p

)
.

Theorem 2.14.5 will be proven in Section 2.16.3.

Exercise 2.14.2. Let n be a positive integer.
(a) Prove that

n− φ (n) = |{i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}| .

(b) We have n− φ (n) ≥ 0.
(c) Let d be a positive divisor of n. Prove that d− φ (d) ≤ n− φ (n).
(d) Let d be a positive divisor of n such that d 6= n. Prove that d − φ (d) <

n− φ (n).

2.14.2. The totient sum theorem

Theorem 2.14.6. Let n be a positive integer. Then,

∑
d|n

φ (d) = n.

Here and in the following, the symbol “ ∑
d|n

” stands for “sum over all positive

divisors d of n”.

For example, for n = 12, Theorem 2.14.6 states that

φ (1) + φ (2) + φ (3) + φ (4) + φ (6) + φ (12) = 12.

Before we prove Theorem 2.14.6, let us motivate an argument via a classical
puzzle:
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Exercise 2.14.3. You have a corridor with 1000 lamps, which are initially all off.
Each lamp has a lightswitch controlling its state.

Every night, a ghost glides through the corridor (always in the same direction)
and flips some of the switches:

On the 1st night, the ghost flips every switch.
On the 2nd night, the ghost flips switches 2, 4, 6, 8, 10, . . ..
On the 3rd night, the ghost flips switches 3, 6, 9, 12, 15, . . ..
etc.
(That is: For each k ∈ {1, 2, . . . , 1000}, the ghost spends the k-th night flipping

switches k, 2k, 3k, . . ..)
Which lamps will be on after 1000 nights?

In more rigorous terms, Exercise 2.14.3 is simply asking which of the numbers
1, 2, . . . , 1000 have an odd number of positive divisors. (Indeed, the situation after
1000 nights looks as follows: For each n ∈ {1, 2, . . . , 1000}, the n-th switch has been
flipped exactly once for each positive divisor of n; thus, the n-th lamp is on if and
only if n has an odd number of positive divisors.)

Experiments reveal that among the first 10 positive integers, only three have an
odd number of positive divisors: namely, 1, 4 and 9. (For example, 9 has the 3
positive divisors 1, 3 and 9.) This suggests the following:

Proposition 2.14.7. A positive integer n has an odd number of positive divisors
if and only if n is a perfect square.

Having proven Proposition 2.14.7, we now can answer Exercise 2.14.3: The 31
lamps 12, 22, . . . , 312 (and no others) will be on after the 1000 nights. (Indeed, these
31 lamps correspond to the 31 perfect squares in the set {1, 2, . . . , 1000}.)

The bijection F from the proof of Proposition 2.14.7 will serve us well in our
proof of Theorem 2.14.6. Beside that, we need the following lemma:

Lemma 2.14.8. Let n be a positive integer. Let d be a positive divisor of n. Then,

(the number of i ∈ {1, 2, . . . , n} such that gcd (i, n) = d) = φ (n/d) .

Exercise 2.14.4. Let n ∈N satisfy n > 2. Prove that φ (n) is even.

Exercise 2.14.5. Let n ∈N satisfy n > 1. Prove that

∑
i∈{1,2,...,n};

i⊥n

i = nφ (n) /2.
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2.15. Fermat, Euler, Wilson

2.15.1. Fermat and Euler: statements

The following theorem is known as Fermat’s Little Theorem (often abbreviated as
“FLT”):

Theorem 2.15.1. Let p be a prime. Let a ∈ Z.
(a) If p - a, then ap−1 ≡ 1 mod p.
(b) We always have ap ≡ a mod p.

The word “little” in the name of Theorem 2.15.1 is meant to distinguish the
theorem from “Fermat’s Last Theorem”, a much more difficult result only proven
in the 1990s. (Unfortunately, the latter result is also abbreviated as “FLT”.)

We will prove Theorem 2.15.1 soon, by showing a more general result (Theorem
2.15.3). But before we do so, let us convince ourselves that the parts (a) and (b) of
Theorem 2.15.1 are equivalent:

Remark 2.15.2. Theorem 2.15.1 (b) follows from Theorem 2.15.1 (a), because (us-
ing the notations of Theorem 2.15.1):

• If p - a, then Theorem 2.15.1 (a) yields ap−1 ≡ 1 mod p, thus ap =

a ap−1︸︷︷︸
≡1 mod p

≡ a1 = a mod p.

• If p | a, then both ap and a are ≡ 0 mod p (because p | a entails a ≡ 0 mod p
and thus ap ≡ 0p = 0 mod p (since p > 0)), and therefore ap ≡ 0 ≡ a mod p.

Conversely, Theorem 2.15.1 (a) follows from Theorem 2.15.1 (b) by the fol-
lowing argument: Let p and a be as in Theorem 2.15.1. Assume that p - a.
Then, p ⊥ a (by Proposition 2.13.5), so that a ⊥ p. Thus, we can “can-
cel” a from any congruence modulo p (by Lemma 2.10.10). Doing this to the
congruence ap ≡ a mod p (which follows from Theorem 2.15.1 (b)), we obtain
ap−1 ≡ 1 mod p.

The next result is known as Euler’s theorem:

Theorem 2.15.3. Let n be a positive integer. Let a ∈ Z be coprime to n.
Then, aφ(n) ≡ 1 mod n.

Theorem 2.15.3 yields Theorem 2.15.1 (a), since φ (p) = p− 1 when p is prime17.
Since we also know that Theorem 2.15.1 (b) follows from Theorem 2.15.1 (a), we see
that a proof of Theorem 2.15.3 will immediately yield the whole Theorem 2.15.1.
Before we give said proof, let us show an example of how Theorem 2.15.3 can be
used:
17See below for details of this argument.

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem
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Exercise 2.15.1. What is the last digit of 345
?

Notational remark: An expression of the form “abc
” always means a(b

c), not(
ab)c

. (Actually, there is no need for an extra notation for
(
ab)c

, because
(
ab)c

=

abc.)

Theorem 2.15.3 is also the reason why certain rational numbers (such as
2
7

=

0.285714 18) have purely periodic decimal expansions, while others (such as
1
12

= 0.083 = 0.0833333 . . . or
1
2
= 0.50 = 0.50000 . . .) have their periods start only

after some initial nonrepeating block. We refer [ConradE, §4] to the details of this.19

2.15.2. Proving Euler and Fermat

Our proof of Theorem 2.15.3 will rely on the following lemma:

Lemma 2.15.4. Let n be a positive integer. Then,

φ (n) = |{i ∈ {0, 1, . . . , n− 1} | i ⊥ n}| .

The next exercise shows an amusing (and useful) corollary of Fermat’s Little The-
orem: a situation in which congruent exponents lead to congruent powers (albeit
under rather specific conditions, and with the congruent powers being congruent
modulo a different number than the exponents):

Exercise 2.15.2. Let p be a prime. Let a ∈ Z be such that p - a. Let u, v ∈ N

satisfy u ≡ v mod p− 1. Prove that au ≡ av mod p.

2.15.3. The Pigeonhole Principles

In our above proof of Theorem 2.15.3, we have proven that the map f : C → C
(that we constructed) is injective and surjective. It turns out that this was, to some
extent, wasteful: It would have been enough to prove one of the two properties
only (i.e., injectivity or surjectivity). The reason for this are the following two basic
facts about finite sets:
18The bar ( ) over the “285714” means that we are repeating 285714 over and over. So 0.285714 =

0.285714285714285714 . . ..
19In brief, the rule is as follows: Any fraction

a
b

with a, b ∈ Z (and b 6= 0) has such a decimal
representation with a period. (A period means a part that gets repeated over and over.) A

fraction
a
b

is called purely periodic if its period (in decimal notation) begins straight after the

decimal point. So
2
7

is purely periodic but
1

12
and

1
2

are not. Now, the answer is that a fraction
a
b

(with a ⊥ b) is purely periodic if and only if b ⊥ 10 (in other words, 2 - b and 5 - b). This can
be proven using Theorem 2.15.3.
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Theorem 2.15.5 (Pigeonhole Principle for Injections). Let A and B be two finite
sets such that |A| ≥ |B|. Let f : A→ B be an injective map. Then, f is bijective.

Theorem 2.15.6 (Pigeonhole Principle for Surjections). Let A and B be two finite
sets such that |A| ≤ |B|. Let f : A→ B be an surjective map. Then, f is bijective.

Theorem 2.15.5 is called the Pigeonhole Principle for Injections, due to the following
interpretation: If a pigeons sit in b pigeonholes with a ≥ b (that is, there are at least
as many pigeons as there are pigeonholes), and if no two pigeons are sharing the
same hole, then every hole must have at least one pigeon in it. (This corresponds
to the statement of Theorem 2.15.5 if you let A be the set of pigeons, B be the set
of holes, and f be the map that sends each pigeon to the hole it is sitting in. The
injectivity of f is then precisely the statement that no two pigeons are sharing the
same hole.)

Likewise, Theorem 2.15.6 is called the Pigeonhole Principle for Surjections, due to
the following interpretation: If a pigeons sit in b pigeonholes with a ≤ b (that
is, there are at most as many pigeons as there are pigeonholes), and if each hole
contains at least one pigeon, then no two pigeons are sharing the same hole.

Theorem 2.15.5 and Theorem 2.15.6 are both basic facts of set theory; how to
prove them depends on how you define the size of a finite set in the first place. See
[Grinbe15, solution to Exercise 1.1] for one way of proving them (more precisely,
Theorem 2.15.5 is the “=⇒” direction of [Grinbe15, Lemma 1.5], while Theorem
2.15.6 is the “=⇒” direction of [Grinbe15, Lemma 1.4]).

Now, Theorem 2.15.5 can be used to simplify our above proof of Theorem 2.15.3.
Indeed, in the latter proof, once we have shown that f is injective, we can imme-
diately apply Theorem 2.15.5 (to A = C and B = C) in order to conclude that f is
bijective (since C is a finite set and satisfies |C| ≥ |C|). The proof of surjectivity of
f is thus unnecessary. Alternatively, we could have omitted the proof of injectivity
of f , and instead used the surjectivity of f to apply Theorem 2.15.6 (to A = C and
B = C) in order to conclude that f is bijective (since C is a finite set and satisfies
|C| ≤ |C|). Either way, we would have obtained a shorter proof.

2.15.4. Wilson

The next theorem is known as Wilson’s theorem:

Theorem 2.15.7. Let p be a prime. Then, (p− 1)! ≡ −1 mod p.

We shall prove Theorem 2.15.7 using modular inverses modulo p. The main idea
is that we can “pair up” each factor in the product (p− 1)! = 1 · 2 · · · · · (p− 1)
with its modular inverse modulo p, where of course we take the unique modular
inverse that belongs to the set {1, 2, . . . , p− 1}. This relies on the following lemma:
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Lemma 2.15.8. Let p be a prime. Set A = {1, 2, . . . , p− 1}.
(a) If a1 and a2 are two elements of A satisfying a1 ≡ a2 mod p, then a1 = a2.
(b) For each a ∈ A, there exists a unique a′ ∈ A satisfying aa′ ≡ 1 mod p.
(c) Define a map J : A→ A as follows: For each a ∈ A, we let J (a) denote the

unique a′ ∈ A satisfying aa′ ≡ 1 mod p. (This unique a′ indeed exists, by Lemma
2.15.8 (b).)

Then, this map J is a bijection satisfying J ◦ J = id.

Remark 2.15.9. Let S be a set. An involution on S means a map f : S → S
satisfying f ◦ f = id. Thus, Lemma 2.15.8 (c) says that the map J : A → A
defined in this lemma is an involution on A.

We are now ready to prove Theorem 2.15.7:
Later, in Section 3.5, we shall give a different version of this proof.
Theorem 2.15.7 has a converse:

Exercise 2.15.3. If an integer p > 1 satisfies (p− 1)! ≡ −1 mod p, then prove that
p is a prime.

(This is actually easier to prove than Theorem 2.15.7 itself.)

Exercise 2.15.4. Let p be a prime. Prove that

(p− 1)! ≡ p− 1 mod 1 + 2 + · · ·+ (p− 1) .

Exercise 2.15.5. Let p be an odd prime. Write p in the form p = 2k + 1 for some
k ∈N. Prove that k!2 ≡ − (−1)k mod p.

[Hint: Each j ∈ Z satisfies j (p− j) ≡ −j2 mod p.]

2.16. The Chinese Remainder Theorem as a bijection

2.16.1. The bijection Km,n

Here comes another of the many facts known as the “Chinese Remainder Theo-
rem”:

Theorem 2.16.1. Let m and n be two coprime positive integers. Then, the map

Km,n : {0, 1, . . . , mn− 1} → {0, 1, . . . , m− 1} × {0, 1, . . . , n− 1} ,
a 7→ (a%m, a%n)

is well-defined and is a bijection.
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Example 2.16.2. (a) Theorem 2.16.1 (applied to m = 3 and n = 2) says that the
map

K3,2 : {0, 1, 2, 3, 4, 5} → {0, 1, 2} × {0, 1} ,
a 7→ (a%3, a%2)

is a bijection. This map sends

0, 1, 2, 3, 4, 5 to
(0, 0) , (1, 1) , (2, 0) , (0, 1) , (1, 0) , (2, 1) ,

respectively (since 0%3 = 0 and 0%2 = 0 and 1%3 = 1 and 1%2 = 1 and 2%3 = 2
and 2%2 = 0 and so on). This list of values shows that this map is bijective (since
it takes on every possible value in {0, 1, 2}× {0, 1} exactly once). Theorem 2.16.1
says that this holds for arbitrary coprime m and n.

(b) Let us see how Theorem 2.16.1 fails when m and n are not coprime. For
example, take m = 6 and n = 4. Then, the map

K6,4 : {0, 1, . . . , 23} → {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3} ,
a 7→ (a%6, a%4)

is not a bijection. Indeed, it is neither injective (for example, it sends both 0 and
12 to the same pair (0, 0)) nor surjective (for example, it never takes the value
(1, 2)).

2.16.2. Coprime remainders

For the rest of this section, we shall use the following notation:

Definition 2.16.3. Let n be a positive integer. Then, let Cn be the subset
{i ∈ {0, 1, . . . , n− 1} | i ⊥ n} of {0, 1, . . . , n− 1}.

For instance,

C4 = {1, 3} , C5 = {1, 2, 3, 4} , C6 = {1, 5} and C1 = {0} .

Now, we claim the following:

Proposition 2.16.4. Let m and n be two coprime positive integers. Consider the
map Km,n defined in Theorem 2.16.1. Then,

Km,n (Cmn) = Cm × Cn.

(Here, Km,n (Cmn) denotes the image of the subset Cmn of {0, 1, . . . , mn− 1} under
the map Km,n; that is, Km,n (Cmn) = {Km,n (x) | x ∈ Cmn}.)
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Example 2.16.5. Theorem 2.16.1 (applied to m = 3 and n = 5) says that the map

K3,5 : {0, 1, . . . , 14} → {0, 1, 2} × {0, 1, 2, 3, 4} ,
a 7→ (a%3, a%5)

is a bijection. Proposition 2.16.4 (applied to m = 3 and n = 5) says that this map
satisfies K3,5 (C15) = C3 × C5. In view of

C15 = {i ∈ {0, 1, . . . , 14} | i ⊥ 15} = {1, 2, 4, 7, 8, 11, 13, 14} ,
C3 = {i ∈ {0, 1, 2} | i ⊥ 3} = {1, 2} , and
C5 = {i ∈ {0, 1, 2, 3, 4} | i ⊥ 5} = {1, 2, 3, 4} ,

this rewrites as

K3,5 ({1, 2, 4, 7, 8, 11, 13, 14}) = {1, 2} × {1, 2, 3, 4} .

And indeed, this can easily be checked: The map K3,5 sends

1, 2, 4, 7, 8, 11, 13, 14, to
(1, 1) , (2, 2) , (1, 4) , (1, 2) , (2, 3) , (2, 1) , (1, 3) (2, 4) ,

respectively, which entails

K3,5 ({1, 2, 4, 7, 8, 11, 13, 14})
= {(1, 1) , (2, 2) , (1, 4) , (1, 2) , (2, 3) , (2, 1) , (1, 3) , (2, 4)} = {1, 2} × {1, 2, 3, 4} .

2.16.3. Proving the formula for φ

We now can prove Theorem 2.14.4:
We now take aim at proving Theorem 2.14.5. First, let us extend Theorem 2.14.4

to products of k mutually coprime integers:

Exercise 2.16.1. Let n1, n2, . . . , nk be mutually coprime positive integers. Prove
that φ (n1n2 · · · nk) = φ (n1) · φ (n2) · · · · · φ (nk).

Exercise 2.16.2. Let I be a finite set. For each i ∈ I, let ni be a positive integer.
Assume that

every two distinct elements i and j of I satisfy ni ⊥ nj. (29)

Prove that

φ

(
∏
i∈I

ni

)
= ∏

i∈I
φ (ni) .
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We are finally ready to prove Theorem 2.14.5:
Theorem 2.15.3 generalizes Theorem 2.15.1 (a). Likewise, the following exercise

generalizes Theorem 2.15.1 (b):

Exercise 2.16.3. Let a be an integer, and let n be a positive integer. Prove that
an ≡ an−φ(n) mod n.

[Hint: Use Exercises 2.13.9 and 2.14.2 and Theorems 2.15.3 and 2.14.4.]

2.17. Binomial coefficients

2.17.1. Definitions and basics

Next, we shall introduce and briefly study binomial coefficients. While binomial
coefficients belong more to (enumerative) combinatorics than to algebra, they are
used significantly in algebra, so we have to derive some of their properties.

Here is the definition of binomial coefficients (at least the one I am going to
follow in these notes):

Definition 2.17.1. Let n ∈ Q and k ∈ Q. Then, we define the binomial coefficient(
n
k

)
as follows:

(a) If k ∈N, then we set

(
n
k

)
=

n (n− 1) (n− 2) · · · (n− k + 1)
k!

=

k−1
∏
i=0

(n− i)

k!
.

(b) If k /∈N, then we set
(

n
k

)
= 0.

This definition is exactly the definition of
(

n
k

)
that we used in homework set #0.

It is also almost exactly the definition given in [GrKnPa94, (5.1)] (except that we are
allowing k to be non-integer, while the authors of [GrKnPa94] do not). Definition
2.17.1 (a) is also identical with the definition of binomial coefficients in [Grinbe15].
Our choice to require n ∈ Q is more or less arbitrary – we could have as well made
the same definition for n ∈ R or n ∈ C (but I am not aware of this generality being
of much use).

Generally, when you read literature on binomial coefficients, be aware that some

authors use somewhat different definitions of
(

n
k

)
. All known definitions give the

same results when n and k are nonnegative integers, but in the other cases there
may be discrepancies.

Here are some examples of binomial coefficients:

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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Example 2.17.2. (a) Definition 2.17.1 (a) yields
(

n
2

)
=

n (n− 1)
2!

=
n (n− 1)

2
for

all n ∈ Q. Thus, for example, (
5
2

)
=

5 · 4
2

= 10.

(b) Definition 2.17.1 (a) yields
(

n
3

)
=

n (n− 1) (n− 2)
3!

=
n (n− 1) (n− 2)

6
for

all n ∈ Q. Thus, for example,(
5
3

)
=

5 · 4 · 3
6

=
60
6

= 10;(
1
3

)
=

1 · 0 · (−1)
6

=
0
6
= 0;(

−2
3

)
=

(−2) · (−3) · (−4)
6

=
−24

6
= −4;(

1/2
3

)
=

(1/2) · (−1/2) · (−3/2)
6

=
3/8

6
=

1
16

.

(c) Definition 2.17.1 (a) yields
(

n
1

)
=

n
1!

=
n
1
= n for all n ∈ Q.

(d) Definition 2.17.1 (b) yields
(

4
1/2

)
= 0 (since 1/2 /∈N).

The binomial coefficients
(

n
k

)
for n ∈ N and k ∈ {0, 1, . . . , n} are particularly

important. They are usually tabulated in a triangle-shaped table known as Pascal’s
triangle, which starts as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

.

In this table, the binomial coefficient
(

n
k

)
appears as the k-th entry (from the left)

of the n-th row (but we count the rows from 0; that is, the topmost row, consisting
just of a single “1”, is actually the 0-th row). We advise the reader to peruse the
Wikipedia article for the history and the multiple illustrious properties of Pascal’s
triangle.

https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Pascal's_triangle
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The expression
(

n
k

)
is pronounced as “n choose k”. The reason for the word

“choose” will become clearer once we have seen Theorem 2.17.10 further below.
Some of these properties are so fundamental that we are going to list them right

now:

Theorem 2.17.3. Let n ∈N and k ∈N be such that n ≥ k. Then,(
n
k

)
=

n!
k! (n− k)!

.

Several authors use the formula
(

n
k

)
=

n!
k! (n− k)!

as a definition of the binomial

coefficients. However, this definition has the massive disadvantage of being less
general than Definition 2.17.1 (since it only covers the case when n, k ∈ N and
n ≥ k). To us, this formula is not a definition, but a result that can be proven.

Theorem 2.17.4. Let n ∈N and k ∈ Q be such that k > n. Then,(
n
k

)
= 0.

Theorem 2.17.5. Let n ∈ Q. Then, (
n
0

)
= 1.

Theorem 2.17.6. Let n ∈N and k ∈ Q. Then,(
n
k

)
=

(
n

n− k

)
.

Theorem 2.17.6 is known as the symmetry of binomial coefficients. Note that it fails
if n /∈N; thus, be careful when applying it!

Theorem 2.17.7. Let n ∈ Q and k ∈ Z. Then,(
−n
k

)
= (−1)k

(
k + n− 1

k

)
.

Theorem 2.17.7 is one of the versions of the upper negation formula.
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Theorem 2.17.8. Any n ∈ Q and k ∈ Q satisfy(
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
.

Theorem 2.17.8 is known as the recurrence of the binomial coefficients, and is the
reason why each entry of Pascal’s triangle is the sum of the two entries above it20.

Theorem 2.17.9. Any n ∈ Q and k ∈ Q satisfy

k
(

n
k

)
= n

(
n− 1
k− 1

)
.

2.17.2. Combinatorial interpretation

The next property of binomial coefficients is one of the major motivations for defin-
ing them:

Theorem 2.17.10. Let n ∈ N and k ∈ Q. Let N be an n-element set. Then,
(

n
k

)
is the number of k-element subsets of N.

We shall refer to Theorem 2.17.10 as the Combinatorial interpretation of binomial

coefficients. Theorem 2.17.10 can be restated as “
(

n
k

)
is the number of ways to

choose k elements (with no repetitions and with no regard for the order) from a

given n-element set (when n ∈N)”. This is the reason why
(

n
k

)
is called “n choose

k”. Note, however, that Theorem 2.17.10 does not directly help us compute
(

n
k

)
when n /∈N.

Corollary 2.17.11. Let n ∈N and k ∈ Q. Then,
(

n
k

)
is a nonnegative integer.

Proposition 2.17.12. Let n ∈ Z and k ∈ Q. Then,
(

n
k

)
is a integer.

20Of course, this does not apply to the “1” at the apex of Pascal’s triangle (unless we extend the
triangle further to the top by a (−1)-st row).

https://en.wikipedia.org/wiki/Pascal%27s_triangle
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Exercise 2.17.1. Let k ∈ N. Prove that the product of any k consecutive integers
is divisible by k!.

Exercise 2.17.2. In this exercise, we shall use the Iverson bracket notation: If A is

any statement, then [A] stands for the integer

{
1, if A is true;
0, if A is false

(which is also

known as the truth value of A). For instance, [1 + 1 = 2] = 1 and [1 + 1 = 1] = 0.

(a) Prove that n//k =
n
∑

i=1
[k | i] for any n ∈N and any positive integer k.

(b) Prove that vp (n) = ∑
i≥1

[
pi | n

]
for any prime p and any nonzero integer n.

Here, the sum ∑
i≥1

[
pi | n

]
is a sum over all positive integers; but it is well-defined,

since it has only finitely many nonzero addends.
(c) Prove that vp (n!) = ∑

i≥1
n//pi for any prime p and any n ∈ N. (Here, the

expression “ ∑
i≥1

n//pi” should be understood as ∑
i≥1

(
n//pi). Again, this sum

∑
i≥1

(
n//pi) is well-defined, since it has only finitely many nonzero addends.)

(d) Use part (c) to prove Corollary 2.17.11 again.

The claim of Exercise 2.17.2 (c) is usually rewritten in the form vp (n!) = ∑
i≥1

⌊
n
pi

⌋
(which is equivalent, because of Proposition 2.8.3); in this form, it is known as Leg-
endre’s formula or as de Polignac’s formula (see, e.g., [Grinbe16, Theorem 1.3.3]).
It is often a helpful tool in proving divisibility properties of factorials and bino-
mial coefficients. One application, for example, is to quickly compute how many
zeroes the decimal expansion of n! ends with. (Note that Exercise 2.17.2 (b) can be
rewritten as vp (n) = ∑

i≥1;
pi|n

1; in this form it appears in [Grinbe16, Lemma 1.3.4].)

2.17.3. Binomial formula and Vandermonde convolution

One of the staples of enumerative combinatorics are identities that involve binomial
coefficients. Hundreds of such identities have been found (see, e.g., Henry W.
Gould’s website for a list of some of them; see also [GrKnPa94, Chapter 5] and
[Grinbe15, Chapter 3] for introductions). At this point, let us only show two of
the most important ones (not counting the ones we have already shown above).
Probably the most famous one is the binomial formula:

Theorem 2.17.13. Let x, y be any numbers (e.g., rational or real or complex num-
bers). Let n ∈N. Then,

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

https://en.wikipedia.org/wiki/Iverson_bracket
https://en.wikipedia.org/wiki/Legendre's_formula
https://en.wikipedia.org/wiki/Legendre's_formula
https://www.math.wvu.edu/~gould/
https://www.math.wvu.edu/~gould/
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Theorem 2.17.13 is known as the binomial formula or the binomial theorem. It gen-
eralizes the well-known and beloved identities

(x + y)2 = x2 + 2xy + y2;

(x + y)3 = x3 + 3x2y + 3xy2 + y3;

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(as well as (x + y)1 = x1 + y1 and (x + y)0 = 1, of course).
The next identity we want to show is the Vandermonde convolution identity:

Theorem 2.17.14. Let x, y ∈ Q and n ∈N. Then,(
x + y

n

)
=

n

∑
k=0

(
x
k

)(
y

n− k

)
.

For example, for n = 2, Theorem 2.17.14 says that(
x + y

2

)
=

(
x
0

)
︸︷︷︸
=1

(
y
2

)
+

(
x
1

)
︸︷︷︸
=x

(
y
1

)
︸︷︷︸
=y

+

(
x
2

)(
y
0

)
︸︷︷︸
=1

=

(
y
2

)
+ xy +

(
x
2

)
.

The proof of Theorem 2.17.14 that we are soon going to sketch is similar to the
one given in [Grinbe15, §3.3.3] (but, unlike the latter proof, we will use polynomials
in 1 variable only). It will not be a complete proof, since it will rely on some
properties of polynomials, and not only have we not proven these properties –
we have actually not rigorously defined polynomials yet! (We will do so later,
in Chapter 7.) See [Grinbe15, §3.3.2] for another (more boring and tedious, but
conceptually simpler) proof of Theorem 2.17.14.

Our proof of Theorem 2.17.14 proceeds via several intermediate steps. The first
one is to prove Theorem 2.17.14 in the particular case when x, y ∈N:

Lemma 2.17.15. Let a, b ∈N and n ∈N. Then,(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

(We have renamed the variables x and y from Theorem 2.17.14 as a and b here,
since we will soon use the letter “x” for something completely different.)

This shows that Theorem 2.17.14 holds for all x ∈ N and y ∈ N. In order to
extend its reach to arbitrary rational a and b, we shall use the “polynomial identity
trick”. First, let us briefly explain what polynomials are, without giving a formal
definition.
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Informally, a polynomial (in 1 variable x, with rational coefficients) is an “ex-
pression” of the form akxk + ak−1xk−1 + · · ·+ a0, where ak, ak−1, . . . , a0 are (fixed)
rational numbers and where x is a (so far meaningless) symbol (called indeter-

minate or variable). For example, 4x3 + 2x2 − 1
3

x +
2
7

is a polynomial, and so is

0x3 + x2− 0x +
1
3

. We can omit terms of the form “0xi” when writing down a poly-

nomial and treat the result as being the same polynomial; thus, 0x3 + x2 − 0x +
1
3

can also be written as x2 − 0x +
1
3

and as x2 +
1
3

. Likewise, we can treat the “+”
signs as signifying addition and behaving like it, so, e.g., commutativity holds:
2x3 + 5x and 5x + 2x3 are the same polynomial (but 2x + 5x3 is different). We also
pretend that distributivity holds, so “like terms” can be combined: e.g., we have
4x3 + 9x3 = (4 + 9) x3 = 13x3 or 4x3 − 12x3 = (4− 12) x3 = −8x3. Thus, we can
add two polynomials: for example,(

3x2 − 1x +
1
2

)
+ (6x− 7) = 3x2 + (−1 + 6)︸ ︷︷ ︸

=5

x +

(
1
2
− 7
)

︸ ︷︷ ︸
=
−13

2

= 3x2 + 5x +
−13

2
.

By pretending that the xi (with i ∈ N) are actual powers of the symbol x, and that
multiplication obeys the associativity law (so that

(
λxi) xj = λ

(
xixj) = λxi+j for

rational λ and i, j ∈N), we can multiply polynomials as well (first use distributivity
to expand the product):

(3x− 5)
(

x2 + 3x + 2
)
= 3x

(
x2 + 3x + 2

)
− 5

(
x2 + 3x + 2

)
=
(

3x3 + 9x2 + 6x
)
−
(

5x2 + 15x + 10
)

= 3x3 + 4x2 − 9x− 10.

Most importantly, it is possible to substitute a number into a polynomial: If
u ∈ Q and if P = akxk + ak−1xk−1 + · · · + a0 is a polynomial, then we define
P (u) (called the evaluation of P at u, or the result of substituting u for x in P) to
be the number akuk + ak−1uk−1 + · · ·+ a0. More generally, if the polynomial P is
given in any of its forms (e.g., as a product of other polynomials), then we can
compute P (u) by replacing each x appearing in this form by an u. For exam-
ple, if P = (2x + 1) (3x + 1)− (4x + 1) (5x + 1), then P (u) = (2u + 1) (3u + 1)−
(4u + 1) (5u + 1); thus, we do not need to expand P before substituting u into it.

Even more generally, u does not have to be a rational number in order to be
substituted in a polynomial P – it can be (roughly speaking!) anything that can
be taken to the i-th power for i ∈ N and that can be added and multiplied by a
rational number. For example, u can be a real number or a square matrix or another
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polynomial. (We will later learn the precise meaning of “anything” here21.)
We have been vague in our definition of polynomials, since making it rigorous

would take us a fair way afield. But we will eventually (in Chapter 7) define poly-
nomials rigorously and prove that all of the above claims (e.g., about associativity
and distributivity) actually hold. For now, we need a basic property of polynomi-
als:

Proposition 2.17.16. Let P and Q be two polynomials in 1 variable x with rational
coefficients. Assume that infinitely many u ∈ Q satisfy P (u) = Q (u). Then,
P = Q (as polynomials).

We will prove Proposition 2.17.16 later (in Section 7.7).22

Note that polynomials are not functions – despite the fact that we can substitute
numbers into them and obtain other numbers. However, in many regards, they
behave like functions. For what we are going to do in this section, the difference
does not matter; we can treat polynomials as functions here.

With Lemma 2.17.15, we have proven Theorem 2.17.14 in the case when x and y
belong to N. Our goal, however, is to prove it for arbitrary x, y ∈ Q. Let us first
lift it to an intermediate level of generality – allowing x to be arbitrary, but still
requiring y ∈N. Thus, we want to prove the following lemma:

Lemma 2.17.17. Let a ∈ Q, b ∈N and n ∈N. Then,(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

Let us summarize the main idea of this proof: We replaced the rational num-
ber a by the indeterminate x, thus transforming the identity we were proving into
an equality between two polynomials (namely, P = Q). But in order to prove an
equality between polynomials, it suffices to prove that it holds at infinitely many
numbers (by Proposition 2.17.16); thus, in particular, it suffices to check it at all non-
negative integers. But this is precisely what we did in Lemma 2.17.15 above. This
kind of argument (with its use of Proposition 2.17.16) is known as the “polynomial
identity trick”.

Now, let us extend the reach of Lemma 2.17.17 further, allowing both a and b to
be arbitrary (and thus obtaining the whole Theorem 2.17.14):

Lemma 2.17.18. Let a, b ∈ Q and n ∈N. Then,(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

21Namely, “anything” will be concretized to mean “any element of a Q-algebra”. See Definition
7.6.1 for the details.

22Note that it is closely related to the Proposition 1.6.6 we used above.
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Exercise 2.17.3. Let a, b ∈ N and m ∈ Q. Let A be an a-element set. Let B be a
b-element subset of A. Prove that

(the number of m-element subsets S of A satisfying B ⊆ S) =
(

a− b
m− b

)
.

2.17.4. Some divisibilities and congruences

So far we have been proving identities between binomial coefficients. Let us now
step to divisibilities and congruences.

Proposition 2.17.12 shows that binomial coefficients
(

n
k

)
are integers whenever

n is an integer. This allows us to study divisibilities and congruences between
binomial coefficients (and you have seen a few of them on homework set #1). One
of the most important such divisibilities is the following fact:

Theorem 2.17.19. Let p be a prime. Let k ∈ {1, 2, . . . , p− 1}. Then, p |
(

p
k

)
.

We shall see a second, combinatorial proof of Theorem 2.17.19 further below; it
will rely on the concept of group actions.

Let us state two congruences for binomial coefficients, which we will show later
using tools from abstract algebra:

Theorem 2.17.20 (Lucas’s congruence). Let p be a prime. Let a, b ∈ Z. Let
c, d ∈ {0, 1, . . . , p− 1}. Then,(

pa + c
pb + d

)
≡
(

a
b

)(
c
d

)
mod p.

Theorem 2.17.21 (Babbage’s congruence). Let p be a prime. Let a, b ∈ Z. Then,(
pa
pb

)
≡
(

a
b

)
mod p2.

For the impatient: Elementary proofs of Theorem 2.17.20 and Theorem 2.17.21
can be found in [Grinbe17].

Remark 2.17.22. Lucas’s congruence has the following consequence: Let p be a
prime. Let a, b ∈N. Write a and b in base p as follows:

a = ak pk + ak−1pk−1 + · · ·+ a0p0 and

b = bk pk + bk−1pk−1 + · · ·+ b0p0

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw1s.pdf
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with k ∈ N and ak, ak−1, . . . , a0, bk, bk−1, . . . , b0 ∈ {0, 1, . . . , p− 1}. (Note that we
allow “leading zeroes” – i.e., any of ak and bk can be 0.) Then,(

a
b

)
≡
(

ak
bk

)(
ak−1

bk−1

)
· · ·
(

a0

b0

)
mod p.

(This can be easily proven by induction on k, using Theorem 2.17.20 in the in-

duction step.) This allows for quick computation of remainders of
(

a
b

)
modulo

prime numbers, and also explains (when applied to p = 2) why we can obtain
(an approximation of) Sierpinski’s triangle from Pascal’s triangle by coloring all
even numbers white and all odd numbers black.

See [Mestro14] and [Granvi05] for overviews of more complicated divisibilities
and congruences for binomial coefficients.

Exercise 2.17.4. Let p be a prime.

(a) Prove that
(

2p
p

)
≡ 2 mod p.

(b) Prove that
(

2p− 1
p

)
≡ 1 mod p.

(c) Prove that
(

p− 1 + k
k

)
≡ 0 mod p for each k ∈ {1, 2, . . . , p− 1}.

[Hint: This is very easy using Lucas’s congruence, but you can also solve it
without it.]

2.17.5. Integer-valued polynomials

Now that we have introduced polynomials (albeit informally and on somewhat
shaky foundations) and binomial coefficients (albeit briefly), it would be a shame to
leave unmentioned a subject that connects the two particularly closely: the integer-
valued polynomials. We are going to state a few basic facts, but we will not prove
them.

If f = akxk + ak−1xk−1 + · · ·+ a0 is a polynomial (in 1 variable x, with rational
coefficients), then the rational numbers ak, ak−1, . . . , a0 are called the coefficients of
f . The coefficients of a polynomial f are uniquely determined by f (except for
the fact that we can always add terms of the form 0x` and thus obtain extra co-
efficients that are equal to 0). (This fact is not obvious, given our “definition” of
polynomials above23. We will later define polynomials more formally as sequences
of coefficients; then this will become clear.)

23For example, why cannot we start with (say) 6x2 + 5x + 4, then rewrite it as (2x + 1) (3x + 1) + 3,
then do some other transformations (using commutativity, associativity and other laws), and
finally end up with a polynomial that has different coefficients (say, 3x2 + 9x + 4) ? We cannot,
but it is not easy to prove with what we have.

https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
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If f = akxk + ak−1xk−1 + · · ·+ a0 is a polynomial (in 1 variable x, with rational
coefficients) such that ak 6= 0 (each polynomial that is not just 0 can be uniquely
written in such a form), then the integer k is called the degree of f .

Definition 2.17.23. A polynomial P with rational coefficients is said to be integer-
valued if (P (n) ∈ Z for all n ∈ Z).

Of course, a polynomial with integer coefficients is always integer-valued. But
there are other integer-valued polynomials, too:

Example 2.17.24. (a) The polynomial
(

x
2

)
=

x (x− 1)
2

=
1
2

x2 − 1
2

x is integer-

valued (since
(

n
2

)
∈ Z for each n ∈ Z), but its coefficients are

1
2

,−1
2

, 0.

(b) More generally: If k ∈ N is arbitrary, then the polynomial
(

x
k

)
=

x (x− 1) (x− 2) · · · (x− k + 1)
k!

is integer-valued (since
(

n
k

)
∈ Z for each n ∈

Z).

(c) If p is any prime, then the polynomial
xp − x

p
is integer-valued (since Theo-

rem 2.15.1 (b) yields ap ≡ a mod p for each a ∈ Z, which means that
ap − a

p
∈ Z

for each a ∈ Z). Its coefficients are not integers.

This suggests the following question: How can we describe the integer-valued
polynomials? The following result of Pólya [Polya19] gives an answer:

Theorem 2.17.25. Let k ∈N.
(a) Any polynomial P (in 1 variable x, with rational coefficients) of degree k

can be uniquely written in the form

P (x) = ak

(
x
k

)
+ ak−1

(
x

k− 1

)
+ · · ·+ a0

(
x
0

)
with rational ak, ak−1, . . . , a0.

(b) The polynomial P is integer-valued if and only if these ak, ak−1, . . . , a0 are
integers.

For example, the integer-valued polynomial
x3 − x

3
can be written as

x3 − x
3

= a3

(
x
3

)
+ a2

(
x
2

)
+ a1

(
x
1

)
+ a0

(
x
0

)
for

a3 = 2, a2 = 2, a1 = 0, a0 = 0.
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These a3, a2, a1, a0 are integers – exactly as Theorem 2.17.25 (b) says.
I sketched a proof of Theorem 2.17.25 (b) in a talk in 2013 ( https://www.

cip.ifi.lmu.de/~grinberg/storrs2013.pdf )24. See also [daSilv12] for a self-
contained proof.

2.18. Counting divisors

2.18.1. The number of divisors of n

Now that we have seen some combinatorial reasoning (e.g., in the proof of Theorem
2.17.14), let us solve a rather natural counting problem: Let us count the divisors
of a nonzero integer n.

Proposition 2.18.1. Let n ∈ Z be nonzero. Then:
(a) The product ∏

p prime

(
vp (n) + 1

)
is well-defined, since all but finitely many

of its factors are 1.
(b) We have

(the number of positive divisors of n) = ∏
p prime

(
vp (n) + 1

)
.

(c) We have

(the number of divisors of n) = 2 ∏
p prime

(
vp (n) + 1

)
.

Example 2.18.2. If n = 12, then

(the number of positive divisors of n) = 6

(since the positive divisors of n = 12 are 1, 2, 3, 4, 6, 12) and

∏
p prime

(
vp (n) + 1

)
=

v2 (n)︸ ︷︷ ︸
=2

+1

v3 (n)︸ ︷︷ ︸
=1

+1

 ∏
p prime;
p/∈{2,3}

vp (n)︸ ︷︷ ︸
=0

+1


= (2 + 1) (1 + 1) ∏

p prime;
p/∈{2,3}

1

︸ ︷︷ ︸
=1

= (2 + 1) (1 + 1) = 6.

This confirms Proposition 2.18.1 (b) for n = 12. In order to confirm Proposition
2.18.1 (c) for n = 12 as well, we observe that (the number of divisors of n) = 12
(since the divisors of n = 12 are −12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12).

24In this talk, I refer to integer-valued polynomials as “integral-valued polynomials”.

https://www.cip.ifi.lmu.de/~grinberg/storrs2013.pdf
https://www.cip.ifi.lmu.de/~grinberg/storrs2013.pdf
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The function

{1, 2, 3, . . .} →N,
n 7→ (the number of positive divisors of n)

is known as the divisor function and is commonly denoted by τ. So Proposition
2.18.1 (b) gives a formula for τ (n). See [Grinbe16, Theorem 2.1.7 (proof sketched
in §2.7)] for a different proof of this formula.

Our proof of Proposition 2.18.1 will rely on the following lemma, which classifies
all divisors of a positive integer in terms of its prime factorization:

Lemma 2.18.3. Let p1, p2, . . . , pu be finitely many distinct primes. For each i ∈
{1, 2, . . . , u}, let ai be a nonnegative integer. Let n = pa1

1 pa2
2 · · · p

au
u .

Define a set T by

T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}
= {(b1, b2, . . . , bu) | bi ∈ {0, 1, . . . , ai} for each i ∈ {1, 2, . . . , u}}
= {(b1, b2, . . . , bu) ∈Nu | bi ≤ ai for each i ∈ {1, 2, . . . , u}} .

Then, the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

is well-defined and bijective.

Example 2.18.4. For this example, let u = 2, p1 = 2, p2 = 3, a1 = 2 and a2 = 1.
Define the integer n and the set T as in Lemma 2.18.3; then,

n = pa1
1 pa2

2 · · · p
au
u = 22 · 31 = 12

and

T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au} = {0, 1, 2} × {0, 1}
= {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (2, 0) , (2, 1)} .

Now, Lemma 2.18.3 says that the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

is well-defined and bijective. Here is a table of values of this map Λ:

b (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

Λ (b) 1 3 2 6 4 12
.

https://en.wikipedia.org/wiki/Divisor_function


Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 93

Remark 2.18.5. Proposition 2.18.1 can be used to re-prove Proposition 2.14.7. We
leave the details of this argument to the reader.

2.18.2. The sum of the divisors of n

The method by which we proved Proposition 2.18.1 can be used (with a minor
modification) to not just count the positive divisors of a positive integer n, but also
(for example) to compute their sum or the sum of their squares. This relies on the
following basic property of ∑ and ∏ signs:

Lemma 2.18.6. Let n ∈ N. For every i ∈ {1, 2, . . . , n}, let Zi be a finite set. For
every i ∈ {1, 2, . . . , n} and every k ∈ Zi, let pi,k be a number. Then,

n

∏
i=1

∑
k∈Zi

pi,k = ∑
(k1,k2,...,kn)∈Z1×Z2×···×Zn

n

∏
i=1

pi,ki .

(Note that if n = 0, then the Cartesian product Z1× Z2× · · · × Zn has no factors;
it is what is called an empty Cartesian product. It is understood to be a 1-element
set, and its single element is the 0-tuple () (also known as the empty list).)

Lemma 2.18.6 is essentially a version of the distributivity law (or the FOIL
method) for expanding a product of several sums, each of which has several fac-
tors. For example, if we take n = 3 and Zi = {1, 2} for each i ∈ {1, 2, 3}, then
Lemma 2.18.6 says that

(p1,1 + p1,2) (p2,1 + p2,2) (p3,1 + p3,2)

= p1,1p2,1p3,1 + p1,1p2,1p3,2 + p1,1p2,2p3,1 + p1,1p2,2p3,2

+ p1,2p2,1p3,1 + p1,2p2,1p3,2 + p1,2p2,2p3,1 + p1,2p2,2p3,2

(which is precisely what you get if you expand the product
(p1,1 + p1,2) (p2,1 + p2,2) (p3,1 + p3,2) using the distributivity law). For another ex-
ample, if we take n = 2 and Zi = {1, 2, 3} for each i ∈ {1, 2}, then Lemma 2.18.6
says that

(p1,1 + p1,2 + p1,3) (p2,1 + p2,2 + p2,3) = p1,1p2,1 + p1,1p2,2 + p1,1p2,3

+ p1,2p2,1 + p1,2p2,2 + p1,2p2,3

+ p1,3p2,1 + p1,3p2,2 + p1,3p2,3

(which is, again, simply the result of expanding the left hand side). In the general

https://en.wikipedia.org/wiki/FOIL_method
https://en.wikipedia.org/wiki/FOIL_method
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case, the idea behind Lemma 2.18.6 is that if you expand the product25

n

∏
i=1

mi

∑
k=1

pi,k

=
n

∏
i=1

(
pi,1 + pi,2 + · · ·+ pi,mi

)
=
(

p1,1 + p1,2 + · · ·+ p1,m1

)
(p2,1 + p2,2 + · · ·+ p2,m2) · · · (pn,1 + pn,2 + · · ·+ pn,mn) ,

then you get a sum of m1m2 · · ·mn terms, each of which has the form

p1,k1 p2,k2 · · · pn,kn =
n

∏
i=1

pi,ki

for some (k1, k2, . . . , kn) ∈ {1, 2, . . . , m1} × {1, 2, . . . , m2} × · · · × {1, 2, . . . , mn}. See
[Grinbe15, proof of Lemma 7.160] for a rigorous proof of Lemma 2.18.6 (which uses
induction and the distributivity law).

Now, we can state a formula for the sum of all positive divisors of a positive
integer n, and more generally for the sum of the k-th powers of these positive
divisors, where k is a fixed integer:

Exercise 2.18.1. Let n be a positive integer. Let k ∈ Z. Prove that:
(a) The product ∏

p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
is well-defined, since all but

finitely many of its factors are 1.
(b) We have

∑
d|n

dk = ∏
p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
.

(Recall that the summation sign “ ∑
d|n

” means a sum over all positive divisors d of

n.)

Example 2.18.7. If n = 6, then the positive divisors of n are 1, 2, 3, 6. Thus, in this
case, the claim of Exercise 2.18.1 (b) becomes

1k + 2k + 3k + 6k = ∏
p prime

(
p0k + p1k + · · ·+ pvp(6)·k

)
.

25We are here assuming (for the sake of simplicity) that each set Zi is {1, 2, . . . , mi} for some mi ∈N.
This does not weaken the reach of Lemma 2.18.6, since each finite set Zi can be relabelled as
{1, 2, . . . , mi} for mi = |Zi|.
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This equality can easily be verified, since the right hand side is

∏
p prime

(
p0k + p1k + · · ·+ pvp(6)·k

)
=
(

20k + 21k + · · ·+ 2v2(6)·k
)

︸ ︷︷ ︸
=20k+21k

(since v2(6)=1)

·
(

30k + 31k + · · ·+ 3v3(6)·k
)

︸ ︷︷ ︸
=30k+31k

(since v3(6)=1)

· ∏
p prime;
p/∈{2,3}

(
p0k + p1k + · · ·+ pvp(6)·k

)
︸ ︷︷ ︸

=p0k

(since vp(6)=0 (because p/∈{2,3}))

=

 20k︸︷︷︸
=1

+ 21k︸︷︷︸
=2k

 ·
 30k︸︷︷︸

=1

+ 31k︸︷︷︸
=3k

 · ∏
p prime;
p/∈{2,3}

p0k︸︷︷︸
=1

=
(

1 + 2k
)
·
(

1 + 3k
)
= 1︸︷︷︸

=1k

+2k + 3k + 2k · 3k︸ ︷︷ ︸
=(2·3)k=6k

= 1k + 2k + 3k + 6k.

Note that Proposition 2.18.1 (b) is the particular case of Exercise 2.18.1 (b) ob-
tained when setting k = 0 (because each integer z satisfies z0 = 1, and thus ∑

d|n
d0 is

the number of positive divisors of n).

Exercise 2.18.2. Let n be a positive integer. Let

z = (the number of positive divisors d of n such that d ≡ 1 mod 4)
− (the number of positive divisors d of n such that d ≡ 3 mod 4) .

Prove the following:
(a) If there exists a prime p satisfying p ≡ 3 mod 4 and vp (n) ≡ 1 mod 2, then

z = 0.
(b) If there exists no prime p satisfying p ≡ 3 mod 4 and vp (n) ≡ 1 mod 2, then

z = ∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
.

[Hint: For every u ∈ Z, set L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise.

Prove that L (uv) =

L (u) · L (v) for any integers u and v. Then, show that z = ∑
d|n

L (d). Exploit the

similarity between the sum ∑
d|n

L (d) and the sum in Exercise 2.18.1 (b).]
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2.19. “Application”: The Erdös–Ginzburg–Ziv theorem

In this section (which can be skipped at will), we shall apply some of what we
learned above to prove a curious result found in 1961 by Erdős, Ginzburg and Ziv
[ErGiZi61]:

Theorem 2.19.1. Let n be a positive integer. Let a1, a2, . . . , a2n−1 be any 2n − 1
integers (not necessarily distinct). Then, there exists an n-element subset S of
{1, 2, . . . , 2n− 1} such that n | ∑

s∈S
as.

In other words, this theorem says that if you are given 2n− 1 integers, then you
can pick n of them (without picking the same one twice26) such that the sum of
your pick is divisible by n.

Example 2.19.2. In the case when n = 2, Theorem 2.19.1 can be restated as
follows: If a, b, c are three integers, then at least one of the sums b + c, c + a and
a + b is even. This is easy to prove by contradiction: Assume the contrary; thus,
all three sums b + c, c + a and a + b are odd. Hence, (b + c) + (c + a) + (a + b)
is a sum of three odd numbers, and thus itself must be odd (since odd + odd
is even, and odd + even is odd). But this contradicts the fact that (b + c) +
(c + a) + (a + b) = 2 (a + b + c) is even. Thus, we have proven Theorem 2.19.1
in the case when n = 2.

Many proofs of Theorem 2.19.1 are known (see [AloDub93] for an exposition),
but none of them is overly easy. We shall present one of these proofs (the one in
[AloDub93, §2.3]) that uses prime factorization, Fermat’s little theorem and bino-
mial coefficients.

First of all, we need a combinatorial lemma, which easily follows from Lemma
2.18.6:

Lemma 2.19.3. Let S be a finite set. For each s ∈ S, let as be an integer. Let
n ∈N. Then, (

∑
s∈S

as

)n

= ∑
(k1,k2,...,kn)∈Sn

n

∏
i=1

aki .

(Note that if n = 0, then the Cartesian power Sn has no factors; it consists of a
single element, namely the empty 0-tuple ().)

Exercise 2.19.1. Prove Lemma 2.19.3.

We shall first prove Theorem 2.19.1 in the case when n is prime; i.e., we shall
prove the following result:

26But if two of the 2n− 1 integers are equal, then you can have them both in your pick.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 97

Lemma 2.19.4. Let p be a prime. Let a1, a2, . . . , a2p−1 be any 2p− 1 integers (not
necessarily distinct). Then, there exists a p-element subset S of {1, 2, . . . , 2p− 1}
such that p | ∑

s∈S
as.

Having established Lemma 2.19.4, we shall next extend it to a larger list of num-
bers:

Lemma 2.19.5. Let p be a prime. Let u be a positive integer. Let a1, a2, . . . , aup−1
be any up− 1 integers (not necessarily distinct). Then, there exist u− 1 disjoint
p-element subsets S1, S2, . . . , Su−1 of {1, 2, . . . , up− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , u− 1} .

Exercise 2.19.2. Formalize the above proof of Lemma 2.19.5.

Now the hard part is done: It turns out that non-prime integers n in Theorem
2.19.1 can be dealt with by splitting out a prime factor p, and applying Lemma
2.19.5 to this p. Here is the argument in detail:

3. Equivalence relations and residue classes

3.1. Relations

Loosely speaking, a relation on a set S is a property that two elements a and b of S
(or, more formally, a pair (a, b) ∈ S× S of two elements of S) can either have or not
have. For example, equality (denoted =) is a relation, since two elements a and b of
S are either equal (i.e., satisfy a = b) or not equal. Likewise, the divisibility relation
(denoted |) is a relation on Z, since two elements a and b of Z either satisfy a | b or
do not.

A formal definition of relations proceeds as follows:

Definition 3.1.1. Fix a set S. A binary relation on S is a subset of S× S (that is, a
set of pairs of elements of S).

If R is a binary relation (on S), and if a, b ∈ S, then we write aRb for (a, b) ∈ R.
The word “relation” shall always mean “binary relation” unless we say other-

wise.

So a relation on a set S is, formally speaking, a subset of S× S – but in practice,
we think of it as a property that holds for some pairs (a, b) ∈ S× S (namely, for the
ones that belong to this subset) and does not hold for some others (namely, for the
ones that do not belong to this subset).27 In order to define a relation R on a given

27Here, the word “some” can mean “none” or “all” or anything inbetween.
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set S, it suffices to tell which pairs (a, b) ∈ S× S satisfy aRb (because then, R will
simply be the set of all these pairs (a, b)). Let us define several relations on the set
Z by this strategy:

Example 3.1.2. Let S = Z.
(a) The relation = is a binary relation on S. As a subset of S× S, this relation

is

{(a, b) ∈ S× S | a = b}
= {(c, c) | c ∈ S} = {. . . , (−1,−1) , (0, 0) , (1, 1) , . . .} .

(b) The relation < is a binary relation on S. As a subset of S× S, this relation
is

{(a, b) ∈ S× S | a < b} .

(c) The relation ≤ is a binary relation on S. As a subset of S× S, this relation
is

{(a, b) ∈ S× S | a ≤ b} .

(d) The relation 6= is also a binary relation on S.
(e) Fix n ∈ Z. Define a relation ≡

n
on S = Z by(

a ≡
n

b
)
⇐⇒ (a ≡ b mod n) .

As a subset of S× S = Z×Z, this relation ≡
n

is

{(a, b) ∈ Z×Z | a ≡ b mod n}
= {(a, b) ∈ Z×Z | there exists an integer d such that b = a + nd}

(by Exercise 2.3.7)
= {(a, a + nd) | a, d ∈ Z} .

Note that the relation ≡
0

is exactly the relation = (by Example 2.3.2 (c)).

(f) Define a binary relation N on S by(
a N b

)
⇐⇒ (false)

(that is, a N b never holds, no matter what a and b are). As a subset of S× S,
this relation N is just the empty subset of S× S.

(g) On the other extreme: Define a binary relation A on S by(
a A b

)
⇐⇒ (true)

(that is, a A b holds for all a and b). As a subset of S× S, this relation A is the
whole set S× S. Note that the relation A is exactly the relation ≡

1
(by Example

2.3.2 (d)).
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(h) The relation | (divisibility) is also a relation on S = Z.
(i) The relation ⊥ (coprimality) is also a relation on S = Z.
(j) We have defined several relations on the set S = Z now. The relations =,
6=, N and A (or, rather, relations analogous to them) can be defined on any
set.

3.2. Equivalence relations

Relations occur frequently in mathematics, and there is a bunch of properties that
a relation can have or not have. (See the Wikipedia article on binary relations for a
long list of such properties.) We shall need only the following three:

Definition 3.2.1. Let R be a binary relation on a set S.
(a) We say that R is reflexive if every a ∈ S satisfies aRa.
(b) We say that R is symmetric if every a, b ∈ S satisfying aRb satisfy bRa.
(c) We say that R is transitive if every a, b, c ∈ S satisfying aRb and bRc satisfy

aRc.

(Here are mnemonics for the three words we just defined:

• “Reflexive” should make you think of R as a mirror through which a can see
itself (that is, satisfy aRa).

• “Symmetric” means that the roles of a and b in aRb are interchangeable – a
symmetry.

• “Transitive” means that you can “transit” an element b on your way from a
to c (that is, if you treat aRb as the existence of a “path” from a to b, and bRc
as the existence of a “path” from b to c, then you can combine a “path” from
a to b with a “path” from b to c to get a “path” from a to c).)

Let us see some examples of these properties of relations28:

Example 3.2.2. Let S be the set Z. Consider the relations on Z defined in Exam-
ple 3.1.2.

(a) The relation = is reflexive, symmetric and transitive.
(b) The relation < is transitive, but neither reflexive nor symmetric.
(c) The relation ≤ is transitive and reflexive, but not symmetric.
(d) The relation 6= is symmetric, but neither reflexive nor transitive.
(e) For each n ∈ Z, the relation ≡

n
is reflexive, symmetric and transitive.

(f) The relation N is symmetric and transitive, but not reflexive.
(g) The relation A is reflexive, symmetric and transitive.
(h) The divisibility relation | is reflexive and transitive, but not symmetric.
(i) The coprimality relation ⊥ is symmetric, but neither reflexive nor transitive.

28See further below for the proofs of the claims made in this example.

https://en.wikipedia.org/wiki/Binary_relation
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Definition 3.2.3. An equivalence relation on a set S means a relation on S that is
reflexive, symmetric and transitive.

Example 3.2.4. Let S be any set. The relation = on the set S is an equivalence
relation, because it is reflexive, symmetric and transitive.

Example 3.2.5. Let n ∈ Z. The relation ≡
n

on Z (defined in Example 3.1.2 (e)) is
an equivalence relation, because (as we saw in Example 3.2.2 (e)) it is reflexive,
symmetric and transitive.

Example 3.2.6. Here are some examples from elementary plane geometry: Con-
gruence (e.g., of triangles) is an equivalence relation. Similarity is also an equiv-
alence relation. The same holds for direct similarity (i.e., orientation-preserving
similarity). The same holds for parallelism of lines.

Example 3.2.7. Let S and T be two sets, and let f : S → T be a map. Define a
relation ≡

f
on S by (

a ≡
f

b
)
⇐⇒ ( f (a) = f (b)) .

This relation ≡
f

is an equivalence relation.

We will soon learn that every equivalence relation on a set S is actually of the
form ≡

f
for some set T and some map f : S→ T. (Namely, this is proven in Exercise

3.3.3 below.)

Example 3.2.8. Let S be the set of all points on the landmass of the Earth, and let
∼ be the relation on S defined by

(a ∼ b)⇐⇒ (there is a land route from a to b) .

This ∼ is an equivalence relation (with the caveat that S is not a mathematical
object and thus not really well-defined).

Example 3.2.9. Let

S = Z× (Z \ {0}) = {(a1, a2) | a1 ∈ Z and a2 ∈ Z \ {0}} .

This is the set of all pairs whose first entry is an integer and whose second entry
is a nonzero integer. We define a relation ∼

∗
on S by(

(a1, a2) ∼∗ (b1, b2)
)
⇐⇒ (a1b2 = a2b1) .

This relation ∼
∗

is an equivalence relation.
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The relation ∼
∗

from Example 3.2.9 may appear familiar to you. In fact, its defi-
nition can be restated as follows:(

(a1, a2) ∼∗ (b1, b2)
)
⇐⇒

(
a1

a2
=

b1

b2

)
,

and this makes the claims of Example 3.2.9 a lot more obvious. However, this

is (in a sense) circular reasoning: The statement “
a1

a2
=

b1

b2
” only makes sense if

the rational numbers have been defined29, but the definition of rational numbers
(at least the usual definition, given in [Swanso18, §3.6] and in many other places)
already relies on the claims of Example 3.2.9. (Namely, the rational numbers are
defined as the equivalence classes of the relation ∼

∗
; this is explained in Example

3.3.6 below.) Thus, our above proof of Example 3.2.9 was not a waste of time, but
rather an important prerequisite for the construction of rational numbers (one of
the cornerstones of mathematics).

If you are familiar with basic linear algebra, you may notice that the relation ∼
∗

from Example 3.2.9 can also be regarded as linear dependence. Namely, two pairs
(a1, a2) and (b1, b2) in Z × (Z \ {0}) satisfy (a1, a2) ∼∗ (b1, b2) if and only if the

vectors (a1, a2) and (b1, b2) in Q2 are linearly dependent.30

One simple property of symmetric relations will come useful:

Proposition 3.2.10. Let ∼ be a symmetric relation on a set S. Let a, b ∈ S. Then,
a ∼ b if and only if b ∼ a.

3.3. Equivalence classes

3.3.1. Definition of equivalence classes

We can now state one of the most important definitions in mathematics:

Definition 3.3.1. Let ∼ be an equivalence relation on a set S.
(a) For each a ∈ S, we define a subset [a]∼ of S by

[a]∼ = {b ∈ S | b ∼ a} . (30)

This subset [a]∼ is called the equivalence class of a, or the ∼-equivalence class of a.
(b) The equivalence classes of ∼ are defined to be the sets [a]∼ for a ∈ S. They

are also known as the ∼-equivalence classes.

29since
a1

a2
and

b1

b2
are (in general) not integers but rational numbers

30Note, however, that linear dependence is no longer an equivalence relation if we allow the vector
(0, 0) in our set S, because then, it is no longer transitive (for example, (1, 1) and (0, 0) are
linearly dependent, and (0, 0) and (1, 2) are linearly dependent, but (1, 1) and (1, 2) are not).
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Example 3.3.2. Consider the relation ≡
3

on Z (defined in Example 3.1.2 (e)). We

have

[5]≡
3
=

{
b ∈ Z | b ≡

3
5
}

= {b ∈ Z | b ≡ 5 mod 3}

= {. . . ,−4,−1, 2, 5, 8, 11, 14, . . .}

and

[3]≡
3
=

{
b ∈ Z | b ≡

3
3
}

= {b ∈ Z | b ≡ 3 mod 3}

= {. . . ,−6,−3, 0, 3, 6, 9, 12, . . .}

and

[2]≡
3
=

{
b ∈ Z | b ≡

3
2
}

= {b ∈ Z | b ≡ 2 mod 3}

= {. . . ,−4,−1, 2, 5, 8, 11, 14, . . .} .

Note that [5]≡
3
= [2]≡

3
, as you can easily see.

3.3.2. Basic properties

Proposition 3.3.3. Let ∼ be an equivalence relation on a set S. Let a ∈ S. Then,

[a]∼ = {b ∈ S | a ∼ b} .

Proposition 3.3.3 shows that we can replace the condition “b ∼ a” by “a ∼ b” in
Definition 3.3.1 (a) without changing the meaning of the definition. (Some authors,
such as Swanson in [Swanso18, Definition 2.3.6], do exactly that.)

Proposition 3.3.4. Let ∼ be an equivalence relation on a set S. Let a ∈ S. Then,
a ∈ [a]∼.

Proposition 3.3.4 shows that all equivalence classes of an equivalence relation are
nonempty sets (because each equivalence class [a]∼ contains at least the element a).

Theorem 3.3.5. Let ∼ be an equivalence relation on a set S. Let x, y ∈ S.
(a) If x ∼ y, then [x]∼ = [y]∼.
(b) If not x ∼ y, then the sets [x]∼ and [y]∼ are disjoint.
(c) We have x ∼ y if and only if x ∈ [y]∼.
(d) We have x ∼ y if and only if y ∈ [x]∼.
(e) We have x ∼ y if and only if [x]∼ = [y]∼.
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Theorem 3.3.5 yields an important property of equivalence classes:

Exercise 3.3.1. Let ∼ be an equivalence relation on a set S. Prove that any two
equivalence classes of ∼ are either identical or disjoint.

In the following, we will try to use Greek letters for equivalence classes and
Roman letters for their representatives. (See the solution to Exercise 3.3.1 for an
example.)

3.3.3. More examples

Example 3.3.6. Consider the relation ∼
∗

on S = Z× (Z \ {0}) defined in Example
3.2.9. Its equivalence classes are the rational numbers. Indeed, the equivalence
class [(a1, a2)]∼

∗
of a pair (a1, a2) ∈ S is commonly denoted by

a1

a2
(or by a1/a2).

This is how rational numbers are defined!

Equivalence classes appear in real life too, at least in the modern world. When
you say that the sun rises approximately at 7 AM in February31, what do “7 AM”
and “February” mean? Clearly, “February” is not a specific month in history, since
each year has its own February. Rather, it stands for an equivalence class of months,
with respect to the relation of “being an integer number of years apart”. Similarly,
“7 AM” means an equivalence class of moments with respect to the relation of
“being an integer number of days apart”. Likewise, “the horse” in “the horse has a
lifespan of 25 years” refers not to a specific horse, but to the whole species, which
is an equivalence class of creatures with respect to a certain relation32. Finally, the
equivalence classes of the relation ∼ in Example 3.2.8 are commonly referred to as
“continents”33 or “islands”. Equivalence classes provide a way to refer to multiple
objects (usually similar in some way) as if they were one.

3.3.4. The “is a permutation of” relation on tuples

Let us give a few more mathematical examples for equivalences and equivalence
classes:

Definition 3.3.7. Let A be a set, and let k ∈ N. As we know, Ak denotes the set
of all k-tuples of elements of A.

The relation ∼
perm

on Ak is defined as follows:

(
p ∼

perm
q
)
⇐⇒ (p is a permutation of q) .

31in Minneapolis
32According to Darwin, the relation is “being able to procreate” – although this is not per se an

equivalence relation, so some tweaks need to be made (“reflexive-and-transitive closure”) to turn
it into one.

33at least if one considers Eurasia to be a single continent
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(We are using Definition 2.13.16 here.) For example, (3, 8, 8, 2) ∼
perm

(8, 3, 2, 8).

Exercise 3.3.2. Prove that the relation ∼
perm

is an equivalence relation.

Definition 3.3.8. Let A be a set, and let k ∈ N. The relation ∼
perm

on Ak is an

equivalence relation (by Exercise 3.3.2). Its equivalence classes are called the
unordered k-tuples of elements of A. For example, for k = 2 and A = Z, the two
2-tuples (6, 8) and (8, 6) are permutations of each other, so (6, 8) ∼

perm
(8, 6) and

thus [(6, 8)] ∼
perm

= [(8, 6)] ∼
perm

.

3.3.5. The “is a cyclic rotation of” relation on tuples

Another example of an equivalence relation is the following:

Definition 3.3.9. Again, let A be a set and k ∈ N. If a = (a1, a2, . . . , ak) ∈ Ak,
then a cyclic rotation of a means a k-tuple of the form

(ai+1, ai+2, . . . , ak, a1, a2, . . . , ai) ∈ Ak

for some i ∈ {0, 1, . . . , k}.
For example, the cyclic rotations of the 3-tuple (1, 4, 5) are (1, 4, 5), (4, 5, 1) and

(5, 1, 4).
(Here is an equivalent description of cyclic rotations: Let C be the map Ak →

Ak that sends each k-tuple (a1, a2, . . . , ak) to (a2, a3, . . . , ak, a1). Then, it is easy
to see that a cyclic rotation of a is the same as a k-tuple of the form Ci (a) for
some i ∈ {0, 1, . . . , k}. But it is also easy to see that Ck = id. Thus, the Ci (a) for
i ∈ {0, 1, . . . , k} are exactly the Ci (a) for i ∈N.)

The relation ∼
cyc

on Ak is defined as follows:

(
p ∼

cyc
q
)
⇐⇒ (p is a cyclic rotation of q)

⇐⇒
(

p = Ci (q) for some i ∈N
)

.

This relation ∼
cyc

is an equivalence relation. Its equivalence classes are called

necklaces of length k over A.

We shall not prove the statements claimed in this definition, since they are par-
ticular cases of more general results that will be proven below (about groups acting
on sets).
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For example, the necklaces of length 3 over the set A = {1, 2} are

[(1, 1, 1)]∼
cyc

= {(1, 1, 1)} ,

[(1, 1, 2)]∼
cyc

= {(1, 1, 2) , (1, 2, 1) , (2, 1, 1)} ,

[(1, 2, 2)]∼
cyc

= {(1, 2, 2) , (2, 2, 1) , (2, 1, 2)} ,

[(2, 2, 2)]∼
cyc

= {(2, 2, 2)} .

This may suggest that a necklace [(a1, a2, . . . , ak)]∼
cyc

is uniquely determined by how

often each element appears in the tuple (a1, a2, . . . , ak). But this is not true in gen-
eral; for example, if A = {1, 2, 3}, then

[(1, 2, 3)]∼
cyc

= {(1, 2, 3) , (2, 3, 1) , (3, 1, 2)} and

[(1, 3, 2)]∼
cyc

= {(1, 3, 2) , (3, 2, 1) , (2, 1, 3)}

are two different necklaces of length 3 over the set A = {1, 2, 3}.
How many necklaces of length k over a q-element set A exist? It turns out that

there is a nice formula for this, involving Euler’s totient function φ:

Theorem 3.3.10. Let k be a positive integer. Let A be a q-element set (where
q ∈N). Then, the number of necklaces of length k over the set A is

1
k ∑

d|k
φ (d) qk/d.

Note that it is not (a priori) clear that
1
k ∑

d|k
φ (d) qk/d is an integer! Actually, this

holds even when q is a negative integer, even though there exist no q-element sets

in that case. Thus,
1
k ∑

d|k
φ (d) xk/d is another integer-valued polynomial for each

positive integer k.
We will prove Theorem 3.3.10 using the concept of group actions further below.

3.3.6. Definition of the quotient set and the projection map

Definition 3.3.11. Let S be a set, and let ∼ be an equivalence relation on S.
(a) The set of equivalence classes of ∼ is denoted by S/ ∼. It is called the

quotient (or quotient set) of S by ∼.
(b) The map

S→ S/ ∼ ,
s 7→ [s]∼
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(which sends each element s ∈ S to its equivalence class) is called the canonical
projection (onto the quotient), and we will denote it by π∼.

(c) An element of an equivalence class of ∼ is also called a representative of this
class.

Exercise 3.3.3. Let S be a set.
Recall that if T is a further set, and if f : S → T is a map, then an equivalence

relation ≡
f

is defined on the set S. (See Example 3.2.7 for its definition.)

Now, let ∼ be any equivalence relation on S. Prove that ∼ has the form ≡
f

for

a properly chosen set T and a properly chosen f : S→ T.
More precisely, prove that ∼ equals ≡

f
, where T is the quotient set S/ ∼ and

where f : S→ T is the canonical projection π∼ : S→ S/ ∼.
[Hint: To prove that two relations R1 and R2 on S are equal, you need to

check that every pair (a, b) of elements of S satisfies the equivalence (aR1b) ⇐⇒
(aR2b).]

3.4. Z/n (“integers modulo n”)

We now come to one of the most important example of equivalence classes: the
residue classes of integers modulo a given positive integer n.

Convention 3.4.1. For the whole Section 3.4, we fix an integer n.

3.4.1. Definition of Z/n

Definition 3.4.2. (a) Define a relation ≡
n

on the set Z by(
a ≡

n
b
)
⇐⇒ (a ≡ b mod n) .

(This is precisely the relation ≡
n

from Example 3.1.2 (e).)
Recall that ≡

n
is an equivalence relation (by Example 3.2.5).

(b) A residue class modulo n means an equivalence class of the relation ≡
n

.

For example,

[0]≡
5
= {. . . ,−15,−10,−5, 0, 5, 10, 15, 20, . . .} ,

[1]≡
5
= {. . . ,−14,−9,−4, 1, 6, 11, 16, 21, . . .} ,

[2]≡
5
= {. . . ,−13,−8,−3, 2, 7, 12, 17, 22, . . .} ,

[3]≡
5
= {. . . ,−12,−7,−2, 3, 8, 13, 18, 23, . . .} ,

[4]≡
5
= {. . . ,−11,−6,−1, 4, 9, 14, 19, 24, . . .}
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are all the residue classes modulo 5. As you see, these classes are in 1-to-1 corre-
spondence with the 5 possible remainders 0, 1, 2, 3, 4 modulo 5. This generalizes
(see Theorem 3.4.4 below). First, let us introduce a few notations:

Definition 3.4.3. (a) If i is an integer, then we denote the residue class [i]≡
n

by

[i]n. (Some authors denote this residue class by in or i mod n. Be careful with
the notation i mod n, since other authors use it for the integer i%n when n is
positive.)

(b) The set Z/ ≡
n

of all residue classes modulo n is called Z/n. (Some authors

call it Z/ (n) or Z/nZ or Zn. Be careful with the notation Zn, since it has a
different meaning, too.)

3.4.2. What Z/n looks like

Let us now state and rigorously prove what we have just observed on the example
of n = 5:

Theorem 3.4.4. Assume that the integer n is positive.
The set Z/n has exactly n elements, namely [0]n , [1]n , . . . , [n− 1]n. (In partic-

ular, these elements [0]n , [1]n , . . . , [n− 1]n are distinct.)

Before we prove this, let us make a simple observation:

Proposition 3.4.5. (a) Each element of Z/n can be written in the form [s]n for
some integer s.

(b) Let a and b be integers. Then, we have [a]n = [b]n if and only if a ≡ b mod n.

Let us summarize some of the facts we have shown in the above proof as a
separate proposition:

Proposition 3.4.6. Let n be a positive integer.
(a) The two maps

P : {0, 1, . . . , n− 1} → Z/n,
s 7→ [s]n

and

R : Z/n→ {0, 1, . . . , n− 1} ,
[s]n 7→ s%n

are well-defined and mutually inverse, and thus are bijections.
(b) Let α ∈ Z/n. Then, there exists a unique a ∈ {0, 1, . . . , n− 1} satisfying

α = [a]n.

Proposition 3.4.6 (b) can be restated as follows: Each residue class α ∈ Z/n has
a unique representative in the set {0, 1, . . . , n− 1}.
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3.4.3. Making choices that don’t matter: The universal property of quotient
sets

In the above proof of Theorem 3.4.4, we have witnessed an important issue in
dealing with quotient sets: If you want to define a map f going out of a quotient
set S/ ∼ 34, then the easiest way to do so is often to specify f ([s]∼) for each
s ∈ S; but in order to ensure that this definition is well-defined (i.e., that our map
f actually exists), we need to verify that the value of f ([s]∼) we are specifying
depends only on the equivalence class [s]∼ but not on the representative s. In
other words, we need to verify that if s1 and s2 are two elements of S such that
[s1]∼ = [s2]∼, then our definition of f assigns the same value to f ([s1]∼) as it does
to f ([s2]∼). This verification (which we did in our above proof by proving Claim
1) is often quite easy, but it is necessary.

Let us restate this strategy for defining maps out of a quotient set more rigor-
ously:

Remark 3.4.7. Let S and T be two sets, and let ∼ be an equivalence relation on
S. Assume that we want to define a map

f : S/ ∼ → T,
[s]∼ 7→ F (s) ,

where F (s) is some element of T for each s ∈ S. (That is, we want to define a
map f : S→ T such that every s ∈ S satisfies f ([s]∼) = F (s).)

In order to ensure that this f is well-defined, we need to verify that if s1 and
s2 are two elements of S such that [s1]∼ = [s2]∼, then F (s1) = F (s2). If this
verification has been done, the map f is well-defined.

Further examples of maps out of quotient sets defined in this way can be found
in [ConradW]35.

Let us illustrate this method of defining maps on a few more examples:

Example 3.4.8. Let A be a set, and let k ∈N. Fix some c ∈ A. We can then define a map

multc : Ak →N,
(a1, a2, . . . , ak) 7→ (the number of i ∈ {1, 2, . . . , k} such that ai = c) .

This map multc simply sends each k-tuple to the number of times that c appears in this
k-tuple. For example, mult5 (1, 5, 2, 4, 7, 5, 5, 6) = 3, since 5 appears exactly 3 times in the
8-tuple (1, 5, 2, 4, 7, 5, 5, 6) (assuming that k = 8 and A = Z). It is clear that this map

34In our case, the quotient set was Z/ ≡
n

(also known as Z/n), and the map we wanted to define
was R.

35When reading [ConradW, Example 1.1], keep in mind that rational numbers are defined as equiv-
alence classes of elements of Z× (Z \ {0}), as we have seen in Example 3.3.6. Thus, Q is actually
a quotient set: namely, Q = S/ ∼

∗
using the notations of Example 3.3.6.
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multc is well-defined. (The number multc a for a k-tuple a is called the multiplicity of c in
a. Therefore the notation “multc”.)

Now, it stands to reason that the same can be done with unordered k-tuples: After
all, the number of times that c appears in a k-tuple should not depend on the order of
the entries of the tuple. To formalize this, however, we need to deal with quotient sets.
Indeed, recall that the “unordered k-tuples of elements of A” were defined (in Definition
3.3.8) as equivalence classes of the relation ∼

perm
on the set Ak. So Ak/ ∼

perm
is the set of

all unordered k-tuples of elements of A. The map that counts how often c appears in an
unordered k-tuple should thus have the form

mult′c : Ak/ ∼
perm

→N,

[(a1, a2, . . . , ak)] ∼
perm
7→ (the number of i ∈ {1, 2, . . . , k} such that ai = c) .

Or, to put it more compactly (making use of the map multc for ordered k-tuples defined
above), it should have the form

mult′c : Ak/ ∼
perm

→N,

[a] ∼
perm
7→ multc a.

The question is: Why is this map mult′c well-defined?
Remark 3.4.7 (applied to Ak, N and ∼

perm
instead of S, T and ∼) shows that in order

to ensure that this map mult′c is well-defined, we need to verify that if a1 and a2 are
two elements of Ak (that is, two ordered k-tuples) such that [a1] ∼

perm
= [a2] ∼

perm
, then

multc (a1) = multc (a2). Let us do this: Let a1 and a2 be two elements of Ak (that is, two
ordered k-tuples) such that [a1] ∼

perm
= [a2] ∼

perm
. Now, [a1] ∼

perm
= [a2] ∼

perm
entails a1 ∼perm

a2

(indeed, Theorem 3.3.5 (e) shows that we have a1 ∼perm
a2 if and only if [a1] ∼

perm
= [a2] ∼

perm
).

In other words, a1 is a permutation of a2 (by the definition of ∼
perm

). In other words, the

tuples a1 and a2 differ only in the order of their entries. Hence, Lemma 2.13.21 (applied
to A, a1, a2 and c instead of P, (a1, a2, . . . , ak), (b1, b2, . . . , b`) and p) yields that

(the number of times c appears in a1) = (the number of times c appears in a2) .

This rewrites as multc (a1) = multc (a2) (since (the number of times c appears in a1) =
multc (a1) and (the number of times c appears in a2) = multc (a2)). This is what we
needed to prove. Thus, we have shown that mult′c is well-defined.

On the other hand, if we tried to define a map

first : Ak/ ∼
perm

→N,

[a] ∼
perm
7→ (the first entry of a)

(assuming that k > 0, so that an ordered k-tuple does indeed have a first entry), then we
would run into troubles, because it is not true that if a1 and a2 are two elements of Ak

such that [a1] ∼
perm

= [a2] ∼
perm

, then (the first entry of a1) = (the first entry of a2). And this

is no surprise: There is no such thing as “the first entry” of an unordered k-tuple. The
first entry of a k-tuple is sensitive to reordering of its entries.
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We can restate this method of defining maps as a rigorous theorem:

Theorem 3.4.9. Let S and T be two sets, and let ∼ be an equivalence relation on
S. For each s ∈ S, let F (s) be an element of T. (In other words, let F be a map
from S to T.) Assume that the following assumption holds:

Assumption 1: If s1 and s2 are two elements of S satisfying s1 ∼ s2,
then F (s1) = F (s2).

Then, there exists a unique map f : S/ ∼ → T such that every s ∈ S satisfies
f ([s]∼) = F (s).

Theorem 3.4.9 says that (under the assumption that Assumption 1 holds) we can
define a map

f : S/ ∼ → T,
[s]∼ 7→ F (s) .

For example, the map R defined in our proof of Theorem 3.4.4 was defined in
this way (with Z, Z, ≡

n
and s%n playing the roles of S, T, ∼ and F (s)), and our

proof of Claim 1 was essentially us verifying that Assumption 1 of Theorem 3.4.9
is satisfied.

For the sake of completeness, let us give a formal proof for Theorem 3.4.9 as well:
Theorem 3.4.9 is known as the universal property of the quotient set.

3.4.4. Projecting from Z/n to Z/d

As another example of a map from a quotient set, let us define certain maps from
Z/n to Z/d that exist whenever two integers n and d satisfy d | n:

Proposition 3.4.10. Let n be an integer. Let d be a divisor of n. Then, there is a
map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d .

Example 3.4.11. (a) For example, for n = 6 and d = 2, Proposition 3.4.10 says
that there is a map

π6,2 : Z/6→ Z/2,
[s]6 7→ [s]2 .

This map sends the residue classes

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6
to [0]2 , [1]2 , [2]2 , [3]2 , [4]2 , [5]2 , respectively.
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In other words, it sends the residue classes

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6
to [0]2 , [1]2 , [0]2 , [1]2 , [0]2 , [1]2 , respectively

(since [2]2 = [0]2 and [3]2 = [1]2 and [4]2 = [0]2 and [5]2 = [1]2). More generally,
for arbitrary positive integers n and d satisfying d | n, the map πn,d sends the n
residue classes [0]n , [1]n , . . . , [n− 1]n to

[0]d , [1]d , . . . , [d− 1]d , [0]d , [1]d , . . . , [d− 1]d , . . . , [0]d , [1]d , . . . , [d− 1]d

(that is, [0]d , [1]d , . . . , [d− 1]d in this order, repeated
n
d

many times), respectively.
(b) For a non-example, set n = 3 and d = 2. Then, Proposition 3.4.10 does not

apply, since 2 is not a divisor of 3. And for good reason: There is no map

π3,2 : Z/3→ Z/2,
[s]3 7→ [s]2 .

Indeed, this map would have to send [0]3 and [3]3 to [0]2 and [3]2, respectively;
but this means sending two equal inputs to different outputs (since [0]3 = [3]3
but [0]2 6= [3]2), which is impossible. More generally, if a positive integer d is not
a divisor of a positive integer n, then there is no map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d .

The next exercise is unrelated to Z/n, but has been placed in this section because
it relies on the same sort of “well-definedness” argument that we have seen in our
proofs above:

Exercise 3.4.1. Fix a prime p. For each nonzero rational number r, define an
integer wp (r) (called the extended p-adic valuation of r) as follows: We write r
in the form r = a/b for two nonzero integers a and b, and we set wp (r) =
vp (a)− vp (b). (It also makes sense to set wp (0) = ∞, but we shall not concern
ourselves with this border case in this exercise.)

(a) Prove that this is well-defined – i.e., that wp (r) does not depend on the
precise choice of a and b satisfying r = a/b.

(b) Prove that wp (n) = vp (n) for each nonzero integer n.
(c) Prove that wp (ab) = wp (a) + wp (b) for any two nonzero rational numbers

a and b.
(d) Prove that wp (a + b) ≥ min

{
wp (a) , wp (b)

}
for any two nonzero rational

numbers a and b if a + b 6= 0.
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Exercise 3.4.2. Let r be a nonzero rational number. In Exercise 3.4.1, we have
defined an integer wp (r) for each prime p. Prove the following:

(a) All but finitely many primes p satisfy wp (r) = 0.
(b) We have |r| = ∏

p prime
pwp(r) (and in particular, the product ∏

p prime
pwp(r) is

well-defined, i.e., has only finitely many factors different from 1).
(c) We have r ∈ Z if and only if each prime p satisfies wp (r) ≥ 0.
(d) We have the logical equivalence(

there exists a k ∈N satisfying mkr ∈ Z
)

⇐⇒
(
every prime p satisfying wp (r) < 0 satisfies p | m

)
.

Note that Exercise 3.4.2 (b) can be regarded as a canonical factorization for ra-
tional numbers. (Unlike the canonical factorization for integers, it allows negative
exponents on the primes.)

3.4.5. Addition, subtraction and multiplication in Z/n

Let us recall the concept of a binary operation (defined in Definition 1.6.1). We
shall now define several such operations on the set Z/n 36:

Definition 3.4.12. (a) We define a binary operation + on Z/n (called addition) by
setting

[a]n + [b]n = [a + b]n for any integers a and b.

(In other words, we define a binary operation + on Z/n as follows: For any
α, β ∈ Z/n, we let α + β = [a + b]n, where a and b are two integers satisfying
α = [a]n and β = [b]n.)

(b) We define a binary operation − on Z/n (called subtraction) by setting

[a]n − [b]n = [a− b]n for any integers a and b.

(c) We define a binary operation · on Z/n (called multiplication) by setting

[a]n · [b]n = [a · b]n for any integers a and b.

We also write [a]n [b]n for [a]n · [b]n.

Theorem 3.4.13. Everything defined in Definition 3.4.12 is well-defined.

Recall that Z/n is a finite set (of size n) whenever n is a positive integer. Hence,
for each given positive integer n, we can tabulate all the values of the operations

36We will check afterwards that these operations are indeed well-defined.
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+, − and ·; the resulting tables are called addition tables, subtraction tables and multi-
plication tables (like in high school, except that we are working with residue classes
now).

Example 3.4.14. (a) If n = 3, then the addition, subtraction and multiplication
tables for Z/n = Z/3 are

+ [0]3 [1]3 [2]3

[0]3 [0]3 [1]3 [2]3
[1]3 [1]3 [2]3 [0]3
[2]3 [2]3 [0]3 [1]3

,

− [0]3 [1]3 [2]3

[0]3 [0]3 [2]3 [1]3
[1]3 [1]3 [0]3 [2]3
[2]3 [2]3 [1]3 [0]3

,

· [0]3 [1]3 [2]3

[0]3 [0]3 [0]3 [0]3
[1]3 [0]3 [1]3 [2]3
[2]3 [0]3 [2]3 [1]3

.

(Here, the entry in the row corresponding to α and the column corresponding to
β is α + β, α− β and α · β, respectively.)

(b) If n = 2, then the addition, subtraction and multiplication tables for Z/n =
Z/2 are

+ [0]2 [1]2

[0]2 [0]2 [1]2
[1]2 [1]2 [0]2

,

− [0]2 [1]2

[0]2 [0]2 [1]2
[1]2 [1]2 [0]2

,

· [0]2 [1]2

[0]2 [0]2 [0]2
[1]2 [0]2 [1]2

.

(In particular, the addition table is the same as the subtraction table, because any
α, β ∈ Z/2 satisfy α + β = α− β. This follows from Exercise 2.3.1.)

Remark 3.4.15. We cannot define a division operation on Z/n by setting

[a]n / [b]n := [a/b]n for any integers a and b.

Indeed, leaving aside the issues that b could be 0 or a/b could be non-integer,
this would still not be well-defined, because the class [a/b]n depends not just on
[a]n and [b]n but also on the concrete choices of a and b. For example, for n = 4,
this ostensible “division operation” would have to satisfy

“ [6]4 / [2]4 ” = [6/2]4 = [3]4

and
“ [2]4 / [2]4 ” = [2/2]4 = [1]4 ,

but this is impossible (since [6]4 = [2]4 but [3]4 6= [1]4).
For similar reasons, we cannot define ([a]n)

[b]n .

For the outputs of our binary operations +, − and · on Z/n, we shall use the
same terminology as with integers:
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Definition 3.4.16. (a) If α and β are two elements of Z/n, then we shall refer to
α + β as the sum of α and β.

(b) If α and β are two elements of Z/n, then we shall refer to α − β as the
difference of α and β.

(c) If α and β are two elements of Z/n, then we shall refer to α · β (also known
as αβ) as the product of α and β.

(d) If α is an element of Z/n, then the difference [0]n − α shall be denoted by
−α.

Caution: While the remainder i%n and the residue class [i]n encode the same
information about an integer i (for a fixed positive integer n), they are not the same
thing! For example, any two integers u and v satisfy [u]n + [v]n = [u + v]n but don’t
always satisfy u%n + v%n = (u + v)%n 37. Thus, it is important to distinguish
between i%n and [i]n.

Remark 3.4.17. We can view the residue classes modulo 24 (that is, the elements
of Z/24) as the hours of the day. For example, the time “2 AM” can be viewed
as the residue class [2]24, whereas the time “3 PM” can be viewed as the residue
class [15]24. From this point of view, addition of residue classes is a rather famil-
iar operation: For example, the statement that “10 hours from 3 PM is 1 AM” is
saying [15]24 + [10]24 = [1]24.

3.4.6. Scaling by r ∈ Z

Let us define another operation – not binary this time – on Z/n:

Definition 3.4.18. Fix r ∈ Z.
For any α ∈ Z/n, we define a residue class rα ∈ Z/n by setting

(r [a]n = [ra]n for any a ∈ Z) .

(In other words, for any α ∈ Z/n, we let rα = [ra]n, where a is an integer
satisfying α = [a]n.) This is well-defined, because of Proposition 3.4.19 (a) below.

We also write r · [a]n for r [a]n.

Proposition 3.4.19. Fix r ∈ Z.
(a) For any α ∈ Z/n, the residue class rα ∈ Z/n in Definition 3.4.18 is well-

defined.
(b) For any α ∈ Z/n, we have rα = [r]n · α.

37Here is a specific example:

[2]5 + [3]5 = [2 + 3]5 = [5]5 = [0]5 , but
2%5 + 3%5 = 2 + 3 = 5 6= 0%5;

Exercise 2.6.3 (a) addresses how u%n + v%n differs from (u + v)%n.
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For a fixed r ∈ Z, we shall refer to the map

Z/n→ Z/n,
α 7→ rα

as scaling by r. This map is actually the same as multiplication by the residue class
[r]n (by Proposition 3.4.19 (b)). So why did we define it “from scratch” rather
than piggybacking on the already established definition of multiplication in Z/n
(Definition 3.4.12 (c))? The reason is that scaling operations appear much more fre-
quently in algebra than multiplication operations. (For example, every vector space
has a scaling operation, but usually there is no way of multiplying two vectors.)
Thus, it is useful to have seen a scaling operation constructed independently.

3.4.7. k-th powers for k ∈N

Similarly to Definition 3.4.18, we can define what it means to take the k-th power
of a residue class in Z/n, when k is a nonnegative integer.

Definition 3.4.20. Fix k ∈N.
For any α ∈ Z/n, we define a residue class αk ∈ Z/n by setting(

([a]n)
k =

[
ak
]

n
for any a ∈ Z

)
.

(In other words, for any α ∈ Z/n, we let αk =
[
ak]

n, where a is an integer
satisfying α = [a]n.) This is well-defined, because of Proposition 3.4.21 below.

If α ∈ Z/n, then we shall refer to αk as the k-th power of α.

Proposition 3.4.21. Fix k ∈ N. For any α ∈ Z/n, the residue class αk ∈ Z/n in
Definition 3.4.20 is well-defined.

3.4.8. Rules and properties for the operations

Convention 3.4.22. We shall follow the usual “PEMDAS” rules for the order
of operations when interpreting expressions involving the operations defined in
Definition 3.4.12, Definition 3.4.18 and Definition 3.4.2038. Thus, for example, the
expression “α · β + γ · δ” means (α · β) + (γ · δ) and not α · (β + γ) · δ. Likewise,
the expression “αβk + rγ” (with r ∈ Z) should be understood as “

(
α
(

βk)) +
(rγ)” and not in any other way.

We shall now study some properties of the many “arithmetical” operations we have
defined on Z/n.

https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Order_of_operations
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Theorem 3.4.23. The following rules for addition, subtraction, multiplication and
scaling in Z/n hold:

(a) We have α + β = β + α for any α, β ∈ Z/n.
(b) We have α + (β + γ) = (α + β) + γ for any α, β, γ ∈ Z/n.
(c) We have α + [0]n = [0]n + α = α for any α ∈ Z/n.
(d) We have α · [1]n = [1]n · α = α for any α ∈ Z/n.
(e) We have α · β = β · α for any α, β ∈ Z/n.
(f) We have α · (β · γ) = (α · β) · γ for any α, β, γ ∈ Z/n.
(g) We have α · (β + γ) = αβ + αγ and (α + β) · γ = αγ + βγ for any α, β, γ ∈

Z/n.
(h) We have α · [0]n = [0]n · α = [0]n for any α ∈ Z/n.
(i) If α, β, γ ∈ Z/n, then we have the equivalence (α− β = γ) ⇐⇒

(α = β + γ).
(j) We have r (α + β) = rα + rβ for any r ∈ Z and α, β ∈ Z/n.
(k) We have (r + s) α = rα + sα for any r, s ∈ Z and α ∈ Z/n.
(l) We have r (sα) = (rs) α for any r, s ∈ Z and α ∈ Z/n.
(m) We have r (αβ) = (rα) β = α (rβ) for any r ∈ Z and α, β ∈ Z/n.
(n) We have − (rα) = (−r) α = r (−α) for any r ∈ Z and α ∈ Z/n.
(o) We have 1α = α for any α ∈ Z/n.
(p) We have (−1) α = −α for any α ∈ Z/n.
(q) We have − (α + β) = (−α) + (−β) for any α, β ∈ Z/n.
(r) We have − [0]n = [0]n.
(s) We have − (−α) = α for any α ∈ Z/n.
(t) We have − (αβ) = (−α) β = α (−β) for any α, β ∈ Z/n.
(u) We have α− β− γ = α− (β + γ) for any α, β, γ ∈ Z/n. (Here and in the

following, “α− β− γ” should be read as “(α− β)− γ”.)

These properties should all look familiar, as they mirror the classical properties
of the arithmetic operations on integers, rational numbers and real numbers (with
the caveat that the residue classes [0]n and [1]n take on the roles of the numbers 0
and 1). For example, Theorem 3.4.23 (g) corresponds to the laws of distributivity
for numbers. Parts (a), (b), (c), (i), (j), (k), (l) and (o) of Theorem 3.4.23 furthermore
are reminiscent of the axioms for a vector space (with the caveat that scaling by r is
only defined for integers r here, so Z/n is not precisely a vector space).

Recall the concept of a finite sum of integers (i.e., a sum of the form ∑
i∈I

ai, where

I is a finite set and ai is an integer for each i ∈ I), and the analogous concept
of a finite product of integers (i.e., a product of the form ∏

i∈I
ai). These concepts

are defined recursively39 and satisfy various rules40. See [Grinbe15, §1.4] for a

39See [Grinbe15, §1.4.1 and §1.4.3] for their definitions, and [Grinbe15, §2.14] for a proof that these
are well-defined.

40such as ∑
i∈I

(ai + bi) = ∑
i∈I

ai + ∑
i∈I

bi (where ai and bi are two integers for each i ∈ I) or ∑
i∈I

ai =

∑
i∈J

ai + ∑
i∈I\J

ai (where J is a subset of I)
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comprehensive list of these rules and [Grinbe15, §2.14] for their proofs.

Definition 3.4.24. In the same vein, we define the concept of a finite sum of
residue classes in Z/n (i.e., a sum of the form ∑

i∈I
αi, where I is a finite set and

αi ∈ Z/n for each i ∈ I), and the analogous concept of a finite product of
residue classes in Z/n (i.e., a product of the form ∏

i∈I
αi, where I is a finite set

and αi ∈ Z/n for each i ∈ I).
More precisely, the concept of a finite sum ∑

i∈I
αi (with I being a finite set, and

with αi ∈ Z/n for each i ∈ I) is defined recursively as follows:

• If the set I is empty (that is, |I| = 0), then ∑
i∈I

αi is defined to be [0]n ∈ Z/n

(and called an empty sum).

• Otherwise, we pick an arbitrary element t ∈ I, and set

∑
i∈I

αi = αt + ∑
i∈I\{t}

αi.

(The sum ∑
i∈I\{t}

αi on the right hand side is a sum over a smaller set than I,

whence we can assume it to already be defined in this recursive definition.)

This definition is well-defined (i.e., the choice of element t does not influence
the final value of the sum), by Proposition 3.4.25 (a) below.

The concept of a finite product ∏
i∈I

αi is defined similarly, except that we use

multiplication instead of addition (and we define the empty product to be [1]n
instead of [0]n).

We will use the usual shorthands for special kinds of finite sums and products.
For example, if I is an interval {p, p + 1, . . . , q} of integers (and if αi ∈ Z/n for each

i ∈ I), then the sum ∑
i∈I

αi will also be denoted by
q
∑

i=p
αi or αp + αp+1 + · · · + αq.

Likewise for products. Thus, for example, α1 + α2 + · · · + αk and α1α2 · · · αk are
well-defined whenever α1, α2, . . . , αk ∈ Z/n.

Proposition 3.4.25. (a) Definition 3.4.24 is well-defined.
(b) Finite sums ( ∑

i∈I
αi) and finite products (∏

i∈I
αi) of elements αi ∈ Z/n satisfy

the same rules that finite sums and finite products of integers satisfy.
(c) If a1, a2, . . . , ak are k integers, then

[a1]n + [a2]n + · · ·+ [ak]n = [a1 + a2 + · · ·+ ak]n and
[a1]n · [a2]n · · · · · [ak]n = [a1a2 · · · ak]n .
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Also, the standard rules for exponents apply to residue classes:

Theorem 3.4.26. (a) We have α0 = [1]n for any α ∈ Z/n.
(b) We have α1 = α for any α ∈ Z/n.
(c) We have αk = αα · · · α︸ ︷︷ ︸

k times

for any α ∈ Z/n and k ∈N.

(d) We have αu+v = αuαv for any α ∈ Z/n and any u, v ∈N.
(e) We have (αβ)k = αkβk for any α, β ∈ Z/n and k ∈N.
(f) We have (αu)v = αuv for any α ∈ Z/n and any u, v ∈N.

Also, the binomial formula holds for residue classes:

Theorem 3.4.27. Let α, β ∈ Z/n and m ∈N. Then,

(α + β)m =
m

∑
k=0

(
m
k

)
αkβm−k.

3.5. Modular inverses revisited

Convention 3.5.1. For the whole Section 3.5, we fix a positive integer n.

In this section, we will see how modular inverses become actual inverses when we
consider residue classes instead of numbers.

Recall that if a is an integer, then an inverse of a in Z means an integer a′ ∈ Z

satisfying aa′ = 1. The only two integers that have an inverse in Z are 1 and −1.
The integer 1 has only one inverse (namely, itself). The integer −1 has only one
inverse (namely, itself). Thus, “inverse in Z” is not a very interesting notion.

Let us now define an analogous notion for Z/n:

Definition 3.5.2. Let α ∈ Z/n. An inverse of α means an α′ ∈ Z/n such that
α · α′ = [1]n.

For example, [2]5 is an inverse of [3]5 for n = 5, since [3]5 · [2]5 = [3 · 2]5 = [6]5 =
[1]5.

It turns out that inverses of residue classes α ∈ Z/n exist much more frequently
than inverses of integers in Z:

Proposition 3.5.3. Let a ∈ Z.
(a) If [a]n ∈ Z/n has an inverse, then a ⊥ n.
(b) If a ⊥ n, then [a]n ∈ Z/n has a unique inverse.

As we will see in the proof of this proposition, the inverse of a residue class [a]n
is simply the residue class [a′]n of a modular inverse a′ of a modulo n; thus, the
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existence part of Proposition 3.5.3 (b) (i.e., the claim that [a]n has an inverse) is just
Theorem 2.10.8 (b) in disguise. However, before we start proving Proposition 3.5.3,
let us state the uniqueness part (i.e., the claim that the inverse of [a]n is unique) as
a separate fact:

Proposition 3.5.4. Let α ∈ Z/n. Then, α has at most one inverse.

Note that in the above proof of Proposition 3.5.4, we have never had to pick a
representative of the residue class α (nor of any other class). This is because this
proof is actually an instance of a much more general argument. And indeed, you
might recall that a very similar argument is used to prove the classical facts that

• a map has at most one inverse;

• a matrix has at most one inverse.

To be more precise, the proofs of these two facts differ slightly from our proof of
Proposition 3.5.4, because the definitions of an inverse of a map and of an inverse
of a matrix differ from Definition 3.5.2. Indeed, in Definition 3.5.2, we have only
required the inverse α′ of α ∈ Z/n to satisfy the single equation α · α′ = [1]n,
whereas an inverse g of a map f is required to satisfy the two equations f ◦ g = id
and g ◦ f = id (and likewise, an inverse B of a matrix A is required to satisfy
the two equations AB = I and BA = I for the appropriate identity matrices I).
But this difference is not substantial: The multiplication of residue classes in Z/n
is commutative (by Theorem 3.4.23 (e)) (unlike the composition of maps or the
multiplication of matrices); thus, the single equation α · α′ = [1]n automatically
implies α′ · α = [1]n. Hence, we could have as well required α′ to satisfy both
equations α · α′ = [1]n and α′ · α = [1]n in Definition 3.5.2, and nothing would
change.

Let us now prove Proposition 3.5.3:

Corollary 3.5.5. Let Un be the set of all residue classes α ∈ Z/n that have an
inverse. Then:

(a) For an integer a, we have the logical equivalence ([a]n ∈ Un)⇐⇒ (a ⊥ n).
(b) We have |Un| = φ (n).

Definition 3.5.6. Let α ∈ Z/n be a residue class that has an inverse. Then,
Proposition 3.5.4 shows that α has a unique inverse. This inverse can thus be
called “the inverse” of α; it will be denoted by α−1.

For example, ([3]5)
−1 = [2]5 for n = 5, since [2]5 is an inverse (and thus the

inverse) of [3]5.
Let us state a couple properties of inverses in Z/n:
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Exercise 3.5.1. (a) Let α ∈ Z/n be a residue class that has an inverse. Prove that
its inverse α−1 has an inverse as well, and this inverse is

(
α−1)−1

= α.
(b) Let α, β ∈ Z/n be two residue classes that have inverses. Prove that their

product αβ has an inverse as well, and this inverse is (αβ)−1 = α−1β−1.

The concept of inverses in Z/n lets us prove Theorem 2.15.7 (Wilson’s theorem)
again – or, rather, restate our previous proof of Theorem 2.15.7 in more natural
terms:

3.6. The Chinese Remainder Theorem as a bijection between
residue classes

Definition 3.6.1. Let n be a positive integer. Let d be a positive divisor of n.
Then, define the map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d .

(This is well-defined, according to Proposition 3.4.10.)

See Example 3.4.11 (a) for what this map looks like.
We can now state another version of the “Chinese Remainder Theorem”, which

claims the existence of a certain bijection. We have already seen such a version
(Theorem 2.16.1), but that one claimed a bijection between two sets of remain-
ders, whereas the following version claims a bijection between two sets of residue
classes. Other than that, the two versions are rather similar.

Theorem 3.6.2. Let m and n be two coprime positive integers. Then, the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. It sends each [s]mn (with s ∈ Z) to the pair
([s]m , [s]n).

Example 3.6.3. (a) Theorem 3.6.2 (applied to m = 3 and n = 2) says that the map

S3,2 : Z/6→ (Z/3)× (Z/2) ,
α 7→ (π6,3 (α) , π6,2 (α))

is a bijection. This map sends

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6 to
([0]3 , [0]2) , ([1]3 , [1]2) , ([2]3 , [2]2) , ([3]3 , [3]2) , ([4]3 , [4]2) , ([5]3 , [5]2) ,
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respectively. In other words, it sends

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6 to
([0]3 , [0]2) , ([1]3 , [1]2) , ([2]3 , [0]2) , ([0]3 , [1]2) , ([1]3 , [0]2) , ([2]3 , [1]2) ,

respectively (since [2]2 = [0]2 and [3]3 = [0]3 and [3]2 = [1]2 and so on). This list
of values shows that this map is bijective (since it takes on every possible value
in (Z/3)× (Z/2) exactly once). Theorem 3.6.2 says that this holds for arbitrary
coprime m and n.

(b) Let us see how Theorem 3.6.2 fails when m and n are not coprime. For
example, take m = 6 and n = 4. Then, the map

S6,4 : Z/24→ (Z/6)× (Z/4) ,
α 7→ (π24,6 (α) , π24,4 (α))

is not a bijection. Indeed, it is neither injective (for example, it sends both [0]24
and [12]24 to the same pair ([0]6 , [0]4)) nor surjective (for example, it never takes
the value ([1]6 , [2]4)).

The following proof of Theorem 3.6.2 has the same structure as our proof of
Theorem 2.16.1 above, but is shorter since residue classes are easier to deal with
than remainders.

We have already proven Theorem 2.14.4 using Theorem 2.16.1. Let us now
reprove it using Theorem 3.6.2 instead (by a rather similar argument, but using
residue classes instead of remainders):

3.7. Substitutivity and chains of congruences revisited

Proposition 3.4.5 (b) can be stated as follows: Given an integer n, two integers a
and b are congruent to each other modulo n if and only if their residue classes [a]n
and [b]n are equal. This lets us see congruences modulo n in a new light (namely,
as equalities). In particular, some previous results about congruences now become
trivial. For example, we can obtain a very short proof of Proposition 2.4.5 using
residue classes:

We can also prove the Principle of substitutivity of congruences (which we infor-
mally stated in Section 2.5, and abbreviated as “PSC”):

3.8. A couple of applications of elementary number theory

In the following short section, we shall see two practical applications of the above
number-theoretical studies. The first is a method for encrypting information (the
RSA cryptosystem); the second is a trick by which computations with large inte-
gers can be split up into more manageable pieces (and distributed across several
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computers, or parallelized across several cores). We shall be brief, since appli-
cations are not a focus of these notes; for further details, see [GalQua17] and
the MathOverflow answer https://mathoverflow.net/a/10022/ . If you are in-
terested in further applications, you may also want to consult the other answers
to https://mathoverflow.net/questions/10014 (for a list of uses of the Chinese
Remainder Theorem – mostly, but not entirely, inside mathematics), as well as
[UspHea39, Appendix to Chapter VII] (for applications of modular arithmetic to
calendar computations), and the Wikipedia page on “Universal hashing” (for an
application of residue classes modulo primes).

3.8.1. The RSA cryptosystem

Let us present the RSA cryptosystem. This is one of the first modern methods for
encrypting data. (The name “RSA” stands for the initials of its three authors: Rivest,
Shamir and Adleman.)

This cryptosystem addresses a fairly standard situation: Albert and Julia are
communicating over a channel (e.g., the Internet), but the channel may have eaves-
droppers. Julia wants to send a secret message to Albert over this channel – i.e.,
a message that eavesdroppers should not be able to understand41. But Albert and
Julia have not exchanged any keys with each other in advance; they can start ex-
changing keys now, but the eavesdropper will know all the keys they are sending
each other. How can Albert and Julia start secretly communicating without giving
eavesdroppers all the information they want to give each other?

The RSA cryptosystem allows Albert and Julia to solve this problem as follows:

Setup:

• Julia tells Albert (openly, over the channel) that she wants to communicate
and thus he should start creating keys for that purpose.

• Albert generates two distinct large and sufficiently random primes p and q.
(This involves a lot of technicalities like actually finding large primes. See
Keith Conrad’s note The Solovay-Strassen test [Conrad*] for an algorithm for
generating large primes42, and [GalQua17] for a more comprehensive treat-

41We assume that Julia is merely trying to keep the content of her message secret from the eaves-
droppers; the eavesdroppers can still see that she is sending something to Albert. If Albert and
Julia want to keep even this fact secret, they need a different branch of science – steganography,
not cryptography. (For reasons that become obvious after a bit of thought, steganography is
much less of an exact science than cryptography, and depends heavily on the real-life situation.)

42More precisely, the Solovay-Strassen test is an algorithm for checking (not with 100% surety, but
with high probability, which suffices in practice) whether a given integer is prime. To make
this into an algorithm for generating large primes, you can simply keep randomly picking large
numbers until you hit one that is prime (which you can check using the Solovay–Strassen test).
This doesn’t take too long, because the prime number theorem says that (very roughly speaking!)
the probability for a k-digit number to be prime is ≈ 1/k. (A precise statement of this result
would require us to introduce notions that have nothing to do with algebra; it is commonly done

https://mathoverflow.net/a/10022/
https://mathoverflow.net/questions/10014
https://en.wikipedia.org/wiki/Universal_hashing
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
https://en.wikipedia.org/wiki/Prime_number_theorem
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ment. A brief discussion is also found in Garrett’s slides [Garret03]. As to
what “large” means, we refer to the Wikipedia article on “key size”.)

• Albert computes the positive integer m = pq. This number m (called the
modulus) he makes public (i.e., sends to Julia over the channel). (Note that
factoring a number into a product of primes is computationally a lot harder
than multiplying a bunch of primes43. Thus, eavesdroppers will not (likely)
be able to reconstruct the primes p and q from their (public) product m.)

• Albert computes the positive integer ` = (p− 1) (q− 1), but keeps this num-
ber private.

• Albert randomly picks an e ∈ {2, 3, . . . , `− 1} such that e ⊥ `. (Again, we
omit the details of how to pick such an e randomly44.) This number e will be
called the encryption key, and Albert keeps it private.

• Albert computes a positive modular inverse d of e modulo ` (that is, a positive
integer d such that ed ≡ 1 mod `). This number d exists by Theorem 2.10.8 (b);
it will be called the decryption key.

• Albert publishes the pair (e, m) as his public key.

• We assume that the message that Julia wants to send to Albert is an element
of {0, 1, . . . , m− 1}. This assumption is perfectly reasonable, because this
message originally exists in some digital form (e.g., as a bitstring), and it is
easy to translate it from this form into an element of {0, 1, . . . , m− 1} by some
universally agreed rule (e.g., if a bitstring (a1, a2, . . . , ak) is short enough, then
the integer a12k−1 + a22k−2 + · · ·+ ak2k−k will belong to {0, 1, . . . , m− 1}, and
thus we can translate this bitstring into this latter integer; otherwise, we break
it up into shorter chunks and send those as separate messages).

Encrypting a message:
If Julia wants to send a message a ∈ {0, 1, . . . , m− 1} to Albert, then she does the

following:

• She computes the residue class α := [a]m ∈ Z/m.

in courses on analytic number theory. Needless to say, it is perfectly possible to profit from this
result in practice without proving it.)

43See the Wikipedia page on “Integer factorization” for details on what this means. Note that this
is not a proven theorem; any day, someone could come up with a quick algorithm for factoring
integers into products of primes. You would hear about it in the news, though.

44The rough idea is “pick e ∈ {2, 3, . . . , `− 1} randomly; check (using the Euclidean algorithm)
whether e ⊥ `; if not, then pick another e, and keep repeating this until you hit an e such that
e ⊥ `”. In theory, you could be unlucky and keep picking bad e’s forever; but in reality, you will
soon hit an e that satisfies e ⊥ `.

https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Integer_factorization
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• She computes αe in Z/m. (This can be computed quickly using binary ex-
ponentiation (also known as exponentiation by squaring): If β ∈ Z/m, then all
powers of β can be computed recursively via the formulas β2k =

(
βk)2

and

β2k+1 =
(

βk)2
β. Note that we are working with residue classes in Z/m here,

not with integers, so that the powers βk of β will not grow forever as k gets
large; they stay in the finite set Z/m.)

• She sends the residue class αe (or, more precisely, its unique representative in
the set {0, 1, . . . , m− 1} 45) to Albert.

Decrypting a message:
Albert receives the residue class β = αe (or, more precisely, a representative

thereof, which he can easily turn into the residue class), and recovers the original
message a as follows:

• He sets γ = βd. This γ is the same α that Julia computed, as we shall see
below.

• He recovers the original message a ∈ {0, 1, . . . , m− 1} as the unique repre-
sentative of the residue class γ = α in {0, 1, . . . , m− 1} (since Julia defined α
as the residue class of a).

This way, Julia can send a message to Albert that no eavesdropper can read –
unless said eavesdropper knows d, or possesses an algorithm hitherto unknown to
the world, or has an incredibly fast computer, or Albert’s randomly picked num-
bers were not random enough46, or one of myriad other practical mistakes has been
made. The proper implementation of the RSA cryptosystem, and the real-life con-
siderations needed to prevent “leakage” of sensitive data such as the decryption
key d, are a subject in its own right, which we shall not discuss here.

45This unique representative exists by Proposition 3.4.6 (b) (and can be computed by picking an
arbitrary representative b first, and then taking its remainder b%m).

46Computers cannot generate “truly” random numbers (whatever this would even mean!); thus,
you have to get by with number generators which try their best at being unpredictable. Lots of
creativity has gone into finding ways to come up with numbers that are “as random as possible”.
Software alone is, per se, deterministic and thus can at most come up with numbers that “look
random” (“pseudorandom number generators”). Nondeterministic input must come from the
outside world. This is why certain programs that generate keys ask you to move your mouse
around the screen – they are, in fact, using your mouse movements as a source of randomness.
Better randomness comes from hardware random number generators, such as Geiger counters
or lava lamps.

What happens if your randomly picked prime numbers are not random enough? In the
worst case, you never find two distinct primes to begin with. In a more realistic case, your
distinct primes will all belong to a small and predictable set, and an eavesdropper can easily
find them simply by checking all possibilities. In less obvious cases, different keys you generate
for different purposes will occasionally have some primes in common, in which case an easy
application of the Chinese Remainder Theorem will allow an eavesdropper to reconstruct them
and decrypt your messages. See https://factorable.net for a study of RSA keys in the wild,
which found a lot of common primes.

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://www.popularmechanics.com/technology/security/news/a28921/lava-lamp-security-cloudflare/
https://factorable.net
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Albert’s method for recovering Julia’s message relies on the following fact (which
we shall prove a bit later):

Lemma 3.8.1. Let p and q be two distinct primes. Let N be a positive integer
such that N ≡ 1 mod (p− 1) (q− 1). Then:

(a) Each a ∈ Z satisfies aN ≡ a mod pq.
(b) Each α ∈ Z/ (pq) satisfies αN = α.

Now, when Albert receives β = αe from Julia, we have

βd = (αe)d = αed.

But d was a modular inverse of e modulo `; thus, ed ≡ 1 mod `. Since ` =
(p− 1) (q− 1), we thus have ed ≡ 1 mod (p− 1) (q− 1). Hence, Lemma 3.8.1
(b) (applied to N = ed) yields αed = α (since α ∈ Z/ m︸︷︷︸

=pq

= Z/ (pq)). Thus,

βd = αed = α. Thus, the residue class γ = βd that Albert computes is exactly Julia’s
α; hence, Albert correctly recovers the message.

The RSA cryptosystem, as presented above, is more versatile than it may seem at
first. Once Albert has generated his p, q, `, m, d and e and sent (e, m) to Julia, Julia
can send not just one but multiple messages to Albert using these keys. Albert can
confidentially respond to these messages as well, by having Julia switch roles with
him (i.e., Julia generates keys, Albert encrypts and Julia decrypts). Thus, a secure
channel for communication can be established. Moreover, and less obviously, RSA
can be used to digitally sign messages (i.e., convince the recipient that they really
come from you – or at least from someone who possesses your private key); see,
e.g., [Dummit16] or the Wikipedia.

3.8.2. Computing using the Chinese Remainder Theorem

Next, let us outline a simple yet unexpected application of the Chinese Remainder
Theorem.

Assume that you have an expression a that is made of integers, addition, sub-
traction and multiplication. For example, say

a = 400 · 405 · 409 · 413− 401 · 404 · 408 · 414. (31)

Assume that computing a directly is too hard, because the intermediate results
will be forbiddingly huge numbers, but you know (e.g., from some estimates) that
the final result will be a fairly small number. Let’s say (for simplicity) that you
know that 0 ≤ a < 500 000.

How can you use this information to compute a quickly?
One simple trick is to work with residue classes modulo 500 000 instead of work-

ing with integer. Thus, instead of computing the number a directly through the

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Signing_messages
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equality (31), we can instead compute its residue class

[a]500 000 = [400 · 405 · 409 · 413− 401 · 404 · 408 · 414]500 000

= [400]500 000 · [405]500 000 · [409]500 000 · [413]500 000
− [401]500 000 · [404]500 000 · [408]500 000 · [414]500 000

(which is an easier task, because we can always reduce our intermediate results
using the fact that every integer a satisfies [a]500 000 = [a % 500 000]500 000), and
then recover a by observing that a must be the unique representative of its residue
class [a]500 000 that belongs to {0, 1, . . . , 499 999} (since 0 ≤ a < 500 000). This is
actually how integer arithmetic works in most low-level programming languages;
for example, the most popular integer type of the C++ language is “int”, which
stands not for integers but rather for residue classes modulo 264 (when working on
a 64-bit system). (This is where integer overflow comes from.)

Computing [a]500 000 instead of computing a is already an improvement, but in
practice, the “500 000” might actually be a significantly bigger number. Assume,
for example, that instead of 0 ≤ a < 500 000, you merely know that 0 ≤ a < N for
some fixed number N which is small enough that computing in Z/N is possible,
but large enough that doing the whole computation of [a]N in Z/N is unviable.
What can we do then?

One thing we can do is to compute the residue classes [a]n for several coprime
“small” integers n. For example, we can compute [a]2 (by performing the whole
computation of a using residue classes modulo 2 instead of integers) and similarly
[a]3 and [a]5 and [a]7 etc.. (We are using prime numbers for n here, which has
certain advantages, but is not strictly necessary; all we need is that the values of n
we are using are coprime.47)

The Chinese Remainder Theorem (in the form of Theorem 3.6.2) shows that if
m and n are two coprime positive integers, then the map Sm,n from Theorem 3.6.2
(sending each [s]mn to the pair ([s]m , [s]n)) is a bijection. In our proof of Theorem
3.6.2 (when proving the surjectivity of Sm,n), we gave an explicit way of constructing
preimages under this map Sm,n (using Bezout’s theorem, which has a fast algorithm
underlying it – the Extended Euclidean algorithm). Thus, we have an explicit way
of recovering the residue class [s]mn from the pair ([s]m , [s]n) whenever s is an
(unknown) integer (and m and n are two coprime positive integers). We shall now
refer to this way as the “patching procedure” (since it lets us “patch” two residue
classes [s]m and [s]n together to a residue class [s]mn).

Now, having computed a bunch of residue classes [a]2 , [a]3 , [a]5 , [a]7 of our un-
known integer a modulo coprime small integers, we can “patch” these classes to-
gether:

• From [a]2 and [a]3, we get [a]2·3 by the “patching procedure”.

• From [a]2·3 and [a]5, we get [a]2·3·5 by the “patching procedure”.

47Note that the computations of [a]n for different values of n are independent of each other, which
comes handy if you have several processors.

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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• From [a]2·3·5 and [a]7, we get [a]2·3·5·7 by the “patching procedure”.

• and so on.

We keep “patching” until the product 2 · 3 · 5 · 7 · · · · becomes larger than our N
(which will happen fairly soon, since this product grows super-exponentially with
the number of “patching” steps). At that point, we have found the residue class
[a]m of our unknown integer a modulo some integer m > N. Since 0 ≤ a < N < m,
we can thus recover a itself (as the unique representative of the class [a]m that lies
in the set {0, 1, . . . , m− 1}).

This technique is known as Chinese Remaindering (in its simplest form) and has
been used a lot (for an example, see [Vogan07, pp. 1031–1033]). See [Knuth98,
§4.3.2] for more details.

3.9. Primitive roots: an introduction

3.9.1. Definition and examples

Let us finally discuss a kind of residue classes that come very useful when they
exist: the primitive roots (modulo a positive integer n). We are not yet able to
ascertain when they exist and when they don’t (this will require some more abstract
algebra); but we can already see some examples of them:

Convention 3.9.1. For the whole Subsection 3.9.1, we fix a positive integer n.

Definition 3.9.2. Let α ∈ Z/n be a residue class.
(a) We say that α is invertible if α has an inverse.
(b) A power of α means a residue class of the form αm for some m ∈N.
(c) Assume that α is invertible. Then, α is said to be a primitive root modulo n if

every invertible residue class β ∈ Z/n is a power of α.

Example 3.9.3. Let n = 9. The invertible residue classes in Z/9 are
[1]9 , [2]9 , [4]9 , [5]9 , [7]9 , [8]9.

Clearly, the residue class [1]9 is not a primitive root modulo 9, since all its
powers equal [1]9.

The powers of [2]9 are

([2]9)
0 = [1]9 ,

([2]9)
1 = [2]9 ,

([2]9)
2 = [4]9 ,

([2]9)
3 = [8]9 ,

([2]9)
4 = [7]9 ,

([2]9)
5 = [5]9 ,

. . . .
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48 Thus, they cover all the six invertible residue classes
[1]9 , [2]9 , [4]9 , [5]9 , [7]9 , [8]9. Hence, [2]9 is a primitive root modulo 9.

It is easy to see that [5]9 also is a primitive root modulo 9, and these two
primitive roots are the only ones.

Note that Corollary 3.5.5 (b) shows that there are exactly φ (n) invertible residue
classes in Z/n. It is easy to see that any power of an invertible residue class is
again invertible.

Euler’s theorem (Theorem 2.15.3) yields that if α ∈ Z/n is an invertible residue
class, then αφ(n) = [1]n (because Corollary 3.5.5 (a) shows that α can be written in
the form α = [a]n for some integer a satisfying a ⊥ n). Thus, it is easy to see that
an invertible residue class α ∈ Z/n has at most φ (n) distinct powers. When an
invertible residue class α ∈ Z/n has exactly φ (n) distinct powers, it is a primitive
root (since there are exactly φ (n) invertible residue classes in Z/n).

Example 3.9.4. Let n = 8. The invertible residue classes in Z/8 are
[1]8 , [3]8 , [5]8 , [7]8.

Again, [1]8 is certainly not a primitive root.
The powers of [3]8 are

([3]8)
0 = [1]8 ,

([3]8)
1 = [3]8 ,

([3]8)
2 = [9]8 = [1]8 ,

. . .

48Here is a fast way to compute these powers:

([2]9)
0 = [1]9 ,

([2]9)
1 = [2]9 ,

([2]9)
2 =

 22︸︷︷︸
=4


9

= [4]9 ,

([2]9)
3 =

 23︸︷︷︸
=8


9

= [8]9 ,

([2]9)
4 =

 24︸︷︷︸
=16


9

= [16]9 = [7]9 (since 16 ≡ 7 mod 9) ,

([2]9)
5 = [2]9 · ([2]9)

4︸ ︷︷ ︸
=[7]9

= [2]9 · [7]9 =

2 · 7︸︷︷︸
=14


9

= [14]9 = [5]9 (since 14 ≡ 5 mod 9) ,

. . . .
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(so the even powers are [1]8 and the odd powers are [3]8). So [3]8 is not a primi-
tive root.

The same behavior prevents [5]8 and [7]8 from being primitive roots.
Thus, we see that there are no primitive roots modulo 8.

Examples 3.9.4 and 3.9.3 suggest the following questions: For what n does a
primitive root modulo n exist, and when it does, how many of them are there?
The following theorem – a result proven in 1801 by Gauss – answers both of these
questions:

Theorem 3.9.5. (a) A primitive root modulo n exists if and only if n is

• either 1,

• or a prime p,

• or a power pk of an odd prime49 p (with k being a positive integer),

• or 4,

• or 2pk for an odd prime p (with k being a positive integer).

(b) If a primitive root modulo n exists, then there are precisely φ (φ (n)) many
of them.

This theorem would be fairly difficult to prove at this point, but will be doable
with some abstract algebra (at least in the case n = p). See [GalQua17, Chapter 4]
for a proof.

4. Complex numbers and Gaussian integers

4.1. Complex numbers

4.1.1. An informal introduction

We now leave (at least for the time being) the study of integers and proceed to
consider a much larger “number system”: the complex numbers.

Before we define these numbers rigorously, let me sketch the idea behind their
construction. Please suspend your disbelief about the not-quite-kosher reasoning
that will follow; we will return to rigorous mathematics in Definition 4.1.1 below.

We know that the number −1 (like any other negative number) has no square
root in R (because the square of any real number is ≥ 0). But let us audaciously
pretend that it does have a square root somewhere else. In other words, let us
pretend that there exists a mythical “number” i such that i2 = −1. Of course, such

49Recall: Odd primes are the same as primes 6= 2.

https://en.wikipedia.org/wiki/Complex_number
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a “number” i will not be a real number, but let us assume (without real justification,
for now) that it behaves like a usual number would (to some extent). In particular,
let us assume that it can be added, subtracted and multiplied like the numbers that
we know and love.

So we have extended the set R of real numbers by a new number i. Now, by
applying addition, subtraction and multiplication to this new number (and our
old numbers), we get a bunch of further new numbers – namely, all numbers of
the form a0 + a1i + a2i2 + · · ·+ akik, where k ∈ N and where a0, a1, . . . , ak are real
numbers. (These can be described as the polynomials in i with real coefficients.)
However, some of these numbers will be equal; in fact, any number of this form
can be reduced to a number of the form a + bi (with a, b ∈ R), because50

i2 = −1, i3 = i i2︸︷︷︸
=−1

= −i, i4 = i i3︸︷︷︸
=−i

= − i2︸︷︷︸
=−1

= − (−1) = 1,

i5 = i i4︸︷︷︸
=1

= i, etc..

For example, the number 3+ 5i+ 9i2 + 7i3 equals 3+ 5i+ 9 (−1)+ 7 (−i) = (3− 9)+
(5− 7) i = −6− 2i.

So all our new numbers have the form a + bi for two reals a and b. We call
them “complex numbers”. (As we have said, we will give a rigorous definition
later.) Since we are assuming that the standard rules of arithmetic still hold for our
new numbers, we can easily find formulas for computing the sum, the difference,
the product and the quotient of two complex numbers written in the form a + bi:
Namely, for any two complex numbers a + bi and c + di (with a, b, c, d ∈ R), we
have

(a + bi) + (c + di) = (a + c) + (b + d) i; (32)
(a + bi)− (c + di) = (a− c) + (b− d) i; (33)

(a + bi) (c + di) = ac + adi + bci + bd i2︸︷︷︸
=−1

= ac + adi + bci− bd

= (ac− bd) + (ad + bc) i; (34)

a + bi
c + di

=
(a + bi) (c− di)
(c + di) (c− di)

=
ac− adi + bci + bdi2

cc− cdi + dci− ddi2 =
ac− adi + bci + bd (−1)
cc− cdi + dci− dd (−1)

=
(ac + bd) + (bc− ad) i

c2 + d2 (if c, d are not both 0) . (35)

(Note that the latter formula is an analogue of the standard procedure for rational-
izing denominators that involve square roots:

a + b
√

2
c + d

√
2
=

(
a + b

√
2
) (

c− d
√

2
)

(
c + d

√
2
) (

c− d
√

2
) =

(ac− 2bd) + (bc− ad)
√

2
c2 − 2d2 ,

50Of course, we are assuming that the standard rules – such as associativity of multiplication –
apply to our “new” numbers.
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except that the square root that we are trying to exorcise from the denominator is
not
√

2 but
√
−1 = i now.)

However, not all features of real numbers carry over to complex numbers: In-
equalities do not make sense for complex numbers. Indeed, if they would make
sense, then we would get a contradiction as follows:

• If i ≥ 0, then i2 ≥ 0, contradicting i2 = −1 < 0.

• If i < 0, then i2 = (−i)2 > 0 (since i < 0 yields −i > 0), contradicting
i2 = −1 < 0.

Here, we have assumed two things about our relations: First, we have assumed
that i is either ≥ 0 or < 0; and second, we have assumed that the square of a non-
negative complex number is nonnegative. Sure, we could avoid the contradiction
by forfeiting one of these assumptions; but then, the ≥ and < relations would not
be worth their names any more.

So we appear to be able to extend the four operations +,−, ·, / to our weird new
numbers, but not the relations <,≤,>,≥ (at least not in any meaningful way). But
how can we be sure that the four operations +,−, ·, / don’t already lead to some
contradictions?

To answer this question, let us forget our daring postulation of the existence of i,
and instead give a formal definition of complex numbers:

4.1.2. Rigorous definition of the complex numbers

Definition 4.1.1. (a) A complex number is defined as a pair (a, b) of two real num-
bers.

(b) We let C be the set of all complex numbers.
(c) For each real number r, we denote the complex number (r, 0) by rC.
(d) We let i be the complex number (0, 1). When the notation “i” is ambiguous,

I will be calling it “iC” instead. (Some authors call it j or ι or
√
−1.)

(e) We define three binary operations +, − and · on C by setting

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac− bd, ad + bc)

for all (a, b) ∈ C and (c, d) ∈ C.
(f) If α and β are two complex numbers, then we write αβ for α · β.
(g) If α is a complex number, then the complex number 0C− α shall be denoted

by −α.

For example, the definition of the operation · on C yields

i︸︷︷︸
=(0,1)

i︸︷︷︸
=(0,1)

= (0, 1) (0, 1) =

0 · 0− 1 · 1︸ ︷︷ ︸
=−1

, 0 · 1 + 1 · 0︸ ︷︷ ︸
=0

 = (−1, 0) = (−1)C .
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We will later51 equate the complex number (−1)C with the real number −1; thus,
this equation will simplify to ii = −1. So i “behaves like a square root of −1”. But
we also have (−i) (−i) = (−1)C, so −i fits the same bill. Thus, we didn’t have to
postulate the existence of a mythical number i satisfying i2 = 1; we simply found
such a number in the set C.

The definitions of the operations +, − and · in Definition 4.1.1 are not chosen by
accident. We shall later identify each complex number (a, b) with a+ bi; then, these
definitions will become exactly the equalities (32), (33) and (34) that we derived
unrigorously.

We are leaving division of complex numbers undefined so far, because we will
later get it more or less for free.

We shall follow the usual “PEMDAS” rules for the order of operations when
interpreting expressions involving the operations +, − and · on C. Thus, for ex-
ample, the expression “α + β · γ” shall mean α + (β · γ) and not (α + β) · γ.

4.1.3. Rules for +, − and ·

So we have defined complex numbers as pairs of real numbers, and we have de-
fined three operations on them which we called +, − and ·. But do these operations
really deserve these names? Do they still behave as nicely as the corresponding op-
erations on real numbers? Do they, in particular, satisfy the standard rules of arith-
metic such as commutativity, associativity and distributivity? The next theorem
shows that they indeed do:

Theorem 4.1.2. The following rules for addition, subtraction and multiplication
in C hold:

(a) We have α + β = β + α for any α, β ∈ C.
(b) We have α + (β + γ) = (α + β) + γ for any α, β, γ ∈ C.
(c) We have α + 0C = 0C + α = α for any α ∈ C.
(d) We have α · 1C = 1C · α = α for any α ∈ C.
(e) We have α · β = β · α for any α, β ∈ C.
(f) We have α · (β · γ) = (α · β) · γ for any α, β, γ ∈ C.
(g) We have α · (β + γ) = αβ+ αγ and (α + β) ·γ = αγ+ βγ for any α, β, γ ∈ C.
(h) We have α · 0C = 0C · α = 0C for any α ∈ C.
(i) If α, β, γ ∈ C, then we have the equivalence (α− β = γ)⇐⇒ (α = β + γ).
(j) We have − (α + β) = (−α) + (−β) for any α, β ∈ C.
(k) We have −0C = 0C.
(l) We have − (−α) = α for any α ∈ C.
(m) We have − (αβ) = (−α) β = α (−β) for any α, β ∈ C.
(n) We have α − β − γ = α − (β + γ) for any α, β, γ ∈ C. (Here and in the

following, “α− β− γ” should be read as “(α− β)− γ”.)

51in Convention 4.1.7

https://en.wikipedia.org/wiki/Order_of_operations
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4.1.4. Finite sums and finite products

Recall the concept of a finite sum of real numbers (i.e., a sum of the form ∑
i∈I

ai,

where I is a finite set and ai is a real number for each i ∈ I), and the analogous
concept of a finite product of real numbers (i.e., a product of the form ∏

i∈I
ai).

Definition 4.1.3. In the same vein, we define the concept of a finite sum of com-
plex numbers (i.e., a sum of the form ∑

i∈I
αi, where I is a finite set and αi ∈ C for

each i ∈ I), and the analogous concept of a finite product of complex numbers
(i.e., a product of the form ∏

i∈I
αi, where I is a finite set and αi ∈ C for each i ∈ I).

These concepts are well-defined, by Proposition 4.1.4 (a) below.

We will use the usual shorthands for special kinds of finite sums and products.
For example, if I is an interval {p, p + 1, . . . , q} of integers (and if αi ∈ C for each

i ∈ I), then the sum ∑
i∈I

αi will also be denoted by
q
∑

i=p
αi or αp + αp+1 + · · · + αq.

Likewise for products. Thus, for example, α1 + α2 + · · · + αk and α1α2 · · · αk are
well-defined whenever α1, α2, . . . , αk ∈ C.

Proposition 4.1.4. (a) Definition 4.1.3 is well-defined.
(b) Finite sums ( ∑

i∈I
αi) and finite products (∏

i∈I
αi) of complex numbers αi ∈ C

satisfy the same rules that finite sums and finite products of real numbers satisfy.

4.1.5. Embedding R into C

Theorem 4.1.5. For any real numbers a and b, we have

(a + b)C = aC + bC and (36)
(a− b)C = aC − bC and (37)

(ab)C = aCbC. (38)

Remark 4.1.6. If a1, a2, . . . , ak are k reals, then

(a1)C + (a2)C + · · ·+ (ak)C = (a1 + a2 + · · ·+ ak)C and
(a1)C · (a2)C · · · · · (ak)C = (a1a2 · · · ak)C .

Convention 4.1.7. From now on, for each real number r, we shall identify the
real number r with the complex number rC = (r, 0).
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Identifying different things is always risky in mathematics; for example, we have
seen above why it would be a bad idea to identify residue classes [a]n of integers
modulo a positive integer n with the corresponding remainders a%n (even though
there is a 1-to-1 correspondence between the former and the latter). Nevertheless,
the identification made in Convention 4.1.7 is harmless, due to Theorem 4.1.552 and
because the map

R→ C, r 7→ rC

is injective (so we are not identifying two different real numbers with one and the
same complex numbers).

So we have identified each real number with a complex number. Thus, the com-
plex numbers can be seen as an extension of the real numbers: R ⊆ C. (Of course,
this is not literally true, since formally speaking rC is a pair while r is a single real
number. Nevertheless, we will work as if this was true, and hope that the reader
can insert “C” subscripts wherever necessary in order to make our computations
literally true.)

When we defined complex numbers as pairs of real numbers in Definition 4.1.1,
we were intending that the pair (a, b) would correspond to the complex number
a + bi in our previous informal construction of the complex numbers. Convention
4.1.7 makes this actually hold:

Proposition 4.1.8. For any (a, b) ∈ C, we have (a, b) = a + bi.

The next proposition shows that if we multiply a complex number (b, c) with a
real number a (of course, understanding this real number a as the complex number
aC = (a, 0)), then the result will simply be (ab, ac) (that is, multiplying a complex
number by a merely multiplies both of its entries by a):

Proposition 4.1.9. For any a ∈ R and (b, c) ∈ C, we have a (b, c) = (ab, ac).
(Here, of course, “a (b, c)” means the product aC (b, c).)

4.1.6. Inverses and division of complex numbers

Definition 4.1.10. A complex number α is said to be nonzero if and only if it is
distinct from the complex number 0C = (0, 0).

In other words, a complex number α is nonzero if and only if it is distinct from
0 (since we are identifying the real number 0 with 0C). Equivalently, a complex

52Why does Theorem 4.1.5 matter here? Well, let us assume for a moment that Theorem 4.1.5 was
false; specifically, let us assume that there are two real numbers a and b such that (ab)C 6= aCbC.
Consider these a and b. Now, Convention 4.1.7 lets us identify the real numbers a, b and ab with
the complex numbers aC, bC and (ab)C. Thus, ab = (ab)C 6= aC︸︷︷︸

=a

bC︸︷︷︸
=b

= ab, which is nonsense.

To make sure that Convention 4.1.7 cannot spawn such absurdities, we had to prove Theorem
4.1.5.
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number α = (a, b) is nonzero if and only if (a, b) 6= (0, 0) as pairs (i.e., if and only
if at least one of the real numbers a and b are nonzero).

We have so far been adding, subtracting and multiplying complex numbers, but
never dividing them (except briefly, before we formally defined them). We could
define division in the same way as we defined addition, subtraction and multi-

plication – namely, by an explicit formula for
(a, b)
(c, d)

whenever (c, d) is nonzero53.

However, it is more instructive to proceed differently, and construct the division
from the multiplication that was already defined. After all, if our division is to
deserve its name, it should undo multiplication; and this determines it uniquely.
We will not define division right away; instead, we start out by defining an inverse
of a complex number:

Definition 4.1.11. Let α be a complex number. An inverse of α means a complex
number β such that αβ = 1. (Recall that 1 = 1C by Convention 4.1.7.)

The complex number 0 has no inverse (because 0β = 0 6= 1, no matter what β
is). But it turns out that all the other complex numbers have one:

Theorem 4.1.12. Let α be a nonzero complex number. Then, α has a unique
inverse.

Definition 4.1.13. Let α be a nonzero complex number. Theorem 4.1.12 shows
that α has a unique inverse. This inverse is called α−1, and will be referred to as
the inverse of α.

Definition 4.1.14. (a) Let α and β be two complex numbers such that β 6= 0. Then,
the quotient

α

β
is defined to be the complex number α · β−1. It is sometimes also

denoted by α/β.
(b) The operation that transforms a pair (α, β) of two complex numbers (with

β nonzero) into α/β is called division.

It is easy to see that division undoes multiplication:

Proposition 4.1.15. Let α, β, γ be three complex numbers with β 6= 0. Then, we
have the equivalence (

γ =
α

β

)
⇐⇒ (α = βγ) .

Inverses also have the following properties:

53This formula would be
(a, b)
(c, d)

=

(
ac + bd
c2 + d2 ,

bc− ad
c2 + d2

)
.
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Proposition 4.1.16. (a) Let α ∈ C be a complex number that has an inverse (i.e.,
is nonzero). Then, its inverse α−1 has an inverse as well, and this inverse is(
α−1)−1

= α.
(b) Let α, β ∈ C be two complex numbers that have inverses (i.e., are nonzero).

Then, their product αβ has an inverse as well, and this inverse is (αβ)−1 =
α−1β−1.

Corollary 4.1.17. Let α, β ∈ C be two nonzero complex numbers. Then, the
complex number αβ is nonzero as well.

4.1.7. Powers of complex numbers

Let us now define powers of complex numbers, where the exponent is a nonnega-
tive integer.

Definition 4.1.18. Let α ∈ C and n ∈N. We define a complex number αn (called
the n-th power of α) by setting αn = αα · · · α︸ ︷︷ ︸

n times

.

Definition 4.1.18 yields
i2 = ii = (−1)C = −1.

Moreover, Definition 4.1.18 yields

α0 = αα · · · α︸ ︷︷ ︸
0 times

= (empty product) = 1 and

α1 = αα · · · α︸ ︷︷ ︸
1 times

= α

for each α ∈ C.
For another example, Definition 4.1.18 yields

(1 + i)2 = (1 + i) (1 + i) = 1 + i + i + ii︸︷︷︸
=−1

= 1 + i + i + (−1) = i + i = 2i

and

(1 + i)4 = (1 + i) (1 + i)︸ ︷︷ ︸
=2i

(1 + i) (1 + i)︸ ︷︷ ︸
=2i

= 2i · 2i = 4 ii︸︷︷︸
=−1

= 4 (−1) = −4.

We shall use the PEMDAS convention for the order of operations when powers
are involved. For example, the expression “αβk + γ” means

(
α
(

βk)) + γ rather
than (say) (αβ)k + γ.

Recall that any nonzero complex number α has an inverse α−1 (by Definition
4.1.13). This allows us to extend our definition of αn to negative n as well:



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 137

Definition 4.1.19. Let α ∈ C be nonzero. For any negative n ∈ Z, we define
a complex number αn (called the n-th power of α) by αn =

(
α−1)−n. (This is

well-defined, since
(
α−1)−n is already defined by Definition 4.1.18 (because n is

negative and thus −n ∈N).)

The attentive reader will have noticed that Definition 4.1.19 redefines α−1 when
α is nonzero (indeed, −1 is a negative integer, and thus can be substituted for n in
Definition 4.1.19). Fortunately, this new definition of α−1 does not clash with the
original definition (Definition 4.1.13), because if we set n = −1 in Definition 4.1.19,
then we get α−1 =

(
α−1)1

= α−1 (where the “α−1” on the left hand side is the new
meaning defined in Definition 4.1.19, whereas the “α−1” on the right hand side is
the old meaning defined in Definition 4.1.13).

If α = 0 and if n ∈ Z is negative, then we leave αn undefined.
Powers of complex numbers satisfy the usual rules for exponents:

Proposition 4.1.20. (a) We have αn+1 = ααn for all α ∈ C and n ∈N.
(b) We have αn+m = αnαm for all α ∈ C and n, m ∈N.
(c) We have (αβ)n = αnβn for all α, β ∈ C and n ∈N.
(d) We have (αn)m = αnm for all α ∈ C and n, m ∈N.
(e) We have 1n = 1 for all n ∈N.
(f) We have αn+1 = ααn for all nonzero α ∈ C and all n ∈ Z.
(g) We have α−n =

(
α−1)n for all nonzero α ∈ C and all n ∈ Z.

(h) We have αn+m = αnαm for all nonzero α ∈ C and all n, m ∈ Z.
(i) We have (αβ)n = αnβn for all nonzero α, β ∈ C and all n ∈ Z.
(j) We have 1n = 1 for all n ∈ Z.
(k) We have (αn)−1 = α−n for all nonzero α ∈ C and all n ∈ Z. (In particular,

αn is nonzero, so that (αn)−1 is well-defined.)
(l) We have (αn)m = αnm for all nonzero α ∈ C and all n, m ∈ Z. (In particular,

αn is nonzero, so that (αn)m is well-defined for all m ∈ Z.)
(m) Complex numbers satisfy the binomial formula: That is, if α, β ∈ C, then

(α + β)n =
n

∑
k=0

(
n
k

)
αkβn−k for n ∈N.

Proposition 4.1.20 can be proven in the same way as the corresponding claims
are proven for real (or rational) numbers:

Exercise 4.1.1. Prove Proposition 4.1.20.

It may be tempting to try to extend Definition 4.1.19 further by defining fractional
powers (such as α1/2). There is a way to do so, but such a definition would be of
questionable use and somewhat fragile (in the sense that it would fail to satisfy
the rules of exponents). For example, if you wanted to define (−1)1/2, then the
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only reasonable choices would be i and −i (since these are the only two complex
numbers whose squares are −1); but with either option, the equality (αβ)1/2 =
α1/2β1/2 would fail if we took α = −1 and β = −1. Thus, we prefer to leave
powers of the form αn for n /∈ Z undefined.

4.1.8. The Argand diagram

Let us next make a small detour to demonstrate a geometric representation of the
complex numbers which, while not strictly necessary for what we intend to do
with them, is conducive both to understanding them and to applying them.

Recall that a complex number was defined as a pair of real numbers. On the
other hand, a point in the Cartesian plane is also defined as a pair of real numbers
(its x-coordinate and its y-coordinate). Thus, it is natural to identify each complex
number (a, b) = a + bi with the point (a, b) ∈ R2 on the Cartesian plane (i.e., the
point with x-coordinate a and y-coordinate b). This identification equates each
complex number with a unique point in the Cartesian plane, and vice versa:

a + bi = (a, b)

b

a
.

The picture below shows some of the points (specifically, all the 25 points (a, b) ∈
{−2,−1, 0, 1, 2}2 whose both coordinates are integers between −2 and 2) labeled
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with the corresponding complex numbers:

−2 −1 0 1 2

−2 + i −1 + i 1 + i 2 + ii

−2− i −1− i 1− i 2− i−i

−2 + 2i −1 + 2i 1 + 2i 2 + 2i2i

−2− 2i −1− 2i 1− 2i 2− 2i−2i

(39)

(as well as the unit circle, which passes through the four points labeled 1, i,−1,−i;
we will encounter these four points rather often in the following).

This identification of complex numbers with points is called the Argand diagram
or the complex plane (although the latter word has yet another, different meaning).
The complex number 0 corresponds to the origin (0, 0) of the plane.

In Definition 4.1.1 (e), we have introduced three operations on complex num-
bers; what do they mean geometrically for the corresponding points? The two
operations + and − are easiest to understand: They are exactly the usual opera-
tions of addition and subtraction for vectors. Thus, if α and β are two complex
numbers, then the points labeled by the four complex numbers 0, α, α + β and β

https://en.wikipedia.org/wiki/Complex_plane
https://en.wikipedia.org/wiki/Complex_plane
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form a parallelogram:

α

β

α + β

0

.

Likewise, the points labeled by the four complex numbers 0, α, β and β− α form a
parallelogram. These parallelograms can be degenerate; in particular, the point −α
is the reflection of the point α through the origin:54

α

−α

0

.

Multiplication is less evident. The easiest case is multiplying by i: If α is a
complex number, then the point iα is obtained from the point α by a 90◦ rotation
(counterclockwise) around the origin. Thus, the four points α, iα, −α and −iα are

54We no longer say “the point labeled by α”, but simply equate α with that point now.
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the vertices of a square centered at the origin:

α

−α

iα

−iα

0

.

More generally, if β is a complex number, then multiplication by β (that is, the
map C → C, α 7→ αβ) is a similitude transformation (so it preserves angles and
ratios of lengths); more precisely it is a rotation around the origin composed with
a homothety from the origin. Combined with the fact that it sends 1 to β, this
uniquely determines it.

This is just the beginning of a rather helpful dictionary between elementary plane
geometry and the algebra of complex numbers. See [AndAnd14] for many appli-
cations of this point of view, particularly to proving results in plane geometry.

4.1.9. Norms and conjugates

Let us now define some further features of complex numbers.

Definition 4.1.21. Let α = (a, b) be a complex number.
The norm of α is defined to be the real number a2 + b2 ∈ R. This norm is called

N (α).

Proposition 4.1.22. Let α be a complex number.
(a) We have N (α) ≥ 0.
(b) We have N (α) = 0 if and only if α = 0.
(c) If α 6= 0, then N (α) > 0.

Proposition 4.1.23. Let a ∈ R. Then, N (aC) = a2.

Definition 4.1.24. Let α = (a, b) ∈ C.
The conjugate α of α is defined to be the complex number (a,−b) ∈ C.
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From the viewpoint of the Argand diagram, the conjugate α of a complex number
α is simply the result of reflecting α (or, to be pedantic, the point labeled by α) across
the x-axis:

α

α

0

.

Thus, the following is completely self-evident:

Proposition 4.1.25. Let α ∈ C.
(a) We have α = α if and only if α ∈ R. (Keep in mind that we are follow-

ing Convention 4.1.7, so that the statement “α ∈ R” (for a complex number α)
actually means “α = rC for some r ∈ R”.)

(b) We always have α = α.

Since we don’t want to depend on geometric reasoning, let us nevertheless prove
this fact algebraically:

Proposition 4.1.26. Let α ∈ C.
(a) We have N (α) = αα (or, more formally: (N (α))C = αα).
(b) We have N (α) = N (α).

Proposition 4.1.27. Let α and β be two complex numbers. Then:
(a) We have α + β = α + β.
(b) We have α− β = α− β.
(c) We have α · β = α · β.
(d) We have N (αβ) = N (α) ·N (β).

(e) If β 6= 0, then N
(

α

β

)
=

N (α)

N (β)
.

The properties of the norm of a complex numbers let us see an old fact in new
light: Remember the Brahmagupta–Fibonacci identity (1), which said that(

a2 + b2
) (

c2 + d2
)
= (ad + bc)2 + (ac− bd)2
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for a, b, c, d ∈ R. This identity is equivalent to the identity

N (α) ·N (β) = N (αβ)

for the complex numbers α = (a, b) = a + bi and β = (c, d) = c + di. Thus,
the identity (1) is just Proposition 4.1.27 (d), restated without the use of complex
numbers. This answers the question of how you could have come up with this
identity – at least if you know complex numbers. (Brahmagupta must have found
it in a different way, since complex numbers were not known to him.)

Corollary 4.1.28. Let α ∈ C and k ∈N. Then:
(a) We have αk = αk.
(b) We have N

(
αk) = (N (α))k.

Using the norm of a complex number, we can define a notion of absolute value
of a complex number:

Definition 4.1.29. Let α = (a, b) be a complex number. The absolute value (or
modulus or length) of α is defined to be

√
N (α) =

√
a2 + b2 ∈ R. (This is well-

defined, because Proposition 4.1.22 (a) shows that N (α) ≥ 0.)
The absolute value of α is denoted by |α|. (This notation does not conflict

with the classical notation |a| for the absolute value of a real number a, because
if a is a real number, then Proposition 4.1.23 yields N (aC) = a2 and therefore√

N (aC) =
√

a2 = |a|, where “|a|” means the classical concept of absolute value
of a.)

In the Argand diagram, the absolute value |α| of a complex number α is simply
the distance of α from the origin. The reason for this is the Pythagorean theorem:

α = a + bi

b

a

|α| =
√

a2 + b2

.
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Good references for the basic properties of complex numbers are [LaNaSc16] and
[Swanso18, §3.9–§3.12]. The book [AndAnd14] is a treasure trove of applications
and exercises.

4.1.10. Re, Im and the 2× 2-matrix representation

We define some more attributes of a complex number.

Definition 4.1.30. Let α = (a, b) be a complex number (so that a and b are real
numbers and α = a + bi).

Then, a is called the real part of α and denoted Re α (or Rα).
Also, b is called the imaginary part of α and denoted Im α (or Iα).

The following proposition assigns a real 2× 2-matrix to each complex number:

Proposition 4.1.31. Let R2×2 be the set of all 2× 2-matrices with real entries.
Define a map µ : C→ R2×2 by setting

µ (a, b) =
(

a b
−b a

)
for each (a, b) ∈ C.

(a) We have µ (α + β) = µ (α) + µ (β) for all α, β ∈ C.
(b) We have µ (α− β) = µ (α)− µ (β) for all α, β ∈ C.
(c) We have µ (α · β) = µ (α) · µ (β) for all α, β ∈ C.
(d) The map µ is injective.

Proposition 4.1.31 really says that (instead of regarding complex numbers as
pairs of real numbers) we can regard complex numbers as a specific kind of 2× 2-
matrices with real entries (by identifying each complex number α with the matrix
µ (α)). This viewpoint has the advantage that multiplication of complex numbers
becomes a particular case of matrix multiplication. (We could have saved ourselves
the trouble of proving the associativity of multiplication for complex numbers if
we had taken this viewpoint.)

4.1.11. The fundamental theorem of algebra

Finally, let me mention without proof the so-called Fundamental Theorem of Algebra:

Theorem 4.1.32. Let p (x) be a polynomial of degree n with complex coefficients.
Then, there exist complex numbers α1, α2, . . . , αn and β such that

p (x) = β (x− α1) (x− α2) · · · (x− αn) .

In other words, any polynomial with complex coefficients can be factored into
linear factors. This is in contrast to real numbers, where polynomials can at best
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be factored into linear and quadratic factors. (For example, the polynomial x2 + 1
cannot be factored further over the real numbers, but factors as (x + i) (x− i) over
the complex numbers.)

The Fundamental Theorem of Algebra is not actually a theorem of algebra. It
relies heavily on the concepts of real and complex numbers. So it is actually a
theorem of analysis. For a proof, see [LaNaSc16, Theorem 3.2.2].

4.2. Gaussian integers

Inside the set C of all complex numbers (an uncountable set) lies a much smaller
(countable) set of numbers, which are much closer to integers than to real numbers.
We shall study them partly for their own sake, partly as an instructive example
of what we will later call a commutative ring, and partly in order to answer the
questions from Section 1.4 (although complex numbers were never mentioned in
that section).

We shall follow Keith Conrad’s notes [ConradG] for most of this section (but at
the end we will go a bit further in order to answer Question 1.4.2 (b)).

4.2.1. Definitions and basics

We shall now define the Gaussian integers: a middle ground between integers and
complex numbers.

Definition 4.2.1. A Gaussian integer is a complex number (a, b) with a, b ∈ Z.

For example, 3 + 5i = (3, 5) and 3− 7i = (3,−7) are Gaussian integers. So are
0 = (0, 0), 1 = (1, 0) and i = (0, 1). Every integer is a Gaussian integer55. But
1
2
+ 3i =

(
1
2

, 3
)

and
√

2 + 4i =
(√

2, 4
)

are not Gaussian integers.

Recall that in the Argand diagram, complex numbers correspond to points in the
Cartesian plane. The Gaussian integers thus correspond to a special type of points
– the ones whose both coordinates are integers. These points are called lattice points,
as they form the nodes of a square lattice covering the plane. In the picture (39),
the 25 marked points are precisely the lattice points (i.e., the Gaussian integers)
that happen to fall inside the region drawn.

Remark 4.2.2. In Definition 4.2.1, we have defined Gaussian integers using com-
plex numbers. This can be viewed as somewhat of an overkill, as the notion
of complex numbers depends on the notion of real numbers, which are mostly
useless for Gaussian integers. Thus, one might ask for a different definition of
Gaussian integers – one which relies only on integers and not on real numbers.

55This relies on Convention 4.1.7, of course. If we avoid this convention, then we should instead
say that for every integer r, the complex number rC = (r, 0) is a Gaussian integer.
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Such a definition is easy to make: Just replace every appearance of real num-
bers in Definition 4.1.1 by integers! Thus, define the Gaussian integers as pairs
of two integers; let CZ be the set of these pairs; denote the Gaussian integer
(r, 0) by rC whenever r is an integer; define the operations +, − and · on the
set CZ by the same formulas as in Definition 4.1.1 (e); likewise, adapt the rest
of Definition 4.1.1 to integers. Most of what we have done in Section 4.1 can
be straightforwardly adapted to this notion of Gaussian integers (by making the
obvious changes – i.e., mostly, replacing real numbers by integers); the main
exceptions are the following:

• Not every nonzero Gaussian integer has an inverse (in the set of Gaussian
integers). (In fact, as we will soon see, the only Gaussian integers that
have inverses are 1, i,−1,−i.) Thus, division and negative powers of Gaus-
sian integers are usually not defined (without leaving the set of Gaussian
integers).

• The absolute value |α| of a Gaussian integer α will usually not be an integer
(since it is defined as a square root).

This alternative definition of Gaussian integers is equivalent to Definition 4.2.1;
we are using the latter mainly because it is shorter.

Likewise, we could have defined “Gaussian rationals” by adapting Definition
4.1.1 to rational (instead of real) numbers. Unlike the Gaussian integers, these
“Gaussian rationals” do have inverses (when they are nonzero), and thus divi-
sion and negative powers are well-defined for them.

Definition 4.2.3. We let Z [i] be the set of all Gaussian integers.

Elementary number theory concerns itself with integers (mostly). Our goal in
this section is to replicate as much as we can of this theory in the setting of Gaussian
integers, and then see how it can be applied back to answer some questions about
the usual integers.

We will try to use Greek letters for Gaussian integers and Roman letters for
integers.

Proposition 4.2.4. (a) If α and β are two Gaussian integers, then α + β, α− β and
α · β are Gaussian integers.

(b) If α is a Gaussian integer, then −α is a Gaussian integer.
(c) Sums and products of finitely many Gaussian integers are Gaussian inte-

gers.

Proposition 4.2.5. Let α be a Gaussian integer. Then, α is a Gaussian integer.
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Proposition 4.2.6. Let α ∈ Z [i]. Then, N (α) ∈N.

4.2.2. Units and unit-equivalence

Any nonzero Gaussian integer α has an inverse (by Theorem 4.1.12). But usually,
this inverse is not a Gaussian integer, i.e., does not lie in Z [i]. For example, 2−1 /∈
Z [i] and (1 + i)−1 =

1− i
2

/∈ Z [i]. The Gaussian integers whose inverses do lie in

Z [i] have a special name:

Definition 4.2.7. (a) A Gaussian integer α ∈ Z [i] is said to be invertible in Z [i] if
it has an inverse in Z [i].

A unit will mean a Gaussian integer that is invertible in Z [i].
(b) We define a relation ∼ on Z [i] by

(α ∼ β)⇐⇒ (α = γβ for some unit γ ∈ Z [i]) .

This relation will be called unit-equivalence (or equality up to unit). We say that
two Gaussian integers α and β are unit-equivalent if α ∼ β.

For comparison, let us consider analogous concepts for integers instead of Gaus-
sian integers. The units of Z (that is, the integers that are invertible in Z) are 1 and
−1. So if we defined a relation ∼

Z
on Z in the same way as we defined the relation

∼ on Z [i] (but requiring γ ∈ Z instead of γ ∈ Z [i]), then this relation would just
be given by (

a ∼
Z

b
)
⇐⇒ (a = cb for some c ∈ {1,−1})

⇐⇒ (a = b or a = −b)⇐⇒ (|a| = |b|) . (40)

So the relation ∼
Z

is not very exciting: it is simply “equality up to sign”.56 But

the relation ∼ on Z [i] cannot be described as simply as this: It is easy to find
two Gaussian integers α and β such that |α| = |β| holds but α ∼ β does not (for
example, the Gaussian integers α = 16 + 63i and β = 33 + 56i both have absolute
value 65 but are not unit-equivalent).

Proposition 4.2.8. The relation ∼ on Z [i] is an equivalence relation.

Proposition 4.2.9. Let α be a Gaussian integer.
(a) We have N (α) = 0 if and only if α = 0.
(b) We have N (α) = 1 if and only if α is a unit.
(c) If α is nonzero and not a unit, then N (α) > 1.

56In other words, it is precisely the relation ≡
abs

, where abs : Z→N is the map sending each integer

n to its absolute value |n|. (See Example 3.2.7 for how this relation ≡
abs

is defined.)
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Proposition 4.2.10. The units (in Z [i]) are 1,−1, i,−i.

As a consequence of Proposition 4.2.10, if we are given two Gaussian integers α
and β, we can easily check whether α ∼ β holds:

Proposition 4.2.11. Let α and β be two Gaussian integers. Then, we have α ∼ β
if and only if

(α = β or α = −β or α = iβ or α = −iβ) .

Definition 4.2.12. We know from Proposition 4.2.8 that the relation ∼ on Z [i] is
an equivalence relation.

The equivalence classes of this relation ∼ shall be called the unit-equivalence
classes. More specifically, for each α ∈ Z [i], we shall denote the ∼-equivalence
class of α as the unit-equivalence class of α.

Proposition 4.2.13. (a) For each α ∈ Z [i], we have

(the unit-equivalence class of α) = {α, iα,−α,−iα} .

(b) The unit-equivalence classes are the sets of the form {α, iα,−α,−iα} for
some α ∈ Z [i].

Recall that (as we have seen in Subsection 4.1.8) if α is a complex number, then
the four complex numbers α, iα, −α and −iα (represented as points in the Argand
diagram) are the vertices of a square centered at the origin. But when α is a Gaus-
sian integer, these four complex numbers constitute the unit-equivalence class of
α (by Proposition 4.2.13 (a)). Thus, geometrically speaking, the unit-equivalence
class of a Gaussian integer α consists of the four vertices of a square centered at the
origin. (When α = 0, these four vertices coincide.)

Proposition 4.2.14. Let α be a Gaussian integer. Then, α ∼ 1 if and only if α is a
unit.

Proposition 4.2.15. Let α and β be two unit-equivalent Gaussian integers. Then,
N (α) = N (β).

The converse of Proposition 4.2.15 does not hold: There exist Gaussian integers
α and β satisfying N (α) = N (β) that are not unit-equivalent.

At this point, let us briefly take a look at a seemingly random question: Which
Gaussian integers α are unit-equivalent to their own conjugates (i.e., satisfy α ∼ α)
? Besides being an instructive exercise, answering this question will surprisingly
aid us answer Question 1.4.2 later on!

Here are some examples:

• Every integer g satisfies g ∼ g, since an integer g always satisfies g = g.
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• Every integer g satisfies gi ∼ gi. Indeed, if g is an integer, then Proposition
4.1.27 (c) (applied to α = g and β = i) yields

gi = g︸︷︷︸
=g

(since g∈Z⊆R)

· i︸︷︷︸
=−i

= g (−i) = −gi = (−1) · (gi) ,

and this leads to gi ∼ gi (since −1 is a unit); but this, in turn, yields gi ∼ gi
(since Proposition 4.2.8 shows that ∼ is an equivalence relation).

• Every integer g satisfies g (1 + i) ∼ g (1 + i). Indeed, if g is an integer, then
Proposition 4.1.27 (c) (applied to α = g and β = 1 + i) yields

g (1 + i) = g︸︷︷︸
=g

(since g∈Z⊆R)

· (1 + i)︸ ︷︷ ︸
=1−i

=(−i)(1+i)
(check this!)

= g (−i) (1 + i) = (−i) · (g (1 + i)) ,

and this leads to g (1 + i) ∼ g (1 + i) (since −i is a unit); but this, in turn,
yields g (1 + i) ∼ g (1 + i) (since Proposition 4.2.8 shows that ∼ is an equiva-
lence relation).

• Every integer g satisfies g (1− i) ∼ g (1− i). This can be checked similarly to
how we just checked g (1 + i) ∼ g (1 + i).

Thus, in total, we have found four families of Gaussian integers α satisfying
α ∼ α: namely, those of the form g ∈ Z; those of the form gi with g ∈ Z; those of
the form g (1 + i) with g ∈ Z; and those of the form g (1− i) with g ∈ Z. On the
Argand diagram, these are precisely the lattice points on the four bold red lines on
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the following picture:

−2 −1 0 1 2

−2 + i −1 + i 1 + i 2 + ii

−2− i −1− i 1− i 2− i−i

−2 + 2i −1 + 2i 1 + 2i 2 + 2i2i

−2− 2i −1− 2i 1− 2i 2− 2i−2i

.

Are there any other Gaussian integers α satisfying α ∼ α ? As the following
exercise (or, rather, its part (a)) shows, the answer is “no”; we have found all such
α.

Exercise 4.2.1. Let α be a Gaussian integer satisfying α ∼ α. Prove the following:
(a) There exist some g ∈ Z and τ ∈ {1, i, 1 + i, 1− i} such that α = gτ.
(b) These g and τ satisfy N (α) ∈

{
g2, 2g2}.

(c) The norm N (α) cannot be an odd prime.

(Part (c) of this exercise, strange as it sounds, is the one we will end up using
later.)

For the sake of the next subsection, let us state a simple property of integers:

Lemma 4.2.16. Let a and b be two integers. Then, we have the logical equivalence

(a | b) ⇐⇒ (there exists a Gaussian integer γ such that b = aγ) .
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4.2.3. Divisibility and congruence

Now, let us begin to do proper number theory with Gaussian integers. The next
definition is the straightforward analogue of Definition 2.2.1.

Definition 4.2.17. Let α and β be two Gaussian integers. We say that α | β (or “α
divides β” or “β is divisible by α” or “β is a multiple of α”) if there exists a Gaussian
integer γ such that β = αγ.

We furthermore say that α - β if α does not divide β.

When making such a definition, we need to be careful: Potentially, it might
create a clash of notations. In fact, if a and b are integers, then the statement
“a | b” already has a meaning (explained in Definition 2.2.1). Definition 4.2.17
gives this statement a new meaning, because we can consider our integers a and
b as Gaussian integers (since every integer is a Gaussian integer). If these two
meanings are not equivalent, then the statement “a | b” becomes ambiguous (as it
now has two different meanings) – so we have laid ourselves a landmine!

Fortunately, these two meanings are equivalent. That is: If a and b are two inte-
gers, then the statement “a | b” interpreted according to Definition 2.2.1 is equiva-
lent to the statement “a | b” interpreted according to Definition 4.2.17. Indeed, if a
and b are two integers, then we have the following chain of equivalences:

(a | b in the sense of Definition 2.2.1)
⇐⇒ (there exists a Gaussian integer γ such that b = aγ) (by Lemma 4.2.16)
⇐⇒ (a | b in the sense of Definition 4.2.17) .

Thus, the two possible meanings of “a | b” are equivalent, and so we are spared of
any ambiguity.

More generally, the following proposition holds:

Proposition 4.2.18. Let a ∈ Z and β = (b, c) ∈ Z [i]. Then, a | β if and only if a
divides both b and c.

The next proposition is a (partial) analogue of Proposition 2.2.3:

Proposition 4.2.19. Let α and β be two Gaussian integers.
(a) If α | β, then N (α) | N (β).
(b) If α | β and β 6= 0, then N (α) ≤ N (β).

(c) Assume that α 6= 0. Then, α | β if and only if
β

α
∈ Z [i].

Note that we are using the norms N (α) and N (β) as analogues of |a| and |b|
here, since the absolute values |α| and |β| of Gaussian integers are often irrational
and thus it makes no sense to talk of their divisibility. (At least, this prevents us
from using the absolute values of α and β in Proposition 4.2.19 (a). We could use
them in Proposition 4.2.19 (b).)
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Note that the converse of Proposition 4.2.19 (a) does not hold. (That is, N (α) |
N (β) does not yield α | β.)

The next proposition is a straightforward analogue of Proposition 2.2.4:

Proposition 4.2.20. (a) We have α | α for every α ∈ Z [i]. (This is called the
reflexivity of divisibility for Gaussian integers.)

(b) If α, β, γ ∈ Z [i] satisfy α | β and β | γ, then α | γ. (This is called the
transitivity of divisibility for Gaussian integers.)

(c) If α1, α2, β1, β2 ∈ Z [i] satisfy α1 | β1 and α2 | β2, then α1α2 | β1β2.

The next exercise is a Gaussian-integer analogue of Exercise 2.2.2:

Exercise 4.2.2. Let α and β be two Gaussian integers such that α | β and β | α.
Prove that α ∼ β.

Note that the conclusion “α ∼ β” in Exercise 4.2.2 is the proper Gaussian-integer
analogue of the conclusion “|a| = |b|” in Exercise 2.2.2 (since (40) shows that unit-
equivalence on Z [i] is an analogue of the “have the same absolute value” relation
on Z). (We could have stated the weaker conclusion |α| = |β| as well, but it would
not be half as useful.)

A converse of Exercise 4.2.2 holds as well, so we have the following equivalent
description of unit-equivalence:

Exercise 4.2.3. Let α and β be two Gaussian integers. Prove that we have the
logical equivalence

(α ∼ β) ⇐⇒ (α | β and β | α) .

The next exercise is an analogue of Exercise 2.2.3:

Exercise 4.2.4. Let α, β, γ be three Gaussian integers such that γ 6= 0. Prove that
α | β holds if and only if αγ | βγ.

The next exercise is an analogue of Exercise 2.2.4:

Exercise 4.2.5. Let ν ∈ Z [i]. Let a, b ∈N be such that a ≤ b. Prove that νa | νb.

Needless to say, the a and b in this exercise still have to be nonnegative integers,
since Gaussian integers make no sense as exponents.

The next exercise is an analogue of Exercise 2.2.5:

Exercise 4.2.6. Let γ be a Gaussian integer such that γ | 1. Prove that γ ∼ 1 (that
is, γ is a unit, i.e., either 1 or −1 or i or −i).

Next come two more trivial facts:
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Exercise 4.2.7. Let α and β be Gaussian integers such that α | β. Prove that α | β.

Exercise 4.2.8. Let α, β and γ be three Gaussian integers. Prove the following:
(a) If β ∼ γ, then we have the logical equivalence (α | β)⇐⇒ (α | γ).
(b) If α ∼ β, then we have the logical equivalence (α | γ)⇐⇒ (β | γ).
(c) Let δ be a further Gaussian integer. Assume that α ∼ β and γ ∼ δ. Then,

we have the logical equivalence (α | γ)⇐⇒ (β | δ).

Another useful and easily proven fact is the following:

Exercise 4.2.9. Let α and β be Gaussian integers such that α | β and N (α) =
N (β). Prove that α ∼ β.

We have defined congruence for integers in Definition 2.3.1. We can repeat the
same definition for Gaussian integers:

Definition 4.2.21. Let ν, α, β ∈ Z [i]. We say that α is congruent to β modulo ν if
and only if ν | α− β. We shall use the notation “α ≡ β mod ν” for “α is congruent
to β modulo ν”.

We furthermore shall use the notation “α 6≡ β mod ν” for “α is not congruent
to β modulo ν”.

Once again, such a definition risks sneaking in ambiguity, but fortunately this
one does not: If n, a, b ∈ Z, then the statement “a ≡ b mod n” interpreted accord-
ing to Definition 2.3.1 is equivalent to the statement “a ≡ b mod n” interpreted
according to Definition 4.2.21 (by treating n, a, b as Gaussian integers). To see why,
recall that both statements are defined to mean “n | a− b”, and the meaning of the
latter statement does not depend on whether we interpret n, a, b as integers or as
Gaussian integers57.

The next proposition is a straightforward analogue of Proposition 2.3.3:

Proposition 4.2.22. Let ν ∈ Z [i] and α ∈ Z [i]. Then, α ≡ 0 mod ν if and only if
ν | α.

The next proposition is a straightforward analogue of Proposition 2.3.4:

Proposition 4.2.23. Let ν ∈ Z [i].
(a) We have α ≡ α mod ν for every α ∈ Z [i].
(b) If α, β, γ ∈ Z [i] satisfy α ≡ β mod ν and β ≡ γ mod ν, then α ≡ γ mod ν.
(c) If α, β ∈ Z [i] satisfy α ≡ β mod ν, then β ≡ α mod ν.
(d) If α1, α2, β1, β2 ∈ Z [i] satisfy α1 ≡ β1 mod ν and α2 ≡ β2 mod ν, then

α1 + α2 ≡ β1 + β2 mod ν; (41)
α1 − α2 ≡ β1 − β2 mod ν; (42)

α1α2 ≡ β1β2 mod ν. (43)

57We have proven this latter fact shortly after Definition 4.2.17.
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(e) Let µ ∈ Z [i] be such that µ | ν. If α, β ∈ Z [i] satisfy α ≡ β mod ν, then
α ≡ β mod µ.

Exercise 4.2.10. Let n be an integer. Let (a, b) and (c, d) be two Gaussian integers.
Prove that we have the following logical equivalence:

((a, b) ≡ (c, d)mod n) ⇐⇒ (a ≡ c mod n and b ≡ d mod n) .

(Of course, the statement “(a, b) ≡ (c, d)mod n” is to be understood by treating
the integer n as a Gaussian integer.)

Exercise 4.2.11. For any Gaussian integer τ, we let ≡
τ

be the binary relation on

Z [i] defined by (
α ≡

τ
β
)
⇐⇒ (α ≡ β mod τ) .

(a) Prove that the relation ≡
τ

is an equivalence relation whenever τ ∈ Z [i].
We shall refer to the equivalence classes of this relation ≡

τ
as the Gaussian

residue classes modulo τ; let Z [i] /τ be the set of all these classes.
(b) Let n be a positive integer. Thus, a relation ≡

n
on Z [i] is defined (by treating

the integer n as a Gaussian integer). Exercise 4.2.11 (a) (applied to τ = n) shows
that this relation ≡

n
is an equivalence relation.

Prove that the equivalence classes of the relation ≡
n

(on Z [i]) are the n2 classes

[a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2, and that these n2 classes are all distinct.

Example 4.2.24. For n = 3, Exercise 4.2.11 (b) is saying that the equivalence
classes of the relation ≡

3
(on Z [i]) are the 32 classes

[0 + 0i]≡
3

, [0 + 1i]≡
3

, [0 + 2i]≡
3

,

[1 + 0i]≡
3

, [1 + 1i]≡
3

, [1 + 2i]≡
3

,

[2 + 0i]≡
3

, [2 + 1i]≡
3

, [2 + 2i]≡
3

,

and that these 32 classes are distinct. In contrast, the equivalence classes of the
analogous relation ≡

3
on Z are merely the 3 classes [0]≡

3
, [1]≡

3
, [2]≡

3
(by Theorem

3.4.4).

Remark 4.2.25. Exercise 4.2.11 (b) yields |Z [i] /n| = n2 = N (n) for any posi-
tive integer n. This is essentially [ConradG, Lemma 7.15]. (Conrad proves this
“by example”; you can follow the argument but you should write it up in full
generality.)
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More generally, |Z [i] /τ| = N (τ) for any nonzero Gaussian integer τ. This is
proven in [ConradG, Theorem 7.14] (using Exercise 4.2.11 as a stepping stone).

4.2.4. Division with remainder

Now, let us try to make division with remainder work for Gaussian integers. This
turns out to be tricky: There is no straightforward analogue of Theorem 2.6.1 for
Gaussian integers. (In fact, it is not clear what {0, 1, . . . , b− 1} would mean if we
let b be a Gaussian integer.) The best thing we can get for Gaussian integers is an
analogue of Exercise 2.6.2 (a):

Theorem 4.2.26. Let α and β 6= 0 be Gaussian integers. There exist Gaussian
integers γ and ρ such that α = γβ + ρ and N (ρ) ≤ N (β) /2.

Note that the pair (γ, ρ) in this theorem is not unique. As we have said, Theorem
4.2.26 is an analogue of Exercise 2.6.2 (a) (with α, β, γ and ρ taking the roles of u, n,
q and r), not an analogue of Theorem 2.6.1; nevertheless, it is the closest we can get
to Theorem 2.6.1 in Z [i], and can often be substituted in places where one would
usually want to apply Theorem 2.6.1 (as long as one does not try to use uniqueness
of quotient and remainder).

Theorem 4.2.26 can be visualized geometrically (similarly to the visualizations
shown in Remark 2.6.8 and Remark 2.6.10, but using the Argand diagram). See
[ConradG, §7] for the details.

The following proof of Theorem 4.2.26 follows [ConradG, proof of Theorem 3.1].
Note that we cannot define α//β or α%β for Gaussian integers α and β, since

there is no uniqueness statement in Theorem 4.2.26.

4.2.5. Common divisors

Next, we define the Gaussian divisors of a Gaussian integer (in analogy to Defini-
tion 2.9.1):

Definition 4.2.27. Let β ∈ Z [i]. The Gaussian divisors of β are defined as the
Gaussian integers that divide β.

Note that we are calling them “Gaussian divisors” and not “divisors”, because
when β is an actual integer, there are (usually) Gaussian divisors of β that are not
divisors of β (in the sense of Definition 2.9.1). For example, 1 + i is a Gaussian
divisor of 2 (since 2 = (1 + i) (1− i)), but the only divisors of 2 (in the sense
of Definition 2.9.1) are −2,−1, 1, 2. This is one of those situations where using
the same name for a concept and its Gaussian-integer analogue would lead to
ambiguities.

The following is an analogue of Proposition 2.9.2:
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Proposition 4.2.28. (a) If β ∈ Z [i], then 1 and β are Gaussian divisors of β.
(b) The Gaussian divisors of 0 are all the Gaussian integers.
(c) Let β ∈ Z [i] be nonzero. Then, all Gaussian divisors of β belong to the set{

x + yi | x, y ∈ Z satisfying x2 ≤ N (β) and y2 ≤ N (β)
}

.

Thus, again, finding all Gaussian divisors of a Gaussian integer β is a problem
solvable in finite time. (Indeed, if β = 0, then Proposition 4.2.28 (b) answers this
question; but otherwise, the set in Proposition 4.2.28 (c) is clearly finite.)

The following is a straightforward analogue of Definition 2.9.3:

Definition 4.2.29. Let β1, β2, . . . , βk be Gaussian integers. Then, the common Gaus-
sian divisors of β1, β2, . . . , βk are defined to be the Gaussian integers α that satisfy

(α | βi for all i ∈ {1, 2, . . . , k}) (44)

(in other words, that divide all of the Gaussian integers β1, β2, . . . , βk). We let
DivZ[i] (β1, β2, . . . , βk) denote the set of these common Gaussian divisors.

The reason why I chose the notation DivZ[i] (β1, β2, . . . , βk) rather than the sim-
pler notation Div (β1, β2, . . . , βk) is that the latter would be ambiguous. In fact,
when β1, β2, . . . , βk are integers, the set Div (β1, β2, . . . , βk) of common divisors of
β1, β2, . . . , βk is not the set DivZ[i] (β1, β2, . . . , βk) of common Gaussian divisors of
β1, β2, . . . , βk. (For example, the former set does not contain i, while the latter does.)

We cannot directly define a “greatest common Gaussian divisor of β1, β2, . . . , βk”
to be the greatest element of DivZ[i] (β1, β2, . . . , βk), since “greatest” does not make
sense for complex numbers. (Even if we wanted “greatest in norm”, it would not
a-priori be obvious that there are no ties, i.e., that such a greatest common Gaussian
divisor is unique.)

However, it turns out that a “greatest common Gaussian divisor” gcdZ[i] (β1, β2, . . . , βk)

actually can be defined reasonably (although only up to multiplication by units).
Before we can do so, let us state some basic properties of common Gaussian divi-
sors:58

Proposition 4.2.30. (a) We have DivZ[i] (α, 0) = DivZ[i] (α) for all α ∈ Z [i].
(b) We have DivZ[i] (α, β) = DivZ[i] (β, α) for all α, β ∈ Z [i].
(c) We have DivZ[i] (α, ηα + β) = DivZ[i] (α, β) for all α, β, η ∈ Z [i].
(d) If α, β, γ ∈ Z [i] satisfy β ≡ γ mod α, then DivZ[i] (α, β) = DivZ[i] (α, γ).

58Proposition 4.2.30 is an analogue of part of Lemma 2.9.10. Thus, we have chosen to label its
claims in a way that matches the corresponding claims in Lemma 2.9.10. This forced us to skip
claim (e), since there is no analogue of Lemma 2.9.10 (e) for Gaussian integers (because β%α is
not defined when β and α are Gaussian integers).
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(f) We have DivZ[i] (α, β) ⊆ DivZ[i] (α) and DivZ[i] (α, β) ⊆ DivZ[i] (β) for all
α, β ∈ Z [i].

(g) We have DivZ[i] (ηα, β) = DivZ[i] (α, β) for all α, β ∈ Z [i] and every unit
η ∈ Z [i].

(h) We have DivZ[i] (α, ηβ) = DivZ[i] (α, β) for all α, β ∈ Z [i] and every unit
η ∈ Z [i].

(i) If α, β ∈ Z [i] satisfy α | β, then DivZ[i] (α, β) = DivZ[i] (α).
(j) The common Gaussian divisors of the empty list of Gaussian integers are

DivZ[i] () = Z [i].

You have reached the end of the finished part.
TODO: Write on from here.

Recall that Proposition 2.9.7 gave us a quick way to compute gcd (a, b) for two
nonnegative integers a and b; this is called the Euclidean algorithm. Likewise,
we can use Proposition 4.2.30 to compute DivZ[i] (α, β) for two Gaussian integers
α and β (or, more precisely, to rewrite DivZ[i] (α, β) in the form DivZ[i] (γ) for a
single Gaussian integer γ). For example, we can compute DivZ[i] (32 + 9i, 4 + 11i)
as follows:59

DivZ[i] (32 + 9i, 4 + 11i)

= DivZ[i]

4 + 11i, 32 + 9i︸ ︷︷ ︸
=(2−2i)(4+11i)+(2−5i)

 (by Proposition 4.2.30 (b))

= DivZ[i] (4 + 11i, (2− 2i) (4 + 11i) + (2− 5i))

= DivZ[i] (4 + 11i, 2− 5i) (by Proposition 4.2.30 (c))

= DivZ[i]

2− 5i, 4 + 11i︸ ︷︷ ︸
=(−2+i)(2−5i)+(3−i)

 (by Proposition 4.2.30 (b))

= DivZ[i] (2− 5i, (−2 + i) (2− 5i) + (3− i))

= DivZ[i] (2− 5i, 3− i) (by Proposition 4.2.30 (c))

= DivZ[i]

3− i, 2− 5i︸ ︷︷ ︸
=(1−i)(3−i)−i

 (by Proposition 4.2.30 (b))

59This is [ConradG, Example 4.4].
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= DivZ[i] (3− i, (1− i) (3− i)− i)

= DivZ[i] (3− i,−i) (by Proposition 4.2.30 (c))

= DivZ[i]

−i, 3− i︸︷︷︸
=(1+3i)(−i)+0

 (by Proposition 4.2.30 (b))

= DivZ[i] (−i, (1 + 3i) (−i) + 0)

= DivZ[i] (−i, 0) (by Proposition 4.2.30 (c))

= DivZ[i] (−i) (by Proposition 4.2.30 (a))

= {1, i,−1,−i} .

In the same way, for any two Gaussian integers α and β we can find a Gaussian inte-
ger γ such that DivZ[i] (α, β) = DivZ[i] (γ). This resulting γ will actually be unique
up to multiplication by units (i.e., its unit-equivalence class will be unique). Better
yet, we have the following analogue of Bezout’s theorem for Gaussian integers:

Theorem 4.2.31. Let α, β ∈ Z [i]. Then:
(a) There exists a Z [i]-linear combination γ of α and β that is a common

Gaussian divisor of α and β. (Note: A Z [i]-linear combination of α and β means a
Gaussian integer of the form λα + µβ with λ, µ ∈ Z [i].)

(b) Any such γ satisfies DivZ[i] (α, β) = DivZ[i] (γ).
(c) The unit-equivalence class of this γ is uniquely determined.

This theorem is, in a sense, a generalization of Theorem 2.9.12, even though
(unlike the latter theorem) it does not rely on an already existing concept of “great-
est common divisor” but rather builds the foundation for such a concept. With
Theorem 4.2.31 in hand, it makes sense to call γ the “greatest common Gaussian
divisor” of α and β, but rigorously speaking this name should be reserved for the
unit-equivalence class of γ since γ itself is not unique.

Definition 4.2.32. The greatest common Gaussian divisor (or, short, gcd) of two
Gaussian integers α and β is defined to be the γ from Theorem 4.2.31 (a). It is
called gcdZ[i] (α, β).

So it is a common Gaussian divisor of α and β and also a Z [i]-linear combi-
nation of α and β and satisfies

DivZ[i]

(
gcdZ[i] (α, β)

)
= DivZ[i] (α, β) . (45)

However, it is only well-defined up to unit-equivalence. Thus, if you have
γ1 = gcdZ[i] (α, β) and γ2 = gcdZ[i] (α, β), then you cannot conclude that γ1 = γ2

(you can only conclude γ1 ∼ γ2). So, strictly speaking, we should have de-
fined gcdZ[i] (α, β) as a unit-equivalence class, not as a concrete Gaussian integer.
But we will allow ourselves this abuse of notation. We shall not write equality
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signs like the one in “γ1 = gcdZ[i] (α, β)”, however; we instead prefer to write
“γ1 ∼ gcdZ[i] (α, β)”. Generally, whenever you see gcdZ[i] (α, β) in a statement,
you should be understanding the statement to hold for every possible choice of
gcdZ[i] (α, β).

Proposition 4.2.33. Let a and b be two integers. Then,

gcd (a, b) ∼ gcdZ[i] (a, b) .

(Of course, the gcd on the left hand side is the gcd of the two integers a and b
as defined in Definition 2.9.6, whereas the gcdZ[i] on the right hand side is the
greatest common Gaussian divisor of the Gaussian integers a and b.)

This proposition allows us to write “gcd” for both concepts of gcd without hav-
ing to disambiguate the meaning. (We shall not do so, however.)

Proposition 4.2.34. Let α and β be two Gaussian integers, not both equal to
0. Then, the possible values of gcdZ[i] (α, β) (that is, strictly speaking, all four
elements of the unit-equivalence class gcdZ[i] (α, β)) are exactly the elements of
DivZ[i] (α, β) having the largest norm.

Proposition 4.2.34 shows that gcdZ[i] (α, β) is uniquely determined by the set
DivZ[i] (α, β). (Yes, you have to consider the case α = β = 0 separately in proving
this.) Hence, Proposition 4.2.30 yields:

Proposition 4.2.35. (a) We have gcdZ[i] (α, 0) ∼ gcdZ[i] (α) for all α ∈ Z [i].
(b) We have gcdZ[i] (α, β) ∼ gcdZ[i] (β, α) for all α, β ∈ Z [i].
(c) We have gcdZ[i] (α, ηα + β) ∼ gcdZ[i] (α, β) for all α, β, η ∈ Z [i].
(d) If α, β, γ ∈ Z [i] satisfy β ≡ γ mod α, then gcdZ[i] (α, β) ∼ gcdZ[i] (α, γ).
(g) We have gcdZ[i] (ηα, β) ∼ gcdZ[i] (α, β) for all α, β ∈ Z [i] and every unit

η ∈ Z [i].
(h) We have gcdZ[i] (α, ηβ) ∼ gcdZ[i] (α, β) for all α, β ∈ Z [i] and every unit

η ∈ Z [i].
(i) If α, β ∈ Z [i] satisfy α | β, then gcdZ[i] (α, β) ∼ gcdZ[i] (α).
(j) The greatest common Gaussian divisor of the empty list of Gaussian inte-

gers is gcdZ[i] () = 0.

Theorem 2.9.15 still holds for Gaussian integers.
Theorem 2.9.17 still holds for Gaussian integers.
Theorem 2.9.19 still holds for Gaussian integers.
Theorem 2.9.20 has to be modified as follows:
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Corollary 4.2.36. Let σ, α, β ∈ Z [i]. Then,

gcdZ[i] (σα, σβ) ∼ σ gcdZ[i] (α, β) .

Exercise 2.9.4 still holds for Gaussian integers.
Exercise 2.9.5 becomes the claim that if α1 ∼ α2 and β1 ∼ β2, then gcdZ[i] (α1, β1) ∼

gcdZ[i] (α2, β2). The solution does not carry over, but you can easily prove this new
claim by hand.

Greatest common Gaussian divisors of k Gaussian integers can also be defined.
The next definition is an analogue of Definition 2.10.1:

Definition 4.2.37. Let α and β be two Gaussian integers. We say that α is coprime
to β if and only if gcdZ[i] (α, β) ∼ 1 (that is, gcdZ[i] (α, β) is a unit).

Thus, any two coprime integers are also two coprime Gaussian integers (because
of Proposition 4.2.33), and vice versa (for the same reason). This is why we can
afford speaking of “coprime Gaussian integers” and not just “Gaussian-coprime
Gaussian integers”.

Everything we said about coprimality of integers still holds for Gaussian in-
tegers. In particular, Proposition 2.10.4, Theorem 2.10.6, Theorem 2.10.7, The-
orem 2.10.8 and Theorem 2.10.9 still hold if all integers are replaced by Gaus-
sian integers (with the caveat that the gcd is no longer unique, so for example
“ab ≡ gcd (a, n)mod n” must be interpreted as “ab is congruent to some of the
possible values of gcdZ[i] (a, n) modulo n”).

We could define Gaussian rationals (their set is called Q [i]) as complex numbers
a + bi with a, b ∈ Q. These are exactly the quotients of Gaussian integers.

Lowest common multiples of Gaussian integers still exist, but their definition
has to be modified. For example, we can define lcmZ[i] (α, β) as the (unique up to
unit-equivalence) Gaussian integer γ such that the Gaussian common multiples of
α and β are the Gaussian multiples of γ. (We would have to prove that it actually
is unique and exists.) Theorem 2.11.6 still holds, in the sense that gcdZ[i] (α, β) ·
lcmZ[i] (α, β) ∼ αβ. Many other properties of lowest common multiples extend to
Gaussian integers.

The Chinese remainder theorem (Theorem 2.12.1) still holds for coprime Gaus-
sian integers µ and ν. A similar fact holds for k mutually coprime Gaussian inte-
gers.

4.2.6. Gaussian primes

The next definition is an analogue of Definition 2.13.1:
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Definition 4.2.38. Let π be a nonzero Gaussian integer that is not a unit. We
say that π is a Gaussian prime if each Gaussian divisor of π is either a unit or
unit-equivalent to π.

The letter “π” in this definition is unrelated to the irrational number π = 3.14159 . . ..
It just happens to be the Greek letter corresponding to the Roman “p”.

The Gaussian primes are not a superset of the primes. For example:

Example 4.2.39. The Gaussian integer 2 is not a Gaussian prime.

So don’t forget the word “Gaussian” when you mean it!
Let us search for Gaussian primes. So we know that 2 is not a Gaussian prime.

What about 3?

Example 4.2.40. The Gaussian integer 3 is a Gaussian prime.

So we know that 3 is a Gaussian prime, but 2 is not. Is there a way to tell which
integers are Gaussian primes, without checking all Gaussian divisors?

Let us first state a positive criterion, which generalizes Example 4.2.40:

Lemma 4.2.41. Let p be a prime such that p ≡ 3 mod 4. Then, p is a Gaussian
prime.

It is clear that no prime is divisible by 4. Thus, there are three types of primes:

• Type 1: Primes that are ≡ 1 mod 4: these are 5, 13, 17, 29, . . ..

• Type 2: Primes that are even: there is only one of these, namely 2.

• Type 3: Primes that are ≡ 3 mod 4: these are 3, 7, 11, 19, 23, . . ..

(One can show that there are infinitely many primes of Type 1 and infinitely
many primes of Type 3. It can also be shown that there are “roughly the same
amount” of Type-1 primes and of Type-3 primes “in theory”, but “in practice” the
Type-3 primes are more frequent. For the concrete meaning of this weird paradox-
ical claim, google for “Chebyshev’s bias”.)

Lemma 4.2.41 says that all Type-3 primes are Gaussian primes. What about the
other primes – are they Gaussian primes? We already know that 2 is not, since
2 = (1 + i) (1− i). Likewise, 5 is not, since 5 = (1 + 2i) (1− 2i). Likewise, 13 is
not, since 13 = (2 + 3i) (2− 3i).

This may suggest that primes p satisfying p = 2 or p ≡ 1 mod 4 (that is, primes
of Type 1 or Type 2) not only factor nontrivially, but actually factor as

p = (x + yi) (x− yi) for some integers x and y.

Of course, this equation rewrites as p = x2 + y2. Thus, we are back to asking
Question 1.4.1, at least for primes.

We shall now answer this question, and actually prove a bit more:

https://en.wikipedia.org/wiki/Chebyshev's_bias
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Theorem 4.2.42. Let p be a prime such that either p = 2 or p ≡ 1 mod 4.
(a) There exist integers x and y such that p = x2 + y2.
(b) If p ≡ 1 mod 4, then there exist exactly 8 pairs (x, y) of integers such that

p = x2 + y2. (For example, if p = 5, then these 8 pairs are (1, 2), (2, 1), (1,−2),
(−2, 1), (−1, 2), (2,−1), (−1,−2) and (−2,−1).)

(c) There exists a Gaussian prime π such that p = ππ.
(d) The Gaussian integer p itself is not a Gaussian prime.
(e) Assume that p ≡ 1 mod 4. Consider the Gaussian prime π from Theorem

4.2.42 (c). Then, π is also a Gaussian prime, and we do not have π ∼ π.

For example, the Type-1 prime 17 satisfies

17 = 12 + 42 = (1 + 4i) (1− 4i) = (1 + 4i)
(
1 + 4i

)
= (1− 4i)

(
1− 4i

)
= (4 + i)

(
4 + i

)
.

Note that the claim of Theorem 4.2.42 (a) (at least for p 6= 2) also appears in
[AigZie18, Proposition in Chapter 4], with a very different proof.

Before we can prove Theorem 4.2.42, we will have to build up the theory of Gaus-
sian primes a bit more. We first state the Gaussian-integer analogue of Proposition
2.13.5:

Proposition 4.2.43. Let π be a Gaussian prime. Let α ∈ Z [i]. Then, either π | α
or π ⊥ α.

Next, we state the analogue to Theorem 2.13.6:

Theorem 4.2.44. Let π be a Gaussian prime. Let α, β ∈ Z [i] such that π | αβ.
Then, π | α or π | β.

We also need the following simple fact:

Lemma 4.2.45. Let α be a Gaussian integer. If N (α) is prime, then α is a Gaussian
prime.

This shows, for example, that 1+ i and 1+ 2i are Gaussian primes. The converse
of Lemma 4.2.45 does not hold (e.g., since 3 is a Gaussian prime, but N (3) = 9 is
not prime).

Next, let us show that conjugation does not change Gaussian primeness:

Lemma 4.2.46. Let π be a Gaussian prime. Then, π is a Gaussian prime, too.

Now, we can prove Theorem 4.2.42:
We have thus answered Question 1.4.2 (b) in the case when n is a prime: We have

shown that a prime p is a sum of two perfect squares if and only if either p = 2 or
p ≡ 1 mod 4; and we have shown that the number of pairs (x, y) ∈ Z2 satisfying
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p = x2 + y2 is 8 when p ≡ 1 mod 4 and is 4 when p = 2 (the latter claim is easy to
check).

What about the case of arbitrary n?
For n = 21, we have n ≡ 1 mod 4, but n is not a sum of two perfect squares. So

the answer we gave for the case of prime n does not generalize to arbitrary n.
It turns out that the right answer for arbitrary n will come from the analogue of

prime factorization in Z [i].

Proposition 4.2.47. Let ν be a nonzero Gaussian integer that is not a unit. Then,
there exists at least one Gaussian prime π such that π | ν.

Proposition 4.2.48. Let ν be a nonzero Gaussian integer. Then, ν is unit-
equivalent to a certain product of finitely many Gaussian primes.

Definition 4.2.49. Let ν be a nonzero Gaussian integer. A Gaussian prime fac-
torization of ν means a tuple (π1, π2, . . . , πk) of Gaussian primes such that
ν ∼ π1π2 · · ·πk.

Why did we require only ν ∼ π1π2 · · ·πk and not ν = π1π2 · · ·πk ? Because
we want −1 to have a Gaussian prime factorization, but there is no way to literally
write −1 as a product of Gaussian primes.

Exercise 4.2.12. Let π and κ be two Gaussian primes that do not satisfy π ∼ κ.
Prove that π ⊥ κ.

Lemma 4.2.50. Let π be a Gaussian prime. Let α be a nonzero Gaussian integer.
Then, there exists a largest m ∈N such that πm | α.

Similarly to Definition 2.13.23, we can define π-adic valuations:

Definition 4.2.51. Let π be a Gaussian prime.
(a) Let α be a nonzero Gaussian integer. Then, vπ (α) shall denote the largest

m ∈ N such that πm | α. This is well-defined (by Lemma 4.2.50). This non-
negative integer vπ (α) will be called the π-valuation (or the π-adic valuation) of
α.

(b) We extend this definition of vπ (α) to the case of α = 0 as follows: Set
vπ (0) = ∞.

Definition 4.2.51 does not conflict with Definition 2.13.23. Indeed, if a prime p
happens to also be a Gaussian prime, and if n is an integer, then both definitions
yield the same value of vp (n) (since pm | a means the same thing whether we treat
p and a as integers or as Gaussian integers).
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Theorem 4.2.52. Let π be a Gaussian prime.
(a) We have vπ (αβ) = vπ (α) + vπ (β) for any two Gaussian integers α and β.
(b) We have vπ (α + β) ≥ min {vπ (α) , vπ (β)} for any two Gaussian integers

α and β.
(c) We have vπ (1) = 0. More generally, vπ (α) = 0 for any unit α ∈ Z [i].

(d) We have vπ (κ) =

{
1, if κ ∼ π;
0, otherwise

for any Gaussian prime κ.

Proposition 4.2.53. Let ν be a nonzero Gaussian integer. Let (α1, α2, . . . , αk) be a
Gaussian prime factorization of ν. Let π be a Gaussian prime. Then,

(the number of times a Gaussian integer unit-equivalent to π

appears in the tuple (α1, α2, . . . , αk))

= (the number of times [π]∼ appears in the tuple ([α1]∼ , [α2]∼ , . . . , [αk]∼))

= (the number of i ∈ {1, 2, . . . , k} such that αi ∼ π)

= (the number of i ∈ {1, 2, . . . , k} such that [αi]∼ = [π]∼)

= vπ (ν) .

Theorem 4.2.54. Let ν be a nonzero Gaussian integer.
(a) There exists a Gaussian prime factorization of ν.
(b) Any two such factorizations differ only by reordering their entries and

multiplying them by units. More precisely: If (α1, α2, . . . , αk) and (β1, β2, . . . , β`)
are two Gaussian prime factorizations of ν, then ([α1]∼ , [α2]∼ , . . . , [αk]∼) is a
permutation of ([β1]∼ , [β2]∼ , . . . , [β`]∼).

Example 4.2.55. We have

5 = (1 + 2i) (1− 2i) = (2 + i) (2− i) .

Thus, both (1 + 2i, 1− 2i) and (2 + i, 2− i) are Gaussian prime factorizations of
5. They may look different, but actually you get the second one from the first
by swapping the two entries and multiplying the first entry by the unit i and
multiplying the second entry by the unit −i. This perfectly agrees with Theorem
4.2.54.

In analogy to Exercise 2.13.5 (and with the same proof), we have:

Exercise 4.2.13. Let π be a Gaussian prime. Let α, β ∈ Z [i] be such that α ∼ β.
Prove that vπ (α) = vπ (β).

We also have the following:
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Exercise 4.2.14. Let π be a Gaussian prime. Let α ∈ Z [i]. Then, π is a Gaussian
prime as well, and satisfies

vπ (α) = vπ (α) .

Definition 4.2.56. For the rest of this section, let GP be the set of all Gaussian
primes of the form x + yi with x ∈ {1, 2, 3, . . .} and y ∈ {0, 1, 2, . . .}.

The following is easy to see:

Lemma 4.2.57. Let π be a Gaussian prime. Then, there exists exactly one σ ∈ GP
such that π ∼ σ.

In other words, each Gaussian prime is unit-equivalent to exactly one σ ∈ GP.
Thus, the set GP contains exactly one element of each unit-equivalence class of
Gaussian primes. (Thus, GP is what is called a “system of distinct representatives”
for the unit-equivalence classes of all Gaussian primes.)

In analogy to Corollary 2.13.34, we have:

Corollary 4.2.58. Let α be a nonzero Gaussian integer. Then,

α ∼ ∏
π∈GP

πvπ(α).

Here, the infinite product ∏
π∈GP

πvπ(α) is well-defined (according to the

Gaussian-integer analogue of Lemma 2.13.32 (b)).

In analogy to Proposition 2.13.35, we have the following:

Proposition 4.2.59. Let α and β be Gaussian integers. Then, α | β if and only if
each Gaussian prime π satisfies vπ (α) ≤ vπ (β).

If α is a Gaussian integer, and c is a unit-equivalence class of Gaussian integers,
then either all elements of c divide α or none of them does.60 Thus, we can talk of
unit-equivalence classes of Gaussian divisors of α (by which we mean unit-equivalence
classes of Gaussian integers whose elements all divide α).

Here is an analogue of Proposition 2.18.1 for Gaussian integers:

Proposition 4.2.60. Let α ∈ Z [i] be a nonzero Gaussian integer. Then:
(a) The product ∏

π∈GP
(vπ (α) + 1) is well-defined, since all but finitely many of

its factors are 1.

60This is easy to check. Indeed, it boils down to the fact that any two elements of c divide each
other (because they are unit-equivalent).
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(b) We have

(the number of unit-equivalence classes of Gaussian divisors of α)

= ∏
π∈GP

(vπ (α) + 1) .

(c) We have

(the number of Gaussian divisors of α) = 4 · ∏
π∈GP

(vπ (α) + 1) .

Lemma 4.2.61. Let π1, π2, . . . , πu be finitely many Gaussian primes, no two of
which are unit-equivalent. For each i ∈ {1, 2, . . . , u}, let ai be a nonnegative
integer. Let α = πa1

1 πa2
2 · · ·π

au
u .

Define a set T by

T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}
= {(b1, b2, . . . , bu) | bi ∈ {0, 1, . . . , ai} for each i ∈ {1, 2, . . . , u}}
= {(b1, b2, . . . , bu) ∈Nu | bi ≤ ai for each i ∈ {1, 2, . . . , u}} .

Then, the map

Λ : T → {unit-equivalence classes of Gaussian divisors of α} ,

(b1, b2, . . . , bu) 7→
[
πb1

1 πb2
2 · · ·π

bu
u

]
∼

is well-defined and bijective.

Now, we can finally answer Question 1.4.2 (b) (following [DumFoo04, §8.3, Corol-
lary 19]):

Theorem 4.2.62. Let n be a positive integer.
(a) If there is at least one prime p ≡ 3 mod 4 such that vp (n) is odd, then there

is no pair (x, y) ∈ Z2 such that n = x2 + y2.
(b) Assume that for each prime p ≡ 3 mod 4, the number vp (n) is even. Then,(

the number of pairs (x, y) ∈ Z2 such that n = x2 + y2
)

= 4 · ∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
.
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Example 4.2.63. (a) Let n = 35. Then, Theorem 4.2.62 (a) yields that there are no
integers x and y such that n = x2 + y2. In fact, the prime 7 ≡ 3 mod 4 satisfies
v7 (n) = 1.

(b) Let n = 45. Then, for each prime p ≡ 3 mod 4, the number vp (n) is even.
Indeed, n = 45 = 32 · 5, so v3 (n) = 2 is even and vp (n) = 0 for all other primes
p of Type 3. Hence, Theorem 4.2.62 (b) yields(

the number of pairs (x, y) ∈ Z2 such that n = x2 + y2
)

= 4 · ∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
︸ ︷︷ ︸

=v5(n)+1
=1+1=2

= 4 · 2 = 8.

One consequence of Theorem 4.2.62 is that a positive integer n can be written in
the form x2 + y2 with x, y ∈ Z if and only if it has the property that for each prime
p ≡ 3 mod 4, the number vp (n) is even. A different proof of this fact appears in
[AigZie18, Theorem in Chapter 4].

4.2.7. What are the Gaussian primes?

We have so far seen the following Gaussian primes:

• Each prime of Type 3 is a Gaussian prime.

• 1 + i is a Gaussian prime.

• For each prime p of Type 1, we have a Gaussian prime π such that p = ππ,
and then π is also a Gaussian prime.

Theorem 4.2.64. Each Gaussian prime is unit-equivalent to one of the Gaussian
primes in this list.

4.3. Brief survey of similar number systems

• Let us now see when a prime p can be written as x2 + 2y2 with x, y ∈ Z.

The set
Z
[√
−2
]
= Z

[√
2i
]

is defined as the set of all complex numbers of the form a + b
√

2i with
a, b ∈ Z. It is perhaps easier to regard it as its own variant of Gaussian
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integers, which I will call the “2-Gaussian integers”. These “2-Gaussian in-
tegers” can be defined as pairs (a, b) ∈ Z2 with addition and subtraction
defined entrywise and multiplication defined by

(a, b) (c, d) = (ac− 2bd, ad + bc) .

61 You can then write such pairs (a, b) as a + b
√

2i, where
√

2i is simply a
symbol for the 2-Gaussian integer (0, 1). Each 2-Gaussian integer (a, b) has a
norm, defined by N ((a, b)) = a2 + 2b2.

Much of the theory of Gaussian integers still applies verbatim to 2-Gaussian
integers. In particular, division with remainder still works for 2-Gaussian
integers (like it does for Gaussian integers, i.e., non-uniquely), and the proof
uses the same argument, but this time we have N (ρ) ≤ 3 N (β) /4 instead of
N (ρ) ≤ N (β) /2. Hence, 2-Gaussian integers have unique factorizations into
“2-Gaussian primes”.

This can be used to show that a prime p can be written as x2 + 2y2 if and
only if there is an integer u satisfying u2 ≡ −2 mod p. It can furthermore be
shown that such an integer u exists if and only if p = 2 or p ≡ 1, 3 mod 8
(where “p ≡ 1, 3 mod 8” is shorthand for “p ≡ 1 mod 8 or p ≡ 3 mod 8”). The
proof uses a fact called quadratic reciprocity, which we may see later in this
course.

• When can a prime p be written as x2 + 3y2 with x, y ∈ Z ?

The logical continuation of the above pattern would be “when p = 3 or
p ≡ 1 mod 3”, since these are the cases when there is an integer u satisfying
u2 ≡ −3 mod p. And that is indeed true, but the proof is more complicated.
Indeed, the “3-Gaussian integers” no longer have division with remainder,
as N (ρ) ≤ N (β) /2 turns into N (ρ) ≤ N (β) which is not a strict inequal-
ity. Nevertheless we can prove our guess with more complicated reasoning:
We need to use not Z

[√
−3
]

but rather the Eisenstein integers a + bω with

a, b ∈ Z and ω =
−1 + i

√
3

2
. These are best understood as pairs (a, b) ∈ Z2

with addition and subtraction defined entrywise and multiplication defined
by

(a, b) (c, d) = (ac− bd, ad + bc− bd) .

Their norm is N ((a, b)) = a2 − ab + b2. They form a triangular lattice, not
a rectangular one, and they do have division with remainder. Note that
N (a + bω) = a2 − ab + b2, so some more work is needed to turn them into
x2 + 3y2 solutions, but it’s doable.

61Be careful, however: This definition of 2-Gaussian integers as pairs of integers conflicts with the
definition of complex numbers as pairs of reals; the 2-Gaussian integer (a, b) and the complex
number (a, b) are two different numbers (unless b = 0).

https://en.wikipedia.org/wiki/Eisenstein_integer
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• When can a prime p be written as x2 + 4y2 with x, y ∈ Z ?

This is easy: 4y2 = (2y)2, so we are looking for a way of writing p as x2 + y2

with y even.

I claim that the answer is “when p ≡ 1 mod 4”. Do you see why?

• When can a prime p be written as x2 + 5y2 with x, y ∈ Z ?

Our guess, by following the above pattern, would be “when p = 2 or p = 5
or p ≡ 1, 3, 7, 9 mod 20”, since these are the cases when there is an integer u
satisfying u2 ≡ −5 mod p. But this is not true anymore. The right answer is
“when p = 2 or p = 5 or p ≡ 1, 9 mod 20”. And unsurprisingly, Z

[√
−5
]

does not have division with remainder.

• More generally, you can fix n ∈ N and ask when a prime can be written in
the form x2 + ny2. There is a whole book [Cox13] devoted to this question!
The answer becomes more complicated with n getting large, and touches on
a surprising number of different fields of mathematics (geometry, complex
analysis, elliptic functions and elliptic curves).

• We can also ask when a prime p can be written as x2 − ny2. The appropriate
analogue of Z [i] tailored to this question is Z

[√
n
]
, which however behaves

much differently, since
√

n is real. For example, as you saw on homework set
#4 (in the Remark after Exercise 4), there are infinitely many units in Z

[√
2
]
;

the same is true for each Z
[√

n
]

with n > 1 and n not being a perfect square
(but this is much harder to prove).

• When can an n ∈ N be written as a sum of three squares? Legendre’s three-
squares theorem says that the answer is “if and only if n is not of the form
n = 4a (8b + 7) for a, b ∈N”. This is very hard to prove ([UspHea39, Chapter
XIII] might have the only elementary proof).

• When can an n ∈ N be written as a sum of four squares? Lagrange’s four-
squares theorem reveals that the answer to this question is “always”!62 This is
easier to show, and there is even a formula for the number of representations:
it is 8 ∑

d|n;
4-d

d. The existence part can be proven using “Hurwitz integers”, which

are certain quaternions.

62An application (fortunately, no longer relevant):
“Warning: Due to a known bug, the default Linux document viewer evince prints

N*N copies of a PDF file when N copies requested. As a workaround, use Adobe
Reader acroread for printing multiple copies of PDF documents, or use the fact
that every natural number is a sum of at most four squares.”

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://en.wikipedia.org/wiki/Legendre's_three-square_theorem
https://en.wikipedia.org/wiki/Legendre's_three-square_theorem
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
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5. Rings and fields

5.1. Definition of a ring

We have seen several “number systems” in the above chapters:

• N (the nonnegative integers);

• Z (the integers);

• R (the real numbers);

• Z/n (the residue classes modulo n) for an integer n;

• C (the complex numbers);

• Z [i] (the Gaussian integers);

• D (the dual numbers – see homework set #4 exercise 3);

• Z
[√

2
]
=
{

a + b
√

2 | a, b ∈ Z
}

(see homework set #4 exercise 4);

• Z [ω] = {a + bω | a, b ∈ Z} (the Eisenstein integers);

• Z
[√
−3
]

(see homework set #5 exercise 6).

It may be a stretch to refer to the elements of some of these systems as “numbers”,
but it is not taboo (the word “number” has no precise meaning in mathematics),
and these sets have a lot in common: We can add, subtract and multiply their
elements (except for N, which does not allow subtraction); these operations satisfy
the usual rules (e.g., associativity of multiplication, distributivity, etc.); these sets
contain some element “behaving like 0” (that is, an element 0 such that a + 0 =
0 + a = a and a · 0 = 0 · a = 0 for all a) and some element “behaving like 1” (that
is, an element 1 such that a · 1 = 1 · a = a for all a). It turns out that just a few
of these rules are sufficient to make “all the other rules” (in a certain appropriate
sense) follow from them. Thus, it is reasonable to crystallize these few rules into
a common, general notion (of which the above examples – excluding N – will be
particular cases); this notion will be called a “ring”. Hence, we shall define a ring
to be (roughly speaking) a set with operations + and · and elements 0 and 1 that
satisfy these few rules. Let us be specific about what these rules are:63

Definition 5.1.1. (a) A ring means a set K endowed with

• two binary operations called “addition” and “multiplication”, and denoted
by +K and ·K, respectively, and

63Recall the definition of a “binary operation” (Definition 1.6.1). In particular, a binary operation
on a set S must have all its values in S.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw5s.pdf
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• two elements called “zero” (or “origin”) and “unity” (or “one”), and denoted
by 0K and 1K, respectively

such that the following axioms are satisfied:

• Commutativity of addition: We have a +K b = b +K a for all a, b ∈ K.

• Associativity of addition: We have a +K (b +K c) = (a +K b) +K c for all
a, b, c ∈ K.

• Neutrality of zero: We have a +K 0K = 0K +K a = a for all a ∈ K.

• Existence of additive inverses: For any a ∈ K, there exists an element
a′ ∈ K such that a +K a′ = a′ +K a = 0K. (It is not immediately obvious,
but will be shown later, that such an a′ is unique. Thus, a′ is called the
additive inverse of a, and is denoted by −a.)

• Associativity of multiplication: We have a (bc) = (ab) c for all a, b, c ∈ K.
Here and in the following, we use “xy” as an abbreviation for “x ·K y”.

• Neutrality of one: We have a1K = 1Ka = a for all a ∈ K.

• Annihilation: We have a0K = 0Ka = 0K for all a ∈ K.

• Distributivity: We have

a (b +K c) = ab +K ac and (a +K b) c = ac +K bc

for all a, b, c ∈ K. Here and in the following, we are using the PEMDAS
convention for order of operations; thus, for example, “ab +K ac” must be
understood as “(ab) +K (ac)”.

These eight axioms will be called the ring axioms.
(Note that we do not require the existence of a “subtraction” operation −K.

But we will later construct such an operation out of the existing operations and
axioms; it is thus unnecessary to require it. We also do not require the existence
of multiplicative inverses; nor do we require commutativity of multiplication
yet.)

(b) A ring K (with operations +K and ·K) is called commutative if it satisfies
the following extra axiom:

• Commutativity of multiplication: We have ab = ba for all a, b ∈ K.

Note a few things:

• We shall abbreviate +K, ·K, 0K and 1K as +, ·, 0 and 1 unless there is a
chance of confusion with the “usual” notions of addition, multiplication, zero
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and one. (The example of the ring Z′ shown below is a case where such
confusion is possible; but most of the time, it is not.)

• We have not required our rings to be endowed with a “subtraction” operation.
Nevertheless, each ring K automatically has a subtraction operation: Namely,
for any a, b ∈ K, we can define a − b to be a + b′, where b′ is the additive
inverse of b. (We will later see that this operation is well-defined (Definition
5.4.4) and satisfies the rules you would expect (Definition 5.4.5).)

• Some of the ring axioms we required in Definition 5.1.1 are redundant, i.e.,
they follow from other ring axioms. (For example, Annihilation follows from
the other axioms.) We don’t mind this, as long as these axioms are natural
and easy to check in real examples.

• We have required commutativity of addition to hold for all rings, but com-
mutativity of multiplication only to hold for commutative rings. You may
wonder what happens if we also omit the commutativity of addition. The
answer is “nothing new”: Commutativity of addition follows from the other
axioms! (Proving this is a fun, although inconsequential, puzzle.)

• By our definition, a ring consists of a set K, two operations + and · and two
elements 0 and 1. Thus, strictly speaking, a ring is a 5-tuple (K,+, ·, 0, 1).
In reality, we will often just speak of the “ring K” (so we will mention only
the set and not the other four pieces of data) and assume that the reader can
figure out the rest of the 5-tuple. This is okay as long as the rest of the 5-tuple
can be inferred from the context. For example, when we say “the ring Z”,
it is clear that we mean the ring (Z,+, ·, 0, 1) with the usual addition and
multiplication operations and the usual numbers 0 and 1. The same applies
when we speak of “the ring R” or “the ring C” or “the ring Z [i]”. In general,
whenever a set S is equipped with two operations that are called + and · and
two elements that are called 0 and 1 (even if these elements are not literally
the numbers 0 and 1), we automatically understand “the ring S” to be the ring
(S,+, ·, 0, 1) that is defined using these operations and elements. If we want
to make a different ring out of the set S, then we have to say this explicitly.

• Some authors do not require the element 1 as part of what it means to be a
ring. But we do. Be careful when reading the literature, as the truth or false-
hood of many results depends on whether the 1 is included in the definition
of a ring or not. (When authors do not require the element 1 in the definition
of a ring, they reserve the notion of a “unital ring” for a ring that does come
equipped with a 1 that satisfies the “Neutrality of one” axiom; i.e., they call
“unital ring” what we call “ring”.)

The variant of the notion of rings in which the element 1 is not required is
most commonly called a nonunital ring; it appears in Exercises 1 and 2 of
midterm #3.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt3s.pdf
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5.2. Examples of rings

Many of the “number systems” seen above, and several others, are examples of
rings:

• The sets Z, Q and R (each endowed with the usual addition, multiplication,
0 and 1) are commutative rings. In each case, the additive inverse of an
element a is what we know as −a from high school. (Rigorous proofs of the
ring axioms, as well as rigorous definitions of Z, Q and R, can be found in
textbooks and lecture notes on the construction of the number system – such
as [Swanso18, Chapter 3].)

• The set N (again endowed with the usual addition, multiplication, 0 and 1) is
not a ring. Indeed, the “existence of additive inverses” axiom fails for a = 1,
because the element 1 has no additive inverse in N (that is, there is no 1′ ∈N

such that 1 + 1′ = 1′ + 1 = 0).

• The sets C, Z [i], D, Z
[√

2
]
, Z [ω] and Z

[√
−3
]

(from Chapter 4 and from
the homework sets) are commutative rings. All of the axioms are easy to
check, and some of them we have checked. (For example, the ring axioms
for C follow easily from Theorem 4.1.2.) In each case, the element a′ in the
“existence of additive inverses” axiom is −a.

• If you have seen polynomials: The set Z [x] of all polynomials in a single
variable x with integer coefficients is a commutative ring. Similarly for other
kinds of coefficients, and several variables. We will come back to this once we
have rigorously defined polynomials in Chapter 7.

• We can define a commutative ring Z′ as follows:

We define a binary operation ×̃ on Z by(
a×̃b = −ab for all a, b ∈ Z

)
.

Now, let Z′ be the set Z, endowed with the usual addition + and the unusual
multiplication ×̃ and the elements 0Z′ = 0 and 1Z′ = −1.

Is this Z′ a commutative ring? Let us check the axioms:

– The first four axioms involve only addition and 0 (but not multiplication
and 1), and therefore still hold for Z′ (because Z′ has the same addition
and 0 as Z).

– Associativity of multiplication in Z′: We must check that

a×̃
(
b×̃c

)
=
(
a×̃b

)
×̃c for all a, b, c ∈ Z′.

(Note that we cannot omit the “multiplication sign” ×̃ here and simply
write “bc” for “b×̃c”, because “bc” already means something different.
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Note also that “a, b, c ∈ Z′” means the same as “a, b, c ∈ Z”, because
Z′ = Z as sets.)

Checking this is straightforward: Let a, b, c ∈ Z′. Then, comparing

a×̃
(
b×̃c

)︸ ︷︷ ︸
=−bc

= a×̃ (−bc) = −a (−bc) = abc with

(
a×̃b

)︸ ︷︷ ︸
=−ab

×̃c = (−ab) ×̃c = − (−ab) c = abc,

we obtain a×̃
(
b×̃c

)
=
(
a×̃b

)
×̃c. Thus, associativity of multiplication

holds for Z′.

– Neutrality of one in Z′: We must check that

a×̃1Z′ = 1Z′×̃a = a for all a ∈ Z′.

This, too, is straightforward: If a ∈ Z′, then a×̃ 1Z′︸︷︷︸
=−1

= a×̃ (−1) =

−a (−1) = a and similarly 1Z′×̃a = a.

– Annihilation and commutativity of multiplication are just as easy to
check.

– Distributivity for Z′: We must check that

a×̃ (b + c) = a×̃b + a×̃c and (a + b) ×̃c = a×̃c + b×̃c

for all a, b, c ∈ Z′.

So let a, b, c ∈ Z′. In order to verify a×̃ (b + c) = a×̃b+ a×̃c, we compare

a×̃ (b + c) = −a (b + c) = −ab− ac

with
a×̃b + a×̃c = (−ab) + (−ac) = −ab− ac.

Similarly we can check (a + b) ×̃c = a×̃c + b×̃c.

So Z′ is a ring.

(Note that
(
Z,+, ×̃, 0, 1

)
is not a ring.)

However, Z′ is not a new ring. It is just Z with its elements renamed. Namely,
if we rename each integer a as −a, then the operations of + and · and the
elements 0 and 1 of Z turn into the operations + and ×̃ and the elements 0
and 1Z′ of Z′. This is a confusing thing to say (please don’t actually rename
numbers as other numbers!); the rigorous (and hopefully not confusing) way
to say this is as follows: The bijection

ϕ : Z→ Z′, a 7→ −a
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satisfies

ϕ (a + b) = ϕ (a) + ϕ (b) for all a, b ∈ Z; (46)

ϕ (ab) = ϕ (a) ×̃ϕ (b) for all a, b ∈ Z; (47)
ϕ (0) = 0 = 0Z′ ; (48)
ϕ (1) = −1 = 1Z′ . (49)

Thus, we can view ϕ as a way of relabelling the integers so that the data
+, ·, 0, 1 of the ring Z become the data +, ×̃, 0Z′ , 1Z′ of the ring Z′. We will
later call bijections like ϕ “ring isomorphisms”. (See Definition 5.10.1 for the
definition of a ring homomorphism.)

• Recall: If A and B are two sets, then

BA := {maps A→ B} .

(This notation is not wantonly chosen to annoy you with its seeming back-
wardness; instead, it harkens back to the fact that

∣∣BA
∣∣ = |B||A|.)

The set QQ of all the maps from Q to Q is a commutative ring, where

– addition and multiplication are defined pointwise: i.e., if f , g ∈ QQ are
two maps, then the maps f + g and f · g are defined by

( f + g) (x) = f (x) + g (x) and
( f · g) (x) = f (x) · g (x) for all x ∈ Q;

– 0 means the “constant 0” function (i.e., the map Q→ Q, x 7→ 0);

– 1 means the “constant 1” function (i.e., the map Q→ Q, x 7→ 1).

All the ring axioms are easy to check. For example, each f ∈ QQ has an
additive inverse (namely, the map − f ∈ QQ that sends each x ∈ Q to − f (x)).
Similarly, the sets QC or QN or RR (the set of “functions” you know from
calculus) or CC (or, more generally, for KS, where K is any commutative ring
and S is any set) can be made into commutative rings; but the set NQ cannot.
The problem with NQ is that “existence of additive inverses” is not satisfied,
since −a /∈N for positive a ∈N.

• Recall that
Z
[√

2
]
=
{

a + b
√

2 | a, b ∈ Z
}

is a ring.

But the set
{

a + b 3
√

2 | a, b ∈ Z
}

(with the usual addition and multiplication)
is not a ring. The reason is that multiplication is not a binary operation on
this set, since it is possible that two numbers α and β lie in this set but their
product αβ does not. For example, 1 + 3

√
2 lies in this set, but(

1 + 3
√

2
) (

1 + 3
√

2
)
= 1 + 2 3

√
2 + 3
√

4

does not. (That said, this set does satisfy all the eight ring axioms.)
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• The set of 2× 2-matrices with rational entries (endowed with matrix addition

as +, matrix multiplication as ·, the zero matrix
(

0 0
0 0

)
as 0, and

(
1 0
0 1

)
as 1) is a ring, but not a commutative ring. Indeed, the ring axioms are true
(this is known from linear algebra), but commutativity of multiplication is not
(the product AB of two 2× 2-matrices A and B is not always equal to BA).
The same applies to n× n-matrices for arbitrary n ∈ N. (We will see this in
Corollary 5.8.11 below, in greater generality.)

• If you like the empty set, you will enjoy the zero ring. This is the one-element
set {0}, endowed with the only possible addition (given by 0 + 0 = 0),
the only possible multiplication (given by 0 · 0 = 0), the only possible zero
(namely, 0) and the only possible unity (also 0). This is a commutative ring,
and is known as the zero ring. Resist the temptation of denoting its unity by
1, as this will quickly lead to painful confusion.

(Some authors choose to forbid this ring, usually for no good reasons.)

• If n is an integer, then Z/n is a ring (with the operations + and · that we
defined, with the zero [0]n and the unity [1]n). When the integer n is positive,
this ring Z/n has n elements. (When n is prime, it can be shown that Z/n
is the only ring with exactly n elements, up to relabeling its elements. In
general, however, there can be several rings with n elements.)

• In set theory, the symmetric difference A4 B of two sets A and B is defined to
be the set

(A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A)

= {x | x belongs to exactly one of A and B} .

Now, let S be any set. Let P (S) denote the power set of S (that is, the set of
all subsets of S). Then, it is easy to check that the following properties hold:

A4 B = B4 A for any sets A and B;
A ∩ B = B ∩ A for any sets A and B;

(A4 B)4 C = A4 (B4 C) for any sets A, B, C;
(A ∩ B) ∩ C = A ∩ (B ∩ C) for any sets A, B, C;

A4∅ = ∅4 A = A for any set A;
A ∩ S = S ∩ A = A for any subset A of S;

A4 A = ∅ for any set A;
∅∩ A = A ∩∅ = ∅ for any set A;

A ∩ (B4 C) = (A ∩ B)4 (A ∩ C) for any sets A, B, C;
(A4 B) ∩ C = (A ∩ C)4 (B ∩ C) for any sets A, B, C.

https://en.wikipedia.org/wiki/Symmetric_difference
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Therefore, the set P (S), endowed with the addition 4, the multiplication ∩,
the zero ∅ and the unity S is a commutative ring. Furthermore, the additive
inverse of any A ∈ P (S) is A itself (since A4 A = ∅). Moreover, each A ∈
P (S) satisfies A ∩ A = A, which means (in the language of ring operations)
that its square is itself. Thus, P (S) is what is called a Boolean ring. (See
Exercise 2 on midterm #2 for the precise definition and a few properties of
Boolean rings.)

Let us now see some non-examples – i.e., examples of things that are not rings:

• You probably remember the cross product from analytic geometry. In a nut-
shell: The set R3 of vectors in 3-dimensional space has a binary operation ×
defined on it, which is given by

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) .

Is the set R3, equipped with the addition + and the multiplication × (and
some elements playing the roles of zero and unity) a ring?

The answer is “no”, no matter which elements you want to play the roles of
zero and unity. Indeed, the “Associativity of multiplication” axiom does not
hold, because three vectors a, b, c ∈ R3 usually do not satisfy a× (b× c) =
(a× b)× c.

Nevertheless, not all is lost; for example, the “Distributivity” axiom holds.
The structure formed by the set R3, its addition + and its cross product × is
an instance of a different concept – namely, of a Lie algebra.

• So the cross product does not work; what about the dot product? The dot
product of two vectors (a1, a2, a3) and (b1, b2, b3) in R3 is a real number given
by

(a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3.

Can this be used to make R3 into a ring?

No, because the dot product is not even a binary operation on R3. Indeed, our
definition of a binary operation requires that its output belongs to the same
domain as its two inputs; this is clearly not true of the dot product (since its
output is a real number, while its two inputs are vectors).

• The set
{

a + b 3
√

2 | a, b ∈ Z
}

is not a ring (despite the superficial similarity

to
{

a + b
√

2 | a, b ∈ Z
}

, which is a ring), at least not if we try to use the
usual multiplication of real numbers as its multiplication. In fact, this multi-
plication is not a binary operation on this set, because the product of 3

√
2 and

3
√

2 is not an element of this set.

However, the larger set
{

a + b 3
√

2 + c
(

3
√

2
)2
| a, b ∈ Z

}
is a ring (endowed

with the usual addition, the usual multiplication, the usual 0 and the usual
1). (Check this!)

https://en.wikipedia.org/wiki/Boolean_ring
https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt2s.pdf
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Lie_algebra
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• For each a, b ∈ R, we let Aa,b be the function

R→ R, x 7→ ax + b.

This sort of function is called “linear function” in high school; research math-
ematicians prefer to call it “affine-linear function” instead (while reserving
the word “linear” for a more restrictive class of functions). Let ALF be the set
of these affine-linear functions Aa,b for all a, b ∈ R.

We can define a pointwise addition + on ALF; that is, for any f , g ∈ Aa,b, we
define a function f + g ∈ Aa,b by

( f + g) (x) = f (x) + g (x) for all x ∈ R.

We can also try to define a multiplication · on ALF. One obvious choice
would be to define multiplication to be composition (that is, f · g = f ◦ g);
another would be pointwise multiplication (that is, ( f · g) (x) = f (x) · g (x)
for all x ∈ R). Does any of these lead to a ring?

No. If we define multiplication to be composition, then the “Distributivity”
axiom is violated, since affine-linear functions f , g, h do not always satisfy
f ◦ (g + h) = f ◦ g + f ◦ h. If we define multiplication to be pointwise multi-
plication, then it is not a binary operation on ALF, since the pointwise product
of two affine-linear functions is not an affine-linear function in general.

• You know from high school that you cannot divide by 0. Why not?

Let us make the question precise. Of course, we cannot find an integer a that
satisfies 0 · a = 1, or a real, or a complex number, etc. But could we perhaps
find such a number a in some larger “number system”?

The answer, of course, depends on what “number system” means for you. If
it means a ring, then we cannot find such an a in any ring.

Indeed, assume that we can. In other words, assume that there is a ring K

that contains the usual set Z of integers as well as a new element ∞ such
that 0 ·∞ = 1. And assume (this is a very reasonable assumption) that the
numbers 0 and 1 are indeed the zero and the unity of this ring. Then, the
Annihilation axiom yields 0 ·∞ = 0, so that 0 = 0 ·∞ = 1, which is absurd.
So such a ring K cannot exist. Thus, we cannot divide by 0, even if we extend
our “number system”.

• Here is an “almost-ring” beloved to combinatorialists: the max-plus semiring
T (also known as the tropical semiring64).

We introduce a new symbol −∞, and we set T = Z ∪ {−∞} as sets. But
we do not “inherit” the addition and multiplication from Z. Instead, let us

64To be pedantic: The name “tropical semiring” refers to several different objects, of which T is but
one.
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define two new “addition” and “multiplication” operations +T and ·T (not
to be mistaken for the original addition + and multiplication · of integers) as
follows:

a +T b = max {a, b} ;
a ·T b = a + b (usual addition of integers) ,

where we set

max {−∞, n} = max {n,−∞} = n and
(−∞) + n = n + (−∞) = −∞ for any n ∈ Z∪ {−∞} .

This set T endowed with the “addition” +T, “multiplication” ·T, “zero” −∞
and “unity” 0 satisfies all but one of the ring axioms.65 The only one that it
does not satisfy is the existence of additive inverses. Such a structure is called
a semiring.

• Consider the set

2Z := {2a | a ∈ Z} = {. . . ,−4,−2, 0, 2, 4, . . .} = {all even integers} .

Endowing this set with the usual addition and multiplication (and 0), we
obtain a structure that is like a ring but has no unity. This is called a nonunital
ring. There is no way to find a unity for it, because (for example) 2 is not a
product of any two elements of 2Z.

5.3. Subrings

Looking back at the examples of rings listed above, you might notice that a lot
of them are “nested” inside one another: For example, the rings Z, Q, R and C

form a chain Z ⊆ Q ⊆ R ⊆ C in which each ring not only is a subset of the
subsequent one66, but also has “the same” addition, multiplication, zero and unity
as the subsequent one. Of course, when we are saying “the same” here, we do

65For example, the distributivity axiom for T boils down to the two identities

a + max {b, c} = max {a + b, a + c} and
max {a, b}+ c = max {a + c, b + c} .

66To be fully honest, we are relying on Convention 4.1.7 in order to make R a subset of C. And
if you look closely at the definitions of Q and R, the relations Z ⊆ Q and Q ⊆ R are also not
immediately satisfied but rather rely on similar conventions. For example, rational numbers are
defined as equivalence classes of pairs of integers; an integer is not an equivalence class of such
pairs. Thus, we need a convention which identifies each integer z with an appropriate rational
number in order to turn Z into a subset of Q. Similarly for turning Q into a subset of R. But let
us not worry about this issue for now.
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not literally mean “the same binary operation”67; we mean that, e.g., if we add
two integers in Z, we get the same result as if we add the same two integers as
elements of Q, or as elements of R, or as elements of C. In other words, the
addition operation of the ring Z is a restriction of the addition operation of the
ring Q, which in turn is a restriction of the addition operation of the ring R, etc..
The same holds for multiplication. The zeroes of the rings Z, Q, R and C are
literally identical, as are the unities of these rings.

It is worth introducing a name for this situation:

Definition 5.3.1. Let K and L be two rings. We say that K is a subring of L if
and only if it satisfies the following five requirements:

• the set K is a subset of L;

• the addition of K is a restriction of the addition of L (that is, we have
a1 +K a2 = a1 +L a2 for all a1, a2 ∈ K);

• the multiplication of K is a restriction of the multiplication of L (that is, we
have a1 ·K a2 = a1 ·L a2 for all a1, a2 ∈ K);

• the zero of K is the zero of L (that is, we have 0K = 0L);

• the unity of K is the unity of L (that is, we have 1K = 1L).

Thus, according to this definition:

• the ring Z is a subring of Q;

• the ring Q is a subring of R;

• the ring R is a subring of C;

• the ring Z [i] (of Gaussian integers) is a subring of C;

• every ring K is a subring of itself.

What is an example of two rings K and L for which the set K is a subset of L

yet the ring K is not a subring of L ? Here is one example of an “almost-subring”:

Example 5.3.2. One of our above examples of rings (in Section 5.2) is the power
set of any set S. Namely, if S is any set, then we have observed that its power
set P (S), endowed with the addition 4, the multiplication ∩, the zero ∅ and
the unity S is a commutative ring. We shall refer to this ring by P (S) (omitting
mention of its addition, multiplication, zero and unity).

67The addition of R is a map from R×R to R, while the addition of C is a map from C×C to C.
Thus, of course, these two additions are not literally the same binary operation.
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Now, let T be a subset of a set S. Is P (T) a subring of the ring P (S) ? The first
four requirements of Definition 5.3.1 are satisfied: The set P (T) is a subset of
P (S); its addition is a restriction of the addition of P (S) (indeed, both of these
additions turn two sets A and B into A4 B); its multiplication is a restriction
of the multiplication of P (S); its zero is the zero of P (S). But its unity is not
the unity of P (S) (unless T = S); indeed, the former unity is T, while the latter
unity is S. Thus, P (T) is not a subring of P (S) (unless T = S). It fails the fifth
requirement of Definition 5.3.1.

(As we have remarked, some authors do not require rings to have a unity.
Correspondingly, these authors do not pose the fifth requirement in Definition
5.3.1. Thus, for these authors, P (T) is a subring of P (S).)

For a less subtle example, recall the ring Z′ constructed in Section 5.2. The sets
Z′ and Z are identical, but the rings Z′ and Z are not, so the ring Z′ is not a
subring of Z despite being a subset of Z.

When we have two rings K and L such that K ⊆ L as sets (or, more generally,
such that K and L have elements in common), we generally need to be careful
using the symbol “+”: This symbol may mean both the addition of K and the
addition of L, and these additions might not be the same. Thus it is prudent to
disambiguate its meaning by attaching a subscript “K” or “L” to it. The same
applies to the symbols “·”, “0” and “1” and expressions like “ab” (which have an
implicit multiplication sign). However, when K is a subring of L, we do not need
to take this precaution; in this case, the meaning of expressions like “a + b” does
not depend on whether you read “+” as the addition of K or as the addition of L.

The following facts are essentially obvious:

Proposition 5.3.3. A subring of a commutative ring is always commutative.

Proposition 5.3.4. Let L be a ring. Let S be a subset of L that satisfies the
following four conditions:68

• We have 0 ∈ S and 1 ∈ S.

• The subset S is closed under addition. (This means that all a, b ∈ S satisfy
a + b ∈ S.)

• The subset S is closed under additive inverses. (This means that all a ∈ S
satisfy −a ∈ S.)

• The subset S is closed under multiplication. (This means that all a, b ∈ S
satisfy ab ∈ S.)

Then, the set S itself becomes a ring if we endow it with the following two
operations:
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• an addition operation + which is defined as the restriction of the addition
operation of the ring L;

• a multiplication operation · which is defined as the restriction of the mul-
tiplication operation of the ring L,

and the zero 0 and the unity 1. Furthermore, this ring S is a subring of L.

Definition 5.3.5. Let L be a ring. Let S be a subset of L that satisfies the four
conditions of Proposition 5.3.4. Then, we shall say that “S is a subring of L”.
Technically speaking, this is premature, since S is so far just a subset of L without
the structure of a ring; however, Proposition 5.3.4 shows that there is an obvious
way of turning S into a ring (viz.: define two operations + and · by restricting
the corresponding operations of L, and steal the zero and the unity from L),
and we shall automatically regard S as becoming a ring in this way (unless we
say otherwise). We say that the operations + and · on S (obtained by restricting
the corresponding operations on L) and the zero and the unity of S (which are
exactly those of L) are inherited from L.

Thus, finding subrings of a ring L boils down to finding subsets that contain its
0 and 1 and are closed under addition, under additive inverses and under multi-
plication; the ring axioms don’t need to be re-checked. This offers an easy way to
discover subrings:

Example 5.3.6. Let us define a few subsets of the ring Z [i] and see whether they
are subrings.

(a) Let

S1 = {a + bi | a, b ∈ Z, and b is even} = {a + 2ci | a, c ∈ Z} .

Is S1 a subring of Z [i] ?
It is easy to check that 0 ∈ S1 and 1 ∈ S1. Let us now check that S1 is closed

under multiplication: Let α, β ∈ S1; we need to show that αβ ∈ S1. We have α ∈
S1 = {a + 2ci | a, c ∈ Z}; in other words, we can write α in the form α = x + 2yi
for some x, y ∈ Z. Similarly, we can write β in the form β = z + 2wi for some
z, w ∈ Z. Now, multiplying the two equalities α = x + 2yi and β = z + 2wi, we
obtain

αβ = (x + 2yi) (z + 2wi) = xz + 2xwi + 2yzi + 4yw i2︸︷︷︸
=−1

= (xz− 4yw) + 2 (xw + yz) i.

68In this proposition, the symbols “+”, “·”, “0” and “1” mean the addition, the multiplication, the
zero and the unity of L.
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Thus, αβ can be written in the form a + 2ci for some a, c ∈ Z (namely, for
a = xz − 4yw and c = xw + yz). Thus, αβ ∈ S1. Now, forget that we fixed
α, β. We thus have shown that all α, β ∈ S1 satisfy αβ ∈ S1. In other words, S1
is closed under multiplication. Similar arguments show that S1 is closed under
addition and under additive inverses. Thus, S1 is a subring of Z [i].

This subring S1 is only “half as large” as Z [i] (in a vague sense that can
be made precise), but it has rather different properties. For example, Z [i] has
greatest common divisors and unique factorization into primes; the subring S1
does not.

There is nothing special about the number 2; we could have just as easily
shown that {a + kci | a, c ∈ Z} is a subring of Z [i] for each k ∈ Z.

(b) Let

S2 = {a + bi | a, b ∈ Z, and a is even} = {2c + bi | c, b ∈ Z} .

Is S2 a subring of Z [i] ? No, since 1 /∈ S2.
(c) Let

S3 = {a + bi | a, b ∈ Z, and b is a multiple of a} = {a + aci | a, c ∈ Z} .

Is S3 a subring of Z [i] ? The subset S3 does contain both 0 and 1 and is closed
under additive inverses; but S3 is not closed under addition (nor under multipli-
cation). Thus, S3 is not a subring of Z [i]. (For a concrete example: The numbers
1 + 2i and 1 + 3i both belong to S3, but their sum 2 + 5i does not.)

(d) Let
S4 = {a + bi | a, b ∈N} .

Is S4 a subring of Z [i] ? No, because S4 is not closed under additive inverses
(although S4 satisfies two of the other conditions of Proposition 5.3.4).

(e) A pattern emerges: It appears that the only subrings of Z [i] are the ones
of the form {a + kci | a, c ∈ Z} for k ∈ Z. This is indeed true. (It is not hard
to prove, if you are so inclined! Hint: Let S be any subring of Z [i]. Clearly, S
contains 1 and therefore all the integer multiples of 1; in other words, Z ⊆ S.
Hence, if S ⊆ Z, then clearly S = Z, which means that S = {a + kci | a, c ∈ Z}
for k = 0. Thus, we can WLOG assume that S 6⊆ Z. Hence, there exists at least
one a + bi ∈ S with b 6= 0. Thus, there exists at least one a + bi ∈ S with b > 0
(indeed, if b < 0, then we replace this element by its additive inverse). Pick
the one with the smallest b. Then, from a + bi ∈ S and a ∈ Z ⊆ S, we obtain
(a + bi)− a ∈ S (since S is a ring), which means that bi ∈ S. Next, argue that
S = {a + kci | a, c ∈ Z} for k = b.)

5.4. Additive inverses, sums, powers and their properties

What can you do when you have a ring?

https://math.stackexchange.com/questions/657058
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Convention 5.4.1. For the rest of this section, we fix a ring K, and we denote its
addition, multiplication, zero and unity by +, ·, 0 and 1.

One thing you can do is subtraction. This relies on the following fact:

Theorem 5.4.2. Let a ∈ K. Then, a has exactly one additive inverse.

Before we prove this, let us recall how additive inverses are defined:

Definition 5.4.3. Let a ∈ K. An additive inverse of a means an element a′ of K

such that a + a′ = a′ + a = 0.

Definition 5.4.4. (a) If a ∈ K, then the additive inverse of a will be called −a.
(This is well-defined, since Theorem 5.4.2 shows that this additive inverse is
unique.)

(b) If a ∈ K and b ∈ K, then we define the difference a− b to be the element
a + (−b) of K. This new binary operation − on K is called “subtraction”.

Additive inverses and subtraction satisfy certain rules that should not surprise
you:

Proposition 5.4.5. Let a, b, c ∈ K.
(a) We have a− b = c if and only if a = b + c. (Roughly speaking, this means

that subtraction undoes addition.)
(b) We have − (a + b) = (−a) + (−b).
(c) We have −0 = 0.
(d) We have 0− a = −a.
(e) We have − (−a) = a.
(f) We have − (ab) = (−a) b = a (−b).
(g) We have a− b− c = a− (b + c). (Here and in the following, “a− b− c”

should be read as “(a− b)− c”.)
(h) We have a (b− c) = ab− ac and (a− b) c = ac− bc.
(i) We have − (a− b) = b− a.
(j) We have a− (−b) = a + b.
(k) We have (−1) a = −a. (Here, the “1” on the left hand side means the unity

of K.)
(l) If −a = −b, then a = b.

If a, b ∈ K, then the expression “−ab” can be considered ambiguous, since it can
be read either as “(−a) b” or as “− (ab)”. But Proposition 5.4.5 (f) shows that these
two readings yield the same result; therefore, you need not fear this ambiguity.

Furthermore, we don’t need to parenthesize expressions like a + b + c or abc.
Indeed:
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Theorem 5.4.6. Finite sums of elements of K can be defined in the same way as
finite sums of usual (i.e., real or rational) numbers (with the empty sum defined
to be 0). That is, if S is a finite set, and if as ∈ K for each s ∈ S, then ∑

s∈S
as is

well-defined and satisfies the usual rules, such as

∑
s∈S

(as + bs) = ∑
s∈S

as + ∑
s∈S

bs.

Thus, in particular, sums like
q
∑

i=p
ai or a1 + a2 + · · ·+ ak are well-defined. We

don’t need to put parentheses or specify the order of summation in order to
make them non-ambiguous.

What about finite products? Is ∏
s∈S

as well-defined? Not always, but only for

commutative rings. Indeed, a product like ∏
s∈S

as has no pre-defined order of multi-

plication (in general), so for it to be well-defined, it would have to be independent
of the order; but this would require the commutativity of multiplication.

Theorem 5.4.7. (a) Finite products of elements of K can be defined in the same
way as finite products of usual (i.e., real or rational) numbers (with the empty
product defined to be 1) as long as the ring K is commutative.

(b) For general (not necessarily commutative) rings K, we can still define prod-
ucts with a pre-determined order, such as a1a2 · · · ak (where a1, a2, . . . , ak ∈ K).
These products can be defined recursively as follows:

a1a2 · · · ak = 1 if k = 0;

otherwise,
a1a2 · · · ak = (a1a2 · · · ak−1) ak.

These products still satisfy the rule

a1a2 · · · ak = (a1a2 · · · ai) (ai+1ai+2 · · · ak) for all i ∈ {0, 1, . . . , k} .

Theorem 5.4.7 (b) is called the general associativity theorem for rings. Note that
Theorem 5.4.7 (b) entails that if we have k elements a1, a2, . . . , ak of a ring K, then
any two ways of parenthesizing the product a1a2 · · · ak yield the same result. For
example, for k = 4, we have

((a1a2) a3) a4 = (a1 (a2a3)) a4 = (a1a2) (a3a4) = a1 ((a2a3) a4) = a1 (a2 (a3a4)) .

(It is not hard to prove this particular chain of identities by applying the associa-
tivity of multiplication in the appropriate places; but for higher values of k, such a
manual approach becomes more and more cumbersome.)
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What else can we do with our ring K ?
By definition, we know how to multiply two elements of K. But there is also a

natural way to multiply an element of K with an integer. This is defined as follows:

Definition 5.4.8. Let a ∈ K and n ∈ Z. Then, we define an element na of K by

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0
.

The “na” that we have just defined has nothing to do with the multiplication · of
K, since n is not (generally) an element of K. However, when K is one of the usual
rings of numbers (like Z, Q, R, C), then this kind of multiplication is a restriction
of the multiplication · of K (that is, na means the same thing). Indeed, Definition
5.4.8 clearly generalizes the definition of na for rational numbers a. Furthermore,
when K = Z/n for some integer n, Definition 5.4.8 agrees with Definition 3.4.18
(in the sense that both definitions yield the same result for rα when r ∈ Z and
α ∈ Z/n). (This is easy to prove by induction.)

The “na” multiplication introduced in Definition 5.4.8 has several properties that
you would expect such an operation to have:

Proposition 5.4.9. We have

(n + m) a = na + ma for all a ∈ K and n, m ∈ Z; (50)
n (a + b) = na + nb for all a, b ∈ K and n ∈ Z; (51)
− (na) = (−n) a = n (−a) for all a ∈ K and n ∈ Z; (52)
(nm) a = n (ma) for all a ∈ K and n, m ∈ Z; (53)
n (ab) = (na) b = a (nb) for all a, b ∈ K and n ∈ Z; (54)

n0K = 0K for all n ∈ Z; (55)
1a = a for all a ∈ K (56)

(here, the “1” means the integer 1) ;
0a = 0K for all a ∈ K (57)

(here, the “0” on the left hand side means the integer 0) ;
(−1) a = −a for all a ∈ K; (58)

(here, the “− 1” means the integer − 1) .

In particular:

• The equality (52) shows that the expression “−na” (with a ∈ K and n ∈ Z)
is unambiguous (since its two possible interpretations, namely − (na) and
(−n) a, yield equal results).
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• The equality (53) shows that the expression “nma” (with a ∈ K and n, m ∈
Z) is unambiguous.

• The equality (54) shows that the expression “nab” (with a, b ∈ K and n ∈ Z)
is unambiguous.

Exercise 5.4.1. Prove Proposition 5.4.9.
[Hint: The proofs of the rules in Proposition 5.4.9 are analogous to the proofs

of the corresponding rules for rationals – at least if you know the right proofs of
the latter. One way is to start by proving the equalities (57), (56) and (58), which
follow almost immediately from Definition 5.4.8; then, prove (50) for n, m ∈ N;
then, prove (55) and (51) for n ∈ N; then, prove (53) for n, m ∈ N; then, prove
(54) for n ∈ N; then, show that (−n) a = − (na) for all a ∈ K and n ∈ Z (by
distinguishing between the cases n > 0, n = 0 and n < 0); and then extend
the identities that have already been shown for elements of N to elements of
Z (using Proposition 5.4.5). Note that this is rather similar to the process by
which we proved Proposition 4.1.20 in the solution to Exercise 4.1.1, with the
main difference being that we now are studying multiples instead of powers
(and addition instead of multiplication). Our solution to Exercise 4.1.1 cannot
be copied literally, however, because the way we defined na for negative n in
Definition 5.4.8 is somewhat different from the way we defined αn for negative
n in Definition 4.1.19.]

We can also define powers of elements of a ring:

Definition 5.4.10. Let a ∈ K and n ∈N. Then, we define an element an of K by

an = a · a · · · · · a︸ ︷︷ ︸
n times

.

This definition clearly generalizes the definition of an for rational numbers a.
Furthermore, when K = Z/n for some integer n, Definition 5.4.10 agrees with
Definition 3.4.20 (in the sense that both definitions yield the same result for αk

when α ∈ Z/n and k ∈ N). (This follows from Theorem 3.4.26 (c).) Furthermore,
when K = C, Definition 5.4.10 agrees with Definition 4.1.18.

Powers of elements of a ring satisfy some properties you would expect but fail
to satisfy some others:
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Proposition 5.4.11. (a) We have

a0 = 1 for all a ∈ K; (59)
1n = 1 for all n ∈N (60)

(here, the “1” means the unity of K) ;

0n =

{
0, if n > 0
1, if n = 0

for all n ∈N (61)

(here, the “0” in “0n” means the zero of K) ;

an+m = anam for all a ∈ K and n, m ∈N; (62)

(an)m = anm for all a ∈ K and n, m ∈N. (63)

(b) For any a, b ∈ K, we have

(a + b)2 = (a + b) (a + b) = a (a + b) + b (a + b)

= aa + ab + ba + bb = a2 + ab + ba + b2.

This further equals a2 + 2ab + b2 if K is commutative.
(c) Let a, b ∈ K satisfy ab = ba. (This holds automatically when K is commu-

tative.) Then:

abn = bna for all n ∈N; (64)

aibj = bjai for all i, j ∈N; (65)
(ab)n = anbn for all n ∈N; (66)

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k for all n ∈N. (67)

(d) Let a, b ∈ K satisfy ab = ba. Then,

an − bn = (a− b)
(

an−1 + an−2b + · · ·+ abn−2 + bn−1
)

for all n ∈N.

5.5. Multiplicative inverses and fields

Convention 5.5.1. For the rest of this section, we fix a ring K, and we denote its
addition, multiplication, zero and unity by +, ·, 0 and 1.

Each element a of the ring K has an additive inverse −a, which satisfies (−a) + a =
a + (−a) = 0. What about a “multiplicative inverse”?
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Definition 5.5.2. Let a ∈ K. A multiplicative inverse of a means an element a′ of
K such that aa′ = a′a = 1.

Multiplicative inverses don’t always exist. In the ring Q, the number 0 has none.

In the ring Z, the number 2 has none (since
1
2

/∈ Z). But when they do exist, they
are unique:

Theorem 5.5.3. Let a ∈ K. Then, a has at most one multiplicative inverse.

Warning: In Definition 5.4.3, we could have replaced “a + a′ = a′ + a = 0” by
“a + a′ = 0”, since a + a′ = a′ + a already follows from commutativity of addition.
But in Definition 5.5.2, we cannot replace “aa′ = a′a = 1” by “aa′ = 1”, since K

need not be commutative. If we require aa′ = 1 only, then a′ is just a right inverse
of a; such a right inverse is not necessarily unique.

The following definition generalizes Definition 3.5.6, Definition 4.1.13 and Defi-
nition 4.1.14:

Definition 5.5.4. (a) An element a ∈ K is said to be invertible if it has a multi-
plicative inverse. An invertible element is also called a unit.

(b) If a ∈ K is invertible, then the multiplicative inverse of a will be called a−1.
(This is well-defined, since Theorem 5.5.3 shows that this multiplicative inverse
is unique.)

(c) Assume that K is commutative. If a ∈ K and b ∈ K are such that b is
invertible, then we define the quotient a/b (also called

a
b

) to be the element ab−1

of K. This new binary partial operation / on K is called “division”.

The word “partial” in “partial operation” means that it is not always defined. We
already have seen this for rational numbers: We cannot divide by 0.

Again, we follow PEMDAS rules as far as division is concerned. Do not use the
ambiguous expression “a/bc”; it can mean either a/ (bc) or (a/b) c, depending on
whom you ask, and thus should always be parenthesized.

The notion of “unit” we have just defined generalizes the units of Z [i]. Don’t
confuse “unit” (= invertible element) with “unity” (= 1K). The unity is always a
unit (by Exercise 5.5.1 (a) further below), but often not the only unit.

Definition 5.5.4 (c) generalizes the usual meaning of a/b in Q, R and C.
Please do not use Definition 5.5.4 (c) when K is not commutative; that would

cause confusion, since ab−1 and b−1a would have equal rights to the name “
a
b

”.
If K = Z/n for a positive integer n, and if α ∈ K, then the multiplicative inverse

of α is the same as an inverse of α (as defined in Definition 3.5.2). Thus, multiplica-
tive inverses in arbitrary rings generalize the concept of inverses in Z/n. Likewise,
they generalize inverses in C; that is, an inverse of a complex number α ∈ C (as
defined in Definition 4.1.11) is the same as a multiplicative inverse of α.

Again, it is not hard to check that multiplicative inverses and division have the
properties you would hope them to have:
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Exercise 5.5.1. Prove the following:
(a) The element 1K of K is always invertible.
(b) The element −1K of K is always invertible. (Note that −1K is not always

distinct from 1K.)
(c) Let a ∈ K be invertible. Then, its inverse a−1 is invertible as well, and its

inverse is
(
a−1)−1

= a.
(d) Let a, b ∈ K be invertible. Then, their product ab is invertible as well, and

its inverse is (ab)−1 = b−1a−1. (Mind the order of multiplication: it is b−1a−1,
not a−1b−1.)

(e) Assume that K is commutative. Let a, b, c, d ∈ K be such that b and d are
invertible. Then,

a/b + c/d = (ad + bc) / (bd) and (a/b) (c/d) = (ac) / (bd) .

Some rings have many invertible elements (such as Q, where each nonzero el-
ement is invertible), while others have few (such as Z, whose only invertible ele-
ments are 1 and −1). The extreme case on the former end is called a skew field or a
field, depending on its commutativity:

Definition 5.5.5. (a) An element a ∈ K is said to be nonzero if a 6= 0. (Here, of
course, 0 means the zero of K.)

(b) We say that K is a skew field if 0 6= 1 in K and if every nonzero a ∈ K is
invertible. (Here, “0 6= 1 in K” means “0K 6= 1K”; we are clearly not requiring
the integers 0 and 1 to be distinct.)

(c) We say that K is a field if K is a commutative skew field.

The condition “0 6= 1 in K” has been made to rule out an annoying exception.
It is easy to see that if a ring K satisfies 0 = 1 in K, then it has only one element
(to wit: any a ∈ K must satisfy a = 1︸︷︷︸

=0

·a = 0 · a = 0), which entails that K is the

zero ring (up to relabeling of its element 0). We do not want the zero ring to count
as a skew field69; thus we require 0 6= 1 in K in Definition 5.5.5.

Some authors call skew fields division rings.

Remark 5.5.6. If you work in constructive logic, you will want to replace the condition

“every nonzero a ∈ K is invertible” (68)

in Definition 5.5.5 (b) by the stronger condition

“every a ∈ K equals 0K or is invertible”. (69)

While the condition (69) is clearly equivalent to (68) in classical logic, it is stronger in
constructive logic, because it can be applied to any a ∈ K that is not a-priori known to
be either zero or nonzero (whereas (68) requires a to be known to be nonzero, which is
too burdensome a requirement to make it useful in constructive logic).

69just as we don’t want the number 1 to count as a prime

https://en.wikipedia.org/wiki/Intuitionistic_logic
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Example 5.5.7. (a) The rings Q, R and C are fields.
If you work in constructive logic, then you cannot prove that R and C are fields,

because constructively there is no way to tell whether a real number is 0 or not. This
is not a big issue for us, since we never truly use R and C in these notes (and when
we do, we can replace them by smaller subrings of C that can be shown to be fields
constructively – such as the Gaussian rationals).

(b) The rings Z, Z [i] and Z
[√

2
]

are not fields (since, for example, 2 is not

invertible in any of these rings). However, Z [i] and Z
[√

2
]

would become fields
if we had used Q instead of Z in their definitions.

(c) The polynomial ring Z [x] (which we will formally define in Chapter 7) is
not a field (since, for example, x is not invertible in it). There is a way to get a
field out of it, similarly to how Q is obtained from Z. (This leads to the so-called
rational functions.)

(d) Recall the commutative ring QQ; the elements of this ring are functions
from Q to Q, and the operations + and · are defined pointwise. Is this ring a
field?

Let us see what the multiplicative inverse of a function f ∈ QQ is. If f , g ∈ QQ

are two functions, then we have the following chain of equivalences:

(g is the multiplicative inverse of f )

⇐⇒
(

f g = g f = 1QQ

)
⇐⇒

(
( f g) (x) = (g f ) (x) = 1QQ (x) for all x ∈ Q

)
⇐⇒ ( f (x) · g (x) = g (x) · f (x) = 1 for all x ∈ Q)(

since each x ∈ Q satisfies ( f g) (x) = f (x) · g (x)
and (g f ) (x) = g (x) · f (x) and 1QQ (x) = 1

)

⇐⇒
(

g (x) =
1

f (x)
for all x ∈ Q

)
.

(Note that this is not the same as saying that f and g are inverse maps! The
multiplication of QQ is not given by composition of maps.)

This shows that a function f ∈ QQ is invertible in QQ if and only if it never
takes the value 0 (because its multiplicative inverse g would have to satisfy

g (x) =
1

f (x)
for all x ∈ Q). But a function f ∈ QQ can be 0 at some point

and 6= 0 at another. Then, it is not invertible (since it is 0 at some point) yet
nonzero (since it is 6= 0 at another). For example, the function id ∈ QQ is not
invertible yet nonzero. Thus, QQ is not a field.

(e) The ring Q2×2 of 2× 2-matrices with rational entries is not a skew field.

Indeed, the 2× 2-matrix
(

1 0
1 0

)
is nonzero but not invertible. (More generally:

For each n ∈ N, the n × n-matrices over Q form a ring, which we will study

https://en.wikipedia.org/wiki/Rational_function
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later. Our notion of “invertible” for elements of this ring coincides with the
usual notion of “invertible” for n× n-matrices in linear algebra.)

What about Z/n ?

Theorem 5.5.8. Let n be a positive integer. The ring Z/n is a field if and only if
n is prime.

It is tricky to find a skew field that is not a field. Here is the simplest example of
such a skew field:

Example 5.5.9. Informally, we have obtained C from R by throwing in a new
number i that satisfies i2 = −1. In order for i not to feel alone, let us introduce
yet another new “number” j such that j2 = −1 and ji = −ij. Now we try to
calculate with these i and j. Of course, i and j cannot belong to a commutative
ring together, but let us assume that they (and the further numbers we obtain
from them) at least satisfy the ring axioms.

We have

i · ij = ii︸︷︷︸
=i2=−1

j = (−1) j = −j and

j · ij = ji︸︷︷︸
=−ij

j = −i jj︸︷︷︸
=j2=−1

= −i (−1) = i and

ij · ij = i ji︸︷︷︸
=−ij

j = − ii︸︷︷︸
=i2=−1

jj︸︷︷︸
=j2=−1

= − (−1) (−1) = −1

and (using the distributivity laws)

(1 + 2i + 3ij) (2− 3j) = 2 + 4i + 6ij− 3j− 6ij− 9i j2︸︷︷︸
=−1

= 2 + 4i− 3j + 9i = 2 + 13i− 3j.

Similarly, any of these new “numbers” can be written in the form a+ bi + cj+ dij
for reals a, b, c, d.

Blithely introducing new “numbers” like this can be risky. It could happen that

(just as with defining ∞ to be
1
0

) our new numbers would lead to contradictions.
For example, what if we have some expression that involves i and j and that
can be simplified to 0 in one way and simplified to 1 in another; would that
mean that 0 = 1 ? No; it would simply mean that the new “numbers” we have
introduced do not actually exist. (Or, speaking more abstractly: that the new
numbers are just the zero ring in a complicated disguise.)

So it makes sense to look for a rigorous definition of our new numbers. There
is a direct (though rather painful) way of doing this: We can rigorously define
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our new numbers as 4-tuples (a, b, c, d) of real numbers, with addition and sub-
traction defined entrywise, and with multiplication given by

(x1, x2, x3, x4) · (y1, y2, y3, y4)

= (x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,
x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1) .

(The 4-tuple (a, b, c, d) is a rigorous model for the “number” a + bi + cj + dij.)
These new numbers are known as the quaternions. It turns out that they form a

skew field, albeit not a field (since commutativity is lacking). They have several
properties that make them useful in physics and space geometry. For one, they
encode both the dot product and the cross product of two vectors in R3: Namely,

if a =

 a1
a2
a3

 ∈ R3 and b =

 b1
b2
b3

 ∈ R3 are two vectors, then the quaternion

(0, a1, a2, a3) · (0, b1, b2, b3)

=

−a1b1 − a2b2 − a3b3︸ ︷︷ ︸
=−a·b

(where · stands for
the dot product)

, a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1︸ ︷︷ ︸
the three coordinates

of the cross product a×b

 .

Also, the quaternions can be used to encode rotations in 3-dimensional space
(see, e.g., [Jia13]).

Exercise 5.5.2. Let K be a skew field. Let x, y ∈ K satisfy xy = 0. (Here, of
course, “0” means the zero of K.) Prove that x = 0 or y = 0.

Exercise 5.5.3. Let K be a ring. Let a, b, c ∈ K be such that ab = 1 and bc =
1. Prove that the element b is invertible and its multiplicative inverse satisfies
b−1 = a = c.

5.6. Hunting for finite fields I

Definition 5.6.1. (a) The ground set of a ring (K,+, ·, 0, 1) is defined to be the set
K.

(b) The elements of a ring are defined to be the elements of its ground set.
(c) The size (or cardinality) of a ring is defined to be the size of its ground set.
(d) A ring is said to be finite if its size is finite (i.e., if it has only finitely many

elements).
(e) A ring is said to be trivial if its size is 1.

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
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We have seen a bunch of finite rings. For example, if S is a finite set, then the com-
mutative ring (P (S) ,4,∩,∅, S) (which was constructed in one of the examples in
Section 5.2) has size |P (S)| = 2|S|, and thus is finite.

We also have seen infinitely many finite fields:

Z/2, Z/3, Z/5, Z/7, Z/11, . . .

Indeed, Theorem 5.5.8 yields that Z/p is a finite field whenever p is a prime.

Question 5.6.2. Are there any further finite fields?

Remark 5.6.3. Why do we care?
Recall Shamir’s Secret Sharing Scheme, which we introduced in Subsection

1.6.7. The way we defined the Scheme, it had a problem: It relied on a spuri-
ous notion of a “uniformly random rational number”, which does not exist in
nature. Now we can fix this problem: Replace rational numbers by elements
of a finite field. More precisely, let N again be the length of the bitstring that
we want to encrypt. Pick a prime p that satisfies both p ≥ 2N and p > n; this
exists due to Theorem 2.13.43. Now, use elements of the finite field Z/p instead
of integers. (Thus, a bitstring aN−1aN−2 · · · a0 will be encoded as the residue
class

[
aN−1 · 2N−1 + aN−2 · 2N−2 + · · ·+ a0 · 20]

p ∈ Z/p rather than as the num-

ber aN−1 · 2N−1 + aN−2 · 2N−2 + · · ·+ a0 · 20 ∈ Z. This encoding can be uniquely
decoded, because p ≥ 2N.) Instead of picking two uniformly random bitstrings
c and b and transforming them into numbers c and b, just pick two uniformly
random residue classes c, b ∈ Z/p. (This is possible, since Z/p is a finite set.)

This relies on having a well-behaved notion of polynomials over Z/p, which
should satisfy the obvious analogue of Proposition 1.6.6 (with “numbers” re-
placed by “elements of Z/p”). We will give a rigorous definition of this notion
in Chapter 7.

Finite fields have many uses – not just in making Shamir’s Secret Sharing
Scheme work. One great source of applications is coding theory, which we will
briefly encounter in Subsection 7.7.5.

Let us take some first steps towards addressing Question 5.6.2. We have found
a field of size p for each prime p. Are there fields of other finite sizes? Let us
first focus on the probably simplest case beyond Z/p: Given a prime p, can we
construct a field of size p2 ?

First idea: Let us try to get such a field by “duplicating” the known field Z/p.
Thus, we fix a prime p, and consider the Cartesian product (Z/p)× (Z/p). De-
fine addition, subtraction and multiplication on this Cartesian product entrywise70.
This will yield a commutative ring with zero

(
[0]p , [0]p

)
and unity

(
[1]p , [1]p

)
.

70That is,

(a, b) + (c, d) = (a + c, b + d) ;
(a, b)− (c, d) = (a− c, b− d) ;

(a, b) (c, d) = (ac, bd)
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However, the element
(
[0]p , [1]p

)
of this ring is nonzero (because it is not

(
[0]p , [0]p

)
)

but has no inverse (since multiplying it by anything will never make its first entry
anything other than [0]p). So this ring is not a field.

(This is not a useless construction – we will see it in greater generality in Section
5.7 below. But it does not help us find new fields.)

Second idea: We obtained C from R by “adjoining” a square root of −1. (In
abstract algebra, the verb “adjoin” means “insert” or “add” – not in the sense of
the addition operation +, but in the sense of throwing in something new into an
existing collection.)

Let us try to do this with Z/p instead of R.
More generally, let us start with an arbitrary commutative ring K, and try to

“adjoin” a square root of −1 to it. We are bold and don’t care whether there might
already be such a square root in K; if there is, then we will get a second one!

Let 0 and 1 stand for the zero and the unity of K. If K = Z/n for some integer
n, then these are the residue classes [0]n and [1]n.

Now, we want to define a new commutative ring K′ by “adjoining” a square
root of −1 to K. A way to make this rigorous is as follows (just as we defined C

rigorously in Definition 4.1.1):

Definition 5.6.4. Let K be a commutative ring.
(a) Let K′ be the set of all pairs (a, b) ∈ K×K.
(b) For each r ∈ K, we denote the pair (r, 0) ∈ K′ by rK′ . We identify r ∈ K

with rK′ = (r, 0) ∈ K′, so that K becomes a subset of K′.
(c) We let i be the pair (0, 1) ∈ K′.
(d) We define three binary operations +, − and · on K′ by setting

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac− bd, ad + bc)

for all (a, b) ∈ K′ and (c, d) ∈ K′.
(e) If α, β ∈ K′, then we write αβ for α · β.

You will, of course, recognize this definition to be a calque of Definition 4.1.1 with
R and C replaced by K and K′. The elements of K′ are like complex numbers, but
built upon K instead of R.

Proposition 5.6.5. (a) The set K′ defined in Definition 5.6.4 (equipped with the
operations + and · and the elements 0K′ and 1K′) is a commutative ring. Its
subtraction is the binary operation − defined in Definition 5.6.4 (d).

(b) Furthermore, the ring K is a subring of K′ (where we regard K as a subset
of K′ as explained in Definition 5.6.4 (b)).

for all (a, b) , (c, d) ∈ (Z/p)× (Z/p).
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Convention 5.6.6. For the rest of this section, we let K′ be the commutative ring
constructed in Proposition 5.6.5 (i.e., the set K′ equipped with the operations +
and · and the elements 0K′ and 1K′).

Thus, if K = Z/p, then K′ is a commutative ring with p2 elements.

Question 5.6.7. When is K′ is a field?

Assume that 0 6= 1 in K; thus, 0 6= 1 in K′ as well (since 0K′ = (0, 0) 6= (1, 0) =
1K′). Hence, in order for K′ to be a field, every nonzero ξ ∈ K′ needs to have a
multiplicative inverse. Thus, in particular, every nonzero element of K must have
a multiplicative inverse in K′. It is easy to see that such an inverse, if it exists,
must belong to K as well (i.e., it must have the form rK′ for some r ∈ K); thus, this
means that every nonzero element of K must have a multiplicative inverse in K. In
other words, K itself must be a field.

Thus, we assume from now on that K is a field. But we are not done yet. It is
definitely not always true that K′ is a field. For example, if K = Z/2, then the
element (1, 1) of K′ has no inverse (check this!), and so K′ is not a field in this case.
What must K satisfy in order for K′ to be a field?

We know what it must satisfy: The condition is that every nonzero ξ ∈ K′ has a
multiplicative inverse. We just need to see when this condition holds.

So let ξ = (x, y) ∈ K′ (with x, y ∈ K) be nonzero. Thus, (x, y) 6= (0, 0).
How to find ξ−1 ? Notice that ξ = (x, y) = x + yi (this is proven just as for com-

plex numbers). Thus, you can try to compute ξ−1 by rationalizing the denominator
(just as we learned to divide complex numbers):

1
ξ
=

1
x + yi

=
x− yi

(x + yi) (x− yi)
=

x− yi
x2 + y2

(since (x + yi) (x− yi) = (x, y) (x,−y) =
(
x2 + y2, 0

)
, as you can easily see using

the definition of · on K′).
We need x2 + y2 6= 0 in K for this to work. In other words, we need the following

condition to hold:

Condition 1: For every pair (x, y) ∈ K×K satisfying (x, y) 6= (0, 0), we
have x2 + y2 6= 0 in K.

Thus, K′ is a field if Condition 1 holds. Conversely, if K′ is a field, then Condition
1 holds (because if (x, y) ∈ K×K satisfies (x, y) 6= (0, 0), then (x, y) (x,−y) =(

x2 + y2, 0
)

would have to be 6= (0, 0) in order for K′ to be a field71). So K′ is a
field if and only if Condition 1 holds.

If K = Z/p for some prime p, then Condition 1 can be restated as follows:

Condition 1’: For every pair (x, y) ∈ (Z/p)× (Z/p) satisfying (x, y) 6=
(0, 0), we have x2 + y2 6= 0 in Z/p.

71by Exercise 5.5.2
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We can further restate Condition 1’ in terms of integers by replacing the residue
classes x and y with their representatives a and b:

Condition 2: For every pair (a, b) ∈ Z×Z such that not both a and b are
divisible by p, the sum a2 + b2 is not divisible by p.

So the ring K′ constructed from K = Z/p is a field if and only if Condition 2
holds. When does Condition 2 hold?

Example 5.6.8. Let K = Z/p.
(a) If p = 2, then Condition 2 fails for (a, b) = (1, 1). So K′ is not a field for

p = 2.
(b) If p = 3, then Condition 2 holds. So K′ is a field for p = 3. Thus we have

found a field with 32 = 9 elements.
(c) If p = 5, then Condition 2 fails for (a, b) = (1, 2). So K′ is not a field for

p = 5.

This suggests that the following:

Proposition 5.6.9. A prime p satisfies Condition 2 if and only if p ≡ 3 mod 4.

Thus, if we set K = Z/p where p is a prime of Type 3, then K′ will be a field. So
we have found a field K′ with p2 elements for any prime p of Type 3. What about
the other primes?

We can try to vary the construction above: Instead of adjoining a square root of
−1, we adjoin a square root of some other element η ∈ Z/p.

Definition 5.6.10. Let K be a ring. A square (in K) means an element of the form
a2 for some a ∈ K.

Now, we generalize Definition 5.6.4 as follows:

Definition 5.6.11. Let K be a commutative ring. Let η ∈ K.
(a) Let K′η be the set of all pairs (a, b) ∈ K×K.
(b) For each r ∈ K, we denote the pair (r, 0) ∈ K′η by rK′η . We identify r ∈ K

with rK′η = (r, 0) ∈ K′η, so that K becomes a subset of K′η.
(c) We let iη be the pair (0, 1) ∈ K′η.
(d) We define three binary operations +, − and · on K′η by setting

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac + ηbd, ad + bc)

for all (a, b) ∈ K′η and (c, d) ∈ K′η.
(e) If α, β ∈ K′η, then we write αβ for α · β.
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Note that K′η differs from K′ only in how the multiplication is defined. Note also
that K′−1 = K′.

Theorem 5.6.12. (a) The set K′η defined in Definition 5.6.11 (equipped with the
operations + and · and the elements 0K′η and 1K′η ) is a commutative ring. Its
subtraction is the operation − defined in Definition 5.6.11 (d).

(b) If K is a field and η is not a square in K, then K′η is a field.
(c) Let p be a prime. There always exists an element η ∈ Z/p that is not a

square, unless p = 2.

Now, if p is a prime with p > 2, then Theorem 5.6.12 (c) yields that there exists
an element η ∈ Z/p that is not a square; therefore, Theorem 5.6.12 (b) shows that
K′η is a field where K = Z/p. This is a field with p2 elements.

Is there a field of size 4, too?
We cannot get such a field by adjoining a square root to Z/2. So let us instead

try to adjoin an element j such that j2 = j + 1. Formally, we can do this as follows:
We define K′′ as the set of all pairs (a, b) ∈ (Z/2)× (Z/2), and we define three
operations +, − and · on K′′ by

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac + bd, ad + bc + bd) .

You can check that this is a field with 4 elements.
Thus, for each prime p, we have found a field with p2 elements.
For the sake of completeness, let me mention a third idea for constructing fields

of size p2: Recall that our field Z/p of size p consisted of residue classes of inte-
gers modulo p. What happens if we take the residue classes of Gaussian integers
modulo a Gaussian prime π ?

I will not go into details, but here is a summary:

• The result is always a field of size N (π).

• If π is not unit-equivalent to an integer, then this is a field that we already
know (namely, Z/p for p = N (π)) with its elements relabelled.

• If π is unit-equivalent to an integer, then π is unit-equivalent to a prime p
of Type 3, and the field of residue classes modulo π will be a field with p2

elements. Namely, it will be the field K′ we constructed above (for K = Z/p),
with its elements relabelled.

So this approach only gets us fields of size p2 when p is a prime of Type 3; it is
thus inferior to the second idea above. Nevertheless, it illustrates a general idea:
that residue classes make sense not only for integers.

Warning: When p is a prime, the ring Z/p2 is not a field; thus, the field with p2

elements that we constructed is not Z/p2.
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Now, what about finite fields of size p3, p4, . . . ? What about finite fields of size 6
?

Spoiler: It turns out that the former exist, while the latter do not. We will
hopefully prove this later. More generally, for an integer n > 1, there exists a field
of size n if and only if n is a prime power (= a positive power of a prime). Even
better, if n is a prime power, then a field of size n is unique up to relabeling. We
hope to see a proof of this (at least of the existence part) further on in this class.

5.7. Cartesian products

Next comes a basic and unimaginative way of constructing new rings from old:

Definition 5.7.1. Let K1, K2, . . . , Kn be n rings. Consider the set K1×K2× · · · ×
Kn, whose elements are n-tuples (k1, k2, . . . , kn) with ki ∈ Ki.

We define operations + and · on K1 ×K2 × · · · ×Kn by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) and
(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn) .

Proposition 5.7.2. Let K1, K2, . . . , Kn be n rings.
(a) The set K1 ×K2 × · · · ×Kn, endowed with the operations + and · we just

defined and with the zero (0, 0, . . . , 0) and the unity (1, 1, . . . , 1), is a ring.
(b) If the rings K1, K2, . . . , Kn are commutative, then so is the ring K1 ×K2 ×
· · · ×Kn.

Definition 5.7.3. The ring K1×K2× · · · ×Kn constructed in Proposition 5.7.2 is
called the Cartesian product (or direct product) of the rings K1, K2, . . . , Kn.

Example 5.7.4. We have already seen a Cartesian product. Indeed, recall the
binary operations XOR defined back in Subsection 1.6.4.

(a) We first defined an operation XOR on bits (Definition 1.6.3), and then de-
fined an operation XOR on bitstrings (Definition 1.6.4). It is easy to see that

({0, 1} , XOR, ·, 0, 1)

is a commutative ring. Let me call this ring X for now. Note that this ring X can
be seen as Z/2 with its elements relabeled (more precisely, the elements [0]2 and
[1]2 of Z/2 need to be relabelled as 0 and 1 in order to get X); for example, the
correspondence between the XOR operation on X and the addition on Z/2 can
be seen by comparing their results face to face:

0 XOR 0 = 0 and [0]2 + [0]2 = [0]2 ,
0 XOR 1 = 1 and [0]2 + [1]2 = [1]2 ,
1 XOR 0 = 1 and [1]2 + [0]2 = [1]2 ,
1 XOR 1 = 0 and [1]2 + [1]2 = [0]2 .
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(b) Let m ∈ N. In Definition 1.6.4, we defined a binary operation XOR on
{0, 1}m, i.e., on length-m bitstrings. This gives a ring(

{0, 1}m , XOR, entrywise multiplication, 00 · · · 0, 11 · · · 1
)

of bitstrings. This ring is precisely the Cartesian product

X×X× · · · ×X︸ ︷︷ ︸
m times

.

5.8. Matrices and matrix rings

Convention 5.8.1. In this section, we fix a ring K.

We take the familiar concept of matrices, and generalize it in a straightforward way,
allowing matrices with entries in K:

Definition 5.8.2. Given n, m ∈ N, we define an n × m-matrix over K to be a
rectangular table with n rows and m columns whose entries are elements of K.
When K is clear from the context (or irrelevant), we just say “n × m-matrix”
instead of “n×m-matrix over K”.

For example, if K = Q, then (
0 1/3 −6
−1 −2/5 1

)
is a 2× 3-matrix over K.

(Formally, an n×m-matrix is defined as a map from {1, 2, . . . , n} × {1, 2, . . . , m}
to K. Its entry in row i and column j is then defined to be the image of the pair
(i, j) under this map.)

Note that the “×” symbol in the notion of an “n× m-matrix” is just a symbol,
not an invitation to actually multiply the numbers n and m together! For example,
2 · 3 = 3 · 2, yet a 2× 3-matrix is not the same as a 3× 2-matrix.

Let us define two pieces of notation:

Definition 5.8.3. Let A be an n × m-matrix over K. Let i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , m}. The (i, j)-th entry of A is defined to be the entry of A in row i
and column j.

Definition 5.8.4. Let n, m ∈N. Assume that we are given some element ai,j ∈ K

for every (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m}. Then, we shall use the notation(
ai,j
)

1≤i≤n, 1≤j≤m (70)
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for the n×m-matrix 
a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
... . . . ...

an,1 an,2 · · · an,m


(this is the n×m-matrix whose (i, j)-th entry is ai,j for all i and j).

For example,

(i + j)1≤i≤3, 1≤j≤4 =

 2 3 4 5
3 4 5 6
4 5 6 7

 and

(i− j)1≤i≤3, 1≤j≤4 =

 0 −1 −2 −3
1 0 −1 −2
2 1 0 −1

 .

The letters i and j in the notation (70) are not set in stone; we can use any other
letters instead. For example,

(i− j)1≤i≤3, 1≤j≤4 = (x− y)1≤x≤3, 1≤y≤4 = (j− i)1≤j≤3, 1≤i≤4 .

Definition 5.8.5. Let n, m ∈ N. Then, Kn×m will denote the set of all n × m-
matrices. (Some call it Mn,m (K) instead.)

Again, the “×” symbol in this notation is just a symbol; it does not stand for a
product of numbers.

Definition 5.8.6. (a) A matrix means an n×m-matrix for some n, m ∈N.
(b) A square matrix means an n× n-matrix for some n ∈N.

For example,
(

1 2 6
3 4 5

)
is a matrix, and

(
2 6
4 5

)
is a square matrix.

We now define various operations with matrices:

Definition 5.8.7. Fix n, m ∈N.
(a) The sum A + B of two n×m-matrices A and B is defined entrywise: i.e., if

A =
(
ai,j
)

1≤i≤n, 1≤j≤m and B =
(
bi,j
)

1≤i≤n, 1≤j≤m, then

A + B =
(
ai,j + bi,j

)
1≤i≤n, 1≤j≤m .

(b) The difference A− B of two n× m-matrices A and B is defined entrywise:
i.e., if A =

(
ai,j
)

1≤i≤n, 1≤j≤m and B =
(
bi,j
)

1≤i≤n, 1≤j≤m, then

A− B =
(
ai,j − bi,j

)
1≤i≤n, 1≤j≤m .
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(c) We define scaling of n× m-matrices as follows: If λ ∈ K and A ∈ Kn×m,
then the matrix λA ∈ Kn×m is defined by multiplying each entry of A by λ.
Formally speaking: if A =

(
ai,j
)

1≤i≤n, 1≤j≤m, then

λA =
(
λai,j

)
1≤i≤n, 1≤j≤m .

To be more honest, the operation we defined in Definition 5.8.7 (c) should have
been called “left scaling” rather than “scaling”. And we should have defined an
analogous operation called “right scaling”, which takes an element λ ∈ K and a
matrix A =

(
ai,j
)

1≤i≤n, 1≤j≤m ∈ Kn×m, and returns a new matrix

Aλ =
(
ai,jλ

)
1≤i≤n, 1≤j≤m .

But we will mostly be dealing with the case when the ring K is commutative; and
in this case, we always have Aλ = λA (meaning that “right scaling” and “left
scaling” are the same operation). Thus, we take the liberty to neglect the “right
scaling” operation. (Its properties are analogous to the corresponding properties
of “left scaling” anyway.)

Let us now define an operation on matrices that is not computed entrywise: their
product.

Definition 5.8.8. Let n, m, p ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m be an n×m-matrix.

Let B =
(
bi,j
)

1≤i≤m, 1≤j≤p be an m× p-matrix. Then, we define the product AB of
the two matrices A and B by

AB =

(
m

∑
k=1

ai,kbk,j

)
1≤i≤n, 1≤j≤p

.

This is an n× p-matrix.

So you can add together two n×m-matrices, but only multiply an n×m-matrix
with an m× p-matrix. (You cannot multiply two n×m-matrices, unless n = m.)

Next, we define two special families of matrices:

Definition 5.8.9. (a) If n, m ∈ N, then the n×m zero matrix is defined to be the
n×m-matrix

(0)1≤i≤n, 1≤j≤m =


0 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

It is called 0n×m.
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(b) If n ∈N, then the n× n identity matrix is defined to be the n× n-matrix

(
δi,j
)

1≤i≤n, 1≤j≤n =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 ,

where

δi,j =

{
1, if i = j;
0, if i 6= j

.

(Note that using the Iverson bracket notation we introduced in Exercise 2.17.2,
we have δi,j = [i = j] · 1K.)

The n× n identity matrix is called In.

Note that the 0 and the 1 here are the zero and the unity of K.
Thus, a zero matrix can be of any size, but an identity matrix has to be a square

matrix.
If n, m ∈N and A ∈ Kn×m, then −A shall denote the matrix 0n×m − A ∈ Kn×m.
The following rules hold for addition, subtraction, multiplication and scaling of

matrices:

Theorem 5.8.10. Let n, m, p, q ∈N.
(a) We have A + B = B + A for any A, B ∈ Kn×m.
(b) We have A + (B + C) = (A + B) + C for any A, B, C ∈ Kn×m.
(c) We have A + 0n×m = 0n×m + A = A for any A ∈ Kn×m.
(d) We have A · Im = In · A = A for any A ∈ Kn×m.
(e) In general, we do not have AB = BA. In fact, it can happen that one of AB

and BA is defined and the other is not; but even if both are defined, they can be
distinct (even if K is commutative).

(f) We have A (BC) = (AB)C for any A ∈ Kn×m, B ∈ Km×p and C ∈ Kp×q.
(g) We have A (B + C) = AB + AC for any A ∈ Kn×m and B, C ∈ Km×p.
We have (A + B)C = AC + BC for any A, B ∈ Kn×m and C ∈ Km×p.
(h) We have A · 0m×p = 0n×p and 0p×n · A = 0p×m for any A ∈ Kn×m.
(i) If A, B, C ∈ Kn×m, then we have the equivalence (A− B = C) ⇐⇒

(A = B + C).
(j) We have r (A + B) = rA + rB for any r ∈ K and A, B ∈ Kn×m.
(k) We have (r + s) A = rA + sA for any r, s ∈ K and A ∈ Kn×m.
(l) We have r (sA) = (rs) A for any r, s ∈ K and A ∈ Kn×m.
(m) We have r (AB) = (rA) B = A (rB) for any r ∈ K and A ∈ Kn×m and

B ∈ Km×p if K is commutative. The first equality also holds in general.
(n) We have − (rA) = (−r) A = r (−A) for any r ∈ K and A ∈ Kn×m.
(o) We have 1A = A for any A ∈ Kn×m.
(p) We have (−1) A = −A for any A ∈ Kn×m.
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(q) We have − (A + B) = (−A) + (−B) for any A, B ∈ Kn×m.
(r) We have −0n×m = 0n×m.
(s) We have − (−A) = A for any A ∈ Kn×m.
(t) We have − (AB) = (−A) B = A (−B) for any A ∈ Kn×m and B ∈ Km×p.
(u) We have A− B− C = A− (B + C) for any A, B, C ∈ Kn×m. (Here and in

the following, “A− B− C” should be read as “(A− B)− C”.)

Corollary 5.8.11. Let n ∈ N. The set Kn×n of all n× n-matrices (endowed with
addition +, multiplication ·, zero 0n×n and unity In) is a ring.

Definition 5.8.12. Let n ∈N. The ring Kn×n defined in Corollary 5.8.11 is called
the n-th matrix ring over K.

So we know that Kn×n is a ring whenever n ∈ N. Hence, Proposition 5.4.6
shows that we can define finite sums and finite products in Kn×n (but finite prod-
ucts need to have the order of their factors specified: i.e., we can make sense of
“A1A2 · · · Ak” but not of “ ∏

s∈S
As”). These also make sense for non-square matrices

whenever “their sizes match”: e.g., you can define a sum of finitely many n× m-
matrices, and a product A1A2 · · · Ak where each Ai is an ni × ni+1-matrix (for any
n1, n2, . . . , nk+1 ∈ N). Standard rules for sums and products hold, at least to the
extent they don’t rely on commutativity of multiplication.

But Kn×n is not the only ring we can make out of matrices. In fact, Kn×n is full
of interesting subrings, which are obtained by restricting ourselves to special kinds
of matrices. Here are some of these:

Definition 5.8.13. Let n ∈N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n be an n× n-matrix.
(a) We say that A is lower-triangular if and only if

ai,j = 0 whenever i < j.

(b) We say that A is upper-triangular if and only if

ai,j = 0 whenever i > j.

(c) We say that A is diagonal if and only if

ai,j = 0 whenever i 6= j.

For example, the 2× 2-matrix
(

1 2
0 3

)
is upper-triangular (but not lower-triangular),

while the 2× 2-matrix
(

1 0
2 3

)
is lower-triangular (but not upper-triangular).
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Proposition 5.8.14. Let n ∈N.
(a) The set of all lower-triangular n× n-matrices is a subring of Kn×n.
(b) The set of all upper-triangular n× n-matrices is a subring of Kn×n.
(c) The set of all diagonal n× n-matrices is a subring of Kn×n.

Example 5.8.15. For n = 2, the multiplication of lower-triangular n× n-matrices
looks as follows: (

a b
0 c

)(
x y
0 z

)
=

(
ax ay + bz
0 cz

)
,

and the multiplication of diagonal n× n-matrices looks as follows:(
a 0
0 c

)(
x 0
0 z

)
=

(
ax 0
0 cz

)
.

Note that diagonal n× n-matrices are “essentially” the same as n-tuples of ele-
ments of K; the ring they form is K×K× · · · ×K︸ ︷︷ ︸

n times

in disguise. We will make this

precise in Example 5.10.3 (using the notion of a ring isomorphism).
One of the most important operations on matrices is taking the transpose:

Definition 5.8.16. Let n ∈ N and m ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m be an

n×m-matrix. Then, we define an m× n-matrix AT by

AT =
(
aj,i
)

1≤i≤m, 1≤j≤n .

Thus, for each i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}, the (i, j)-th entry of AT is
the (j, i)-th entry of A. This matrix AT is called the transpose of A.

For example,(
1 2 3
4 5 6

)T

=

 1 4
2 5
3 6

 and
(

1 2
1 0

)T

=

(
1 1
2 0

)
.

Let us use this occasion to define column vectors and row vectors:

Definition 5.8.17. Let n ∈N.
(a) A column vector of size n will mean an n× 1-matrix.
(b) A row vector of size n will mean a 1× n-matrix.

For example,
(

1
2

)
is a column vector of size 2, while

(
1 2 3

)
is a row vector

of size 3. We will often identify a row vector
(

a1 a2 · · · an
)
∈ K1×n with the

corresponding n-tuple (a1, a2, . . . , an).
If v is a column vector of size n, then vT is a row vector of size n.
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5.9. Ring homomorphisms

Definition 5.9.1. Let K and L be two rings. A ring homomorphism from K to L

means a map f : K→ L that satisfies the following four axioms:

• (a) We have f (a + b) = f (a) + f (b) for all a, b ∈ K. (This is called “ f
respects addition” or “ f preserves addition”.)

• (b) We have f (0) = 0. (This, of course, means f (0K) = 0L.)

• (c) We have f (ab) = f (a) f (b) for all a, b ∈ K. (This is called “ f respects
multiplication” or “ f preserves multiplication”.)

• (d) We have f (1) = 1. (This, of course, means f (1K) = 1L.)

Remark 5.9.2. The statement “ f (a + b) = f (a) + f (b)” in Definition 5.9.1
should, of course, be understood as “ f (a +K b) = f (a) +L f (b)”. Likewise,
the statement “ f (ab) = f (a) f (b)” should be understood as “ f (a ·K b) =
f (a) ·L f (b)”. In Definition 5.9.1, we could afford omitting the “K” and “L”
subscripts under the “+” and “·” signs because it is always clear whether the
things being added (or multiplied) are in K or in L; but in many practical situa-
tions we do not have such luxury (for example, because K and L have elements
in common) and thus need to include these subscripts. (See Example 5.10.6 for
an example of such a situation.)

Remark 5.9.3. The axiom (b) in Definition 5.9.1 is redundant – it follows from
axiom (a).

If the axiom (b) in Definition 5.9.1 is redundant, then why did we require it? One
reason to do so is purely aesthetic: It ensures that each of the two “multiplicative”
axioms (viz., axioms (c) and (d)) is matched by a corresponding “additive” axiom
(viz., axioms (a) and (b)). We cannot omit axiom (d)72; thus, to avoid breaking
the symmetry, I prefer not to omit axiom (b) either. But there is also another
reason to keep axiom (b). Indeed, if we want to define semiring homomorphisms (i.e.,
the analogue of ring homomorphisms in which rings are replaced by semirings),
then axiom (b) is no longer redundant (since we cannot subtract elements in a
semiring); thus, if we omitted axiom (b), our definition of ring homomorphisms
would become less robust with respect to replacing “ring” by “semiring”.

Example 5.9.4. Let K be any ring. The map id : K→ K is a ring homomorphism.

We can slightly generalize Example 5.9.4 as follows:

72More precisely: if we did, then we would obtain a weaker, less useful notion of ring homomor-
phism.
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Example 5.9.5. Let K be a subring of a ring L. Let ι : K → L be the map that
sends each a ∈ K to a itself. (This map is called the inclusion map from K to L.)
Then, ι is a ring homomorphism.

Example 5.9.6. Let K be any ring, and let M be the zero ring {0}. Then, the map

K→M, a 7→ 0

is a ring homomorphism.

Example 5.9.7. Let n be an integer. Consider the projection

π≡
n

: Z→ Z/n,

s 7→ [s]n .

This is a ring homomorphism.

Example 5.9.8. Let n be a positive integer. Consider the map

Rn : Z/n→ Z,
[s]n 7→ s%n.

(This is the map sending [0]n , [1]n , . . . , [n− 1]n to the numbers 0, 1, . . . , n − 1.)
This map Rn is not a ring homomorphism.

Warning: The same people who don’t require rings to have a unity, of course, do
not require ring homomorphisms to satisfy axiom (d). So for them, Rn would be a
ring homomorphism for n = 1.

Example 5.9.9. Let n and d be integers such that d | n. Then, the map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d

is a ring homomorphism.

Remark 5.9.10. Let n and d be integers. Then:
(a) If d | n, then the only ring homomorphism from Z/n to Z/d is πn,d.
(b) If d - n, then there is no ring homomorphism from Z/n to Z/d.

Remark 5.9.10 is not hard to prove, but we won’t do this here.

Example 5.9.11. Consider the map µ : C → R2×2 defined in Proposition 4.1.31.
This map µ is a ring homomorphism.
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Example 5.9.12. Let ιC be the map

R→ C,
r 7→ rC = (r, 0) .

This is a ring homomorphism.

Example 5.9.13. Let K be a commutative ring.
Let K2≤2 be the ring of upper-triangular 2× 2-matrices. (This is a ring, by

Proposition 5.8.14.)
Let K2≥2 be the ring of lower-triangular 2 × 2-matrices. (This is a ring, by

Proposition 5.8.14.)
(a) Consider the map

K2≤2 → K2≥2,(
a b
0 c

)
7→
(

a 0
b c

)
.

In other words, this is the map sending each A to AT (the transpose of A). Is
this a ring homomorphism? No, because (AB)T is BT AT, not ATBT (in general).
This is called a ring antihomomorphism. Note that if K was an arbitrary (not
commutative) ring, then (AB)T would (in general!) equal neither BT AT nor
ATBT.

(b) Consider the map

K2≤2 → K2≥2,(
a b
0 c

)
7→
(

c 0
b a

)
.

In other words, this is the map that reverses the order of the rows and reverses
the order of the columns. You can check that this is a ring homomorphism. This
holds even if K is an arbitrary (not commutative) ring.

Proposition 5.9.14. Let K and L be two rings. Let f : K → L be a ring homo-
morphism.

(a) We have f (−a) = − f (a) for all a ∈ K. (In other words, f “preserves
additive inverses”.)

(b) If a ∈ K is invertible, then f (a) ∈ L is also invertible, and we have
f
(
a−1) = ( f (a))−1. (In other words, f “preserves multiplicative inverses”.)
(c) We have f (a− b) = f (a)− f (b) for all a, b ∈ K.

(d) If the rings K and L are commutative, then we have f
( a

b

)
=

f (a)
f (b)

for all

a, b ∈ K for which b is invertible.
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(e) We have f
(

∑
s∈S

as

)
= ∑

s∈S
f (as) whenever S is a finite set and as ∈ K for all

s ∈ S.
(f) We have f (a1a2 · · · ak) = f (a1) f (a2) · · · f (ak) whenever a1, a2, . . . , ak ∈ K.

(g) If the rings K and L are commutative, then f
(

∏
s∈S

as

)
= ∏

s∈S
f (as) when-

ever S is a finite set and as ∈ K for all s ∈ S.
(h) We have f (an) = ( f (a))n for each a ∈ K and each n ∈N.
(i) We have f (na) = n f (a) for each a ∈ K and each n ∈ Z.

The composition of two ring homomorphisms is again a ring homomorphism,
as the following proposition shows:

Proposition 5.9.15. Let K, L and M be three rings. Let f : K→ L and g : L→M

be two ring homomorphisms. Then, the composition g ◦ f : K → M is also a
ring homomorphism.

5.10. Ring isomorphisms

Definition 5.10.1. Let K and L be two rings. Let f : K → L be a map. Then, f
is called a ring isomorphism if and only if f is invertible (i.e., bijective) and both f
and f−1 are ring homomorphisms.

Example 5.10.2. Let K be a ring. The identity map id : K→ K is a ring isomor-
phism.

Example 5.10.3. Let K be a ring. Let n ∈N. Consider the map

dn : K×K× · · · ×K︸ ︷︷ ︸
n times

→ {diagonal n× n-matrices over K} ,

(d1, d2, . . . , dn) 7→


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
... . . . ...

0 0 0 · · · dn

 .

Note that both K×K× · · · ×K︸ ︷︷ ︸
n times

and {diagonal n× n-matrices over K} are rings

(the former by Definition 5.7.3; the latter by Proposition 5.8.14 (c)).
The map dn is invertible. I claim that furthermore, dn is a ring isomorphism.

This is easiest to check using Proposition 5.10.5 further below. Note that this
claim is a rigorous version of our earlier informal statement that the ring formed
by the diagonal n× n-matrices is just K×K× · · · ×K︸ ︷︷ ︸

n times

in disguise. The isomor-

phism dn is responsible for the disguise!
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Example 5.10.4. The map from K2≤2 to K2≥2 introduced in Example 5.9.13 (b) is
a ring isomorphism. Its inverse is the map

K2≥2 → K2≤2,(
c 0
b a

)
7→
(

a b
0 c

)
.

Proposition 5.10.5. Let K and L be two rings. Let f : K → L be an invertible
ring homomorphism. Then, f is a ring isomorphism.

Example 5.10.6. Recall the ring Z′ introduced in Section 5.2. It is the set Z,
endowed with the usual addition + and the unusual multiplication ×̃ and the
elements 0Z′ = 0 and 1Z′ = −1.

As we have suggested back in that section, this ring Z′ is simply a relabelled
version of Z. We now have the proper language for this: The map

ϕ : Z→ Z′, a 7→ −a

is a ring isomorphism. This can easily be checked using Proposition 5.10.5, since
this map ϕ is invertible (actually, ϕ ◦ ϕ = id), and since ϕ is a ring homomor-
phism (because of (46), (47), (48) and (49)).

Example 5.10.7. Let m and n be two coprime positive integers. Then, (Z/m)×
(Z/n) is a ring (according to Definition 5.7.3). Theorem 3.6.2 says that the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. This map Sm,n is furthermore a ring isomor-
phism.

Note one more simple general fact:

Proposition 5.10.8. Let K and L be two rings. Let f : K → L be a ring isomor-
phism. Then, f−1 : L→ K is also a ring isomorphism.

Let me attempt to discuss the use of ring isomorphisms; unfortunately, I will have
to be vague at this point. Ring homomorphisms allow us to transfer some things
from one ring into another. For example, if f : K→ L is a ring homomorphism
from a ring K to a ring L, then f sends any invertible element of K to an invertible
element of L (by Proposition 5.9.14 (b)). However, they are generally only “one-
way roads”. For instance, if f : K→ L is a ring homomorphism from a ring K

to a ring L, and if a ∈ K is such that f (a) ∈ L is invertible, then a may and
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may not be invertible. A ring homomorphism from a ring K to a ring L does not
determine either ring in terms of the other. You can have homomorphisms between
completely different rings, such as from Z to the zero ring, or from Z to C.

On the other hand, ring isomorphisms let us go “back and forth” between the
rings they connect; if we have a ring isomorphism f : K → L, we can regard L as
being “the same ring as K, with its elements renamed”. (The isomorphism f does
the renaming: you should think of each a ∈ K being renamed as f (a).)

Thus, when you have a ring isomorphism f : K → L, you can take any “intrin-
sic” property73 of K and obtain the corresponding property of L, and vice versa.
Here is an example:

Proposition 5.10.9. Let K and L be two rings. Let f : K → L be a ring isomor-
phism.

(a) If K is commutative, then L is commutative.
(b) If 0 6= 1 in K, then 0 6= 1 in L.
(c) If K is a skew field, then L is a skew field.
(d) If K is a field, then L is a field.

The idea of the above proof (and of many similar proofs, which we will omit) is
that if you have a ring isomorphism f : K → L, you can transport any equality
or element from K to L (via f ) or vice versa (via f−1); and each time, the ring
operations (+, −, ·, ∑, 0, 1) do not get damaged on the way (since f and f−1 are
ring homomorphisms).

Here is another example of this sort of reasoning:

Proposition 5.10.10. Let K and L be two rings. Let f : K→ L be a ring isomor-
phism. Then:

(a) We have

|{invertible elements of K}| = |{invertible elements of L}| .

(b) We have

|{idempotent elements of K}| = |{idempotent elements of L}| .

Here, an element a of a ring K is said to be idempotent if a2 = a.
Now let us see some applications of ring isomorphisms.

73What do we mean by “intrinsic”? Roughly speaking, an intrinsic property of a ring is a property
that can be stated entirely in terms of its structure (i.e., its ground set and its operations + and ·
and its elements 0 and 1), without referring to outside objects. For instance, “every element a of
the ring satisfies a3 = a2” is an intrinsic property (since a3 = aaa and a2 = aa are defined purely
in terms of the operation ·), and “the ring has two nonzero elements a and b such that ab = 0”
is an intrinsic property as well (provided that “nonzero” and “0” refer to the zero of the ring,
rather than the number 0), but “the ring contains the number 3

√
2” is not an intrinsic property

(since it refers to an outside object – namely, the number 3
√

2).
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Recall that we proved Theorem 2.14.4 using the Chinese Remainder Theorem in
Section 3.6. Let us redo this proof in a shorter way:

The next exercise offers another example of the same strategy:

Exercise 5.10.1. Let p and q be two distinct primes. How many idempotent
elements does the ring Z/ (pq) have?

Example 5.10.11. Let A be the 2× 2-matrix
(

0 1
1 1

)
∈ Z2×2.

On midterm #2 exercise 5, you have encountered the ring

F = {aA + bI2 | a, b ∈ Z} =
{(

b a
a a + b

)
| a, b ∈ Z

}
.

This is a subring of the matrix ring Z2×2.
On homework set #5 exercise 5, you have encountered the ring

Z [φ] = {a + bφ | a, b ∈ Z} ,

where φ =
1 +
√

5
2

= 1. 618 . . . is the golden ratio. This is a subring of R.

I claim that there is an isomorphism from Z [φ] to F . Namely, the map

f : Z [φ]→ F ,

a + bφ 7→ bA + aI2 =

(
a b
b a + b

)
is a ring isomorphism (but not the only one!).

(Check this by hand.)

Definition 5.10.12. Let K and L be two rings. We say that the rings K and L are
isomorphic if there exists a ring isomorphism f : K→ L.

We write “K ∼= L (as rings)” to say that the rings K and L are isomorphic.

Example 5.10.13. Let K be any ring, and let M be the zero ring {0}. In Example
5.9.6, we saw that the map

K→M, a 7→ 0

is a ring homomorphism. This homomorphism is a ring isomorphism if and
only if the ring K is trivial (i.e., has only one element). Thus, each trivial ring is
isomorphic to the zero ring.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt2s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw5s.pdf
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5.11. Freshman’s Dream

Let us now prove a property of p-th powers in rings. At this point, this property
appears to be a mere curiosity, but it will come useful later (in proving Theorem
2.17.20).

Theorem 5.11.1. Let p be a prime. Let K be a ring such that p · 1K = 0. Let
a, b ∈ K be such that ab = ba. Then,

(a + b)p = ap + bp.

Theorem 5.11.1 is often called “Freshman’s Dream” (in writing) or “Idiot’s Bino-
mial Formula” (colloquially).

Example 5.11.2. Let p be a prime.
(a) The simplest example of a ring K in which p · 1K = 0 (apart from the

zero ring) is the ring Z/p. Unfortunately, this is too simple to make a good
example for Theorem 5.11.1. Indeed, if K = Z/p, then any α ∈ K satisfies
αp = α (because we can write α as [a]p for some a ∈ Z, and then apply Theorem
2.15.1 (b) to this a). Thus, as long as we are staying in K = Z/p, the equality
(a + b)p = ap + bp claimed by Theorem 5.11.1 boils down to a + b = a + b (since
(a + b)p = a + b and ap = a and bp = b).

(b) In Section 5.6, we have taken a prime p > 2, and constructed a finite field
K′η of size p2 (by picking a non-square η ∈ Z/p and performing the construction
in Definition 5.6.11). This field satisfies p · 1K′η = 0, so we can apply Theorem
5.11.1 to it as well. This time, αp = α will no longer hold for all α in the field, so
the result we get will not be obvious.

(c) Here is another example. Let n ∈N, and let K be the matrix ring (Z/p)n×n.
This matrix ring K satisfies p · 1K = 0 (since scaling is defined entrywise on
matrices). Thus, Theorem 5.11.1 yields that any a, b ∈ K satisfying ab = ba must
satisfy (a + b)p = ap + bp. Of course, not every two matrices a, b ∈ K satisfy
ab = ba, but there are many matrices that do.

A particularly striking situation is the following: Assume that n ≤ p, and let
N ∈ K be a strictly lower-triangular n× n-matrix. For example, if n = 3, then N

has the form

 0 0 0
u 0 0
v w 0

. Then, I claim that

(In + N)p = In. (71)

To prove this, we observe that In · N = N = N · In. Hence, Theorem 5.11.1 can
be applied to a = In and b = N. As a result, we obtain (In + N)p = Ip

n + Np. But
N is a strictly lower-triangular n× n-matrix, and therefore satisfies Nn = 0n×n

https://en.wikipedia.org/wiki/Freshman's_dream#Prime_characteristic
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(by [Grinbe18, Corollary 3.78]), and therefore

Np = Nn︸︷︷︸
=0n×n

Np−n (since n ≤ p)

= 0n×nNp−n = 0n×n.

Furthermore, Ip
n = In (since In is the unity of the ring K). Hence, (In + N)p =

Ip
n︸︷︷︸

=In

+ Np︸︷︷︸
=0n×n

= In + 0n×n = In. This proves (71).

We note that Theorem 5.11.1 would be false if p wasn’t assumed to be prime. For
example, it would be false for p = 4 (a simple counterexample being K = Z/4,
a = 1 and b = 1).

As a consequence of Theorem 5.11.1, we obtain some unexpected ring homomor-
phisms:

Corollary 5.11.3. Let p be a prime. Let K be a commutative ring such that
p · 1K = 0. Let F be the map

K→ K, a 7→ ap.

Then, F is a ring homomorphism.

The ring homomorphism F in Corollary 5.11.3 is called the Frobenius endomor-
phism74 of K.

6. Linear algebra over commutative rings

We shall now continue studying rings, but slowly shift our focus: So far, we have
been studying rings themselves, but now we are going to move towards structures
“over” rings, such as matrices and K-modules (a generalization of vector spaces).
The rings will no longer be the place where everything happens, but rather they
will “act” on our structures in the way scalars act on vectors in linear algebra.

6.1. An overview of matrix algebra over fields

Next I shall give a quick review of matrix algebra adapted to the situation in which
the entries of the vectors belong to an arbitrary field. This review will be quick
and terse, but can be skipped, since the rest of this course will not depend on it. It
does, however, provide context and examples for several constructions we will do
further on.

74The word “endomorphism” means “homomorphism of some object (here, a ring) to itself”, i.e.,
“homomorphism whose domain and codomain are the same”.
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I assume you have seen some basic matrix algebra: Gaussian elimination, ranks
of matrices, inverses of matrices, determinants, etc. (If not, see [Heffer17].)

Usually, these things are done for matrices over R or C. But we can try doing
the same with matrices over an arbitrary commutative ring K.

6.1.1. Matrices over fields

Let us first study the situation when K is a field.

Example: Let K = Z/3, and let A =

 0 1 1
1 0 1
1 1 0

 ∈ K3×3. (Here, of course, “0”

and “1” mean [0]3 and [1]3.) Let b =

 1
1
1

 ∈ K3×1. We want to find a column

vector x ∈ K3×1 such that Ax = b. This means, explicitly, to find x1, x2, x3 ∈ K

such that 
0x1 + 1x2 + 1x3 = 1;
1x1 + 0x2 + 1x3 = 1;
1x1 + 1x2 + 0x3 = 1.

Can we do this? Well, we can try: Augment the matrix A with the column b,
obtaining the augmented matrix

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 .

Now, we shall transform this matrix into reduced row echelon form (see [Strick13,
§5] or [Heffer17, Chapter One, §III]75) by a series of row operations (this is called
Gauss–Jordan reduction in [Heffer17, Chapter One, §III], and also appears as Method

75The reduced row echelon form is called “reduced echelon form” in [Heffer17].
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6.3 in [Strick13]):

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 swap row 2 with row 17→

 1 0 1 1
0 1 1 1
1 1 0 1


subtract row 1 from row 37→

 1 0 1 1
0 1 1 1
0 1 2 0

 (since − 1 = 2 in Z/3)

subtract row 2 from row 37→

 1 0 1 1
0 1 1 1
0 0 1 2


(this is a row echelon form, but not a reduced one)

subtract row 3 from row 17→

 1 0 0 2
0 1 1 1
0 0 1 2


subtract row 3 from row 27→

 1 0 0 2
0 1 0 2
0 0 1 2

 .

So for any vector x =

 x1
x2
x3

 ∈ K3×1, we have the following chain of equivalences:

(Ax = b)
⇐⇒ (Ax− b = 03×1)

⇐⇒

(A | b)


x1
x2
x3
−1

 = 03×1


since Ax− b = (A | b)


x1
x2
x3
−1




⇐⇒


 1 0 0 2

0 1 0 2
0 0 1 2




x1
x2
x3
−1

 = 03×1


since (A | b) 7→

 1 0 0 2
0 1 0 2
0 0 1 2

 by a sequence of row operations


⇐⇒

 x1 − 2
x2 − 2
x3 − 2

 =

 0
0
0

 ⇐⇒
 x1

x2
x3

 =

 2
2
2

 .
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So our linear system has the unique solution

x =

 2
2
2

 .

Next, let us try doing the same for K = Z/2, with the “same” matrix. (It will
not be literally the same matrix, of course, since 0 and 1 will now mean [0]2 and
[1]2.)

Thus, let K = Z/2, and let A =

 0 1 1
1 0 1
1 1 0

 ∈ K3×3. (Here, of course, “0” and

“1” mean [0]2 and [1]2.) Let b =

 1
1
1

 ∈ K3×1. We want to find a column vector

x ∈ K3×1 such that Ax = b. This means, explicitly, to find x1, x2, x3 ∈ K such that
0x1 + 1x2 + 1x3 = 1;
1x1 + 0x2 + 1x3 = 1;
1x1 + 1x2 + 0x3 = 1.

Can we do this? We can try as before: Augment the matrix A with the column
b, obtaining

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 .

Now, we shall transform this matrix into reduced row echelon form by a series of
row operations:

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 swap row 2 with row 17→

 1 0 1 1
0 1 1 1
1 1 0 1


subtract row 1 from row 37→

 1 0 1 1
0 1 1 1
0 1 1 0

 (since − 1 = 1 in Z/2)

subtract row 2 from row 37→

 1 0 1 1
0 1 1 1
0 0 0 1


subtract row 3 from row 17→

 1 0 1 0
0 1 1 1
0 0 0 1


subtract row 3 from row 27→

 1 0 1 0
0 1 1 0
0 0 0 1

 .
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So for any vector x =

 x1
x2
x3

 ∈ K3×1, we have the following chain of equivalences:

(Ax = b)
⇐⇒ (Ax− b = 03×1)

⇐⇒

(A | b)


x1
x2
x3
−1

 = 03×1



⇐⇒


 1 0 1 0

0 1 1 0
0 0 0 1




x1
x2
x3
−1

 = 03×1


⇐⇒

 x1 + x3
x2 + x3
−1

 =

 0
0
0

 ⇐⇒ (false)

(since −1 6= 0 in K). So our linear system has no solution.
By the way, you could have easily seen this from the system itself:

0x1 + 1x2 + 1x3 = 1;
1x1 + 0x2 + 1x3 = 1;
1x1 + 1x2 + 0x3 = 1.

Adding together the three equations, we get 0 = 1 (since 1+ 1 = 0 and 1+ 1+ 1 = 1
in Z/2), which is absurd. So the system has no solution.

Upshot: We can do linear algebra over any field more or less in the same as we
did over real/complex numbers. But the result may depend on the field.

Let me recall a couple theorems from linear algebra that hold (with the same
proofs) over any field:

Theorem 6.1.1. Let K be a field.
(a) Any matrix over K has a unique reduced row echelon form (abbreviated

RREF).
(b) If A ∈ Kn×m is any matrix and R is its RREF, then the row space, kernel (=

nullspace) and rank of A are equal to those of R. (Here, the row space, kernel and
rank of a matrix are defined in the same way as for real/complex matrices.)

(c) If A ∈ Kn×m is any matrix, and if b ∈ Kn×1 is any column vector, then the
equation Ax = b (for an unknown column vector x ∈ Km×1) can be solved us-
ing the Gaussian elimination algorithm (e.g., by forming the augmented matrix
(A | b), then transforming it into RREF, and reading off the solutions from this
RREF by the same method as you learned in Linear Algebra).



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 219

(d) If A ∈ Kn×m is a matrix with n < m, then there exists a nonzero x ∈ Km×1

such that Ax = 0n×1. (“Nonzero” means “distinct from 0m×1”; a nonzero vector
can have some zero entries.)

(e) Let A ∈ Kn×n. Then, the following are equivalent:

• The matrix A is invertible.

• The matrix A is row-equivalent to In. (Two matrices are said to be row-
equivalent if one can be transformed into the other via row operations:
swapping rows, scaling rows and adding a multiple of one row to another.)

• The matrix A is column-equivalent to In. (The definition of “column-
equivalent” is the same as of “row-equivalent”, but with columns being
used instead of rows.)

• The RREF of A is In.

• The RREF of A has n pivots.

• The rank of A is n.

• The equation Ax = 0n×1 (for an unknown x ∈ Kn×1) has only the trivial
solution (that is, x = 0n×1).

• For each vector b ∈ Kn×1, the equation Ax = b has a solution.

• For each vector b ∈ Kn×1, the equation Ax = b has a unique solution.

• The columns of A are linearly independent.

• The rows of A are linearly independent.

• There is a matrix B ∈ Kn×n such that AB = In.

• There is a matrix B ∈ Kn×n such that BA = In.

• We have det A 6= 0. (We will later define determinants.)

(Matrices satisfying these equivalent conditions are called nonsingular.)

6.1.2. What if K is not a field?

Things get weird when K is not a field. For an example, set K = Z/26. This is not
a field, since 26 is not prime (after all, 26 = 2 · 13). The ring Z/26 has been used
in classical cryptography, since its elements are in bijection with the letters of the
(modern) Roman alphabet:

0 7→ A, 1 7→ B, 2 7→ C, . . . .
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For example, the Hill cipher lets you encrypt a word using a 3× 3-matrix over Z/26
as a key. The idea is simple: You split the word into 3-letter chunks; you turn each
chunk into a column vector in (Z/26)3×1; and you multiply each of these columns
vectors by your key matrix. To decrypt, you would have to invert the key matrix.

So we want to know how to invert a matrix over Z/26.
If Z/26 was a field, you would know how to do this via Gaussian elimination.
Most of Theorem 6.1.1 collapses when K is not a field. For example, let K =

Z/26 and

A =

(
2 13

13 20

)
∈ K2×2.

(We are abusing notation here: In truth, the entries of A are not the integers
2, 13, 13, 20 but rather their residue classes [2]26 , [13]26 , [13]26 , [20]26. But we shall
simply write the integers instead and hope that the reader knows what we mean.)

Is this matrix A invertible?
Let us first try to find the RREF of A. If we would blindly follow the Gaussian

elimination algorithm, we would fail very quickly: None of the 4 entries of A
has a multiplicative inverse; thus we could not transform any entry of A into 1 by
scaling a row of A. But we can try to loosen Gaussian elimination by allowing more
strategic row operations: Instead of trying to get a 1 in a pivot position immediately
by scaling a row, we can attempt to obtain a 1 by row addition operations. For
example, we can transform our matrix A above as follows:(

2 13
13 20

)
subtract 6 times row 1 from row 27→

(
2 13
1 20

)
swap row 1 with row 27→

(
1 20
2 13

)
subtract 2 times row 1 from row 27→

(
1 20
0 25

)
scale row 2 by −17→

(
1 20
0 1

)
subtract 20 times row 2 from row 17→

(
1 0
0 1

)
= I2.

So our matrix A does have a RREF (namely, I2), and even is invertible! (We can
find an inverse of A by computing an RREF of the block matrix (A | I2); see, e.g.,
[Strick13, Method 11.11] for this procedure.)

What exactly was the method behind our above row-reduction procedure? Let

https://en.wikipedia.org/wiki/Hill_cipher
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us see how the first column has been transformed:(
2

13

)
subtract 6 times row 1 from row 27→

(
2
1

)
swap row 1 with row 27→

(
1
2

)
subtract 2 times row 1 from row 27→

(
1
0

)
.

So what we did was progressively making the entries of the first column smaller
by subtracting a multiple of the first entry from the second entry (and swapping
the two entries, in order to move the smaller entry into the first position). This is
exactly the Euclidean algorithm! (Or, rather, it would be the Euclidean algorithm if
we had used honest integers instead of residue classes in Z/26.)

What happens in general? In general, when K = Z/n, the Gaussian elimina-
tion algorithm as defined in linear algebra does not always work. Nevertheless, a
variant of it works, in which you do not directly scale rows to turn entries into 1,
but instead “minimize” the whole column using the Euclidean algorithm as we did
with our matrix A above. You will not always be able to get 1’s in pivot positions,
because the gcd (which the Euclidean algorithm computes) may not be 1; thus,
the result will not always be an RREF in the classical sense, but rather something
loosely resembling it.

For details, look up the Smith normal form (e.g., in [Elman18, §113]). Note that for
n = 0, we have Z/n ∼= Z (as rings), so this applies to matrices with integer entries.

6.1.3. Review of basic notions from linear algebra

Convention 6.1.2. For the rest of this section, we fix a field K. The elements of
K will be referred to as scalars.

In the linear algebra you have seen before, the scalars are usually real numbers (i.e.,
we have K = R), but much of the theory works in the same way for every field.

Definition 6.1.3. Let n ∈ N. Recall that K1×n is the set of all row vectors of size
n.

A subspace of K1×n means a subset S ⊆ K1×n satisfying the following axioms:

• (a) We have 01×n ∈ S.

• (b) If a, b ∈ S, then a + b ∈ S.

• (c) If a ∈ S and λ ∈ K, then λa ∈ S.

In other words, a subspace of K1×n is a subset of K1×n that contains the zero
vector and is closed under addition and scaling.

Subspaces are often called vector subspaces.
A similar definition defines subspaces of Kn×1 (column vectors).

https://en.wikipedia.org/wiki/Smith_normal_form
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There is a more general version of this definition, which extends it to subspaces
of arbitrary vector spaces (see Definition 6.7.3).

Definition 6.1.4. Let n ∈N. Let v1, v2, . . . , vk be some row vectors in K1×n.
(a) A linear combination of v1, v2, . . . , vk means a row vector of the form

λ1v1 + λ2v2 + · · ·+ λkvk, with λ1, λ2, . . . , λk ∈ K.

(b) The span of v1, v2, . . . , vk is defined to be the subset

{λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ K}
= {linear combinations of v1, v2, . . . , vk}

of K1×n. This span is a subspace of K1×n. (This is easy to check.)
(c) The vectors v1, v2, . . . , vk are said to be linearly independent if the only k-tuple

(λ1, λ2, . . . , λk) ∈ Kk satisfying λ1v1 + λ2v2 + · · ·+ λkvk = 01×n is

0, 0, . . . , 0︸ ︷︷ ︸
k times

.

(d) Let U be a subspace of K1×n. We say that v1, v2, . . . , vk form a basis of
U (or, more formally, (v1, v2, . . . , vk) is a basis of U) if and only if the vectors
v1, v2, . . . , vk are linearly independent and their span is U.

(e) Let U be a subspace of K1×n. We say that the list (v1, v2, . . . , vk) spans U
if and only if the span of v1, v2, . . . , vk is U. (More informally, instead of saying
“the list (v1, v2, . . . , vk) spans U”, we can say “the vectors v1, v2, . . . , vk span U”;
of course, this is not the same as saying that each of these k vectors on its own
spans U.)

All the terminology we have just introduced depends on K. Whenever the field
K is not clear from the context, you can insert it into this terminology to make it
unambiguous: e.g., say “K-linear combination” instead of “linear combination”,
and “K-span” instead of “span”.

Theorem 6.1.5. Let n ∈N. Let U be a subspace of K1×n.
(a) There exists at least one basis of U.
(b) Any two bases of U have the same size (= number of vectors).
(c) Given k linearly independent vectors in U, and given ` vectors that span U,

we always have k ≤ `.
(d) Any list of k linearly independent vectors in U can be extended to a basis

of U.
(e) Any list of ` vectors that span U can be shrunk to a basis of U (i.e., we can

remove some vectors from this list to get a basis of U).

Again, the same holds for column vectors.
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Definition 6.1.6. Let n ∈N. Let U be a subspace of K1×n.
The dimension of U is defined to be the size of a basis of U. (Parts (a) and (b)

of Theorem 6.1.5 show that this is indeed well-defined.) The dimension of U is
denoted by dim U.

Proposition 6.1.7. Let n ∈ N. Let U and V be two subspaces of K1×n such that
U ⊆ V.

(a) We have dim U ≤ dim V.
(b) If dim U = dim V, then U = V.

Now, let us connect this with matrices:

Definition 6.1.8. Let n, m ∈N. Let A ∈ Kn×m be a matrix.
(a) The row space of A is defined to be the span of the rows of A. This is a

subspace of K1×m, and is called Row A.
(b) The column space of A is defined to be the span of the columns of A. This

is a subspace of Kn×1, and is called Col A.

Theorem 6.1.9. Let A ∈ Kn×m be a matrix. Then, dim Row A = dim Col A.

Definition 6.1.10. Let n, m ∈N. Let A ∈ Kn×m be a matrix. Theorem 6.1.9 shows
that dim Row A = dim Col A. This number dim Row A = dim Col A is called the
rank of A and is denoted by rank A.

The following is easy to see:

Proposition 6.1.11. Let n, m ∈ N. Let A ∈ Kn×m be a matrix. Then, rank A is an
integer between 0 and min {n, m}.

So we have seen that a matrix gives rise to two subspaces: its row space and its
column space. But there is more:

Definition 6.1.12. Let n, m ∈N. Let A ∈ Kn×m be a matrix.
(a) The kernel (or nullspace) of A is defined to be the set of all column vectors

v ∈ Km×1 such that Av = 0n×1. This is a subspace of Km×1, and is called Ker A.
(b) The left kernel (or left nullspace) of A is defined to be the set of all row vectors

w ∈ K1×n such that wA = 01×m. This is a subspace of K1×n.

Altogether, we have thus found four subspaces coming out of a matrix A. These
are the famous “four fundamental subspaces” (in Gilbert Strang’s terminology).
One result that connects two of them is the following fact, known as the rank-nullity
theorem:

https://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_algebra
https://en.wikipedia.org/wiki/Rank-nullity_theorem#Matrices
https://en.wikipedia.org/wiki/Rank-nullity_theorem#Matrices
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Theorem 6.1.13. Let n, m ∈N. Let A ∈ Kn×m be a matrix. Then,

rank A + dim Ker A = m.

Note that the number dim Ker A is known as the nullity of a matrix A.

6.1.4. Linear algebra over Z/2: “button madness” / “lights out”

We now discuss an old puzzle, which is known as “button madness” or “lights
out” (more precisely, these are two slightly different variants of the same puzzle).
You can try it out on

https://bz.var.ru/comp/web/js/floor.html

(see also https://www.win.tue.nl/~aeb/ca/madness/madrect.html for a list of
mathematical sources on this puzzle).

One version of this puzzle gives you 16 lamps arranged into a 4× 4-grid. Each
lamp comes with a lightswitch; but flipping this lightswitch toggles not just this
lamp, but also its four adjacent lamps (or three or two adjacent lamps, if the switch
you have flipped is at the border of the grid). For example, if your grid looks like
this:

1 0 0 1

0 1 1 0

0 0 1 0

1 1 0 1

(where an entry 1 means a lamp turned on, and an entry 0 means a lamp turned
off), and you flip the lightswitch in cell (2, 3) (that is, the third cell from the left in
the second row from the top), then you obtain the grid

1 0 1 1

0 0 0 1

0 0 0 0

1 1 0 1

.

(A total of 5 lamps have changed their state: three have been turned off, and two
have been turned on.) If you then flip the lightswitch in cell (1, 3) of this new grid,
then you obtain the grid

1 1 0 0

0 0 1 1

0 0 0 0

1 1 0 1

.

https://bz.var.ru/comp/web/js/floor.html
https://www.win.tue.nl/~aeb/ca/madness/madrect.html
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At the beginning, all lamps are turned off. Your goal is to achieve the oppo-
site state (i.e., all lamps being on at the same time) by flipping a sequence of
lightswitches. Is this possible, and how? (In some versions of this puzzle – such
as the “lights out” version – it’s exactly the other way round: The lights are all on
initially, and you must turn them all off. Of course, this makes no difference to the
solution.)

In some versions of this puzzle, the grid is “toroidal”, in the sense that it is
understood to wrap around – for example, the cells (1, 4) and (1, 1) are considered
to be adjacent, and so are the cells (4, 1) and (1, 1). We shall not consider this case
here, but it can be solved by the same method.

Of course, you can play the same game on larger grids, triangular grids, etc.. But
in order to get a grip on how to solve such a puzzle, we shall first analyze a much
simpler version: the “1-dimensional version” of the puzzle.

Here is this “1-dimensional version”: We have 4 lamps in a row (numbered
1, 2, 3, 4), each equipped with a lightswitch. The lightswitch at lamp i toggles lamp
i, lamp i − 1 (if it exists) and lamp i + 1 (if it exists). Initially, all 4 lamps are off.
Can we turn them all on by flipping a sequence of lightswitches?

Yes, of course: we just have to flip the lightswitches at lamps 1 and 4. But let us
pretend that we aren’t that smart, and instead try to solve the puzzle systematically.

We model the states of our lamps by a row vector in (Z/2)1×4. We write a row
vector

(
a1 a2 · · · an

)
as (a1, a2, . . . , an).

More precisely, we model each state by the row vector (a1, a2, a3, a4) ∈ (Z/2)1×4,
where

ai =

{
[0]2 , if lamp i is off;
[1]2 , if lamp i is on

=

[lamp i is on]︸ ︷︷ ︸
Iverson bracket


2︸ ︷︷ ︸

residue class

.

We shall write 0 and 1 for [0]2 and [1]2 throughout this subsection (except in
Proposition 6.1.14), so we can rewrite this as

ai =

{
0, if lamp i is off;
1, if lamp i is on

= [lamp i is on]︸ ︷︷ ︸
Iverson bracket

,

but keep in mind that these values are understood to be in Z/2.
The initial state is (0, 0, 0, 0). The final state that we want to achieve is (1, 1, 1, 1).

Flipping a lightswitch corresponds to adding a certain row vector to our state.
Namely:

• Flipping lightswitch 1 means adding (1, 1, 0, 0).

• Flipping lightswitch 2 means adding (1, 1, 1, 0).

• Flipping lightswitch 3 means adding (0, 1, 1, 1).

https://en.wikipedia.org/wiki/Lights_Out_(game)
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• Flipping lightswitch 4 means adding (0, 0, 1, 1).

Thus, flipping a lightswitch means adding the corresponding row of the matrix

A :=


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ∈ (Z/2)4×4

to our state. The reachable states are thus exactly the elements of Row A, the row
space of A.

Hence, our goal is to show that (1, 1, 1, 1) ∈ Row A.
This is quite easy for the concrete matrix A above (just notice that (1, 1, 1, 1) is

the sum of the 1-st and 4-th rows of A); but let us try a theoretical argument. It
will rely on the following general fact:

Proposition 6.1.14. Let n, m ∈ N. Let K be any field. Let A ∈ Kn×m and
b ∈ K1×m. Assume the following:

Assumption 1: If c ∈ Km×1 satisfies Ac = 0, then bc = 0. (Here, of
course, the “0” in “Ac = 0” means 0n×1.)

Then, b ∈ Row A.

Over the field Z/2, this fact has the following consequence:

Corollary 6.1.15. Let n ∈ N. Let A ∈ (Z/2)n×n be a symmetric matrix. (“Sym-
metric” means that the (i, j)-th entry of A equals the (j, i)-th entry of A for all i
and j. In other words, it means that AT = A.)

Let d be the diagonal of A, written as a row vector. (In other words, let d =
(a1,1, a2,2, . . . , an,n), where ai,j is the (i, j)-th entry of A.)

Then, d ∈ Row A.

Note that Corollary 6.1.15 brutally fails over fields different from Z/2. For ex-

ample, if we allow A to be a matrix in Zn×n instead, then A =

(
1 −1
−1 1

)
is

symmetric but its diagonal d = (1, 1) does not belong to Row A.
Now, why can the “lights out” puzzle be solved?
We want to prove that (1, 1, 1, 1) ∈ Row A for our matrix A ∈ (Z/2)4×4.
This follows from Corollary 6.1.15, since the matrix A is symmetric, and since its

diagonal is (1, 1, 1, 1).
The same argument works for the “proper” (2-dimensional) “lights out” puzzle;

we just have to use row vectors of size 16 (not 4) and 16× 16-matrices (not 4× 4-
matrices). More generally, the same argument works for any such puzzle on any
“grid” as long as:
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• each lamp i has a lightswitch which toggles at least lamp i;

• if the lightswitch at lamp i toggles lamp j, then the lightswitch at lamp j
toggles lamp i.

These conditions guarantee that the corresponding matrix A will be symmetric and
its diagonal will be (1, 1, . . . , 1) (and thus we can apply Corollary 6.1.15).

How to find the exact sequence of flips that results in all lights being on? This is
tantamount to finding the coefficients of a linear combination of the rows of A that
equals (1, 1, . . . , 1). This boils down to solving a system of linear equations over
Z/2, which can be achieved using Gaussian elimination.

What other states can be achieved by flipping lightswitches? Again, for each
specific grid and each specific state, this can be solved by Gaussian elimination;
but characterizing the reachable states more explicitly is a hard problem with no
unified answer. (See the link above.)

6.1.5. A warning about orthogonality and positivity

I have said above that “more or less” all linear algebra over R works identically
over any field K. There is an exception: Anything that uses positivity will break
down over some fields K. Let me briefly telegraph what can go wrong. (Don’t
worry if the things I am mentioning are not familiar to you.)

One thing that uses positivity is QR-decomposition. And indeed, not every ma-
trix over an arbitrary field has a QR-decomposition.

You can still define dot products and orthogonal complements of subspaces. But
it is no longer true that Kn×1 = U ⊕ U⊥ for any subspace U of Kn×1. It can
happen that U ∩U⊥ 6= {0}. For example, there are column vectors v 6= 0n×1 that
are orthogonal to themselves with respect to the dot product (that is, vTv = 0).

Example: In Z/3, we have 1
1
1

T  1
1
1

 = (1, 1, 1)

 1
1
1

 = 1 · 1 + 1 · 1 + 1 · 1 = 3 = 0.

So the vector

 1
1
1

 ∈ (Z/3)3×1 is orthogonal to itself.

6.2. Matrix algebra vs. coordinate-free linear algebra

There are two common approaches to linear algebra: The first is the study of ma-
trices and column vectors (or row vectors); this is down-to-earth but often clumsy
and unenlightening. The second is the study of vector spaces and linear trans-
formations; this is more abstract but more general and often better for conceptual
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understanding. The first approach is known as matrix algebra; the second is called
coordinate-free linear algebra.

These two approaches are closely connected: The first can be viewed as a partic-
ular case of the second (as the column vectors of a given size n form a vector space,
and any matrix defines a linear map between two such vector spaces); the second
appears more general but in reality can often be reduced to the first (viz., theorems
about vector spaces can often be proven by “picking bases” and representing linear
maps by matrices with respect to these bases). Thus, a sufficiently deep course on
linear algebra will necessarily survey both of these approaches, and practitioners
of the subject will often apply whichever approach fits a problem better.

In the previous section, we have seen how the first approach can be generalized
from real or complex matrices to matrices over any field (and, as far as the basics
are concerned, over any commutative ring). We shall now try this with the second
approach. Over a field, the second approach turns out to work out in pretty much
the same way as over the real or complex numbers; however, over a commutative
ring, things become a lot more interesting.

6.3. K-modules: the definition

Let us begin by defining the analogue of a vector space: a module. Roughly speak-
ing, a module is the same as a vector space, except that it is over a commutative
ring instead of a field:

Definition 6.3.1. Let K be a commutative ring.
A K-module means a set M equipped with

• a binary operation + on M (called “addition”, and not to be confused with
the addition +K of K),

• a map · : K×M → M (called “scaling”, and not to be confused with the
multiplication ·K of K), and

• an element 0M ∈ M (called “zero vector” or “zero”, and not to be confused
with the zero of K)

satisfying the following axioms:

• (a) We have a + b = b + a for all a, b ∈ M.

• (b) We have a + (b + c) = (a + b) + c for all a, b, c ∈ M.

• (c) We have a + 0M = 0M + a = a for all a ∈ M.

• (d) Each a ∈ M has an additive inverse (i.e., there is an a′ ∈ M such that
a + a′ = a′ + a = 0M).
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• (e) We have λ (a + b) = λa+ λb for all λ ∈ K and a, b ∈ M. Here and in the
following, we use the notation “λc” (or, equivalently, “λ · c”) for the image
of a pair (λ, c) ∈ K× M under the “scaling” map · (similarly to how we
write ab for the image of a pair (a, b) ∈ K×K under the “multiplication”
map ·).

• (f) We have (λ + µ) a = λa + µa for all λ, µ ∈ K and a ∈ M.

• (g) We have 0a = 0M for all a ∈ M. (Here, the “0” on the left hand side
means the zero of K.)

• (h) We have (λµ) a = λ (µa) for all λ, µ ∈ K and a ∈ M.

• (i) We have 1a = a for all a ∈ M.

• (j) We have λ · 0M = 0M for all λ ∈ K.

These ten axioms are called the module axioms.

A K-module is often called a “module over K”.
The axioms “λ (a + b) = λa + λb” and “(λ + µ) a = λa + µa” are known as

the distributivity laws for modules. The axiom “(λµ) a = λ (µa)” is known as the
associativity law for modules.

Definition 6.3.2. If K is a commutative ring and M is a K-module, then the
elements of M are called vectors, while the elements of K are called scalars. If
λ ∈ K and a ∈ M, then λa (that is, the image of (λ, a) under the scaling map
· : K×M→ M) will be called the result of scaling the vector a by the scalar λ.

Definition 6.3.3. If K is a field, then K-modules are called K-vector spaces. (When
K = R, these are the usual real vector spaces known from undergraduate linear
algebra classes.)

6.4. Examples of K-modules

Thus, any vector space you have seen in linear algebra is an example of a module.
Let us see some other examples:

Example 6.4.1. Let K be a commutative ring. Then, K itself is a K-module (with
the addition given by the addition +K of K, and with the scaling given by the
multiplication ·K of K, and with the zero vector given by the zero 0K of K).

Example 6.4.2. Let K be a commutative ring. Let n ∈ N. Equip the set Kn (that
is, the set of all n-tuples of elements of K) with entrywise addition (that is, a
binary operation + on Kn defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)
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for all (a1, a2, . . . , an) , (b1, b2, . . . , bn) ∈ Kn) and entrywise scaling (that is, a map
· : K×Kn → Kn defined by

λ (a1, a2, . . . , an) = (λa1, λa2, . . . , λan)

for all λ ∈ K and (a1, a2, . . . , an) ∈ Kn) and the zero vector (0, 0, . . . , 0) ∈ Kn.
Then, Kn becomes a K-module.

Example 6.4.3. Let K be a commutative ring. Let n, m ∈ N. Equip the set
Kn×m (that is, the set of all n × m-matrices over K) with the addition defined
in Definition 5.8.7 (a) and the scaling defined in Definition 5.8.7 (c) and the zero
vector 0n×m. Then, Kn×m becomes a K-module.

Example 6.4.4. Let K be a commutative ring. The one-element set {0} is a K-
module (with + and · and zero vector defined in the only possible way). This is
called the zero module. It is often called 0.

Example 6.4.5. Let n be an integer. Then:
(a) The set Z/n is a Z-module, if you equip it with the addition and the scaling

that we defined above (in Definition 3.4.12 and Definition 3.4.18) and with the
zero vector [0]n.

(b) The set nZ := {nz | z ∈ Z} = {all multiples of n} is a Z-module (again
equipped with the usual addition as addition, and the usual multiplication as
scaling, and the integer 0 as zero vector).

Example 6.4.6. (a) The set Q (equipped with the usual addition, and with a
scaling defined by the usual multiplication, and the zero vector 0) is a Z-module.

(b) For every q ∈ Q, the subset qZ := {qz | z ∈ Z} of Q (again equipped

with the usual + and · and 0) is a Z-module. For example,
1
2

Z =

{. . . ,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, . . .} is a Z-module. Note that
1
2

Z is not

a ring (at least not with the usual · as multiplication), since
1
2
· 1

2
=

1
4

/∈ 1
2

Z.
(c) What other Z-modules can we find inside Q ? Quite a few, it turns out.

Here is a more exotic one: Let us call an integer n squarefree if it is not divisible
by any perfect square other than 1. It is easy to see that an integer n is squarefree
if and only if n is a product of distinct primes (or, equivalently, vp (n) ≤ 1 for
each prime p). Thus, the squarefree integers are 1, 2, 3, 5, 6, 7, 10, 11, 13, . . . and
their negatives. Now, let Qsqf be the subset{ a

b
| a, b ∈ Z with b squarefree

}
of Q. Then, Qsqf (equipped with the usual addition as addition, the usual mul-
tiplication as scaling, and the usual 0 as zero vector) is a Z-module. (Check
this!)
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6.5. Cartesian products of K-modules

Instead of giving further examples, let us show a way of constructing new K-
modules from old (analogous to Definition 5.7.3):

Definition 6.5.1. Let K be a commutative ring. Let M1, M2, . . . , Mn be n many
K-modules. Consider the set M1 ×M2 × · · · ×Mn, whose elements are n-tuples
(m1, m2, . . . , mn) with mi ∈ Mi.

We define a binary operation + on M1 ×M2 × · · · ×Mn by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) ,

and we define a “scaling” map · : K× (M1 ×M2 × · · · ×Mn) → M1 × M2 ×
· · · ×Mn by

λ · (a1, a2, . . . , an) = (λa1, λa2, . . . , λan) .

Proposition 6.5.2. Let K be a commutative ring. Let M1, M2, . . . , Mn be n many
K-modules. The set M1 × M2 × · · · × Mn, endowed with the operation + and
the map · we just defined and with the zero vector (0, 0, . . . , 0), is a K-module.

Definition 6.5.3. The K-module M1 × M2 × · · · × Mn constructed in Proposi-
tion 6.5.2 is called the Cartesian product (or direct product) of the K-modules
M1, M2, . . . , Mn.

The K-module Kn introduced in Example 6.4.2 is actually a particular case of
Definition 6.5.3; in fact, it is precisely the Cartesian product K×K× · · · ×K︸ ︷︷ ︸

n times

of the

K-modules K, K, . . . , K (that is, n copies of the K-module K defined in Example
6.4.1).

6.6. Features and rules

Again, we shall follow the PEMDAS convention for addition and scaling. For
example, the expression “a + λb” shall mean a + (λb).

Proposition 6.6.1. Axioms (g) and (j) in Definition 6.3.1 follow from the others.

Proposition 6.6.2. Axiom (d) in Definition 6.3.1 follows from the others.

Note that Proposition 6.6.1 and Proposition 6.6.2 cannot be merged: If we omit
all three axioms (d), (g) and (j), then we cannot recover these axioms any more.
(Indeed, our proof of axiom (d) relied on axiom (g) and vice versa.)

What can you do when you have a K-module?
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Convention 6.6.3. For the rest of this section, we fix a commutative ring K, and
we fix a K-module M. We shall denote the zero vector 0M of M by 0. (More
generally, it is common to denote the zero vector of any K-module by 0 as long
as you are not afraid of confusion.)

Just as in a ring, elements of a module have unique additive inverses:

Theorem 6.6.4. Let a ∈ M. Then:
(a) The element a has exactly one additive inverse.
(b) This additive inverse is (−1) a.

We can now make the following definition, which copies Definition 5.4.4 almost
verbatim:

Definition 6.6.5. (a) If a ∈ M, then the additive inverse of a will be called −a.
(This is well-defined, since Theorem 6.6.4 (a) shows that this additive inverse is
unique.)

(b) If a ∈ M and b ∈ M, then we define the difference a− b to be the element
a + (−b) of M. This new binary operation − on M is called “subtraction”.

Remark 6.6.6. The subtraction we just defined (in Definition 6.6.5 (b)) for an
arbitrary K-module generalizes both

• the subtraction of matrices (when the K-module is Kn×m), and

• the subtraction in Z/n (when K = Z and the K-module is Z/n).

Remark 6.6.6 is easy to prove, but we delay the proof until later, since it will
become even easier after Proposition 6.6.7 has been proven.

Using Definition 6.6.5 (a), we can rewrite Theorem 6.6.4 (b) as follows:

− a = (−1) a for each a ∈ M. (72)

Additive inverses and subtraction satisfy certain rules that should not surprise
you:

Proposition 6.6.7. Let a, b, c ∈ M.
(a) We have a− b = c if and only if a = b + c. (Roughly speaking, this means

that subtraction undoes addition.)
(b) We have − (a + b) = (−a) + (−b).
(c) We have −0 = 0.
(d) We have 0− a = −a.
(e) We have − (−a) = a.
(f) We have − (λa) = (−λ) a = λ (−a) for all λ ∈ K.
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(g) We have a− b− c = a− (b + c). (Here and in the following, “a− b− c”
should be read as “(a− b)− c”.)

(h) We have λ (b− c) = λb− λc and (λ− µ) a = λa− µa for all λ, µ ∈ K.
(i) We have − (a− b) = b− a.
(j) We have a− (−b) = a + b.
(k) We have (−1) a = −a. (Here, the “1” on the left hand side means the unity

of K.)
(l) If −a = −b, then a = b.

Again, Proposition 6.6.7 shows that certain expressions (such as “−λa” for λ ∈ K

and a ∈ M) are unambiguous.
Theorem 5.4.6 holds for the K-module M just as it holds for the ring K. Thus, we

have a notion of finite sums of elements of M; it behaves exactly like finite sums of
elements of K do. But Theorem 5.4.7 has no analogue for K-modules. (However,
you can get something similar to Theorem 5.4.7 (b) by defining finite products of
the form λ1λ2 · · · λka with λ1, λ2, . . . , λk ∈ K and a ∈ M.)

Definition 5.4.8 can be extended to modules by simply replacing K with M:

Definition 6.6.8. Let a ∈ M and n ∈ Z. Then, we define an element na of M by

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0
.

We cannot define an for a ∈ M and n ∈N.
Proposition 5.4.9 has an analogue for a K-module; namely, we have the following:

Proposition 6.6.9. We have

(n + m) a = na + ma for all a ∈ M and n, m ∈ Z; (73)
n (a + b) = na + nb for all a, b ∈ M and n ∈ Z; (74)
− (na) = (−n) a = n (−a) for all a ∈ M and n ∈ Z; (75)
(nm) a = n (ma) for all a ∈ M and n, m ∈ Z; (76)
n (λa) = (nλ) a = λ (na) for all a ∈ M and λ ∈ K and n ∈ Z; (77)

n0M = 0M for all n ∈ Z; (78)
1a = a for all a ∈ M; (79)
0a = 0M for all a ∈ M; (80)

(−1) a = −a for all a ∈ M. (81)

(Here, “1” stands for the integer 1 ∈ Z, not for the scalar 1 ∈ K. Likewise, the
“0” in “0a”, and the “−1” in “(−1) a” stand for integers.) In particular, these
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equalities show that certain expressions (like “nma” and “nλa”) are unambigu-
ous.

Upshot: All the rules relating to addition that we know from rings are still true
for K-modules. Some basic rules relating to multiplication can be salvaged (i.e.,
made to work for K-modules) by replacing multiplication by scaling.

6.7. Submodules

Convention 6.7.1. For the rest of Chapter 6, we fix a commutative ring K, and
we denote its addition, multiplication, zero and unity by +, ·, 0 and 1.

In Section 5.3, we have defined the notion of a subring of a ring. Similarly, we
shall now define a submodule of a K-module. For example, the Z-modules qZ

and Qsqf from Example 6.4.6 will fall under this concept. The idea is the same as
for subrings: A submodule of a K-module N is a K-module M that is a subset of N
and has “the same” addition, scaling and zero vector. Here is the formal definition
(analogous to Definition 5.3.1):

Definition 6.7.2. Let M and N be two K-modules. We say that M is a K-
submodule (or, for short, submodule) of N if and only if it satisfies the following
four requirements:

• the set M is a subset of N;

• the addition of M is a restriction of the addition of N (that is, we have
a1 +M a2 = a1 +N a2 for all a1, a2 ∈ M);

• the scaling of M is a restriction of the scaling of N (that is, we have λ ·M a =
λ ·N a for all λ ∈ K and a ∈ M);

• the zero vector of M is the zero vector of N (that is, we have 0M = 0N).

Thus, according to this definition:

• the Z-modules nZ from Example 6.4.5 (b) are Z-submodules of Z;

• the Z-modules qZ and Qsqf from Example 6.4.6 are Z-submodules of Q;

• every K-module M is a K-submodule of itself.

Again, you can find examples of two K-modules M and N for which the set M
is a subset of N yet the K-module M is not a K-submodule of N. For example, C

becomes a C-module in the usual way (with addition playing the role of addition,



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 235

and multiplication playing the role of scaling); but you can also define a second
“scaling” operation · : C×C→ C by setting

α · β = αβ for all α, β ∈ C.

Then, we can turn the set C into a C-module by endowing it with the usual ad-
dition, the unusual scaling operation · and the zero vector 0. This new C-module
may be called C, and is useful in studying Hermitian forms. The C-modules C and
C are equal as sets, but neither is a C-submodule of the other.

Definition 6.7.3. If K is a field, then K-submodules are also known as K-vector
subspaces (or, short, K-subspaces).

When we have two K-modules M and N such that M ⊆ N as sets (or, more
generally, such that M and N have elements in common), we generally need to
be careful using the symbol “+”: This symbol may mean both the addition of
M and the addition of N, and these additions might not be the same. Thus it is
prudent to disambiguate its meaning by attaching a subscript “M” or “N” to it. The
same applies to the symbols “·” and “0” and expressions like “λa” (which have an
implicit scaling sign). However, when M is a K-submodule of N, we do not need
to take this precaution; in this case, the meaning of expressions like “a + b” does
not depend on whether you read “+” as the addition of M or as the addition of N.

The following is analogous to Proposition 5.3.4:

Proposition 6.7.4. Let N be a K-module. Let S be a subset of N that satisfies the
following three conditions:76

• We have 0 ∈ S.

• The subset S is closed under addition. (This means that all a, b ∈ S satisfy
a + b ∈ S.)

• The subset S is closed under scaling. (This means that all λ ∈ K and a ∈ S
satisfy λa ∈ S.)

Then, the set S itself becomes a K-module if we endow it with:

• an addition operation + which is defined as the restriction of the addition
operation of the K-module N;

• a scaling map · : K × S → S which is defined as the restriction of the
scaling map of the K-module N,

and the zero vector 0. Furthermore, this K-module S is a K-submodule of N.

76In this proposition, the symbols “+”, “·” and “0” mean the addition, the scaling and the zero
vector of N.

https://en.wikipedia.org/wiki/Sesquilinear_form
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Definition 6.7.5. Let N be a K-module. Let S be a subset of N that satisfies
the three conditions of Proposition 6.7.4. Then, we shall say that “S is a K-
submodule of N”. Technically speaking, this is premature, since S is so far just
a subset of N without the structure of a K-module; however, Proposition 6.7.4
shows that there is an obvious way of turning S into a K-module (viz.: define
an operation + by restricting the corresponding operation of N, define a map ·
similarly, and steal the zero vector from N), and we shall automatically regard S
as becoming a K-module in this way (unless we say otherwise). We say that the
addition operation + on S (obtained by restricting the corresponding operation
on N) and the scaling map · of S and the zero vector of S are inherited from N.

Thus, finding K-submodules of a K-module N boils down to finding subsets that
contain its 0 and are closed under addition and under scaling; the module axioms
don’t need to be re-checked.

Thus, in particular, when K is a field, the vector subspaces of Kn×1 (as in Def-
inition 6.1.3) are precisely the K-submodules of Kn×1. Many examples of K-
submodules can thus be found in textbooks on linear algebra. If M is any K-
module, then both M and the one-element subset {0M} are K-submodules of M
(this is easily checked); the more interesting submodules are the ones that lie in
between these two extremes.

6.8. Linear maps, aka module homomorphisms

Recall Definition 5.9.1. In a similar way, we define K-module homomorphisms, also
known as K-linear maps:

Definition 6.8.1. Let M and N be two K-modules. A K-module homomorphism
from M to N means a map f : M→ N that satisfies the following three axioms:

• (a) We have f (a + b) = f (a) + f (b) for all a, b ∈ M. (This is called “ f
respects addition” or “ f preserves addition”.)

• (b) We have f (0) = 0. (This, of course, means f (0M) = 0N.)

• (c) We have f (λa) = λ f (a) for all λ ∈ K and a ∈ M. (This is called “ f
respects scaling” or “ f preserves scaling”.)

Instead of “K-module homomorphism”, we can also say “K-linear map” or just
“linear map” (when K is clear).

Remark 6.8.2. The axiom (b) in Definition 6.8.1 is redundant – it follows from
axiom (a).

Some authors (for example, Hefferon in [Heffer17, Chapter Three, Definition
II.1.1], and the authors of [LaNaSc16, Definition 6.1.1]) omit the axiom (b) when
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they define K-linear maps. This does not change the concept, as Remark 6.8.2
shows.

What are some examples of module homomorphisms?

Example 6.8.3. Let M be a K-module.
(a) The identity map id : M→ M is K-linear.
(b) For any λ ∈ K, the map Lλ : M→ M, a 7→ λa is K-linear.
(c) If M = K (specifically, the K-module K defined in Example 6.4.1), then the

maps Lλ (for λ ∈ K) that we just defined are the only K-linear maps from M to
M.

Next comes a less basic example:

Theorem 6.8.4. Let n, m ∈N. Let A ∈ Kn×m be an n×m-matrix. Define a map

LA : Km×1 → Kn×1,
v 7→ Av.

This map LA is a K-module homomorphism from Km×1 to Kn×1.

Proposition 6.8.5. Let n, m ∈ N. Each K-module homomorphism from Km×1

to Kn×1 has the form LA for a unique A ∈ Kn×m (where LA is defined as in
Theorem 6.8.4).

We shall delay the proof of this proposition until we have shown some auxiliary
results. First, we define a specific kind of column vectors:

Definition 6.8.6. Let m ∈ N. For each j ∈ {1, 2, . . . , m}, we let ej ∈ Km×1 be the
column vector 

0
0
...
0
1
0
0
...
0


= (0, 0, . . . , 0, 1, 0, 0, . . . , 0)T

where the 1 is at the j-th position. (Strictly speaking, we should denote it by ej,m
rather than ej, since it depends on m and not just on j; but the m will always be
clear from the context.)

These column vectors e1, e2, . . . , em are called the standard basis vectors of Km×1.

For example, if m = 3, then e1 =

 1
0
0

 and e2 =

 0
1
0

 and e3 =

 0
0
1

.
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Lemma 6.8.7. Let n, m ∈N. Let A ∈ Kn×m be an n×m-matrix.
(a) We have Aej = (the j-th column of A) for all j ∈ {1, 2, . . . , m}.
(b) Consider the map LA defined in Theorem 6.8.4. Then,

LA
(
ej
)
= (the j-th column of A) for all j ∈ {1, 2, . . . , m} .

Proposition 6.8.8. Let M and N be two K-modules. Let f : M→ N be a K-linear
map.

(a) We have f (λa + µb) = λ f (a) + µ f (b) for all λ, µ ∈ K and a, b ∈ M.
(b) Let λ1, λ2, . . . , λk ∈ K and a1, a2, . . . , ak ∈ M. Then,

f

(
k

∑
i=1

λiai

)
=

k

∑
i=1

λi f (ai) .

(In words: f “preserves linear combinations”.)

Proposition 6.8.8 (a) has a converse:

Proposition 6.8.9. Let M and N be two K-modules. Let f : M → N be a map.
Assume that

f (λa + µb) = λ f (a) + µ f (b) for all λ, µ ∈ K and a, b ∈ M. (82)

Then, f is K-linear.

Some authors use the axiom (82) as their definition of what it means for a map
f : M → N between two K-modules M and N to be K-linear. This definition is
equivalent to ours (due to Proposition 6.8.9 and Proposition 6.8.8 (a)).

Lemma 6.8.10. Let m ∈ N, and let N be a K-module. For each j ∈ {1, 2, . . . , m},
we let define a column vector ej ∈ Km×1 as in Definition 6.8.6.

Let f , g : Km×1 → N be two K-linear maps. Assume that f
(
ej
)
= g

(
ej
)

for all
j ∈ {1, 2, . . . , m}. Then, f = g.

We are now ready to prove Proposition 6.8.5:

Definition 6.8.11. Let M and N be two K-modules.
(a) Let Hom (M, N) be the set of all K-module homomorphisms (= linear

maps) from M to N. We shall now turn this set into a K-module.
(b) We define an addition + on Hom (M, N) as follows: If f , g ∈ Hom (M, N),

then f + g ∈ Hom (M, N) is defined by

( f + g) (v) = f (v) + g (v) for all v ∈ M.
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(That is, the addition is pointwise. This is well-defined by Proposition 6.8.12 (a)
below.)

(c) We define a scaling · on Hom (M, N) as follows: If λ ∈ K and f ∈
Hom (M, N), then λ f ∈ Hom (M, N) is defined by

(λ f ) (v) = λ · f (v) for all v ∈ M.

(That is, the scaling is pointwise. This is well-defined by Proposition 6.8.12 (b)
below.)

(d) We define a map 0M→N : M→ N by setting

0M→N (v) = 0 for all v ∈ M.

(e) We equip Hom (M, N) with the addition +, the scaling · and the zero vector
0M→N we have just defined. This yields a K-module (by Proposition 6.8.12 (d)
below).

Proposition 6.8.12. (a) The addition + defined in Definition 6.8.11 (b) is well-
defined (i.e., we have f + g ∈ Hom (M, N) for all f , g ∈ Hom (M, N)).

(b) The scaling · defined in Definition 6.8.11 (c) is well-defined (i.e., we have
λ f ∈ Hom (M, N) for all λ ∈ K and f ∈ Hom (M, N)).

(c) The map 0M→N defined in Definition 6.8.11 (d) belongs to Hom (M, N).
(d) The set Hom (M, N), equipped with the addition +, the scaling · and the

zero vector 0M→N, is a K-module.

Proposition 6.8.13. Let M, N and P be three K-modules. Let f : M → N and
g : N → P be two K-module homomorphisms. Then, the composition g ◦ f :
M→ P is also a K-module homomorphism.

Note the analogy between Proposition 6.8.13 and Proposition 5.9.15.
We shall follow PEMDAS-style conventions when writing expressions involv-

ing addition and composition of K-linear maps (where we treat composition as a
multiplication-like operation). For example, the expression “ f ◦ h + g ◦ h” (where
f , g, h are three K-linear maps) is to be understood as ( f ◦ h) + (g ◦ h).

The following rules hold for addition, multiplication and scaling of module ho-
momorphisms (similarly to Theorem 5.8.10):

Theorem 6.8.14. Let N, M, P, Q be K-modules.
(a) We have f + g = g + f for any f , g ∈ Hom (M, N).
(b) We have f + (g + h) = ( f + g) + h for any f , g, h ∈ Hom (M, N).
(c) We have f + 0M→N = 0M→N + f = f for any f ∈ Hom (M, N).
(d) We have f ◦ idM = idN ◦ f = f for any f ∈ Hom (M, N).
(e) In general, we do not have f ◦ g = g ◦ f . In fact, it can happen that one of

f ◦ g and g ◦ f is defined and the other is not; but even if both are defined, they
can be distinct.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 240

(f) We have f ◦ (g ◦ h) = ( f ◦ g) ◦ h for any f ∈ Hom (P, Q), g ∈ Hom (N, P)
and h ∈ Hom (M, N).

(g) We have f ◦ (g + h) = f ◦ g + f ◦ h for any f ∈ Hom (N, P) and g, h ∈
Hom (M, N).

We have ( f + g) ◦ h = f ◦ h + g ◦ h for any f , g ∈ Hom (N, P) and h ∈
Hom (M, N).

(h) We have f ◦ 0P→M = 0P→N and 0N→P ◦ f = 0M→P for any f ∈ Hom (M, N).
(j) We have r ( f + g) = r f + rg for any r ∈ K and f , g ∈ Hom (M, N).
(k) We have (r + s) f = r f + s f for any r, s ∈ K and f ∈ Hom (M, N).
(l) We have r (s f ) = (rs) f for any r, s ∈ K and f ∈ Hom (M, N).
(m) We have r ( f ◦ g) = (r f ) ◦ g = f ◦ (rg) for any r ∈ K and f ∈ Hom (N, P)

and g ∈ Hom (M, N).
(o) We have 1 f = f for any f ∈ Hom (M, N).

(The above list is skipping a few letters since we have not defined subtraction yet;
nevertheless, subtraction exists and satisfies the appropriate rules. See below for
the details.)

So far, we have not defined a subtraction operation − on Hom (M, N) (where M
and N are two K-modules). But this does not mean that such an operation does
not exist; we simply don’t want to waste our time defining it “manually” when we
can trivially obtain it from general principles. Namely: We know that Hom (M, N)
is a K-module, but Definition 6.6.5 shows that every K-module automatically has
a subtraction operation. Thus, we get a subtraction operation on Hom (M, N) for
free. This subtraction is precisely the pointwise subtraction: i.e., it is given by

( f − g) (v) = f (v)− g (v) (83)
for all f , g ∈ Hom (M, N) and v ∈ M

77.
Proposition 6.6.7 shows that the subtraction operation on Hom (M, N) (for arbi-

trary K-modules M and N) has almost all the properties that one would expect.
The only rule that we do not automatically obtain from these general principles is

− ( f ◦ g) = (− f ) ◦ g = f ◦ (−g) for all f ∈ Hom (N, P) and g ∈ Hom (M, N)

(where M, N and P are three K-modules). But this rule is easily verified by direct
comparison (using (83)).

77Proof of (83): Let f , g ∈ Hom (M, N) and v ∈ M. Then, f − g has the property that f = ( f − g) + g
(by Proposition 6.6.7 (a)). Applying both sides of this equality to v, we obtain

f (v) = (( f − g) + g) (v) = ( f − g) (v) + g (v) (by the definition of ( f − g) + g) ;

but this yields ( f − g) (v) = f (v)− g (v). This proves (83).
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Corollary 6.8.15. Let M be a K-module. The set Hom (M, M) of all K-linear
maps from M to M (endowed with the addition +, the multiplication ◦, the zero
0M→M and the unity idM) is a ring. This ring is called the endomorphism ring of
M, and is denoted by End M; its elements (i.e., the K-linear maps M → M) are
called the endomorphisms of M.

So the multiplication of the ring End M is composition of maps. This ring End M
is, in general, not commutative.

Note that End M = Hom (M, M) as sets, and the additions of End M and of
Hom (M, M) are the same. But End M is a ring (thus has no scaling), whereas
Hom (M, M) is a K-module (thus has no multiplication).

6.9. K-algebras

There is a notion which combines both the structure of a ring and the structure
of a K-module (so it has both multiplication and scaling); this is the notion of a
K-algebra. It is defined as follows:

Definition 6.9.1. A K-algebra is a set M endowed with two binary operations +
and · (called “addition” and “multiplication”) as well as a scaling map · : K×M→
M (not to be confused with the multiplication map, which is also denoted by ·)
and two elements 0, 1 ∈ M that satisfy all the ring axioms (with K replaced by
M) as well as all the module axioms (where the zero vector 0M is taken to be the
element 0 ∈ M) and also the following axiom:

• Scale-invariance of multiplication: We have λ (ab) = (λa) · b = a · (λb) for
all λ ∈ K and a, b ∈ M. Here, as usual, we omit the “·” sign both for the
multiplication operation · (that is, we write “uv” for “u · v” when u, v ∈ M)
and for the scaling map · (that is, we write “λu” for “λ · u” when λ ∈ K

and u ∈ M).

It seems somewhat confusing that both the multiplication map M×M→ M and
the scaling map K× M → M are denoted by the same symbol ·; but in practice,
this does not cause any trouble, since it is (almost) always clear from the context
which one is being applied (just check if the first argument belongs to M or to K).

So, roughly speaking, a K-algebra is a K-module that is also a ring, with the same
addition and the same zero, and satisfying the “Scale-invariance of multiplication”
axiom. In other words, you get the definition of a K-algebra by throwing the
definitions of a ring and of a K-module together, requiring the two additions + to
be the same map, requiring the zero of the ring to coincide with the zero vector of
the K-module, and requiring the multiplication to be “nice to the scaling” (in the
sense that the “Scale-invariance of multiplication” axiom holds).

Examples of K-algebras include the following:
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• The commutative ring K itself is a K-algebra (with both multiplication and
scaling being the usual multiplication · of K).

• If M is any K-module, then the endomorphism ring End M becomes a K-
algebra. (Its multiplication is composition of maps, whereas its scaling is the
scaling on Hom (M, M).)

• The matrix ring Kn×n is a K-algebra for any n ∈N.

• The ring C is an R-algebra.

• The ring R is a Q-algebra.

• More generally: If a commutative ring K is a subring of a commutative ring
L, then L becomes a K-algebra in a natural way78.

• The polynomial ring K [x] (introduced in Definition 7.4.10) is a K-algebra.

Particularly common are the Z-algebras: In fact, every ring K is a Z-algebra
in a natural way! To see this, we just need to equip every ring K with a scaling
map · : Z×K → K that satisfies the module axioms and the “Scale-invariance of
multiplication” axiom. This is done as follows:

Example 6.9.2. Let K be any ring. Consider the map · : Z×K → K sending
each pair (n, a) ∈ Z ×K to the element na ∈ K defined in Definition 5.4.8.
(This map · is not the multiplication operation of K (unless K = Z), but we still
use the same notation for it, since both of these maps are “multiplications” in
a wide sense.) Then, the set K, equipped with the binary operations + and ·
(the multiplication operation of K), the scaling map · we just defined, and the
elements 0K and 1K is a Z-algebra.

Convention 6.9.3. If M is a K-algebra, then M automatically becomes a ring (by
forgetting the scaling map) and a K-module (by forgetting the multiplication
operation and the unity, and declaring the element 0 to be the zero vector). We
shall automatically treat any K-algebra both as a ring and as a K-module when
needed: For example, if M and N are two K-algebras, and we speak of a “ring
homomorphism from M to N”, then we mean a ring homomorphism from the
ring M to the ring N, where M and N become rings in the way we just explained.

78Namely:

– We define the scaling of the K-module L to be the restriction of the multiplication of the ring
L to K×L. (Thus, λ · a = λ · a for all λ ∈ K and a ∈ L, where the “·” sign on the left hand
side stands for scaling and where the “·” sign on the right hand side stands for multiplication.)

– We define the zero vector of L to be the zero of the ring L.
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There is also a notion of a K-subalgebra of a K-algebra, which can be easily
defined as follows:

Definition 6.9.4. Let A and B be two K-algebras. We say that A is a K-subalgebra
(or, for short, subalgebra) of B if and only if it satisfies the following six require-
ments:

• the set A is a subset of B;

• the addition of A is a restriction of the addition of B (that is, we have
a1 +A a2 = a1 +B a2 for all a1, a2 ∈ A);

• the multiplication of A is a restriction of the multiplication of B (that is, we
have a1 ·A a2 = a1 ·B a2 for all a1, a2 ∈ A);

• the zero of A is the zero of B (that is, we have 0A = 0B);

• the unity of A is the unity of B (that is, we have 1A = 1B);

• the scaling of A is a restriction of the scaling of B (that is, we have λ ·A a =
λ ·B a for all λ ∈ K and a ∈ A).

Equivalently, A is a K-subalgebra of B if and only if A is simultaneously a
subring of B and a K-submodule of B. (Here, we are treating K-algebras as
rings and as K-modules, as explained in Convention 6.9.3.)

Similarly, there is a notion of a K-algebra homomorphism:

Definition 6.9.5. Let A and B be two K-algebras. A K-algebra homomorphism from
A to B means a map f : A → B that is simultaneously a ring homomorphism
from A to B and a K-module homomorphism from A to B. (That is, it means a
map f : A → B that respects addition, respects multiplication, respects scaling,
sends 0A to 0B, and sends 1A to 1B.)

Definition 6.9.6. We say that a K-algebra is commutative if the underlying ring
is commutative (i.e., if we have ab = ba for each two elements a and b of this
K-algebra).

The following property of K-algebras is easy to check but quite useful:

Proposition 6.9.7. Let A be a K-algebra. Let k ∈N.
(a) Any λ1, λ2, . . . , λk ∈ K and a1, a2, . . . , ak ∈ A satisfy

(λ1a1) (λ2a2) · · · (λkak) = (λ1λ2 · · · λk) (a1a2 · · · ak) .

(b) Any λ ∈ K and a ∈ A satisfy (λa)k = λkak.
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6.10. Module isomorphisms

In analogy to Definition 5.10.1, we define:

Definition 6.10.1. Let M and N be two K-modules. Let f : M → N be a map.
Then, f is called a K-module isomorphism if and only if f is invertible (i.e., bijec-
tive) and both f and f−1 are K-module homomorphisms.

Example 6.10.2. Let M be a K-module. The identity map id : M → M is a
K-module isomorphism.

More generally:

Example 6.10.3. Let M be a K-submodule of a K-module N. Let ι : M → N be
the map that sends each a ∈ M to a itself. (This map is called the inclusion map
from M to N.)

(a) Then, the map ι is a K-module homomorphism.
(b) It is an isomorphism if and only if M = N.

Proposition 5.10.5 has an analogue for K-module isomorphisms:

Proposition 6.10.4. Let M and N be two K-modules. Let f : M → N be an
invertible K-module homomorphism. Then, f is a K-module isomorphism.

The Chinese Remainder Theorem already brought us an example of a ring iso-
morphism (Example 5.10.7); we can also turn it into an example of a module iso-
morphism:

Example 6.10.5. Let m and n be two coprime positive integers. Then, (Z/m)×
(Z/n) is a Z-module (according to Definition 6.5.3). Theorem 3.6.2 says that the
map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. This map Sm,n is furthermore a Z-module
isomorphism.

Definition 6.10.6. Let M and N be two K-modules. We say that the K-modules
M and N are isomorphic if there exists a K-module isomorphism f : M→ N.

We write “M ∼= N (as K-modules)” to say that the K-modules M and N are
isomorphic.

Keep in mind that one and the same symbol can stand both for a ring and for
a K-module. Thus, when saying something like “M ∼= N”, you should clarify
whether you mean “M ∼= N (as rings)” or “M ∼= N (as K-modules)”. For example,
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C and R × R are both rings and R-modules79. We do have C ∼= R × R as R-
modules, but we don’t have C ∼= R×R as rings (since C is a field, but R×R is
not a field). So an unqualified statement like “C ∼= R×R” would be dangerous.

Example 6.10.7. Let n, m ∈N. Then, the map

Kn×m → Km×n,

A 7→ AT

is a K-module isomorphism.

Example 6.10.8. Let n ∈N. Then, the map

Kn×1 → Kn,
a1
a2
...

an

 7→ (a1, a2, . . . , an)

is a K-module isomorphism.

The previous two examples show that

K1×n ∼= Kn×1 ∼= Kn as K-modules.

Example 6.10.9. Let n, m ∈N. Then, we define a map

vec : Kn×m → Knm,(
ai,j
)

1≤i≤n, 1≤j≤m 7→ (a1,1, a1,2, . . . , a1,m, a2,1, a2,2, . . . , a2,m, . . . , an,1, an,2, . . . , an,m) .

For example, if n = 2 and m = 3, then

vec
(

a b c
d e f

)
= (a, b, c, d, e, f ) .

This map vec is called row reading or row vectorization.
This map vec is a K-module isomorphism.

79Indeed:

• The set C becomes an R-module by defining scaling as multiplication (and addition as
addition, and the zero vector as 0), whereas

• the set R×R becomes an R-module according to Definition 6.5.3 (so its scaling is defined
entrywise: that is, λ (u, v) = (λu, λv) for all λ ∈ R and (u, v) ∈ R×R).
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Example 6.10.10. Let M be any K-module. Let λ ∈ K. Define the map

Lλ : M→ M,
a 7→ λa.

(This is called “scaling by λ”.) As we know from Example 6.8.3 (b), this map Lλ

is K-linear, i.e., a K-module homomorphism. When is it an isomorphism?
(a) If λ ∈ K is invertible, then Lλ is a K-module isomorphism.
(b) If M = K and Lλ is a K-module isomorphism, then λ is invertible.
(c) If K = Z and M = Z/n for some integer n, then Lλ is a K-module

isomorphism whenever λ ⊥ n.

Remark 6.10.11. Fix any K-module M. Then, the map

K→ End M,
λ 7→ Lλ

is a ring homomorphism.

We talked for a while about the meaning and use of ring isomorphisms. The
same can be said about K-module isomorphisms. So, in particular, two isomorphic
K-modules can be viewed as being “the same K-module up to renaming its ele-
ments”, and any property of one can be transferred to the other. For example, two
isomorphic K-modules must have the same size; their endomorphism rings must
be isomorphic; etc.

Proposition 6.10.12. Let n, m ∈N. The map

Kn×m → Hom
(

Km×1, Kn×1
)

,

A 7→ LA

(where LA is defined as in Theorem 6.8.4) is a K-module isomorphism.

So Kn×m ∼= Hom
(
Km×1, Kn×1) as K-modules whenever n, m ∈ N. This means

that K-linear maps between Km×1 and Kn×1 are “the same as” n × m-matrices.
This says that the “matrix” way of doing linear algebra can be embedded into the
“K-module” way of doing linear algebra.

Multiplication of matrices is directly connected to composition of linear maps:

Proposition 6.10.13. Let n, m, p ∈ N. Let A ∈ Kn×m and B ∈ Km×p. Then,
LAB = LA ◦ LB.
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Corollary 6.10.14. Let n ∈N. The map

Kn×n → End
(

Kn×1
)

,

A 7→ LA

(where LA is defined as in Theorem 6.8.4 for m = n) is a ring isomorphism.

6.11. Linear independence, spans, bases

Now, let us generalize Definition 6.1.4 to arbitrary K-modules (where K is still an
arbitrary commutative ring):

Definition 6.11.1. Let M be a K-module. Let v1, v2, . . . , vk be some vectors in M.
(a) A linear combination of v1, v2, . . . , vk means a vector of the form

λ1v1 + λ2v2 + · · ·+ λkvk, with λ1, λ2, . . . , λk ∈ K. (84)

(b) The span of v1, v2, . . . , vk is defined to be the subset

{λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ K}
= {linear combinations of v1, v2, . . . , vk}

of M. This span is a K-submodule of M. (This is easy to check.)
(c) The vectors v1, v2, . . . , vk are said to be linearly independent if the only k-tuple

(λ1, λ2, . . . , λk) ∈ Kk satisfying λ1v1 + λ2v2 + · · ·+ λkvk = 0 is

0, 0, . . . , 0︸ ︷︷ ︸
k times

.

(d) Let U be a K-submodule of M. We say that v1, v2, . . . , vk form a basis of
U (or, more formally, (v1, v2, . . . , vk) is a basis of U) if and only if the vectors
v1, v2, . . . , vk are linearly independent and their span is U.

(e) Let U be a K-submodule of M. We say that the list (v1, v2, . . . , vk) spans U
if and only if the span of v1, v2, . . . , vk is U. (More informally, instead of saying
“the list (v1, v2, . . . , vk) spans U”, we can say “the vectors v1, v2, . . . , vk span U”;
of course, this is not the same as saying that each of these k vectors on its own
spans U.)

(f) All the terminology we have just introduced depends on K. Whenever
the ring K is not clear from the context, you can insert it into this terminology
to make it unambiguous: e.g., say “K-linear combination” instead of “linear
combination”, and “K-span” instead of “span”.

The following proposition gives an equivalent criterion for a list of vectors to be
a basis of a K-module:



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 248

Proposition 6.11.2. Let M be a K-module. Let v1, v2, . . . , vk be some vectors in
M. Then, (v1, v2, . . . , vk) is a basis of M if and only if each vector in M can be
uniquely written in the form (84).80

Definition 6.11.3. Let M be a K-module. Then, we say that M is finitely generated
if there exists a k ∈N and k vectors v1, v2, . . . , vk that span M.

Finitely generated K-modules are a generalization of finite-dimensional K-vector
spaces. A classical result from linear algebra says the following:

Theorem 6.11.4. If K is a field, then every finitely generated K-module (= K-
vector space) has a basis.

A version of Theorem 6.11.4 exists for vector spaces that are not finitely gener-
ated; however, stating it would require us to define a more general notion of “basis”
that would allow for infinite bases (and even then, this version would require the
Axiom of Choice).

Theorem 6.11.4 fails horribly when K is not a field. For example, the Z-module
Z/2 has no basis. Indeed, the only Z-linearly independent list of vectors in Z/2 is
the empty list (), since any vector in Z/2 becomes 0 when scaled by the nonzero
integer 2. More generally, if K is not a field, then there is a K-module spanned by
a single vector that has no basis.

Submodules of K1×n fare only somewhat better than arbitrary K-modules in
terms of having bases. It can be shown that every Z-submodule of Z1×n (or, more
generally, of a Z-module that has a basis) must have a basis; thus, Theorem 6.1.5
(a) does hold for K = Z. Theorem 6.1.5 (a) also holds for K = Z [i]. (These facts
are particular cases of [ConradS, Theorem 2.1].) However, Theorem 6.1.5 (a) does
not hold for K = Z

[√
−3
]

or for K = Z/4; in both of these cases, we can find
K-submodules of K itself that have no basis81.

Thus, Theorem 6.1.5 (a) becomes false when K is allowed to be an arbitrary ring.
The same can be said of parts (d) and (e) of Theorem 6.1.5; indeed, they become
false even for K = Z, n = 1 and U = Z1×1. Here are examples of their failure
(where, for the sake of simplicity, we are working not in the Z-module Z1×1, but
in the Z-module Z, which is isomorphic to it):

• The 1-element list (2) of vectors in the Z-module Z (consisting of just the
single vector 2 ∈ Z) is Z-linearly independent (because if λ1 ∈ Z satisfies

80We say that a vector v ∈ M can be uniquely written in the form (84) if there is a unique k-tuple
(λ1, λ2, . . . , λk) ∈ Kk satisfying v = λ1v1 + λ2v2 + · · ·+ λkvk.

81If K = Z/4, then this is easy: Just take the K-submodule 2K = {[0]4 , [2]4} of K; it has no basis,
since scaling by 2 sends all of its elements to 0.

If K = Z
[√
−3
]
, then the subset

{
a + b

√
−3 | a, b ∈ Z satisfying a ≡ b mod 2

}
of K is a K-

submodule having no basis. This is closely connected to the fact that division with remainder
and unique factorization into primes do not work in the ring Z

[√
−3
]
.
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λ1 · 2 = 0, then λ1 = 0); but you cannot extend it to a basis of Z (since adding
any further vector to it would break linear independence). Thus, Theorem
6.1.5 (d) fails for K = Z, n = 1 and U = Z1×1.

• The integers 2 and 3 are coprime. Hence, Bezout’s theorem says that 1 is
a Z-linear combination of 2 and 3. (This can be proven more directly: 1 =
1 · 3 + (−1) · 2.) This entails that every integer is a Z-linear combination of 2
and 3. In other words, the span of the 2-element list (2, 3) of vectors in Z is
Z. But neither of these two vectors alone suffices: The span of the 1-element
list (2) is just {multiples of 2}, whereas the span of the 1-element list (3) is
just {multiples of 3}. So the 2-element list (2, 3) spans the Z-module Z, but
cannot be “shrunk” to a basis of Z. Therefore, Theorem 6.1.5 (e) fails for
K = Z, n = 1 and U = Z1×1.

Does Theorem 6.1.5 (b) survive the generalization from fields to commutative
rings? Literally speaking, the answer is “no”. Indeed, if K is the zero ring, then
there is only one K-module (namely, {0}), but it has bases of all sizes (indeed, for
each n ∈ N, the n-element list (0, 0, . . . , 0) is a basis of this K-module). So two
bases of this module can have different sizes.

However, surprisingly, this turns out to be the only counterexample for Theorem
6.1.5 (b)! More precisely, Theorem 6.1.5 (b) holds whenever the ring K has more
than one element. More generally, we have:

Theorem 6.11.5. Let K be a commutative ring with |K| > 1. Let U be a K-
module. Then, any two bases of U have the same size.

This is much harder to prove than the analogue for fields! There is an argument
using determinants.

More generally, Theorem 6.1.5 (c) also holds over commutative rings K such that
|K| > 1.

These results and counterexamples illustrate the fact that K-modules (where K

is a commutative ring) are a much richer structure than just Kn×1’s for n ∈N.

6.12. K-submodules from linear maps

We defined the kernel of a matrix; we can similarly define the kernel of a linear
map, and a slightly more general notion:

Proposition 6.12.1. Let K be a commutative ring. Let M and N be two K-
modules. Let f : M→ N be a K-module homomorphism (i.e., a K-linear map).

(a) The set
{v ∈ M | f (v) = 0}

is a K-submodule of M. This set is called the kernel of f , and is written Ker f (or
ker f ).
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(b) Let V be a K-submodule of N. Then, the set

{v ∈ M | f (v) ∈ V}

is a K-submodule of M. This set is called the preimage of V under f , and is written
f−1 (V).

A second way to construct K-submodules out of linear maps generalizes the
column space of a matrix:

Proposition 6.12.2. Let K be a commutative ring. Let M and N be two K-
modules. Let f : M→ N be a K-module homomorphism (i.e., a K-linear map).

(a) The set f (M) = { f (v) | v ∈ M} is a K-submodule of N. This is called
the image of f .

(b) Let U be a K-submodule of M. Then, the set f (U) = { f (v) | v ∈ U} is a
K-submodule of N. This is called the image of U under f .

How do the kernel and the image of a linear map generalize the kernel and the
column space of a matrix? Again, this comes from the correspondence between
matrices and linear maps:

Remark 6.12.3. Let K be a commutative ring. Let n, m ∈ N. Let A ∈ Kn×m be
an n×m-matrix. Consider the K-linear map LA defined in Theorem 6.8.4. Then:

(a) The kernel of the map LA is the kernel of the matrix A.
(b) The image of the map LA is the column space of the matrix A.
(Here, we are defining the kernel and the column space of a matrix as we did

in Definition 6.1.12 and Definition 6.1.8, but without requiring K to be a field.)

The reader may wonder, after we have stressed certain parallels between rings
and K-modules a few times, whether kernels and images can be defined for ring
homomorphisms in the same way as we have defined them for K-module homo-
morphisms. The answer is “yes”, of course (after all, rings also have a 0, just as
modules do), but the outcome is perhaps somewhat surprising. First, let us show
the analogue of Proposition 6.12.2 for rings:

Proposition 6.12.4. Let K and L be two rings. Let f : K → L be a ring homo-
morphism.

(a) The set f (K) = { f (v) | v ∈ K} is a subring of L. This is called the image
of f .

(b) Let U be a subring of K. Then, the set f (U) = { f (v) | v ∈ U} is a
subring of L. This is called the image of U under f .

Next, we can define the kernel of a ring homomorphism by imitating Proposition
6.12.1; but this kernel will almost never be a subring (as it will almost never contain
1). Instead, it will be a special sort of subset of K: a so-called ideal. Let us define
ideals:
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Definition 6.12.5. Let K be a ring. An ideal of K is defined to be a subset I of K

that satisfies the following four conditions:

• The subset I is closed under addition (i.e., we have a + b ∈ I for all a ∈ I
and b ∈ I).

• The subset I contains 0K.

• We have λa ∈ I for all λ ∈ K and a ∈ I.

• We have aλ ∈ I for all λ ∈ K and a ∈ I.

It is easy to see that any ring K is an ideal of itself; furthermore, the 1-element
subset {0K} of K is an ideal of K as well. But there can be many further ideals:

Example 6.12.6. Let K be a commutative ring. Let u ∈ K. Then, the subset

uK := {uz | z ∈ K}

of K is an ideal of K. Such an ideal is called a principal ideal. Note that {0K}
is a principal ideal (since {0K} = 0K), and K itself is a principal ideal (since
K = 1K).

Let us see what this results in for some specific rings K:

• The principal ideals of the ring Z are the subsets nZ = {nz | z ∈ Z} =
{all multiples of n} with n ∈ Z. For example, 2Z = {all even numbers} is
an ideal of Z. It is not hard to show that all ideals of Z are principal ideals.

• It can also be shown that all ideals of Z [i] are principal ideals. The same
holds for D (the ring of dual numbers), for Z

[√
−2
]

(the ring of “2-
Gaussian integers”), and Q [x] (the ring of polynomials with rational co-
efficients, to be formally defined in Definition 7.4.10 below).

• However, there exist some rings that have non-principal ideals as
well. For example, if K is the ring Z

[√
−3
]
, then the subset{

a + b
√
−3 | a, b ∈ Z satisfying a ≡ b mod 2

}
of K is an ideal but not a

principal ideal. For another example, if K is the ring Z [x] (the ring of
polynomials with integer coefficients, to be formally defined in Definition
7.4.10 below), then the subset of K consisting of all polynomials with even
constant term is an ideal but not a principal ideal.

When K is a commutative ring, the third and fourth conditions in Definition
6.12.5 actually say the same thing (because λa = aλ for all λ ∈ K and a ∈ K). From
this, it is not hard to see the following:
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Proposition 6.12.7. Let K be a commutative ring. Then, an ideal of K is the same
thing as a K-submodule of K. (Remember that K itself is a K-module!).

Now, we can state an analogue of Proposition 6.12.1 is the following:

Proposition 6.12.8. Let K and L be two rings. Let f : K → L be a ring homo-
morphism.

(a) The set
{v ∈ K | f (v) = 0}

is an ideal of K. This set is called the kernel of f , and is written Ker f (or ker f ).
(b) Let V be an ideal of L. Then, the set

{v ∈ K | f (v) ∈ V}

is an ideal of K. This set is called the preimage of V under f , and is written
f−1 (V).

So the kernel of a ring homomorphism is always an ideal. (And conversely, every
ideal can be written as the kernel of a ring homomorphism; this will follow from
Proposition 8.2.6 (g) further below.)

Kernels can also help in checking whether a ring homomorphism or a module
homomorphism is injective. To wit, for ring homomorphisms, the following crite-
rion for injectivity holds:

Proposition 6.12.9. Let K and L be two rings. Let f : K → L be a ring homo-
morphism. Then, f is injective if and only if Ker f = {0K}.

An analogous statement holds for K-module homomorphisms:

Proposition 6.12.10. Let M and N be two K-modules. Let f : M → N be a
K-module homomorphism (i.e., a K-linear map). Then, f is injective if and only
if Ker f = {0M}.

A curious (and useful) consequence of Proposition 6.12.9 is the following prop-
erty of fields:

Corollary 6.12.11. Let K be a field, and let L be a ring such that L is not trivial
(i.e., we have |L| > 1). Let f : K → L be a ring homomorphism. Then, f is
injective.

7. Polynomials and formal power series

7.1. Motivation

Back in our proof of Theorem 2.17.14, we have used a vague notion of polynomials.
Let us try and formalize this notion. While at that, we shall also try to generalize it
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from polynomials with rational coefficients to polynomials with coefficients in an
arbitrary commutative ring.

The most “naive” notion of polynomials is that of a polynomial function:

Definition 7.1.1. Let K be a commutative ring. A function f : K → K is said to
be a polynomial function if there exist some elements a0, a1, . . . , an ∈ K such that
every u ∈ K satisfies

f (u) = a0u0 + a1u1 + · · ·+ anun.

For example, the function

R→ R, u 7→ 6u3 − 1
2

u +
√

3

is a polynomial function.
Definition 7.1.1 has its uses. In particular, when you are working with real or

complex numbers, it is sufficient for most of what you would want from a poly-
nomial. (This is why numerous authors, particularly with backgrounds in analy-
sis, simply define a polynomial to be a polynomial function.) But when we want
polynomials with coefficients from other rings, this definition starts showing weak-
nesses. In what sense?

Here is an example. In Section 5.6, we constructed a field with 4 elements by
adjoining a j satisfying j2 = j + 1 to Z/2. In other words, we adjoined a root of
“the polynomial x2− x− 1” (whatever this may mean) to Z/2. It would be helpful
to generalize this: How can we adjoin a root of a polynomial to a ring? In particular,
if we can do this with polynomials of higher degree than 2, we may hope to be able
to construct larger finite fields. For example, how do we find a field of size 8 ? We
would hope to get it by adjoining to Z/2 a root of a degree-3 polynomial.

So we need a notion of polynomials over Z/2, and we need there to be infinitely
many of them, ideally at least one of each degree. With polynomial functions, we
cannot get this. In fact, there are only 4 functions from Z/2 to Z/2.

Even for our above construction of a field with 4 elements, polynomial functions
are not suited. In fact, the polynomial function

Z/2→ Z/2, x 7→ x2 − x− 1

is actually just the constant-1 function. So when we adjoined a root of this polyno-
mial, did we just adjoin a root of 1 ? Hardly. (A root of 1 would be a j satisfying
1 = 0; “adjoining” such a thing would yield the zero ring, not a field with 4 ele-
ments.)

The moral of the story for now is that when we adjoin a root of a polynomial
to a field, we certainly are not adjoining a root of a polynomial function. So we
have at least one reason to want a concept of polynomials that is finer than that of
polynomial functions.
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Here is another reason: Polynomial functions from K to K can only be applied
to elements of K (because they are defined as functions from K), but we want a
notion of polynomials that can be applied to more general things (such as square
matrices or other polynomials).

For example, in linear algebra, it is extremely useful to apply polynomials to
square matrices. With polynomial functions, this makes no sense: A polynomial
function over R is defined only on R, so how can you apply it to a 2× 2-matrix?
Once again, the discrepancy becomes the most obvious over a finite field: The two
polynomial functions Z/2 → Z/2, x 7→ x2 and Z/2 → Z/2, x 7→ x are identical

(since x2 = x for all x ∈ Z/2); but the matrix A =

(
0 1
0 0

)
∈ (Z/2)2×2 does

not satisfy A2 = A. So if there was a way to apply these two identical polynomial
functions to A, then we should obtain two different results, which is absurd. Thus,
it makes no sense to apply a polynomial function Z/2 → Z/2 to a square matrix
over Z/2.

Hence, we need a finer definition of a polynomial which doesn’t just remember
its values on the elements of K, but remembers all its coefficients. So we need to
bake the coefficients into the definition.

We already gave a hint of such a definition in Subsection 2.17.3, where we said
that a polynomial (in 1 variable x, with rational coefficients) is an “expression”
(whatever this means) of the form akxk + ak−1xk−1 + · · ·+ a0, where ak, ak−1, . . . , a0
are (fixed) rational numbers and where x is an “indeterminate” (a symbol that itself
does not stand for a number, but we can substitute a number for). This was vague
(what exactly is an “expression”?) but a step in the right direction. We can, of
course, generalize this informal definition to an arbitrary commutative ring K by
replacing “rational numbers” by “elements of K”. But how do we make the notion
of “expression” rigorous?

The idea is to forget (at first) about the specific form of the expression akxk +
ak−1xk−1 + · · ·+ a0 and simply store the coefficients a0, a1, . . . , ak appearing in it in
a list.

For example, let us consider polynomials of degree ≤ 1 over R. These always
have the form a0 + a1x (with a0, a1 ∈ R), so we can simply define them as pairs
(a0, a1) of real numbers a0 and a1. (This is analogous to Definition 4.1.1, where
we defined complex numbers as pairs of real numbers rather than trying to treat
them as “expressions involving i”.) Next, we define an addition operation + on
polynomials of degree ≤ 1 by setting

(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1) ,

which of course imitates the informal computation

(a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1) x.

Furthermore, we define a multiplication on these polynomials by setting

(a0, a1) · (b0, b1) = (a0b0, a0b1 + a1b0, a1b1) ,
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which imitates the “FOIL” rule

(a0 + a1x) · (b0 + b1x) = a0b0 + (a0b1 + a1b0) x + a1b1x2.

However, this multiplication yields a triple, not a pair, so it is not a binary oper-
ation. So our polynomials of degree ≤ 1 do not form a ring; their multiplication
takes us out of their set.

We can likewise consider polynomials of degree ≤ 2, which can be defined as
triples (a0, a1, a2), but then multiplication yields a 5-tuple rather than a triple.

More generally: For each n ∈ N, we can define polynomials of degree ≤ n as
(n + 1)-tuples (a0, a1, . . . , an), and define addition and multiplication on them, but
the multiplication will result in (2n + 1)-tuples rather than (n + 1)-tuples.

Hence, if we want to define polynomials in such a way that they form a ring, we
should define them not as pairs or triples or (n + 1)-tuples, but rather as infinite
sequences. In other words, we should define a polynomial as an infinite sequence
(a0, a1, a2, . . .), which will encode the “expression” a0 + a1x + a2x2 + · · · . However,
not every sequence stands for a polynomial; after all, we want polynomials to
be finite expressions, so the sum a0 + a1x + a2x2 + · · · needs to be finite (in the
sense that all but finitely many of its addends are 0) in order for it to qualify
as a polynomial. Thus, our polynomials should be defined as infinite sequences
(a0, a1, a2, . . .) that have only finitely many nonzero entries.

An upside of this strategy is that with such a definition, we get a second object
for free: the formal power series. Those are just going to be all infinite sequences
(a0, a1, a2, . . .), including the ones that have infinitely many nonzero entries. We
will see that the same rules by which we define addition and multiplication of
polynomials can be used to define these operations on formal power series.

7.2. The definition of formal power series and polynomials

Let us now explicitly state the definitions we have been working towards. We shall
only define polynomials (and formal power series) in 1 indeterminate; there is a
version that involves multiple indeterminates, but for now we restrict ourselves to
one.

Convention 7.2.1. For the rest of this chapter, we fix a commutative ring K.

Definition 7.2.2. (a) A formal power series (in 1 indeterminate over K) is defined
to be a sequence (a0, a1, a2, . . .) = (an)n∈N ∈ KN of elements of K.

We abbreviate the words “formal power series” as “FPS”.
We let K [[x]] be the set of all FPSs.
(b) A polynomial (in 1 indeterminate over K) is defined to be an FPS

(a0, a1, a2, . . .) such that

all but finitely many i ∈N satisfy ai = 0

(that is, only finitely many i ∈N satisfy ai 6= 0).
We let K [x] be the set of all polynomials.
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So far, our FPSs are just sequences, with no other meaning. We will later see why
they can be viewed as “power series”, what the x in “K [[x]]” means, and why we
can write a sequence (a0, a1, a2, . . .) as a0 + a1x + a2x2 + · · · .

First, let us give two examples to illustrate the above definition:

Example 7.2.3. In this example, let K = Z.
(a) The sequence (1, 2, 3, 4, 5, . . .) is an FPS, but not a polynomial. We will later

write this FPS as 1 + 2x + 3x2 + 4x3 + 5x4 + · · · .

(b) The sequence

3, 0, 2, 5, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 is a polynomial. We will later write

this polynomial as 3 + 2x2 + 5x3.

Definition 7.2.4. The goal of this definition is to make K [[x]] into a K-algebra.
(a) We define a binary operation + (called addition) on K [[x]] by

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) = (a0 + b0, a1 + b1, a2 + b2, . . .) .

(That is, we define an entrywise addition.)
(b) We define a scaling map · : K×K [[x]]→ K [[x]] by

λ (a0, a1, a2, . . .) = (λa0, λa1, λa2, . . .) .

(That is, we define an entrywise scaling.)
(c) We define a binary operation · (called multiplication) on K [[x]] by

(a0, a1, a2, . . .) · (b0, b1, b2, . . .) = (c0, c1, c2, . . .) ,

where

cn =
n

∑
i=0

aibn−i = ∑
i,j∈N;
i+j=n

aibj = a0bn + a1bn−1 + · · ·+ anb0 for all n ∈N.

(d) For each a ∈ K, we define an FPS a ∈ K [[x]] by

a =

a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 .

This is called a constant FPS.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:37 page 257

For example,

(0, 1, 2, 3, 4, . . .) + (1, 1, 1, 1, 1, . . .) = (1, 2, 3, 4, 5, . . .) and
(1, 1, 1, 1, 1, . . .) + (1, 1, 1, 1, 1, . . .) = (2, 2, 2, 2, 2, . . .) and

8 · (1, 1, 1, 1, 1, . . .) = (8, 8, 8, 8, 8, . . .) and
(1, 1, 1, 1, 1, . . .) · (1, 1, 1, 1, 1, . . .) = (1, 2, 3, 4, 5, . . .) and1,−1, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 · (1, 1, 1, 1, 1, . . .) =

1, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = 1. (85)

Theorem 7.2.5. (a) Equip the set K [[x]] with the addition + defined in Definition
7.2.4 (a), the multiplication · defined in Definition 7.2.4 (c), the scaling · defined
in Definition 7.2.4 (b), the zero 0 and the unity 1. Then, K [[x]] is a K-algebra, a
commutative ring and a K-module.

(b) The subtraction − that comes from the K-algebra structure on K [[x]] is
entrywise; in other words, any two FPSs (a0, a1, a2, . . .) and (b0, b1, b2, . . .) satisfy

(a0, a1, a2, . . .)− (b0, b1, b2, . . .) = (a0 − b0, a1 − b1, a2 − b2, . . .) .

(c) We have

λa = λ · a for each λ ∈ K and a ∈ K [[x]] .

(d) Consider the map

ι : K→ K [[x]] ,
a 7→ a

(sending each element a ∈ K to the corresponding constant FPS a =a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

). This map ι is a K-algebra homomorphism82.

Before we outline a proof of this theorem, let us introduce a helpful notation
(used often in enumerative combinatorics):

Definition 7.2.6. Let n ∈N. Let a = (a0, a1, a2, . . .) ∈ K [[x]]. Then, we define an
element [xn] a ∈ K by

[xn] a = an.

This element [xn] a is called the coefficient of xn in a, or the n-th coefficient of a.
(The letter “x” is so far considered just as a symbolic part of this notation, with
no standalone meaning.)

82Recall that the notion of a K-algebra homomorphism was introduced in Definition 6.9.5; it means
“map that is a ring homomorphism and a K-module homomorphism at the same time”.
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Be careful with this notation: What you would normally call “the first entry” of
the sequence (a0, a1, a2, . . .) is called its 0-th (not 1-st) coefficient.

Example 7.2.7. We have
[
x0] (1, 2, 3, 4, 5, . . .) = 1 and

[
x3] (1, 2, 3, 4, 5, . . .) = 4.

Definition 7.2.6 has a tautological consequence: Each FPS a satisfies

a =
([

x0
]

a,
[

x1
]

a,
[

x2
]

a, . . .
)

. (86)

Thus, an FPS a is uniquely determined by its coefficients
[
x0] a,

[
x1] a,

[
x2] a, . . ..

Hence, if two FPSs a and b satisfy [xn] a = [xn] b for all n ∈N, then a = b.
The definition of the sum of two FPSs (Definition 7.2.4 (a)) rewrites as follows:

[xn] (a + b) = [xn] a + [xn] b for all a, b ∈ K [[x]] and n ∈N. (87)

(Here, the expression “[xn] a + [xn] b” should be read as “([xn] a) + ([xn] b)”.) Fur-
thermore, the definition of scaling on FPSs (Definition 7.2.4 (b)) rewrites as follows:

[xn] (λa) = λ · [xn] a for all λ ∈ K and a ∈ K [[x]] and n ∈N. (88)

Moreover, the definition of the product of two FPSs (Definition 7.2.4 (c)) rewrites
as follows:

[xn] (ab) =
n

∑
i=0

([
xi
]

a
)
·
([

xn−i
]

b
)

(89)

= ∑
i,j∈N;
i+j=n

([
xi
]

a
)
·
([

xj
]

b
)

(90)

=
([

x0
]

a
)
· ([xn] b) +

([
x1
]

a
)
·
([

xn−1
]

b
)
+ · · ·+ ([xn] a) ·

([
x0
]

b
)

for all a, b ∈ K [[x]] and n ∈N.

Thus, any a, b ∈ K [[x]] and n ∈N satisfy

[xn] (ab) =
n

∑
i=0

([
xi
]

a
)
·
([

xn−i
]

b
)

=
n

∑
j=0

([
xn−j

]
a
)
·
([

xj
]

b
)

(91)

(here, we have substituted n − j for i in the sum). Applying (89) to n = 0, we
conclude that[

x0
]
(ab) =

0

∑
i=0

([
xi
]

a
)
·
([

x0−i
]

b
)
=
([

x0
]

a
)
·
([

x0−0
]

b
)

=
([

x0
]

a
)
·
([

x0
]

b
)

(92)
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for all a, b ∈ K [[x]]. (But of course, [xn] (ab) is not generally equal to ([xn] a) ·
([xn] b) when n > 0.)

Finally, using the Iverson bracket notation (introduced in Exercise 2.17.2), we can
rewrite the definition of the constant FPSs a (Definition 7.2.4 (d)) as follows:

[xn] (a) =

{
a, if n = 0;
0, if n 6= 0

(93)

=

{
1, if n = 0;
0, if n 6= 0︸ ︷︷ ︸

=[n=0]

·a

= [n = 0] · a for all a ∈ K and n ∈N. (94)

We are now ready to prove Theorem 7.2.5:

Convention 7.2.8. From now on, we shall identify each a ∈ K with the FPS
a = (a, 0, 0, 0, . . .) ∈ K [[x]].

This identification is harmless, due to Theorem 7.2.5 (d) and to the fact that the
map

ι : K→ K [[x]] ,
a 7→ a

is injective (since a =
[
x0] (a) for all a ∈ K). Note that if a ∈ K, then the FPS a

is actually a polynomial (since a = (a, 0, 0, 0, 0, . . .) has at most one nonzero entry),
i.e., belongs to K [x].

The identification we have made in Convention 7.2.8 turns K into a subset of
K [[x]], and more precisely into a K-subalgebra of K [[x]] (by Theorem 7.2.5 (d)).

Theorem 7.2.5 shows that K [[x]] is a K-algebra and a commutative ring, so that
differences, powers, finite sums, and finite products of FPSs are well-defined. But
more can be said. Indeed, sometimes, infinite sums of FPSs make sense. For
example, it is reasonable to write

(1, 1, 1, 1, 1, . . .)
+ (0, 1, 1, 1, 1, . . .)
+ (0, 0, 1, 1, 1, . . .)
+ (0, 0, 0, 1, 1, . . .)
+ (0, 0, 0, 0, 1, . . .)
+ · · ·
= (1, 2, 3, 4, 5, . . .) ,

even though the sum on the left hand side has infinitely many nonzero83 addends!
The addition of K [[x]] is entrywise, so it stands to reason that infinite sums of
83As usual, “nonzero” means “different from 0K[[x]] = (0, 0, 0, 0, . . .)”.
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FPSs should be defined entrywise as well, and whenever such entrywise sums are
well-defined, it makes sense to call them the sum of the FPSs. Thus, we make the
following definition:

Definition 7.2.9. A (possibly infinite) family (ai)i∈I of FPSs (where I is an arbi-
trary set) is called summable if for each n ∈N, the following requirement holds:

only finitely many i ∈ I satisfy [xn] (ai) 6= 0. (95)

In this case, the sum ∑
i∈I

ai of the family (ai)i∈I is defined as the FPS whose

coefficients are given by

[xn]

(
∑
i∈I

ai

)
= ∑

i∈I
[xn] (ai) for all n ∈N.

(The sum on the right hand side of this equality is well-defined in K, since it is
a sum with only finitely many nonzero addends.)

We notice that the condition (95) is not equivalent to saying “infinitely many
i ∈ I satisfy [xn] (ai) = 0”.

Remark 7.2.10. If you work in constructive logic, you should read the condition (95) as
“all but finitely many i ∈ I satisfy [xn] (ai) = 0” (that is, “there exists a finite subset S of
I such that each i ∈ I \ S satisfies [xn] (ai) = 0”).

Proposition 7.2.11. Sums of summable families of FPSs satisfy the usual rules
for summation, as long as all families involved are summable. For example:

• If (ai)i∈I and (bi)i∈I are two summable families of FPSs, then the family
(ai + bi)i∈I is summable as well and its sum is

∑
i∈I

(ai + bi) = ∑
i∈I

ai + ∑
i∈I

bi.

• If (ai)i∈I is a summable family of FPSs, and if J is a subset of I, then the
families (ai)i∈J and (ai)i∈I\J are summable as well and we have

∑
i∈I

ai = ∑
i∈J

ai + ∑
i∈I\J

ai.

• The family (0)i∈I (where 0 stands for the FPS 0K[[x]]) is always summable
(no matter how large I is), and its sum is ∑

i∈I
0 = 0.

• If
(
ai,j
)
(i,j)∈I×J is a summable family of FPSs indexed by pairs (i, j) ∈ I × J,

then
∑
i∈I

∑
j∈J

ai,j = ∑
(i,j)∈I×J

ai,j = ∑
j∈J

∑
i∈I

ai,j. (96)
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Remark 7.2.12. Caveat: The equality (96) implies, in particular, that the sum-
mation signs ∑

i∈I
and ∑

j∈J
can be interchanged. However, the condition that the

family
(
ai,j
)
(i,j)∈I×J is summable is needed for this! If we drop this condition,

and merely require the (weaker!) condition that all the families
(
ai,j
)

j∈J (for each

fixed i),
(
ai,j
)

i∈I (for each fixed j),

(
∑
j∈J

ai,j

)
i∈I

and
(

∑
i∈I

ai,j

)
j∈J

are summable,

then the equality
∑
i∈I

∑
j∈J

ai,j = ∑
j∈J

∑
i∈I

ai,j (97)

may be false. For an example where it is false, consider the family
(
ai,j
)
(i,j)∈I×J

with I = {1, 2, 3, . . .} and J = {1, 2, 3, . . .} and ai,j given by the following table:

ai,j 1 2 3 4 5 · · ·

1 1 −1 · · ·
2 1 −1 · · ·
3 1 −1 · · ·
4 1 −1 · · ·
5 1 · · ·
...

...
...

...
...

... . . .

(where all the entries not shown are 0). Note that the elements of this family
belong to K, and thus can be considered as FPSs via Convention 7.2.8. For this
specific family

(
ai,j
)
(i,j)∈I×J , the equality (97) rewrites as 0 = 1, which is not a

good sign. But this does not contradict the rule (96), since the family
(
ai,j
)
(i,j)∈I×J

is not summable (it contains infinitely many 1’s).
The upshot of this caveat is that if you want to interchange two summa-

tion signs as in (97), you must check not only that the sums involved are all
well-defined, but also that the sum ∑

(i,j)∈I×J
ai,j is well-defined (i.e., the family(

ai,j
)
(i,j)∈I×J is summable). This is automatically satisfied when the sets I and J

are finite, but in the case of infinite sets can be a serious restriction as we have
just seen.

We shall use standard notations for infinite sums over certain subsets of Z. For
instance, the summation sign “

∞
∑

i=0
” shall mean “ ∑

i∈N

”; more generally, if a ∈ Z, then

the summation sign “
∞
∑

i=a
” shall mean “ ∑

i∈{a,a+1,a+2,...}
”. Also, the summation sign
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“ ∑
i>0

” shall mean “
∞
∑

i=1
”, which is the same as “ ∑

i∈{1,2,3,...}
”.

Definition 7.2.13. We let x denote the FPS

0, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

.

Thus, we have [
x1
]

x = 1, and (98)

[xn] x = 0 for all n ∈N satisfying n 6= 1. (99)

In other words, for all n ∈N, we have

[xn] x =

{
1, if n = 1;
0, if n 6= 1

(100)

=

{
1, if n = 1;
0, if n 6= 1︸ ︷︷ ︸

=[n=1]

·1K = [n = 1] · 1K (101)

(using the Iverson bracket notation).

Lemma 7.2.14. Let (a0, a1, a2, . . .) ∈ K [[x]] be an FPS. Then,

x (a0, a1, a2, . . .) = (0, a0, a1, a2, . . .) .

In other words, Lemma 7.2.14 says that multiplying an FPS by x shifts all entries
of the FPS to the right by 1 step, while filling the now-empty 0-th slot with a 0.

Proposition 7.2.15. For each k ∈N, we have

xk =

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 .

Proposition 7.2.15 can be restated as follows:

[xn]
(

xk
)
=

{
1, if n = k;
0, if n 6= k

for all n, k ∈N. (102)
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Corollary 7.2.16. Let (a0, a1, a2, . . .) ∈ K [[x]] be any FPS. Then, the family(
akxk)

k∈N
is summable, so that the sum ∑

k∈N

akxk is well-defined. Moreover,

(a0, a1, a2, . . .) = a0 + a1x + a2x2 + a3x3 + · · · = ∑
k∈N

akxk.

So now we are justified in computing “formally” with FPSs as if they were in-
finite sums of powers of x times scalars, because we have now constructed a ring
with an actual element x in it and we have shown that these infinite sums are well-
defined and just encode the sequences of their coefficients. This is the rigorous
answer to the question “what is an indeterminate in a polynomial or FPS”. This
also explains why we refer to the entries of an FPS (a0, a1, a2, . . .) as its “coeffi-
cients”.

Exercise 7.2.1. Let b ∈ K [[x]] and u, v ∈N. Prove the following:
(a) If u ≥ v, then [xu] (xvb) = [xu−v] b.
(b) If u < v, then [xu] (xvb) = 0.

7.3. Inverses in the ring K [[x]]

7.3.1. The invertibility criterion for power series

The equation (85) is not just an example of multiplying two FPSs. It is also an
example of a multiplicative inverse in the ring K [[x]]. Indeed, we can rewrite it as

(1− x) ·
(

1 + x + x2 + x3 + · · ·
)
= 1

(since

1,−1, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = 1 − x and (1, 1, 1, 1, 1, . . .) = 1 + x + x2 + x3 + · · · ).

Since the ring K [[x]] is commutative, we also have (1− x) ·
(
1 + x + x2 + x3 + · · ·

)
=(

1 + x + x2 + x3 + · · ·
)
· (1− x). Thus,

(1− x) ·
(

1 + x + x2 + x3 + · · ·
)
=
(

1 + x + x2 + x3 + · · ·
)
· (1− x) = 1.

Since 1 is the unity 1K[[x]] of the ring K [[x]], we thus conclude that the FPS 1 + x +

x2 + x3 + · · · is a multiplicative inverse of 1− x. Thus, the FPS 1− x is invertible,
and its multiplicative inverse is

1
1− x

= 1 + x + x2 + x3 + · · · .

This, of course, looks exactly like the well-known geometric series formula from

analysis, which states that
1

1− r
= 1 + r + r2 + r3 + · · · for each real r ∈ (−1, 1).
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But keep in mind that our x is an indeterminate over an arbitrary commutative
ring, while the r in the latter formula is a real number between −1 and 1; there are
ways to transfer identities between these two worlds, but they are not a-priori the
same.

Thus we have seen that 1 − x is an invertible FPS. Let us ask a more general
question: When is an FPS invertible? Quite often, as it turns out:

Theorem 7.3.1. Let a ∈ K [[x]]. Then, a is invertible (in the ring K [[x]]) if and
only if the coefficient

[
x0] a is invertible in K.

7.3.2. Newton’s binomial formula

In Definition 4.1.19, we have defined negative powers (i.e., powers of the form αn

with n being a negative integer) of any nonzero complex number α. All that we
needed from α in that definition was that α has a multiplicative inverse α−1. Thus,
we can straightforwardly extend this definition to any invertible element α of any
ring:

Definition 7.3.2. Let L be a ring. Let α ∈ L be invertible. For any negative n ∈ Z,
we define an element αn ∈ L (called the n-th power of α) by αn =

(
α−1)−n. (This

is well-defined, since
(
α−1)−n is already defined by Definition 5.4.10 (because n

is negative and thus −n ∈N).)

When the ring L is commutative, the powers of its elements satisfy the same
rules as the powers of complex numbers (see Proposition 4.1.20), except that we
have to replace “nonzero” by “invertible” (since negative powers are defined only
for invertible elements of L). For example, if L is a commutative ring, then

(αβ)n = αnβn for all invertible α, β ∈ L and all n ∈ Z.

We can apply this to L = K [[x]] (which is a commutative ring). Recall that the
FPS 1− x is invertible, and its multiplicative inverse is

1
1− x

= 1 + x + x2 + x3 + · · · = ∑
k∈N

xk.

A similar argument shows that the FPS 1 + x is invertible, and its multiplicative
inverse is

1
1 + x

= 1− x + x2 − x3 ± · · · = ∑
k∈N

(−1)k xk.

Thus, negative powers of 1 + x are well-defined. We can explicitly compute not
just the multiplicative inverse of 1 + x (as we just did), but also all powers of 1 + x.
As far as the nonnegative powers are concerned (that is, (1 + x)u for u ∈ N), this
can easily be done by the binomial formula, and the result can be written either as
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u
∑

k=0

(
u
k

)
xk or as the infinite sum ∑

k∈N

(
u
k

)
xk. (The second sum differs from the first

sum only in the presence of addends for k > u; but all these addends are 0, and
thus do not actually affect the sum.) Interestingly, however, the formula

(1 + x)u = ∑
k∈N

(
u
k

)
xk

is also valid for negative integers u – even though there is no binomial formula for
negative exponents any more! This result is called Newton’s (generalized) binomial
theorem for integers; let us state it as follows:

Theorem 7.3.3. (a) The FPS 1 + x is invertible (in K [[x]]). Thus, (1 + x)u is
defined for each u ∈ Z (by Definition 7.3.2).

(b) In the ring K [[x]], we have

(1 + x)u = ∑
k∈N

(
u
k

)
xk for each u ∈ Z.

In particular, the sum ∑
k∈N

(
u
k

)
xk is well-defined (i.e., the family

((
u
k

)
xk
)

k∈N

is summable) for each u ∈ Z.

To prove this, we begin by showing a simple corollary of the binomial formula:

Lemma 7.3.4. Let u ∈N. Let K be any ring, and let a ∈ K. Then,

(1 + a)u = ∑
k∈N

(
u
k

)
ak.

(Here, the sum ∑
k∈N

(
u
k

)
ak is well-defined, since it has only finitely many nonzero

addends.)

Lemma 7.3.4 easily implies that Theorem 7.3.3 (b) holds for u ∈ N; but proving
Theorem 7.3.3 (b) for negative integers u requires more work. Here is ours:

7.4. Polynomials and their degrees

Recall that polynomials have been defined as a special case of FPSs: Namely, a
polynomial is just an FPS with only finitely many nonzero entries (= coefficients).
But polynomials are, in many ways, better behaved than arbitrary FPSs; in particu-
lar, polynomials (unlike FPSs) can be evaluated at elements of K (by plugging these
elements for the “x” in the polynomial), and even at more general things, whereas
FPSs don’t (in general).
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We shall now study polynomials in more detail. To that aim, it helps to look a
bit closer and define some smaller classes of polynomials. Namely, we know that
each polynomial has only finitely many nonzero coefficients; we can thus ask what
its last nonzero coefficient is. This leads to the following definition:

Definition 7.4.1. (a) For each n ∈ Z, we define a subset K [x]≤n of K [[x]] by

K [x]≤n = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > n} (103)

=
{

a ∈ K [[x]] |
[

xk
]

a = 0 for all k > n
}

. (104)

(Here, of course, “for all k > n” means “for all k ∈N satisfying k > n”.)
(b) Let a = (a0, a1, a2, . . .) be a polynomial. Then, all but finitely many i ∈ N

satisfy ai = 0 (by the definition of a polynomial); in other words, only finitely
many i ∈ N satisfy ai 6= 0. The degree of a is defined to be the largest i ∈ N

such that ai 6= 0. (If no such i exists, then we define it to be −∞, which is a
symbolic quantity that is understood to be smaller than every integer and to
satisfy (−∞) + m = −∞ for all m.)

The degree of the polynomial a will be denoted deg a.

Example 7.4.2. (a) We have

K [x]≤0 = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > 0}
= {(a0, a1, a2, . . .) ∈ K [[x]] | a1 = a2 = a3 = · · · = 0}

=


a0, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 | a0 ∈ K


=


a, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 | a ∈ K


= {a | a ∈ K}

since

a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = a for each a ∈ K

 .

This is the set of all constant FPSs; these are also known as the constant polynomi-
als. Convention 7.2.8 lets us identify these constant polynomials to the elements
of K; thus, K [x]≤0 simply is K.

(b) We have

K [x]≤1 = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > 1}
= {(a0, a1, a2, . . .) ∈ K [[x]] | a2 = a3 = a4 = · · · = 0}

=


a0, a1, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 | a0, a1 ∈ K


= {a0 + a1x | a0, a1 ∈ K} .
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The elements of this set are called the linear polynomials (at least in one sense of
this word).

(c) If n ∈ Z is negative, then

K [x]≤n = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > n}
= {(a0, a1, a2, . . .) ∈ K [[x]] | a0 = a1 = a2 = · · · = 0}
= {(0, 0, 0, . . .)} = {0} .

(d) The FPS

3, 0, 2, 5, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 is a polynomial of degree 3.

Parts (a) and (b) of Definition 7.4.1 are essentially two different ways to look at
the same thing (viz., at what point the coefficients of a polynomial become 0); the
precise relation is captured by the following lemma:

Lemma 7.4.3. Let n ∈ Z. Let a ∈ K [[x]] be an FPS. Then:
(a) We have the following equivalence:(

a ∈ K [x]≤n
)
⇐⇒

([
xk
]

a = 0 for all k > n
)

.

(b) We have the following equivalence:

(a is a polynomial of degree ≤ n) ⇐⇒
(
a ∈ K [x]≤n

)
.

Note that n is allowed to be negative in Lemma 7.4.3; in this case, Lemma 7.4.3
(b) is simply saying that a is a polynomial of degree −∞ if and only if all its
coefficients a0, a1, a2, . . . are 0 (because the only negative degree that a polynomial
can have is −∞).

Lemma 7.4.3 is an easy consequence of Definition 7.4.1, but the proof grows long
on paper:

Remark 7.4.4. If you work in constructive logic, then Lemma 7.4.3 (b) cannot be proven.
In fact, in constructive logic, you cannot prove that each polynomial has a well-defined
degree (since you cannot generally prove that each i ∈N satisfies either ai = 0 or ai 6= 0).
Thus, the notion of “the degree of a polynomial” is not well-behaved in constructive
mathematics. It is also not well-behaved in other ways – e.g., it is not preserved by
ring homomorphisms, and leads to nuisances when K is a trivial ring, as witnessed in
Theorem 7.4.11 (d) below. Thus, I shall avoid this notion wherever I can help it, and
instead use the notion of K [x]≤n (where n ∈ Z). This is a bit less familiar but hopefully
more “philosophically right” (while being essentially equivalent to the notion of degree
under classical logic, because of Lemma 7.4.3 (b)). (The notion of a degree does become
useful again when K is a field, but I will first study a more general setup.)
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Corollary 7.2.16 has shown that we can write each FPS as an infinite sum; like-
wise, we can write each polynomial as a finite sum:

Theorem 7.4.5. Let n ∈ Z. Let (a0, a1, a2, . . .) ∈ K [x]≤n. Then,

(a0, a1, a2, . . .) = a0 + a1x + a2x2 + · · ·+ anxn =
n

∑
k=0

akxk.

Note that n is allowed to be negative in Theorem 7.4.5; in this case, the sum
n
∑

k=0
akxk is empty (and thus equals 0K[[x]]), and this should not be surprising (be-

cause in this case, we have (a0, a1, a2, . . .) ∈ K [x]≤n = {0} (by Example 7.4.2 (c)),
so that (a0, a1, a2, . . .) = 0 = (empty sum)).

Exercise 7.4.1. Let n ∈N. Let a ∈ K [x]≤n. Prove the following:
(a) If [xn] a = 0, then a ∈ K [x]≤n−1.
(b) If [xn] a 6= 0, then deg a = n.
(c) We have deg a = n if and only if [xn] a 6= 0.

Next, let us prove some basic properties of K [x]≤n:

Lemma 7.4.6. Let n ∈ Z.
(a) We have 0 ∈ K [x]≤n.
(b) If a, b ∈ K [x]≤n, then a + b ∈ K [x]≤n.
(c) If λ ∈ K and a ∈ K [x]≤n, then λa ∈ K [x]≤n.
(d) The subset K [x]≤n of K [[x]] is a K-submodule of K [[x]].
(e) Any finite sum of elements of K [x]≤n belongs to K [x]≤n.
(f) If i ∈N satisfies i ≤ n, then xi ∈ K [x]≤n.

Lemma 7.4.6 yields the following converse of Theorem 7.4.5:

Exercise 7.4.2. Let n ∈ Z. Let a0, a1, . . . , an ∈ K. Prove that
n
∑

k=0
akxk ∈ K [x]≤n.

Combining Lemma 7.4.6 with Exercise 7.4.1 (a), we obtain a simple fact: If two
polynomials in K [x]≤n have the same coefficient of xn, then their difference be-
longs to K [x]≤n−1 (since the subtraction “cancels their leading terms”84). This fact
is highly useful in induction proofs (specifically, it helps prove properties of poly-
nomials by induction on the degree of a polynomial); let us state it as an exercise:

84I am putting this in quotation marks because I am trying to avoid the notion of “leading term”.
(The leading term of a nonzero polynomial a = a0 + a1x + a2x2 + · · ·+ anxn of degree n is defined
to be anxn. But beware that if a = a0 + a1x + a2x2 + · · ·+ anxn is merely in K [x]≤n, then deg a
may be smaller than n, in which case its leading term is not anxn but rather aixi for i = deg a.
Thus there is a discrepancy between the definition of “leading term” and what we typically want
to say when we use this word.)
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Exercise 7.4.3. Let n ∈ N. Let a, b ∈ K [x]≤n be such that [xn] a = [xn] b. Then,
a− b ∈ K [x]≤n−1.

Theorem 7.4.7. (a) If u ∈ Z and v ∈ Z satisfy u ≤ v, then K [x]≤u ⊆ K [x]≤v.
(b) If n ∈ Z, then K [x]≤n is a K-submodule of K [x].
(c) If a ∈ K [x], then there exists some n ∈N such that a ∈ K [x]≤n.
(d) If a ∈ K, then a ∈ K [x]≤0.
(e) We have x ∈ K [x]≤1.
(f) Let n ∈ N and m ∈ N. Let a ∈ K [x]≤n and b ∈ K [x]≤m. Then, a + b ∈

K [x]≤max{n,m} and ab ∈ K [x]≤n+m.

We shall prove Theorem 7.4.7 in Exercise 7.4.4 below. The hardest part of this
theorem is the claim ab ∈ K [x]≤n+m in its part (f); we can strengthen this part as
follows:

Lemma 7.4.8. Let n, m ∈N. Let a ∈ K [x]≤n and b ∈ K [x]≤m. Then:
(a) We have

[
xn+i] (ab) = ([xn] a) ·

([
xi] b

)
for each integer i ≥ m.

(b) We have ab ∈ K [x]≤n+m.
(c) We have [xn+m] (ab) = ([xn] a) · ([xm] b).

Exercise 7.4.4. Prove Theorem 7.4.7.

Corollary 7.4.9. (a) The subset K [x] of K [[x]] is a K-subalgebra of K [[x]].
(b) We have x ∈ K [x].
(c) We have

K [x] =
⋃

n∈N

K [x]≤n .

Here,
⋃

n∈N

K [x]≤n means the union of the sets K [x]≤n over all n ∈ N (in other

words,⋃
n∈N

K [x]≤n = K [x]≤0 ∪K [x]≤1 ∪K [x]≤2 ∪ · · ·

=
{

a | there exists some n ∈N such that a ∈ K [x]≤n
}

).

Exercise 7.4.5. Prove Corollary 7.4.9.

Definition 7.4.10. Corollary 7.4.9 (a) yields that K [x] is a K-algebra. This K-
algebra is called the polynomial ring over K in the indeterminate x (or the algebra of
polynomials in x over K).
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Exercise 7.4.6. Let n ∈ {−1, 0, 1, . . .}. Theorem 7.4.7 (b) shows that K [x]≤n is
a K-submodule of K [x]. Prove that the list

(
x0, x1, . . . , xn) is a basis of this K-

submodule K [x]≤n. (See Definition 6.11.1 (d) for the definition of a basis of a
K-submodule.)

We can restate some of Theorem 7.4.7 in terms of degrees:

Theorem 7.4.11. (a) If a ∈ K, then a ∈ K [x] and deg a ≤ 0.
(b) If a ∈ K is nonzero, then deg a = 0.
(c) We have x ∈ K [x] and deg x ≤ 1.
(d) If |K| > 1, then deg x = 1.
(e) If a and b are two polynomials, then a + b and ab are two polynomials

satisfying

deg (a + b) ≤ max {deg a, deg b} and deg (ab) ≤ deg a + deg b.

(f) If K is a field, and if a and b are two polynomials, then deg (ab) = deg a +
deg b.

We shall prove this in Exercise 7.4.7. The condition “|K| > 1” in Theorem 7.4.11
(d) is a homage to the possibility that K may be a trivial ring (i.e., a ring with only
one element). If K is a trivial ring, then all coefficients of the polynomial x are 0
(because all elements of K are 0), and thus deg x = −∞ rather than deg x = 1. The
zero ring is generally responsible for lots of exceptions in rules about degrees; thus
it is better to speak of “polynomials of degree ≤ n” than of the exact degree of a
polynomial.

Note also that Theorem 7.4.11 (f) would not be true without the “K is a field”
requirement. For example, if K = Z/4 and a = 1 + 2x and b = 1 + 2x (using the
standard shorthand notations 1 = [1]4 and 2 = [2]4 etc.), then the polynomial

ab = (1 + 2x) (1 + 2x) = 1 + 4x + 4x2︸ ︷︷ ︸
=0

(since 4=0 in K)

= 1 (105)

has degree < 2.
Our next lemma is a generalization of Theorem 7.4.11 (f): Instead of requiring

K to be a field, we will merely require that the coefficient [xm] b of b be invertible
(which is automatically satisfied when K is a field and m = deg b).

Lemma 7.4.12. Let m ∈ N. Let a and b be two polynomials with b ∈ K [x]≤m.
Assume that [xm] b ∈ K is invertible. Then, deg (ab) = deg a + m.

Exercise 7.4.7. Prove Theorem 7.4.11 and Lemma 7.4.12.
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Proposition 7.4.13. Let a1, a2, . . . , ak ∈ K [x].
(a) Then,

deg (a1a2 · · · ak) ≤ deg (a1) + deg (a2) + · · ·+ deg (ak) .

(b) If K is a field, then this is an equality.

The following exercise will be useful to us later on:

Exercise 7.4.8. Let m ∈N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible.
Let q ∈ K [x] be such that qb ∈ K [x]≤m−1. Prove that q = 0.

7.5. Division with remainder

7.5.1. The general case

Polynomials, in many senses, are like numbers. In particular, we can study their
divisibility, congruence and remainder classes just as we did with integers and
Gaussian integers. We will not go deeply into this, but we shall see some of the
very basic properties.

The first basic fact is a version of division with remainder for polynomials (com-
pare with Theorem 2.6.1 and Theorem 4.2.26):

Theorem 7.5.1. Let m ∈N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible.
Let a ∈ K [x] be any polynomial.

(a) Then, there exists a unique pair (q, r) of polynomials such that a = qb + r
and r ∈ K [x]≤m−1.

(b) Moreover, if n ∈ N satisfies a ∈ K [x]≤n, then this pair satisfies q ∈
K [x]≤n−m.

We shall give an example for Theorem 7.5.1 in a moment (and then prove the
theorem after a while); but first, let us comment on the condition that [xm] b be in-
vertible. Indeed, if K is a field, then this condition is equivalent to the requirement
that [xm] b be nonzero; and this latter requirement is equivalent to requiring that
deg b = m (by Exercise 7.4.1 (c)). Hence, if K is a field, then Theorem 7.5.1 can be
applied to any nonzero polynomial b ∈ K [x] (as long as m is chosen to be deg b).
Thus, if b is a nonzero polynomial over a field K, then any polynomial a can be
uniquely divided with remainder by b (in such a way that the remainder will have
degree < deg b). But if K is not a field, then not every polynomial can play the
role of b in Theorem 7.5.1. For example, the polynomial 1+ 2x over K = Z cannot,
because its coefficient of x1 is not invertible (it equals 2). And unsurprisingly, many
polynomials over Z cannot be divided with remainder by 1 + 2x (for example, x2

cannot – unless you allow remainders of degree > 1).
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Example 7.5.2. For this example, set K = Z and m = 2 and b = x2 + x + 1.
Then, b ∈ K [x]≤m.

Let n = 4 and a = x4− x2; thus, a ∈ K [x]≤n. Then, Theorem 7.5.1 (a) says that
there exists a unique pair (q, r) of polynomials such that

a = qb + r
(

that is, x4 − x2 = q ·
(

x2 + x + 1
)
+ r
)

and

r ∈ K [x]≤m−1

(
that is, deg r ≤ m︸︷︷︸

=2

−1 = 1

)
.

Theorem 7.5.1 (b) says that this pair satisfies

q ∈ K [x]≤n−m

that is, deg q ≤ n︸︷︷︸
=4

− m︸︷︷︸
=2

= 2

 .

How can we find this pair?
Consider this, so far unknown, pair. Comparing the coefficients of x4 in the

equality
x4 − x2 = q ·

(
x2 + x + 1

)
+ r =

(
x2 + x + 1

)
q + r, (106)

we obtain 1 = 1 ·
[
x2] q (because deg r ≤ 1 and deg q ≤ 2, so the only contribu-

tion to the coefficient of x4 on the right hand side of (106) comes from picking
the “x2” from the “x2 + x + 1” factor and the “

([
x2] q

)
x2” from the expansion

of q). Hence,
[
x2] q = 1. Since deg q ≤ 2, we can thus write q in the form

q = x2 + q1 for some polynomial q1 with deg q1 ≤ 1.

Consider this q1. Now, (106) can be transformed as follows:x4 − x2 =
(

x2 + x + 1
)

q︸︷︷︸
=x2+q1

+r



⇐⇒

x4 − x2 =
(

x2 + x + 1
) (

x2 + q1

)
︸ ︷︷ ︸
=(x2+x+1)x2+(x2+x+1)q1

+r


⇐⇒

(
x4 − x2 =

(
x2 + x + 1

)
x2 +

(
x2 + x + 1

)
q1 + r

)

⇐⇒

x4 − x2 −
(

x2 + x + 1
)

x2︸ ︷︷ ︸
=−x3−2x2

=
(

x2 + x + 1
)

q1 + r


⇐⇒

(
−x3 − 2x2 =

(
x2 + x + 1

)
q1 + r

)
. (107)
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Comparing the coefficients of x3 in the last equality here, we obtain −1 = 1 ·[
x1] q1 (because deg r ≤ 1 and deg q1 ≤ 1). Hence,

[
x1] q1 = −1. Since deg q1 ≤

1, we can thus write q1 in the form

q1 = −x + q2 for some polynomial q2 with deg q2 ≤ 0.

Consider this q2. Now, the last equality of (107) can be transformed as follows:−x3 − 2x2 =
(

x2 + x + 1
)

q1︸︷︷︸
=−x+q2

+r



⇐⇒

−x3 − 2x2 =
(

x2 + x + 1
)
(−x + q2)︸ ︷︷ ︸

=(x2+x+1)(−x)+(x2+x+1)q2

+r


⇐⇒

(
−x3 − 2x2 =

(
x2 + x + 1

)
(−x) +

(
x2 + x + 1

)
q2 + r

)

⇐⇒

−x3 − 2x2 −
(

x2 + x + 1
)
(−x)︸ ︷︷ ︸

=−x2+x

=
(

x2 + x + 1
)

q2 + r


⇐⇒

(
−x2 + x =

(
x2 + x + 1

)
q2 + r

)
. (108)

Comparing the coefficients of x2 in the last equality here, we obtain −1 = 1 ·[
x0] q2 (because deg r ≤ 1 and deg q2 ≤ 0). Hence,

[
x0] q2 = −1. Since deg q2 ≤

0, we can thus write q2 in the form

q2 = −1 + q3 for some polynomial q3 with deg q3 ≤− 1.

Consider this q3. Of course, q3 must be the zero polynomial (that is, 0 = 0K[x]),
since deg q3 ≤ −1. Now that we have found q3, we can recover q2, q1, q by
back-substitution:

q2 = −1 + q3︸︷︷︸
=0

= −1;

q1 = −x + q2︸︷︷︸
=−1

= −x− 1;

q = x2 + q1︸︷︷︸
=−x−1

= x2 − x− 1.

Finally, we can find r, for instance, by solving the last equality (108):

r = −x2 + x−
(

x2 + x + 1
)

q2︸︷︷︸
=−1

= −x2 + x−
(

x2 + x + 1
)
(−1) = 2x + 1.
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Hence, we have found the pair (q, r). And we can check that this pair (q, r) does
indeed satisfy a = qb + r: Indeed,

q︸︷︷︸
=x2−x−1

b︸︷︷︸
=x2+x+1

+ r︸︷︷︸
=2x+1

=
(

x2 − x− 1
)
·
(

x2 + x + 1
)
+ (2x + 1) = x4 − x2 = a.

Our next goal is to prove Theorem 7.5.1. You may have already spotted a proof
idea in Example 7.5.2; we will essentially follow this idea when proving the “exis-
tence” part of Theorem 7.5.1 (a), while the “uniqueness” part will be proven by a
direct argument using Exercise 7.4.8.

Let us first combine the “existence” part of Theorem 7.5.1 (a) with Theorem 7.5.1
(b) in order to prove both simultaneously:

Lemma 7.5.3. Let m ∈ N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible.
Let n ∈ {−1, 0, 1, . . .}. Let a ∈ K [x]≤n. Then, there exist q ∈ K [x]≤n−m and
r ∈ K [x]≤m−1 such that a = qb + r.

7.5.2. The case of a field

When K is a field, every nonzero polynomial b ∈ K [x] has an invertible leading
coefficient (i.e., if m = deg b, then [xm] b ∈ K is invertible). Thus, Theorem 7.5.1
(a) shows that we can divide (with remainder) any polynomial a by any nonzero
polynomial b when K is a field. More precisely, the following holds:

Theorem 7.5.4. Let K be a field. Let a and b 6= 0 be polynomials in K [x]. Then,
there exist polynomials q and r in K [x] such that a = qb + r and deg r < deg b.

I have deliberately stated Theorem 7.5.4 in the above form (omitting the unique-
ness of the pair (q, r), which I could have stated but did not) in order to evoke a
deja-vu; indeed, in this form, Theorem 7.5.4 is obviously an analogue of Theorem
4.2.26. This analogy can be taken much further. When K is a field, the ring K [x]
shares many properties with Z and Z [i]. In particular, there is a good theory of
divisibility, congruence, common divisors and gcds in this ring, which parallels the
corresponding theory for Gaussian integers. The degree of a polynomial plays the
same role in K [x] that the norm of a Gaussian integer plays in Z [i]; in particular,
it can be used for purposes of induction.

In defining the gcd of two polynomials over a field K, we are faced with the same
difficulty as in the case of Z [i]: The gcd is not unique on the nose, but only unique
up to unit-equivalence. However, for polynomials there is a natural choice: Out of
all possible gcds of two polynomials, we pick the gcd whose leading coefficient is
1. (The “leading coefficient” of a polynomial means the coefficient of xn, where n
is the degree of the polynomial.)
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There is a Euclidean algorithm for finding gcd’s: For example, if K = Q, then

gcd
(

x2 − 1, x3 − 1
)

= gcd

x2 − 1,
(

x3 − 1
)

%
(

x2 − 1
)

︸ ︷︷ ︸
=x−1


= gcd

(
x2 − 1, x− 1

)
= gcd

(
x− 1, x2 − 1

)

= gcd

x− 1,
(

x2 − 1
)

% (x− 1)︸ ︷︷ ︸
=0

 = gcd (x− 1, 0)

= gcd (x− 1) = x− 1.

Here, of course, the notation a%b for a remainder is defined for polynomials in the
same way as for integers (after all, the q and r in Theorem 7.5.4 are unique, even if
we didn’t say so!).

7.6. Evaluating polynomials

So far, polynomials have just been sequences of scalars. But recall that the most use-
ful thing about polynomials should be the ability of evaluating them (at numbers,
matrices, other polynomials). So how do we evaluate our polynomials?

Definition 7.6.1. Let U be a K-algebra. Let u ∈ U.
Let a = (a0, a1, a2, . . .) ∈ K [x] be a polynomial over K. (Thus, a = ∑

k∈N

akxk.)

Then, we define
a [u] := ∑

k∈N

akuk ∈ U.

This sum is well-defined, since all but finitely many of its addends are zero
(indeed, (a0, a1, a2, . . .) is a polynomial, and thus all but finitely many k ∈ N

satisfy ak = 0).
We shall call a [u] the value of a at u. This is commonly denoted by a (u),

but that notation is problematic, since expressions like “a (x + 1)” could mean
different things depending on whether they are interpreted as values or as prod-
ucts. (That said, be careful with the notation “a [u]” as well: The expression
“a
[
x2] b” can mean either a times the coefficient

[
x2] b or the value a

[
x2] times

b. Disambiguate such expressions using parentheses or dots.)

Example 7.6.2. Let a = (a0, a1, a2, . . .) ∈ K [x] be a polynomial.
(a) Taking U = K and u = 0 in Definition 7.6.1, we obtain

a [0] = ∑
k∈N

ak0k = a0 00︸︷︷︸
=1

+ ∑
k>0

ak 0k︸︷︷︸
=0

(since k>0)

= a0 =
[

x0
]

a.
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(b) Taking U = K and u = 1 in Definition 7.6.1, we obtain

a [1] = ∑
k∈N

ak 1k︸︷︷︸
=1

= ∑
k∈N

ak = a0 + a1 + a2 + · · · .

This is the sum of all coefficients of a.
(c) Taking U = K [x] and u = x in Definition 7.6.1, we obtain

a [x] = ∑
k∈N

akxk = (a0, a1, a2, . . .) = a.

So a [x] is another way of saying “a”.
(d) Furthermore,

a [−x] = ∑
k∈N

ak (−x)k︸ ︷︷ ︸
=(−1)kxk

= ∑
k∈N

(−1)k akxk = (a0,−a1, a2,−a3, a4, . . .) .

(e) Furthermore,

a
[

x2
]
= ∑

k∈N

ak

(
x2
)k

= ∑
k∈N

akx2k = (a0, 0, a1, 0, a2, 0, a3, 0, . . .) .

In Definition 7.6.1, we have rigorously defined the value a [u] of a polynomial a
at an element u of a K-algebra. In practice, this value is best understood through
the following slogan:

Substitution slogan: Let U be a K-algebra, and let u ∈ U. Let a ∈ K [x]
be a polynomial. Then, a [u] is, roughly speaking, the result of “substi-
tuting u for x” into a.

For example, (
1 + 3x + 8x2

)
[u] = 1 + 3u + 8u2 and (109)(

x9 − 2x
)
[u] = u9 − 2u and (110)(

x4 − (x− 1)2 (x + 1)2
)
[u] = u4 − (u− 1)2 (u + 1)2 . (111)

However, strictly speaking, this is not all obvious at this point yet. While (109)
and (110) can easily be checked using Definition 7.6.185, it is not so clear how to

85Namely: Write the polynomial 1 + 3x + 8x2 in the form (a0, a1, a2, . . .) for some a0, a1, a2, . . . ∈ K.
Then, a0 = 1 and a1 = 3 and a2 = 8 and ak = 0 for all k > 2. But Definition 7.6.1 (applied to
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obtain (111) from Definition 7.6.1 without multiplying out both sides86. Definition
7.6.1 only justifies the Substitution slogan when the substitution happens in the
expanded form of a (that is, in the form a = a0x0 + a1x1 + a2x2 + · · · ), but not
when it happens in some other form like (1 + x) (1− x) or x2 − (x− 1)2. We shall
soon convince ourselves that the Substitution slogan is true for the latter forms as
well. First, we need to prove some basic properties of values of polynomials:

Theorem 7.6.3. Let U be a K-algebra. Let u ∈ U.
(a) Any a, b ∈ K [x] satisfy

(a + b) [u] = a [u] + b [u] and (ab) [u] = a [u] · b [u] .

(b) Any λ ∈ K and a ∈ K [x] satisfy

(λa) [u] = λ · a [u] .

(c) Any a ∈ K satisfies a [u] = a · 1U. (This is often written as “a [u] = a”, but
keep in mind that the “a” on the right hand side of this equality is understood
to be “coerced into U”, so it actually means “the element of U corresponding to
a”, which is a · 1U.)

(d) We have x [u] = u.
(e) We have xi [u] = ui for each i ∈N.

a = 1 + 3x + 8x2) yields(
1 + 3x + 8x2

)
[u] = ∑

k∈N

akuk = a0︸︷︷︸
=1

u0︸︷︷︸
=1

+ a1︸︷︷︸
=3

u1︸︷︷︸
=u

+ a2︸︷︷︸
=8

u2 + ∑
k>2

ak︸︷︷︸
=0

uk

= 1 + 3u + 8u2 + ∑
k>2

0uk

︸ ︷︷ ︸
=0

= 1 + 3u + 8u2.

This proves (109). A similar argument can be used to prove (110).
86Of course, if you multiply them out, then (111) becomes obvious: We have x4− (x− 1)2 (x + 1)2 =

2x2 − 1, so that (
x4 − (x− 1)2 (x + 1)2

)
[u] =

(
2x2 − 1

)
[u] = 2u2 − 1

(this follows from Definition 7.6.1 in the same way as (109) did). Comparing this with

u4 − (u− 1)2 (u + 1)2 = 2u2 − 1,

we obtain
(

x4 − (x− 1)2 (x + 1)2
)
[u] = u4 − (u− 1)2 (u + 1)2, and thus (111) is proven.

But multiplying out is not always viable. Let’s say we want to prove that(
x2n − (x− 1)n (x + 1)n

)
[u] = u2n − (u− 1)n (u + 1)n

for all n ∈ N. This can no longer be proven as easily, since the coefficients of the polynomial
x2n − (x− 1)n (x + 1)n will grow more complicated as n grows larger.
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Corollary 7.6.4. Let U be a K-algebra. Let u ∈ U. Then, the map

evu : K [x]→ U,
a 7→ a [u]

is a K-algebra homomorphism.

The map evu in Corollary 7.6.4 is called an evaluation homomorphism (specifically,
the evaluation homomorphism at u), since it “evaluates” each polynomial at u.

Corollary 7.6.5. Let U be a K-algebra. Let u ∈ U. Then:
(a) We have (−a) [u] = −a [u] for each a ∈ K [x].
(b) We have (a− b) [u] = a [u]− b [u] for each a, b ∈ K [x].

(c) We have
(

∑
s∈S

as

)
[u] = ∑

s∈S
(as [u]) whenever S is a finite set and as ∈ K [x]

for all s ∈ S.
(d) We have (a1a2 · · · ak) [u] = a1 [u] · a2 [u] · · · · · ak [u] whenever a1, a2, . . . , ak ∈

K [x].

(e) If the ring U is commutative, then
(

∏
s∈S

as

)
[u] = ∏

s∈S
(as [u]) whenever S is

a finite set and as ∈ K [x] for all s ∈ S.
(f) We have an [u] = (a [u])n for each a ∈ K [x] and each n ∈N.
(g) We have (na) [u] = n · a [u] for each a ∈ K [x] and each n ∈ Z.

Theorem 7.6.3 and Corollary 7.6.5 (or, more abstractly, Corollary 7.6.4) justify
the Substitution slogan in general. For example, we can now prove (111) directly,
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without multiplying out anything, as follows:(
x4 − (x− 1)2 (x + 1)2

)
[u]

= x4 [u]︸ ︷︷ ︸
=(x[u])4

(by Corollary 7.6.5 (f))

−
(
(x− 1)2 (x + 1)2

)
[u]︸ ︷︷ ︸

=(x−1)2[u]·(x+1)2[u]
(by the second equality of

Theorem 7.6.3 (a))

(by Corollary 7.6.5 (b))

=

 x [u]︸︷︷︸
=u

(by Theorem 7.6.3 (d))


4

− (x− 1)2 [u]︸ ︷︷ ︸
=((x−1)[u])2

(by Corollary 7.6.5 (f))

· (x + 1)2 [u]︸ ︷︷ ︸
=((x+1)[u])2

(by Corollary 7.6.5 (f))

= u4 −

 (x− 1) [u]︸ ︷︷ ︸
=x[u]−1[u]

(by Corollary 7.6.5 (b))


2

·


(x + 1) [u]︸ ︷︷ ︸
=x[u]+1[u]

(by the first equality of
Theorem 7.6.3 (a))



2

= u4 − (x [u]− 1 [u])2 · (x [u] + 1 [u])2

= u4 −

 x [u]︸︷︷︸
=u

(by Theorem 7.6.3 (d))

− 1 [u]︸︷︷︸
=1

(by Theorem 7.6.3 (c))


2

·

 x [u]︸︷︷︸
=u

(by Theorem 7.6.3 (d))

+ 1 [u]︸︷︷︸
=1

(by Theorem 7.6.3 (c))


2

(since our “1” here really means “1”)

= u4 − (u− 1)2 (u + 1)2 .

This argument was completely straightforward (despite its length); all we did was
“opening the parentheses”87 using whatever part of Theorem 7.6.3 or Corollary
7.6.5 would let us do that.

Thanks to Corollary 7.6.4 (or the Substitution slogan), the polynomial ring K [x]
is a sort of “forge” for identities that concern an arbitrary element u of an arbitrary
K-algebra U. For example, if you want to prove the identity

u3 − u = u (u− 1) (u + 1) for any K-algebra U and any u ∈ U,

then it suffices to prove the identity

x3 − x = x (x− 1) (x + 1) in K [x]

87more formally: rewriting an expression of the form “(something complicated) [u]” in terms of
one or several expressions of the form “(something simpler) [u]”
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and then apply evu to both sides of it (or, less formally, take the values of both
sides at u, and simplify them using the Substitution slogan). Indeed, the map evu
sends x to u and is a K-algebra homomorphism, whence it also sends x3 − x to
u3 − u and sends x (x− 1) (x + 1) to u (u− 1) (u + 1). The Substitution slogan is
saying this at a more concrete level: Indeed, applying the map evu is tantamount
to “substituting u for x” in a polynomial.

Remark 7.6.6. Let U be a K-algebra. Let u ∈ U. We have defined a [u] for
a ∈ K [x]. We can try to define it for arbitrary a = (a0, a1, a2, . . .) ∈ K [[x]] as
well. But in general, this will not work, since the sum ∑

k∈N

akuk may not be well-

defined. However, if u itself is a FPS (that is, u ∈ K [[x]]) and satisfies
[
x0] u = 0,

then the family
(
akuk)

k∈N
is summable (because in this case, we have[

x0
] (

uk
)
=
[

x1
] (

uk
)
= · · · =

[
xk−1

] (
uk
)
= 0

for all k ∈ N), and therefore a [u] is well-defined. For example, a
[
x2] is well-

defined, and more generally, a
[
xk] is well-defined for every positive integer k;

but a [1] is not well-defined.

We now define the concept of a root of a polynomial:

Definition 7.6.7. Let U be a K-algebra. Let u ∈ U. Let a ∈ K [x].
We say that u is a root of a if a [u] = 0.

This is a very general notion of “root” that we have just defined. You may be
used to the idea that a polynomial a ∈ K [x] can have roots in the ring K itself,
but we are allowing roots in any arbitrary K-algebra (e.g., in a matrix algebra
Kn×n or even in the polynomial ring K [x] itself). For example, the roots of the
polynomial x (x− 1) in a K-algebra U are the idempotent elements of U, because
for any element u ∈ U, we have the following equivalence:

(u is a root of x (x− 1))

⇐⇒

(x (x− 1)) [u]︸ ︷︷ ︸
=x[u]·(x−1)[u]

= 0

 ⇐⇒
x [u]︸︷︷︸

=u

· (x− 1) [u]︸ ︷︷ ︸
=u−1

= 0



⇐⇒

u · (u− 1)︸ ︷︷ ︸
=u2−u

= 0

 ⇐⇒ (
u2 − u = 0

)
⇐⇒

(
u2 = u

)
⇐⇒ (u is idempotent) .

If U is a field, then the only idempotent elements of U are 0 and 1 (because u ·
(u− 1) = 0 implies that u or u− 1 is 0). Otherwise, there can be more idempotent
elements; for example, Z/6 has the four idempotent elements [0]6 , [1]6 , [3]6 , [4]6.
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We now define divisibility of polynomials in the same way as we defined divisi-
bility of integers (Definition 2.2.1) and divisibility of Gaussian integers (Definition
4.2.17):

Definition 7.6.8. Let a and b be two polynomials in K [x]. We say that a | b (or,
more precisely, “a | b in K [x]”) if there exists a c ∈ K [x] such that b = ac.

Be aware that this is a somewhat slippery notion, as its meaning depends on K,
which is not reflected in the notation “a | b”. For example, the two polynomials

1 + x and 2 + 2x satisfy 2 + 2x | 1 + x when K = Q (since 1 + x = (2 + 2x) · 1
2

), but
not when K = Z. Thus, when ambiguity is possible, K should be specified (i.e.,
you should write “a | b in K [x]” rather than just “a | b”).

The roots of a polynomial a ∈ K [x] are closely connected to divisors of a –
specifically, ones of the form x− u:

Proposition 7.6.9. Let a be a polynomial in K [x]. Let u ∈ K. Then,

(u is a root of a)⇐⇒ (x− u | a) .

(Of course, x− u means x− u.)

Example 7.6.10. Let K = Z/6 and a = x2 − x. Then, the roots of a in K are pre-
cisely the idempotent elements of K; these are 0, 1, 3, 4. So the previous proposi-
tion yields that x− 0, x− 1, x− 3 and x− 4 all divide a. However, this does not
mean that the product (x− 0) (x− 1) (x− 3) (x− 4) divides a. Instead, we have

a = (x− 0) (x− 1) = (x− 3) (x− 4) in K [x] .

If this example appears weird, keep in mind that Z/6 is not a field. When K is
a field, the polynomial ring K [x] behaves very much like Z or Z [i]: We have divi-
sion with remainder by any nonzero polynomial; we have gcds; we have a notion
of “primes” (which are called irreducible polynomials); and every nonzero poly-
nomial has a unique factorization into primes (up to units, which are the nonzero
constant polynomials). But when K is merely a commutative ring, this can all break
down; in particular, Example 7.6.10 shows that the factorization into primes (when
it exists) is not unique.

The following theorem is often called the “easy half of the Fundamental Theorem of
Algebra”:

Theorem 7.6.11. Let K be a field. Let n ∈ N. Then, any nonzero polynomial
a ∈ K [x] of degree ≤ n has at most n roots in K. (We are not counting the roots
with multiplicity here.)
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When K is just an arbitrary field, the number of roots of a degree-n nonzero
polynomial over K can be much smaller than n. For example, the polynomial
x2 + 1 ∈ R [x] has 0 roots in R (but it has 2 roots in C). The “hard half” of the
Fundamental Theorem of Algebra says that a nonzero polynomial a ∈ C [x] of
degree n has exactly n roots in C, counted with multiplicity. As I said before, this
is not a theorem of algebra, since it relies on the fact that C has a topology and is
closed in this topology.

Next comes a little potpourri of properties of polynomials:

Proposition 7.6.12. Let a and b be two nonzero polynomials in K [x].
(a) We have deg (a [b]) ≤ deg a · deg b.
(b) If K is a field, then this inequality is an equality.

Proposition 7.6.13. Let U and V be two K-algebras. Let f : U → V be a K-
algebra homomorphism. Let u ∈ U and a ∈ K [x]. Then,

f (a [u]) = a [ f (u)] .

Proposition 7.6.14. Let U be a K-algebra. Let u ∈ U. Let a, b ∈ K [x]. Then,

a [b [u]] = (a [b]) [u] .

One more notation is needed for the next section.

Definition 7.6.15. Let L be a ring that contains Q as a subring. (For example, L

can be R or C or Q [x].)

Recall that in Definition 2.17.1, we have defined the binomial coefficient
(

n
k

)
for all n ∈ Q and k ∈ Q. We extend the very same definition to all n ∈ L.

Thus, in particular, we have a polynomial
(

x
k

)
∈ Q [x] for each k ∈ Q. This

polynomial
(

x
k

)
is explicitly given by(

x
k

)
=

x (x− 1) (x− 2) · · · (x− k + 1)
k!

when k ∈N (112)

(and equals 0 when k /∈ N). More generally, for each polynomial a ∈ Q [x] and
each k ∈N, we have a polynomial(

a
k

)
=

a (a− 1) (a− 2) · · · (a− k + 1)
k!

. (113)

The following is easy:
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Corollary 7.6.16. Let k ∈N.

(a) Then,
(

x
k

)
is a polynomial of degree k.

(b) For each u ∈ Q, we have
(

x
k

)
[u] =

(
u
k

)
.

(c) For each a ∈ Q [x] and u ∈ Q, we have
(

a
k

)
[u] =

(
a [u]

k

)
.

7.7. The polynomial identity trick

Convention 7.7.1. For this whole section, let K be a field.

7.7.1. Enough equal values make polynomials equal

Corollary 7.7.2. Let a and b be two polynomials of degree ≤ n over the field
K. Assume that at least n + 1 many elements u ∈ K satisfy a [u] = b [u]. Then,
a = b.

I like to refer to the following corollary as “the polynomial identity trick”:

Corollary 7.7.3. Let a and b be two polynomials over the field K. Assume that
infinitely many elements u ∈ K satisfy a [u] = b [u]. Then, a = b.

Example 7.7.4. Corollary 7.7.3 can be false when K is not a field. For an example,
pick any infinite set S, and let K be the commutative ring (P (S) ,4,∩,∅, S)
constructed in Section 5.2. Let n = 2, a = x2 − x and b = 0. Then, each
u ∈ K satisfies a [u] = b [u] (because a [u] = u2 − u = u ∩ u︸ ︷︷ ︸

=u

−u = u− u = ∅ =

0K = 0 [u] = b [u]); thus, in particular, infinitely many elements u ∈ K satisfy
a [u] = b [u]. But it is not true that a = b.

We can now prove Proposition 2.17.16:
We can now finish our proof of Theorem 2.17.14 by putting on solid ground

everything we used about polynomials in that proof:

7.7.2. Lagrange interpolation

Corollary 7.7.2 shows that for any n ∈ N, a polynomial of degree ≤ n over a field
K is uniquely determined by its values on any n + 1 (given) distinct elements of K.
There is a matching existence claim to this uniqueness claim: To any choice of val-
ues at any n + 1 given distinct elements of K, you can find excatly one polynomial
of degree ≤ n over K that takes these values at these elements. This polynomial
can even be determined explicitly, as the following theorem shows:
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Theorem 7.7.5. Let n ∈ N. Let a1, a2, . . . , an+1 be n + 1 distinct elements of a
field K. Let b1, b2, . . . , bn+1 be n + 1 arbitrary elements of K.

(a) There is a unique polynomial f ∈ K [x]≤n satisfying

(f [ai] = bi for all i ∈ {1, 2, . . . , n + 1}) . (114)

(b) This polynomial f is given by

f =
n+1

∑
j=1

bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

)
(where the “ ∏

k 6=j
” signs mean “ ∏

k∈{1,2,...,n+1};
k 6=j

”).

Theorem 7.7.5 is known as the Lagrange interpolation theorem. Before we prove
it, let us remark that it generalizes (and concretizes) Proposition 1.6.6 (which is
its particular case for n = 2 and K = Q or K = R). After proving it, we will
discuss how it helps make Shamir’s Secret Sharing Scheme work. We also notice
that Theorem 7.7.5 requires K to be a field; when K is merely a commutative
ring, both the “existence” and “uniqueness” parts of Theorem 7.7.5 (a) may fail,
and the fractions appearing in Theorem 7.7.5 (b) may fail to be well-defined (since
their denominators aj − ak may fail to be invertible). We have already witnessed
the failure of the “existence” part of Theorem 7.7.5 (a) in the case when K = Z:
Indeed, if we set

n = 2, a1 = 0, a2 = 1, a3 = 2,
b1 = 0, b2 = 0, b3 = 1,

then there exists no polynomial f ∈ Z [x]≤2 satisfying f [ai] = bi for all i ∈ {1, 2, 3}.

(The polynomial
(

x
2

)
would satisfy this, but it is not a polynomial in Z [x]≤2, since

its coefficients are not integers. We have already observed this in Example 2.17.24
(a).)

7.7.3. Application: Curve fitting

Theorem 7.7.5 has multiple applications.
The most obvious one is to treat Theorem 7.7.5 as an interpolation theorem:

Roughly speaking, it says that n + 1 values (at distinct points) in a field can always
be fit by a unique polynomial of degree ≤ n. See the Wikipedia pages for Lagrange
polynomials and polynomial interpolation, but beware that this is not the kind of
interpolation that is a good choice for curve-fitting practical datasets (which rarely
follow a polynomial rule). It is best suited for interpolating functions when you can

https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Polynomial_interpolation
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freely choose the points at which you sample (i.e., the ai in Theorem 7.7.5); certain
choices of ai fare much better than others. Thus, Lagrange interpolation can also
be used in designing numerical quadrature rules. See [Trefet11] for details.

7.7.4. Application: Shamir’s Secret Sharing Scheme

Here is another application of Theorem 7.7.5. Shamir’s Secret Sharing Scheme
(as presented in Subsection 1.6.7 and fixed in Remark 5.6.3) can now finally be
implemented concretely. Indeed, consider the setting of Section 1.6 with general n
and k, and assume that the secret a that we want to distribute is a bitstring of length
N. As in Remark 5.6.3, we pick a prime p such that both p ≥ 2N and p > n, and
we encode a as a residue class α ∈ Z/p. Pick k − 1 uniformly random elements
β1, β2, . . . , βk−1 of Z/p, and define the polynomial

f = βk−1xk−1 + βk−2xk−2 + · · ·+ β1x1 + α ∈ (Z/p) [x]≤k−1 .

Reveal to each person i ∈ {1, 2, . . . , n} the value f
[
[i]p
]
. Then, Theorem 7.7.5

(applied to k − 1 instead of n) shows that any k of the n people can uniquely re-
construct f (since they know the values of f at k distinct elements of Z/p 88),
whereas k− 1 of the n people cannot gain any knowledge about the secret a (since
they only know the values of f at k− 1 nonzero elements of Z/p 89, and these val-
ues could be combined with any possible value at [0]p to form a valid polynomial
in (Z/p) [x]≤k−1). Thus, both Requirements 1 and 2 from Section 1.6 are satisfied.
This is Shamir’s Secret Sharing Scheme in its final form.

Instead of Z/p we could have used any finite field F whose size is ≥ 2N and > n,
but we would need to be careful, since the elements [1]p , [2]p , . . . , [n]p would no
longer necessarily be distinct and nonzero. Thus, we would have to use n distinct
nonzero elements of F instead.

7.7.5. Application: Reed–Solomon codes

Finally, here is a far more important application of Theorem 7.7.5.
Assume that you want to send digital data over a noisy channel (e.g., radio).

“Noisy” means that the transmission will introduce errors, and you expect (e.g.)
that every bit you send has a small probability p of getting corrupted on its way90.
You want to ensure that the recepient gets the correct bits that you sent him.91 How
can you do this?

88Here we are using the fact that the elements [1]p , [2]p , . . . , [n]p of Z/p are distinct (since p > n).
89Here we are using the fact that the elements [1]p , [2]p , . . . , [n]p of Z/p are nonzero (since p > n).
90“Corrupted” means that the recepient will receive a 0 instead of 1, or a 1 instead of a 0. For

simplicity, we assume that bits will not be lost, and the order in which they are received is the
order in which they are sent (so, e.g., messenger pigeons are not the kind of channel we are
considering).

91Another, mostly equivalent, version of this problem is long-term storage of data on a medium
(e.g., a hard drive, a DVD, paper or a scroll) that gradually decays. Here, the sender is you when
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Of course, you cannot guarantee this with complete surety. But there are several
schemes that you can use to make it rather likely. They are called error-correcting
codes.

• For instance, let us assume you have agreed with your recepient that you will
be sending each bit twice in a row. Then, if the recepient gets two different
bits when they expect the same bit sent twice, he can immediately tell that a
bit got corrupted on its way. He cannot tell which bit you meant to send him
– but at least he knows that he cannot trust the ones he got.92 Of course, there
is a probability that he got the wrong bit twice, in which case he is clueless
about it being wrong; but this probability is p2, which is a lot smaller than p.
This is called error detection.

• An even better scheme is to send each bit thrice in a row. This way, your
recipient can not only tell if some bit was corrupted (with an even smaller
probability of falsely believing that everything went right – namely, p3); he
can also try to guess which bit is the right one, by the “majority rule” (i.e.,
among the 3 bits he obtained, he chooses the one that appears more often).
This is called error correction.

• But sending each bit multiple times is not the only thing you can do; you can
also mix several bits together. For example, you can follow every four bits
a, b, c, d that you are sending with the three bits

a + b + d, a + c + d, b + c + d,

where you are regarding bits as elements of Z/2 (so that, for example, 1 +
1+ 1 = 1). Thus, you are sending 7 bits instead of 4 bits, but the transmission
has become a lot safer, because:

– If at most 2 of the 7 bits get corrupted along the way, the recepient will
be able to tell that something went wrong. (In the language of coding
theory, this is saying that your code detects up to 2 errors.)

– If at most 1 of the 7 bits gets corrupted along the way, the recepient will
be able to guess the bits you intended to send93. (In the language of
coding theory, this is saying that your code corrects up to 1 error.)

This scheme is called the Hamming(7, 4) code, and was invented by Richard
W. Hamming in 1950 as a tool to make error-prone punch card readers less
likely to fail.

you are storing the data; the recepient is you (or whoever wants to read it) in the future. That’s
a noisy channel!

92If he can talk back to you, this means he can ask you to resend the correct one.
93without having to ask you to re-send them

https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Hamming(7,4)
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• Here is yet another error-correcting code, which makes use of finite fields.
Fix two integers d, e ∈ N such that d < e, as well as a finite field K and e
distinct elements a1, a2, . . . , ae of K. (You have to agree on these in advance
with your recepient. Of course, the field must satisfy |K| ≥ e.) Now, instead
of transmitting bits, you transmit elements of K. (This does not require a
different kind of channel; you can always, under the hood, re-encode your
elements of K into bitstrings and send those as bits via the channel that you
have.94) Now, when you want to send d + 1 elements u0, u1, . . . , ud of K over
the channel, you instead form the polynomial

f = u0 + u1x + · · ·+ udxd ∈ K [x]≤d ,

and transmit the e values f [a1] , f [a2] , . . . , f [ae] of this polynomial. The re-
cepient will then receive e values of the polynomial f. If all of these values
have been transmitted correctly, then he will be able to pick any d + 1 of
these values95 and use them to reconstruct f (and therefore, your messages
u0, u1, . . . , ud) via Theorem 7.7.5. If at most e− d− 1 of these e values get cor-
rupted along the way, he will be able to recognize that something is wrong96.
Thus, this code detects up to e− d− 1 errors. It furthermore corrects up to⌊

e− d− 1
2

⌋
errors (i.e., there is a way in which the recepient can guess your

original messages, and if no more than
⌊

e− d− 1
2

⌋
of your e values have

gotten corrupted, then his guess will be right).

This is called a Reed–Solomon code; such codes were used by the Voyager space-
craft and later in the storage of data on CDs and DVDs (as said above, storing
data on a decaying medium is transmitting it through a noisy channel).

See [Childs00, Chapter 29] for more about these codes, and see textbooks on
coding theory (e.g., [Garret07]) for much more.97

7.8. Generating functions

7.8.1. A binomial identity

Let me show a further application of the “polynomial identity trick”, which is
interesting in that it uses polynomials in two different ways.

94Of course, an element of K is more likely to get corrupted along the way than a single bit (if
|K| > 2), because it will be encoded as several bits (and each of them can get corrupted). But
this is par for the course: After all, an element of K carries more information than a bit, too.

95He can do this, since e ≥ d + 1.
96e.g., by attempting to recover f using some d + 1 of the values, and then checking whether the

resulting polynomial also fits the remaining e− d− 1 values
97Be aware that there are several different ways of defining Reed–Solomon codes; the one in

[Garret07] is not the same as ours.

https://en.wikipedia.org/wiki/Reed-Solomon_error_correction
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Among many properties of Pascal’s triangle, one rather famous one is that the
sum of all entries in the n-th row is 2n. That is,

n

∑
k=0

(
n
k

)
= 2n for each n ∈N.

This is, in fact, the direct result of applying Theorem 2.17.13 to x = 1 and y = 1.
Likewise, we can apply Theorem 2.17.13 to x = −1 and y = 1, and conclude that

n

∑
k=0

(−1)k
(

n
k

)
= 0n =

{
1, if n = 0;
0, if n 6= 0

for each n ∈N.

In other words, the alternating sum of all entries in the n-th row of Pascal’s triangle
is 0, unless n = 0 (in which case it is 1).

One may wonder what happens if we start summing higher powers of the entries
of a row of Pascal’s triangle. For example, the sum of their squares has a nice
formula:

Proposition 7.8.1. Let n ∈N. Then,

n

∑
k=0

(
n
k

)2

=

(
2n
n

)
.

Now, what about the alternating sum of the squares of the elements of the n-th
row of Pascal’s triangle? Here, the formula turns out to be just as neat, apart from
having two cases to distinguish:

Proposition 7.8.2. Let n ∈N. Then,

n

∑
k=0

(−1)k
(

n
k

)2

=

(−1)n/2
(

n
n/2

)
, if n is even;

0, if n is odd
.

Just as we derived Proposition 7.8.1 from Theorem 2.17.14, we are going to derive
Proposition 7.8.2 from the following fact:

Theorem 7.8.3. Let u ∈ Q and n ∈N. Then,

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
.
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Theorem 7.8.3 can be proven in an elementary, computational way (see [Grinbe15,
Second solution to Exercise 3.22] for this proof). Let us, however, prove it by apply-
ing polynomials strategically (this argument is [Grinbe15, First solution to Exercise
3.22], and is folklore). First, we prove the particular case of Theorem 7.8.3 for
u ∈N:

Lemma 7.8.4. Let u ∈N and n ∈N. Then,

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
.

Our proof of Lemma 7.8.4 is an example of the use of “generating functions”: We
have proven that two sequences (a0, a1, a2, . . .) and (b0, b1, b2, . . .) of numbers were
equal98 by showing that the two FPSs ∑

k∈N

akxk and ∑
k∈N

bkxk are equal. (In our case,

these two FPSs were actually the polynomials
(
1− x2)u and (1− x)u (1 + x)u. But

they don’t have to be polynomials in order for the technique of generating functions
to be applicable.) This technique is central to enumerative combinatorics, and also
has many uses in pure algebra. See [Loehr11, Chapters 7 and 8] and [Wilf94] for (a
lot) more about this technique.

We still need to prove Theorem 7.8.3, which generalizes Lemma 7.8.4 from u ∈N

to u ∈ Q. Here, polynomials come useful once again (in the same way as they came
useful when we were generalizing Lemma 2.17.15 to Lemma 2.17.17):

Remark 7.8.5. We now know

• the sum of all entries of the n-th row of Pascal’s triangle (it is 2n);

• the alternating sum of all entries of the n-th row of Pascal’s triangle (it is 0 if n 6= 0,
and 1 otherwise);

• the sum of the squares of all entries of the n-th row of Pascal’s triangle (it is
(

2n
n

)
);

• the alternating sum of the squares of all entries of the n-th row of Pascal’s triangle
(see Proposition 7.8.2).

How does this pattern continue? We may ask for the sum
n
∑

k=0

(
n
k

)3

of all cubes of all

entries of the n-th row of Pascal’s triangle, as well as their alternating sum.

98In our case, the two sequences are given by an =
n
∑

k=0
(−1)k

(
u
k

)(
u

n− k

)
and bn =(−1)n/2

(
u

n/2

)
, if n is even;

0, if n is odd
for all n ∈N.
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The numbers
n
∑

k=0

(
n
k

)3

are known as the Franel numbers (OEIS sequence A000172); no

explicit (sum-less) formula for them is known (unlike for the sums of squares).
As for the alternating sum, however, there is a nice formula:

n

∑
k=0

(−1)k
(

n
k

)3

=

(−1)n/2 (3n/2)!
(n/2)!3

, if n is even;

0, if n is odd
for all n ∈N.

In the case when n is odd, this formula is easy to check (indeed, in the sum
n
∑

k=0
(−1)k

(
n
k

)3

, the addend for k = u cancels the addend for k = n − u). In the case

when n is even, it is a particular case of what is known as Dixon’s identity (see, e.g.,
[Ward91]). The sequence of these alternating sums is OEIS sequence A245086.

Higher powers are even more complicated. For example, as far as fourth powers are

concerned, neither
n
∑

k=0

(
n
k

)4

nor
n
∑

k=0
(−1)k

(
n
k

)4

has a known explicit form (see OEIS

sequences A005260 and A228304).

7.8.2. Proving Lucas’s congruence

Recall Lucas’s congruence (Theorem 2.17.20), which we have left unproven back
when we were studying binomial coefficients. Let us now outline how it can be
proven using polynomials and FPSs. We first shall prove a particular case:

Lemma 7.8.6. Let a ∈N and b ∈N. Then, we have the four congruences(
2a
2b

)
≡
(

a
b

)
mod 2;

(
2a

2b + 1

)
≡ 0 mod 2;(

2a + 1
2b

)
≡
(

a
b

)
mod 2;

(
2a + 1
2b + 1

)
≡
(

a
b

)
mod 2.

Lemma 7.8.6 is a very particular case of Theorem 2.17.20 – namely, the one when
p = 2 and a ∈ N and b ∈ N. (The four congruences correspond to the four
different options for the pair (c, d) ∈ {0, 1, . . . , p− 1}2.) Nevertheless, it is already
the reason for a curious pattern: If you plot the first 2n rows of Pascal’s triangle (for
some n ∈ N), and color all odd entries black and all even entries white, then you
obtain an (approximation to) Sierpinski’s triangle (the fractal). Lemma 7.8.6 can be
used to prove this (by induction on n).

Now, how can we extend this proof to a full proof of Theorem 2.17.20? As we
know, Lemma 7.8.6 is the particular case of Theorem 2.17.20 for p = 2 and a ∈ N

and b ∈ N. Thus, we need to lift the three restrictions p = 2, a ∈ N and b ∈ N.
Here is a rough plan:

https://oeis.org/A000172
https://en.wikipedia.org/wiki/Dixon's_identity
https://oeis.org/A245086
https://oeis.org/A005260
https://oeis.org/A228304
https://en.wikipedia.org/wiki/Pascal's_triangle#Overall_patterns_and_properties
https://en.wikipedia.org/wiki/Pascal's_triangle#Overall_patterns_and_properties
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• To lift the restriction b ∈N, we simply observe that Theorem 2.17.20 is trivial
in the case when b ∈ Z is negative. Indeed, if b ∈ Z is negative, then both
pb + d and b are negative (since d ∈ {0, 1, . . . , p− 1} yields d < p, but b < 0
yields pb ≤ −p), and therefore Theorem 2.17.20 boils down to the obvious

congruence 0 ≡ 0
(

c
d

)
mod p.

• To lift the restriction a ∈ N, we have to tweak our above proof so that it
works for negative a as well. Of course, the first step is to use FPSs instead
of polynomials. There are only two places in our proof where we have used
the nonnegativity of a – namely, the two places where we applied Lemma
7.3.4. The first place was (??); the second was (??). So we have to prove (??)
and (??) without using the requirement that a ∈ N. But this is easy using
Newton’s binomial theorem. In fact, (??) follows directly from Theorem 7.3.3
(b) (applied to u = 2a + 1), whereas (??) follows by first applying Theorem
7.3.3 (b) to u = a and then substituting x2 for x. (As we explained in Remark
7.6.6, not every element of a K-algebra can be substituted into an FPS; but x2

can always be substituted into an FPS, and the usual properties of substitution
– such as it being a K-algebra homomorphism – are satisfied.)

• Finally, how can we lift the restriction that p be a prime? Recall that we used
the identity (1 + x)2 = 1 + x2 (in (Z/2) [x]) in our above proof. This has to
be replaced by the identity

(1 + x)p = 1 + xp in (Z/p) [x] .

This identity is a consequence of Theorem 5.11.1 (applied to K = (Z/p) [x],
a = 1 and b = x), since p · 1(Z/p)[x] = 0.

Thus, we obtain the following proof of Theorem 2.17.20 in full generality:

7.9. Invertible and nilpotent polynomials

In Subsection 7.3.1, we have seen when an FPS a ∈ K [[x]] is invertible in the ring
K [[x]]. When is a polynomial a ∈ K [x] invertible in the ring K [x] ?

The first hint that the answer is different comes from the example of 1 + x. As
we know, the FPS 1 + x is invertible in K [[x]]. Since this FPS is actually a poly-
nomial, we might wonder whether it is invertible in K [x] as well. The answer is
“no”, unless the ring K is trivial.99 More generally, we can easily characterize the
invertible elements of K [x] when K is a field:

99Indeed, if it was invertible in K [x], then its multiplicative inverse in K [x] would also be its
multiplicative inverse in K [[x]]; but we already know that the latter is 1− x + x2 − x3 ± · · · and
therefore does not belong to K [x] unless K is trivial.
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Proposition 7.9.1. Let K be a field. Let a ∈ K [x] be a polynomial. Then, a
is invertible in K [x] if and only if deg a = 0 (that is, a is a nonzero constant
polynomial).

If the ring K is not a field, the situation becomes more interesting: As we have
already seen, the polynomial 1+ 2x is invertible when K = Z/4, despite its degree
not being 0, so Proposition 7.9.1 would no longer hold here. Instead, we can give
a necessary and sufficient criterion based on the notion of nilpotent elements. Let us
define this notion:

Definition 7.9.2. Let L be a ring. Let a ∈ L. We say that a is nilpotent if there
exists an r ∈N satisfying ar = 0.

In other words, an element a of a ring L is nilpotent if one of its powers is 0.
For example:

• The element 0 of any ring L is nilpotent, since 0r = 0 holds for r = 1.

• If m ∈ Z and k ∈ N, then the element [m]mk of Z/mk is nilpotent, since its
k-th power is

[
mk]

mk = 0.

• The nilpotent elements of a matrix ring Kn×n are exactly the nilpotent n× n-
matrices. It is well-known that any nilpotent n× n-matrix A over a field K

satisfies An = 0; but this is not always true when K is not a field.

If K is a field, then the only nilpotent element of K is 0 (this can be easily proven
using Exercise 5.5.2).

Let us state two basic and simple properties of nilpotent elements:

Proposition 7.9.3. Let L be a ring. Let a and b be two nilpotent elements of L

such that ab = ba. Then, a + b is also nilpotent.

The requirement ab = ba in Proposition 7.9.3 cannot be removed: e.g., the two

matrices
(

0 1
0 0

)
and

(
0 0
1 0

)
in Q2×2 are nilpotent, but their sum

(
0 1
0 0

)
+(

0 0
1 0

)
=

(
0 1
1 0

)
is not.

Proposition 7.9.4. Let L be a ring. Let u be an invertible element of L. Let a
be a nilpotent element of L such that ua = au. Then, the element u− a of L is
invertible.

Now, when is a polynomial a ∈ K [x] invertible in K [x] ? The answer is given
by the following result:

https://en.wikipedia.org/wiki/Nilpotent_matrix
https://en.wikipedia.org/wiki/Nilpotent_matrix
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Theorem 7.9.5. Let a ∈ K [x] (where K, still, is a commutative ring). Then, a is
invertible in K [x] if and only if

• its coefficient
[
x0] a is invertible in K, and

• its coefficients [xn] a are nilpotent for all positive integers n.

For example, the polynomial a = 1 + 2x over K = Z/4 satisfies this condition,
since its coefficient

[
x0] a = [1]4 is invertible in Z/4 whereas its other coefficients

(which are [2]4 , [0]4 , [0]4 , [0]4 , . . .) are nilpotent.
We will not prove Theorem 7.9.5 here. We only notice that its “⇐=” direction is

fairly easy (using Proposition 7.9.3 and Proposition 7.9.4), while its “=⇒” direction
is proven in https://math.stackexchange.com/a/392604/ .

Note the stark contrast between Theorem 7.9.5 and Theorem 7.3.1.
Now that we have introduced nilpotent elements, we might also wonder when a

polynomial is nilpotent. This can also be answered:

Theorem 7.9.6. Let a ∈ K [x] (where K, still, is a commutative ring). Then, a is
nilpotent if and only if its coefficients [xn] a are nilpotent for all n ∈N.

Again, we omit the proof of this theorem.
Note that Theorem 7.9.6 has no analogue for FPSs: An FPS can fail to be nilpotent

even if all its coefficients are nilpotent.
Let us briefly note that the non-invertibility of most polynomials over a field can

be amended: We can introduce formal fractions of polynomials over a field in the
same way as formal fractions of integers (also known as “rational numbers”) were
defined. These fractions are called rational functions100.

7.10. Functoriality of power series and polynomial rings

The polynomial ring K [x], and the ring K [[x]] of FPSs, are defined for every ring
K. How do they depend on K ? For example, does Z [x] lie in Q [x] in the same
way Z lies in Q ? The answer is a “yes”, for fairly simple reasons:

Proposition 7.10.1. Let K be a subring of a commutative ring L. Then:
(a) The polynomial ring K [x] is a subring of L [x].
(b) The ring K [[x]] is a subring of L [[x]].

So being a subring is “inherited” to polynomial rings and rings of FPSs.
Does a homomorphism between two commutative rings also yield a homomor-

phism between their polynomial rings or a homomorphism between their FPS
rings? The next theorem shows that the answer is “yes” to both questions:

100This is a confusing name, because polynomials are not functions. It is an artifact of the history of
the subject.

https://math.stackexchange.com/a/392604/
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Theorem 7.10.2. Let K and L be two commutative rings. Let f : K → L be a
ring homomorphism.

(a) Then, the map

K [[x]]→ L [[x]] ,
(a0, a1, a2, . . .) 7→ ( f (a0) , f (a1) , f (a2) , . . .)

is a ring homomorphism.
(b) Its restriction to K [x] is a ring homomorphism from K [x] to L [x].

8. Quotient constructions

8.1. Residue classes in commutative rings

8.1.1. The general case

We have previously defined

• what it means for an integer to divide an integer (Definition 2.2.1);

• what it means for a Gaussian integer to divide a Gaussian integer (Definition
4.2.17);

• what it means for a polynomial to divide a polynomial (Definition 7.6.8).

These definitions differed only in what kind of “numbers” we were using. So let
us generalize them all together:

Definition 8.1.1. Let L be a commutative ring. Let a and b be two elements of L.
We say that a | b in L (or “a divides b in L” or “b is divisible by a in L” or “b is a
multiple of a in L”) if there exists a c ∈ L such that b = ac.

We furthermore say that a - b in L if a does not divide b in L.

We shall omit the words “in L” whenever L is clear. But keep in mind that L

matters. For example, 2 - 1 in Z, but 2 | 1 in Q (since 1 = 2 · 1
2

). Of course, when
we speak of divisibility between integers, we mean “in Z”, since divisibility in Q

is boring101.
Most of the standard properties of divisibility still work for any commutative

ring L. For example:

• we have a | a for all a ∈ L;

101More generally: If F is any field, then divisibility in F is boring (because a | b holds for any
a, b ∈ F unless we have a = 0 and b 6= 0).
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• if a, b, c ∈ L satisfy a | b and b | c, then a | c,

and so on. (But, for example, the obvious generalization of Exercise 2.2.3 does not
work: In general, we cannot conclude a | b from ac | bc even if c 6= 0.)

We can furthermore generalize the concept of congruence (Definition 2.3.1 and
Definition 4.2.21) to arbitrary commutative rings:

Definition 8.1.2. Let L be a commutative ring. Let w, a, b ∈ L. We say that a is
congruent to b modulo w (in L) if and only if w | a− b. We shall use the notation
“a ≡ b mod w” for “a is congruent to b modulo w”.

We furthermore shall use the notation “a 6≡ b mod w” for “a is not congruent
to b modulo w”.

Again, the standard properties of congruence all hold. For example, the fol-
lowing analogue of Proposition 2.3.4 holds (and is proven in the same way as
Proposition 2.3.4):

Proposition 8.1.3. Let L be a commutative ring. Let w ∈ L.
(a) We have a ≡ a mod w for every a ∈ L.
(b) If a, b, c ∈ L satisfy a ≡ b mod w and b ≡ c mod w, then a ≡ c mod w.
(c) If a, b ∈ L satisfy a ≡ b mod w, then b ≡ a mod w.
(d) If a1, a2, b1, b2 ∈ L satisfy a1 ≡ b1 mod w and a2 ≡ b2 mod w, then

a1 + a2 ≡ b1 + b2 mod w; (115)
a1 − a2 ≡ b1 − b2 mod w; (116)

a1a2 ≡ b1b2 mod w. (117)

(e) Let m ∈ L be such that m | w. If a, b ∈ L satisfy a ≡ b mod w, then
a ≡ b mod m.

Now, we can define the straightforward generalization of residue classes (Defini-
tion 3.4.2 and Definition 3.4.3) and of the standard operations (addition, multipli-
cation and scaling) on them (Definition 3.4.12 and Definition 3.4.18):

Definition 8.1.4. Fix a commutative ring L and an element w ∈ L.
(a) Define a relation ≡

w
on the set L by(

a ≡
w

b
)
⇐⇒ (a ≡ b mod w) .

This ≡
w

is an equivalence relation. (The proof of this is analogous to the proof
of Example 3.2.5.)

(b) A residue class modulo w means an equivalence class of the relation ≡
w

.

(c) If a ∈ L, then we denote the residue class [a]≡
w

by [a]w.

(d) The set L/ ≡
w

of all residue classes modulo w is called L/w.
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(e) We define a binary operation + on L/w (called addition) by setting

[a]w + [b]w = [a + b]w for all a, b ∈ L.

This is well-defined, because of Theorem 8.1.5 (a) below.
(f) We define a binary operation · on L/w (called multiplication) by setting

[a]w · [b]w = [a · b]w for all a, b ∈ L.

This is well-defined, because of Theorem 8.1.5 (a) below.
(g) Fix r ∈ L. For any α ∈ L/w, we define a residue class rα ∈ L/w by setting

(r [a]w = [ra]w for any a ∈ L) .

(In other words, for any α ∈ L/w, we let rα = [ra]w, where a is an element of L

satisfying α = [a]w.) This is well-defined, because of Theorem 8.1.5 (a) below.
We shall also write r · α instead of rα. The map L× (L/w)→ L/w, (r, α) 7→ rα

will be called scaling.

If we set L = Z in Definition 8.1.4, and let w be an integer n, then we recover
our old definitions of residue classes modulo n and of their set Z/n. Note that we
are not defining a subtraction on L/w this time, because we will get it for free once
we recognize L/w as a ring.

Theorem 8.1.5. Fix a commutative ring L and an element w ∈ L.
(a) The operations + and · and the “scaling map” · in Definition 8.1.4 are

well-defined.
(b) The set L/w, equipped with the addition + (defined in Definition 8.1.4

(e)), the multiplication · (defined in Definition 8.1.4 (f)) and the zero [0]w and the
unity [1]w, is a commutative ring.

(c) The set L/w, equipped with the addition + (defined in Definition 8.1.4
(e)), the scaling · (defined in Definition 8.1.4 (g)) and the zero vector [0]w, is an
L-module.

(d) The set L/w, equipped with all of these items, is a commutative L-algebra.
(e) The map

πw : L→ L/w,
a 7→ [a]w

is an L-algebra homomorphism.

Definition 8.1.6. Consider the setting of Theorem 8.1.5.
The commutative L-algebra L/w constructed in Theorem 8.1.5 (d) is called “L

modulo w” or “L divided by w” or “L quotiented by w”. Whenever we speak of “the
L-algebra L/w”, we shall mean this precise L-algebra.
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The reader can easily check the following:

• If we have w = 0 in Theorem 8.1.5, then the map πw is an L-algebra isomor-
phism, so that L/0 ∼= L as rings and as L-modules.

• If we have w = 1 in Theorem 8.1.5, then the ring L/w = L/1 is trivial. More
generally, if w ∈ L is invertible, then the ring L/w is trivial.

8.1.2. The case of a polynomial ring

The commutative L-algebra L/w constructed in Theorem 8.1.5 (d) generalizes not
just the Z-algebras Z/n, but also the Z [i]-algebras Z [i] /α (where α is a Gaussian
integer). But we can apply this construction to other rings L as well. It will prove
particularly useful to apply it to L = K [x], where K is a commutative ring. In
particular, this will help us adjoin a root of a polynomial to a commutative ring K.
First, let us introduce some standard conventions:

Convention 8.1.7. Let K be a commutative ring.
(a) Any K [x]-module automatically becomes a K-module: In fact, let M be a

K [x]-module. Then, am is defined for each a ∈ K [x] and each m ∈ M. But we
have identified each element a ∈ K with the corresponding constant polynomial
a ∈ K [x]. Thus, am is also defined for each a ∈ K and each m ∈ M (because
we can treat a as a constant polynomial); explicitly speaking, it is defined by the
equality

am = am for all a ∈ K and m ∈ M.

Thus, a “scaling” map · : K× M → M is defined. This “scaling” map (along
with the addition and the zero vector that M is already equipped with) makes M
a K-module. Thus, every K [x]-module M automatically becomes a K-module.

(b) In this way, any K [x]-algebra becomes a K-algebra (because we just ex-
plained how it becomes a K-module, and it is easy to see that this K-module
structure harmonizes with the ring structure in a way that yields a K-algebra102).

(c) Any K [x]-module homomorphism is automatically a K-module homomor-
phism. (This is easy to check.)

(d) Any K [x]-algebra homomorphism is automatically a K-algebra homomor-
phism. (This is easy to check.)

Thus, in particular, if b ∈ K [x] is any polynomial, then the K [x]-algebra K [x] /b
automatically becomes a K-algebra as well.

Proposition 8.1.8. Let K be a commutative ring. Let b ∈ K [x] be a polynomial.
(a) The projection map

πb : K [x]→ K [x] /b,
a 7→ [a]b

102i.e., the “Scale-invariance of multiplication” axiom is satisfied
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is a K [x]-algebra homomorphism and thus a K-algebra homomorphism.
(b) The map

K→ K [x] /b,
a 7→ [a]b

is a K-algebra homomorphism.
(c) We have a [[x]b] = [a]b for any a ∈ K [x].
(d) The element [x]b ∈ K [x] /b is a root of b.

Theorem 8.1.9. Let K be a commutative ring.
Let m ∈N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible. Then:
(a) Each element of K [x] /b can be uniquely written in the form

λ0

[
x0
]

b
+ λ1

[
x1
]

b
+ · · ·+ λm−1

[
xm−1

]
b

with λ0, λ1, . . . , λm−1 ∈ K.

(b) The m vectors
[
x0]

b ,
[
x1]

b , . . . ,
[
xm−1]

b form a basis of the K-module
K [x] /b. (See Definition 6.11.1 (d) for what “basis” means.)

(c) Assume that m > 0. Then, the K-algebra homomorphism

K→ K [x] /b,
a 7→ [a]b

is injective. Thus, K can be viewed as a K-subalgebra of K [x] /b if we identify
each a ∈ K with the [a]b ∈ K [x] /b.

Note that Theorem 8.1.9 (c) really requires m to be > 0 (otherwise, K [x] /b is a
trivial ring) and [xm] b to be invertible (we will see an example below where [xm] b
is not invertible, and K does not inject into K [x] /b).

We now understand the quotient rings K [x] /b well enough at least in the case
when the leading coefficient of b is invertible. Let us use this to see some examples:

Example 8.1.10. We have C ∼= R [x] /
(
x2 + 1

)
(as rings).

Indeed, the map

C→ R [x] /
(

x2 + 1
)

,

(a, b) = a + bi 7→ [a + bx]x2+1

is a ring homomorphism, and is invertible, with inverse

R [x] /
(

x2 + 1
)
→ C,

[a]x2+1 7→ a [i] .

To see that the latter inverse is well-defined, you have to check that if a and b are
two polynomials in R [x] satisfying a ≡ b mod x2 + 1, then a [i] = b [i]. (LTTR.)
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Example 8.1.11. We have Z [i] ∼= Z [x] /
(
x2 + 1

)
(as rings).

Example 8.1.12. Recall the dual numbers D from homework set #4 exercise 3.
Each dual number has the form (a, b) = a + bε for a unique pair (a, b) of real
numbers, and the multiplication of D satisfies ε2 = 0.

We have D ∼= R [x] /x2 (as rings). More precisely, the map

D→ R [x] /x2,
(a, b) = a + bε 7→ [a + bx]x2

is a ring isomorphism.
Moreover, we also have D ∼= R [[x]] /x2 as rings.
Note, however, that this is unusual: Normally, if a ∈ K [x] is a polyno-

mial, then K [[x]] /a is not isomorphic to K [x] /a. For example, the ring
R [x] /

(
x2 + 1

)
is isomorphic to C (as we have seen above), whereas the ring

R [[x]] /
(
x2 + 1

)
is trivial (since the FPS x2 + 1 is invertible, and thus any two

FPSs are congruent to each other modulo x2 + 1).

Example 8.1.13. In Section 5.6, we constructed a field with 4 elements by adjoin-
ing a j satisfying j2 = j + 1 to Z/2. This field is isomorphic to

(Z/2) [x] /
(

x2 − x− 1
)

.

Example 8.1.14. Let m ∈ Z be nonzero. On midterm #2 exercise 1, we defined
Rm to be the set of all m-integers (= rational numbers that can be turned into
integers by multiplying with m often enough). We proved that Rm is a ring.
Each element of Rm can be written in the form

a
mk for some a ∈ Z and some

k ∈N (but these a and k are not unique, since
a

mk =
am

mk+1 =
am2

mk+2 = · · · ).
This ring Rm is isomorphic to the ring Z [x] / (mx− 1). Indeed, we have a ring

homomorphism

Z [x] / (mx− 1)→ Rm,

[a]mx−1 7→ a
[

1
m

]
,

and this is invertible, with inverse

Rm → Z [x] / (mx− 1) ,
a

mk 7→
[

axk
]

mx−1
(for a ∈ Z and k ∈N)

(you have to check that this is well-defined).

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt2s.pdf
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Note that Theorem 8.1.9 does not apply here (unless m ∈ {1,−1}), and the
Z-module Rm has no basis (again, unless m ∈ {1,−1}).

Note that Rm (the ring of m-integers) is commonly called Z

[
1
m

]
, in analogy

to Z [i].

Example 8.1.15. We have a ring isomorphism

(Z/6) [x] / (2x + 1) ∼= Z/3.

Thus, if we adjoin a root of 2x + 1 to the ring Z/6, then we get a smaller ring
(namely, Z/3). In particular, there is no injective map from Z/6 to the result of
this adjunction!

This is no surprise, since
[
x1] (2x + 1) = [2]6 is not invertible in Z/6, and thus

Theorem 8.1.9 does not apply here.
This is similar to how dividing by 0 makes all numbers equal:

Z [x] / (0x− 1) ∼= {0} .

Let us summarize: We can always adjoin a root of a polynomial b to a com-
mutative ring K by forming the ring K [x] /b. This latter ring will always be a
commutative ring; moreover, if b is “nice” (that is, there is a positive integer m
such that b ∈ K [x]≤m and such that [xm] b is invertible), then Theorem 8.1.9 (c)
shows that this latter ring will contain K as a subring (at least if we make a natural
identification). If b is not as “nice”, then the ring K [x] /b may fail to contain K as
a subring (though it is always a K-algebra), and may be smaller than K and even
trivial.

If K itself is a field, then b will always be “nice” (unless b = 0), but the ring
K [x] /b may and may not be a field. What must a polynomial b satisfy in order
for K [x] /b to be a field?

Definition 8.1.16. Let F be a field.
A polynomial a ∈ F [x] is said to be irreducible if deg a > 0 and there exist no

two polynomials b, c ∈ F [x] with a = bc and deg b > 0 and deg c > 0.
In other words, a polynomial a ∈ F [x] is said to be irreducible if it is non-

constant but cannot be written as a product of two non-constant polynomials.
(Indeed, the non-constant polynomials are precisely the polynomials having de-
gree > 0.)

Irreducible polynomials over a field F are an analogue of prime numbers (or, to
be more precise, of integers of the form ±p where p is a prime).
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Theorem 8.1.17. Let F be a field. Let a ∈ F [x] be a polynomial.
Then, the ring F [x] /a is a field if and only if a is irreducible.

So, for example, the irreducible polynomial x2 + 1 over R yields the field R [x] /
(
x2 + 1

)
(which is ∼= C), but the non-irreducible polynomial x2 over R yields the non-field
R [x] /x2 (which is ∼= D).

8.2. Quotients modulo ideals

8.2.1. Congruence and quotients modulo ideals

The notion of “congruence modulo w” introduced in Definition 8.1.2 was a gener-
alization of “congruence modulo n” from number theory; but it can be generalized
further. Namely, we can replace w by an ideal I of L. (See Definition 6.12.5 for the
definition of an ideal.) Here is how this general notion is defined:

Definition 8.2.1. Let L be a ring. Let I be an ideal of L. Let a, b ∈ L. We say
that a is congruent to b modulo I (in L) if and only if a− b ∈ I. We shall use the
notation “a ≡ b mod I” for “a is congruent to b modulo I”.

We furthermore shall use the notation “a 6≡ b mod I” for “a is not congruent
to b modulo I”.

Why is this a generalization of “congruence modulo w”? Because congruence
modulo w is recovered if we take I to be the principal ideal103 wL. More precisely,
the following holds:

Proposition 8.2.2. Let L be a commutative ring. Let w ∈ L. Let a, b ∈ L.
Consider the principal ideal wL of L, defined as in Example 6.12.6 (that is, by
wL = {wz | z ∈ L}). Then, a ≡ b mod w holds if and only if a ≡ b mod wL.

Knowing that “congruence modulo I” is a generalization of “congruence mod-
ulo w” and of “congruence modulo n”, we can play the usual game in which we
recall properties of the latter and check whether they still hold for the former. For
example, the following generalization of Proposition 8.1.3 holds:

Proposition 8.2.3. Let L be a ring. Let I be an ideal of L.
(a) We have a ≡ a mod I for every a ∈ L.
(b) If a, b, c ∈ L satisfy a ≡ b mod I and b ≡ c mod I, then a ≡ c mod I.
(c) If a, b ∈ L satisfy a ≡ b mod I, then b ≡ a mod I.
(d) If a1, a2, b1, b2 ∈ L satisfy a1 ≡ b1 mod I and a2 ≡ b2 mod I, then

a1 + a2 ≡ b1 + b2 mod I; (118)
a1 − a2 ≡ b1 − b2 mod I; (119)

a1a2 ≡ b1b2 mod I. (120)

103See Example 6.12.6 for the definition of principal ideals.
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(e) Let J be an ideal of L such that I ⊆ J. If a, b ∈ L satisfy a ≡ b mod I, then
a ≡ b mod J.

Note how the “I ⊆ J” assumption in Proposition 8.2.3 (e) is the correct gener-
alization of the “m | w” assumption in Proposition 8.1.3, because of the following
fact:

Proposition 8.2.4. Let L be a commutative ring. Let m, w ∈ L. Then, wL ⊆ mL

holds if and only if m | w. (Here, the principal ideals wL and mL are defined as
in Example 6.12.6).

This proposition is so easy it barely needs proof, but it illustrates a useful point
of view: Divisibility of elements of L can be rewritten as containment of ideals of
L.

The following definition generalizes Definition 8.1.4 (and thus also generalizes
our construction of Z/n for n ∈ Z):

Definition 8.2.5. Fix a ring L and an ideal I of L.
(a) Define a relation ≡

I
on the set L by(

a ≡
I

b
)
⇐⇒ (a ≡ b mod I) .

This ≡
I

is an equivalence relation. (The proof of this is analogous to the proof

of Example 3.2.5.)
(b) A residue class modulo I means an equivalence class of the relation ≡

I
.

(c) If a ∈ L, then we denote the residue class [a]≡
I

by [a]I .

(d) The set L/ ≡
I

of all residue classes modulo I is called L/I.

(e) We define a binary operation + on L/I (called addition) by setting

[a]I + [b]I = [a + b]I for all a, b ∈ L.

This is well-defined, because of Theorem 8.2.6 (a) below.
(f) We define a binary operation · on L/I (called multiplication) by setting

[a]I · [b]I = [a · b]I for all a, b ∈ L.

This is well-defined, because of Theorem 8.2.6 (a) below.
(g) Fix r ∈ L. For any α ∈ L/I, we define a residue class rα ∈ L/I by setting

(r [a]I = [ra]I for any a ∈ L) .

(In other words, for any α ∈ L/I, we let rα = [ra]I , where a is an element of L

satisfying α = [a]I .) This is well-defined, because of Theorem 8.2.6 (a) below.
We shall also write r · α instead of rα. The map L× (L/I)→ L/I, (r, α) 7→ rα

will be called scaling.
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Theorem 8.2.6. Fix a ring L and an ideal I of L.
(a) The operations + and · and the “scaling map” · in Definition 8.2.5 are

well-defined.
(b) The set L/I, equipped with the addition + (defined in Definition 8.2.5

(e)), the multiplication · (defined in Definition 8.2.5 (f)) and the zero [0]I and the
unity [1]I , is a commutative ring.

(c) The set L/I, equipped with the addition + (defined in Definition 8.2.5
(e)), the scaling · (defined in Definition 8.2.5 (g)) and the zero vector [0]I , is an
L-module when L is commutative.

(d) The set L/I, equipped with all of these items, is an L-algebra when L is
commutative.

(e) The map

πI : L→ L/I,
a 7→ [a]I

is an L-algebra homomorphism.
(f) If the ring L is commutative, then the ring L/I is a commutative L-algebra.
(g) The kernel of the L-algebra homomorphism πI is Ker (πI) = I. (See Propo-

sition 6.12.8 (a) for the definition of a kernel.)

Proposition 8.2.2 shows that Definition 8.2.5 generalizes Definition 8.1.4: Namely,
if L is a commutative ring, and if the ideal I in Definition 8.2.5 is a principal ideal
wL (for some w ∈ L), then the relation ≡

I
and the ring L/I are precisely the

relation ≡
w

and the ring L/w defined in Definition 8.1.4. Thus, if w is any element
of a commutative ring L, then

L/w = L/wL.

Thus, in particular, Z/n = Z/nZ for any n ∈ Z. Most authors prefer the notation
Z/nZ to our notation Z/n (since it is an instance of the more general construction
L/I).

9. Epilogue (UMN Fall 2019 Math 4281)

Here ends our one-semester course on abstract algebra (Fall 2019 at UMN). I will
now tie up some loose ends and point into a few directions for further study.

9.1. Roads not taken

During the course of the past semester, we have learned new things about old
concepts (such as the integers) as well as new concepts – both concrete (such as the
Gaussian integers) and abstract (such as arbitrary rings and fields).
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A one-semester course on abstract algebra always has to decide between many
things of roughly equal importance; not everything can get its day104. The main
topics we missed are:

• Groups (and monoids, and group homomorphisms, and subgroups, etc.).
Many algebra classes start with this topic, since much of it can be done with
almost no prerequisites. I have kept delaying this topic and, in the end, did
not get to it at all. My main excuse is that it would have taken me afield – we
haven’t needed groups in what we did above (though they would have sim-
plified a few of our proofs). Nevertheless, groups are worth learning about.
Readable introductions into groups include [Siksek15], [GalQua17, §4.1–§4.2],
[Goodma16, Chapters 1–5] and [Pinter10, Chapter 1–16]; other sources are
[Armstr18, Abstract Algebra I] (with a historical perspective), [Artin10, Chap-
ter 2], [Bosch18, Chapter 1], [Carrel17, Chapter 2], [Elman18, Chapters III–IV],
[Knapp16a, Chapter IV], [Loehr11, Chapter 9], [Milne17].

Only a few dozen pages of basic properties of groups will get you ready for
the proof of Theorem 3.9.5, which we left unproved. See [GalQua17, §4.1–
§4.2] or [Conrad*, “Cyclicity of (Z/ (p))×”] (for the case n = p).

• Permutations. The basics of this subject are extremely important throughout
mathematics; in particular, the notion of the sign of a permutation is needed
for the study of determinants of matrices and of signed volumes in geometry.
Concerning this notion, see [Strick13, Appendix B] for a quick “from-scratch”
introduction, and [Conrad*, “The sign of a permutation”] for an approach
using group theory.

You can learn more about permutations from a textbook on enumerative com-
binatorics (such as [Loehr11]) or on permutation puzzles (such as [Bump02],
[Joyner08] or [Mulhol16]). The latter texts focus on permutation-related puz-
zles such as Rubik’s cube and the 15-game; but in doing so, they motivate
and introduce the properties of permutations and even the basics of group
theory.

• Determinants. Determinants belong equally to combinatorics, abstract alge-
bra and linear algebra. As a consequence, none of these courses covers them
well; usually, only the most basic properties are stated, and their proofs out-
lined as best. Strickland, in [Strick13, §12 and Appendix B], gives a short but
rigorous and honest treatment of the fundamentals. Other good introductions
are found in Day’s [Day16, Chapter 6], Mate’s [Mate14], Walker’s [Walker87,
§5.4], and Pinkham’s [Pinkha15, Chapter 11] (but they all limit themselves to
the basics). In [Grinbe15, Chapter 6], I prove a variety of results (including
some nonstandard ones) in much detail (probably too much). The “bible”
on determinants is [MuiMet60] (and, for the particularly bold, [Muir30] is a
goldmine of forgotten results).

104The alternative is to skimp on proofs; I consider this the worst option.
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The determinant used to be one of the central notions in mathematics, and
even predated the notion of matrices! (Determinants first appear in a 1693
letter of Leibniz. The word “matrix” was coined in 1850 by J. J. Sylvester, as
a “womb” (this is what “matrix” means in Latin) from which determinants
spring out.) Determinants have become less central since, thanks to abstract
algebra incorporating many ideas that were first stated in their language.
Nevertheless, they are still one of the strongest tools on the algebraic side of
mathematics.

• Multivariate polynomials (i.e., polynomials in several variables). This is a
highly useful topic, but it is rarely done justice in one-semester courses on
algebra, since it takes some amount of notational work. For example, 3+ 2x+
3x2y + 6y2 is a polynomial in the two variables x, y over the ring Q. To define
such polynomials rigorously, we recall that we defined FPSs in one variable as
infinite sequences of elements of our ring K. Likewise, we can define FPSs in
two variables as infinite “2-dimensional sequences” of elements of K, where
a “2-dimensional sequence” is a family

(
ai,j
)
(i,j)∈N2 of elements of K indexed

by pairs of nonnegative integers.105 Such an FPS is called a polynomial if the
family has only finitely many nonzero entries. Then, x is defined to be the
family

(
ai,j
)
(i,j)∈N2 whose only nonzero entry is a1,0 = 1, and y is defined to

be the family
(
ai,j
)
(i,j)∈N2 whose only nonzero entry is a0,1 = 1. The theory

of polynomials (and FPSs) in two variables can thus be built up in analogy
to our 1-variable theory; details can be found in [Hunger03, Chapter III, §5],
[Loehr11, §7.16], [GalQua18, §30.2] and [AmaEsc05, §I.8].

Eventually, the theory of multivariate polynomials becomes more complicated
than the 1-variable theory. The first point where it significantly differs is di-
vision with remainder: There is no analogue of Theorem 7.5.1; instead there
is a rich and highly useful theory of Gröbner bases ([CoLiOs15]). Also, a poly-
nomial f in two variables x and y can be evaluated at two elements u and v
of a K-algebra U only if u and v commute (that is, uv = vu).

• Galois theory (i.e., the theory of field extensions and roots of polynomials).
This is the study of field extensions. In the simplest case, this is about how a
field K grows when a root of some polynomial is adjoined to it. We saw a
small bit of it when we constructed C, or finite fields of size p2, by adjoining
roots of quadratic polynomials; but the game can be played in greater gener-

105You can think of such a “2-dimensional sequence” as an infinite table

a0,0 a0,1 a0,2 · · ·
a1,0 a1,1 a1,2 · · ·
a2,0 a2,1 a2,2 · · ·

...
...

...
. . .

.

https://mathoverflow.net/questions/35988/why-were-matrix-determinants-once-such-a-big-deal/
https://www-history.mcs.st-and.ac.uk/HistTopics/Matrices_and_determinants.html
https://www-history.mcs.st-and.ac.uk/HistTopics/Matrices_and_determinants.html
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ality. When a field K is a subring of a field L, the pair (K, L) is called a field
extension (and is often written as L/K, a notation that has nothing to do with
quotients despite its look). The Galois theory proper studies the K-algebra
isomorphisms from L to L. (For example, there are two R-algebra homomor-
phisms from C to C; one of them is simply the identity map, while the other
is the conjugation map z 7→ z. The dimension of the R-vector space C also
happens to be 2. Coincidence?)

A one-semester class on Galois theory usually covers only the very basics,
but undergraduate-level introductions to the theory exist. Two of them are
[Stewar15] and [Tignol01]. Some algebra texts centered on Galois theory are
[Armstr18], [Goodma16] and [Bosch18].

• Finite fields (also known as Galois fields). We have started exploring them by
defining the ones of size p and p2 (for p prime). But as I already mentioned,
there exists a finite field of any prime-power size, and it is unique up to
isomorphism. Most algebra textbooks that go deeper than a one-semester
course will prove this and perhaps say more – Galois theory texts in particular.
But there are also books specifically devoted to finite fields, such as [Wan11]
and [LidNie97].

Then, there are deeper topics such as representation theory, algebraic number
theory and algebraic geometry, which we have grazed at best (see, e.g., [DumFoo04],
[Knapp16a] and [Knapp16b]).

9.2. A quick history of algebraic equations

Algebraic equations (i.e., equations of the form P (x) = 0, where P is a given
polynomial) were the historical origin of much of abstract algebra. Thus, I am
going to say a few words about them, even though they eventually lead into topics
(like Galois theory and algebraic geometry) which have not been the subject of this
course.

The Babylonians knew the quadratic formula: The solutions to a quadratic equa-

tion ax2 + bx + c = 0 (say, over C) are x =
−b±

√
b2 − 4ac

2a
. (Of course, the Baby-

lonians did not know C; even the negative numbers only appeared during the
Chinese Han Dynasty and took a long time to propagate into the West. But the
idea was there.)

The question of solving cubic equations (ax3 + bx2 + cx + d = 0) and equations
of higher degree has puzzled people for centuries, until the case of the cubic was
solved by Scipione del Ferro and Niccolò Tartaglia (and written up by Girolamo
Cardano) in the early 16th Century. The history of their solution has been amply
discussed and dramatized in the literature (even over-dramatized, as if the truth
wasn’t interesting enough!); see the lecture slides

https://cs.uwaterloo.ca/~cbruni/CO480Resources/lectures/CO480MayAug2017/lecture11.pdf

https://en.wikipedia.org/wiki/Quadratic_formula#Historical_development
https://en.wikipedia.org/wiki/Negative_number
https://en.wikipedia.org/wiki/Negative_number
https://cs.uwaterloo.ca/~cbruni/CO480Resources/lectures/CO480MayAug2017/lecture11.pdf
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for a highly readable chronology, and see [Rothma15] for some pop-science claims
debunked (including some from the slides).

The formula they found is surprising in its practical uselessness. Consider the
case of a “depressed” cubic polynomial; this is a polynomial of the form x3 + px+ q
(so the coefficient of x2 is 0). In this particular case, the Cardano formula106 says
that the roots of this polynomial are
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The cubic roots here are understood to be complex cubic roots107, which is why

you get not 1 but 3 roots108. Note that

√
q2

4
+

p3

27
may be non-real, even if the

polynomial has a real root! Ironically, this happens precisely in the case when the
cubic polynomial has 3 real roots (which is the maximum possible number); thus,
it qualifies as an explicit formula only if we tolerate the presence of cubic roots of
complex numbers inside it.

Worse yet: Even if the Cardano formula does not involve any non-real numbers,
it is still far from the expression you might be looking for. For instance, let us try
to find the roots of the polynomial x3 + 3x− 4 using this formula. By plugging in
p = 3 and q = −4, we get the expression
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for its roots. To find the real root, we take the usual (i.e., non-complex) cubic roots.
Thus we conclude that 3

√
2 +
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5+ 3
√

2−
√

5 is a root of the polynomial x3 + 3x− 4.
But a bit of numerical computation suggests that this root is actually the number 1.
And this is indeed the case, as you can easily verify by evaluating the polynomial
x3 + 3x− 4 at 1; but how could you have guessed this from the cube-root formula?
So the Cardano formula gave us a complicated expression for the number 1, and
no way to simplify it!109

106The attentive reader will have noticed that this is another instance of an object named for its first
expositor, not for its original discoverer. There is a moral here.

107If z ∈ C is a complex number, then the complex cubic roots of z are the complex numbers w
satisfying w3 = z. There are three of them (unless z = 0), and (in terms of the Argand diagram)
they form the vertices of an equilateral triangle with center at 0.

108Actually, you get 9 roots if you are not careful (because there are two 3
√ signs in the formula).
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not all 3 · 3 = 9 combinations, but only the ones whose product is −1
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. But how would you have found these two identities?
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Nevertheless, the discovery of the Cardano formula has proven highly useful, as
it forced the introduction of complex numbers! While complex numbers already
appear as solutions of quadratic equations, this has not convinced anyone to define
them, because everyone would content themselves with the answer “no solutions”.
But cubic equations like x3− x + 1 = 0 tease you with their 3 real roots which, nev-
ertheless, cannot be expressed through 3

√ and √ signs until complex numbers are
defined. Thus, it was the cubic equation that made complex numbers accepted.110

Cardano went on and solved the general quartic equation ax4 + bx3 + cx2 + dx +
e = 0 with an even longer formula. The proofs of these formulas have remained
tricky and computational (see, e.g., [Armstr18, Week 1] for the case of the cubic),
even as some of the tricks have since been explained using abstract algebra.

For three more centuries, the quintic equation ax5 + bx4 + cx3 + dx2 + ex + f = 0
stumped mathematicians. Finally, in 1824, Niels Henrik Abel (based on work by
Paolo Ruffini) showed that a general formula for the roots of a degree-5 polynomial
(using +, −, ·, / and √ signs only) does not exist (not even an impractical one
like Cardano’s). A real understanding of the reasons behind this emerged when
Évariste Galois introduced the notion of groups, and what later became known as
Galois groups, in 1832. This formed the beginning of Galois theory (for which see
the references in Section 9.1).

From a modern viewpoint, the question of finding explicit formulas for roots
of polynomials appears arbitrary and inconsequential. After all, why exactly are
we allowing √ signs in these formulas, if computing n

√
a is already tantamount

to finding a root of a polynomial (namely, xn − a) ? Why do some roots count as
explicit, but the ones we are looking for don’t? In the case of quadratic polynomials,
at least the formula ends up quite useful; for higher degrees, this is almost never
the case. Expressions involving third (and higher) roots are hard to work with
(recall our difficulties recognizing 3

√
2 +
√

5 +
3
√

2−
√

5 as 1!), and if one wants
numerical results, the standard numerical methods (such as Newton’s) are much
simpler. Algebraists generally want to compute precisely, but they don’t care for
the arbitrary limitations of +, −, ·, / and √ signs; thus, much of the time, they
end up formally adjoining their roots (using the K [x] /b construction in Theorem
8.1.9) and computing in the resulting rings. Thus, despite giving birth to some of
the algebra we know and love, Cardano’s formulas eventually became historical
footnotes.

9.3. Irreducible polynomials over finite fields

I have told you that there exists a field of any prime-power size; but I only showed
this for the sizes p and p2 (where p is a prime). Let me go one step further and
prove this for size p3 as well, just to illustrate the use of the K [x] /b construction
from Theorem 8.1.9. More generally, I claim the following:

110There may be a moral here as well.

https://en.wikipedia.org/wiki/Quartic_function#Solving_a_quartic_equation
https://en.wikipedia.org/wiki/Galois_theory
https://en.wikipedia.org/wiki/Root-finding_algorithm
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Lemma 9.3.1. Let F be a finite field.
(a) There exists an irreducible polynomial a ∈ F [x] of degree 2.
(b) There exists an irreducible polynomial a ∈ F [x] of degree 3.

Note that we could not use the same argument to prove the existence of an ir-
reducible polynomial a ∈ F [x] of degree 4. Indeed, if we tried, we would have
to deal with the two substantially different possibilities (deg b = 1 and deg c = 3)
and (deg b = 2 and deg c = 2), which would prevent us from obtaining a surjec-
tive map from F×F×F×F to {monic polynomials a ∈ F [x] of degree 4}.

Corollary 9.3.2. Let F be a finite field, and let q = |F|. Then, there exist finite
fields of sizes q2 and q3.

Now, if p is a prime, then Corollary 9.3.2 (applied to F = Z/p and q = p) shows
that there exist finite fields of sizes p2 and p3. Moreover, by applying Corollary
9.3.2 twice, we can see that there exists a finite field of size

(
p2)2

= p4. However,
this method fails at proving that there exists a finite field of size p5.

For a proper proof of the existence of a finite field of size pn (for any prime p and
integer n ≥ 1), see [LidNie97, Theorem 2.5], [Knapp16a, Theorem 9.14], [Loehr11,
Exercise 12.126], [ConradF, Theorem 2.2], [Hunger14, Corollary 11.26], [Hunger03,
Chapter V, Proposition 5.6], [Stewar15, Theorem 19.3], [Walker87, Theorem 6.2.11]
or [Escofi01, 14.5.1] or [Grinbe19b]. However, each of these proofs, except for the
one in [Grinbe19b], uses at least something we have not seen so far. (The proof in
[Grinbe19b], on the other hand, is fairly long.)
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