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1. Introduction

This file contains notes for the Math 4281 class (“Introduction to Modern Algebra”)
I have taught at the University of Minnesota in Spring 2019. Occasionally, it also
includes material that did not appear in the lectures.

The website of the class is https://www.cip.ifi.lmu.de/~grinberg/t/19s/index.
html ; you will find homework sets and midterms there.

1.1. Status

The first few chapters of these notes are finished. The rest are at various degrees of
completion (mostly readable, but sometimes not completely polished).

1.2. Literature

Many books have been written about abstract algebra. I have only a passing fa-
miliarity with most of them. Some of the “bibles” of the subject (bulky texts cov-
ering lots of material) are Dummit/Foote [DumFoo04], Knapp [Knapp16a] and
[Knapp16b] (both freely available), van der Waerden [Waerde91a] and [Waerde91b]
(one of the oldest texts on modern algebra, thus rather dated, but still as readable
as ever).

Of course, any book longer than 200 pages likely goes further than our course
will (unless it is full of details or solved exercises or printed in really large letters,
like this one will be once it is finished). Thus, let me recommend some more intro-
ductory sources. Siksek’s lecture notes [Siksek15] are a readable introduction that
is a lot more amusing than I had ever expected an algebra text to be. Goodman’s
free book [Goodma16] combines introductory material with geometric motivation
and applications, such as the classification of regular polyhedra and 2-dimensional
crystals. In a sense, it is a great complement to our ungeometric course. Pinter’s
[Pinter10] often gets used in classes like ours. Armstrong’s notes [Armstr18] cover
a significant part of what we do. Childs’s [Childs00] comes the closest to what we
are setting out to do here, that is, give an example-grounded introduction to basic
abstract algebra.

https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://creativecommons.org/publicdomain/zero/1.0/deed.en
https://www.cip.ifi.lmu.de/~grinberg/t/19s/index.html
https://www.cip.ifi.lmu.de/~grinberg/t/19s/index.html
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Keith Conrad’s blurbs [Conrad*] are not a book, as they only cover selected
topics. But at pretty much every topic they cover, they are one of the best sources
(clear, full of examples, and often going fairly deep). We shall follow one of them
particularly closely: the one on Gaussian integers [ConradG].

We will use some basic linear algebra, all of which can be found in Hefferon’s
book [Heffer17] (but we won’t need all of this book). As far as determinants are
concerned, we will briefly build up their theory; we refer to [Strick13, Section 12
& Appendix B] for proofs (and to [Grinbe15, Chapter 6] for a really detailed and
formal treatment).

This course will begin (after some motivating questions) with a survey of ele-
mentary number theory. This is in itself a deep subject (despite the name) with a
long history (perhaps as old as mathematics), and of course we will just scratch the
surface. Books like [NiZuMo91], [Burton10] and [UspHea39] cover a lot more than
we can do. The Gallier/Quaintance survey [GalQua17] covers a good amount of
basics and more.

We assume that the reader is familiar with the commonplaces of mathematical ar-
gumentation, such as induction (including strong induction), “WLOG” arguments,
proof by contradiction, summation signs (∑) and polynomials (a vague notion of
polynomials will suffice; we will give a precise definition when it becomes nec-
essary). If not, several texts can be helpful in achieving such familiarity: e.g.,
[LeLeMe18, particularly Chapters 1–5], [Hammac18], [Day16].

I thank the students of the Math 4281 class for discovering and reporting errors
in previous versions of these notes. Some of the discussion of variants of Gaussian
integers (and the occasional correction) is due to Keith Conrad; the discussion of
Gaussian integers itself owes much to his [ConradG].

These notes include some excerpts from [Grinbe16] and slightly rewritten sec-
tions of [Grinbe15].

1.3. The plan

The material I am going to cover is mostly standard. However, the order in which
I will go through it is somewhat unusual: I will spend a lot of time studying the
basic examples before defining abstract notions such as “group”, “monoid”, “ring”
and “field”. This way, once I come to these notions, you’ll already have many
examples to work with. (Don’t be fooled by the word “example”: We will prove a
lot about them, much of which is neither straightforward nor easy.)

First, I will show some motivating questions that are easy to state yet require
abstract algebra to answer. We will hopefully see their answers by the end of this
class. (Some of them can also be answered elementarily, without using abstract
algebra, but such answers usually take more work and are harder to find.)

https://en.wikipedia.org/wiki/Plimpton_322
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1.4. Motivation: n = x2 + y2

A perfect square means the square of an integer. Thus, the perfect squares are

02 = 0, 12 = 1, 22 = 4, 32 = 9, 42 = 16, . . . .

Here is an old problem (first solved by Pierre de Fermat in 1640, but apparently
already studied by Diophantus in the 3rd Century):

Question 1.4.1. What integers can be written as sums of two perfect squares?

For example, 5 can be written in this way, since 5 = 22 + 12.
So can 4, since 4 = 22 + 02. (Keep in mind that 0 is a perfect square.)
However, 7 cannot be written in this way. In fact, if we had 7 = a2 + b2 for two

integers a and b, then a2 and b2 would have to be ≤ 7 (since a2 and b2 are always
≥ 0, no matter what sign a and b have); but the only perfect squares that are ≤ 7
are 0, 1, 4, and there is no way to write 7 as a sum of two of these perfect squares
(just check all the possibilities).

For a similar but simpler reason, no negative number can be written as a sum of
two perfect squares.

We can of course approach Question 1.4.1 using a computer: It is easy to check,
for a given integer n, whether n is a sum of two perfect squares. (Just check all
possibilities for a and b for the validity of the equation n = a2 + b2. You only
need to try a and b belonging to

{
0, 1, . . . ,

⌊√
n
⌋}

, where byc (for a real number y)
denotes the largest integer that is less or equal than y (also known as “y rounded
down”).) If you do this, you will see that among the first 101 nonnegative integers,
the ones that can be written as sums of two perfect squares are precisely

0, 1, 2, 4, 5, 8, 9, 10, 13, 16, 17, 18, 20, 25, 26, 29,
32, 34, 36, 37, 40, 41, 45, 49, 50, 52, 53, 58, 61, 64,
65, 68, 72, 73, 74, 80, 81, 82, 85, 89, 90, 97, 98, 100.

Having this data, you can look up the sequence in the Online Encyclopedia of In-
teger Sequences (short OEIS), and see that the sequence of these integers is known
as OEIS Sequence A001481. In the “Comments” field, you can read a lot of what is
known about it (albeit in telegraphic style).

For example, one of the comments says “Closed under multiplication”. This is
short for “if you multiply two entries of the sequence, then the product will again
be an entry of the sequence”. In other words, if you multiply two integers that
are sums of two perfect squares, then you get another sum of two perfect squares.
Why is this so?

It turns out that there is a “simple” reason for this: the identity(
a2 + b2

) (
c2 + d2

)
= (ad + bc)2 + (ac− bd)2 , (1)

https://oeis.org/
https://oeis.org/
https://oeis.org/A001481
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which holds for arbitrary reals a, b, c, d (and thus, in particular, for integers). This is
known as the Brahmagupta-Fibonacci identity, and of course can easily be proven
by expanding both sides. But how would you come up with such an identity?

If you stare at the above sequence long enough, you may also discover another
pattern: An integer of the form 4k+ 3 with integer k (that is, an integer that is larger
by 3 than a multiple of 4) can never be written as a sum of two perfect squares.
(Thus, 3, 7, 11, 15, 19, 23, . . . cannot be written in this way.) This does not account
for all integers that cannot be written in this way, but it does provide some clues
to the answer that we will later see. In order to prove this observation, we shall
need basic modular arithmetic (or at least division with remainder); we will see
this proof very soon (see Exercise 2.7.2 (c)).

We will resolve Question 1.4.1 using the theory of Gaussian integers in Chapter
4. For a survey of different approaches to Question 1.4.1 (including a full answer
using finite fields), see [AigZie18, Chapter 4].

Further questions can be asked. One of them is: Given an integer n, how many
ways are there to represent n as a sum of two perfect squares? This is actually
several questions masquerading as one, since it is not so clear what a “way” is. Do
5 = 12 + 22 and 5 = 22 + 12 count as two different ways? What about 5 = 12 + 22

versus 5 = (−1)2 + 22 (here, the perfect squares are the same, but do we really
want to count the squares or rather the numbers we are squaring?).

Let me formalize the question as follows:

Question 1.4.2. Let n be an integer.
(a) How many pairs (a, b) ∈ N2 are there that satisfy n = a2 + b2 ? Here, and

in the following, N denotes the set {0, 1, 2, . . .} of all nonnegative integers.
(b) How many pairs (a, b) ∈ Z2 are there that satisfy n = a2 + b2 ? Here, and

in the following, Z denotes the set {. . . ,−2,−1, 0, 1, 2, . . .} of all integers.
(c) How do these counts change if we count unordered pairs instead (i.e.,

count (a, b) and (b, a) as one only)?

Note that when I say “pair”, I always mean “ordered pair” by default, unless I
explicitly say “unordered pair”.

Again, a little bit of programming easily yields answers to all three parts of this
question for small values of n, and the resulting data can be plugged into the OEIS
and yields lots of information.

First steps toward answering Question 1.4.2. (a) I claim that the number of such pairs
is even unless n is twice a perfect square (i.e., unless n = 2m2 for some integer m);
in the latter case, this number is odd instead.

Why? Let me define a solution to be a pair (a, b) such that n = a2 + b2. So
I want to know whether the number of solutions is even or odd. But we have
a2 + b2 = b2 + a2 for all a and b. Thus, if (a, b) is a solution, then so is (b, a).
Hence, the solutions themselves “come in pairs”, with each solution (a, b) being
matched to the solution (b, a), unless there is a solution (a, b) with a = b (because
such a solution would be matched to itself, and thus not form an actual pair). But

https://en.wikipedia.org/wiki/Brahmagupta-Fibonacci_identity
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solutions (a, b) with a = b are easy to classify: If n is twice a perfect square, then
there is exactly one such solution (namely,

(√
n/2,

√
n/2

)
); otherwise there is none

(because n = a2 + b2 with a = b leads to n = b2 + b2 = 2b2, which can only happen
when n is twice a perfect square). Since we know that all the other solutions “come
in pairs”, we thus conclude that the number of solutions is odd if n is twice a
perfect square and even otherwise. This proves our claim.

Of course, we have not made much headway into Question 1.4.2; knowing
whether a number is even or odd is far from knowing the number itself. But I
think the argument above was worth showing; similar reasoning is used a lot in
algebra.

(b) By reasoning analogous to the one we used in part (a), we can see that the
number of such pairs will be divisible by 8 whenever n is neither a perfect square
nor twice a perfect square. Indeed, this relies on the fact that

a2 + b2 = b2 + a2 = (−a)2 + b2 = b2 + (−a)2 = a2 + (−b)2 = (−b)2 + a2

= (−a)2 + (−b)2 = (−b)2 + (−a)2

for all a and b. Thus the pairs (a, b) ∈ Z2 that satisfy n = a2 + b2 don’t just
come in pairs; they come in sets of 8 (namely, each (a, b) comes in a set with
(b, a), (−a, b), (b,−a), (a,−b), (−b, a), (−a,−b) and (−b,−a)). These sets of 8 can
“degenerate” to smaller sets when some of their elements coincide, but this can
only happen when n is a perfect square (in which case we can have (a, b) = (−a, b)
for example) or twice a perfect square (in which case we can have (a, b) = (b, a) or
(a, b) = (−b,−a) or other such coincidences). (Check this!)

(c) We can reduce this to parts (a) and (b). Indeed:1

• When n is not twice a perfect square, the number of unordered pairs will
be half the number of ordered pairs, since each unordered pair (u, v)unordered
corresponds to precisely two ordered pairs (u, v) and (v, u).

• When n is twice a perfect square, we have

(the number of unordered pairs)

=
(the number of ordered pairs) + (the number of pairs with a = b)

2
.

Indeed, each unordered pair (u, v)unordered corresponds to precisely two or-
dered pairs (u, v) and (v, u) unless u = v, in which case it corresponds to
only one ordered pair. Thus, if we multiply the number of unordered pairs
by 2, then we overcount the number of ordered pairs, because we are count-
ing the pairs (u, v) with u = v (that is, the pairs with a = b) twice. So we
get (the number of ordered pairs) + (the number of pairs with a = b). This
proves our above formula.

1In the rest of this argument, “pair” will always mean “pair (a, b) satisfying n = a2 + b2”.
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What is the number of pairs with a = b ? If n = 0, then it is 1 (and the only
such pair is (0, 0)). Otherwise, it is 1 if we are counting pairs in N2 (and the
only such pair is

(√
n/2,

√
n/2

)
), and is 2 if we are counting pairs in Z2 (and

the only two such pairs are
(√

n/2,
√

n/2
)

and
(
−
√

n/2,−
√

n/2
)
).

Note that sums of squares have a geometric meaning (going back to Pythagoras):
Two real numbers a and b satisfy a2 + b2 = n (for a given integer n ≥ 0) if and only
if the point with Cartesian coordinates (a, b) lies on the circle with center 0 and
radius

√
n. This will actually prove a valuable insight that will lead us to the

answers to the above questions.
Just as a teaser: There are formulas for all three parts of Question 1.4.2, in terms

of divisors of n of the forms 4k + 1 and 4k + 3. We will see these formulas after we
have properly understood the concept of Gaussian integers.

1.5. Motivation: Algebraic numbers

A real number z is said to be algebraic if there exists a nonzero polynomial P with
rational coefficients such that P (z) = 0. In other words, a real number z is algebraic
if and only if it is a root of a nonzero polynomial with rational coefficients.

(If you know the complex numbers, you can replace “real” by “complex” in this
definition; but we shall only see real numbers in this little motivational section.)

Here are a few examples:

• Each rational number a is algebraic (being a root of the nonzero polynomial
x− a with rational coefficients).

• The number
√

2 is algebraic (being a root of the nonzero polynomial x2 − 2).

• The number 3
√

5 is algebraic (being a root of x3 − 5).

• All the roots of the polynomial f (x) :=
3
2

x4 + 17x3− 12x +
9
4

(whatever they
are) are algebraic.
Speaking of these roots, what are they? Using a computer, one can show that
this polynomial f (x) has 4 real roots (−11.269 . . . ,−0.960 . . . , 0.198 . . . , 0.697 . . .),
which can be written as complicated expressions with radicals (i.e., k

√ signs),
though complex numbers appear in these expressions (despite the roots being
real!). All this does not matter to the fact that they are algebraic ··

^

• All the roots of the polynomial g (x) := x7 − x5 + 1 are algebraic.
This polynomial has only one real root. This root cannot be written as an
expression with radicals (as can be proven using Galois theory – indeed, the
discovery of this theory greatly motivated the development of abstract al-
gebra). Nevertheless, it is algebraic, by definition. (The same holds for the
remaining 6 complex roots of g – we are working with real numbers here only
for the sake of familiarity.)

https://en.wikipedia.org/wiki/Galois_theory
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• The most famous number that is not algebraic is π. This is a famous result
of Lindemann, but it belongs to analysis, not to algebra, because π is not
defined algebraically in the first place (it is defined as the length of a curve or
as an area of a curved region – but either of these definitions boils down to a
limit of a sequence).

• The second most famous number that is not algebraic is Euler’s number e
(the basis of the natural logarithm). Again, analysis is needed to define e, and
thus also to prove its non-algebraicity.

Numbers that are not algebraic are called transcendental. We shall not study
them much, since most of them do not come from algebra. Instead, we shall try
our hands at the following question:

Question 1.5.1. (a) Is the sum of two (or, more generally, finitely many) algebraic
numbers always algebraic?

(b) What if we replace “sum” by “difference” or “product”?

Let me motivate why this is a natural question to ask. The sum of two integers
is still an integer; the sum of two rational numbers is still a rational number. These
facts are fundamental; without them we could hardly work with integers and ra-
tional numbers. If a similar fact would not hold for algebraic numbers, it would
mean that the algebraic numbers are not a good “number system” to work in; on
a practical level, it would mean that (e.g.) if we defined a function on the set of all
algebraic numbers, then we could not plug a sum of algebraic numbers into it.

Attempts at answering Question 1.5.1 (a). Let us try a particularly simple example of
a sum of two algebraic numbers: Let w be

√
2 +
√

3. Is w algebraic?
To answer this question affirmatively, we need to find a nonzero polynomial f (x)

with rational coefficients that has w as a root.
Just looking at the equality w =

√
2 +
√

3, we cannot directly eyeball such an f .
The problem, in a sense, is that there are too many (namely, two) square roots in
this equality.

However, if we square this equality, then we obtain

w2 =
(√

2 +
√

3
)2

= 2 + 2
√

2 ·
√

3 + 3 = 5 + 2
√

6,

which is an equality with only one square root (a sign of progress). Subtracting 5
from this equality (in order to “isolate” this remaining square root), we obtain w2−
5 = 2

√
6. If we now square this equality, then we obtain

(
w2 − 5

)2
=
(

2
√

6
)2

= 24.
At this point all square roots are gone, and we are left with an equality that contains
rational numbers and w only! We can further rewrite it as

(
w2 − 5

)2− 24 = 0. Thus,
w is a root of the polynomial f (x) :=

(
x2 − 5

)2 − 24 = x4 − 10x2 + 1. This means
that w is algebraic (since f is nonzero).

https://en.wikipedia.org/wiki/E_(mathematical_constant)
https://en.wikipedia.org/wiki/Transcendental_number
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Let us try a more complicated example: Let z be the number
√

2 + 3
√

2. Is z
algebraic? The squaring trick no longer works, since squaring

√
2 + 3
√

2 does not
reduce the number of radicals (= root signs). Let’s instead try rewriting z =

√
2 +

3
√

2 as z−
√

2 = 3
√

2. Cubing this equality, we obtain
(

z−
√

2
)3

= 2. In view of(
z−
√

2
)3

= z3 − 3z2
√

2 + 3z
(√

2
)2
−
(√

2
)3

(this is a particular case of the identity (a− b)3 = a3 − 3a2b + 3ab2 − b3, which is
one form of the Binomial Theorem for exponent 3), this rewrites a

z3 − 3z2
√

2 + 3z
(√

2
)2
−
(√

2
)3

= 2.

This simplifies to
z3 − 3

√
2z2 + 6z− 2

√
2 = 2.

Let us transform this inequality in such a way that all terms with a
√

2 in them end
up on the right hand side while all the remaining terms end up on the left. We
thus obtain

z3 + 6z− 2 =
√

2
(

3z2 + 2
)

.

Now, squaring this equality yields(
z3 + 6z− 2

)2
= 2

(
3z2 + 2

)2
.

Hence, z is a root of the polynomial

g (x) :=
(

x3 + 6x− 2
)2
− 2

(
3x2 + 2

)2
= x6 − 6x4 − 4x3 + 12x2 − 24x− 4.

This is a nonzero polynomial with rational coefficients; hence, z is algebraic.
We thus have verified that the sum of two algebraic numbers is algebraic in two

cases. What about more complicated cases, such as
√

2 +
√

3 + 7
√

11 ?

This is a sum of two algebraic numbers (since we already know that
√

2 +
√

3 = w
is algebraic). Is it algebraic? Neither of our above two methods properly works
here; do we have to come up with new ad-hoc tricks?

1.6. Motivation: Shamir’s Secret Sharing Scheme

1.6.1. The problem

Adi Shamir is one of the founders of modern mathematical cryptography (famous
in particular for the RSA cryptosystem, which we will discuss in Subsection 3.8.1).

Shamir’s Secret Sharing Scheme is a way in which a secret a (a piece of data –
e.g., nuclear launch codes) can be distributed among n people in such a way that

https://en.wikipedia.org/wiki/Adi_Shamir
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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• any k of them can (if they come together) reconstruct it uniquely, but

• any k− 1 of them (if they come together) cannot gain any insight about it (i.e.,
not only cannot they reconstruct it, but they cannot even tell that some values
are more likely than others to be a).

Here n and k are fixed positive integers.
Understanding this scheme completely will require some abstract algebra, but

we can already start thinking about the problem and get reasonably far.
So we have n people 1, 2, . . . , n, a positive integer k ∈ {1, 2, . . . , n} and a secret

piece of data a. We assume that this data a is encoded as a bitstring – i.e., a finite
sequence of bits. A bit is an element of the set {0, 1}. Thus, examples of bitstrings
are (0, 1, 1, 0) and (1, 0) and (1, 1, 0, 1, 0, 0, 0) as well as the empty sequence (). When
writing bitstring, we shall usually omit both the commas and the parentheses;
thus, e.g., the bitstring (1, 1, 0, 1, 0, 0, 0) will become 1101000. Make sure you don’t
mistake it for a number. Our goal is to give each of the n people 1, 2, . . . , n some
bitstring in such a way that:

• Requirement 1: Any k of the n people can (if they come together) reconstruct
a uniquely.

• Requirement 2: Any k− 1 of the n people are unable to gain any insight about
a (even if they collaborate).

We denote the bitstrings given to the people 1, 2, . . . , n by a1, a2, . . . , an, respec-
tively.

We assume that the length of our secret bitstring a is known in advance to all
parties; i.e., it is not a secret. Thus, when we say “k − 1 persons cannot gain any
insight about a”, we do not mean that they don’t know the length; and when we
say “some values are more likely than others to be a”, we only mean values that fit
this length.

1.6.2. The k = 1 case

One simple special case of our problem is when k = 1. In this case, it suffices to
give each of the n people the full secret a (that is, we set ai = a for all i). Then,
Requirement 1 is satisfied (since any 1 of the n people already knows a), while
Requirement 2 is satisfied as well (0 people know nothing).

1.6.3. The k = n case: what doesn’t work

Let us now consider the case when k = n. This case will not help us solve the
general problem, but it will show some ideas that we will encounter again and
again in abstract algebra.

We want to ensure that all n people needed to reconstruct the secret a, while any
n− 1 of them will be completely clueless.
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It sounds reasonable to split a into n parts, and give each person one of these
parts2 (i.e., we let ai be the i-th part of a for each i ∈ {1, 2, . . . , n}). This method
satisfies Requirement 1 (indeed, all n people together can reconstruct a simply by
fusing the n parts back together), but fails Requirement 2 (indeed, any n− 1 people
know n− 1 parts of the secret a, which is a far from being clueless about a). So this
method doesn’t work. It is not that easy.

1.6.4. The XOR operations

One way to solve the k = n case is using the XOR operation.
Let us first define some basic language. A binary operation on a set S is (informally

speaking) a function that takes two elements of S and assigns a new element of S
to them. More formally:

Definition 1.6.1. A binary operation on a set S is a map f from S× S to S. When
f is a binary operation on S and a and b are two elements of S, we shall write
a f b for the value f (a, b).

Example 1.6.2. Addition, subtraction and multiplication of integers are three
binary operations on the set Q (the set of all rational numbers). For example,
addition is the map from Q×Q to Q that sends each pair (a, b) ∈ Q×Q to a+ b.

Division is not a binary operation on the set Q. Indeed, if it was, then it would
send the pair (1, 0) to some integer called 1/0; but there is no such integer.

There are myriad more complicated binary operations around waiting for
someone to name them. For example, you could define a binary operation ,

on the set Q by a,b =
a− b

1 + a2 + b2 . Indeed, you can do this because 1 + a2 + b2

is always nonzero when a, b ∈ Q (after all, squares are nonnegative, so that
1 + a2︸︷︷︸

≥0

+ b2︸︷︷︸
≥0

≥ 1 > 0). I am not saying that you should...

Now, we define some specific binary operations on the set {0, 1} of all bits, and
on the set {0, 1}n of all length-n bitstrings (for a given n).

Definition 1.6.3. We define a binary operation XOR on the set {0, 1} by setting

0 XOR 0 = 0,
0 XOR 1 = 1,
1 XOR 0 = 1,
1 XOR 1 = 0.

This is a valid definition, because there are only four pairs (a, b) ∈ {0, 1}× {0, 1},
and we have just defined a XOR b for each of these four options. We can also

2assuming that a is long enough for that
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rewrite this definition as follows:

a XOR b =

{
1, if a 6= b;
0, if a = b

=

{
1, if exactly one of a and b is 1;
0, otherwise.

For lack of a better name, we refer to a XOR b as the “XOR of a and b”.

The name “XOR” is short for “exclusive or”. In fact, if you identify bits with
boolean truth values (so the bit 0 stands for “False” and the bit 1 stands for “True”),
then a XOR b is precisely the truth value for “exactly one of a and b is True”, which
is also known as “a exclusive-or b”.

Definition 1.6.4. Let m be a nonnegative integer. We define a binary operation
XOR on the set {0, 1}m (this is the set of all length-m bitstrings) by

(a1, a2, . . . , am)XOR (b1, b2, . . . , bm) = (a1 XOR b1, a2 XOR b2, . . . , am XOR bm) .

In other words, if a and b are two length-m bitstrings, then a XOR b is obtained
by taking the XOR of each entry of a with the corresponding entry of b, and
packing these m XORs into a new length-m bitstring.

For example,

(1001)XOR (1100) = 0101;
(11011)XOR (10101) = 01110;
(11010)XOR (01011) = 10001;

(1)XOR (0) = 1;
()XOR () = () .

Note that if a and b are two length-m bitstrings, then the 0’s in the bitstring
a XOR b are at the positions where a and b have equal entries, and the 1’s in
a XOR b are at the positions where a and b have different entries. Thus, a XOR b
essentially pinpoints the differences between a and b.

We observe the following simple properties of these operations XOR on bits and
on bitstrings3:

• We have a XOR 0 = a for any bit a. (This can be trivially checked by consider-
ing both possibilities for a.)

• Thus, a XOR 0 = a for any bitstring a, where 0 denotes the bitstring 00 · · · 0 =
(0, 0, . . . , 0) (of appropriate length – i.e., of the same length as a).

• We have a XOR a = 0 for any bit a. (This can be trivially checked by consider-
ing both possibilities for a.)

3As a mnemonic, we shall try to use boldfaced letters like a and b for bitstrings and regular italic
letters like a and b for single bits.
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• Thus, a XOR a = 0 for any bitstring a. We shall refer to this as the self-
cancellation law.

• We have a XOR b = b XOR a for any bits a, b. (Again, this is easy to check by
going through all four options for a and b.)

• Thus, a XOR b = b XOR a for any bitstrings a, b.

• We have a XOR (b XOR c) = (a XOR b)XOR c for any bits a, b, c. (Again, this is
easy to check by going through all eight options for a, b, c.)

• Thus, a XOR (b XOR c) = (a XOR b)XOR c for any bitstrings a, b, c.

• Thus, for any bitstrings a and b, we have

(a XOR b)XOR b = a XOR (b XOR b)︸ ︷︷ ︸
=0

(by the self-cancellation law)

= a XOR 0 = a.

This observation gives rise to a primitive cryptosystem (known as a one-time
pad): If you have a secret bitstring a that you want to encrypt, and another
secret bitstring b that can be used as a key, then you can encrypt a by XORing
it with b (that is, you transform it into a XOR b). Then, you can decrypt
it again by XORing it with b again; indeed, if you do this, you will obtain
(a XOR b)XOR b = a. This is a highly safe cryptosystem as long as you
can safely communicate the key b to whomever needs to be able to decrypt
(or encrypt) your secrets, and as long as you are able to generate uniformly
random keys b of sufficient length. Its only weakness is its impracticality (in
many situations): If the secret you want to encrypt is long (say, a whole book),
your key will need to be equally long. Even storing such keys can become
difficult.

We shall refer to the properties a XOR b = b XOR a and a XOR b = b XOR a
as laws of commutativity, and we shall refer to the properties a XOR (b XOR c) =
(a XOR b)XOR c and a XOR (b XOR c) = (a XOR b)XOR c as laws of associativity.
These are, of course, similar to well-known facts like α + β = β + α and α +
(β + γ) = (α + β) + γ for numbers α, β, γ (which is why we are giving them the
same names). This similarity is not coincidental. Just as for addition or multiplica-
tion of numbers, these laws lead to a notion of “XOR-products”:

Proposition 1.6.5. Let m be a positive integer. Let a1, a2, . . . , am be m bitstrings.
Then, the “XOR-product” expression

a1 XOR a2 XOR a3 XOR · · ·XOR am

is well-defined, in the sense that it does not depend on the parenthesization.

https://en.wikipedia.org/wiki/One-time_pad
https://en.wikipedia.org/wiki/One-time_pad
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What do we mean by “parenthesization”? To clarify things, let us set m = 4.
In this case, we want to make sense of the expression a1 XOR a2 XOR a3 XOR a4.
This expression does not make sense a priori, since it is a XOR of four bitstrings,
whereas we have defined only the XOR of two bitstrings. But there are five ways
to put parentheses around some of its sub-expressions such that the expression
becomes meaningful:

(a1 XOR a2)XOR (a3 XOR a4) ,
((a1 XOR a2)XOR a3)XOR a4,
a1 XOR ((a2 XOR a3)XOR a4) ,
a1 XOR (a2 XOR (a3 XOR a4)) ,
(a1 XOR (a2 XOR a3))XOR a4.

Each of these five parenthesizations (= placements of parentheses) turns our ex-
pression a1 XOR a2 XOR a3 XOR a4 into a combination of XOR’s of two bitstrings
each, and thus gives it meaning. The question is: Do these five parenthesizations
give it the same meaning?

Well, let us calculate:

(a1 XOR a2)XOR (a3 XOR a4)

= a1 XOR (a2 XOR (a3 XOR a4))︸ ︷︷ ︸
=(a2 XOR a3)XOR a4

= a1 XOR ((a2 XOR a3)XOR a4)

= (a1 XOR (a2 XOR a3))︸ ︷︷ ︸
=(a1 XOR a2)XOR a3

XOR a4

= ((a1 XOR a2)XOR a3)XOR a4,

where we used the law of associativity in each step. This shows that our five
parenthesizations yield the same result. Thus, they all give our “XOR-product”
expression a1 XOR a2 XOR a3 XOR a4 the same meaning; so we can say that this
expression is well-defined. This confirms Proposition 1.6.5 for m = 4.

Of course, proving Proposition 1.6.5 is less simple. Such a proof appears in
Exercise 4 on homework set #0 (for more general binary operations than XOR).

1.6.5. The k = n case: an answer

Let us now return to our problem. We have n persons 1, 2, . . . , n and a secret a
(encoded as a bitstring). We want to give each person i some bitstring ai such that
only all n of them can recover a but any n − 1 of them cannot gain any insight
about a.

We let a1, a2, . . . , an−1 be n− 1 uniformly random bitstrings of the same length
as a. (Think of them as random gibberish.) Set

an = a XOR a1 XOR a2 XOR · · ·XOR an−1.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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(This expression makes sense because of Proposition 1.6.5.)
Then,

an XOR an−1 XOR an−2 XOR · · ·XOR a1

= (a XOR a1 XOR a2 XOR · · ·XOR an−1)XOR an−1 XOR an−2 XOR · · ·XOR a1

= a XOR a1 XOR a2 XOR · · ·XOR an−1 XOR an−1︸ ︷︷ ︸
=0

XOR an−2 XOR · · ·XOR a1

= a XOR a1 XOR a2 XOR · · ·XOR an−2 XOR 0︸ ︷︷ ︸
=an−2

XOR an−2 XOR · · ·XOR a1

= a XOR a1 XOR a2 XOR · · ·XOR an−2 XOR an−2︸ ︷︷ ︸
=0

XOR · · ·XOR a1

= · · ·
= a

(here, we have been unravelling the big XOR-product from the middle on, by can-
celling equal bitstrings using the self-cancellation law and then removing the re-
sulting 0 using the a XOR 0 = a law). Hence, the n people together can decrypt the
secret a.

Can n − 1 people gain any insight about it? The n − 1 people 1, 2, . . . , n − 1
certainly cannot, since all they know are the random bitstrings a1, a2, . . . , an−1. But
the n− 1 people 2, 3, . . . , n cannot gain any insight about a either: In fact, all they
know are the random bitstrings a2, a3, . . . , an−1 and the bitstring

an = a XOR a1 XOR a2 XOR · · ·XOR an−1;

therefore, all the information they have about a and a1 comes to them through
a XOR a1, which says nothing about a as long as they know nothing about a1.
(We used a bit of handwaving in this argument, but then again we never formally
defined what it means to “gain no insight”; this is done in courses on cryptography
and information theory.) Similar arguments show that any other choice of n − 1
persons remains equally clueless about a. So we have solved the problem in the
case k = n.

1.6.6. The k = 2 case

The next simple case is when k = 2. So we want to ensure that any 2 of our n
people can together recover the secret, but no 1 person can learn anything about it
alone.

A really nice approach was suggested by Nathan (a student in class): We pick n
random bitstrings x1, x2, . . . , xn−1 of the same length as a. Set

xn = a XOR x1 XOR x2 XOR · · ·XOR xn−1;

thus, as in the k = n case, we have

xn XOR xn−1 XOR xn−2 XOR · · ·XOR x1 = a. (2)
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Each person i now receives the bitstring

ai = x1x2 · · · xi−1xi+1xi+2 · · · xn,

where the product stands for concatenation (i.e., the bitstring ai is formed by writing
down all of the bitstrings x1, x2, . . . , xn one after the other but skipping xi). Thus,
each person i can recover all the n − 1 bitstrings x1, x2, . . . , xi−1, xi+1, xi+2, . . . , xn
(because their lengths are the length of a, which is known), but knows nothing
about xi (his “blind spot”). Hence, 2 people together can recover all the n bitstrings
x1, x2, . . . , xn and therefore recover the secret a (by (2)). On the other hand, each
single person has no insight about a (this is proven similarly to the k = n case). So
again, the problem is solved in this case.

1.6.7. The k = 3 case

Now, let us come to the case when k = 3. Here, I think, the usefulness of the XOR
approach has come to its end: at least, I don’t know how to make it work here.
Instead, out of the blue, I will invoke something completely different: polynomials
(let’s say with rational coefficients).

Recall a fact you might have heard in high school:

Proposition 1.6.6. A polynomial f (x) = cx2 + bx + a of degree ≤ 2 is uniquely
determined by any three of its values. More precisely: If u, v, w are three fixed
distinct numbers, then a polynomial f (x) = cx2 + bx + a of degree ≤ 2 is
uniquely determined by the values f (u) , f (v) , f (w).

More precisely: If u, v, w are three fixed distinct numbers, and if p, q, r are
three arbitrary numbers, then there is a unique polynomial f (x) = cx2 + bx + a
of degree ≤ 2 satisfying

f (u) = p, f (v) = q, and f (w) = r.

Here, the word “number” is deliberately left ambiguous, but you can think of
rational or real numbers (Proposition 1.6.6 is definitely true for them).

Also recall that any bitstring of given length N can be encoded as an integer in{
0, 1, . . . , 2N − 1

}
: Just read it as a number in binary. More precisely, any bitstring

aN−1aN−2 · · · a0 of length N becomes the integer aN−1 · 2N−1 + aN−2 · 2N−2 + · · ·+
a0 · 20 ∈

{
0, 1, . . . , 2N − 1

}
. For example, the bitstring 010110 of length 6 becomes

the integer

0 · 25 + 1 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 0 · 20 = 22 ∈
{

0, 1, . . . , 26 − 1
}

.

Choose two uniformly random bitstrings c and b (of the same length as a) and
encode them as numbers c and b (as just explained). Encode the secret a as a
number a as well (in the same way). Define the polynomial f (x) = cx2 + bx + a.
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Reveal to each person i ∈ {1, 2, . . . , n} the value f (i) – or, rather, a bitstring that
encodes it in binary – as ai.

Any three of the n values f (i) uniquely determine the polynomial f (because of
Proposition 1.6.6). Thus, any three people can use their bitstrings ai to recover three
values f (i) and therefore f and therefore a (as the constant term of f) and therefore
a (by decoding a). So our method satisfies Requirement 1.

Now, let us see whether it satisfies Requirement 2. Any 2 people can recover
two values f (i), which generally do not determine f uniquely. It is not hard to
show that they do not even determine a uniquely; thus, they do not determine a
uniquely. What’s better: If you know just two values of f, there are infinitely many
possible choices for f, and all of them have distinct constant terms (unless one of
the two values you know is f (0), which of course pins down the constant term)4.
So we get infinitely many possible values for a, and thus infinitely many possible
values for a. This means that our 2 people don’t gain any insight about a, right?

Not so fast! We cannot really have “infinitely many possible values for a”, since
a is bound to be a bitstring of a given length – there are only finitely many of
those! You can only get infinitely many possible values for f if you forget how f
was constructed (from c, b and a) and pretend that f is just a “uniformly random”
polynomial (whatever this means). But no one can force the 2 people to do this;
it is certainly not in their interest! Here are some things they might do with this
knowledge:

• Let N be the length of a (which, as we said, is known). Thus, c and b are
bitstrings of length N, so that c and b are integers in

{
0, 1, . . . , 2N − 1

}
. As-

sume that one of the 2 people is person 2. Now, person 2 knows f (2) =
c22 + b2+ a = 4c + 2b + a, and thus knows whether a is even or odd (because
a is even resp. odd if and only if 4c + 2b + a is even resp. odd). This means
she knows the last bit of the secret a. This is not “clueless”.

• You might try to fix this by picking c and b to be uniformly random rational
numbers instead (rather than using uniformly random bitstrings c and b).

Unfortunately, there is no such thing as a “uniformly random rational num-
ber” (in the sense that, e.g., larger numbers aren’t less likely to be picked
than smaller numbers). Any probability distribution will make some num-
bers more likely than others, and this will usually cause information about
a to “leak”. For example, if c and b are chosen from the interval

[
0, 2N − 1

]
,

then person 1’s knowledge of f (1) = c12 + b1 + a = c + b + a will sometimes
reveal to person 1 that a ≥ 0.5 ·

(
2N − 1

)
(namely, this will happen when

f (1) ≥ 2.5 ·
(
2N − 1

)
, which occasionally happens). This, again, is nontrivial

information about the secret a, which a single person (or even two people)
should not be having.

4Prove this! (Hint: The constant term of a polynomial is just its value at 0. Thus, if you know two
values of f at points other than 0 and also the constant term of f, then you simply know three
values of f.)
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So we cannot make Requirement 2 hold, and the culprit is that there are too
many numbers (namely, infinitely many). What would help is a finite “number
system” in which we can add, subtract, multiply and divide (so that we can define
polynomials over it, and a polynomial of degree ≤ 2 is still uniquely determined
by any 3 values). Assuming that this “number system” is large enough that we can
encode bitstrings using “numbers” of this system (instead of integers), we can then
play the above game using this “number system” and obtain actually uniformly
random numbers.

It turns out that such “number systems” exist. They are called finite fields, and
we will construct them later in this course.

Assuming that they can be constructed, we thus obtain a method of solving the
problem for k = 3. A similar method works for arbitrary k, using polynomials of
degree ≤ k− 1. This is called Shamir’s Secret Sharing Scheme.

2. Elementary number theory

Let us now begin a systematic introduction to algebra. We start with studying
integers and their divisibility properties – the beginnings of number theory. Part
of these will be used directly in what will follow; part of these will inspire more
general results and proofs.

2.1. Notations

Definition 2.1.1. Let N = {0, 1, 2, . . .} be the set of nonnegative integers.
Let P = {1, 2, 3, . . .} be the set of positive integers.
Let Z = {. . . ,−1, 0, 1, . . .} be the set of integers.
Let Q be the set of rational numbers.
Let R be the set of real numbers.

Be careful with the notation N: While I use it for {0, 1, 2, . . .}, various other authors
use it for {1, 2, 3, . . .} instead. There is no consensus in sight on what N should
mean.

Same holds for the word “natural number” (which I will avoid): It means “ele-
ment of N”, so again its ultimate meaning depends on the author.

The word “list” shall always mean “ordered finite list” unless declared otherwise.
Examples of lists of numbers are (2, 5, 2), (1, 9), the one-entry list (9) (not the same
as the number 9 itself) and the empty list (). The word “tuple” means the same as
“list”, but more specifically, the word “k-tuple” (for some k ∈ N) means “list with
exactly k entries”. For instance, (5, 1, 5) is a 3-tuple. The word “sequence” means
an ordered, but not necessarily finite, list.

2.2. Divisibility

We now go through the basics of divisibility of integers.
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Definition 2.2.1. Let a and b be two integers. We say that a | b (or “a divides b” or
“b is divisible by a” or “b is a multiple of a”) if there exists an integer c such that
b = ac.

We furthermore say that a - b if a does not divide b.

Some authors define the “divisibility” relation a bit differently, in that they for-
bid a = 0. From the viewpoint of abstract algebra, this feels like an unnecessary
exception, so we don’t follow them.

Example 2.2.2. (a) We have 4 | 12, since 12 = 4 · 3.
(b) We have a | 0 for any a ∈ Z, since 0 = a · 0.
(c) An integer b satisfies 0 | b only when b = 0, since 0 | b implies b = 0c = 0

(for some c ∈ Z).
(d) We have a | a for any a ∈ Z, since a = a · 1.
(e) We have 1 | b for each b ∈ Z, since b = 1 · b.

I apologize in advance for the next proposition, in which vertical bars stand both
for the “divides” relation and for the absolute value of a number. Unfortunately,
both of these uses are standard notation. Confusion is possible, but hopefully will
not happen often5.

Proposition 2.2.3. Let a and b be two integers.
(a) We have a | b if and only if |a| | |b|. (Here, “|a| | |b|” means “|a| divides
|b|”.)

(b) If a | b and b 6= 0, then |a| ≤ |b|.
(c) Assume that a 6= 0. Then, a | b if and only if

b
a
∈ Z.

Before we prove this proposition, let us recall a well-known fact: We have

|xy| = |x| · |y| (3)

for any two integers6 x and y. (This can be easily proven by case distinction: x is
either nonnegative or negative, and so is y.)

Proof of Proposition 2.2.3. (a) =⇒:7 Assume that a | b. Thus, there exists an integer
5Unfortunately, the use of vertical bars for absolute values alone suffices to generate confusion! Just

think of the meaning of “|a| b |c|” when a, b and c are three numbers. Does it stand for “(|a|) ·
b · (|c|)” (where I am using parentheses to make the ambiguity disappear) or for “|(a · |b| · c)|”?
If you see any expressions in my notes that allow for more than one meaningful interpretation,
please let me know!

6or real numbers
7If you are unfamiliar with the shorthand notation “=⇒:”, let me explain it. Our goal is to

prove that a | b if and only if |a| | |b|. In other words, we need to prove the equivalence
(a | b)⇐⇒ (|a| | |b|). In order to prove this equivalence, it suffices to prove the two implications
(a | b) =⇒ (|a| | |b|) (called the “forward implication” or the “=⇒ direction” of the equivalence)
and (a | b) ⇐= (|a| | |b|) (called the “backward implication” or the “⇐= direction”). The short-
hand “=⇒:” simply marks the beginning of the proof of the forward implication; similarly, the
symbol “⇐=:” heralds in the proof of the backward implication.
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d such that b = ad (by Definition 2.2.1). Consider8 this d. We have b = ad and thus
|b| = |ad| = |a| · |d| (by (3)). Thus, there exists an integer c such that |b| = |a| · c
(namely, c = |d|). In other words, |a| | |b|. This proves the “=⇒” direction of
Proposition 2.2.3 (a).
⇐=: Assume that |a| | |b|. Thus, there exists an integer f such that |b| = |a| · f

(by Definition 2.2.1). Consider this f .
The definition of |b| shows that |b| equals either b or −b. In other words, |b|

equals either 1b or (−1) b (since b = 1b and −b = (−1) b). In other words, |b| = qb
for some q ∈ {1,−1}. Similarly, |a| = ra for some r ∈ {1,−1}. Consider these q
and r.

From q ∈ {1,−1}, we obtain q2 ∈

 12︸︷︷︸
=1

, (−1)2︸ ︷︷ ︸
=1

 = {1, 1} = {1}. In other

words, q2 = 1.
Now, q |b|︸︷︷︸

=qb

= qq︸︷︷︸
=q2=1

b = b, so that b = q |b|︸︷︷︸
=|a|· f

= q |a|︸︷︷︸
=ra

· f = qra · f = a · q f r.

Hence, there exists an integer c such that b = ac (namely, c = q f r). In other words,
a | b (by Definition 2.2.1). This proves the “⇐=” direction of Proposition 2.2.3 (a).

Thus, the proof of Proposition 2.2.3 (a) is complete.
(b) Assume that a | b and b 6= 0.
From a | b, we conclude that there exists an integer c such that b = ac. Consider

this c. We have ac = b 6= 0, thus c 6= 0. Hence, |c| > 0, and thus |c| ≥ 1 (since
|c| is an integer). We can multiply this inequality by |a| (since |a| ≥ 0), and obtain
|a| · |c| ≥ |a| · 1 = |a|.

From b = ac, we obtain |b| = |ac| = |a| · |c| (by (3)). Hence, |b| = |a| · |c| ≥ |a|.
This proves Proposition 2.2.3 (b).

(c) =⇒: Assume that a | b. We must prove that
b
a
∈ Z.

We have a | b. In other words, there exists an integer d such that b = ad.
Consider this d. We can divide the equality b = ad by a (since a 6= 0), and thus

obtain
b
a
= d ∈ Z. This proves the “=⇒” direction of Proposition 2.2.3 (c).

⇐=: Assume that
b
a
∈ Z. We must prove that a | b.

We have
b
a
∈ Z and b = a · b

a
. Thus, there exists an integer c such that b =

ac (namely, c =
b
a

). In other words, a | b. This proves the “⇐=” direction of
Proposition 2.2.3 (c). Hence, the proof of Proposition 2.2.3 (c) is complete.

Proposition 2.2.3 (a) shows that both a and b in the statement “a | b” can be
replaced by their absolute values. Thus, when we talk about divisibility of integers,

8Me saying “Consider this d” means that I am picking some integer d such that b = ad (this can be
done, since we have just proven that such a d exists), and will be referring to it as d from now
on.
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the sign of the integers does not really matter – it usually suffices to work with
nonnegative integers. We will often use this (tacitly, after a while) in proofs.

The next proposition shows some basic properties of the divisibility relation:

Proposition 2.2.4. (a) We have a | a for every a ∈ Z. (This is called the reflexivity
of divisibility.)

(b) If a, b, c ∈ Z satisfy a | b and b | c, then a | c. (This is called the transitivity
of divisibility.)

(c) If a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2, then a1a2 | b1b2.

Proof of Proposition 2.2.4. (a) Let a ∈ Z. Then, a = a · 1. Hence, there exists an
integer c such that a = ac (namely, c = 1). In other words, a | a (by Definition
2.2.1). This proves Proposition 2.2.4 (a).

(b) Let a, b, c ∈ Z satisfy a | b and b | c.
From a | b, we conclude that there exists an integer d such that b = ad (by

Definition 2.2.1). Consider this d.
From b | c, we conclude that there exists an integer e such that c = be (by

Definition 2.2.1). Consider this e.
We have c = b︸︷︷︸

=ad

e = ade. Hence, there exists an integer f such that c = a f

(namely, f = de). In other words, a | c (by Definition 2.2.1). This proves Proposition
2.2.4 (b).

(c) Let a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2.
From a1 | b1, we conclude that there exists an integer d such that b1 = a1d.

Consider this d.
From a2 | b2, we conclude that there exists an integer e such that b2 = a2e.

Consider this e.
We have b1︸︷︷︸

=a1d

b2︸︷︷︸
=a2e

= a1da2e = a1a2de. Hence, there exists an integer f such that

b1b2 = a1a2 f (namely, f = de). In other words, a1a2 | b1b2 (by Definition 2.2.1). This
proves Proposition 2.2.4 (c).

Exercise 2.2.1. Let a ∈ Z.
(a) Prove that a | |a|. (This means “a divides |a|”.)
(b) Prove that |a| | a. (This means “|a| divides a”.)

Exercise 2.2.2. Let a and b be two integers such that a | b and b | a. Prove that
|a| = |b|.

Exercise 2.2.3. Let a, b, c be three integers such that c 6= 0. Prove that a | b holds
if and only if ac | bc.
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Exercise 2.2.4. Let n ∈ Z. Let a, b ∈N be such that a ≤ b. Prove that na | nb.

Exercise 2.2.5. Let g be a nonnegative integer such that g | 1. Prove that g = 1.

Exercise 2.2.6. Let a, b ∈ Z be such that a | b. Let k ∈N. Prove that ak | bk.

2.3. Congruence modulo n

The next definition is simple but crucial:

Definition 2.3.1. Let n, a, b ∈ Z. We say that a is congruent to b modulo n if and
only if n | a− b. We shall use the notation “a ≡ b mod n” for “a is congruent to
b modulo n”.

We furthermore shall use the notation “a 6≡ b mod n” for “a is not congruent
to b modulo n”.

Example 2.3.2. (a) Is 3 ≡ 7 mod 2 ? Yes, since 2 | 3− 7 = −4.
(b) Is 3 ≡ 6 mod 2 ? No, since 2 - 3− 6 = −3. So we have 3 6≡ 6 mod 2.
Now, let a and b be two integers.
(c) We have a ≡ b mod 0 if and only if a = b. (Indeed, a ≡ b mod 0 is defined

to mean 0 | a− b, but the latter divisibility happens only when a− b = 0, which
is tantamount to saying a = b.)

(d) We have a ≡ b mod 1 always, since 1 | a − b always holds (remember: 1
divides everything).

Note that being congruent modulo 2 means having the same parity: i.e., two
even numbers will be congruent modulo 2, and two odd numbers will be, but an
even number will never be congruent to an odd number modulo 2. (To be rigorous:
This is not quite obvious at this point yet; but it will be easy once we have properly
introduced division with remainder. See Exercise 2.7.1 (i) below for the proof.)

The word “modulo” in the phrase “a is congruent to b modulo n” originates
with Gauss and means something like “with respect to”. You should think of “a is
congruent to b modulo n” as a relation between all three of the numbers a, b and
n, but a and b are the “main characters” and n sets the scene.

Exercise 2.3.1. Let a, b ∈ Z. Prove that a + b ≡ a− b mod 2.

We begin with a proposition so fundamental that we will always use it without
saying:

Proposition 2.3.3. Let n ∈ Z and a ∈ Z. Then, a ≡ 0 mod n if and only if n | a.

Proof of Proposition 2.3.3. We have the following chain of equivalences:

(a ≡ 0 mod n) ⇐⇒ (n | a− 0) (by Definition 2.3.1)
⇐⇒ (n | a) (since a− 0 = a) .

This proves Proposition 2.3.3.

https://en.wikipedia.org/wiki/Modulo_(jargon)


Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 29

Next come some staple properties of congruences:

Proposition 2.3.4. Let n ∈ Z.
(a) We have a ≡ a mod n for every a ∈ Z.
(b) If a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n, then a ≡ c mod n.
(c) If a, b ∈ Z satisfy a ≡ b mod n, then b ≡ a mod n.
(d) If a1, a2, b1, b2 ∈ Z satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n, then

a1 + a2 ≡ b1 + b2 mod n; (4)
a1 − a2 ≡ b1 − b2 mod n; (5)

a1a2 ≡ b1b2 mod n. (6)

(e) Let m ∈ Z be such that m | n. If a, b ∈ Z satisfy a ≡ b mod n, then
a ≡ b mod m.

Proof of Proposition 2.3.4. (a) Let a ∈ Z. Recall that a ≡ a mod n is defined to mean
n | a − a. Since n | a − a holds (because a − a = 0 = n · 0), we thus see that
a ≡ a mod n holds. This proves Proposition 2.3.4 (a).

(b) Let a, b, c ∈ Z satisfy a ≡ b mod n and b ≡ c mod n.
We have a ≡ b mod n. In other words, n | a − b (by Definition 2.3.1). In other

words, there exists an integer p such that a− b = np (by Definition 2.2.1). Consider
this p.

We have b ≡ c mod n. In other words, n | b − c (by Definition 2.3.1). In other
words, there exists an integer q such that b− c = nq (by Definition 2.2.1). Consider
this q.

Now,
a− c = (a− b)︸ ︷︷ ︸

=np

+ (b− c)︸ ︷︷ ︸
=nq

= np + nq = n (p + q) .

Hence, there exists an integer r such that a− c = nr (namely, r = p + q). In other
words, n | a− c (by Definition 2.2.1). In other words, a ≡ c mod n (by Definition
2.3.1). This proves Proposition 2.3.4 (b).

(c) Let a, b ∈ Z satisfy a ≡ b mod n.
We have a ≡ b mod n. In other words, n | a − b (by Definition 2.3.1). In other

words, there exists an integer p such that a− b = np (by Definition 2.2.1). Consider
this p. Now,

b− a = − (a− b)︸ ︷︷ ︸
=np

= −np = n (−p) .

Hence, there exists an integer c such that b− a = nc (namely, c = −p). In other
words, n | b− a (by Definition 2.2.1). In other words, b ≡ a mod n (by Definition
2.3.1). This proves Proposition 2.3.4 (c).

(d) Let a1, a2, b1, b2 ∈ Z satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n.
We have a1 ≡ b1 mod n. In other words, n | a1 − b1 (by Definition 2.3.1). In

other words, there exists an integer p such that a1 − b1 = np (by Definition 2.2.1).
Consider this p.
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We have a2 ≡ b2 mod n. In other words, n | a2 − b2 (by Definition 2.3.1). In
other words, there exists an integer q such that a2 − b2 = nq (by Definition 2.2.1).
Consider this q.

We have

(a1 + a2)− (b1 + b2) = (a1 − b1)︸ ︷︷ ︸
=np

+ (a2 − b2)︸ ︷︷ ︸
=nq

= np + nq = n (p + q) .

Hence, there exists an integer c such that (a1 + a2)− (b1 + b2) = nc (namely, c =
p + q). In other words, n | (a1 + a2) − (b1 + b2) (by Definition 2.2.1). In other
words, a1 + a2 ≡ b1 + b2 mod n (by Definition 2.3.1). A similar argument (using
p− q instead of p + q) shows that a1 − a2 ≡ b1 − b2 mod n. It thus remains to show
that a1a2 ≡ b1b2 mod n.

Let us first show that a1a2 ≡ a1b2 mod n. Indeed, a1a2 − a1b2 = a1 (a2 − b2)︸ ︷︷ ︸
=nq

=

a1nq = n (a1q). Hence, there exists an integer c such that a1a2 − a1b2 = nc (namely,
c = a1q). In other words, n | a1a2 − a1b2 (by Definition 2.2.1). In other words,
a1a2 ≡ a1b2 mod n (by Definition 2.3.1).

Next, let us show that a1b2 ≡ b1b2 mod n. Indeed, a1b2 − b1b2 = b2 (a1 − b1)︸ ︷︷ ︸
=np

=

b2np = n (b2p). Hence, there exists an integer c such that a1b2− b1b2 = nc (namely,
c = b2p). In other words, n | a1b2 − b1b2 (by Definition 2.2.1). In other words,
a1b2 ≡ b1b2 mod n (by Definition 2.3.1).

From a1a2 ≡ a1b2 mod n and a1b2 ≡ b1b2 mod n, we now conclude that a1a2 ≡
b1b2 mod n (by Proposition 2.3.4 (b), applied to a = a1a2, b = a1b2 and c = b1b2).
This completes the proof of Proposition 2.3.4 (d).

(e) Let a, b ∈ Z satisfy a ≡ b mod n.
We have a ≡ b mod n. In other words, n | a− b (by Definition 2.3.1). From m | n

and n | a − b, we obtain m | a − b (by Proposition 2.2.4 (b), applied to m, n and
a− b instead of a, b and c). In other words, a ≡ b mod m (by Definition 2.3.1). This
proves Proposition 2.3.4 (e).

In the above proof, we took care to explicitly cite Definition 2.2.1 and Definition
2.3.1 whenever we used them; in the following, we will omit references like this.

Proposition 2.3.4 (d) is saying that congruences modulo n (for a fixed integer n)
can be added, subtracted and multiplied together. This does not mean that you can
do everything with them that you can do with equalities. The next exercise shows
that dividing congruences and taking a congruence to the power of another does
not generally work:

Exercise 2.3.2. Let n, a1, a2, b1, b2 ∈ Z satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n.
Then, in general, neither a1/a2 ≡ b1/b2 mod n nor aa2

1 ≡ bb2
1 mod n is necessarily

true. Of course, this is partly due to the fact that a1/a2, b1/b2 and aa2
1 and bb2

1 are
not always integers in the first place (and being congruent modulo n only makes
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sense for integers, at least for now). But even when a1/a2, b1/b2 and aa2
1 and bb2

1
are integers, the congruences a1/a2 ≡ b1/b2 mod n and aa2

1 ≡ bb2
1 mod n are often

false. Find examples of n, a1, a2, b1, b2 such that a1/a2, b1/b2 and aa2
1 and bb2

1 are
integers but the congruences a1/a2 ≡ b1/b2 mod n and aa2

1 ≡ bb2
1 mod n are false.

However, we can divide a congruence a ≡ b mod n by a nonzero integer d when
all of a, b, n are divisible by d:

Exercise 2.3.3. Let n, d, a, b ∈ Z, and assume that d 6= 0. Assume that d divides
each of a, b, n, and assume that a ≡ b mod n. Prove that a/d ≡ b/d mod n/d.

We can also take a congruence to the k-th power when k ∈N:

Exercise 2.3.4. Let n, a, b ∈ Z be such that a ≡ b mod n. Prove that ak ≡ bk mod n
for each k ∈N.

(Note that the “n” is not being taken to the k-th power here.)
We can add not just two, but any finite number of congruences:

Exercise 2.3.5. Let n be an integer. Let S be a finite set. For each s ∈ S, let as and
bs be two integers. Assume that

as ≡ bs mod n for each s ∈ S. (7)

(a) Prove that
∑
s∈S

as ≡ ∑
s∈S

bs mod n. (8)

(b) Prove that
∏
s∈S

as ≡∏
s∈S

bs mod n. (9)

(Keep in mind that if the set S is empty, then ∑
s∈S

as = ∑
s∈S

bs = 0 and ∏
s∈S

as =

∏
s∈S

bs = 1; this holds by the definition of empty sums and of empty products.)

Exercise 2.3.6. Is it true that if a1, a2, b1, b2, n1, n2 ∈ Z satisfy a1 ≡ b1 mod n1 and
a2 ≡ b2 mod n2, then a1a2 ≡ b1b2 mod n1n2 ?

Exercise 2.3.7. Let a, b, n ∈ Z. Prove that a ≡ b mod n if and only if there exists
some d ∈ Z such that b = a + nd.

Exercise 2.3.8. Let a, b, c, n ∈ Z. Prove that we have a− b ≡ c mod n if and only
if a ≡ b + c mod n.
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Exercise 2.3.9. Let a, b, n ∈ Z. Prove that a ≡ b mod n if and only if a ≡ b mod−n.

2.4. Chains of congruences

Convention 2.4.1. For this whole Section 2.4, we fix an integer n.

Chains of equalities are a fundamental piece of notation used throughout mathe-
matics. For example, here is a chain of equalities:

(ad + bc)2 + (ac− bd)2

= (ad)2 + 2ad · bc + (bc)2 + (ac)2 − 2ac · bd + (bd)2

= a2d2 + 2abcd + b2c2 + a2c2 − 2abcd + b2d2

= a2c2 + a2d2 + b2c2 + b2d2

=
(

a2 + b2
) (

c2 + d2
)

(where a, b, c, d are arbitrary numbers). This chain proves the equality (1). But why
does it really? If we look closely at this chain of equalities, we see that it has the
form “A = B = C = D = E”, where A, B, C, D, E are five numbers (namely, A =

(ad + bc)2 + (ac− bd)2 and B = (ad)2 + 2ad · bc + (bc)2 + (ac)2 − 2ac · bd + (bd)2

and so on). This kind of statement is called a “chain of equalities”, and, a priori, it
simply means that any two adjacent numbers in this chain are equal: A = B and
B = C and C = D and D = E. Without as much as noticing it, we have concluded
that any two numbers in this chain are equal; thus, in particular, A = E, which is
precisely the equality (1) we wanted to prove.

That this kind of “chaining” is possible is one of the most basic facts in mathe-
matics. Let us define a chain of equalities formally:

Definition 2.4.2. If a1, a2, . . . , ak are k objects9, then the statement “a1 = a2 =
· · · = ak” shall mean that

ai = ai+1 holds for each i ∈ {1, 2, . . . , k− 1} .

(In other words, it shall mean that a1 = a2 and a2 = a3 and a3 = a4 and · · · and
ak−1 = ak. This is vacuously true when k ≤ 1. If k = 2, then it simply means that
a1 = a2.)

Such a statement will be called a chain of equalities.

Proposition 2.4.3. Let a1, a2, . . . , ak be k objects such that a1 = a2 = · · · = ak. Let
u and v be two elements of {1, 2, . . . , k}. Then, au = av.

9“Objects” can be numbers, sets, tuples or any other well-defined things in mathematics.
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So we have defined a chain of equalities to be true if and only if any two adjacent
terms in this chain are equal (i.e., if “each equality sign in the chain is satisfied”).
Proposition 2.4.3 shows that in such a chain, any two terms are equal. This is
intuitively rather clear, but can also be formally proven by induction using the
basic properties of equality (transitivity10, reflexivity11 and symmetry12).

But our goal is to understand basic number theory, not to scrutinize the founda-
tions of mathematics. So let us recall that we have fixed an integer n, and consider
congruences modulo n. We claim that these can be chained just as equalities:

Definition 2.4.4. If a1, a2, . . . , ak are k integers, then the statement “a1 ≡ a2 ≡
· · · ≡ ak mod n” shall mean that

ai ≡ ai+1 mod n holds for each i ∈ {1, 2, . . . , k− 1} .

(In other words, it shall mean that a1 ≡ a2 mod n and a2 ≡ a3 mod n and a3 ≡
a4 mod n and · · · and ak−1 ≡ ak mod n. This is vacuously true when k ≤ 1. If
k = 2, then it simply means that a1 ≡ a2 mod n.)

Such a statement will be called a chain of congruences modulo n.

Proposition 2.4.5. Let a1, a2, . . . , ak be k integers such that a1 ≡ a2 ≡ · · · ≡
ak mod n. Let u and v be two elements of {1, 2, . . . , k}. Then, au ≡ av mod n.

Proposition 2.4.5 shows that any two terms in a chain of congruences modulo n
must be congruent to each other modulo n. Again, this can be formally proven by
induction; see [Grinbe15, proof of Proposition 2.16]. The ingredients of the proof
are basic properties of congruence modulo n: transitivity, reflexivity and symmetry.
These are fancy names for parts (b), (a) and (c) of Proposition 2.3.4.

We will use Proposition 2.4.5 tacitly (just as you would use Proposition 2.4.3):
i.e., every time we prove a chain of congruences like a1 ≡ a2 ≡ · · · ≡ ak mod n,
we assume that the reader will automatically conclude that any two of its terms
are congruent to each other modulo n (and will remember this conclusion). For
instance, if we show that 1 ≡ 4 ≡ 34 ≡ 334 ≡ 304 mod 3, then we automatically get
the congruences 1 ≡ 304 mod 3 and 334 ≡ 1 mod 3 and 4 ≡ 334 mod 3 and several
others out of this chain.

Chains of congruences can also include equality signs. For example, if a, b, c, d
are integers, then “a ≡ b = c ≡ d mod n” means that a ≡ b mod n and b = c and
c ≡ d mod n. Such a chain is still a chain of congruences, because b = c implies
b ≡ c mod n (by Proposition 2.3.4 (a)).

Just as there are chains of equalities and chains of congruences, there are chains
of divisibilities:

10Transitivity of equality says that if a, b, c are three objects satisfying a = b and b = c, then a = c.
11Reflexivity of equality says that every object a satisfies a = a.
12Symmetry of equality says that if a, b are two objects satisfying a = b, then b = a.
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Definition 2.4.6. If a1, a2, . . . , ak are k integers, then the statement “a1 | a2 | · · · |
ak” shall mean that

ai | ai+1 holds for each i ∈ {1, 2, . . . , k− 1} .

(In other words, it shall mean that a1 | a2 and a2 | a3 and a3 | a4 and · · · and
ak−1 | ak. This is vacuously true when k ≤ 1. If k = 2, then it simply means that
a1 | a2.)

Such a statement will be called a chain of divisibilities.

Proposition 2.4.7. Let a1, a2, . . . , ak be k integers such that a1 | a2 | · · · | ak. Let u
and v be two elements of {1, 2, . . . , k} such that u ≤ v. Then, au | av.

Note that we had to require u ≤ v in this proposition, unlike the analogous
propositions for chains of equalities and chains of congruences, because there is no
“symmetry of divisibility” (i.e., if a | b, then we don’t generally have b | a). The
proof of Proposition 2.4.7 relies on the reflexivity of divisibility (Proposition 2.2.4
(a)) and on the transitivity of divisibility (Proposition 2.2.4 (b)).

Again, chains of divisibilities can include equality signs. For example, 4 | 3 · 4 =
12 = 2 · 6 | 4 · 6 = 24.

2.5. Substitutivity for congruences

In Section 2.4, we have learnt that congruences modulo an integer n can be chained
together like equalities. A further important feature of congruences is the princi-
ple of substitutivity for congruences. This is yet another way in which congruences
behave like equalities. We are not going to state it fully formally (as it is a meta-
mathematical principle), but will merely explain its meaning. Later on, once we
understand what the rings Z/n (for integer n) are, we will no longer need this
principle, since it will just boil down to “equal things can be substituted for one
another” (the whole point of Z/n is to “make congruent numbers equal”); but for
now, we cannot treat “congruent modulo n” as “equal”, so we have to state it.

You are probably used to making computations like these:

(a + b)2︸ ︷︷ ︸
=a2+2ab+b2

+ (a− b)2︸ ︷︷ ︸
=a2−2ab+b2

=
(

a2 + 2ab + b2
)
+
(

a2 − 2ab + b2
)

= a2 + a2︸ ︷︷ ︸
=2a2

+ b2 + b2︸ ︷︷ ︸
=2b2

= 2a2 + 2b2

(for any two numbers a and b). What is going on in these underbraces (like
“ (a + b)2︸ ︷︷ ︸
=a2+2ab+b2

”)? Something pretty simple is going on: You are replacing a num-

ber (in this case, (a + b)2) by an equal number (in this case, a2 + 2ab + b2). This
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relies on a fundamental principle of mathematics (called the principle of substitutiv-
ity for equalities), which says that an object in an expression can indeed be replaced
by any object equal to it (without changing the value of the expression). (This is
also known as Leibniz’s equality law.) To be precise, we are using this principle twice
in some of our equality signs above, since we are making several replacements at
the same time; but this is fine (we can just do the replacement one by one instead).

We would like to have a similar principle for congruences modulo n: We would
like to be able to replace any integer by an integer congruent to it modulo n. For
example, we would like to be able to say that if seven integers a, a′, b, b′, c, c′, n
satisfy a ≡ a′mod n and b ≡ b′mod n and c ≡ c′mod n, then

b︸︷︷︸
≡b′mod n

c︸︷︷︸
≡c′mod n

+ c︸︷︷︸
≡c′mod n

a︸︷︷︸
≡a′mod n

+ a︸︷︷︸
≡a′mod n

b︸︷︷︸
≡b′mod n

≡ b′c′ + c′a′ + a′b′mod n.

We have to be careful with this: For example, we run into troubles if division is
involved in our expressions. For example, we have 6 ≡ 9 mod 3, but we do not have

6︸︷︷︸
≡9 mod 3

/3 ≡ 9/3 mod 3. Similarly, exponentiation can be problematic. So we need

to state the principle we are using here in clearer terms, so that we know what we
can do.

Convention 2.5.1. For this whole Section 2.5, we fix an integer n.

The principle of substitutivity for equalities says the following:

Principle of substitutivity for equalities (PSE): If two objects x and x′ are
equal, and if we have any expression A that involves the object x, then
we can replace this x (or, more precisely, any arbitrary appearance of x
in A) in A by x′; the value of the resulting expression A′ will equal the
value of A.

Here are two examples of how this principle can be used:

• If a, b, c, d, e, c′ are numbers such that c = c′, then the PSE says that we can
replace c by c′ in the expression a (b− (c + d) e), and the value of the resulting
expression a (b− (c′ + d) e) will equal the value of a (b− (c + d) e); that is, we
have

a (b− (c + d) e) = a
(
b−

(
c′ + d

)
e
)

. (10)

• If a, b, c, a′ are numbers such that a = a′, then

(a− b) (a + b) =
(
a′ − b

)
(a + b) , (11)

because the PSE allows us to replace the first a appearing in the expression
(a− b) (a + b) by an a′. (We can also replace the second a by a′, of course.)
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More generally, we can make several such replacements at the same time.
The PSE is one of the headstones of mathematical logic; it is the essence of what

it means for two objects to be equal.
The principle of substitutivity for congruences is similar, but far less fundamental; it

says the following:

Principle of substitutivity for congruences (PSC): If two numbers x and x′

are congruent to each other modulo n (that is, x ≡ x′mod n), and if we
have any expression A that involves only integers, addition, subtraction
and multiplication, and involves the object x, then we can replace this x
(or, more precisely, any arbitrary appearance of x in A) in A by x′; the
value of the resulting expression A′ will be congruent to the value of A
modulo n.

This principle is less general than the PSE, since it only applies to expressions
that are built from integers and certain operations (note that division is not one of
these operations). But it still lets us prove analogues of our above examples (10)
and (11):

• If a, b, c, d, e, c′ are integers such that c ≡ c′mod n, then the PSC says that
we can replace c by c′ in the expression a (b− (c + d) e), and the value of
the resulting expression a (b− (c′ + d) e) will be congruent to the value of
a (b− (c + d) e) modulo n; that is, we have

a (b− (c + d) e) ≡ a
(
b−

(
c′ + d

)
e
)

mod n. (12)

• If a, b, c, a′ are integers such that a ≡ a′mod n, then

(a− b) (a + b) ≡
(
a′ − b

)
(a + b)mod n, (13)

because the PSC allows us to replace the first a appearing in the expression
(a− b) (a + b) by an a′. (We can also replace the second a by a′, of course.)

We shall not prove the PSC, since we have not formalized it (after all, we have not
defined what an “expression” is). But we shall prove the specific congruences (12)
and (13) using Proposition 2.3.4; the way in which we prove these congruences is
symptomatic: Every congruence obtained from the PSC can be proven in a manner
like these. Thus, the proofs of (12) and (13) given below can serve as templates
which can easily be adapted to any other situation in which an application of the
PSC needs to be justified.

Proof of (12). Let a, b, c, d, e, c′ be integers such that c ≡ c′mod n.
Adding the congruence13 c ≡ c′mod n with the congruence d ≡ d mod n (which

follows from Proposition 2.3.4 (a)), we obtain c + d ≡ c′ + d mod n. Multiplying

13Proposition 2.3.4 (d) shows that we can add, subtract and multiply congruences modulo n at will.
We are using this freedom here and will use it many times below.
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this congruence with the congruence e ≡ e mod n (which follows from Proposition
2.3.4 (a)), we obtain (c + d) e ≡ (c′ + d) e mod n. Subtracting this congruence from
the congruence b ≡ b mod n (which, again, follows from Proposition 2.3.4 (a)),
we obtain b − (c + d) e ≡ b − (c′ + d) e mod n. Multiplying the congruence a ≡
a mod n (which follows from Proposition 2.3.4 (a)) with this congruence, we obtain
a (b− (c + d) e) ≡ a (b− (c′ + d) e)mod n. This proves (12).

Proof of (13). Let a, b, c, a′ be integers such that a ≡ a′mod n.
Subtracting the congruence b ≡ b mod n (which follows from Proposition 2.3.4

(a)) from the congruence a ≡ a′mod n, we obtain a − b ≡ a′ − b mod n. Multi-
plying this congruence with the congruence a + b ≡ a + b mod n (which follows
from Proposition 2.3.4 (a)), we obtain (a− b) (a + b) ≡ (a′ − b) (a + b)mod n. This
proves (13).

As we said, these two proofs are exemplary: Any congruence obtained from the
PSC can be proven in such a way (starting with the congruence x ≡ x′mod n, and
then “wrapping” it up in the expression A by repeatedly adding, multiplying and
subtracting congruences that follow from Proposition 2.3.4 (a)).

When we apply the PSC, we shall use underbraces to point out which integers
we are replacing. For example, when deriving (12) from this principle, we shall
write

a

b−

 c︸︷︷︸
≡c′mod n

+d

 e

 ≡ a
(
b−

(
c′ + d

)
e
)

mod n,

in order to stress that we are replacing c by c′. Likewise, when deriving (13) from
the PSC, we shall write a︸︷︷︸

≡a′mod n

−b

 (a + b) ≡
(
a′ − b

)
(a + b)mod n,

in order to stress that we are replacing the first a (but not the second a) by a′.
The PSC allows us to replace a single integer x appearing in an expression by

another integer x′ that is congruent to x modulo n. Applying this principle many
times, we thus conclude that we can also replace several integers at the same time
(because we can get to the same result by performing these replacements one at a
time, and Proposition 2.4.5 shows that the value of the final result will be congruent
to the value of the original result). For example, if seven integers a, a′, b, b′, c, c′, n
satisfy a ≡ a′mod n and b ≡ b′mod n and c ≡ c′mod n, then

bc + ca + ab ≡ b′c′ + c′a′ + a′b′mod n, (14)

because we can replace all the six integers b, c, c, a, a, b in the expression bc + ca +
ab (listed in the order of their appearance in this expression) by b′, c′, c′, a′, a′, b′,
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respectively. If we want to derive this from the PSC, then we must perform the
replacements one at a time, e.g., as follows:

b︸︷︷︸
≡b′mod n

c + ca + ab ≡ b′ c︸︷︷︸
≡c′mod n

+ca + ab ≡ b′c′ + c︸︷︷︸
≡c′mod n

a + ab

≡ b′c′ + c′ a︸︷︷︸
≡a′mod n

+ab ≡ b′c′ + c′a′ + a︸︷︷︸
≡a′mod n

b

≡ b′c′ + c′a′ + a′ b︸︷︷︸
≡b′mod n

≡ b′c′ + c′a′ + a′b′mod n.

Of course, we shall always just show the replacements as a single step:

b︸︷︷︸
≡b′mod n

c︸︷︷︸
≡c′mod n

+ c︸︷︷︸
≡c′mod n

a︸︷︷︸
≡a′mod n

+ a︸︷︷︸
≡a′mod n

b︸︷︷︸
≡b′mod n

≡ b′c′ + c′a′ + a′b′mod n.

The PSC can be extended: The expression A can be allowed to involve not only
integers, addition, subtraction, multiplication and x, but also k-th powers for k ∈N

(as long as k remains unchanged in our replacement) as well as finite sums and
products (as long as the bounds of the sums and products are unchanged). This
follows from Exercise 2.3.4 and Exercise 2.3.5.

Exercise 2.5.1. Let n ∈N. Show that 7 | 32n+1 + 2n+2.

2.6. Division with remainder

The following fact you likely remember from high school:

Theorem 2.6.1. Let n be a positive integer. Let u ∈ Z. Then, there exists a unique
pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

We shall refer to this as the “division-with-remainder theorem for integers”. Before
we prove this theorem, let us introduce the notations that it justifies:

Definition 2.6.2. Let n be a positive integer. Let u ∈ Z. Theorem 2.6.1 shows
that there exists a unique pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.
Consider this pair.

(a) We denote the integer q by u//n, and refer to it as the quotient of the division
of u by n.

(b) We denote the integer r by u%n, and refer to it as the remainder of the division
of u by n.

The words “quotient” and “remainder” are standard, but the notations “u//n”
and “u%n” are not (I have taken them from the Python programming language);
be prepared to see other notations in the literature (e.g., the notations “quo (u, n)”
and “rem (u, n)” for u//n and u%n, respectively).
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Example 2.6.3. (a) We have 14//3 = 4 and 14%3 = 2, because (4, 2) is the unique
pair (q, r) ∈ Z× {0, 1, 2} satisfying 14 = q · 3 + r.

(b) We have 18//3 = 6 and 18%3 = 0, because (6, 0) is the unique pair (q, r) ∈
Z× {0, 1, 2} satisfying 18 = q · 3 + r.

(c) We have (−2) //3 = −1 and (−2)%3 = 1, because (−1, 1) is the unique
pair (q, r) ∈ Z× {0, 1, 2} satisfying −2 = q · 3 + r.

(d) For each u ∈ Z, we have u//1 = u and u%1 = 0, because (u, 0) is the
unique pair (q, r) ∈ Z× {0} satisfying u = q · 1 + r.

But we have gotten ahead of ourselves: We need to prove Theorem 2.6.1 before
we can use the notations “u//n” and “u%n”.

Let us split Theorem 2.6.1 into two parts: existence and uniqueness:

Lemma 2.6.4. Let n be a positive integer. Let u ∈ Z. Then, there exists at least
one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

Lemma 2.6.5. Let n be a positive integer. Let u ∈ Z. Then, there exists at most
one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

We begin by proving Lemma 2.6.5 (which is the easier one):

Proof of Lemma 2.6.5. Let (q1, r1) and (q2, r2) be two pairs (q, r) ∈ Z×{0, 1, . . . , n− 1}
such that u = qn + r. We shall show that (q1, r1) = (q2, r2).

We know that (q1, r1) is a pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.
In other words, (q1, r1) ∈ Z×{0, 1, . . . , n− 1} and u = q1n+ r1. Similarly, (q2, r2) ∈
Z× {0, 1, . . . , n− 1} and u = q2n + r2.

From (q1, r1) ∈ Z× {0, 1, . . . , n− 1}, we obtain q1 ∈ Z and r1 ∈ {0, 1, . . . , n− 1}.
Similarly, q2 ∈ Z and r2 ∈ {0, 1, . . . , n− 1}. Thus, in particular, q1, q2, r1, r2 are
integers.

From r1 ∈ {0, 1, . . . , n− 1} and r2 ∈ {0, 1, . . . , n− 1}, we can easily derive

|r2 − r1| ≤ n− 1. (15)

[Proof of (15): Intuitively, this should be clear: Both r1 and r2 belong to the integer interval
{0, 1, . . . , n− 1}, and thus the unsigned distance between r1 and r2 is at most n− 1 (with
the worst case being when r1 and r2 are at opposite ends of this interval).

Here is a formal restatement of this argument: We have r1 ∈ {0, 1, . . . , n− 1}, thus r1 ≥ 0.
Also, r2 ∈ {0, 1, . . . , n− 1}, hence r2 ≤ n− 1. Hence, r2︸︷︷︸

≤n−1

− r1︸︷︷︸
≥0

≤ (n− 1)− 0 = n− 1.

Similarly, r1 − r2 ≤ n− 1. But recall that |x| ∈ {x,−x} for each x ∈ Z. Applying this to
x = r2 − r1, we obtain

|r2 − r1| ∈

r2 − r1,− (r2 − r1)︸ ︷︷ ︸
=r1−r2

 = {r2 − r1, r1 − r2} .
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In other words, |r2 − r1| is one of the two numbers r2 − r1 and r1 − r2. Since both of these
numbers r2 − r1 and r1 − r2 are ≤ n − 1 (as we have just shown), we thus conclude that
|r2 − r1| ≤ n− 1. This proves (15).]

We have q1n + r1 = u = q2n + r2, thus q1n− q2n = r2 − r1. Hence,

r2 − r1 = q1n− q2n = (q1 − q2) n. (16)

Assume (for the sake of contradiction) that q1 6= q2. Thus, q1 − q2 6= 0, so that
|q1 − q2| > 0 and therefore |q1 − q2| ≥ 1 (since |q1 − q2| is an integer). We can
multiply this inequality by n (since n is positive) and thus obtain |q1 − q2| n ≥
1n = n. But from (16), we obtain

|r2 − r1| = |(q1 − q2) n| = |q1 − q2| · |n|︸︷︷︸
=n

(since n is positive)

(by (3))

= |q1 − q2| n ≥ n > n− 1.

This contradicts (15). This contradiction shows that our assumption (that q1 6= q2)
was false. Hence, we have q1 = q2. Thus, q1 − q2 = 0, so that (16) becomes
r2 − r1 = (q1 − q2)︸ ︷︷ ︸

=0

n = 0 and thus r2 = r1, so that r1 = r2. Combining this with

q1 = q2, we obtain (q1, r1) = (q2, r2).
Now, forget that we have fixed (q1, r1) and (q2, r2). We thus have proven that if

(q1, r1) and (q2, r2) are two pairs (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r,
then (q1, r1) = (q2, r2). In other words, any two pairs (q, r) ∈ Z× {0, 1, . . . , n− 1}
such that u = qn + r must be equal. In other words, there exists at most one such
pair. This proves Lemma 2.6.5.

But we also need to prove Lemma 2.6.4. This lemma can be proven by induction
on u, but not without some complications: Since it is stated for all integers u (rather
than just for nonnegative or positive integers), the classical induction principle
(with an induction base and a “u to u + 1” step) cannot prove it directly. Instead,
we have to either add a “u to u − 1” step to our induction (resulting in a “two-
sided induction” or “up- and down-induction” argument), or to treat the case of
negative u separately. A proof using the first of these two methods can be found
in [Grinbe15, proof of Proposition 2.150] (where n and u are denoted by N and
n). We shall instead give a proof using the second method; thus, we first state the
particular case of Lemma 2.6.4 when u is nonnegative:

Lemma 2.6.6. Let n be a positive integer. Let u ∈ N. Then, there exists at least
one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r.

This lemma can be proven by induction on u as in [Grinbe15, proof of Proposition
2.150]. Let us instead prove it by strong induction on u. See [Grinbe15, §2.8] for an
introduction to strong induction; in particular, recall that a strong induction needs
no induction base (but often contains a case distinction in its “induction step” that,
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in some way, does give the first few values a special treatment). The proof of
Lemma 2.6.6 that we give below follows a stupid but valid method of finding the
pair (q, r): Keep subtracting n from u until u becomes < n; then r will be the
resulting number, whereas q will be the number of times you have subtracted n.

Proof of Lemma 2.6.6. We proceed by strong induction on u.
Let U ∈ N. Assume (as the induction hypothesis) that Lemma 2.6.6 holds for

every u ∈ N satisfying u < U. We must prove that Lemma 2.6.6 also holds for
u = U. In other words, we must prove that there exists at least one pair (q, r) ∈
Z× {0, 1, . . . , n− 1} such that U = qn + r.

We are in one of the following two cases:
Case 1: We have U < n.
Case 2: We have U ≥ n.
Let us first consider Case 1. In this case, we have U < n. Thus, U ≤ n− 1 (since

U and n are integers), so that U ∈ {0, 1, . . . , n− 1} (since U ∈ N). Combining
this with 0 ∈ Z, we obtain (0, U) ∈ Z× {0, 1, . . . , n− 1}. Hence, (0, U) is a pair
(q, r) ∈ Z× {0, 1, . . . , n− 1} such that U = qn + r (since U = 0n + U). Thus, there
exists at least one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that U = qn + r (namely,
(q, r) = (0, U)).

Let us now consider Case 2. In this case, we have U ≥ n. Hence, U − n ≥ 0,
so that U − n ∈ N (remember that N = {0, 1, 2, . . .}). Also, U − n < U (since n
is positive). But our induction hypothesis said that Lemma 2.6.6 holds for every
u ∈ N satisfying u < U. Hence, in particular, Lemma 2.6.6 holds for u = U − n
(since U − n ∈ N and U − n < U). In other words, there exists at least one pair
(q, r) ∈ Z× {0, 1, . . . , n− 1} such that U − n = qn + r. Fix such a pair and denote
it by (q0, r0). Thus, (q0, r0) ∈ Z× {0, 1, . . . , n− 1} and U − n = q0n + r0.

From U − n = q0n + r0, we obtain U = n + (q0n + r0) = (q0 + 1) n + r0. Also,
from (q0, r0) ∈ Z× {0, 1, . . . , n− 1}, we obtain q0 ∈ Z and r0 ∈ {0, 1, . . . , n− 1},
and thus (q0 + 1, r0) ∈ Z × {0, 1, . . . , n− 1}. Thus, the pair (q0 + 1, r0) is a pair
(q, r) ∈ Z × {0, 1, . . . , n− 1} such that U = qn + r (since U = (q0 + 1) n + r0).
Therefore, there exists at least one pair (q, r) ∈ Z × {0, 1, . . . , n− 1} such that
U = qn + r (namely, (q, r) = (q0 + 1, r0)).

Now, in each of the two Cases 1 and 2, we have shown that there exists at least
one pair (q, r) ∈ Z × {0, 1, . . . , n− 1} such that U = qn + r. Hence, this holds
always. In other words, Lemma 2.6.6 holds for u = U. This completes the induction
step; thus, Lemma 2.6.6 is proven by strong induction.

In order to derive Lemma 2.6.4 from Lemma 2.6.6 (that is, to extend Lemma 2.6.6
to the case of negative u), we shall need a simple but important trick: By adding
a sufficiently high multiple of the positive integer n to u, we eventually obtain a
nonnegative integer v (to which we can then apply Lemma 2.6.6). This trick can be
crystallized in the following lemma:
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Lemma 2.6.7. Let n be a positive integer. Let u ∈ Z. Then, there exists a v ∈ N

such that u ≡ v mod n.

Proof of Lemma 2.6.7. We are in one of the following two cases:
Case 1: We have u ≥ 0.
Case 2: We have u < 0.
Let us first consider Case 1. In this case, we have u ≥ 0. Thus, u ∈ N. Also,

u ≡ u mod n (by Proposition 2.3.4 (a)). Thus, there exists a v ∈ N such that
u ≡ v mod n (namely, v = u). This proves Lemma 2.6.7 in Case 1.

Let us now consider Case 2. In this case, we have u < 0. Hence, −u > 0.
Now, u − (n− 1) (−u) = nu is divisible by n (since u ∈ Z). In other words,
n | u − (n− 1) (−u). In other words, u ≡ (n− 1) (−u)mod n. Moreover, n ≥ 1
(since n is a positive integer), so that n− 1 ≥ 0. We can multiply this inequality
with −u (since −u > 0), and thus obtain (n− 1) (−u) ≥ 0 (−u) = 0. In other
words, (n− 1) (−u) ∈ N. Thus, there exists a v ∈ N such that u ≡ v mod n
(namely, v = (n− 1) (−u)). This proves Lemma 2.6.7 in Case 2.

We have now proven Lemma 2.6.7 in both Cases 1 and 2; hence, Lemma 2.6.7
always holds.

Proof of Lemma 2.6.4. Lemma 2.6.7 shows that there exists a v ∈ N such that u ≡
v mod n. Consider this v.

Note that n | u− v (since u ≡ v mod n). In other words, there exists an integer c
such that u− v = nc. Consider this c. From u− v = nc, we obtain u = v + nc.

Lemma 2.6.6 (applied to v instead of u) yields that there exists at least one pair
(q, r) ∈ Z× {0, 1, . . . , n− 1} such that v = qn + r. Fix such a pair, and denote it by
(q0, r0). Thus, (q0, r0) ∈ Z× {0, 1, . . . , n− 1} and v = q0n + r0. Now,

u = v︸︷︷︸
=q0n+r0

+nc = (q0n + r0) + nc = (q0 + c) n + r0.

Also, from (q0, r0) ∈ Z×{0, 1, . . . , n− 1}, we obtain q0 ∈ Z and r0 ∈ {0, 1, . . . , n− 1},
and thus (q0 + c, r0) ∈ Z × {0, 1, . . . , n− 1}. Thus, the pair (q0 + c, r0) is a pair
(q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r (since u = (q0 + c) n + r0). There-
fore, there exists at least one pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r
(namely, (q, r) = (q0 + c, r0)). This proves Lemma 2.6.4.

Proof of Theorem 2.6.1. Theorem 2.6.1 follows by combining Lemma 2.6.4 with Lemma
2.6.5.

Remark 2.6.8. We can visualize Theorem 2.6.1 as follows: Mark all the multiples
of n on the real line. These multiples are evenly spaced points, with a distance of
n between any two neighboring multiples. Thus, they subdivide the real line into
infinitely many intervals of length n. More precisely, for each a ∈ Z, let Ia be the
interval [an, (a + 1) n) = {x ∈ R | an ≤ x < (a + 1) n}; then, every real belongs
to exactly one of these intervals Ia. (This is intuitively clear – I am not saying
this is a rigorous proof.) Thus, in particular, u belongs to Iq for some q ∈ Z.
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This q is precisely the q in the unique pair (q, r) ∈ Z×{0, 1, . . . , n− 1} satisfying
u = qn + r. Moreover, the r from this pair specifies the relative position of u in
the interval Iq.

(Unfortunately, it is not clear to me whether this intuition can be turned into a
proper proof of Theorem 2.6.1, since it relies on the fact that every real number
belongs to exactly one of the intervals Ia, which fact may well require Theorem
2.6.1 for its proof.)

The following properties of the quotient and the remainder are simple but will
be used all the time:

Corollary 2.6.9. Let n be a positive integer. Let u ∈ Z.
(a) Then, u%n ∈ {0, 1, . . . , n− 1} and u%n ≡ u mod n.
(b) We have n | u if and only if u%n = 0.
(c) If c ∈ {0, 1, . . . , n− 1} is such that c ≡ u mod n, then c = u%n.
(d) We have u = (u//n) n + (u%n).

Before we prove this corollary, let us explain its purpose. Corollary 2.6.9 (a) says
that u%n is a number in the set {0, 1, . . . , n− 1} that is congruent to u modulo n.
Corollary 2.6.9 (c) says that u%n is the only such number (as it says that any further
such number c must be equal to u%n). Corollary 2.6.9 (b) gives an algorithm to
check whether n | u holds (namely, compute u%n and check whether u%n =
0). Corollary 2.6.9 (d) is a trivial consequence of the definition of quotient and
remainder.

Proof of Corollary 2.6.9. Theorem 2.6.1 says that there is a unique pair (q, r) ∈ Z×
{0, 1, . . . , n− 1} such that u = qn + r. Consider this pair (q, r). The uniqueness of
this pair can be restated as follows: If (q′, r′) ∈ Z× {0, 1, . . . , n− 1} is any further
pair such that u = q′n + r′, then (

q′, r′
)
= (q, r) . (17)

Recall that u%n was defined to be r (in Definition 2.6.2 (b)). Thus, u%n = r. Now,
n | qn = u− r (since u = qn + r). In other words, u ≡ r mod n. Hence, r ≡ u mod n
(by Proposition 2.3.4 (c)). This rewrites as u%n ≡ u mod n (since r = u%n).

Furthermore, u%n = r ∈ {0, 1, . . . , n− 1} (since (q, r) ∈ Z× {0, 1, . . . , n− 1}).
This completes the proof of Corollary 2.6.9 (a).

Also, u//n was defined to be q (in Definition 2.6.2 (a)). Hence, u//n = q. Now,

u = q︸︷︷︸
=u//n

n + r︸︷︷︸
=u%n

= (u//n) n + (u%n) .

This proves Corollary 2.6.9 (d).
(b) =⇒: Assume that n | u. We must prove that u%n = 0.
We have n | u. In other words, there exists some integer w such that u = nw.

Consider this w.
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We have n − 1 ∈ N (since n is a positive integer), thus 0 ∈ {0, 1, . . . , n− 1}.
Hence, (w, 0) ∈ Z× {0, 1, . . . , n− 1} (since w ∈ Z). Also, u = nw = wn = wn + 0.
Hence, (17) (applied to (q′, r′) = (w, 0)) yields (w, 0) = (q, r). In other words, w = q
and 0 = r. Hence, r = 0, so that u%n = r = 0. This proves the “=⇒” implication
of Corollary 2.6.9 (b).
⇐=: Assume that u%n = 0. We must prove that n | u.
We have u = qn + r︸︷︷︸

=u%n=0

= qn = nq. Thus, n | u. This proves the “⇐=”

implication of Corollary 2.6.9 (b).
(c) Let c ∈ {0, 1, . . . , n− 1} be such that c ≡ u mod n.
We have c ≡ u mod n. In other words, n | c− u. In other words, there exists some

integer w such that c− u = nw. Consider this w.
From−w ∈ Z and c ∈ {0, 1, . . . , n− 1}, we obtain (−w, c) ∈ Z×{0, 1, . . . , n− 1}.

Also, from c− u = nw, we obtain u = c− nw = (−w) n + c. Hence, (17) (applied
to (q′, r′) = (−w, c)) yields (−w, c) = (q, r). In other words, −w = q and c = r.
Hence, c = r = u%n. This proves Corollary 2.6.9 (c).

Exercise 2.6.1. Let n be a positive integer. Let u and v be integers. Prove that
u ≡ v mod n if and only if u%n = v%n.

The following exercise provides an analogue of Theorem 2.6.1, in which r is re-
quired to be an integer satisfying |r| ≤ n/2 rather than an element of {0, 1, . . . , n− 1}.
Note, however, that r is not always unique in this case.

Exercise 2.6.2. Let n be a positive integer. Let u ∈ Z.
(a) Prove that there exists a pair (q, r) ∈ Z × Z such that u = qn + r and
|r| ≤ n/2.

(b) Prove that this pair is not unique in general (i.e., find n and u for which it
is not unique).

Remark 2.6.10. There is a simple visualization that makes Exercise 2.6.2 (a) intu-
itively obvious: Mark all the multiples of n on the real line. These multiples are
evenly spaced points, with a distance of n between any two neighboring multi-
ples. Hence, every point on the real line is at most a distance of n/2 away from
the closest multiple of n. Applying this to the point u, we conclude that u is
at most a distance of n/2 away from the closest multiple of n. In other words,
if qn is the closest multiple of n to u (or one of the two closest multiples of n,
if u is in the middle between two multiples), then |u− qn| ≤ n/2. Thus, if we
set r = u − qn, then u = qn + r and |r| ≤ n/2. This proves Exercise 2.6.2 (a)
intuitively.

This point of view also makes Exercise 2.6.2 (b) evident: When the point u
is exactly in the middle of one of the length-n intervals between multiples of n,
then there are two multiples of n equally close to u, and we can pick either of
them; hence, the pair (q, r) is not unique.
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Convention 2.6.11. The symbols // and % will be granted higher precedence (in
the sense of operator precedence) than addition. This means that an expression
of the form “c + a//n + b” will always be interpreted as “c + (a//n) + b”, rather
than as “(c + a) // (n + b)” (or in any other way). Likewise, an expression of the
form “c + a%n + b” will always be interpreted as “c + (a%n) + b”, rather than as
“(c + a)% (n + b)”.

Exercise 2.6.3. Let u and v be two integers. Let n be a positive integer.
(a) Prove that u%n + v%n− (u + v)%n ∈ {0, n}.
(b) Prove that (u + v) //n− u//n− v//n ∈ {0, 1}.

Exercise 2.6.4. Let n be a positive integer. Prove the following:
(a) The map

Z× {0, 1, . . . , n− 1} → Z,
(q, r) 7→ qn + r

is a bijection.
(b) The map

N× {0, 1, . . . , n− 1} →N,
(q, r) 7→ qn + r

is a bijection.
(c) Any q ∈ Z and r ∈ {0, 1, . . . , n− 1} satisfy (qn + r) //n = q.
(d) Any q ∈ Z and r ∈ {0, 1, . . . , n− 1} satisfy (qn + r)%n = r.

2.7. Even and odd numbers

Recall the following:

Definition 2.7.1. Let u be an integer.
(a) We say that u is even if u is divisible by 2.
(b) We say that u is odd if u is not divisible by 2.

So an integer is either even or odd (but not both at the same time). The following
exercise collects various properties of even and odd integers:

Exercise 2.7.1. Let u be an integer.
(a) Prove that u is even if and only if u%2 = 0.
(b) Prove that u is odd if and only if u%2 = 1.
(c) Prove that u is even if and only if u ≡ 0 mod 2.
(d) Prove that u is odd if and only if u ≡ 1 mod 2.
(e) Prove that u is odd if and only if u + 1 is even.

https://en.wikipedia.org/wiki/Order_of_operations
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(f) Prove that exactly one of the two numbers u and u + 1 is even.
(g) Prove that u (u + 1) ≡ 0 mod 2.
(h) Prove that u2 ≡ −u ≡ u mod 2.
(i) Let v be a further integer. Prove that u ≡ v mod 2 holds if and only if u and

v are either both odd or both even.

Exercise 2.7.2. (a) Prove that each even integer u satisfies u2 ≡ 0 mod 4.
(b) Prove that each odd integer u satisfies u2 ≡ 1 mod 4.
(c) Prove that no two integers x and y satisfy x2 + y2 ≡ 3 mod 4.
(d) Prove that if x and y are two integers satisfying x2 + y2 ≡ 2 mod 4, then x

and y are both odd.

Exercise 2.7.2 (c) establishes our previous experimental observation that an inte-
ger of the form 4k + 3 with integer k (that is, an integer that is larger by 3 than a
multiple of 4) can never be written as a sum of two perfect squares.

Exercise 2.7.3. (a) Prove that the map

{i ∈N | i is even} → {d ∈N | d ≡ 1 mod 4} ,
i 7→ 2i + 1

is well-defined and is a bijection.
(b) Prove that the map

{i ∈N | i is odd} → {d ∈N | d ≡ 3 mod 4} ,
i 7→ 2i + 1

is well-defined and is a bijection.

Note that the map defined in Exercise 2.7.3 (a) sends 0, 2, 4, 6, 8, . . . to 1, 5, 9, 13, 17, . . .,
while the map defined in Exercise 2.7.3 (b) sends 1, 3, 5, 7, 9, . . . to 3, 7, 11, 15, 19, . . ..

2.8. The floor function

We shall now briefly introduce the floor function (following [Grinbe16]), as it is
closely connected to division with remainder.

Definition 2.8.1. Let x be a real number. Then, bxc is defined to be the unique
integer n satisfying n ≤ x < n + 1. This integer bxc is called the floor of x, or the
integer part of x.

Remark 2.8.2. (a) Why is bxc well-defined? I mean, why does the unique integer
n in Definition 2.8.1 exist, and why is it unique? This question is trickier than
it sounds and relies on the construction of real numbers. However, in the case
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when x is rational, the well-definedness of bxc follows from Proposition 2.8.3
below.

(b) What we call bxc is typically called [x] in older books (such as
[NiZuMo91]). I suggest avoiding the notation [x] wherever possible; it has too
many different meanings (whereas bxc almost always means the floor of x).

(c) The map R → Z, x 7→ bxc is called the floor function or the greatest integer
function.

There is also a ceiling function, which sends each x ∈ R to the unique integer n
satisfying n− 1 < x ≤ n; this latter integer is called dxe. The two functions are
connected by the rule dxe = − b−xc (for all x ∈ R).

The floor and the ceiling functions are some of the simplest examples of dis-
continuous functions.

(d) Here are some examples of floors:

bnc = n for every n ∈ Z;
b1.32c = 1; bπc = 3; b0.98c = 0;
b−2.3c = −3; b−0.4c = −1.

(e) You might have the impression that bxc is “what remains from x if the
digits behind the comma are removed”. This impression is highly imprecise. For
one, it is completely broken for negative x (for example, b−2.3c is −3, not −2).
But more importantly, the operation of “removing the digits behind the comma”
from a number is not well-defined; in fact, the periodic decimal representations
0.999 . . . and 1.000 . . . belong to the same real number (1), but removing their
digits behind the comma leaves us with different integers.

(f) A related map is the map R→ Z, x 7→
⌊

x +
1
2

⌋
. It sends each real x to the

integer that is closest to x, choosing the larger one in the case of a tie. This is one
of the many things that are commonly known as “rounding” a number.

Proposition 2.8.3. Let a and b be integers such that b > 0. Then,
⌊ a

b

⌋
is well-

defined and equals a//b.

Proof of Proposition 2.8.3. This is a rather easy and neat exercise. A full proof can be
found in [Grinbe16, proof of Proposition 1.1.3].

See [Grinbe16] and [NiZuMo91, §4.1] for further properties of the floor function.

2.9. Common divisors, the Euclidean algorithm and the Bezout
theorem

We are next going to define and study the divisors of an integer, as well as the
common divisors of several integers. These concepts form the backbone of most of
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number theory, and will later be extended to some more complicated notions than
integers (e.g., Gaussian integers and polynomials).

2.9.1. Divisors

Definition 2.9.1. Let b ∈ Z. The divisors of b are defined as the integers that
divide b.

Be aware that some authors use a mildly different definition of “divisors”; namely,
they additionally require them to be positive. We don’t make such a requirement.

For example, the divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6. Of course, the negative
divisors of an integer b are merely the reflections of the positive divisors through
the origin14 (this follows easily from Proposition 2.2.3 (a)); thus, the positive divi-
sors are usually the only ones of interest.

Here are some basic properties of divisors:

Proposition 2.9.2. (a) If b ∈ Z, then 1 and b are divisors of b.
(b) The divisors of 0 are all the integers.
(c) Let b ∈ Z be nonzero. Then, all divisors of b belong to the set
{− |b| ,− |b|+ 1, . . . , |b|} \ {0}.

Proof of Proposition 2.9.2. (a) Clearly, 1 | b (since b = 1b), so that 1 is a divisor of b.
Also, b | b (since b = b · 1), so that b is a divisor of b.

(b) Each integer a divides 0 (since 0 = a · 0) and thus is a divisor of 0. This proves
Proposition 2.9.2 (b).

(c) Let a be a divisor of b. Then, a divides b. In other words, a | b. Hence,
Proposition 2.2.3 (b) yields |a| ≤ |b| (since b 6= 0). But |a| ≥ a (since |x| ≥ x for
each x ∈ R), so that a ≤ |a| ≤ |b|. Also, |a| ≥ −a (since |x| ≥ −x for each x ∈ R)
and thus −a ≤ |a| ≤ |b|, so that a ≥ − |b|. Combining this with a ≤ |b|, we obtain
− |b| ≤ a ≤ |b| and thus a ∈ {− |b| ,− |b|+ 1, . . . , |b|} (since a is an integer).

From Example 2.2.2 (c), we know that 0 | b only when b = 0. Thus, we don’t
have 0 | b (since b 6= 0).

If we had a = 0, then we would have 0 = a | b, which would contradict the fact
that we don’t have 0 | b. Thus, we cannot have a = 0. Hence, a 6= 0. Combining a ∈
{− |b| ,− |b|+ 1, . . . , |b|} with a 6= 0, we obtain a ∈ {− |b| ,− |b|+ 1, . . . , |b|} \ {0}.

We have proven this for each divisor a of b. Thus, we conclude that all divisors
of b belong to the set {− |b| ,− |b|+ 1, . . . , |b|} \ {0}. This proves Proposition 2.9.2
(c).

Thanks to Proposition 2.9.2, we have a method to find all divisors of an integer b:
If b = 0, then Proposition 2.9.2 (b) directly yields the result; otherwise, Proposition
2.9.2 (c) shows that there is only a finite set of numbers we have to check. When b is
large, this is slow, but to some extent that is because the problem is computationally
hard (or at least suspected to be hard).
14“Reflection through the origin” is just a poetic way to say “negative”; i.e., the reflection of a

number a through the origin is −a.
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2.9.2. Common divisors

It is somewhat more interesting to consider the common divisors of two or more
integers:

Definition 2.9.3. Let b1, b2, . . . , bk be integers. Then, the common divisors of
b1, b2, . . . , bk are defined to be the integers a that satisfy

(a | bi for all i ∈ {1, 2, . . . , k}) (18)

(in other words, that divide all of the integers b1, b2, . . . , bk). We let
Div (b1, b2, . . . , bk) denote the set of these common divisors.

Note that the concept of common divisors encompasses the concept of divisors:
The common divisors of a single integer b are merely the divisors of b. Thus,
Div (b) is the set of all divisors of b whenever b ∈ Z. (Of course, speaking of
“common divisors” of just one integer is like speaking of a conspiracy of just one
person. But the definition fits, and we algebraists don’t exclude cases just because
they are ridiculous.)

(Also, the common divisors of an empty list of integers are all the integers, be-
cause the requirement (18) is vacuously true for k = 0. In other words, Div () = Z.)

Here are some more interesting examples of common divisors:

Example 2.9.4. (a) The common divisors of 6 and 8 are −2,−1, 1, 2. (In order to
see this, just observe that the divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6, whereas
the divisors of 8 are −8,−4,−2,−1, 1, 2, 4, 8; now you can find the common di-
visors of 6 and 8 by taking the numbers common to these two lists.) Thus,

Div (6, 8) = {−2,−1, 1, 2} .

(b) The common divisors of 6 and 14 are −2,−1, 1, 2 again. (In order to see
this, just observe that the divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6, whereas the
divisors of 14 are −14,−7,−2,−1, 1, 2, 7, 14.)

(c) The common divisors of 6, 10 and 15 are −1 and 1. (In order to see this,
note that:

• The divisors of 6 are −6,−3,−2,−1, 1, 2, 3, 6.

• The divisors of 10 are −10,−5,−2,−1, 1, 2, 5, 10.

• The divisors of 15 are −15,−5,−3,−1, 1, 3, 5, 15.

The only numbers common to these three lists are −1 and 1.) However:

• The common divisors of 6 and 10 are −2,−1, 1, 2.

• The common divisors of 6 and 15 are −3,−1, 1, 3.
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• The common divisors of 10 and 15 are −5,−1, 1, 5.

This illustrates the fact that three numbers can have pairwise nontrivial com-
mon divisors (where “nontrivial” means “distinct from 1 and −1”), but the only
common divisors of all three of them may still be just 1 and −1.

Proposition 2.9.5. Let b1, b2, . . . , bk be finitely many integers that are not all 0.
Then, the set Div (b1, b2, . . . , bk) has a largest element, and this largest element is
a positive integer.

Proof of Proposition 2.9.5. The integer 1 satisfies (1 | bi for all i ∈ {1, 2, . . . , k}). Thus,
1 is a common divisor of b1, b2, . . . , bk (by the definition of a “common divisor”). In
other words, 1 ∈ Div (b1, b2, . . . , bk) (by the definition of Div (b1, b2, . . . , bk)). Hence,
the set Div (b1, b2, . . . , bk) is nonempty.

Moreover, it is easy to see that the set Div (b1, b2, . . . , bk) is finite.
[Proof: We have assumed that b1, b2, . . . , bk are not all 0. In other words, there exists a

j ∈ {1, 2, . . . , k} such that bj is nonzero. Consider such a j.
Let d ∈ Div (b1, b2, . . . , bk). Thus, d is a common divisor of b1, b2, . . . , bk (by the definition

of Div (b1, b2, . . . , bk)). In other words, d | bi for all i ∈ {1, 2, . . . , k} (by the definition of
“common divisor”). Applying this to i = j, we obtain d | bj. Hence, d is a divisor of bj.
But Proposition 2.9.2 (c) (applied to b = bj) shows that all divisors of bj belong to the set{
−
∣∣bj
∣∣ ,−

∣∣bj
∣∣+ 1, . . . ,

∣∣bj
∣∣} \ {0}. Hence, d must belong to this set (since d is a divisor of

bj). In other words, d ∈
{
−
∣∣bj
∣∣ ,−

∣∣bj
∣∣+ 1, . . . ,

∣∣bj
∣∣} \ {0}.

Now, forget that we fixed d. We thus have shown that d ∈
{
−
∣∣bj
∣∣ ,−

∣∣bj
∣∣+ 1, . . . ,

∣∣bj
∣∣} \

{0} for each d ∈ Div (b1, b2, . . . , bk). In other words,

Div (b1, b2, . . . , bk) ⊆
{
−
∣∣bj
∣∣ ,−

∣∣bj
∣∣+ 1, . . . ,

∣∣bj
∣∣} \ {0} .

Thus, the set Div (b1, b2, . . . , bk) is finite (since the set
{
−
∣∣bj
∣∣ ,−

∣∣bj
∣∣+ 1, . . . ,

∣∣bj
∣∣} \ {0} is

finite).]
Now we know that the set Div (b1, b2, . . . , bk) is a nonempty finite set of integers.

Thus, this set Div (b1, b2, . . . , bk) has a largest element (since every nonempty finite
set of integers has a largest element). It remains to prove that this largest element
is a positive integer.

Let g be this largest element. Thus, we must prove that g is a positive integer.
Clearly, g is an integer (since all elements of Div (b1, b2, . . . , bk) are integers); it thus
remains to show that g is positive.

The element g is the largest element of the set Div (b1, b2, . . . , bk), and thus is ≥
to every element of this set. In other words, g ≥ x for each x ∈ Div (b1, b2, . . . , bk).
Applying this to x = 1, we obtain g ≥ 1 (since 1 ∈ Div (b1, b2, . . . , bk)). Hence, g is
positive. This completes the proof of Proposition 2.9.5.

The following exercise shows that the set Div (b1, b2, . . . , bk) depends only on
the set {b1, b2, . . . , bk}, but not on the numbers b1, b2, . . . , bk themselves. Thus,
for example, any integers a, b and c satisfy Div (a, b, c, a) = Div (c, a, b) (since
{a, b, c, a} = {c, a, b}) and Div (a, a, b, a) = Div (a, b, b) (since {a, a, b, a} = {a, b, b}).
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Exercise 2.9.1. Let b1, b2, . . . , bk be finitely many integers. Let c1, c2, . . . , c` be
finitely many integers. Prove that if

{b1, b2, . . . , bk} = {c1, c2, . . . , c`} ,

then
Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`) .

2.9.3. Greatest common divisors

Proposition 2.9.5 allows us to make a crucial definition:

Definition 2.9.6. Let b1, b2, . . . , bk be finitely many integers. The greatest common
divisor of b1, b2, . . . , bk is defined as follows:

• If b1, b2, . . . , bk are not all 0, then it is defined as the largest element of the
set Div (b1, b2, . . . , bk). This largest element is well-defined (by Proposition
2.9.5), and is a positive integer (by Proposition 2.9.5 again).

• If b1, b2, . . . , bk are all 0, then it is defined to be 0. (This is a slight abuse of
the word “greatest common divisor”, because 0 is not actually the greatest
among the common divisors of b1, b2, . . . , bk in this case. In fact, when
b1, b2, . . . , bk are all 0, every integer is a common divisor of b1, b2, . . . , bk, so
that there is no greatest among these common divisors, because there is no
“greatest integer”. Nevertheless, defining the greatest common divisor of
b1, b2, . . . , bk to be 0 in this case will prove to be a good decision, as it will
greatly reduce the number of exceptions in our results.)

Thus, in either case, this greatest common divisor is a nonnegative integer. We
denote it by gcd (b1, b2, . . . , bk). (Some authors also call it (b1, b2, . . . , bk), which
is rather dangerous as the same notation stands for a k-tuple. We shall avoid
this notation at all cost, but you should be aware of it when reading number-
theoretical literature.)

We shall also use the word “gcd” as shorthand for “greatest common divisor”.

The greatest common divisors you will most commonly see are those of two
integers. Indeed, any other gcd can be rewritten in terms of these: for example,

gcd (a, b, c, d, e) = gcd (a, gcd (b, gcd (c, gcd (d, e))))

for all a, b, c, d, e ∈ Z. This is, in fact, a consequence of Proposition 2.9.21 (d) (which
we will prove later), applied several times.

First, let us observe several properties of greatest common divisors:
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Proposition 2.9.7. (a) We have gcd (a, 0) = gcd (a) = |a| for all a ∈ Z.
(b) We have gcd (a, b) = gcd (b, a) for all a, b ∈ Z.
(c) We have gcd (a, ua + b) = gcd (a, b) for all a, b, u ∈ Z.
(d) If a, b, c ∈ Z satisfy b ≡ c mod a, then gcd (a, b) = gcd (a, c).
(e) If a, b ∈ Z are such that a is positive, then gcd (a, b) = gcd (a, b%a).
(f) We have gcd (a, b) | a and gcd (a, b) | b for all a, b ∈ Z.
(g) We have gcd (−a, b) = gcd (a, b) for all a, b ∈ Z.
(h) We have gcd (a,−b) = gcd (a, b) for all a, b ∈ Z.
(i) If a, b ∈ Z satisfy a | b, then gcd (a, b) = |a|.
(j) The greatest common divisor of the empty list of integers is gcd () = 0.

Proposition 2.9.7 is not difficult and we could start proving it right away. How-
ever, such a proof would require some annoying case distinctions due to the special
treatment that the “b1, b2, . . . , bk are all 0” case required in Definition 2.9.6. Fortu-
nately, we can circumnavigate these annoyances by stating a simple rule for how
the gcd of k integers b1, b2, . . . , bk can be computed from their set of common divi-
sors (including the case when b1, b2, . . . , bk are all 0):

Lemma 2.9.8. Let b1, b2, . . . , bk be finitely many integers. Then,

gcd (b1, b2, . . . , bk) =

{
max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk) .

(Here, max S denotes the largest element of a set S of integers, whenever this
largest element exists.)

Proof of Lemma 2.9.8. We are in one of the following two cases:
Case 1: The integers b1, b2, . . . , bk are not all 0.
Case 2: The integers b1, b2, . . . , bk are all 0.
Let us consider Case 1 first. In this case, the integers b1, b2, . . . , bk are not all 0.

Hence, gcd (b1, b2, . . . , bk) is defined as the largest element of the set Div (b1, b2, . . . , bk)
(by Definition 2.9.6). In other words,

gcd (b1, b2, . . . , bk) = max (Div (b1, b2, . . . , bk)) . (19)

On the other hand, 0 /∈ Div (b1, b2, . . . , bk)
15. Hence,{

max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk)

= max (Div (b1, b2, . . . , bk)) .

15Proof. Assume the contrary. Thus, 0 ∈ Div (b1, b2, . . . , bk). In other words, 0 is a common divisor of
b1, b2, . . . , bk (by the definition of Div (b1, b2, . . . , bk)). In other words, 0 | bi for all i ∈ {1, 2, . . . , k}
(by the definition of “common divisor”). Thus, for all i ∈ {1, 2, . . . , k}, we have bi = 0 (since
0 | bi, so that bi = 0c for some integer c; but this yields bi = 0c = 0). In other words, b1, b2, . . . , bk
are all 0. But this contradicts the fact that b1, b2, . . . , bk are not all 0. This contradiction shows
that our assumption was false, qed.
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Comparing this with (19), we obtain

gcd (b1, b2, . . . , bk) =

{
max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk) .

Hence, Lemma 2.9.8 is proven in Case 1.
Let us now consider Case 2. In this case, the integers b1, b2, . . . , bk are all 0. Hence,

gcd (b1, b2, . . . , bk) is defined as 0 (by Definition 2.9.6). In other words,

gcd (b1, b2, . . . , bk) = 0. (20)

On the other hand, 0 ∈ Div (b1, b2, . . . , bk)
16. Hence,{

max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk)

= 0.

Comparing this with (20), we obtain

gcd (b1, b2, . . . , bk) =

{
max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk) .

Hence, Lemma 2.9.8 is proven in Case 2.
We have now proven Lemma 2.9.8 in both Cases 1 and 2. Thus, Lemma 2.9.8

always holds.

A corollary of Lemma 2.9.8 is the following:

Lemma 2.9.9. Let b1, b2, . . . , bk be finitely many integers. Let c1, c2, . . . , c` be
finitely many integers. If

Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`) ,

then
gcd (b1, b2, . . . , bk) = gcd (c1, c2, . . . , c`) .

Proof of Lemma 2.9.9. Assume that Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`). Lemma
2.9.8 yields

gcd (b1, b2, . . . , bk) =

{
max (Div (b1, b2, . . . , bk)) , if 0 /∈ Div (b1, b2, . . . , bk) ;
0, if 0 ∈ Div (b1, b2, . . . , bk)

=

{
max (Div (c1, c2, . . . , c`)) , if 0 /∈ Div (c1, c2, . . . , c`) ;
0, if 0 ∈ Div (c1, c2, . . . , c`)

16Proof. The integers b1, b2, . . . , bk are all 0. In other words, bi = 0 for all i ∈ {1, 2, . . . , k}. Hence,
0 | bi for all i ∈ {1, 2, . . . , k} (since each i ∈ {1, 2, . . . , k} satisfies bi = 0 = 0 · 0). In other words,
0 is a common divisor of b1, b2, . . . , bk (by the definition of “common divisor”). In other words,
0 ∈ Div (b1, b2, . . . , bk) (by the definition of Div (b1, b2, . . . , bk)).



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 54

(since Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`)). But Lemma 2.9.8 (applied to c1, c2, . . . , c`
instead of b1, b2, . . . , bk) yields

gcd (c1, c2, . . . , c`) =

{
max (Div (c1, c2, . . . , c`)) , if 0 /∈ Div (c1, c2, . . . , c`) ;
0, if 0 ∈ Div (c1, c2, . . . , c`) .

Comparing these two equalities, we obtain gcd (b1, b2, . . . , bk) = gcd (c1, c2, . . . , c`).
This proves Lemma 2.9.9.

Lemma 2.9.9 tells us that in order to prove that two lists of integers have the
same gcd, it suffices to check that they have the same set of common divisors.
Since many of the claims of Proposition 2.9.7 are equalities between gcds, we can
thus reduce them to equalities between sets of common divisors. Let us state these
equalities as a lemma, which we will then use as a stepping stone in our proof of
Proposition 2.9.7:

Lemma 2.9.10. (a) We have Div (a, 0) = Div (a) for all a ∈ Z.
(b) We have Div (a, b) = Div (b, a) for all a, b ∈ Z.
(c) We have Div (a, ua + b) = Div (a, b) for all a, b, u ∈ Z.
(d) If a, b, c ∈ Z satisfy b ≡ c mod a, then Div (a, b) = Div (a, c).
(e) If a, b ∈ Z are such that a is positive, then Div (a, b) = Div (a, b%a).
(f) We have Div (a, b) ⊆ Div (a) and Div (a, b) ⊆ Div (b) for all a, b ∈ Z.
(g) We have Div (−a, b) = Div (a, b) for all a, b ∈ Z.
(h) We have Div (a,−b) = Div (a, b) for all a, b ∈ Z.
(i) If a, b ∈ Z satisfy a | b, then Div (a, b) = Div (a).
(j) The set of common divisors of the empty list of integers is Div () = Z.

Proof of Lemma 2.9.10. (a) Here is a sketch of the proof: The number 0 is a “joker”
when it comes to common divisors, in the sense that inserting it into a list of
integers does not change the common divisors of that list. For example, if a ∈ Z,
then the common divisors of a and 0 are the same as the divisors of a, because
every integer divides 0. But this is saying precisely that Div (a, 0) = Div (a).

For the sake of completeness, let us give a detailed proof of Lemma 2.9.10 (a):
For any integer x, we have the following chain of equivalences:

(x ∈ Div (a, 0))
⇐⇒ (x is a common divisor of a and 0) (by the definition of Div (a, 0))
⇐⇒ (x | a and x | 0) (by the definition of a “common divisor”)
⇐⇒ (x | a) (since x | 0 always holds (since 0 = x · 0))
⇐⇒ (x is a common divisor of a) (by the definition of a “common divisor”)
⇐⇒ (x ∈ Div (a)) (by the definition of Div (a)) .

In other words, an integer belongs to Div (a, 0) if and only if it belongs to Div (a). Thus,
Div (a, 0) = Div (a) (since both Div (a, 0) and Div (a) are sets of integers). Thus, Lemma
2.9.10 (a) is finally proven.
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(b) Let a, b ∈ Z. For any integer x, we have the following chain of equivalences:

(x ∈ Div (a, b))
⇐⇒ (x is a common divisor of a and b) (by the definition of Div (a, b))
⇐⇒ (x | a and x | b) (by the definition of a “common divisor”)
⇐⇒ (x | b and x | a)
⇐⇒ (x is a common divisor of b and a)

(by the definition of a “common divisor”)
⇐⇒ (x ∈ Div (b, a)) (by the definition of Div (b, a)) .

In other words, an integer belongs to Div (a, b) if and only if it belongs to Div (b, a).
Thus, Div (a, b) = Div (b, a) (since both Div (a, b) and Div (b, a) are sets of integers).
This proves Lemma 2.9.10 (b).

Let us prove part (d) now, and then derive part (c) from it.
(d) Let a, b, c ∈ Z satisfy b ≡ c mod a. We must prove that Div (a, b) = Div (a, c).
From b ≡ c mod a, we obtain c ≡ b mod a (by Proposition 2.3.4 (c)). Hence, our

situation is symmetric with respect to b and c.
We shall now show that Div (a, b) ⊆ Div (a, c). Indeed, let x ∈ Div (a, b). Then,

x is a common divisor of a and b (by the definition of Div (a, b)). In other words,
x | a and x | b (by the definition of a “common divisor”). From x | b, we obtain
b ≡ 0 mod x. But from x | a and c ≡ b mod a, we obtain c ≡ b mod x (by Proposition
2.3.4 (e), applied to a, x, c and b instead of n, m, a and b). Thus, c ≡ b ≡ 0 mod x,
so that x | c. Combining x | a and x | c, we see that x is a common divisor of a and
c (by the definition of a “common divisor”). In other words, x ∈ Div (a, c) (by the
definition of Div (a, c)).

Now, forget that we fixed x. We thus have proven that x ∈ Div (a, c) for each
x ∈ Div (a, b). In other words, Div (a, b) ⊆ Div (a, c).

The same argument (but with the roles of b and c swapped) shows that Div (a, c) ⊆
Div (a, b) (since our situation is symmetric with respect to b and c). Combining this
with Div (a, b) ⊆ Div (a, c), we obtain Div (a, b) = Div (a, c). This proves Lemma
2.9.10 (d).

(c) Let a, b, u ∈ Z. Then, ua + b ≡ b mod a (since (ua + b) − b = ua is clearly
divisible by a). Thus, Lemma 2.9.10 (d) (applied to ua + b and b instead of b and c)
yields Div (a, ua + b) = Div (a, b). This proves Lemma 2.9.10 (c).

(e) Let a, b ∈ Z be such that a is positive. Then, b%a ≡ b mod a (by Corollary
2.6.9 (a), applied to a and b instead of n and u), thus b ≡ b%a mod a. Hence,
Div (a, b) = Div (a, b%a) (by Lemma 2.9.10 (d), applied to c = b%a). This proves
Lemma 2.9.10 (e).

(f) Let a, b ∈ Z. We must prove that Div (a, b) ⊆ Div (a) and Div (a, b) ⊆ Div (b).
Let x ∈ Div (a, b). We shall prove that x ∈ Div (b).
Indeed, x ∈ Div (a, b); in other words, x is a common divisor of a and b (by

the definition of Div (a, b)). In other words, (x | a and x | b) (by the definition of
a “common divisor”). Hence, x | a. In other words, x is a common divisor of a
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(by the definition of a “common divisor”). In other words, x ∈ Div (a) (by the
definition of Div (a)).

Now, forget that we fixed x. We thus have shown that x ∈ Div (a) for each
x ∈ Div (a, b). In other words, Div (a, b) ⊆ Div (a). A similar argument shows that
Div (a, b) ⊆ Div (b). This proves Lemma 2.9.10 (f).

(g) Let a, b ∈ Z. We must prove that Div (−a, b) = Div (a, b).
First, we will show that Div (a, b) ⊆ Div (−a, b). Indeed, let x ∈ Div (a, b). Then,

x is a common divisor of a and b (by the definition of Div (a, b)). In other words,
x | a and x | b (by the definition of a “common divisor”). We have a | −a (since
−a = a · (−1)). Thus, x | a | −a. Combining x | −a and x | b, we see that x is a
common divisor of −a and b (by the definition of a “common divisor”). In other
words, x ∈ Div (−a, b) (by the definition of Div (−a, b)).

Now, forget that we fixed x. We thus have proven that x ∈ Div (−a, b) for each
x ∈ Div (a, b). In other words, Div (a, b) ⊆ Div (−a, b).

The same argument (but applied to −a instead of a) shows that Div (−a, b) ⊆
Div (− (−a) , b). Since − (−a) = a, this rewrites as Div (−a, b) ⊆ Div (a, b). Com-
bining this with Div (a, b) ⊆ Div (−a, b), we obtain Div (−a, b) = Div (a, b). This
proves Lemma 2.9.10 (g).

(h) We can prove this similarly to how we just proved Lemma 2.9.10 (g), but it is
easier to derive it from what was already shown.

Let a, b ∈ Z. Lemma 2.9.10 (b) (applied to −b instead of b) yields

Div (a,−b) = Div (−b, a) = Div (b, a)
(by Lemma 2.9.10 (g), applied to b and a instead of a and b)

= Div (a, b) (by Lemma 2.9.10 (b)) .

This proves Lemma 2.9.10 (h).
(i) Let a, b ∈ Z satisfy a | b. From a | b, we obtain b ≡ 0 mod a. Hence, Lemma

2.9.10 (d) (applied to c = 0) yields Div (a, b) = Div (a, 0) = Div (a) (by Lemma
2.9.10 (a)). This proves Lemma 2.9.10 (i).

(j) The definition of Div shows that Div (b1, b2, . . . , bk) ⊆ Z for any finitely many
integers b1, b2, . . . , bk. Thus, in particular, Div () ⊆ Z. We shall next prove that
Z ⊆ Div ().

Indeed, let x ∈ Z. Let us denote the empty list () of integers by (b1, b2, . . . , b0).
Then, (b1, b2, . . . , b0) = ().

But x | bi for all i ∈ {1, 2, . . . , 0} (indeed, this is vacuously true, since there exists
no i ∈ {1, 2, . . . , 0}). In other words, x is a common divisor of (b1, b2, . . . , b0) (by
the definition of “common divisor”). In other words, x ∈ Div (b1, b2, . . . , b0) (by the
definition of (b1, b2, . . . , b0)). In other words, x ∈ Div () (since (b1, b2, . . . , b0) = ()).

Now, forget that we fixed x. We thus have proven that x ∈ Div () for each x ∈ Z.
In other words, Z ⊆ Div (). Combining this with Div () ⊆ Z, we obtain Div () = Z.
This proves Lemma 2.9.10 (j).

Proof of Proposition 2.9.7. (a) Let a ∈ Z. Definition 2.9.6 (specifically, its case when
b1, b2, . . . , bk are all 0) shows that gcd (0, 0) = 0 and gcd (0) = 0. Combining this
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with |0| = 0, we obtain gcd (0, 0) = gcd (0) = |0|. In other words, Proposition 2.9.7
(a) holds if a = 0. Thus, for the rest of this proof, we WLOG assume that a 6= 0.
Hence, the two integers a, 0 are not all zero. Thus, gcd (a, 0) is defined to be the
largest element of the set Div (a, 0) (by Definition 2.9.6). Likewise, gcd (a) is the
largest element of the set Div (a).

Lemma 2.9.10 (a) yields Div (a, 0) = Div (a). Thus, Lemma 2.9.9 (applied to (a, 0)
and (a) instead of (b1, b2, . . . , bk) and (c1, c2, . . . , c`)) yields gcd (a, 0) = gcd (a).

For any integer x, we have the following chain of equivalences:

(x ∈ Div (a))
⇐⇒ (x is a common divisor of a) (by the definition of Div (a))
⇐⇒ (x | a) (by the definition of a “common divisor”)
⇐⇒ (x is a divisor of a) .

Thus, Div (a) is the set of all divisors of a.
Exercise 2.2.1 (b) yields |a| | a. In other words, |a| is a divisor of a.
Moreover, a is nonzero (since a 6= 0). Hence, Proposition 2.9.2 (c) (applied to

b = a) shows that all divisors of a belong to the set {− |a| ,− |a|+ 1, . . . , |a|} \ {0}.
Hence, they belong to the set {− |a| ,− |a|+ 1, . . . , |a|}, and thus are ≤ |a|.

Recall that |a| is a divisor of a. Since we also know that all divisors of a are
≤ |a|, we can thus conclude that |a| is the largest divisor of a. In other words,
|a| is the largest element of the set Div (a) (since Div (a) is the set of all divisors
of a). In other words, |a| is gcd (a) (since gcd (a) is the largest element of the set
Div (a)). Thus, gcd (a) = |a|. Combining this with gcd (a, 0) = gcd (a), this yields
gcd (a, 0) = gcd (a) = |a|. Thus, Proposition 2.9.7 (a) is finally proven.

(b) Let a, b ∈ Z. Lemma 2.9.10 (b) yields Div (a, b) = Div (b, a). Thus, Lemma
2.9.9 (applied to (a, b) and (b, a) instead of (b1, b2, . . . , bk) and (c1, c2, . . . , c`)) yields
gcd (a, b) = gcd (b, a). This proves Proposition 2.9.7 (b).

(c) Let a, b, u ∈ Z. Then, Lemma 2.9.10 (c) yields Div (a, ua + b) = Div (a, b).
Thus, Lemma 2.9.9 (applied to (a, ua + b) and (a, b) instead of (b1, b2, . . . , bk) and
(c1, c2, . . . , c`)) yields gcd (a, ua + b) = gcd (a, b). This proves Proposition 2.9.7 (c).

(d) Let a, b, c ∈ Z satisfy b ≡ c mod a. Then, Lemma 2.9.10 (d) yields Div (a, b) =
Div (a, c). Thus, Lemma 2.9.9 (applied to (a, b) and (a, c) instead of (b1, b2, . . . , bk)
and (c1, c2, . . . , c`)) yields gcd (a, b) = gcd (a, c). This proves Proposition 2.9.7 (d).

(e) Let a, b ∈ Z be such that a is positive. Then, Lemma 2.9.10 (e) yields
Div (a, b) = Div (a, b%a). Thus, Lemma 2.9.9 (applied to (a, b) and (a, b%a) in-
stead of (b1, b2, . . . , bk) and (c1, c2, . . . , c`)) yields gcd (a, b) = gcd (a, b%a). This
proves Proposition 2.9.7 (e).

(f) Let a, b ∈ Z. We must prove that gcd (a, b) | a and gcd (a, b) | b.
If the two integers a, b are all 0, then this is obvious17. Hence, for the rest of this

proof, we WLOG assume that a, b are not all 0. Thus, gcd (a, b) is defined to be

17Proof. Assume that a, b are all 0. Then, a = 0 = gcd (a, b) · 0, so that gcd (a, b) | a; similarly,
gcd (a, b) | b. Hence, we have proven that gcd (a, b) | a and gcd (a, b) | b if the integers a, b are all
0.
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the largest element of the set Div (a, b) (by Definition 2.9.6). Hence, gcd (a, b) is an
element of this set Div (a, b). In other words, gcd (a, b) is a common divisor of a
and b (by the definition of Div (a, b)). In other words, gcd (a, b) | a and gcd (a, b) | b.
This proves Proposition 2.9.7 (f).

(g) Let a, b ∈ Z. Then, Lemma 2.9.10 (g) yields Div (−a, b) = Div (a, b). Thus,
Lemma 2.9.9 (applied to (−a, b) and (a, b) instead of (b1, b2, . . . , bk) and (c1, c2, . . . , c`))
yields gcd (−a, b) = gcd (a, b). This proves Proposition 2.9.7 (g).

(h) Let a, b ∈ Z. Then, Lemma 2.9.10 (h) yields Div (a,−b) = Div (a, b). Thus,
Lemma 2.9.9 (applied to (a,−b) and (a, b) instead of (b1, b2, . . . , bk) and (c1, c2, . . . , c`))
yields gcd (a,−b) = gcd (a, b). This proves Proposition 2.9.7 (h).

(i) Let a, b ∈ Z satisfy a | b. From a | b, we obtain b ≡ 0 mod a. Hence, Proposi-
tion 2.9.7 (d) (applied to c = 0) yields gcd (a, b) = gcd (a, 0) = |a| (by Proposition
2.9.7 (a)). This proves Proposition 2.9.7 (i).

(j) The empty list of integers () has the property that all its entries are 0 (indeed,
this is vacuously true because it has no entries at all). Thus, its greatest common
divisor is defined to be 0 (by the “If b1, b2, . . . , bk are not all 0” case of Definition
2.9.6). In other words, gcd () = 0. This proves Proposition 2.9.7 (j).

Remark 2.9.11. Proposition 2.9.7 (c) says that if we add a multiple of a to b, then
gcd (a, b) does not change. Similarly, if we add a multiple of b to a, then gcd (a, b)
does not change (i.e., we have gcd (vb + a, b) = gcd (a, b) for all a, b, v ∈ Z).

However, if we simultaneously add a multiple of a to b and a multiple of b
to a, then gcd (a, b) may well change: i.e., we may have gcd (vb + a, ua + b) 6=
gcd (a, b) for all a, b, u, v ∈ Z. Examples are easy to find (just take v = 1 and
u = 1).

Proposition 2.9.7 gives a quick way to compute gcd (a, b) for two nonnegative
integers a and b, by repeatedly applying division with remainder. For example, let
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us compute gcd (210, 45) as follows:

gcd (210, 45) = gcd (45, 210) (by Proposition 2.9.7 (b))

= gcd

45, 210%45︸ ︷︷ ︸
=30

 (by Proposition 2.9.7 (e))

= gcd (45, 30)
= gcd (30, 45) (by Proposition 2.9.7 (b))

= gcd

30, 45%30︸ ︷︷ ︸
=15

 (by Proposition 2.9.7 (e))

= gcd (30, 15)
= gcd (15, 30) (by Proposition 2.9.7 (b))

= gcd

15, 30%15︸ ︷︷ ︸
=0

 (by Proposition 2.9.7 (e))

= gcd (15, 0) = |15| (by Proposition 2.9.7 (a))
= 15.

This method of computing gcd (a, b) is called the Euclidean algorithm, and is usually
much faster than the divisors of a or the divisors of b can be found!

The following exercise shows that the number gcd (b1, b2, . . . , bk) depends only
on the set {b1, b2, . . . , bk}, but not on the numbers b1, b2, . . . , bk themselves. Thus,
for example, any integers a, b and c satisfy gcd (a, b, c, a) = gcd (c, a, b) (since
{a, b, c, a} = {c, a, b}) and gcd (a, a, b, a) = gcd (a, b, b) (since {a, a, b, a} = {a, b, b}).

Exercise 2.9.2. Let b1, b2, . . . , bk be finitely many integers. Let c1, c2, . . . , c` be
finitely many integers. Prove that if

{b1, b2, . . . , bk} = {c1, c2, . . . , c`} ,

then
gcd (b1, b2, . . . , bk) = gcd (c1, c2, . . . , c`) .

2.9.4. Bezout’s theorem

The following fact about gcds is one of the most important facts in number theory:

Theorem 2.9.12. Let a and b be two integers. Then, there exist integers x ∈ Z

and y ∈ Z such that
gcd (a, b) = xa + yb.
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Theorem 2.9.12 is often stated as follows: “If a and b are two integers, then
gcd (a, b) is a Z-linear combination of a and b”. The notion “Z-linear combination
of a and b” simply means “a number of the form xa + yb with x ∈ Z and y ∈ Z”
(this is exactly the notion of a “linear combination” in linear algebra, except that
now the scalars must come from Z), so this is just a restatement of Theorem 2.9.12.

Theorem 2.9.12 is known as Bezout’s theorem (or Bezout’s identity)18. We shall
prove it in several steps. The first step is to show it when a and b are nonnegative:

Lemma 2.9.13. Let a ∈N and b ∈N. Then, there exist integers x ∈ Z and y ∈ Z

such that
gcd (a, b) = xa + yb.

Proof of Lemma 2.9.13. The following proof uses a strategy similar to the Euclidean
algorithm (making one of a and b smaller repeatedly until one of a and b becomes
0), and can in fact be viewed as a “protocol” of the algorithm19.

We use strong induction on a + b. Thus, we fix an n ∈ N, and assume (as
induction hypothesis) that Lemma 2.9.13 holds whenever a + b < n. We must now
prove that Lemma 2.9.13 holds whenever a + b = n.

We have assumed that Lemma 2.9.13 holds whenever a + b < n. In other words,
the following statement holds:

Statement 1: Let a ∈ N and b ∈ N be such that a + b < n. Then, there
exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb.

Now, we must prove that Lemma 2.9.13 holds whenever a + b = n. Let us first
prove this in the case when b ≥ a:

Statement 2: Let a ∈ N and b ∈ N be such that a + b = n and b ≥ a.
Then, there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) =
xa + yb.

[Proof of Statement 2: We are in one of the following two cases:
Case 1: We have a = 0.
Case 2: We have a 6= 0.
Let us first consider Case 1. In this case, we have a = 0. Now, Proposition 2.9.7

(a) (applied to b instead of a) yields gcd (b, 0) = gcd (b) = |b| ∈ {b,−b}. In other
words, gcd (b, 0) = ub for some u ∈ {1,−1}. Consider this u. Now, Proposition
2.9.7 (b) yields

gcd (a, b) = gcd

b, a︸︷︷︸
=0

 = gcd (b, 0) = ub = 0a + ub.

18or Bezout’s theorem for integers if you want to be more precise (as there are similar theorems for
other objects)

19or, rather, of a more primitive version of the Euclidean algorithm, in which we apply not the full
power of Proposition 2.9.7 (e) but only the identity gcd (a, b) = gcd (a, b− a)
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Hence, there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb (namely,
x = 0 and y = u). Thus, Statement 2 is proven in Case 1.

Let us next consider Case 2. In this case, we have a 6= 0. Hence, a > 0 (since
a ∈N), so that a + b > b. Hence, b < a + b = n.

From b ≥ a, we obtain b − a ∈ N. Moreover, a ∈ N and b − a ∈ N satisfy
a + (b− a) = b < n. Therefore, we can apply Statement 1 to b − a instead of b.
Thus we obtain that there exist integers x ∈ Z and y ∈ Z such that gcd (a, b− a) =
xa + y (b− a). Fix two such integers x and y, and denote them by x0 and y0. Thus,
x0 and y0 are two integers such that gcd (a, b− a) = x0a + y0 (b− a).

Also, Proposition 2.9.7 (c) (applied to u = −1) yields gcd (a, (−1) a + b) =
gcd (a, b). Hence,

gcd (a, b) = gcd

a, (−1) a + b︸ ︷︷ ︸
=b−a

 = gcd (a, b− a) = x0a + y0 (b− a)

= x0a + y0b− y0a = (x0 − y0) a + y0b.

Hence, there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb (namely,
x = x0 − y0 and y = y0). Thus, Statement 2 is proven in Case 2.

We have now proven Statement 2 in both Cases 1 and 2. Hence, Statement 2 is
always proven.]

Now, we can prove that Lemma 2.9.13 holds whenever a + b = n:

Statement 3: Let a ∈ N and b ∈ N be such that a + b = n. Then, there
exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb.

[Proof of Statement 3: We are in one of the following two cases:
Case 1: We have b ≥ a.
Case 2: We have b < a.
Let us first consider Case 1. In this case, we have b ≥ a. Hence, Statement 2

shows that there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb.
Thus, Statement 3 is proven in Case 1.

Let us next consider Case 2. In this case, we have b < a. Hence, a > b, so that
a ≥ b. This shows that we can apply Statement 2 to b and a instead of a and b. Thus
we obtain that there exist integers x ∈ Z and y ∈ Z such that gcd (b, a) = xb + ya.
Fix two such integers x and y, and denote them by x0 and y0. Thus, x0 and y0
are two integers such that gcd (b, a) = x0b + y0a. Now, Proposition 2.9.7 (b) yields
gcd (a, b) = gcd (b, a) = x0b + y0a = y0a + x0b. Hence, there exist integers x ∈ Z

and y ∈ Z such that gcd (a, b) = xa + yb (namely, x = y0 and y = x0). Thus,
Statement 3 is proven in Case 2.

We have now proven Statement 3 in both Cases 1 and 2. Hence, Statement 3 is
always proven.]

By proving Statement 3, we have shown that Lemma 2.9.13 holds whenever a +
b = n. This completes the induction step. Thus, Lemma 2.9.13 is proven by strong
induction.
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Next, we shall prove Theorem 2.9.12 when a ∈N but b may be negative:

Lemma 2.9.14. Let a ∈N and b ∈ Z. Then, there exist integers x ∈ Z and y ∈ Z

such that
gcd (a, b) = xa + yb.

Proof of Lemma 2.9.14. We are in one of the following two cases:
Case 1: We have b ≥ 0.
Case 2: We have b < 0.
Let us first consider Case 1. In this case, we have b ≥ 0. Thus, b ∈ N (since

b ∈ Z). Therefore, Lemma 2.9.13 shows that there exist integers x ∈ Z and y ∈ Z

such that gcd (a, b) = xa + yb. Thus, Lemma 2.9.14 is proven in Case 1.
Let us now consider Case 2. In this case, we have b < 0. Hence, −b > 0, so

that −b ∈ N (since −b ∈ Z). Therefore, Lemma 2.9.13 (applied to −b instead
of b) shows that there exist integers x ∈ Z and y ∈ Z such that gcd (a,−b) =
xa + y (−b). Fix such integers, and denote them by x0 and y0. Thus, x0 ∈ Z and
y0 ∈ Z are integers such that gcd (a,−b) = x0a + y0 (−b).

Now, Proposition 2.9.7 (h) yields gcd (a,−b) = gcd (a, b). Hence,

gcd (a, b) = gcd (a,−b) = x0a + y0 (−b) = x0a + (−y0) b.

Hence, there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb (namely,
x = x0 and y = −y0). Thus, Lemma 2.9.14 is proven in Case 2.

We have now proven Lemma 2.9.14 in both Cases 1 and 2. Hence, Lemma 2.9.14
is proven.

Now, we can prove the whole Theorem 2.9.12:

Proof of Theorem 2.9.12. Theorem 2.9.12 can be derived from Lemma 2.9.14 in the
same way as Lemma 2.9.14 was derived from Lemma 2.9.13 (except that this time,
we have to distinguish between the cases a ≥ 0 and a < 0, and we have to use
Proposition 2.9.7 (g) instead of Proposition 2.9.7 (h)). Again, let us give the detailed
argument for the sake of completeness:

We are in one of the following two cases:
Case 1: We have a ≥ 0.
Case 2: We have a < 0.
Let us first consider Case 1. In this case, we have a ≥ 0. Thus, a ∈ N (since a ∈

Z). Therefore, Lemma 2.9.14 shows that there exist integers x ∈ Z and y ∈ Z such that
gcd (a, b) = xa + yb. Thus, Theorem 2.9.12 is proven in Case 1.

Let us now consider Case 2. In this case, we have a < 0. Hence, −a > 0, so that
−a ∈ N (since −a ∈ Z). Therefore, Lemma 2.9.14 (applied to −a instead of a) shows
that there exist integers x ∈ Z and y ∈ Z such that gcd (−a, b) = x (−a) + yb. Fix such
integers, and denote them by x0 and y0. Thus, x0 ∈ Z and y0 ∈ Z are integers such that
gcd (−a, b) = x0 (−a) + y0b.

Now, Proposition 2.9.7 (g) yields gcd (−a, b) = gcd (a, b). Hence,

gcd (a, b) = gcd (−a, b) = x0 (−a) + y0b = (−x0) a + y0b.
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Hence, there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa+ yb (namely, x = −x0
and y = y0). Thus, Theorem 2.9.12 is proven in Case 2.

We have now proven Theorem 2.9.12 in both Cases 1 and 2. Hence, Theorem 2.9.12 is
proven.

Exercise 2.9.3. Let u be an integer.
(a) Prove that ub− 1 ≡ ua− 1 mod ub−a− 1 for any a ∈N and b ∈N satisfying

b ≥ a.
(b) Prove that gcd

(
ua − 1, ub − 1

)
=
∣∣∣ugcd(a,b) − 1

∣∣∣ for all a ∈N and b ∈N.

2.9.5. First applications of Bezout’s theorem

An important corollary of Theorem 2.9.12 is the following fact:

Theorem 2.9.15. Let a, b ∈ Z. Then:
(a) For each m ∈ Z, we have the following logical equivalence:

(m | a and m | b) ⇐⇒ (m | gcd (a, b)) . (21)

(b) The common divisors of a and b are precisely the divisors of gcd (a, b).
(c) We have Div (a, b) = Div (gcd (a, b)).

The three parts of this theorem are saying the same thing from slightly different
perspectives; the importance of the theorem nevertheless justifies this repetition.
To prove the theorem, we first show the following:

Lemma 2.9.16. Let m, a, b ∈ Z be such that m | a and m | b. Then, m | gcd (a, b).

Proof of Lemma 2.9.16. Theorem 2.9.12 shows that there exist integers x ∈ Z and
y ∈ Z such that

gcd (a, b) = xa + yb. (22)

Consider these x and y. Now, m | a | xa, so that xa ≡ 0 mod m. Also, m | b | yb, thus
yb ≡ 0 mod m. Adding the congruences xa ≡ 0 mod m and yb ≡ 0 mod m together,
we find xa + yb ≡ 0 + 0 = 0 mod m; in other words, m | xa + yb. In view of (22),
this rewrites as m | gcd (a, b). This proves Lemma 2.9.16.

Proof of Theorem 2.9.15. (a) Let m ∈ Z. In order to prove (21), we need to prove the
“=⇒” and “⇐=” directions of the equivalence (21). But this is easy: The “=⇒”
direction is just the statement of Lemma 2.9.16, whereas the “⇐=” direction is
trivial (to wit: if m | gcd (a, b), then

m | gcd (a, b) | a (by Proposition 2.9.7 (f))

and
m | gcd (a, b) | b (by Proposition 2.9.7 (f)) ,
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and thus (m | a and m | b)). Hence, the equivalence (21) is proven. This proves
Theorem 2.9.15 (a).

(b) The common divisors of a and b are precisely the integers m that satisfy
(m | a and m | b) (by the definition of “common divisor”). In view of the equiva-
lence (21), this rewrites as follows: The common divisors of a and b are precisely
the integers m that satisfy m | gcd (a, b). In other words, the common divisors of a
and b are precisely the divisors of gcd (a, b). This proves Theorem 2.9.15 (b).

(c) Recall that each c ∈ Z satisfies

Div (c) = {the common divisors of c} (by the definition of Div (c))
= {the integers x such that x | c}

(by the definition of “common divisors”)
= {the divisors of c} .

Applying this to c = gcd (a, b), we obtain

Div (gcd (a, b)) = {the divisors of gcd (a, b)} . (23)

The definition of Div (a, b) yields

Div (a, b) = {the common divisors of a and b}
= {the divisors of gcd (a, b)} (by Theorem 2.9.15 (b))
= Div (gcd (a, b)) (by (23)) .

This proves Theorem 2.9.15 (c).

The following corollary of Theorem 2.9.12 lets us “combine” two divisibilities
a | c and b | c. In fact, Proposition 2.2.4 (c) would already allow us to “combine”
them to form ab | cc = c2; but we can also “combine” them to ab | gcd (a, b) · c
using the following fact:

Theorem 2.9.17. Let a, b, c ∈ Z satisfy a | c and b | c. Then, ab | gcd (a, b) · c.

Example 2.9.18. Let a = 6 and b = 10 and c = 30. Then, a = 6 | 30 = c and
b = 10 | 30 = c. Thus, Theorem 2.9.17 yields ab | gcd (a, b) · c. And indeed, this is
true, since ab = 6 · 10 | 2 · 30 = gcd (a, b) · c (because gcd (a, b) = gcd (6, 10) = 2).
Note that this latter divisibility is actually an equality: we have 6 · 10 = 2 · 30.
Note also that we do not obtain ab | c (and indeed, this does not hold).

Proof of Theorem 2.9.17. Theorem 2.9.12 yields that there exist integers x ∈ Z and
y ∈ Z such that gcd (a, b) = xa + yb. Consider these x and y.

We have a | c. In other words, there exists an integer u such that c = au. Consider
this u.

We have b | c. In other words, there exists an integer v such that c = bv. Consider
this v.
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Now,

gcd (a, b)︸ ︷︷ ︸
=xa+yb

·c = (xa + yb) c = xa c︸︷︷︸
=bv

+yb c︸︷︷︸
=au

= xabv + ybau = ab (xv + yu) .

Thus, there exists an integer d such that gcd (a, b) · c = abd (namely, d = xv + yu).
In other words, ab | gcd (a, b) · c. This proves Theorem 2.9.17.

Here is another corollary of Theorem 2.9.12 whose usefulness will become clearer
later on:

Theorem 2.9.19. Let a, b, c ∈ Z satisfy a | bc. Then, a | gcd (a, b) · c.

At this point, you should see that Theorem 2.9.19 allows “strengthening” divisi-
bilities: You give it a “weak” divisibility a | bc, and obtain a “stronger” divisibility
a | gcd (a, b) · c from it (stronger because gcd (a, b) is usually smaller than b).

Proof of Theorem 2.9.19. Theorem 2.9.12 yields that there exist integers x ∈ Z and
y ∈ Z such that gcd (a, b) = xa + yb. Consider these x and y.

We have a | bc | ybc; in other words, ybc ≡ 0 mod a. Also, a | axc, so that axc ≡
0 mod a. Adding the two congruences axc ≡ 0 mod a and ybc ≡ 0 mod a together,
we obtain axc + ybc ≡ 0 + 0 = 0 mod a. In view of axc + ybc = (xa + yb)︸ ︷︷ ︸

=gcd(a,b)

c =

gcd (a, b) · c, this rewrites as gcd (a, b) · c ≡ 0 mod a. In other words, a | gcd (a, b) · c.
This proves Theorem 2.9.19.

Theorem 2.9.20. Let s, a, b ∈ Z. Then,

gcd (sa, sb) = |s| gcd (a, b) .

Proof of Theorem 2.9.20. We shall prove that the two integers gcd (sa, sb) and s gcd (a, b)
mutually divide each other (i.e., they satisfy gcd (sa, sb) | s gcd (a, b) and s gcd (a, b) |
gcd (sa, sb)). Then, Exercise 2.2.2 will let us conclude that |gcd (sa, sb)| = |s gcd (a, b)|.
This will then rewrite as gcd (sa, sb) = |s| gcd (a, b), and we will be done. (This trick
is actually a common strategy for proving equalities between gcds.)

Here is the argument in detail. For the sake of brevity, let us set g = gcd (sa, sb)
and h = s gcd (a, b). So our first goal is to prove that g | h and h | g.

Proof of g | h: Theorem 2.9.12 yields that there exist integers x ∈ Z and y ∈ Z

such that gcd (a, b) = xa + yb. Consider these x and y.
Proposition 2.9.7 (f) (applied to sa and sb instead of a and b) yields that gcd (sa, sb) |

sa and gcd (sa, sb) | sb. From g = gcd (sa, sb) | sa, we obtain g | sa | xsa, thus
xsa ≡ 0 mod g. Similarly, ysb ≡ 0 mod g. Adding these two congruences together,
we find xsa + ysb ≡ 0 mod g. Now,

h = s gcd (a, b)︸ ︷︷ ︸
=xa+yb

= s (xa + yb) = xsa + ysb ≡ 0 mod g.
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In other words, g | h. Thus, we have proven g | h.
Proof of h | g: Proposition 2.9.7 (f) yields gcd (a, b) | a and gcd (a, b) | b. Also,

s | s. Hence, Proposition 2.2.4 (c) (applied to s, gcd (a, b) , s, a instead of a1, a2, b1, b2)
yields s gcd (a, b) | sa. Similarly, s gcd (a, b) | sb. Hence, Lemma 2.9.16 (applied to
s gcd (a, b), sa and sb instead of m, a and b) yields s gcd (a, b) | gcd (sa, sb). In view
of g = gcd (sa, sb) and h = s gcd (a, b), this rewrites as h | g. So we have proven
h | g.

Now, Exercise 2.2.2 (applied to g and h instead of a and b) yields |g| = |h|.
But recall that a gcd of any finitely many integers is nonnegative (by Definition

2.9.6). Hence, in particular, gcd (a, b) and gcd (sa, sb) are nonnegative. From g =
gcd (sa, sb), we obtain

|g| = |gcd (sa, sb)| = gcd (sa, sb)

(since gcd (sa, sb) is nonnegative). Also, from h = s gcd (a, b), we obtain

|h| = |s gcd (a, b)| = |s| · |gcd (a, b)|︸ ︷︷ ︸
=gcd(a,b)

(since gcd(a,b)
is nonnegative)

(by (3))

= |s| gcd (a, b) .

Hence,
gcd (sa, sb) = |g| = |h| = |s| gcd (a, b) .

This proves Theorem 2.9.20.

Exercise 2.9.4. Let a1, a2, b1, b2 ∈ Z satisfy a1 | b1 and a2 | b2. Prove that

gcd (a1, a2) | gcd (b1, b2) .

Exercise 2.9.5. Let a, b ∈ Z.
(a) Prove that gcd (a, |b|) = gcd (a, b).
(b) Prove that gcd (|a| , b) = gcd (a, b).
(c) Prove that gcd (|a| , |b|) = gcd (a, b).

2.9.6. gcds of multiple numbers

The following theorem generalizes some of the previous facts to gcds of multiple
integers:

Theorem 2.9.21. Let b1, b2, . . . , bk be integers.
(a) For each m ∈ Z, we have the following logical equivalence:

(m | bi for all i ∈ {1, 2, . . . , k}) ⇐⇒ (m | gcd (b1, b2, . . . , bk)) .
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(b) The common divisors of b1, b2, . . . , bk are precisely the divisors of
gcd (b1, b2, . . . , bk).

(c) We have Div (b1, b2, . . . , bk) = Div (gcd (b1, b2, . . . , bk)).
(d) If k > 0, then

gcd (b1, b2, . . . , bk) = gcd (gcd (b1, b2, . . . , bk−1) , bk) .

Proof of Theorem 2.9.21. Forget that we fixed b1, b2, . . . , bk. Rather than prove the
four parts of Theorem 2.9.21 separately, we shall prove them together as a package.

We shall proceed by induction on k:
Induction base: Theorem 2.9.21 holds for k = 0.
[Proof: This is a straightforward exercise in dealing with empty sets, 0-tuples and vacu-

ous truths. For the sake of completeness, here is the full argument:
Assume that k = 0. We must prove that Theorem 2.9.21 holds.
Let b1, b2, . . . , bk be integers. Of course, these are 0 integers, since k = 0.
We don’t have k > 0 (since k = 0). Hence, Theorem 2.9.21 (d) is vacuously true.
All of b1, b2, . . . , bk are 0 (indeed, this is vacuously true). Thus, gcd (b1, b2, . . . , bk) = 0 (by

Definition 2.9.6).
For each m ∈ Z, we have the logical equivalence

(m | bi for all i ∈ {1, 2, . . . , k})
⇐⇒ (truth) (since there exists no i ∈ {1, 2, . . . , k})
⇐⇒ (m | 0) (since m | 0 is always true)
⇐⇒ (m | gcd (b1, b2, . . . , bk)) (since 0 = gcd (b1, b2, . . . , bk)) .

This proves Theorem 2.9.21 (a) (in the case k = 0, that is). Parts (b) and (c) of Theorem
2.9.21 are restatements of Theorem 2.9.21 (a) and can be derived from it in the same way as
we derived parts (b) and (c) of Theorem 2.9.15 from Theorem 2.9.15 (a).

Thus, all four parts of Theorem 2.9.21 are proven for k = 0. This completes the induction
base.]

Induction step: Let ` be a positive integer. Assume that Theorem 2.9.21 holds for
k = `− 1. We must prove that Theorem 2.9.21 holds for k = `.

We have assumed that Theorem 2.9.21 holds for k = `− 1. In other words, the
following statement holds:

Statement 1: Let b1, b2, . . . , b`−1 be integers.

(a) For each m ∈ Z, we have the following logical equivalence:

(m | bi for all i ∈ {1, 2, . . . , `− 1}) ⇐⇒ (m | gcd (b1, b2, . . . , b`−1)) .

(b) The common divisors of b1, b2, . . . , b`−1 are precisely the divisors of
gcd (b1, b2, . . . , b`−1).

(c) We have Div (b1, b2, . . . , b`−1) = Div (gcd (b1, b2, . . . , b`−1)).

(d) If `− 1 > 0, then

gcd (b1, b2, . . . , b`−1) = gcd
(

gcd
(

b1, b2, . . . , b(`−1)−1

)
, b`−1

)
.
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Recall that we must prove that Theorem 2.9.21 holds for k = `. In other words,
we must prove the following statement:

Statement 2: Let b1, b2, . . . , b` be integers.

(a) For each m ∈ Z, we have the following logical equivalence:

(m | bi for all i ∈ {1, 2, . . . , `}) ⇐⇒ (m | gcd (b1, b2, . . . , b`)) .

(b) The common divisors of b1, b2, . . . , b` are precisely the divisors of
gcd (b1, b2, . . . , b`).

(c) We have Div (b1, b2, . . . , b`) = Div (gcd (b1, b2, . . . , b`)).

(d) If ` > 0, then

gcd (b1, b2, . . . , b`) = gcd (gcd (b1, b2, . . . , b`−1) , b`) .

[Proof of Statement 2: (d) Let us begin with part (d). Assume that ` > 0 (though
we already know that this is true).

Let c = gcd (b1, b2, . . . , b`−1).
Let g = gcd (b1, b2, . . . , b`) and h = gcd (c, b`).
If the integers b1, b2, . . . , b` are all 0, then Statement 2 (d) holds20. Hence, for the

rest of this proof, we WLOG assume that the integers b1, b2, . . . , b` are not all 0.
Therefore, gcd (b1, b2, . . . , b`) is the largest element of the set Div (b1, b2, . . . , b`) (by
Definition 2.9.6). In other words, g is the largest element of the set Div (b1, b2, . . . , b`)
(since g = gcd (b1, b2, . . . , b`)).

Furthermore, the two integers c and b` are not all 0 21. Hence, gcd (c, b`) is the
largest element of the set Div (c, b`) (by Definition 2.9.6). In other words, h is the
largest element of the set Div (c, b`) (since h = gcd (c, b`)).

We intend to show that g = h. For that, it suffices to prove g ≤ h and h ≤ g.
Proof of g ≤ h: Recall that g is the largest element of the set Div (b1, b2, . . . , b`).

Therefore, g ∈ Div (b1, b2, . . . , b`). In other words, g is a common divisor of
b1, b2, . . . , b`. Hence, g | bi for each i ∈ {1, 2, . . . , `}. Thus, in particular, g | bi

20Proof. Assume that b1, b2, . . . , b` are all 0. Then, gcd (b1, b2, . . . , b`) = 0 (by Definition 2.9.6).
Moreover, b1, b2, . . . , b`−1 are all 0 (since b1, b2, . . . , b` are all 0), and thus gcd (b1, b2, . . . , b`−1) =
0. Finally, b` = 0 (since b1, b2, . . . , b` are all 0). Comparing gcd (b1, b2, . . . , b`) = 0

with gcd

gcd (b1, b2, . . . , b`−1)︸ ︷︷ ︸
=0

, b`︸︷︷︸
=0

 = gcd (0, 0) = 0, we obtain gcd (b1, b2, . . . , b`) =

gcd (gcd (b1, b2, . . . , b`−1) , b`). In other words, Statement 2 (d) holds.
21Proof. Assume the contrary. Thus, both c and b` are 0. Thus, in particular, b` = 0. If the

` − 1 integers b1, b2, . . . , b`−1 were all 0, then the ` integers b1, b2, . . . , b` would be all 0 (since
b` = 0), which would contradict the fact that the integers b1, b2, . . . , b` are not all 0. Hence, the
` − 1 integers b1, b2, . . . , b`−1 are not all 0. Thus, gcd (b1, b2, . . . , b`−1) is a positive integer (by
Definition 2.9.6). Thus, gcd (b1, b2, . . . , b`−1) > 0, so that c = gcd (b1, b2, . . . , b`−1) > 0. But this
contradicts the fact that c is 0. This contradiction shows that our assumption was false, qed.
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for each i ∈ {1, 2, . . . , `− 1}. But Statement 1 (a) (applied to m = g) shows that we
have the equivalence

(g | bi for all i ∈ {1, 2, . . . , `− 1}) ⇐⇒ (g | gcd (b1, b2, . . . , b`−1)) .

Hence, we have g | gcd (b1, b2, . . . , b`−1) (since we know that g | bi for all i ∈
{1, 2, . . . , `− 1}). In other words, g | c (since c = gcd (b1, b2, . . . , b`−1)). Combining
this with g | b`, we conclude that g is a common divisor of c and b`. In other words,
g ∈ Div (c, b`). Therefore, g ≤ h (since h is the largest element of the set Div (c, b`)).

Proof of h ≤ g: Proposition 2.9.7 (f) (applied to a = c and b = b`) shows that
gcd (c, b`) | c and gcd (c, b`) | b`. Thus,

h = gcd (c, b`) | c = gcd (b1, b2, . . . , b`−1) and
h = gcd (c, b`) | b`.

But Statement 1 (a) (applied to m = h) shows that we have the equivalence

(h | bi for all i ∈ {1, 2, . . . , `− 1}) ⇐⇒ (h | gcd (b1, b2, . . . , b`−1)) .

Thus, we have (h | bi for all i ∈ {1, 2, . . . , `− 1}) (since we have
h | gcd (b1, b2, . . . , b`−1)).

This divisibility h | bi holds not only for all i ∈ {1, 2, . . . , `− 1}, but also for i = `
(because h | b`). Thus, we conclude that h | bi for all i ∈ {1, 2, . . . , `}. In other words,
h is a common divisor of b1, b2, . . . , b`. In other words, h ∈ Div (b1, b2, . . . , b`). Thus,
h ≤ g (since g is the largest element of the set Div (b1, b2, . . . , b`)).

Combining h ≤ g with g ≤ h, we obtain g = h. Comparing this with g =
gcd (b1, b2, . . . , b`), we obtain

gcd (b1, b2, . . . , b`) = h = gcd (c, b`) = gcd (gcd (b1, b2, . . . , b`−1) , b`)

(since c = gcd (b1, b2, . . . , b`−1)). Hence, Statement 2 (d) is proven.
(a) Let m ∈ Z. Then, we have the equivalence

(m | bi for all i ∈ {1, 2, . . . , `})

⇐⇒

(m | bi for all i ∈ {1, 2, . . . , `− 1})︸ ︷︷ ︸
⇐⇒ (m|gcd(b1,b2,...,b`−1))

(by Statement 1 (a))

and m | b`


⇐⇒ (m | gcd (b1, b2, . . . , b`−1) and m | b`)

⇐⇒

m | gcd (gcd (b1, b2, . . . , b`−1) , b`)︸ ︷︷ ︸
=gcd(b1,b2,...,b`)

(by Statement 2 (d), which we have just proved)


(by Theorem 2.9.15 (a), applied to a = gcd (b1, b2, . . . , b`−1) and b = b`)

⇐⇒ (m | gcd (b1, b2, . . . , b`)) .
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Thus, Statement 2 (a) follows.
Statement 2 (b) is a restatement of Statement 2 (a) (in the same way that Theorem

2.9.15 (b) is a restatement of Theorem 2.9.15 (a)).
Statement 2 (c) is a restatement of Statement 2 (b) (in the same way that Theorem

2.9.15 (c) is a restatement of Theorem 2.9.15 (b)).]
We are thus done proving Statement 2.
In other words, we have proven that Theorem 2.9.21 holds for k = `. This com-

pletes the induction step. Thus, Theorem 2.9.21 is proven by induction.

Theorem 2.9.21 (d) is the reason why most properties of gcds of multiple num-
bers can be derived from corresponding properties of gcds of two numbers. For
example, we can easily prove the following analogue of Theorem 2.9.20 for gcds of
three numbers:

Exercise 2.9.6. Let s, a, b, c ∈ Z. Prove that gcd (sa, sb, sc) = |s| gcd (a, b, c).

More generally, Theorem 2.9.20 can be generalized to any finite number of inte-
gers:

Exercise 2.9.7. Let s ∈ Z, and let a1, a2, . . . , ak be integers. Prove that
gcd (sa1, sa2, . . . , sak) = |s| gcd (a1, a2, . . . , ak).

Bezout’s theorem (Theorem 2.9.12) also holds for any finite number of integers:

Theorem 2.9.22. Let b1, b2, . . . , bk be integers. Then, there exist integers
x1, x2, . . . , xk such that

gcd (b1, b2, . . . , bk) = x1b1 + x2b2 + · · ·+ xkbk.

Once again, we can restate Theorem 2.9.22 by using the concept of a Z-linear
combination. Let us define this concept finally:

Definition 2.9.23. Let b1, b2, . . . , bk be numbers. A Z-linear combination of
b1, b2, . . . , bk shall mean a number of the form x1b1 + x2b2 + · · · + xkbk, where
x1, x2, . . . , xk are integers.

Thus, Theorem 2.9.22 can be restated as follows:

Theorem 2.9.24. Let b1, b2, . . . , bk be integers. Then, gcd (b1, b2, . . . , bk) is a Z-
linear combination of b1, b2, . . . , bk.

Proof of Theorem 2.9.24. We shall prove this by induction on k:
Induction base: The empty list () satisfies gcd () = 0 (by Definition 2.9.6, since

all entries of the empty list are 0). But 0 is a Z-linear combination of an empty
list of numbers, because 0 = (empty sum). In other words, gcd () is a Z-linear
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combination of an empty list of numbers (since gcd () = 0). But this is precisely
the claim of Theorem 2.9.24 for k = 0. Thus, Theorem 2.9.24 holds for k = 0. This
completes the induction base.

Induction step: Let ` be a positive integer. Assume that Theorem 2.9.24 holds for
k = `− 1. We must prove that Theorem 2.9.24 holds for k = `.

We have assumed that Theorem 2.9.24 holds for k = `− 1. In other words, the
following statement holds:

Statement 1: Let b1, b2, . . . , b`−1 be integers. Then, gcd (b1, b2, . . . , b`−1) is
a Z-linear combination of b1, b2, . . . , b`−1.

Our goal is to prove that Theorem 2.9.24 holds for k = `. In other words, we
must prove the following statement:

Statement 2: Let b1, b2, . . . , b` be integers. Then, gcd (b1, b2, . . . , b`) is a
Z-linear combination of b1, b2, . . . , b`.

Proof of Statement 2: Statement 1 shows that gcd (b1, b2, . . . , b`−1) is a Z-linear
combination of b1, b2, . . . , b`−1. In other words, there exist `− 1 integers y1, y2, . . . , y`−1
such that

gcd (b1, b2, . . . , b`−1) = y1b1 + y2b2 + · · ·+ y`−1b`−1.

Consider these y1, y2, . . . , y`−1.
Furthermore, Theorem 2.9.12 (applied to a = gcd (b1, b2, . . . , b`−1) and b = b`)

yields that there exist two integers x and y such that

gcd (gcd (b1, b2, . . . , b`−1) , b`) = x gcd (b1, b2, . . . , b`−1) + yb`.

Consider these x and y.
Now, ` > 0; thus, Theorem 2.9.21 (d) (applied to k = `) yields

gcd (b1, b2, . . . , b`) = gcd (gcd (b1, b2, . . . , b`−1) , b`)
= x gcd (b1, b2, . . . , b`−1)︸ ︷︷ ︸

=y1b1+y2b2+···+y`−1b`−1

+yb`

= x (y1b1 + y2b2 + · · ·+ y`−1b`−1) + yb`
= xy1b1 + xy2b2 + · · ·+ xy`−1b`−1 + yb`.

This is clearly a Z-linear combination of the b1, b2, . . . , b`. Thus, gcd (b1, b2, . . . , b`)
is a Z-linear combination of b1, b2, . . . , b`. So Statement 2 is proven.

In other words, we have proven that Theorem 2.9.24 holds for k = `. This com-
pletes the induction step. Thus, Theorem 2.9.24 is proven by induction.

Proof of Theorem 2.9.22. We have just proven Theorem 2.9.24, which is a restatement
of Theorem 2.9.22. Thus, Theorem 2.9.22 is also proven.

For future reference, let us restate Theorem 2.9.21 (a) as follows:
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Corollary 2.9.25. Let b1, b2, . . . , bk be integers. For each m ∈ Z, we have the
following logical equivalence:

(m | b1 and m | b2 and · · · and m | bk) ⇐⇒ (m | gcd (b1, b2, . . . , bk)) .

Proof of Corollary 2.9.25. Let m ∈ Z. Then, we have the following chain of equiva-
lences:

(m | b1 and m | b2 and · · · and m | bk)

⇐⇒ (m | bi for all i ∈ {1, 2, . . . , k})
⇐⇒ (m | gcd (b1, b2, . . . , bk)) (by Theorem 2.9.21 (a)) .

This proves Corollary 2.9.25.

Theorem 2.9.26. Let b1, b2, . . . , bk be integers, and let c1, c2, . . . , c` be integers.
Then,

gcd (b1, b2, . . . , bk, c1, c2, . . . , c`)
= gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`)) .

Our proof of this theorem will rely on a simple trick, which we state as a lemma:

Lemma 2.9.27. Let a and b be two integers.
(a) If each m ∈ Z satisfies the implication (m | a) =⇒ (m | b), then a | b.
(b) If each m ∈ Z satisfies the equivalence (m | a)⇐⇒ (m | b), then |a| = |b|.

Lemma 2.9.27 (b) says that the divisors of an integer a uniquely determine |a|
(that is, they uniquely determine a up to sign). Thus, when you want to prove that
two integers have the same absolute values, it suffices to prove that they have the
same divisors. If you know that your two integers are nonnegative, then you can
prove this way that they are equal (since their absolute values are just themselves).
This is exactly how we will prove that the left and right hand sides in Theorem
2.9.26 are equal.

Proof of Lemma 2.9.27. (a) Assume that each m ∈ Z satisfies the implication (m | a) =⇒
(m | b). Then, applying this to m = a, we obtain the implication (a | a) =⇒ (a | b).
Since a | a holds, we thus obtain a | b. This proves Lemma 2.9.27 (a).

(b) Assume that each m ∈ Z satisfies the equivalence (m | a) ⇐⇒ (m | b). Thus,
each m ∈ Z satisfies the implication (m | a) =⇒ (m | b) (since this implication is
part of the equivalence we just assumed). Thus, Lemma 2.9.27 (a) yields a | b.

Recall again that each m ∈ Z satisfies the equivalence (m | a)⇐⇒ (m | b). Thus,
each m ∈ Z satisfies the implication (m | b) =⇒ (m | a) (since this implication is
also part of the equivalence). Hence, Lemma 2.9.27 (a) (applied to b and a instead
of a and b) yields b | a.

Hence, Exercise 2.2.2 yields |a| = |b|. This proves Lemma 2.9.27 (b).
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Lemma 2.9.27 is a simple case of what is known in category theory as the Yoneda
lemma.

Proof of Theorem 2.9.26. Let m ∈ Z. Corollary 2.9.25 (applied to k + ` and
(b1, b2, . . . , bk, c1, c2, . . . , c`) instead of k and (b1, b2, . . . , bk)) shows that we have the
following equivalence:

(m | b1 and m | b2 and · · · and m | bk and m | c1 and m | c2 and · · · and m | c`)
⇐⇒ (m | gcd (b1, b2, . . . , bk, c1, c2, . . . , c`)) .

Hence, we have the following chain of equivalences:

(m | gcd (b1, b2, . . . , bk, c1, c2, . . . , c`))
⇐⇒ (m | b1 and m | b2 and · · · and m | bk and m | c1 and m | c2 and · · · and m | c`)

⇐⇒


(m | bi for all i ∈ {1, 2, . . . , k})︸ ︷︷ ︸

⇐⇒ (m|gcd(b1,b2,...,bk))
(by Theorem 2.9.21 (a))

and (m | ci for all i ∈ {1, 2, . . . , `})︸ ︷︷ ︸
⇐⇒ (m|gcd(c1,c2,...,c`))
(by Theorem 2.9.21 (a),

applied to ` and (c1,c2,...,c`)
instead of k and (b1,b2,...,bk))


⇐⇒ (m | gcd (b1, b2, . . . , bk) and m | gcd (c1, c2, . . . , c`))
⇐⇒ (m | gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`)))(

by Theorem 2.9.15 (a),
applied to a = gcd (b1, b2, . . . , bk) and b = gcd (c1, c2, . . . , c`)

)
.

Now, forget that we fixed m. We thus have shown that each m ∈ Z satisfies the
equivalence

(m | gcd (b1, b2, . . . , bk, c1, c2, . . . , c`))
⇐⇒ (m | gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`))) .

Hence, Lemma 2.9.27 (b) (applied to a = gcd (b1, b2, . . . , bk, c1, c2, . . . , c`) and
b = gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`))) yields

|gcd (b1, b2, . . . , bk, c1, c2, . . . , c`)|
= |gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`))| . (24)

But a gcd of integers is always nonnegative (by Definition 2.9.6); thus, the abso-
lute value of a gcd is always this gcd itself. Therefore, we can remove the absolute
value signs on both sides of (24). We thus obtain

gcd (b1, b2, . . . , bk, c1, c2, . . . , c`) = gcd (gcd (b1, b2, . . . , bk) , gcd (c1, c2, . . . , c`)) .

This proves Theorem 2.9.26.
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2.9.7. On converses of Bezout’s theorem

Some words of warning are in order. Theorem 2.9.12 says that if a and b are two
integers, then gcd (a, b) is a Z-linear combination of a and b. Note the indefinite
article “a” here: There are (usually) many Z-linear combinations of a and b, but
only one gcd. It is definitely not true that every Z-linear combination of a and b
must be gcd (a, b). However, all these Z-linear combinations are multiples of the
gcd, as the following (simple) proposition says:

Proposition 2.9.28. Let a and b be two integers. Then, any integers x and y satisfy
gcd (a, b) | xa + yb.

Proof of Proposition 2.9.28. Let x and y be integers. Let g = gcd (a, b). Thus, g =
gcd (a, b) | a (by Proposition 2.9.7 (f)). Hence, g | a | xa (since xa = ax). In other
words, xa ≡ 0 mod g. Similarly, yb ≡ 0 mod g. Adding these two congruences
together, we obtain xa + yb ≡ 0 + 0 = 0 mod g. In other words, g | xa + yb. In
other words, gcd (a, b) | xa + yb (since g = gcd (a, b)). This proves Proposition
2.9.28.

A similar proposition holds for Z-linear combinations of any number of integers
b1, b2, . . . , bk.

2.10. Coprime integers

2.10.1. Definition

The concept of a gcd leads to one of the most important notions of number theory:

Definition 2.10.1. Let a and b be two integers. We say that a is coprime to b if and
only if gcd (a, b) = 1.

Instead of “coprime”, some authors say “relatively prime” or even “prime” (but
the latter language risks confusion with a more standard notion of “prime” that we
will see later on).

Example 2.10.2. (a) The number 2 is coprime to 3, since gcd (2, 3) = 1.
(b) The number 6 is not coprime to 15, since gcd (6, 15) = 3 6= 1.
(c) Let a be an integer. We claim (as a generalization of part (a)) that the

number a is coprime to a + 1. To prove this, we note that

gcd

a, a︸︷︷︸
=1a

+1

 = gcd (a, 1a + 1) = gcd (a, 1)

(by Proposition 2.9.7 (c), applied to u = 1 and b = 1)
| 1 (by Proposition 2.9.7 (f), applied to b = 1) ,
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and thus gcd (a, a + 1) = 1 (by Exercise 2.2.5, since gcd (a, a + 1) is a nonnegative
integer), which means that a is coprime to a + 1.

(d) Let a be an integer. When is a coprime to a + 2? If we try to compute
gcd (a, a + 2), we find

gcd

a, a︸︷︷︸
=1a

+2

 = gcd (a, 1a + 2) = gcd (a, 2)

(by Proposition 2.9.7 (c), applied to u = 1 and b = 2) .

It remains to find gcd (a, 2). Proposition 2.9.7 (f) (applied to b = 2) yields
gcd (a, 2) | a and gcd (a, 2) | 2. Since gcd (a, 2) is a nonnegative integer and
is a divisor of 2 (because gcd (a, 2) | 2), we see that gcd (a, 2) must be either 1
or 2 (since the only nonnegative divisors of 2 are 1 and 2). If a is even, then 2
is a common divisor of a and 2, and thus must be the greatest common divisor
of a and 2 (because a common divisor of a and 2 cannot be greater than 2); in
other words, we have gcd (a, 2) = 2 in this case. On the other hand, if a is odd,
then 2 is not a common divisor of a and 2 (since 2 does not divide a), and thus
cannot be the greatest common divisor of a and 2; hence, in this case, we have
gcd (a, 2) 6= 2 and thus gcd (a, 2) = 1. Summarizing, we conclude that

gcd (a, 2) =

{
2, if a is even;
1, if a is odd.

Now, recall that gcd (a, a + 2) = gcd (a, 2) =

{
2, if a is even;
1, if a is odd.

Hence, a is co-

prime to a + 2 if and only if a is odd.

Following the book [GrKnPa94], we introduce a slightly quaint notation:

Definition 2.10.3. Let a and b be two integers. We write “a ⊥ b” to signify that a
is coprime to b.

Note that the “⊥” relation is symmetric:

Proposition 2.10.4. Let a and b be two integers. Then, a ⊥ b if and only if b ⊥ a.

Proof of Proposition 2.10.4. We have the following chain of equivalences:

(a ⊥ b) ⇐⇒ (a is coprime to b) (by the definition of “ ⊥ ”)
⇐⇒ (gcd (a, b) = 1) (by the definition of “coprime”)

⇐⇒ (gcd (b, a) = 1)
(

since Proposition 2.9.7 (b)
yields gcd (a, b) = gcd (b, a)

)
⇐⇒ (b is coprime to a) (by the definition of “coprime”)
⇐⇒ (b ⊥ a) (by the definition of “ ⊥ ”) .
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This proves Proposition 2.10.4.

Definition 2.10.5. Let a and b be two integers. Proposition 2.10.4 shows that a
is coprime to b if and only if b is coprime to a. Hence, we shall sometimes use
a more symmetric terminology for this situation: We shall say that “a and b are
coprime” to mean that a is coprime to b (or, equivalently, that b is coprime to a).

Exercise 2.10.1. Let a ∈ Z. Prove the following:
(a) We have 1 ⊥ a.
(b) We have 0 ⊥ a if and only if |a| = 1.

2.10.2. Properties of coprime integers

We can now state multiple theorems about coprime numbers. The first one states
that we can “cancel” a factor b from a divisibility a | bc as long as this factor is
coprime to a:

Theorem 2.10.6. Let a, b, c ∈ Z satisfy a | bc and a ⊥ b. Then, a | c.

Proof of Theorem 2.10.6. We have a ⊥ b; in other words, a is coprime to b (by Defini-
tion 2.10.3). In other words, gcd (a, b) = 1 (by the definition of “coprime”). Now,
Theorem 2.9.19 yields a | gcd (a, b)︸ ︷︷ ︸

=1

·c = c. This proves Theorem 2.10.6.

I like to think of Theorem 2.10.7 as a way of removing “unsolicited guests” from
divisibilities. Indeed, it says that we can remove the factor b from a | bc if we know
that b is “unrelated” (i.e., coprime) to a.

The next theorem lets us “combine” two divisibilities a | c and b | c to ab | c as
long as a and b are coprime:

Theorem 2.10.7. Let a, b, c ∈ Z satisfy a | c and b | c and a ⊥ b. Then, ab | c.

Proof of Theorem 2.10.7. We have a ⊥ b; in other words, a is coprime to b (by Defini-
tion 2.10.3). In other words, gcd (a, b) = 1 (by the definition of “coprime”). Now,
Theorem 2.9.17 yields ab | gcd (a, b)︸ ︷︷ ︸

=1

·c = c. This proves Theorem 2.10.7.

Theorem 2.10.7 can be restated as follows: If a and b are two coprime divisors
of an integer c, then ab is also a divisor of c. This is often helpful when proving
divisibilities where the left hand side (i.e., the number in front of the “|” sign) can
be split into a product of two mutually coprime factors. Similar reasoning works
with several coprime factors (see Exercise 2.10.3 below).

The next theorem (still part of the fallout of Bezout’s theorem) is important, but
we will not truly appreciate it until later:
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Theorem 2.10.8. Let a, n ∈ Z.
(a) There exists an a′ ∈ Z such that aa′ ≡ gcd (a, n)mod n.
(b) If a ⊥ n, then there exists an a′ ∈ Z such that aa′ ≡ 1 mod n.
(c) If there exists an a′ ∈ Z such that aa′ ≡ 1 mod n, then a ⊥ n.

If a, n ∈ Z, then an integer a′ ∈ Z satisfying aa′ ≡ 1 mod n is called a modular
inverse of a modulo n. The word “modular inverse” is chosen in analogy to the
usual concept of an “inverse” in Z (which stands for an integer a′ ∈ Z satisfying
aa′ = 1; this exists if and only if a equals 1 or −1). Theorem 2.10.8 (b) shows
that such a modular inverse always exists when a ⊥ n; Theorem 2.10.8 (c) is the
converse of this statement (i.e., it says that if a modular inverse of a modulo n
exists, then a ⊥ n).

Proof of Theorem 2.10.8. (a) Theorem 2.9.12 (applied to b = n) yields that there exist
integers x ∈ Z and y ∈ Z such that gcd (a, n) = xa + yn. Consider these x and y.
We have ax = xa ≡ xa + yn mod n (since xa− (xa + yn) = −yn = n (−y) is clearly
divisible by n). Thus, ax ≡ xa + yn = gcd (a, n)mod n. Thus, there exists an a′ ∈ Z

such that aa′ ≡ gcd (a, n)mod n (namely, a′ = x). This proves Theorem 2.10.8 (a).
(b) Assume that a ⊥ n. In other words, a is coprime to n (by Definition 2.10.3).

In other words, gcd (a, n) = 1 (by the definition of “coprime”). Now, Theorem
2.10.8 (a) yields that there exists an a′ ∈ Z such that aa′ ≡ gcd (a, n)mod n. In
view of gcd (a, n) = 1, this rewrites as follows: There exists an a′ ∈ Z such that
aa′ ≡ 1 mod n. This proves Theorem 2.10.8 (b).

(c) Assume that there exists an a′ ∈ Z such that aa′ ≡ 1 mod n. Consider this a′.
Proposition 2.9.7 (f) yields gcd (a, n) | a and gcd (a, n) | n. Set g = gcd (a, n).

Then, g is a nonnegative integer.
Now, g = gcd (a, n) | a | aa′, so that aa′ ≡ 0 mod g. But also g = gcd (a, n) |

n. Hence, from aa′ ≡ 1 mod n, we obtain aa′ ≡ 1 mod g (by Proposition 2.3.4
(e), applied to g, aa′ and 1 instead of m, a and b). Hence, 1 ≡ aa′ ≡ 0 mod g.
Equivalently, g | 1− 0 = 1. Hence, g = 1 (by Exercise 2.2.5, since g is a nonnegative
integer). Thus, gcd (a, n) = g = 1. In other words, a is coprime to n. In other
words, a ⊥ n. This proves Theorem 2.10.8 (c).

Theorem 2.10.9. Let a, b, c ∈ Z such that a ⊥ c and b ⊥ c. Then, ab ⊥ c.

Proof of Theorem 2.10.9. Theorem 2.10.8 (b) (applied to n = c) yields that there exists
an a′ ∈ Z such that aa′ ≡ 1 mod c. Consider this a′.

Theorem 2.10.8 (b) (applied to b and c instead of a and n) yields that there exists
a b′ ∈ Z such that bb′ ≡ 1 mod c. Consider this b′.

Multiplying the two congruences aa′ ≡ 1 mod c and bb′ ≡ 1 mod c, we obtain
(aa′) (bb′) ≡ 1 · 1 = 1 mod c.

Now, define the integers r = ab and s = a′b′. Then, r︸︷︷︸
=ab

s︸︷︷︸
=a′b′

= (ab) (a′b′) =

(aa′) (bb′) ≡ 1 mod c. Hence, there exists an r′ ∈ Z such that rr′ ≡ 1 mod c (namely,
r′ = s). Thus, Theorem 2.10.8 (c) (applied to r and c instead of a and n) yields that
r ⊥ c. In view of r = ab, this rewrites as ab ⊥ c. This proves Theorem 2.10.9.
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Let us generalize Theorem 2.10.9 to products of several numbers instead of just
the two numbers a and b:

Exercise 2.10.2. Let c ∈ Z. Let a1, a2, . . . , ak be integers such that each i ∈
{1, 2, . . . , k} satisfies ai ⊥ c. Prove that a1a2 · · · ak ⊥ c.

We can similarly generalize Theorem 2.10.7 to show that the product of several
mutually coprime divisors of an integer c must again be a divisor of c:

Exercise 2.10.3. Let c ∈ Z. Let b1, b2, . . . , bk be integers that are mutually coprime
(i.e., they satisfy bi ⊥ bj for all i 6= j). Assume that bi | c for each i ∈ {1, 2, . . . , k}.
Prove that b1b2 · · · bk | c.

Exercise 2.10.4. Let a, b ∈ Z be such that a ⊥ b. Let n, m ∈N. Prove that an ⊥ bm.

The above results have one important application to congruences. Recall that
if a, b, c are integers satisfying ab = ac, then we can “cancel” a from the equality
ab = ac to obtain b = c as long as a is nonzero. Something similar is true for
congruences modulo n, but the condition “a is nonzero” has to be replaced by “a
is coprime to n”:

Lemma 2.10.10. Let a, b, c, n be integers such that a ⊥ n and ab ≡ ac mod n. Then,
b ≡ c mod n.

Lemma 2.10.10 says that we can cancel an integer a from a congruence ab ≡
ac mod n as long as a is coprime to n. Let us give two proofs of this lemma, to
illustrate the uses of some of the previous results:

First proof of Lemma 2.10.10. We have ab ≡ ac mod n. In other words, n | ab− ac =
a (b− c). But Proposition 2.10.4 (applied to n instead of b) shows that a ⊥ n if and
only if n ⊥ a. Thus, we have n ⊥ a (since a ⊥ n).

Thus, we know that n | a (b− c) and n ⊥ a. Hence, Theorem 2.10.6 (applied to n,
a and b− c instead of a, b and c) yields n | b− c. In other words, b ≡ c mod n. This
proves Lemma 2.10.10.

Second proof of Lemma 2.10.10. Theorem 2.10.8 (b) yields that there exists an a′ ∈ Z

such that aa′ ≡ 1 mod n (since a ⊥ n). Consider this a′. Then, a′a = aa′ ≡ 1 mod n.
Now, let us multiply the (trivial) congruence a′ ≡ a′mod n with the congruence
ab ≡ ac mod n. We thus find

a′ab ≡ a′a︸︷︷︸
≡1 mod n

c ≡ 1c = c mod n.

Hence,
c ≡ a′a︸︷︷︸

≡1 mod n

b ≡ 1b = b mod n.

In other words, b ≡ c mod n. This proves Lemma 2.10.10.
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For future use, let us restate Exercise 2.10.2 in a form that uses “unordered” finite
products ∏

i∈I
bi instead of a1a2 · · · ak:

Exercise 2.10.5. Let c ∈ Z. Let I be a finite set. For each i ∈ I, let bi be an integer
such that bi ⊥ c. Prove that ∏

i∈I
bi ⊥ c.

Exercise 2.10.6. Let a, b, c be three integers such that a ≡ b mod c. Prove that if
a ⊥ c, then b ⊥ c.

Exercise 2.10.7. Let a, b ∈ Z. Prove that b− a ⊥ b holds if and only if a ⊥ b.

2.10.3. An application to sums of powers

Let us show an application of Theorem 2.10.7. First, we shall prove a simple lemma:

Lemma 2.10.11. Let d ∈N. Let x and y be integers.
(a) We have x− y | xd − yd.
(b) We have x + y | xd + yd if d is odd.

Proof of Lemma 2.10.11. (a) Here are two ways of proving this:
First proof of Lemma 2.10.11 (a): We have x ≡ y mod x − y (since x − y | x − y).

Thus, Exercise 2.3.4 (applied to n = x − y, a = x, b = y and k = d) yields xd ≡
yd mod x− y. In other words, x− y | xd − yd. This proves Lemma 2.10.11 (a).

Second proof of Lemma 2.10.11 (a): Recall that

(a− b)
(

ak−1 + ak−2b + ak−3b2 + · · ·+ abk−2 + bk−1
)
= ak − bk (25)

for every a, b ∈ Q and k ∈ N. (This is a well-known identity, and it appears (with
k renamed as n) as the first half of Exercise 1 on homework set #0.) Applying this
identity to a = x, b = y and k = d, we obtain

(x− y)
(

xd−1 + xd−2y + xd−3y2 + · · ·+ xyd−2 + yd−1
)
= xd − yd.

Thus, x− y | xd− yd (since xd−1 + xd−2y+ xd−3y2 + · · ·+ xyd−2 + yd−1 is an integer).
This proves Lemma 2.10.11 (a).

(b) Assume that d is odd. Thus, (−1)d = −1. Now, Lemma 2.10.11 (a) (applied
to −y instead of y) yields x − (−y) | xd − (−y)d. Since x − (−y) = x + y and
xd − (−y)d︸ ︷︷ ︸

=(−1)dyd

= xd − (−1)d︸ ︷︷ ︸
=−1

yd = xd − (−1) yd = xd + yd, this rewrites as x + y |

xd + yd. This proves Lemma 2.10.11 (b).

Next, let us recall a basic fact from combinatorics (the “Little Gauss” sum):

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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Proposition 2.10.12. Let n ∈N. Then,

1 + 2 + · · ·+ n =
n (n + 1)

2
.

Proof of Proposition 2.10.12. Here is one of several equally valid arguments:

2 · (1 + 2 + · · ·+ n) = (1 + 2 + · · ·+ n) + (1 + 2 + · · ·+ n)︸ ︷︷ ︸
=n+(n−1)+···+1

(here, we have reversed
the order of the addends)

= (1 + 2 + · · ·+ n)︸ ︷︷ ︸
=

n
∑

k=1
k

+ (n + (n− 1) + · · ·+ 1)︸ ︷︷ ︸
=

n
∑

k=1
(n+1−k)

=
n

∑
k=1

k +
n

∑
k=1

(n + 1− k) =
n

∑
k=1

(k + (n + 1− k))︸ ︷︷ ︸
=n+1

=
n

∑
k=1

(n + 1) = n (n + 1) .

Thus, 1 + 2 + · · ·+ n =
n (n + 1)

2
, so that Proposition 2.10.12 is proven.

Proposition 2.10.12 tells us what the sum 1 + 2 + · · · + n of the first n positive
integers is. One might also ask what the sum 12 + 22 + · · · + n2 of their squares
is, and similarly for higher powers. While this is tangential to our course, let us
collect some formulas for this:

Proposition 2.10.13. Let n ∈N. Then:

(a) We have 1 + 2 + · · ·+ n =
1
2

n (n + 1).

(b) We have 12 + 22 + · · ·+ n2 =
1
6

n (n + 1) (2n + 1).

(c) We have 13 + 23 + · · ·+ n3 =
1
4

n2 (n + 1)2.

(d) We have 14 + 24 + · · ·+ n4 =
1

30
n (2n + 1) (n + 1)

(
3n + 3n2 − 1

)
.

(e) We have 15 + 25 + · · ·+ n5 =
1

12
n2 (n + 1)2 (2n + 2n2 − 1

)
.

Each part of Proposition 2.10.13 can be straightforwardly proven by induction on
n; we don’t need ingenious arguments like the one we gave above for Proposition
2.10.12 (and in fact, such arguments cannot always be found).

You probably see a pattern in Proposition 2.10.13: It appears that for each positive inte-
ger d, there exists some polynomial pd (x) of degree d + 1 with rational coefficients such
that each n ∈ N satisfies 1d + 2d + · · · + nd = pd (n). This is indeed the case. Indeed,
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this is proven (e.g.) in [Galvin17, Proposition 23.2] and in [Grinbe17, Theorem 3.7]. The
polynomial pd (x) is uniquely determined for each d, and can be explicitly computed via
the formula

pd (x) =
d

∑
k=1

k!
{

d
k

}(
x + 1
k + 1

)
,

where
(

x + 1
k + 1

)
=

(x + 1) x (x− 1) · · · (x− k + 1)
(k + 1)!

and where
{

d
k

}
is a Stirling number of the

2nd kind. Without going into the details of what Stirling numbers of the 2nd kind are, let

me say that k!
{

d
k

}
is the number of surjective maps from {1, 2, . . . , d} to {1, 2, . . . , k}. For

example,

p2 (x) =
2

∑
k=1

k!
{

2
k

}(
x + 1
k + 1

)
= 1!

{
2
1

}
︸ ︷︷ ︸

=1

(
x + 1

2

)
+ 2!

{
2
2

}
︸ ︷︷ ︸

=2

(
x + 1

3

)

=

(
x + 1

2

)
+ 2
(

x + 1
3

)
=

(x + 1) x
2

+ 2 · (x + 1) x (x− 1)
6

=
1
6

x (x + 1) (2x + 1) ,

and thus

12 + 22 + · · ·+ n2 = p2 (n) =
1
6

n (n + 1) (2n + 1) for each n ∈N.

This recovers the claim of Proposition 2.10.13 (b). The combinatorial proof presented in
[Galvin17, Proposition 23.2] is highly recommended reading for anyone interested in this
kind of formulas.

Let us note that the polynomials pd (x) do not have integer coefficients, but nevertheless
all their values pd (n) for n ∈N are integers.

Let us now show the power of Theorem 2.10.7 on the following exercise:

Exercise 2.10.8. Let n ∈N. Let d be an odd positive integer. Prove that

1 + 2 + · · ·+ n | 1d + 2d + · · ·+ nd.

[Hint: Use Proposition 2.10.12 to reduce the claim to proving that n (n + 1) |
2
(
1d + 2d + · · ·+ nd). But Theorem 2.10.7 shows that in order to prove this,

it suffices to prove n | 2
(
1d + 2d + · · ·+ nd) and n + 1 | 2

(
1d + 2d + · · ·+ nd),

because n ⊥ n + 1.]

2.10.4. More properties of gcds and coprimality

The following is a random collection of further exercises on gcds.
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Exercise 2.10.9. Let a, b, x, y be integers such that xa + yb = 1. Prove that a ⊥ b.

Exercise 2.10.10. Let u, v, x, y ∈ Z. Prove that gcd (u, v) · gcd (x, y) =
gcd (ux, uy, vx, vy).

Exercise 2.10.11. Let a, b, c ∈ Z.
(a) Prove that gcd (a, b) · gcd (a, c) = gcd (ag, bc), where g = gcd (a, b, c).
(b) Prove that gcd (a, b) · gcd (a, c) = gcd (a, bc) if b ⊥ c.

Exercise 2.10.12. Let a and b be two integers that are not both zero. Let g =

gcd (a, b). Prove that
a
g

and
b
g

are integers satisfying
a
g
⊥ b

g
.

Exercise 2.10.13. Let a and b be two integers. Let k ∈N. Prove that gcd
(
ak, bk) =

(gcd (a, b))k.

The next exercise is simply claiming the well-known fact that any rational num-
ber can be written as a reduced fraction:

Exercise 2.10.14. Let r ∈ Q. Prove that there exist two coprime integers a and b
satisfying r = a/b.

As an application of some of the preceding results, we can prove that certain
numbers are irrational:

Exercise 2.10.15. Prove the following:
(a) If a positive integer u is not a perfect square22, then

√
u is irrational.

(b) If u and v are two positive integers, then
√

u +
√

v is irrational unless both
u and v are perfect squares.

Exercise 2.10.15 invites a rather natural generalization: If u1, u2, . . . , uk are several
positive integers that are not all perfect squares, then must

√
u1 +

√
u2 + · · ·+

√
uk

always be irrational? It turns out that the answer is “yes”, but this is not as easy
to prove anymore as the two cases k = 1 and k = 2 that we handled in Exercise
2.10.15. Proofs of the general version can be found in [Boreic08] (actually, a stronger
statement is proven there, although it takes some work to derive ours from it).

Let us generalize Exercise 2.10.10 a bit:

Exercise 2.10.16. Let x, y ∈ Z, and let a1, a2, . . . , ak be finitely many integers.
Prove that

gcd (a1, a2, . . . , ak) · gcd (x, y) = gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky) .

22A perfect square means the square of an integer.
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We can extend this exercise further to several integers instead of x and y, but this
extension would be notationally awkward, so we only state it for the case of three
integers:

Exercise 2.10.17. Let x, y, z ∈ Z, and let a1, a2, . . . , ak be finitely many integers.
Prove that

gcd (a1, a2, . . . , ak) · gcd (x, y, z)
= gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky, a1z, a2z, . . . , akz) .

We leave it to the reader to state and solve an exercise generalizing Exercise
2.10.16 and Exercise 2.10.17.

Exercise 2.10.18. Let a, b, c ∈ Z. Prove that

gcd (b, c) · gcd (c, a) · gcd (a, b) = gcd (a, b, c) · gcd (bc, ca, ab) .

Exercise 2.10.19. Let n be a positive integer. Let [n] denote the set {1, 2, . . . , n}.
Let Z be the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x + y > n. (For
example, if n = 5, then

Z = {(1, 5) , (2, 5) , (3, 4) , (3, 5) , (4, 3) , (4, 5) , (5, 1) , (5, 2) , (5, 3) , (5, 4)} . )

Prove that

∑
(x,y)∈Z

1
xy

= 1.

2.11. Lowest common multiples

Common multiples are, in a sense, a “mirror version” of common divisors. Here is
their definition:

Definition 2.11.1. Let b1, b2, . . . , bk be integers. Then, the common multiples of
b1, b2, . . . , bk are defined to be the integers a that satisfy

(bi | a for all i ∈ {1, 2, . . . , k}) .

(In other words, a common multiple of b1, b2, . . . , bk is an integer that is a multiple
of each of b1, b2, . . . , bk.) We let Mul (b1, b2, . . . , bk) denote the set of these common
multiples.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 84

Example 2.11.2. The common multiples of 4, 6 are
. . . ,−36,−24,−12, 0, 12, 24, 36, . . ., that is, all multiples of 12.

The common multiples of 1, 2, 3 are all multiples of 6.

Note that the common multiples of a single integer b are simply the multiples of
b. (Also, the common multiples of an empty list of integers are all the integers; in
other words, Mul () = Z.)

Note that the definition of common multiples of b1, b2, . . . , bk (Definition 2.11.1) is
the same as the definition of common divisors of b1, b2, . . . , bk except that the divis-
ibility has been flipped (i.e., it says “bi | a” instead of “a | bi”). This is why common
multiples are a “mirror version” of common divisors. This analogy is not perfect
– in particular, (for example) two nonzero integers have infinitely many common
multiples but only finitely many common divisors. We shall now introduce lowest
common multiples, which correspond to greatest common divisors in this analogy.
However, we have to prove a simple proposition first:

Proposition 2.11.3. Let b1, b2, . . . , bk be finitely many nonzero integers. Then, the
set Mul (b1, b2, . . . , bk) has a smallest positive element.

Proposition 2.11.3 is similar to Proposition 2.9.5 (and will play a similar role), but
note the differences: It requires all of b1, b2, . . . , bk to be nonzero (unlike Proposi-
tion 2.9.5, which needed only one of them to be nonzero), and it does not claim
finiteness of any set.

Proof of Proposition 2.11.3. We claim that

|b1b2 · · · bk| ∈ Mul (b1, b2, . . . , bk) . (26)

[Proof of (26): Let i ∈ {1, 2, . . . , k}. Then, the product b1b2 · · · bk can be written as

b1b2 · · · bk = bi · (b1b2 · · · bi−1bi+1bi+2 · · · bk) ,

and thus is divisible by bi. In other words, bi | b1b2 · · · bk. But Exercise 2.2.1 (a) (ap-
plied to a = b1b2 · · · bk) yields b1b2 · · · bk | |b1b2 · · · bk|. Altogether, bi | b1b2 · · · bk |
|b1b2 · · · bk|.

Now forget that we fixed i. We thus have proven that bi | |b1b2 · · · bk| for all
i ∈ {1, 2, . . . , k}. In other words, |b1b2 · · · bk| is a common multiple of b1, b2, . . . , bk
(by the definition of a “common multiple”). In other words,
|b1b2 · · · bk| ∈ Mul (b1, b2, . . . , bk). This proves (26).]

We know that b1, b2, . . . , bk are nonzero integers. Hence, their product b1b2 · · · bk
is a nonzero integer as well. Thus, its absolute value |b1b2 · · · bk| is a positive integer.
Hence, |b1b2 · · · bk| is a positive element of Mul (b1, b2, . . . , bk) (since (26) shows
that it is an element of Mul (b1, b2, . . . , bk)). Thus, the set Mul (b1, b2, . . . , bk) has
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a positive element. Therefore, this set Mul (b1, b2, . . . , bk) has a smallest positive
element as well23. This proves Proposition 2.11.3.

Definition 2.11.4. Let b1, b2, . . . , bk be finitely many integers. The lowest common
multiple of b1, b2, . . . , bk is defined as follows:

• If b1, b2, . . . , bk are all nonzero, then it is defined as the smallest positive
element of the set Mul (b1, b2, . . . , bk). This smallest positive element is well-
defined (by Proposition 2.11.3), and is a positive integer (obviously).

• If b1, b2, . . . , bk are not all nonzero (i.e., at least one of b1, b2, . . . , bk is zero),
then it is defined to be 0.

Thus, in either case, this lowest common multiple is a nonnegative integer. We
denote it by lcm (b1, b2, . . . , bk). (Some authors also call it [b1, b2, . . . , bk].)

We shall also use the word “lcm” as shorthand for “lowest common multiple”.

Some authors say “least common multiple” instead of “lowest common multiple”.
We are slightly abusing the word “lowest common multiple”, of course; it would

be more precise to say “lowest positive common multiple”, and even this would
only hold for the case when b1, b2, . . . , bk are all nonzero. Taken literally, a “lowest
common multiple” of 2 and 3 would not exist, since 2 and 3 have infinitely many
negative common multiples.

Note that the lcm of a single number is the absolute value of this number: i.e.,
we have lcm (a) = |a| for each a ∈ Z. (This is easy to prove.) Also, the lcm of an
empty list of numbers is 1: that is, lcm () = 1.

We observe a trivial property of lcms, which (for the sake of brevity) we only
state for two integers a and b despite it holding for any number of integers (with
the same proof):

Proposition 2.11.5. Let a, b ∈ Z.
(a) We have 0 ∈ Mul (a, b).
(b) We have lcm (a, b) ∈ Mul (a, b).
(c) We have a | lcm (a, b) and b | lcm (a, b).

Proof of Proposition 2.11.5. (a) The integer 0 clearly satisfies (a | 0 and b | 0). In other
words, 0 is a common multiple of a and b (by the definition of a “common multi-
ple”). In other words, 0 ∈ Mul (a, b) (by the definition of Mul (a, b)). This proves
Proposition 2.11.5 (a).

23Here we are using the following basic fact: If a set of integers S has a positive element, then
it has a smallest positive element as well. (To prove this fact, you can fix a positive element
s ∈ S, which exists by assumption; then, the set {1, 2, . . . , s} ∩ S is finite and nonempty (since it
contains s), and thus clearly has a smallest element; now you can easily check that its smallest
element must also be the smallest positive element of S.)
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(b) If the two integers a and b are not all nonzero, then Proposition 2.11.5 (b)
holds24. Hence, for the rest of this proof, we WLOG assume that the two integers
a and b are all nonzero. Thus, Definition 2.11.4 yields that lcm (a, b) is the smallest
positive element of the set Mul (a, b). Hence, lcm (a, b) ∈ Mul (a, b). This proves
Proposition 2.11.5 (b).

(c) Proposition 2.11.5 (b) yields lcm (a, b) ∈ Mul (a, b). In other words, lcm (a, b)
is a common multiple of a and b (by the definition of Mul (a, b)). In other words,
we have (a | lcm (a, b) and b | lcm (a, b)) (by the definition of “common multiple”).
This proves Proposition 2.11.5 (c).

The following theorem yields a good way of computing lcms of two numbers
(since we already know how to compute gcds via the Euclidean algorithm):

Theorem 2.11.6. Let a, b ∈ Z. Then, gcd (a, b) · lcm (a, b) = |ab|.

Proof of Theorem 2.11.6. If at least one of the two numbers a and b is 0, then Theorem
2.11.6 holds25. Hence, for the rest of this proof, we WLOG assume that none of the
two numbers a and b is 0. In other words, a and b are nonzero. Thus, Definition
2.11.4 yields that lcm (a, b) is the smallest positive element of the set Mul (a, b).
Also, gcd (a, b) is a positive integer (since a and b are nonzero) and thus nonzero.

Hence, we can define c ∈ Q by c =
ab

gcd (a, b)
. Consider this c. From c =

ab
gcd (a, b)

,

we obtain ab = gcd (a, b) · c.

Let d = |c|. The number c =
ab

gcd (a, b)
is nonzero (since a and b are nonzero).

Hence, its absolute value |c| is positive. In other words, d is positive (since d = |c|).
From ab = gcd (a, b) · c, we obtain

|ab| = |gcd (a, b) · c| = |gcd (a, b)|︸ ︷︷ ︸
=gcd(a,b)

(since gcd(a,b) is positive)

· |c|︸︷︷︸
=d

(by (3), applied to gcd (a, b) and c instead of x and y)
= gcd (a, b) · d. (27)

Solving this for d, we find d =
|ab|

gcd (a, b)
(since gcd (a, b) is nonzero).

24Proof. Assume that the two integers a and b are not all nonzero. Hence, Definition 2.11.4 shows
that lcm (a, b) = 0 ∈ Mul (a, b) (by Proposition 2.11.5 (a)). Thus, Proposition 2.11.5 (b) holds.

25Proof. Assume that at least one of the two numbers a and b is 0. Thus, the product ab is 0. Hence,
ab = 0, so that |ab| = 0.

On the other hand, the two numbers a, b are not all nonzero (since at least one of the two
numbers a and b is 0). Hence, Definition 2.11.4 shows that lcm (a, b) = 0. Comparing gcd (a, b) ·
lcm (a, b)︸ ︷︷ ︸

=0

= 0 with |ab| = 0, we obtain gcd (a, b) · lcm (a, b) = |ab|. In other words, Theorem

2.11.6 holds.
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We have gcd (a, b) | b (by Proposition 2.9.7 (f)). Thus,
b

gcd (a, b)
is an integer.

Now, c =
ab

gcd (a, b)
= a · b

gcd (a, b)
is the product of two integers (since a and

b
gcd (a, b)

are integers). Therefore, c itself is an integer. Thus, d is an integer as well

(since d = |c|). Moreover, c = a · b
gcd (a, b)

shows that a | c (since
b

gcd (a, b)
is an

integer). But Exercise 2.2.1 (a) (applied to c instead of a) yields c | |c| (this means
“c divides |c|”). In other words, c | d (since d = |c|). Hence, a | c | d.

So we have proven that a | d. Similarly, b | d. Thus, we know that (a | d and b | d).
In other words, d is a common multiple of a and b (by the definition of a “common
multiple”). In other words, d ∈ Mul (a, b) (by the definition of Mul (a, b)). Thus, d
is a positive element of the set Mul (a, b) (since d is positive).

We shall now show that d is the smallest positive element of this set. Indeed, let
x be any positive element of Mul (a, b). We are going to prove that x ≥ d.

In fact, x ∈ Mul (a, b). In other words, x is a common multiple of a and b. In
other words, we have (a | x and b | x). Hence, Theorem 2.9.17 (applied to x instead
of c) yields ab | gcd (a, b) · x. Both numbers gcd (a, b) and x are positive; hence,
their product gcd (a, b) · x is positive as well, and thus we have gcd (a, b) · x 6= 0.
Hence, Proposition 2.2.3 (b) (applied to ab and gcd (a, b) · x instead of a and b)
yields |ab| ≤ |gcd (a, b) · x| = gcd (a, b) · x (since gcd (a, b) · x is positive). Thus,

gcd (a, b) · x ≥ |ab| = gcd (a, b) · d (by (27)) .

We can divide this inequality by gcd (a, b) (since gcd (a, b) is positive), and thus
obtain x ≥ d.

Now, forget that we fixed x. We thus have proven that each positive element
x of the set Mul (a, b) satisfies x ≥ d. Hence, d is the smallest positive element
of the set Mul (a, b) (since we already know that d is a positive element of the set
Mul (a, b)). In other words, d is lcm (a, b) (since lcm (a, b) is the smallest positive
element of the set Mul (a, b)). In other words, d = lcm (a, b). Hence, (27) becomes
|ab| = gcd (a, b) · d︸︷︷︸

=lcm(a,b)

= gcd (a, b) · lcm (a, b). This proves Theorem 2.11.6.

Next, we state an analogue of Theorem 2.9.15 (with all divisibilities flipped):

Theorem 2.11.7. Let a, b ∈ Z. Then:
(a) For each m ∈ Z, we have the following logical equivalence:

(a | m and b | m) ⇐⇒ (lcm (a, b) | m) . (28)

(b) The common multiples of a and b are precisely the multiples of lcm (a, b).
(c) We have Mul (a, b) = Mul (lcm (a, b)).
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Again, the three parts of this theorem are saying the same thing from slightly
different perspectives. Our proof of Theorem 2.11.7 will rely on the following
lemma:

Lemma 2.11.8. Let m, a, b ∈ Z be such that a | m and b | m. Then, lcm (a, b) | m.

Lemma 2.11.8 is similar to Lemma 2.9.16, but its proof is not:

Proof of Lemma 2.11.8. If at least one of the two numbers a and b is 0, then Lemma
2.11.8 holds26. Hence, for the rest of this proof, we WLOG assume that none of the
two numbers a and b is 0. In other words, a and b are nonzero. Thus, Definition
2.11.4 yields that lcm (a, b) is the smallest positive element of the set Mul (a, b). Set
n = lcm (a, b). Thus, n is the smallest positive element of the set Mul (a, b) (since
lcm (a, b) is the smallest positive element of the set Mul (a, b)). Therefore, n is a
positive integer and belongs to Mul (a, b).

Now, n is a common multiple of a and b (since n belongs to Mul (a, b)). In other
words, we have (a | n and b | n).

Our goal is to prove that lcm (a, b) | m. In other words, our goal is to prove that
n | m (since n = lcm (a, b)). Assume the contrary. Thus, we don’t have n | m.
Hence, we don’t have m%n = 0 (because Corollary 2.6.9 (b) (applied to u = m)
shows that we have n | m if and only if m%n = 0). In other words, we have
m%n 6= 0.

Corollary 2.6.9 (a) (applied to u = m) yields that m%n ∈ {0, 1, . . . , n− 1} and
m%n ≡ m mod n. Combining m%n ∈ {0, 1, . . . , n− 1} with m%n 6= 0, we obtain
m%n ∈ {0, 1, . . . , n− 1} \ {0} = {1, 2, . . . , n− 1}. Hence, m%n is a positive integer
and satisfies m%n ≤ n− 1 < n.

From m%n ≡ m mod n and a | n, we obtain m%n ≡ m mod a (by Proposition
2.3.4 (e), applied to a, m%n and m instead of m, a and b). But m ≡ 0 mod a (since
a | m). Thus, m%n ≡ m ≡ 0 mod a. In other words, a | m%n. Similarly, b | m%n.

So we have proven that (a | m%n and b | m%n). In other words, m%n is a com-
mon multiple of a and b. In other words, m%n ∈ Mul (a, b). Therefore, m%n is a
positive element of Mul (a, b) (since m%n is positive). Thus, m%n ≥ n (since n is
the smallest positive element of Mul (a, b)). This contradicts the fact that m%n < n.
This contradiction shows that our assumption was false. Hence, Lemma 2.11.8 is
proven.

Proof of Theorem 2.11.7. (a) Let m ∈ Z. In order to prove (28), we need to prove the
“=⇒” and “⇐=” directions of the equivalence (28). But this is easy: The “=⇒”

26Proof. Assume that at least one of the two numbers a and b is 0. In other words, a = 0 or b = 0.
Let us WLOG assume that a = 0 (since the proof in the case b = 0 is analogous). We have a | m,
thus 0 = a | m.

On the other hand, the two numbers a, b are not all nonzero (since at least one of the two
numbers a and b is 0). Hence, Definition 2.11.4 shows that lcm (a, b) = 0 = a | m. In other
words, Lemma 2.11.8 holds.
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direction is just the statement of Lemma 2.11.8, whereas the “⇐=” direction is
trivial (to wit: if lcm (a, b) | m, then

a | lcm (a, b) (by Proposition 2.11.5 (c))
| m

and

b | lcm (a, b) (by Proposition 2.11.5 (c))
| m

and thus (a | m and b | m)). Hence, the equivalence (28) is proven. This proves
Theorem 2.11.7 (a).

(b) Theorem 2.11.7 (b) can be derived from Theorem 2.11.7 (a) in the same way
as Theorem 2.9.15 (b) was derived from Theorem 2.9.15 (a) (after the necessary
changes are made – such as flipping all divisibility relations and replacing “divi-
sor” by “multiple”).

(c) Theorem 2.11.7 (c) can be derived from Theorem 2.11.7 (b) in the same way
as Theorem 2.9.15 (c) was derived from Theorem 2.9.15 (b) (after the necessary
changes are made – such as flipping all divisibility relations and replacing “divi-
sor” by “multiple”).

Our next claim is an analogue of Theorem 2.9.21:

Theorem 2.11.9. Let b1, b2, . . . , bk be integers.
(a) For each m ∈ Z, we have the following logical equivalence:

(bi | m for all i ∈ {1, 2, . . . , k}) ⇐⇒ (lcm (b1, b2, . . . , bk) | m) .

(b) The common multiples of b1, b2, . . . , bk are precisely the multiples of
lcm (b1, b2, . . . , bk).

(c) We have Mul (b1, b2, . . . , bk) = Mul (lcm (b1, b2, . . . , bk)).
(d) If k > 0, then

lcm (b1, b2, . . . , bk) = lcm (lcm (b1, b2, . . . , bk−1) , bk) .

Proof of Theorem 2.11.9 (sketched). It is not hard to transform our above proof of The-
orem 2.9.21 into a proof of Theorem 2.11.9. To do so, we need (of course) to flip
the divisibility relations and replace “divisor” by “multiple” and “gcd” by “lcm”.
(Some more changes need to be made as well – for example, the induction base
needs to be handled differently, and the WLOG assumption that “the integers
b1, b2, . . . , b` are not all 0” needs to be replaced by a WLOG assumption that “the
integers b1, b2, . . . , b` are all nonzero”. Also, “largest element” needs to be replaced
by “smallest positive element”. But these are fairly straightforward changes; the
main thrust of the argument remains unchanged.)



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 90

Exercise 2.11.1. Let a, b ∈ Z.
(a) Prove that lcm (a, b) = lcm (b, a).
(b) Prove that lcm (−a, b) = lcm (a, b).
(c) Prove that lcm (a,−b) = lcm (a, b).
(d) Prove the following: If a | b, then lcm (a, b) = |b|.
(e) Let s ∈ Z. Prove that lcm (sa, sb) = |s| lcm (a, b).

Exercise 2.11.2. Let a, b, c be three integers.
(a) Prove that gcd (a, b, c) · lcm (bc, ca, ab) = |abc|.
(b) Prove that lcm (a, b, c) · gcd (bc, ca, ab) = |abc|.

2.12. The Chinese remainder theorem (elementary form)

Theorem 2.12.1. Let m and n be two coprime integers. Let a, b ∈ Z.
(a) There exists an integer x ∈ Z such that

(x ≡ a mod m and x ≡ b mod n) .

(b) If x1 and x2 are two such integers x, then x1 ≡ x2 mod mn.

Theorem 2.12.1 is known as the Chinese remainder theorem. More precisely, there
is a sizeable cloud of results that share this name; Theorem 2.12.1 is one of the
most elementary and basic of these results. A more general result is Theorem
2.12.4 further below. However, the strongest and most general “Chinese remainder
theorems” rely on concepts from abstract algebra such as rings and ideals; it will
take us a while to get to them.

Theorem 2.12.1 has gotten its name from the fact that a first glimpse of it appears
in “Master Sun’s Mathematical Manual” from the 3rd century AD; it took centuries
until it become a theorem with proof and precise statement.

The claim of Theorem 2.12.1 (b) is often restated as “This integer x (i.e., the
integer x satisfying (x ≡ a mod m and x ≡ b mod n)) is unique modulo mn”. The
“modulo mn” here signifies that what we are not claiming literal uniqueness (which
would mean that if x1 and x2 are two such integers x, then x1 = x2), but merely
claiming a weaker form (namely, that if x1 and x2 are two such integers x, then
x1 ≡ x2 mod mn).

Example 2.12.2. Theorem 2.12.1 (a) (applied to m = 5, n = 6 and a = 3 and
b = 2) shows that there exists an integer x ∈ Z such that

(x ≡ 3 mod 5 and x ≡ 2 mod 6) .

We will soon find such an integer, after we have proved Theorem 2.12.1.

Proof of Theorem 2.12.1. The integers m and n are coprime. In other words, m ⊥ n,
so that n ⊥ m (by Proposition 2.10.4).

https://en.wikipedia.org/wiki/Chinese_remainder_theorem#History
https://en.wikipedia.org/wiki/Chinese_remainder_theorem#History
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(a) Theorem 2.10.8 (b) (applied to m instead of a) shows that there exists an
m′ ∈ Z such that mm′ ≡ 1 mod n.

Similarly, there exists an n′ ∈ Z such that nn′ ≡ 1 mod m (since m and n play
symmetric roles in Theorem 2.12.1).

Now, set x0 = nn′a + mm′b. Then,

x0 = nn′︸︷︷︸
≡1 mod m

a + mm′b︸ ︷︷ ︸
≡0 mod m

≡ 1a + 0 = a mod m

(here, we have used the Principle of substitutivity for congruences, which we de-
scribed in Section 2.5) and similarly x0 ≡ b mod n. Thus, there exists an integer
x ∈ Z such that (x ≡ a mod m and x ≡ b mod n) (namely, x = x0). This proves
Theorem 2.12.1 (a).

(b) Let x1 and x2 be two such integers x. We want to prove that x1 ≡ x2 mod mn.
We know that x1 is an integer x such that (x ≡ a mod m and x ≡ b mod n). Thus,

x1 ≡ a mod m and x1 ≡ b mod n.
In particular, x1 ≡ a mod m, and similarly x2 ≡ a mod m. Thus, x1 ≡ a ≡

x2 mod m, so that m | x1 − x2. Similarly, n | x1 − x2. Since m ⊥ n, we thus obtain
mn | x1 − x2 (by Theorem 2.10.7, applied to m, n and x1 − x2 instead of a, b and c).
In other words, x1 ≡ x2 mod mn. This proves Theorem 2.12.1.

Example 2.12.3. Assume that we want to find an x ∈ Z such that

(x ≡ 3 mod 5 and x ≡ 2 mod 6) .

To compute such an x, let us follow the proof of Theorem 2.12.1 (a) above.
We need a modular inverse 5′ of 5 modulo 6. Such an inverse is 5, since 5 · 5 ≡

1 mod 6. (In this particular case, finding this modular inverse was easy, because
all we had to do is to test the 6 numbers 0, 1, 2, 3, 4, 5; it is clear that a modular
inverse of a modulo m, if it exists, can be found within the set {0, 1, . . . , m− 1}.
In general, there is a quick way to find a modular inverse of an integer a modulo
an integer m using the “Extended Euclidean algorithm”.)

We need a modular inverse 6′ of 6 modulo 5. Such an inverse is 1, since
6 · 1 ≡ 1 mod 5.

Now, the proof of Theorem 2.12.1 (a) tells us that x0 = 6 · 6′ · 3 + 5 · 5′ · 2 is an
integer x ∈ Z such that (x ≡ 3 mod 5 and x ≡ 2 mod 6). This x0 is

6 · 6′ · 3 + 5 · 5′ · 2 = 6 · 1 · 3 + 5 · 5 · 2 = 68.

So we have found an x ∈ Z such that (x ≡ 3 mod 5 and x ≡ 2 mod 6), namely
x = 68. (We can easily check this: 68 ≡ 3 mod 5 since 68 − 3 = 5 · 13; and
68 ≡ 2 mod 6 since 68− 2 = 6 · 11.)

There is also a version of Theorem 2.12.1 for multiple integers:

https://en.wikipedia.org/wiki/Modular_multiplicative_inverse#Computation
https://en.wikipedia.org/wiki/Modular_multiplicative_inverse#Computation
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Theorem 2.12.4. Let m1, m2, . . . , mk be k mutually coprime integers. Let
a1, a2, . . . , ak ∈ Z.

(a) There exists an integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , k}) . (29)

(b) If x1 and x2 are two such integers x, then x1 ≡ x2 mod m1m2 · · ·mk.

Again, Theorem 2.12.4 (b) is often stated in the form “This integer x is unique
modulo m1m2 · · ·mk”.

Clearly, Theorem 2.12.1 is the particular case of Theorem 2.12.4 obtained for
k = 2.

Proof of Theorem 2.12.4. Forget that we fixed k and m1, m2, . . . , mk and a1, a2, . . . , ak.
(a) We shall prove Theorem 2.12.4 (a) by induction on k:
Induction base: Let us check that Theorem 2.12.4 (a) holds for k = 0. Indeed, if

k = 0, then Theorem 2.12.4 (a) states the following:

Claim 0: Let m1, m2, . . . , m0 be 0 mutually coprime integers. Let a1, a2, . . . , a0 ∈
Z. There exists an integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , 0}) . (30)

But Claim 0 is true, because (30) is vacuously true27 for any integer x (so we can
take, for example, x = 0). In other words, Theorem 2.12.4 (a) holds for k = 0; thus,
the induction base is complete.

Needless to say, Claim 0 is not an interesting statement, but it is a perfectly valid
induction base! (But you are free to check the case k = 1 by hand – its proof is
almost as easy as that for k = 0.)

Induction step: Let ` be a positive integer. Assume that Theorem 2.12.4 (a) holds
for k = `− 1. We must now prove that Theorem 2.12.4 (a) holds for k = `.

We have assumed that Theorem 2.12.4 (a) holds for k = `− 1. In other words,
the following claim holds:

Claim 1: Let m1, m2, . . . , m`−1 be ` − 1 mutually coprime integers. Let
a1, a2, . . . , a`−1 ∈ Z. There exists an integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , `− 1}) . (31)

We must prove that Theorem 2.12.4 (a) holds for k = `. In other words, we must
prove the following claim:

Claim 2: Let m1, m2, . . . , m` be ` mutually coprime integers. Let a1, a2, . . . , a` ∈
Z. There exists an integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , `}) . (32)
27since there exists no i ∈ {1, 2, . . . , 0}



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 93

[Proof of Claim 2: The main idea of this proof is to combine Claim 1 (applied to
m1, m2, . . . , m`−1) with Theorem 2.12.1 (applied to the coprime integers m1m2 · · ·m`−1
and m`). In details:

The ` integers m1, m2, . . . , m` are mutually coprime. Thus, the ` − 1 integers
m1, m2, . . . , m`−1 are mutually coprime. Hence, Claim 1 shows that there exists an
integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , `− 1}) .

Consider this x, and denote it by u. Thus, u is an integer such that

(u ≡ ai mod mi for all i ∈ {1, 2, . . . , `− 1}) . (33)

Define an integer m = m1m2 · · ·m`−1.
The integers m and m` are coprime28. Hence, Theorem 2.12.1 (a) (applied to

n = m`, a = u and b = a`) yields that there exists an integer x ∈ Z such that

(x ≡ u mod m and x ≡ a` mod m`) .

Consider this x, and denote it by v. Thus, v is an integer such that

(v ≡ u mod m and v ≡ a` mod m`) .

Now, let i ∈ {1, 2, . . . , `− 1}. Then,

m = m1m2 · · ·m`−1 = mi · (m1m2 · · ·mi−1mi+1mi+2 · · ·m`−1) ;

thus, mi | m (since m1m2 · · ·mi−1mi+1mi+2 · · ·m`−1 is an integer). But as we just
have shown, we have v ≡ u mod m. Hence, Proposition 2.3.4 (e) (applied to v, u, m
and mi instead of a, b, n and m) yields v ≡ u mod mi (since mi | m). Hence,

v ≡ u ≡ ai mod mi (by (33)) .

Now, forget that we fixed i. We thus have proven the congruence v ≡ ai mod mi
for each i ∈ {1, 2, . . . , `− 1}. But this congruence also holds for i = ` (since v ≡
a` mod m`). Hence, this congruence holds for all i ∈ {1, 2, . . . , `}. In other words,
we have

v ≡ ai mod mi for all i ∈ {1, 2, . . . , `} .

Thus, there exists an integer x such that

(x ≡ ai mod mi for all i ∈ {1, 2, . . . , `})
28Proof. Recall that the ` integers m1, m2, . . . , m` are mutually coprime. In other words, mi ⊥ mj

for any i, j ∈ {1, 2, . . . , `} satisfying i 6= j. Applying this to j = `, we conclude that mi ⊥ m` for
any i ∈ {1, 2, . . . , `} satisfying i 6= `. In other words, mi ⊥ m` for any i ∈ {1, 2, . . . , `− 1} (since
the numbers i ∈ {1, 2, . . . , `} satisfying i 6= ` are precisely the numbers i ∈ {1, 2, . . . , `− 1}).
In other words, each i ∈ {1, 2, . . . , `− 1} satisfies mi ⊥ m`. Hence, Exercise 2.10.2 (applied to
c = m`, k = `− 1 and ai = mi) yields that m1m2 · · ·m`−1 ⊥ m`. This rewrites as m ⊥ m` (since
m = m1m2 · · ·m`−1). In other words, the integers m and m` are coprime.
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(namely, x = v). This proves Claim 2.]
We have now proven Claim 2. In other words, Theorem 2.12.4 (a) is true for

k = `. Thus, the induction step is complete, so we have proven Theorem 2.12.4 (a)
by induction.

(b) Let k and m1, m2, . . . , mk and a1, a2, . . . , ak be as in Theorem 2.12.4. Let x1 and
x2 be two integers x such that (29). We must prove that x1 ≡ x2 mod m1m2 · · ·mk.

We know that x1 is an integer x such that (29). In other words, x1 is an integer
and has the property that

(x1 ≡ ai mod mi for all i ∈ {1, 2, . . . , k}) . (34)

Now, let i ∈ {1, 2, . . . , k}. Then, (34) yields x1 ≡ ai mod mi. Similarly, x2 ≡
ai mod mi. Hence, x1 ≡ ai ≡ x2 mod mi. In other words, mi | x1 − x2.

Now, forget that we fixed i. We thus have shown that mi | x1 − x2 for each
i ∈ {1, 2, . . . , k}. Hence, Exercise 2.10.3 (applied to c = x1 − x2 and bi = mi) shows
that m1m2 · · ·mk | x1 − x2 (since m1, m2, . . . , mk are mutually coprime). In other
words, x1 ≡ x2 mod m1m2 · · ·mk. This proves Theorem 2.12.4 (b).

2.13. Primes

2.13.1. Definition and the Sieve of Eratosthenes

Definition 2.13.1. Let p be an integer greater than 1. We say that p is prime if
the only positive divisors of p are 1 and p. A prime integer is often just called a
prime.

Note that we required p to be greater than 1 here. Thus, 1 does not count as prime
even though its only positive divisor is 1 itself.

Example 2.13.2. (a) The only positive divisors of 7 are 1 and 7. Thus, 7 is a prime.
(b) The positive divisors of 14 are 1, 2, 7 and 14. These are more than just 1

and 14. Thus, 14 is not a prime.
(c) None of the numbers 4, 6, 8, 10, 12, 14, 16, . . . (that is, the multiples of 2 that

are larger than 2) is a prime. Indeed, if p is any of these numbers, then p has a
positive divisor other than 1 and p (namely, 2), and therefore does not meet the
definition of “prime”.

(d) None of the numbers 6, 9, 12, 15, 18, . . . (that is, the multiples of 3 that are
larger than 3) is a prime. Indeed, if p is any of these numbers, then p has a
positive divisor other than 1 and p (namely, 3), and therefore does not meet the
definition of “prime”.

Parts (c) and (d) of Example 2.13.2 suggest a method for finding all primes up to
a given integer:
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Example 2.13.3. Let us say we want to find all primes that are ≤ 30.
Step 1: All such primes must lie in {2, 3, . . . , 30} (since a prime is always an

integer greater than 1); thus, let us first write down all elements of {2, 3, . . . , 30}:

2 3 4 5 6 7 8 9 10
11 12 13 14 15 16 17 18 19 20
21 22 23 24 25 26 27 28 29 30

.

(We are using a table just in order to fit these elements on a page.)
We now plan to remove non-prime numbers from this table until only primes

are left.
Step 2: First, let us remove all multiples of 2 that are larger than 2 from our

table, because none of them is a prime (see Example 2.13.2 (c)). We thus are left
with

2 3 5 7 9
11 13 15 17 19
21 23 25 27 29

.

Step 3: Next, let us remove all multiples of 3 that are larger than 3 from our
table, because none of them is a prime (see Example 2.13.2 (d)). We thus are left
with

2 3 5 7
11 13 17 19

23 25 29
.

(Note that some of these multiples have already been removed in Step 2.)
Step 4: Next, let us remove all multiples of 4 that are larger than 4 from our

table, because none of them is a prime (for similar reasons). It turns out that this
does not change the table at all, because all such multiples have already been
removed in Step 2. This is not a coincidence: Since 4 itself has been removed, we
know that 4 was a multiple of some number d < 4 (in this case, d = 2) whose
multiples have been removed; therefore, all multiples of 4 are also multiples of d
and thus have been removed along with 4.

Step 5: Next, let us remove all multiples of 5 that are larger than 5 from our
table, because none of them is a prime (for similar reasons). We thus are left with

2 3 5 7
11 13 17 19

23 29
.

Step 6: Next, let us remove all multiples of 6 that are larger than 6 from our
table, because none of them is a prime. Just as Step 4, this does not change the
table, since all such multiples have already been removed in Step 2.

Step 7: Next, let us remove all multiples of 7 that are larger than 7 from our
table, because none of them is a prime. Again, this does not change the table,
since all such multiples have already been removed.
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Proceed likewise until Step 30, at which point the table has become

2 3 5 7
11 13 17 19

23 29
.

(You are reading it right: None of the steps from Step 6 to Step 30 causes any
changes to the table, since all multiples that these steps attempt to remove have
already been removed beforehand.)

The resulting table has the following property: If p is an element of this table,
then p cannot be a multiple of any d ∈ {2, 3, . . . , p− 1} (because if it was such a
multiple, then it would have been removed from the table in Step d or earlier).
In other words, if p is an element of this table, then p cannot have any divisor
d ∈ {2, 3, . . . , p− 1}. In other words, if p is an element of this table, then the
only positive divisors of p are 1 and p. In other words, if p is an element of
this table, then p is prime. Conversely, any prime ≤ 30 is in our table, since the
only numbers we have removed from the table were guaranteed to be non-prime.
Thus, the table now contains all the primes ≤ 30 and only them. So we conclude
that the primes ≤ 30 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

This method of finding primes is known as the sieve of Eratosthenes. We could
have made it more efficient using the following two tricks:

• If a number d ∈ {2, 3, . . . , 30} has been removed from the table before Step
d, then we know immediately that Step d will not change the table (because
all multiples of d have already been removed before this step). Thus, we
do not need to make this step.

• If d ∈ {2, 3, . . . , 30} satisfies d2 > 30, then Step d will not change the table29.
Thus, we only need to take the Steps d with d2 ≤ 30.

Together, these tricks tell us that the only steps we need to take are the Steps
2, 3 and 5.

29Proof. Let d ∈ {2, 3, . . . , 30} be such that d2 > 30. We must show that Step d will not change the
table.

Indeed, at Step d, we remove all multiples of d that are larger than d from our table. But all
these multiples (at least the ones that appear in our table) have already been removed from this
table before Step d.

Here is why: Let m ∈ {2, 3, . . . , 30} be a multiple of d that is larger than d. Then, d | m (since
m is a multiple of d) and thus m/d ∈ Z. Hence, m/d is a positive integer (since m/d is clearly
positive) and m/d > 1 (since m is larger than d). Furthermore, m/d | m (since m = (m/d) d),
so that m is a multiple of m/d. But d > 1 (since d ∈ {2, 3, . . . , 30}) and thus m/d < m. In other
words, m > m/d. Hence, m is a multiple of m/d that is larger than m/d.

Furthermore, d2 > 30 ≥ m (since m ∈ {2, 3, . . . , 30}). Dividing both sides of this inequality by
d, we obtain d > m/d. Hence, m/d < d, so that m/d ∈ {2, 3, . . . , d− 1} (since m/d > 1). Thus,
before Step d begins, Step m/d has already happened. Of course, Step m/d has removed m from
the table (since m is a multiple of m/d that is larger than m/d). Therefore, the number m has



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 97

2.13.2. Basic properties of primes

Proposition 2.13.4. Let p be a prime. Then, each i ∈ {1, 2, . . . , p− 1} is coprime
to p.

Proof of Proposition 2.13.4. Let i ∈ {1, 2, . . . , p− 1}. We must prove that i is coprime
to p.

From i ∈ {1, 2, . . . , p− 1}, we obtain 1 ≤ i ≤ p− 1 and thus i ≥ 1 > 0, so that
i 6= 0. Hence, i and p are not all zero. Also, |i| = i (since i > 0).

Also, gcd (i, p) is a positive integer (since i and p are not all zero). Thus,
|gcd (i, p)| = gcd (i, p).

Proposition 2.9.7 (f) (applied to a = i and b = p) shows that gcd (i, p) | i and
gcd (i, p) | p. From gcd (i, p) | i and i 6= 0, we obtain |gcd (i, p)| ≤ |i| (by Exercise
2.2.3 (b), applied to a = gcd (i, p) and b = i). In view of |gcd (i, p)| = gcd (i, p)
and |i| = i, this rewrites as gcd (i, p) ≤ i. Hence, gcd (i, p) ≤ i ≤ p− 1 < p and
therefore gcd (i, p) 6= p.

We know that p is prime. In other words, the only positive divisors of p are 1
and p (by the definition of “prime”).

The integer gcd (i, p) is a positive divisor of p (since gcd (i, p) is positive and
satisfies gcd (i, p) | p), and thus must be either 1 or p (since the only positive
divisors of p are 1 and p). Since we know that gcd (i, p) 6= p, we thus conclude that
gcd (i, p) = 1. In other words, i is coprime to p (by the definition of “coprime”).
This proves Proposition 2.13.4.

Note that this proposition characterizes primes: If p > 1 is an integer such that
each i ∈ {1, 2, . . . , p− 1} is coprime to p, then p is prime. (The proof of this is left
as an easy exercise.)

Proposition 2.13.5. Let p be a prime. Let a ∈ Z. Then, either p | a or p ⊥ a.

Proof of Proposition 2.13.5. Assume the contrary. Thus, neither p | a nor p ⊥ a.
We know that p is prime. In other words, p is an integer greater than 1 such that

the only positive divisors of p are 1 and p (by the definition of “prime”).
In particular, p is greater than 1. Hence, p > 1 > 0, so that p 6= 0. Hence, a and

p are not all zero. Thus, gcd (a, p) is a positive integer.
Proposition 2.9.7 (f) (applied to b = p) shows that gcd (a, p) | a and gcd (a, p) | p.

If we had gcd (a, p) = p, then we would obtain p = gcd (a, p) | a, which would
contradict the fact that we do not have p | a. Hence, we cannot have gcd (a, p) = p.
In other words, we have gcd (a, p) 6= p.

already been removed from the table before Step d.
Now, forget that we fixed m. We thus have shown that if m ∈ {2, 3, . . . , 30} is a multiple of

d that is larger than d, then m has already been removed from the table before Step d. In other
words, all multiples of d that we try to remove at Step d have already been removed before Step
d. Therefore, Step d does not change our table.
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The integer gcd (a, p) is a positive divisor of p (since gcd (a, p) is positive and
satisfies gcd (a, p) | p), and thus must be either 1 or p (since the only positive
divisors of p are 1 and p). Since we know that gcd (a, p) 6= p, we thus conclude
that gcd (a, p) = 1. But Proposition 2.9.7 (b) (applied to b = p) yields gcd (a, p) =
gcd (p, a). Thus, gcd (p, a) = gcd (a, p) = 1. In other words, p is coprime to a (by
the definition of “coprime”). In other words, p ⊥ a. This contradicts the fact that
we don’t have p ⊥ a.

This contradiction shows that our assumption was false. Hence, Proposition
2.13.5 is proven.

We note that a converse of Proposition 2.13.5 holds as well: If p > 1 is an integer
such that each a ∈ Z satisfies either p | a or p ⊥ a, then p is a prime. This is easy
to prove and left to the reader.

Exercise 2.13.1. Let p and q be two distinct primes. Prove that p ⊥ q.

Theorem 2.13.6. Let p be a prime. Let a, b ∈ Z such that p | ab. Then, p | a or
p | b.

Proof of Theorem 2.13.6. Assume the contrary. Thus, neither p | a nor p | b.
Proposition 2.13.5 yields that either p | a or p ⊥ a. Hence, p ⊥ a (since p | a does

not hold). But p | ab. Hence, Theorem 2.10.6 (applied to p, a and b instead of a, b
and c) yields p | b. This contradicts the fact that we don’t have p | b.

This contradiction shows that our assumption was false. Hence, Theorem 2.13.6
is proven.

Again, Theorem 2.13.6 has a converse:

Exercise 2.13.2. Let p > 1 be an integer. Assume that for every a, b ∈ Z satisfying
p | ab, we must have p | a or p | b. Prove that p is prime.

There is also a version of Theorem 2.13.6 for products of multiple integers:

Proposition 2.13.7. Let p be a prime. Let a1, a2, . . . , ak be integers such that p |
a1a2 · · · ak. Then, p | ai for some i ∈ {1, 2, . . . , k}.

We could prove Proposition 2.13.7 by induction on k. But here is a more direct
argument:

Proof of Proposition 2.13.7. Assume the contrary. Thus, there exists no i ∈ {1, 2, . . . , k} such
that p | ai. In other words, for each i ∈ {1, 2, . . . , k}, we have

(not p | ai) . (35)

Now, let i ∈ {1, 2, . . . , k}. Then, we don’t have p | ai (by (35)). But Proposition 2.13.5
(applied to a = ai) shows that either p | ai or p ⊥ ai. Hence, we have p ⊥ ai (since we don’t
have p | ai). In other words, ai ⊥ p (by Proposition 2.10.4).
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Now, forget that we fixed i. We thus have proven that each i ∈ {1, 2, . . . , k} satisfies
ai ⊥ p. Hence, Exercise 2.10.2 (applied to c = p) yields a1a2 · · · ak ⊥ p. In other words,
a1a2 · · · ak is coprime to p. In other words, gcd (a1a2 · · · ak, p) = 1. Hence, Proposition 2.9.7
(b) yields gcd (p, a1a2 · · · ak) = gcd (a1a2 · · · ak, p) = 1.

But p is prime; thus, p > 1. Hence, p is positive. Recall that p | a1a2 · · · ak; thus,
Proposition 2.9.7 (i) (applied to a = p and b = a1a2 · · · ak) yields gcd (p, a1a2 · · · ak) = |p| =
p (since p is positive). Comparing this with gcd (p, a1a2 · · · ak) = 1, we obtain p = 1. This
contradicts p > 1. This contradiction shows that our assumption was wrong. This proves
Proposition 2.13.7.

Exercise 2.13.3. Let p be a prime. Let k be a positive integer. Let a ∈ Z. Prove
that a ⊥ pk holds if and only if p - a.

2.13.3. Prime factorization I

The next simple proposition says that every integer n > 1 is divisible by at least
one prime:

Proposition 2.13.8. Let n > 1 be an integer. Then, there exists at least one prime
p such that p | n.

Proof of Proposition 2.13.8. Clearly, n is a divisor of n such that n > 1. Thus, there
exists a divisor q of n such that q > 1 (namely, q = n). Let d be the smallest such
divisor30. Thus, d is a divisor of n and satisfies d > 1. The integer d is positive
(since d > 1 > 0) and satisfies d | n (since d is a divisor of n).

We claim that d is a prime.
[Proof: Let e be any positive divisor of d. Assume (for the sake of contradiction) that

e /∈ {1, d}. Thus, e 6= 1 and e 6= d. Now, e is a divisor of d; thus, e | d | n. In other words, e
is a divisor of n. Also, e > 1 (because e is positive and e 6= 1). Hence, e is a divisor q of n
such that q > 1.

But d was defined as the smallest divisor q of n such that q > 1. Hence, any such divisor
is ≥ d. In other words, any divisor q of n such that q > 1 must satisfy q ≥ d. Applying
this to q = e, we conclude that e ≥ d (since e is a divisor q of n such that q > 1). Combined
with e 6= d, this yields e > d.

But e | d and d 6= 0 (since d > 1 > 0). Hence, |e| ≤ |d| (by Exercise 2.2.3 (b), applied
to a = e and b = d). Since e is positive, we have |e| = e, so that e = |e| ≤ |d| = d (since
d is positive). This contradicts e > d. This contradiction shows that our assumption (that
e /∈ {1, d}) was false. Thus, we have proven that e ∈ {1, d}. In other words, e is either 1 or
d.

Now, forget that we fixed e. We thus have proven that if e is any positive divisor of d,
then e ∈ {1, d}. In other words, any positive divisor of d is either 1 or d. Thus, the only
positive divisors of d are 1 and d (since 1 and d clearly are positive divisors of d). In other
words, d is prime (by the definition of “prime”).]

30This exists, because the set of possible candidates is nonempty (by the previous sentence) and
finite.
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So we know that d | n, and that d is prime. Hence, there exists at least one prime
p such that p | n (namely, p = d). This proves Proposition 2.13.8.

Definition 2.13.9. Let n be an integer. A prime factor of n means a prime p such
that p | n. Some say “prime divisor” instead of “prime factor”.

Thus, Proposition 2.13.8 says that each integer n > 1 has at least one prime
divisor.

Proposition 2.13.10. Let n be a positive integer. Then, n can be written as a
product of finitely many primes.

Example 2.13.11. (a) The integer 60 can be written as a product of four primes:
namely, 60 = 2 · 2 · 3 · 5.

(b) The integer 1 is the product of 0 many primes (because a product of 0
many primes is the empty product, which is defined to be 1).

Proof of Proposition 2.13.10. We shall prove Proposition 2.13.10 by strong induction
on n. Thus, we fix a positive integer N, and we assume (as the induction hypoth-
esis) that Proposition 2.13.10 holds whenever n < N. We must now prove that
Proposition 2.13.10 holds for n = N. In other words, we must prove that N can be
written as a product of finitely many primes.

If N = 1, then this is obvious (because 1 is a product of 0 many primes31). Thus,
for the rest of this proof, we WLOG assume that N 6= 1. Hence, N > 1 (since N
is a positive integer). Therefore, Proposition 2.13.8 (applied to n = N) shows that
there exists at least one prime p such that p | N. Consider this p.

We have p | N. In other words, there exists an integer c such that N = pc.
Consider this c. We have p > 1 (since p is prime); thus, p is positive. Hence, p 6= 0.
Thus, solving the equality N = pc for c, we find c = N/ p︸︷︷︸

>1

< N/1 (since N is

positive), so that c < N/1 = N. But our induction hypothesis says that Proposition
2.13.10 holds whenever n < N. Hence, we can apply Proposition 2.13.10 to n = c
(since c < N). We thus conclude that c can be written as a product of finitely many
primes. In other words, there exist primes q1, q2, . . . , qk such that c = q1q2 · · · qk.
Consider these q1, q2, . . . , qk.

But
N = p c︸︷︷︸

=q1q2···qk

= pq1q2 · · · qk.

Hence, N can be written as a product of finitely many primes (namely, of the
primes p, q1, q2, . . . , qk). In other words, Proposition 2.13.10 holds for n = N. This
completes the induction step. Hence, Proposition 2.13.10 is proven by strong in-
duction.

31See Example 2.13.11 (b).
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Proposition 2.13.10 shows that every positive integer n can be represented as a
product of finitely many primes. Such a representation – or, more precisely, the
list of the primes it contains – will be called the prime factorization of n. Rigorously
speaking, this means that we make the following definition:

Definition 2.13.12. Let n be a positive integer. A prime factorization of n means a
tuple (p1, p2, . . . , pk) of primes such that n = p1p2 · · · pk.

Keep in mind that “tuple” always means “ordered tuple” unless we say other-
wise.

Example 2.13.13. (a) The prime factorizations of 12 are

(2, 2, 3) , (2, 3, 2) , (3, 2, 2) .

Indeed, these three 3-tuples are prime factorizations of 12 because 12 = 2 · 2 · 3 =
2 · 3 · 2 = 3 · 2 · 2. It is not hard to check that they are the only prime factorizations
of 12.

(b) If p is a prime, then the only prime factorization of p is the 1-tuple (p).
(c) If p is a prime and i ∈ N, then the only prime factorization of pi is the

i-tuple

p, p, . . . , p︸ ︷︷ ︸
i times

. This is not quite obvious at this point (though it is not

hard to derive from Proposition 2.13.7).
(d) The only prime factorization of 1 is the 0-tuple ().

This example suggests that all prime factorizations of a given positive integer n
are equal to each other up to the order of their entries (i.e., are permutations of
each other). This is indeed true, and we are going to prove this soon (in Theorem
2.13.31 below).

2.13.4. Permutations

First of all: what is a “permutation”, and what exactly does “equal to each other
up to the order of their entries” mean?

Informally speaking, a permutation of a tuple32 (a1, a2, . . . , ak) is a tuple obtained
from (a1, a2, . . . , ak) by rearranging its entries (without inserting new entries, or
removing or duplicating existing entries). To be rigorous, we need to encode this
rearrangement via a bijective map σ : {1, 2, . . . , k} → {1, 2, . . . , k} which will tell us
which entry of our original tuple will go to which position in the rearranged tuple.
Such bijective maps, too, are called permutations – but permutations of sets, not
of tuples. So let us first define permutations of a set, and then use this to define
permutations of a tuple:

32Recall: a prime factorization is a tuple.
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Definition 2.13.14. Let A be a set. A permutation of A means a bijective map
A→ A.

Example 2.13.15. (a) The map {1, 2, 3, 4} → {1, 2, 3, 4} that sends 1, 2, 3, 4 to
3, 1, 4, 2 (respectively) is a permutation of {1, 2, 3, 4}.

(b) The map {1, 2, 3} → {1, 2, 3} that sends 1, 2, 3 to 2, 3, 1 (respectively) is a
permutation of {1, 2, 3}.

(c) For each set A, the identity map id : A→ A is a permutation of A.

Thus, we have defined permutations of a set. We shall later study such permu-
tations in more detail, at least for finite sets A.

Now we can define permutations of a tuple:

Definition 2.13.16. Let (p1, p2, . . . , pk) be a k-tuple. A permutation of
(p1, p2, . . . , pk) means a k-tuple of the form

(
pσ(1), pσ(2), . . . , pσ(k)

)
where σ is

a permutation of the set {1, 2, . . . , k}. A permutation of (p1, p2, . . . , pk) is also
known as a rearrangement of (p1, p2, . . . , pk).

Example 2.13.17. (a) The 4-tuple (1, 3, 1, 2) is a permutation of the 4-tuple
(3, 2, 1, 1). In fact, if we denote the 4-tuple (3, 2, 1, 1) by (p1, p2, p3, p4), then
there exists a permutation σ of the set {1, 2, 3, 4} such that (1, 3, 1, 2) =(

pσ(1), pσ(2), pσ(3), pσ(4)

)
. (Actually, there exist two such permutations σ: One

of them sends 1, 2, 3, 4 to 3, 1, 4, 2, while the other sends 1, 2, 3, 4 to 4, 1, 3, 2.)
(b) Any k-tuple is a permutation of itself. Indeed, if (p1, p2, . . . , pk) is any k-

tuple, then (p1, p2, . . . , pk) =
(

pσ(1), pσ(2), . . . , pσ(k)

)
if we let σ be the identity

map id : {1, 2, . . . , k} → {1, 2, . . . , k}.

The following fact is easy and fundamental:

Proposition 2.13.18. Let (p1, p2, . . . , pk) be a k-tuple. If (q1, q2, . . . , qk) is a permu-
tation of (p1, p2, . . . , pk), then (p1, p2, . . . , pk) is a permutation of (q1, q2, . . . , qk).

Proof of Proposition 2.13.18. If you don’t insist on formalization, this is obvious: Any
rearrangement of the entries of a k-tuple can be undone by another rearrangement
(which places the entries back in their old positions). Thus, (p1, p2, . . . , pk) can be
obtained from (q1, q2, . . . , qk) by rearranging the entries.

Here is a formal proof:
Assume that (q1, q2, . . . , qk) is a permutation of (p1, p2, . . . , pk). In other words, the k-

tuple (q1, q2, . . . , qk) has the form
(

pσ(1), pσ(2), . . . , pσ(k)

)
for some permutation σ of the set

{1, 2, . . . , k} (by Definition 2.13.16). Consider this σ, and denote it by τ. Thus, τ is a permu-
tation of the set {1, 2, . . . , k} and has the property that (q1, q2, . . . , qk) =

(
pτ(1), pτ(2), . . . , pτ(k)

)
.
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Now, τ is a permutation of the set {1, 2, . . . , k}. In other words, τ is a bijective map
{1, 2, . . . , k} → {1, 2, . . . , k} (by Definition 2.13.14). So the map τ is bijective, hence in-
vertible. Thus, its inverse τ−1 is well-defined and is also invertible33, hence bijective. So
we know that τ−1 is a bijective map {1, 2, . . . , k} → {1, 2, . . . , k}. In other words, τ−1 is a
permutation of the set {1, 2, . . . , k} (by Definition 2.13.14).

We have (q1, q2, . . . , qk) =
(

pτ(1), pτ(2), . . . , pτ(k)

)
. In other words,

qi = pτ(i) for each i ∈ {1, 2, . . . , k} . (36)

Hence, for each j ∈ {1, 2, . . . , k}, we have

qτ−1(j) = pτ(τ−1(j))

(
by (36), applied to i = τ−1 (j)

)
= pj

(
since τ

(
τ−1 (j)

)
= j
)

.

In other words,
(

qτ−1(1), qτ−1(2), . . . , qτ−1(k)

)
= (p1, p2, . . . , pk). Hence, the k-tuple (p1, p2, . . . , pk)

has the form
(

qσ(1), qσ(2), . . . , qσ(k)

)
for some permutation σ of the set {1, 2, . . . , k} (namely,

σ = τ−1). In other words, the k-tuple (p1, p2, . . . , pk) is a permutation of the k-tuple
(q1, q2, . . . , qk) (by Definition 2.13.16). This proves Proposition 2.13.18.

Now, we can say what we mean when we say that two tuples differ only in the
order of their entries:

Definition 2.13.19. We say that two tuples differ only in the order of their entries if
they are permutations of each other.

The next lemma that we shall use is a basic fact from elementary combinatorics:

Lemma 2.13.20. Let P be a set. Let (a1, a2, . . . , ak) and (b1, b2, . . . , b`) be two tuples
of elements of P. Assume that for each p ∈ P, we have

(the number of times p appears in (a1, a2, . . . , ak))

= (the number of times p appears in (b1, b2, . . . , b`)) . (37)

Then, the two tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) differ only in the order of
their entries (i.e., are permutations of each other). (In other words, we have k = `,
and there exists a permutation σ of the set {1, 2, . . . , `} such that (a1, a2, . . . , ak) =(

bσ(1), bσ(2), . . . , bσ(`)

)
.)

Lemma 2.13.20 is an intuitively obvious fact: It says that if two tuples (of any
objects – e.g., numbers) have the property that any object occurs as often in the first
tuple as it does in the second tuple, then the two tuples differ only in the order of
their entries. From the formal point of view, though, it is a statement that needs
proof. Let us merely sketch how such a proof can be obtained, without going into
the details:
33And its inverse is

(
τ−1)−1

= τ.
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Proof of Lemma 2.13.20 (sketched). We can WLOG assume that the set P is finite (since other-
wise, we can replace P by the finite subset {a1, a2, . . . , ak, b1, b2, . . . , b`}, without breaking the
assumption that (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are two tuples of elements of P). Assume
this (at least if you don’t want to use the Axiom of Choice34).

For each p ∈ P, define two sets

Ap = {i ∈ {1, 2, . . . , k} | ai = p} ;
Bp =

{
j ∈ {1, 2, . . . , `} | bj = p

}
.

The equation (37) then says that
∣∣Ap

∣∣ = ∣∣Bp
∣∣ for each p ∈ P. Hence, for each p ∈ P, there

exists a bijection φp : Ap → Bp (because if two sets have the same size, then there exists a
bijection between them). Pick such a bijection φp for each p ∈ P. (This does not require the
Axiom of Choice, since P is finite.)

Now, define a map σ : {1, 2, . . . , k} → {1, 2, . . . , `} as follows: For each i ∈ {1, 2, . . . , k},
set σ (i) = φp (i), where p = ai. Thus, for each p ∈ P, the map σ sends each i ∈ Ap
to an element of Bp (because if i ∈ Ap, then ai = p, and thus the definition of σ yields
σ (i) = φp (i) ∈ Bp.)

It is not hard to see that this map σ is a bijection. (Its inverse map sends each j ∈
{1, 2, . . . , `} to φ−1

p (j), where p = bj.) Thus, we have found a bijection from {1, 2, . . . , k}
to {1, 2, . . . , `}. This shows that the sets {1, 2, . . . , k} and {1, 2, . . . , `} have the same size;
in other words, k = `. Thus, the bijection σ is actually a bijection from {1, 2, . . . , `} to
{1, 2, . . . , `}. In other words, σ is a permutation of the set {1, 2, . . . , `}.

Finally, it is easy to see that (a1, a2, . . . , ak) =
(

bσ(1), bσ(2), . . . , bσ(`)

)
. (Indeed, let i ∈

{1, 2, . . . , k}, and set p = ai; then, the definition of σ yields σ (i) = φp (i) ∈ Bp and there-

fore bσ(i) = ai. Since this holds for each i, we thus conclude that
(

bσ(1), bσ(2), . . . , bσ(k)

)
=

(a1, a2, . . . , ak). Thus, (a1, a2, . . . , ak) =
(

bσ(1), bσ(2), . . . , bσ(k)

)
=
(

bσ(1), bσ(2), . . . , bσ(`)

)
(since

k = `).) Thus, we have found a permutation σ of the set {1, 2, . . . , `} such that (a1, a2, . . . , ak) =(
bσ(1), bσ(2), . . . , bσ(`)

)
. In other words, the two tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are

permutations of each other. This proves Lemma 2.13.20.

Lemma 2.13.20 has a converse that is much simpler:

Lemma 2.13.21. Let P be a set. Let (a1, a2, . . . , ak) and (b1, b2, . . . , b`) be two tuples
of elements of P. Assume that these two tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`)
differ only in the order of their entries (i.e., are permutations of each other).
Then, for each p ∈ P, we have

(the number of times p appears in (a1, a2, . . . , ak))

= (the number of times p appears in (b1, b2, . . . , b`)) .

We leave the proof of this lemma to the reader.

34I don’t.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 105

2.13.5. p-valuations

Now, let us come back to number theory. We first claim that a nonzero integer n
can only be divisible by finitely many powers of a given prime p. More precisely:

Lemma 2.13.22. Let p be a prime. Let n be a nonzero integer. Then, there exists
a largest m ∈N such that pm | n.

The proof of this lemma will rely on a simple inequality, which we leave as an
exercise:

Exercise 2.13.4. Let p be an integer such that p > 1. Prove that pk > k for each
k ∈N.

Proof of Lemma 2.13.22. We know that p is a prime. Thus, p is an integer and p > 1
(by the definition of a “prime”). This is all we shall need from our assumption that
p is prime.

Let W be the set of all m ∈ N satisfying pm | n. Then, W is a set of integers.
Moreover, 0 is an m ∈N satisfying pm | n (since p0 = 1 | n); in other words, 0 ∈ W
(by the definition of W). Hence, the set W is nonempty.

Let u = |n|. Thus, u ∈N.
Exercise 2.13.4 yields that pk > k for each k ∈ N. Thus, each g ∈ W satisfies

g ∈ {0, 1, . . . , u− 1} 35. In other words, W ⊆ {0, 1, . . . , u− 1}. Hence, the set W
is finite (since the set {0, 1, . . . , u− 1} is finite). Thus, W is a finite nonempty set of
integers. Therefore, the set W has a largest element. In view of how W was defined,
this can be restated as follows: There exists a largest m ∈ N such that pm | n. This
proves Lemma 2.13.22.

Definition 2.13.23. Let p be a prime.
(a) Let n be a nonzero integer. Then, vp (n) shall denote the largest m ∈ N

such that pm | n. This is well-defined (by Lemma 2.13.22). This nonnegative
integer vp (n) will be called the p-valuation (or the p-adic valuation) of n.

(b) We extend this definition of vp (n) to the case of n = 0 as follows: Set
vp (0) = ∞, where ∞ is a new symbol. This symbol ∞ is supposed to model
“positive infinity”; in particular, we take it to satisfy the following rules:

• We have k + ∞ = ∞ + k = ∞ for all integers k.

• We have ∞ + ∞ = ∞.

• Each integer k satisfies k < ∞ and ∞ > k (and thus k ≤ ∞ and ∞ ≥ k).

35Proof. Let g ∈ W. Thus, g is an m ∈ N satisfying pm | n (by the definition of W). In other words,
g ∈ N and pg | n. Also, n 6= 0 (since n is nonzero). Hence, Proposition 2.2.3 (b) (applied to
a = pg and b = n) yields |pg| ≤ |n| = u. But p is positive (since p > 1 > 0); thus, pg is positive.
Hence, |pg| = pg. Thus, pg = |pg| ≤ u. But recall that pk > k for each k ∈ N. Applying this to
k = g, we find pg > g. Hence, g < pg ≤ u, so that g ∈ {0, 1, . . . , u− 1} (since g ∈N). Qed.
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• No integer k satisfies k ≥ ∞ or ∞ ≤ k (or k > ∞ or ∞ < k).

• If S is a nonempty set of integers, then min (S ∪ {∞}) = min S (provided
that min S exists).

• We have min {∞} = ∞.

• If S is any set of integers, then max (S ∪ {∞}) = ∞.

(Note, however, that ∞ is not supposed to be a “first class citizen” of the
number system. In particular, ∞ −∞ is not defined. More generally, k −∞ is
never defined, whatever k is. Indeed, any definition of k−∞ would break some
of the familiar rules of arithmetic. The only operations that we shall subject ∞
to are addition, minimum and maximum.)

Note that the rules for the symbol ∞ yield that

k + ∞ = ∞ + k = max {k, ∞} = ∞

and
min {k, ∞} = k

for each k ∈ Z ∪ {∞}. It is not hard to see that basic properties of inequalities
(such as “if a ≤ b and b ≤ c, then a ≤ c”) and of addition (such as “(a + b) + c =
a + (b + c)”) and of the interplay between inequalities and addition (such as “if
a ≤ b, then a + c ≤ b + c”) are still valid in Z ∪ {∞} (that is, they still hold if we
plug ∞ for one or more of the variables). However, of course, we cannot “cancel”
∞ from equalities (i.e., we cannot cancel ∞ from a + ∞ = b + ∞ to obtain a = b) or
inequalities.

Example 2.13.24. (a) We have v5 (50) = 2. Indeed, 2 is the largest m ∈ N such
that 5m | 50 (because 52 = 25 | 50 but 53 = 125 - 50).

(b) We have v5 (51) = 0. Indeed, 0 is the largest m ∈ N such that 5m | 51
(because 50 = 1 | 51 but 51 = 5 - 51).

(c) We have v5 (55) = 1. Indeed, 1 is the largest m ∈ N such that 5m | 55
(because 51 = 5 | 55 but 52 = 25 - 55).

(d) We have v5 (0) = ∞ (by Definition 2.13.23 (b)).

Definition 2.13.23 (a) can be restated in the following more intuitive way: Given
a prime p and a nonzero integer n, we let vp (n) be the number of times we can
divide n by p without leaving Z. Definition 2.13.23 (b) is consistent with this
picture, because we can clearly divide 0 by p infinitely often without leaving Z.
From this point of view, the following lemma should be obvious:

Lemma 2.13.25. Let p be a prime. Let i ∈ N. Let n ∈ Z. Then, pi | n if and only
if vp (n) ≥ i.
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Proof of Lemma 2.13.25. First, let us notice that pi | 0. Also, Definition 2.13.23 (b)
yields vp (0) = ∞ ≥ i (according to our rules for the symbol ∞). Hence, both
statements

(
pi | 0

)
and

(
vp (0) ≥ i

)
hold. Thus, pi | 0 if and only if vp (0) ≥ i. In

other words, Lemma 2.13.25 holds if n = 0. Thus, for the rest of this proof, we
WLOG assume that n 6= 0. Hence, n is nonzero. Thus, vp (n) is the largest m ∈ N

such that pm | n (by Definition 2.13.23 (a)). Hence, vp (n) itself is an m ∈ N such
that pm | n. In other words, vp (n) ∈N and pvp(n) | n.

We must prove that pi | n if and only if vp (n) ≥ i. Let us prove the “=⇒” and
“⇐=” directions of this “if and only if” statement separately:
=⇒: Assume that pi | n. We must prove that vp (n) ≥ i.
The integer i is an m ∈ N such that pm | n (since pi | n). But vp (n) is the

largest such m (by Definition 2.13.23 (a)). Hence, vp (n) ≥ i. This proves the “=⇒”
direction of Lemma 2.13.25.
⇐=: Assume that vp (n) ≥ i. We must prove that pi | n.
We have vp (n) ≥ i, thus i ≤ vp (n). Hence, Exercise 2.2.4 (applied to p, i and

vp (n) instead of n, a and b) yields pi | pvp(n). Thus, pi | pvp(n) | n.
Hence, we have proven pi | n. This proves the “⇐=” direction of Lemma 2.13.25.

Corollary 2.13.26. Let p be a prime. Let n ∈ Z. Then, vp (n) = 0 if and only if
p - n.

Proof of Corollary 2.13.26. =⇒: Assume that vp (n) = 0. We must prove that p - n.
We don’t have vp (n) ≥ 1 (since vp (n) = 0 < 1). But Lemma 2.13.25 (applied to

i = 1) shows that p1 | n if and only if vp (n) ≥ 1. Hence, we don’t have p1 | n (since
we don’t have vp (n) ≥ 1). In other words, we have p1 - n. In other words, p - n
(since p = p1). This proves the “=⇒” direction of Corollary 2.13.26.
⇐=: Assume that p - n. We must prove that vp (n) = 0.
We don’t have p | n (since p - n). In other words, we don’t have p1 | n (since

p1 = p). But Lemma 2.13.25 (applied to i = 1) shows that p1 | n if and only if
vp (n) ≥ 1. Hence, we don’t have vp (n) ≥ 1 (since we don’t have p1 | n). In other
words, vp (n) < 1.

If we had n = 0, then we would have p | 0 = n, which would contradict p - n.
Hence, we don’t have n = 0. Thus, n is nonzero. Hence, Definition 2.13.23 (a)
shows that vp (n) ∈N. In light of this, we can conclude vp (n) = 0 from vp (n) < 1.
This proves the “⇐=” direction of Corollary 2.13.26.

Here is another property of p-valuations that is useful in their study:

Lemma 2.13.27. Let p be a prime. Let n ∈ Z be nonzero. Then:
(a) There exists a nonzero integer u such that u ⊥ p and n = upvp(n).
(b) If i ∈N and w ∈ Z are such that w ⊥ p and n = wpi, then vp (n) = i.
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Before we prove this formally, let us show the idea behind this lemma. Recall
that, given a prime p and a nonzero integer n, the number vp (n) counts how often
we can divide n by p without leaving Z. What happens after we have divided n
by p this many times? We get a number u that is still an integer, but is no longer
divisible by p, and thus must be coprime to p (by Proposition 2.13.5). This is what
Lemma 2.13.27 (a) says. Lemma 2.13.27 (b) is a converse statement: It says that if
we divide n by p some number of times (say, i times) and obtain an integer coprime
to p, then i must be vp (n).

Proof of Lemma 2.13.27. Definition 2.13.23 (a) shows that vp (n) is the largest m ∈N

such that pm | n. Hence, vp (n) itself is an m ∈ N such that pm | n. In other words,
vp (n) ∈N and pvp(n) | n.

Thus, in particular, pvp(n) | n. In other words, there exists an integer c such that
n = pvp(n)c. Consider this c. We have n = pvp(n)c = cpvp(n).

Assume (for the sake of contradiction) that p | c. Thus, there exists an integer d
such that c = pd. Consider this d. Now,

n = pvp(n) c︸︷︷︸
=pd

= pvp(n)p︸ ︷︷ ︸
=pvp(n)+1

d = pvp(n)+1d.

Hence, pvp(n)+1 | n (since d is an integer). In other words, vp (n) + 1 is an m ∈ N

such that pm | n. But we know that vp (n) is the largest such m (by Definition
2.13.23 (a)). Hence, we conclude that vp (n) ≥ vp (n) + 1. But this is clearly absurd.
This contradiction shows that our assumption (that p | c) was wrong. Hence, we
do not have p | c.

But Proposition 2.13.5 (applied to a = c) shows that either p | c or p ⊥ c. Hence,
p ⊥ c (since we do not have p | c). In other words, c ⊥ p (because of Proposition
2.10.4).

If we had c = 0, then we would have n = pvp(n) c︸︷︷︸
=0

= 0, which would contradict

the fact that n is nonzero. Hence, we cannot have c = 0. Thus, c is nonzero.
Now, we know that c is a nonzero integer satisfying c ⊥ p and n = cpvp(n).

Hence, there exists a nonzero integer u such that u ⊥ p and n = upvp(n) (namely,
u = c). This proves Lemma 2.13.27 (a).

(b) Let i ∈ N and w ∈ Z be such that w ⊥ p and n = wpi. We must prove that
vp (n) = i.

From w ⊥ p, we obtain p ⊥ w (by Proposition 2.10.4). In other words, gcd (p, w) =
1.

We have n = wpi = piw and thus pi | n (since w is an integer). But Lemma
2.13.25 yields that pi | n if and only if vp (n) ≥ i. Hence, we have vp (n) ≥ i (since
we have pi | n).

Now, we shall prove that vp (n) ≤ i. Indeed, assume the contrary. Thus, vp (n) >
i, so that vp (n) ≥ i+ 1 (since vp (n) and i are integers). But Lemma 2.13.25 (applied
to i + 1 instead of i) shows that pi+1 | n if and only if vp (n) ≥ i + 1. Thus, we have
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pi+1 | n (since we have vp (n) ≥ i + 1). In other words, ppi | wpi (since pi+1 = ppi

and n = wpi). But p is a prime; thus, p > 1 > 0 and therefore p 6= 0. Hence,
pi 6= 0. Thus, Exercise 2.2.3 (applied to p, w and pi instead of a, b and c) shows
that p | w holds if and only if ppi | wpi. Hence, p | w holds (since ppi | wpi

holds). Thus, Proposition 2.9.7 (i) (applied to p and w instead of a and b) yields
gcd (p, w) = |p| = p (since p > 0). Comparing this with gcd (p, w) = 1, we find
p = 1. This contradicts p > 1.

This contradiction shows that our assumption was false. Hence, vp (n) ≤ i is
proven. Combining this with vp (n) ≥ i, we obtain vp (n) = i. This proves Lemma
2.13.27 (b).

The next property of p-adic valuations is crucial, as it reveals how they can be
computed and bounded:

Theorem 2.13.28. Let p be a prime.
(a) We have vp (ab) = vp (a) + vp (b) for any two integers a and b.
(b) We have vp (a + b) ≥ min

{
vp (a) , vp (b)

}
for any two integers a and b.

(c) We have vp (1) = 0.

(d) We have vp (q) =

{
1, if q = p;
0, if q 6= p

for any prime q.

Note that Theorem 2.13.28 (a) gives a formula for vp (ab) in terms of vp (a) and
vp (b), but there is no such formula for vp (a + b) (since vp (a) and vp (b) do not
uniquely determine vp (a + b)). Thus, Theorem 2.13.28 (b) only gives a bound.

Proof of Theorem 2.13.28. (a) Let a and b be two integers. We must prove that vp (ab) =
vp (a) + vp (b).

If a = 0, then this is true36. Thus, for the rest of the proof of Theorem 2.13.28 (a),
we WLOG assume that a 6= 0. For similar reasons, we WLOG assume that b 6= 0.

The integer a is nonzero (since a 6= 0). Thus, Lemma 2.13.27 (a) (applied to
n = a) shows that there exists a nonzero integer u such that u ⊥ p and a = upvp(a).
Consider this u, and denote it by x. Thus, x is a nonzero integer such that x ⊥ p
and a = xpvp(a).

The integer b is nonzero (since b 6= 0). Thus, Lemma 2.13.27 (a) (applied to
n = b) shows that there exists a nonzero integer u such that u ⊥ p and b = upvp(b).
Consider this u, and denote it by y. Thus, y is a nonzero integer such that y ⊥ p
and b = ypvp(b).

36Proof. Assume that a = 0. Then, a︸︷︷︸
=0

b = 0 and thus vp (ab) = vp (0) = ∞ (by Definition 2.13.23

(b)). Also, from a = 0, we obtain vp (a) = vp (0) = ∞. Hence, vp (a)︸ ︷︷ ︸
=∞

+vp (b) = ∞ + vp (b) = ∞

(since ∞ + k = ∞ for each k ∈ Z∪ {∞}). Comparing this with vp (ab) = ∞, we obtain vp (ab) =
vp (a) + vp (b). This is exactly what we wanted to prove.
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We have x ⊥ p and y ⊥ p. Thus, Theorem 2.10.9 (applied to x, y and p instead
of a, b and c) shows that xy ⊥ p.

The integer ab is nonzero (since a 6= 0 and b 6= 0).
Furthermore, multiplying the equalities a = xpvp(a) and b = ypvp(b), we obtain

ab =
(

xpvp(a)
) (

ypvp(b)
)
= (xy)

(
pvp(a)pvp(b)

)
︸ ︷︷ ︸
=pvp(a)+vp(b)

= (xy) pvp(a)+vp(b).

Thus, Lemma 2.13.27 (b) (applied to n = ab, i = vp (a) + vp (b) and w = xy) shows
that vp (ab) = vp (a) + vp (b) (since vp (a) + vp (b) ∈ N and xy ∈ Z and xy ⊥ p).
This proves Theorem 2.13.28 (a).

(b) Let a and b be two integers. We must prove that vp (a + b) ≥ min
{

vp (a) , vp (b)
}

.
If a = 0, then this is true37. Thus, for the rest of the proof of Theorem 2.13.28 (b),

we WLOG assume that a 6= 0. For similar reasons, we WLOG assume that b 6= 0.
The integer a is nonzero (since a 6= 0). Thus, vp (a) ∈ N (by Definition 2.13.23

(a)). Similarly, vp (b) ∈N.
Let m = min

{
vp (a) , vp (b)

}
. Thus, m ∈N (since vp (a) ∈N and vp (b) ∈N).

We have m = min
{

vp (a) , vp (b)
}
≤ vp (a); in other words, vp (a) ≥ m. But

Lemma 2.13.25 (applied to n = a and i = m) shows that pm | a if and only if
vp (a) ≥ m. Hence, we have pm | a (since vp (a) ≥ m). In other words, a ≡
0 mod pm. Similarly, b ≡ 0 mod pm. Adding these two congruences together, we
obtain a + b ≡ 0 + 0 = 0 mod pm. In other words, pm | a + b.

But Lemma 2.13.25 (applied to n = a + b and i = m) shows that pm | a + b if and
only if vp (a + b) ≥ m. Hence, we have vp (a + b) ≥ m (since pm | a + b). Thus,
vp (a + b) ≥ m = min

{
vp (a) , vp (b)

}
. This proves Theorem 2.13.28 (b).

(c) Exercise 2.10.1 (a) (applied to a = p) yields 1 ⊥ p. Also, 1 = 1 · p0. Thus,
Lemma 2.13.27 (b) (applied to n = 1, i = 0 and w = 1) yields vp (1) = 0. This
proves Theorem 2.13.28 (c).

(d) Let q be a prime. We must prove that vp (q) =

{
1, if q = p;
0, if q 6= p

.

We are in one of the following two cases:
Case 1: We have q = p.
Case 2: We have q 6= p.
Let us first consider Case 1. In this case, we have q = p. But Exercise 2.10.1

(a) (applied to a = p) yields 1 ⊥ p. Also, p = 1 · p1. Thus, Lemma 2.13.27 (b)
(applied to n = p, i = 1 and w = 1) yields vp (p) = 1. From q = p, we obtain
vp (q) = vp (p) = 1. Comparing this with{

1, if q = p;
0, if q 6= p

= 1 (since q = p) ,

37Proof. Assume that a = 0. Then, vp

 a︸︷︷︸
=0

+b

 = vp (b) ≥ min
{

vp (a) , vp (b)
}

(since any element

of a set is ≥ to the minimum of this set). This is exactly what we wanted to prove.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 111

we obtain vp (q) =

{
1, if q = p;
0, if q 6= p

. Hence, Theorem 2.13.28 (d) is proven in Case 1.

Let us now consider Case 2. In this case, we have q 6= p. Thus, the primes q and
p are distinct. Hence, Exercise 2.13.1 (applied to q and p instead of p and q) yields
q ⊥ p. Also, q = q · p0 (since p0 = 1). Thus, Lemma 2.13.27 (b) (applied to n = q,
i = 0 and w = q) yields vp (q) = 0. Comparing this with{

1, if q = p;
0, if q 6= p

= 0 (since q 6= p) ,

we obtain vp (q) =

{
1, if q = p;
0, if q 6= p

. Hence, Theorem 2.13.28 (d) is proven in Case 2.

We have now proven Theorem 2.13.28 (d) in each of the two Cases 1 and 2. Thus,
Theorem 2.13.28 (d) is always proven.

Corollary 2.13.29. Let p be a prime. Let a1, a2, . . . , ak be k integers. Then,
vp (a1a2 · · · ak) = vp (a1) + vp (a2) + · · ·+ vp (ak).

Proof of Corollary 2.13.29. This follows straightforwardly by induction on k, using
Theorem 2.13.28 (a) (as well as Theorem 2.13.28 (c) for the induction base). We leave
the details to the reader, who has seen this sort of proof several times already.

Exercise 2.13.5. Let p be a prime. Let n ∈ Z. Prove that vp (|n|) = vp (n).

Exercise 2.13.6. Let p be a prime. Let a ∈ Z and k ∈ N. Prove that vp
(
ak) =

kvp (a).

Exercise 2.13.7. Let p1, p2, . . . , pu be finitely many distinct primes. Let
a1, a2, . . . , au be nonnegative integers.

(a) Prove that vpi

(
pa1

1 pa2
2 · · · p

au
u
)
= ai for each i ∈ {1, 2, . . . , u}.

(b) Prove that vp
(

pa1
1 pa2

2 · · · p
au
u
)

= 0 for each prime p satisfying p /∈
{p1, p2, . . . , pu}.

2.13.6. Prime factorization II

Proposition 2.13.30. Let n be a positive integer. Let (a1, a2, . . . , ak) be a prime
factorization of n. Let p be a prime. Then,

(the number of times p appears in the tuple (a1, a2, . . . , ak))

= (the number of i ∈ {1, 2, . . . , k} such that ai = p)
= vp (n) .
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Proof of Proposition 2.13.30. We have assumed that (a1, a2, . . . , ak) is a prime factor-
ization of n. Thus, a1, a2, . . . , ak are primes satisfying n = a1a2 · · · ak. Hence, for
each i ∈ {1, 2, . . . , k}, the integer ai is prime and thus satisfies

vp (ai) =

{
1, if ai = p;
0, if ai 6= p

(38)

(by Theorem 2.13.28 (d), applied to q = ai).
From n = a1a2 · · · ak, we obtain

vp (n) = vp (a1a2 · · · ak)

= vp (a1) + vp (a2) + · · ·+ vp (ak) (by Corollary 2.13.29)

=
k

∑
i=1︸︷︷︸

= ∑
i∈{1,2,...,k}

vp (ai)︸ ︷︷ ︸
=

1, if ai = p;
0, if ai 6= p

(by (38))

= ∑
i∈{1,2,...,k}

{
1, if ai = p;
0, if ai 6= p

= ∑
i∈{1,2,...,k};

ai=p

{
1, if ai = p;
0, if ai 6= p︸ ︷︷ ︸

=1
(since ai=p)

+ ∑
i∈{1,2,...,k};

ai 6=p

{
1, if ai = p;
0, if ai 6= p︸ ︷︷ ︸

=0
(since ai 6=p)(

since each i ∈ {1, 2, . . . , k} satisfies either ai = p or ai 6= p
(but not both)

)
= ∑

i∈{1,2,...,k};
ai=p

1 + ∑
i∈{1,2,...,k};

ai 6=p

0

︸ ︷︷ ︸
=0

= ∑
i∈{1,2,...,k};

ai=p

1

= (the number of i ∈ {1, 2, . . . , k} such that ai = p) · 1
= (the number of i ∈ {1, 2, . . . , k} such that ai = p)
= (the number of times p appears in (a1, a2, . . . , ak)) .

This proves Proposition 2.13.30.

We are finally ready to prove the so-called Fundamental Theorem of Arithmetic:

Theorem 2.13.31. Let n be a positive integer.
(a) There exists a prime factorization of n.
(b) Any two such factorizations differ only in the order of their entries (i.e.,

are permutations of each other).

Proof of Theorem 2.13.31. (a) Proposition 2.13.10 shows that n can be written as a
product of finitely many primes. In other words, there exist finitely many primes
p1, p2, . . . , pk such that n = p1p2 · · · pk. Consider these primes. Thus, (p1, p2, . . . , pk)
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is a prime factorization of n (by the definition of “prime factorization”). Hence,
there exists a prime factorization of n. This proves Theorem 2.13.31 (a).

(b) Let (a1, a2, . . . , ak) and (b1, b2, . . . , b`) be two prime factorizations of n. We
must prove that (a1, a2, . . . , ak) and (b1, b2, . . . , b`) differ only in the order of their
entries (i.e., are permutations of each other).

Let P be the set of all primes. Note that (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are
prime factorizations of n. Hence, (a1, a2, . . . , ak) and (b1, b2, . . . , b`) are tuples of
primes, i.e., tuples of elements of P.

Let p ∈ P. Thus, p is a prime (by the definition of P). Hence, Proposition 2.13.30
shows that

(the number of times p appears in the tuple (a1, a2, . . . , ak))

= (the number of i ∈ {1, 2, . . . , k} such that ai = p)
= vp (n) .

Similarly,

(the number of times p appears in the tuple (b1, b2, . . . , b`))
= (the number of i ∈ {1, 2, . . . , `} such that bi = p)
= vp (n) .

Comparing these two equalities, we conclude that

(the number of times p appears in (a1, a2, . . . , ak))

= (the number of times p appears in (b1, b2, . . . , b`)) . (39)

Now, forget that we fixed p. We thus have proven (39) for each p ∈ P. Hence,
Lemma 2.13.20 shows that the tuples (a1, a2, . . . , ak) and (b1, b2, . . . , b`) differ only
in the order of their entries (i.e., are permutations of each other). This completes
our proof of Theorem 2.13.31 (b).

2.13.7. The canonical factorization

You have seen finite products such as38

∏
i∈{1,2,3,4,5}

i = 1 · 2 · 3 · 4 · 5 = 5! = 120 and

∏
i∈{3,5,7}

(
i2 + 1

)
=
(

32 + 1
)
·
(

52 + 1
)
·
(

72 + 1
)
= 13000.

38Here and in the following, n! denotes the product 1 · 2 · · · · ·n whenever n ∈N. Thus, in particular,

0! = (empty product) = 1, 1! = 1, 2! = 1 · 2 = 2,
3! = 1 · 2 · 3 = 6, 4! = 1 · 2 · 3 · 4 = 24, 5! = 1 · 2 · 3 · 4 · 5 = 120.
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Sometimes, infinite products (i.e., products ranging over infinite sets) also make
sense. Many examples of well-defined infinite products arise from analysis and
have to do with convergence. Here, we are doing algebra and thus shall only
consider a very elementary, non-analytic meaning of convergence. Namely, we will
consider infinite products that have only finitely many factors different from 1. For
example, the product 2 · 7 · 4 · 1 · 1 · 1 · 1 · · · ·︸ ︷︷ ︸

infinitely many 1’s

is of such form. It is easy to give

a meaning to such products: Just throw away all the 1’s (since multiplying by 1
does not change a number) and take the product of the remaining (finitely many)
numbers. So, for example, our product 2 · 7 · 4 · 1 · 1 · 1 · 1 · · · ·︸ ︷︷ ︸

infinitely many 1’s

should evaluate to

2 · 7 · 4 = 56.
This is indeed a meaningful and useful definition. For example, the set of all

prime numbers is infinite (by Theorem 2.13.43 below), but nevertheless, for each
nonzero integer n, the product ∏

p prime
pvp(n) (where the “ ∏

p prime
” symbol means a

product ranging over all primes p) is well-defined due to having only finitely many
factors different from 1:

Lemma 2.13.32. Let n be a nonzero integer.
(a) We have vp (n) = 0 for every prime p > |n|. (Note that “for every prime

p > |n|” is shorthand for “for every prime p satisfying p > |n|”.)
(b) The product ∏

p prime
pvp(n) has only finitely many factors different from 1.

(Here and in the following, the “ ∏
p prime

” symbol means a product ranging over

all primes p.)

Proof of Lemma 2.13.32. (a) Let p be a prime such that p > |n|. We must prove that
vp (n) = 0.

We have p > 1 (since p is prime); thus, p > 1 > 0 and therefore |p| = p > |n|.
We have n 6= 0 (since n is nonzero). Thus, if we had p | n, then we would have
|p| ≤ |n| (by Proposition 2.2.3 (b), applied to a = p and b = n), which would
contradict |p| > |n|. Thus, we cannot have p | n. In other words, we have p - n.

But Corollary 2.13.26 yields that vp (n) = 0 if and only if p - n. Hence, vp (n) = 0
(since p - n). This proves Lemma 2.13.32 (a).

(b) For every prime p > |n|, we have vp (n) = 0 (by Lemma 2.13.32 (a)) and thus
pvp(n) = p0 = 1. Thus, all but finitely many primes p satisfy pvp(n) = 1 (since all
but finitely many primes p satisfy p > |n|). Therefore, all but finitely many factors
of the product ∏

p prime
pvp(n) are 1. In other words, the product ∏

p prime
pvp(n) has only

finitely many factors different from 1. This proves Lemma 2.13.32 (b).

Corollary 2.13.33. Let n be a positive integer. Then,

n = ∏
p prime

pvp(n).
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Here, the infinite product ∏
p prime

pvp(n) is well-defined (according to Lemma

2.13.32 (b)).

This expression n = ∏
p prime

pvp(n) is called the canonical factorization of n.

Proof of Corollary 2.13.33. Theorem 2.13.31 (a) shows that there exists a prime fac-
torization of n. Consider such a factorization, and denote it by (a1, a2, . . . , ak). Thus,
(a1, a2, . . . , ak) is a prime factorization of n; in other words, a1, a2, . . . , ak are primes
satisfying n = a1a2 · · · ak. For each prime p, we have

(the number of i ∈ {1, 2, . . . , k} such that ai = p) = vp (n) (40)

(by Proposition 2.13.30). Now,

n = a1a2 · · · ak = ∏
i∈{1,2,...,k}

ai

= ∏
p prime

∏
i∈{1,2,...,k};

ai=p

ai︸︷︷︸
=p here, we have split our product into smaller

products, according to the value of ai;
this is allowed, since each ai is a prime


= ∏

p prime
∏

i∈{1,2,...,k};
ai=p

p

︸ ︷︷ ︸
=p(the number of i∈{1,2,...,k} such that ai=p)

= ∏
p prime

p(the number of i∈{1,2,...,k} such that ai=p)︸ ︷︷ ︸
=pvp(n)

(by (40))

= ∏
p prime

pvp(n).

This proves Corollary 2.13.33.

The next exercise says that a nonnegative integer n is uniquely determined by
the family

(
vp (n)

)
p prime of its p-valuations for all primes p:

Exercise 2.13.8. Let n and m be two nonnegative integers. Assume that

vp (n) = vp (m) for every prime p. (41)

Prove that n = m.
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Corollary 2.13.34. Let n be a nonzero integer. Then,

|n| = ∏
p prime

pvp(n).

Here, the infinite product ∏
p prime

pvp(n) is well-defined (according to Lemma

2.13.32 (b)).

Proof of Corollary 2.13.34. The integer |n| is positive (since n is nonzero). Hence,
Corollary 2.13.33 (applied to |n| instead of n) yields

|n| = ∏
p prime

pvp(|n|)︸ ︷︷ ︸
=pvp(n)

(since Exercise 2.13.5
yields vp(|n|)=vp(n))

= ∏
p prime

pvp(n).

This proves Corollary 2.13.34.

We can furthermore use p-adic valuations to check divisibility of integers:

Proposition 2.13.35. Let n and m be integers. Then, n | m if and only if each
prime p satisfies vp (n) ≤ vp (m).

Proof of Proposition 2.13.35. If m = 0, then Proposition 2.13.35 is true39. Hence, for
the rest of this proof, we WLOG assume that m 6= 0. Therefore, m is nonzero.
Hence, each prime p satisfies vp (m) ∈N (by Definition 2.13.23 (a)), so that vp (m) <
∞.

If n = 0, then Proposition 2.13.35 is true40. Hence, for the rest of this proof, we
WLOG assume that n 6= 0. Therefore, n is nonzero.

39Proof. Assume that m = 0. Thus, each prime p satisfies vp

 m︸︷︷︸
=0

 = vp (0) = ∞ (by Definition

2.13.23 (b)) and thus vp (m) = ∞ ≥ vp (n), so that vp (n) ≤ vp (m). Also, n | 0 = m. Thus, the
statements “n | m” and “each prime p satisfies vp (n) ≤ vp (m)” are both true. Hence, n | m if
and only if each prime p satisfies vp (n) ≤ vp (m). In other words, Proposition 2.13.35 is true.
Qed.

40Proof. Assume that n = 0. Thus, each prime p satisfies vp

 n︸︷︷︸
=0

 = vp (0) = ∞ (by Definition

2.13.23 (b)) and thus vp (m) < ∞ = vp (n). Applying this to p = 2, we obtain v2 (m) < v2 (n)
(since 2 is a prime). Hence, we don’t have v2 (n) ≤ v2 (m). Thus, the statement “each prime p
satisfies vp (n) ≤ vp (m)” is false (since p = 2 is a counterexample).

If we had n | m, then there would be an integer c such that m = nc. This would then lead
to m = n︸︷︷︸

=0

c = 0, which would contradict m 6= 0. Hence, we cannot have n | m. Thus, the

statements “n | m” and “each prime p satisfies vp (n) ≤ vp (m)” are both false. Hence, n | m if
and only if each prime p satisfies vp (n) ≤ vp (m). In other words, Proposition 2.13.35 is true.
Qed.
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The statement of Proposition 2.13.35 does not change if we replace n and m
by |n| and |m|, respectively41. Hence, we can WLOG assume that n and m are
nonnegative. Assume this. Then, n ≥ 0, so that n > 0 (since n is nonzero). Hence,
n is a positive integer. Thus, Corollary 2.13.33 yields

n = ∏
p prime

pvp(n). (42)

Similarly,
m = ∏

p prime
pvp(m). (43)

Our goal is to prove that n | m if and only if each prime p satisfies vp (n) ≤
vp (m). We shall now prove the “⇐=” and “=⇒” directions of this “if and only if”
statement separately.
⇐=: Assume that each prime p satisfies vp (n) ≤ vp (m). We must prove that

n | m.
The product ∏

p prime
pvp(m)−vp(n) is well-defined42.

We have assumed that each prime p satisfies vp (n) ≤ vp (m). In other words,
each prime p satisfies vp (m)− vp (n) ≥ 0 and therefore pvp(m)−vp(n) ∈ Z. Hence,
the product ∏

p prime
pvp(m)−vp(n) is a product of integers, and thus itself an integer.

Let us denote this product by c. Thus,

c = ∏
p prime

pvp(m)−vp(n). (44)

Thus, c is an integer (since we have just shown that ∏
p prime

pvp(m)−vp(n) is an integer).

41Indeed, the statement “n | m” does not change (since Proposition 2.2.3 (a) yields that we have
n | m if and only if |n| | |m|), and the statement “each prime p satisfies vp (n) ≤ vp (m)” does
not change either (because Exercise 2.13.5 shows that vp (|n|) = vp (n) and vp (|m|) = vp (m)).

42Proof. Let p be a prime such that p > |m|. Then, vp (m) = 0 (by Lemma 2.13.32 (a), applied to m
instead of n), so that vp (m)− vp (n)︸ ︷︷ ︸

≥0

≤ vp (m) = 0. On the other hand, vp (n) ≤ vp (m) (since we

assumed that each prime p satisfies vp (n) ≤ vp (m)); thus, vp (m)− vp (n) ≥ 0. Combining this
with vp (m)− vp (n) ≤ 0, we obtain vp (m)− vp (n) = 0. Hence, pvp(m)−vp(n) = p0 = 1.

Now, forget that we fixed p. We thus have proven that every prime p > |m| satisfies
pvp(m)−vp(n) = 1. Hence, all but finitely many primes p satisfy pvp(m)−vp(n) = 1 (since all but
finitely many primes p satisfy p > |m|). In other words, the product ∏

p prime
pvp(m)−vp(n) has only

finitely many factors different from 1. Hence, this product is well-defined.
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Multiplying the equalities (42) and (44), we obtain

nc =

(
∏

p prime
pvp(n)

)(
∏

p prime
pvp(m)−vp(n)

)
= ∏

p prime

(
pvp(n)pvp(m)−vp(n)

)
︸ ︷︷ ︸

=pvp(n)+(vp(m)−vp(n))=pvp(m)

(since vp(n)+(vp(m)−vp(n))=vp(m))

= ∏
p prime

pvp(m) = m (by (43)) .

In other words, m = nc. Hence, n | m (since c is an integer). This completes the
proof of the “⇐=” direction of Proposition 2.13.35.
=⇒: Assume that n | m. We must prove that each prime p satisfies vp (n) ≤

vp (m).
So let p be a prime. Recall that n | m. In other words, there exists some integer b

such that m = nb. Consider this b. Now,

vp

 m︸︷︷︸
=nb

 = vp (nb)

= vp (n) + vp (b)︸ ︷︷ ︸
≥0

(by Theorem 2.13.28 (a), applied to a = n)

≥ vp (n) ,

so that vp (n) ≤ vp (m). Now, forget that we fixed p. We thus have proven that each
prime p satisfies vp (n) ≤ vp (m). This completes the proof of the “=⇒” direction
of Proposition 2.13.35.

Let us extract one of the steps of our above proof into a separate lemma, since
we shall use the same reasoning later on:

Lemma 2.13.36. For each prime p, let ap and bp be nonnegative integers such
that

ap ≤ bp. (45)

Assume that all but finitely many primes p satisfy bp = 0. Then, the products
∏

p prime
pap and ∏

p prime
pbp are both well-defined and satisfy

∏
p prime

pap | ∏
p prime

pbp . (46)

Proof of Lemma 2.13.36. This is going to be really boring: The well-definedness part
is all about bookkeeping finiteness information, whereas the ∏

p prime
pap | ∏

p prime
pbp
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claim is proven just as we proved the “⇐=” direction of Proposition 2.13.35. For
the sake of completeness, let us nevertheless give the complete proof:

All but finitely many primes p satisfy bp = 0. In other words, there exists some finite set
S of primes such that every prime p /∈ S satisfies

bp = 0. (47)

Consider this S. Clearly, all but finitely many primes p satisfy p /∈ S (since S is finite).
Now, every prime p /∈ S satisfies

ap = 0 (48)
43. Hence, all but finitely many primes p satisfy ap = 0 (since all but finitely many primes
p satisfy p /∈ S). Thus, all but finitely many primes p satisfy pap = p0 = 1. In other words,
only finitely many primes p satisfy pap 6= 1. In other words, only finitely many factors of
the product ∏

p prime
pap are different from 1. Hence, this product ∏

p prime
pap is well-defined.

Also, all but finitely many primes p satisfy bp = 0. Therefore, all but finitely many
primes p satisfy pbp = p0 = 1. In other words, only finitely many primes p satisfy pbp 6= 1.
In other words, only finitely many factors of the product ∏

p prime
pbp are different from 1.

Hence, this product ∏
p prime

pbp is well-defined.

The product ∏
p prime

pbp−ap is well-defined44. Denote this product by c.

For each prime p, we have bp − ap ≥ 0 (by (45)) and thus bp − ap ∈ N. Hence, for each
prime p, the number pbp−ap is an integer. Therefore, ∏

p prime
pbp−ap is a product of integers,

and thus itself an integer. In other words, c is an integer (since c = ∏
p prime

pbp−ap ).

But from c = ∏
p prime

pbp−ap , we obtain

(
∏

p prime
pap

)
c =

(
∏

p prime
pap

)(
∏

p prime
pbp−ap

)
= ∏

p prime

(
pap pbp−ap

)
︸ ︷︷ ︸

=pap+(bp−ap)=pbp

= ∏
p prime

pbp .

Thus, ∏
p prime

pap | ∏
p prime

pbp (since c is an integer). This completes the proof of Lemma

2.13.36.

43Proof. Let p /∈ S be a prime. Then, (45) yields ap ≤ bp = 0 (by (47)). Thus, ap = 0 (since ap is a
nonnegative integer), qed.

44Proof. Every prime p /∈ S satisfies bp︸︷︷︸
=0

(by (47))

− ap︸︷︷︸
=0

(by (48))

= 0− 0 = 0 and therefore pbp−ap = p0 = 1.

Thus, all but finitely many primes p satisfy pbp−ap = 1 (since all but finitely many primes p
satisfy p /∈ S). In other words, only finitely many primes p satisfy pbp−ap 6= 1. In other words,
only finitely many factors of the product ∏

p prime
pbp−ap are different from 1. Hence, this product

∏
p prime

pbp−ap is well-defined.
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Corollary 2.13.37. For each prime p, let bp be a nonnegative integer. Assume
that all but finitely many primes p satisfy bp = 0. Let n = ∏

p prime
pbp . Then,

vq (n) = bq for each prime q.

Proof of Corollary 2.13.37. The product ∏
p prime

pbp is well-defined. (This can be shown

just as in the proof of Lemma 2.13.36.) Now, choose a list (a1, a2, . . . , ak) of primes
that contains each prime p exactly bp times. (Such a list clearly exists: For example,
we can pick 2, 2, . . . , 2︸ ︷︷ ︸

b2 times

, 3, 3, . . . , 3︸ ︷︷ ︸
b3 times

, 5, 5, . . . , 5︸ ︷︷ ︸
b5 times

, . . .

 .

This is indeed a finite list, since all but finitely many primes p satisfy bp = 0.)
Now, the list (a1, a2, . . . , ak) contains each prime p exactly bp times (and no other

entries). Hence, the product a1a2 · · · ak of the entries of this list contains each prime
p exactly bp times as a factor (and no other factors). Thus, this product equals

∏
p prime

pbp . In other words, a1a2 · · · ak = ∏
p prime

pbp . Hence,

n = ∏
p prime

pbp = a1a2 · · · ak.

Thus, (a1, a2, . . . , ak) is a prime factorization of n (since (a1, a2, . . . , ak) is a tuple of
primes).

Let q be a prime. Proposition 2.13.30 (applied to p = q) yields

(the number of times q appears in the tuple (a1, a2, . . . , ak))

= (the number of i ∈ {1, 2, . . . , k} such that ai = q)
= vq (n) .

Thus,

vq (n) = (the number of times q appears in the tuple (a1, a2, . . . , ak)) = bq

(since the list (a1, a2, . . . , ak) contains each prime p exactly bp times, and thus con-
tains the prime q exactly bq times). This proves Corollary 2.13.37.

Exercise 2.13.9. Let n be a nonzero integer. Let a and b be two integers. Assume
that

a ≡ b mod pvp(n) for every prime p. (49)

Prove that a ≡ b mod n.

Canonical factorizations can also be used to describe gcds and lcms:
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Proposition 2.13.38. Let n and m be two nonzero integers. Then,

gcd (n, m) = ∏
p prime

pmin{vp(n),vp(m)} (50)

and
lcm (n, m) = ∏

p prime
pmax{vp(n),vp(m)}. (51)

Proof of Proposition 2.13.38. If p is any prime, then vp (n) and vp (m) are nonnegative
integers (since n and m are nonzero), and thus so are min

{
vp (n) , vp (m)

}
and

max
{

vp (n) , vp (m)
}

.

It is easy to see that the infinite products ∏
p prime

pmin{vp(n),vp(m)} and

∏
p prime

pmax{vp(n),vp(m)} are well-defined45.

Define two nonnegative integers

g = ∏
p prime

pmin{vp(n),vp(m)} and h = gcd (n, m) . (52)

Note that h = gcd (n, m) is a positive integer (since n and m are nonzero) and
thus nonzero. Thus, vp (h) is a nonnegative integer for each prime p.

Corollary 2.13.34 yields |n| = ∏
p prime

pvp(n). But each prime p satisfies

min
{

vp (n) , vp (m)
}
≤ vp (n) (since the minimum of a set is ≤ to any element

of the set). Hence, (46) (applied to ap = min
{

vp (n) , vp (m)
}

and bp = vp (n))

yields ∏
p prime

pmin{vp(n),vp(m)} | ∏
p prime

pvp(n). This rewrites as g | |n| (since g =

∏
p prime

pmin{vp(n),vp(m)} and |n| = ∏
p prime

pvp(n)). Hence, g | |n| | n (by Exercise 2.2.1

(b)). Similarly, g | m. Thus, (g | n and g | m). Hence, Lemma 2.9.16 (applied to g, n
and m instead of m, a and b) yields g | gcd (n, m) = h.

45Proof. Let p be a prime such that p > max {|m| , |n|}. Thus, p > max {|m| , |n|} ≥ |m| and
therefore vp (m) = 0 (by Lemma 2.13.32 (a), applied to m instead of n). Similarly, vp (n) = 0.

Hence, max

vp (n)︸ ︷︷ ︸
=0

, vp (m)︸ ︷︷ ︸
=0

 = max {0, 0} = 0 and therefore pmax{vp(n),vp(m)} = p0 = 1.

Now, forget that we fixed p. We thus have proven that every prime p > max {|m| , |n|}
satisfies pmax{vp(n),vp(m)} = 1. Hence, all but finitely many primes p satisfy pmax{vp(n),vp(m)} = 1
(since all but finitely many primes p satisfy p > max {|m| , |n|}). In other words, the product

∏
p prime

pmax{vp(n),vp(m)} has only finitely many factors different from 1. Hence, this product is

well-defined. Similarly, we can show that the product ∏
p prime

pmin{vp(n),vp(m)} is well-defined.
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Proposition 2.9.7 (f) (applied to n and m instead of a and b) yields gcd (n, m) | n
and gcd (n, m) | m. Thus, h = gcd (n, m) | n and h = gcd (n, m) | m.

On the other hand, Proposition 2.13.35 (applied to h and n instead of n and m)
shows that h | n if and only if each prime p satisfies vp (h) ≤ vp (n). Thus, each
prime p satisfies vp (h) ≤ vp (n) (since h | n).

Now, fix any prime p. Then, vp (h) ≤ vp (n) (as we have just seen) and vp (h) ≤
vp (m) (similarly). Combining these two inequalities, we obtain

vp (h) ≤ min
{

vp (n) , vp (m)
}

(since min
{

vp (n) , vp (m)
}

must be one of the two numbers vp (n) and vp (m), but
we have just seen that vp (h) is ≤ to each of these two numbers).

Now, forget that we fixed p. We thus have show that each prime p satisfies
vp (h) ≤ min

{
vp (n) , vp (m)

}
. Hence, (46) (applied to ap = vp (h) and bp =

min
{

vp (n) , vp (m)
}

) yields ∏
p prime

pvp(h) | ∏
p prime

pmin{vp(n),vp(m)}. But h is positive;

hence, Corollary 2.13.33 (applied to h instead of n) yields

h = ∏
p prime

pvp(h) | ∏
p prime

pmin{vp(n),vp(m)} = g.

Thus, we know that g | h and h | g. Hence, Exercise 2.2.2 (applied to a = g and
b = h) yields |g| = |h|. But g is nonnegative; thus, |g| = g. Hence, g = |g| = |h| = h
(since h is positive). In view of (52), this rewrites as ∏

p prime
pmin{vp(n),vp(m)} =

gcd (n, m). This proves (50).
The proof of (51) is entirely analogous to the proof of (50) we just gave: We

merely need to

• flip all divisibilities and inequalities and replace “min” by “max” everywhere
and replace “gcd” by “lcm” everywhere;

• use Proposition 2.11.5 (c) instead of Proposition 2.9.7 (f);

• use Lemma 2.11.8 instead of Lemma 2.9.16.

Example 2.13.39. For this example, set n = 32 · 5 · 78 and m = 2 · 33 · 72. Let us
compute gcd (n, m) and lcm (n, m) using Proposition 2.13.38.

From n = 32 · 5 · 78, we obtain (using Corollary 2.13.37) that

v3 (n) = 2, v5 (n) = 1, v7 (n) = 8, and
vp (n) = 0 for each prime p /∈ {3, 5, 7} .
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Similarly, from m = 2 · 33 · 72, we obtain

v2 (m) = 1, v3 (m) = 3, v7 (m) = 2, and
vp (n) = 0 for each prime p /∈ {2, 3, 7} .

Now, (50) yields

gcd (n, m)

= ∏
p prime

pmin{vp(n),vp(m)}

= 2min{v2(n),v2(m)}︸ ︷︷ ︸
=2min{0,1}=20

· 3min{v3(n),v3(m)}︸ ︷︷ ︸
=3min{2,3}=32

· 5min{v5(n),v5(m)}︸ ︷︷ ︸
=5min{1,0}=50

· 7min{v7(n),v7(m)}︸ ︷︷ ︸
=7min{8,2}=72

· ∏
p prime;

p/∈{2,3,5,7}

pmin{vp(n),vp(m)}︸ ︷︷ ︸
=1

(since vp(n)=0 and vp(m)=0
and thus min{vp(n),vp(m)}=min{0,0}=0)

= 20 · 32 · 50 · 72 = 32 · 72.

Likewise, (51) yields

lcm (n, m)

= ∏
p prime

pmax{vp(n),vp(m)}

= 2max{v2(n),v2(m)}︸ ︷︷ ︸
=2max{0,1}=21

· 3max{v3(n),v3(m)}︸ ︷︷ ︸
=3max{2,3}=33

· 5max{v5(n),v5(m)}︸ ︷︷ ︸
=5max{1,0}=51

· 7max{v7(n),v7(m)}︸ ︷︷ ︸
=7max{8,2}=78

· ∏
p prime;

p/∈{2,3,5,7}

pmax{vp(n),vp(m)}︸ ︷︷ ︸
=1

(since vp(n)=0 and vp(m)=0
and thus max{vp(n),vp(m)}=max{0,0}=0)

= 21 · 33 · 51 · 78.

Proposition 2.13.38 can be generalized to the case of k integers b1, b2, . . . , bk in-
stead of two integers n, m:

Proposition 2.13.40. Let b1, b2, . . . , bk be finitely many nonzero integers, with k >
0. Then,

gcd (b1, b2, . . . , bk) = ∏
p prime

pmin{vp(b1),vp(b2),...,vp(bk)} (53)

an
lcm (b1, b2, . . . , bk) = ∏

p prime
pmax{vp(b1),vp(b2),...,vp(bk)}. (54)
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Proof of Proposition 2.13.40. The proof of Proposition 2.13.40 is analogous to the
proof of Proposition 2.13.38, with two minor exceptions:

• Instead of applying Lemma 2.9.16 (in the proof of (53)), we now have to apply
the analogous claim for k integers46. The latter claim follows from Theorem
2.9.21 (a).

• Instead of applying Lemma 2.11.8 (in the proof of (54)), we now have to apply
the analogous claim for k integers47. The latter claim follows from Theorem
2.11.9 (a).

Alternatively, instead of applying this claim, we can argue as follows: Setting
g = ∏

p prime
pmax{vp(b1),vp(b2),...,vp(bk)} and h = lcm (b1, b2, . . . , bk), we see that

(bi | g for all i ∈ {1, 2, . . . , k}) (by an argument analogous to the one we used
to show (g | n and g | m) in the original proof of (50)). Thus, g is a common
multiple of b1, b2, . . . , bk. In other words, g ∈ Mul (b1, b2, . . . , bk). Hence, g
is a positive element of Mul (b1, b2, . . . , bk) (since g is positive). Hence, g ≥
lcm (b1, b2, . . . , bk) (since lcm (b1, b2, . . . , bk) is the smallest positive element of
Mul (b1, b2, . . . , bk)). In other words, g ≥ h (since h = lcm (b1, b2, . . . , bk)). On
the other hand, we prove g | h (similarly to how we proved h | g in the
original proof of (50)). Thus, Proposition 2.2.3 (b) (applied to g and h instead
of a and b) yields |g| ≤ |h| (since h 6= 0). Since g is positive, we have |g| = g
and thus g = |g| ≤ |h| = h (since h is positive). Combining this with g ≥ h,
we obtain g = h. As before, this completes the proof of (54).

We can use Propositions 2.13.38 and 2.13.40 to reprove certain facts about lcms
and gcds. For example, let us prove Theorem 2.11.6 and solve Exercise 2.11.2:

Second proof of Theorem 2.11.6 (sketched). WLOG assume that a and b are nonzero (since oth-
erwise, the claim of Theorem 2.11.6 easily reduces to 0 = 0). Then, ab is nonzero as well.
Hence, Corollary 2.13.34 (applied to n = ab) yields

|ab| = ∏
p prime

pvp(ab).

Now, Proposition 2.13.38 yields

gcd (a, b) = ∏
p prime

pmin{vp(a),vp(b)} and

lcm (a, b) = ∏
p prime

pmax{vp(a),vp(b)}.

46Namely: Let m ∈ Z and let b1, b2, . . . , bk be integers such that (m | bi for all i ∈ {1, 2, . . . , k}).
Then, m | gcd (b1, b2, . . . , bk).

47Namely: Let m ∈ Z and let b1, b2, . . . , bk be integers such that (bi | m for all i ∈ {1, 2, . . . , k}).
Then, lcm (b1, b2, . . . , bk) | m.
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Multiplying these two equalities, we get

gcd (a, b) · lcm (a, b) =

(
∏

p prime
pmin{vp(a),vp(b)}

)
·
(

∏
p prime

pmax{vp(a),vp(b)}
)

= ∏
p prime

(
pmin{vp(a),vp(b)}pmax{vp(a),vp(b)}

)
︸ ︷︷ ︸

=pmin{vp(a),vp(b)}+max{vp(a),vp(b)}
=pvp(a)+vp(b)

(since min{u,v}+max{u,v}=u+v for any reals u,v)

= ∏
p prime

pvp(a)+vp(b)︸ ︷︷ ︸
=pvp(ab)

(since vp(a)+vp(b)=vp(ab)
(by Theorem 2.13.28 (a)))

= ∏
p prime

pvp(ab) = |ab| .

Hence, Theorem 2.11.6 is proven again.
See Section 10.60 for a second solution to Exercise 2.11.2 using Propositions 2.13.38 and

2.13.40 (and a slightly more general result that can be proven in the same way).

Exercise 2.13.10. Let n and m be two integers. Let p be a prime.
(a) Prove that vp (gcd (n, m)) = min

{
vp (n) , vp (m)

}
.

(b) Prove that vp (lcm (n, m)) = max
{

vp (n) , vp (m)
}

.

Exercise 2.13.11. Let a, b, c be three integers.
(a) Prove that gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)).
(b) Prove that lcm (a, gcd (b, c)) = gcd (lcm (a, b) , lcm (a, c)).

The two parts of Exercise 2.13.11 can be regarded as “distributivity laws”, but
for the binary operations gcd and lcm (or lcm and gcd, respectively) instead of +
and ·.

2.13.8. Coprimality through prime factors

Proposition 2.13.41. Let n and m be two integers. Then, n ⊥ m if and only if
there exists no prime p that divides both n and m.

Proof of Proposition 2.13.41. =⇒: Assume that n ⊥ m. We must prove that there
exists no prime p that divides both n and m.

Let p be a prime that divides both n and m. Thus, p | n and p | m. Hence,
p | gcd (n, m) (by Lemma 2.9.16, applied to p, n and m instead of m, a and b). But
gcd (n, m) = 1 (since n ⊥ m). Hence, p | gcd (n, m) = 1. Hence, Proposition 2.2.3
(b) (applied to a = p and b = 1) yields |p| ≤ |1| = 1.

But p is a prime; thus, p > 1 > 0, so that |p| = p and thus p = |p| ≤ 1. This
contradicts p > 1.

Now, forget that we fixed p. We thus have obtained a contradiction for each
prime p that divides both n and m. Hence, there exists no prime p that divides
both n and m. This proves the “=⇒” direction of Proposition 2.13.41.
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⇐=: Assume that there exists no prime p that divides both n and m. We must
prove that n ⊥ m.

Assume the contrary. Thus, we don’t have n ⊥ m. In other words, we don’t have
gcd (n, m) = 1. In other words, gcd (n, m) 6= 1. Hence, there exists at least one
prime p such that p | gcd (n, m) 48. Consider this p.

We have p | gcd (n, m) | n and p | gcd (n, m) | m. Thus, the prime p divides both
n and m. This contradicts the assumption that there exists no prime p that divides
both n and m.

This contradiction shows that our assumption was false. Hence, n ⊥ m is proven.
This proves the “⇐=” direction of Proposition 2.13.41.

Corollary 2.13.42. Let n and m be two nonzero integers. Then:
(a) The infinite sum ∑

p prime
vp (n) vp (m) is well-defined (i.e., all but finitely

many primes p satisfy vp (n) vp (m) = 0).
(b) We have n ⊥ m if and only if

∑
p prime

vp (n) vp (m) = 0.

Proof of Corollary 2.13.42 (sketched). (a) For every prime p > |n|, we have vp (n) = 0
(by Lemma 2.13.32 (a)) and thus vp (n)︸ ︷︷ ︸

=0

vp (m) = 0. Now, Corollary 2.13.42 (a)

follows easily.
(b) A sum of nonnegative reals is 0 if and only if each of its addends is 0. Thus,

the sum ∑
p prime

vp (n) vp (m) is 0 if and only if we have

(
vp (n) vp (m) = 0 for all primes p

)
(because all the addends vp (n) vp (m) of our sum are nonnegative reals). Hence,

48Proof. This is obvious if gcd (n, m) = 0 (because in that case, we can take p = 2, or any
other prime). Thus, for the rest of this proof, we WLOG assume that gcd (n, m) 6= 0.
Thus, gcd (n, m) > 1 (since gcd (n, m) is a nonnegative integer satisfying gcd (n, m) 6= 0 and
gcd (n, m) 6= 1). Hence, Proposition 2.13.8 (applied to gcd (n, m) instead of n) yields that there
exists at least one prime p such that p | gcd (n, m). Qed.
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we have the following chain of equivalences:(
∑

p prime
vp (n) vp (m) = 0

)
⇐⇒

(
vp (n) vp (m) = 0 for all primes p

)
⇐⇒

((
vp (n) = 0 or vp (m) = 0

)
for all primes p

)
⇐⇒ ((p - n or p - m) for all primes p) since Corollary 2.13.26 yields the

equivalences
(
vp (n) = 0

)
⇐⇒ (p - n) and

(
vp (m) = 0

)
⇐⇒ (p - m)

for each prime p


⇐⇒ (there exists no prime p such that (p | n and p | m))

⇐⇒ (there exists no prime p that divides both n and m)

⇐⇒ (n ⊥ m) (by Proposition 2.13.41) .

This proves Corollary 2.13.42 (b).

Corollary 2.13.42 (b) is the reason for the notation “⊥” that we are using for
coprimality. In fact, when n is a positive integer, we can regard the p-valuations
vp (n) as the “coordinates” of n in an (infinite-dimensional) Cartesian coordinate
system. Then, the sum ∑

p prime
vp (n) vp (m) in Corollary 2.13.42 is something like

a “dot product” between n and m. Thus, Corollary 2.13.42 (b) shows that two
integers n and m are coprime if and only if their “dot product” is 0. But for vectors
in a Euclidean space, the dot product is 0 if and only if the vectors are orthogonal.
Thus, coprime integers are like orthogonal vectors. Of course, this analogy should
be taken with a grain of salt; in particular, our “dot product” is far from being
bilinear49.

2.13.9. There are infinitely many primes

Theorem 2.13.43. There are infinitely many primes.

Proof of Theorem 2.13.43. The following proof is a classic, appearing in Euclid’s Ele-
ments:

Let (p1, p2, . . . , pk) be any finite list of primes. We shall find a new prime distinct
from each of p1, p2, . . . , pk.

49Or, rather, it is bilinear with respect to multiplication: If we denote ∑
p prime

vp (n) vp (m) by 〈n, m〉,

then we have

〈n1n2, m〉 = 〈n1, m〉+ 〈n2, m〉 and 〈n, m1m2〉 = 〈n, m1〉+ 〈n, m2〉

for arbitrary integers n1, n2, m, n, m1, m2.

https://en.wikipedia.org/wiki/Dot_product
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Indeed, p1, p2, . . . , pk are primes, and thus are integers > 1 (by the definition of
a “prime”). Hence, they are positive integers; thus, their product p1p2 · · · pk is a
positive integer as well. Thus, p1p2 · · · pk > 0.

Now, let n = p1p2 · · · pk + 1. Then, n = p1p2 · · · pk︸ ︷︷ ︸
>0

+1 > 1. Hence, Proposition

2.13.8 shows that there exists at least one prime p such that p | n. Consider this p.
We claim that p is distinct from each of p1, p2, . . . , pk.
[Proof: Assume the contrary. Thus, p = pi for some i ∈ {1, 2, . . . , k}. Consider

this i.
We have p1p2 · · · pk = pi · (p1p2 · · · pi−1pi+1pi+2 · · · pk). Thus, pi | p1p2 · · · pk

(since p1p2 · · · pi−1pi+1pi+2 · · · pk is an integer). Hence, p = pi | p1p2 · · · pk. In
other words, p1p2 · · · pk ≡ 0 mod p. Now,

n = p1p2 · · · pk︸ ︷︷ ︸
≡0 mod p

+1 ≡ 0 + 1 = 1 mod p.

Hence, 1 ≡ n mod p. But p | n and thus n ≡ 0 mod p. Hence, 1 ≡ n ≡ 0 mod p;
in other words, p | 1− 0 = 1. Thus, Proposition 2.2.3 (b) (applied to a = p and
b = 1) yields |p| ≤ |1| = 1. But p is a prime; thus, p > 1 > 0, so that |p| = p > 1.
This contradicts |p| ≤ 1. This contradiction shows that our assumption was wrong,
qed.]

Thus, we have proven that p is distinct from each of p1, p2, . . . , pk. Hence, there
exists a prime distinct from each of p1, p2, . . . , pk (namely, p).

Now, forget that we fixed p1, p2, . . . , pk. We thus have proven that if (p1, p2, . . . , pk)
is any finite list of primes, then there exists a prime distinct from each of p1, p2, . . . , pk.
In other words, given any finite list of primes, there exists at least one prime that is
not in this list. In other words, no finite list of primes can cover all the primes. In
other words, there are infinitely many primes. This proves Theorem 2.13.43.

Note that our proof of Theorem 2.13.43 is constructive: It gives an algorithm to
construct arbitrarily many distinct primes. This algorithm is not very efficient, since
p1p2 · · · pk + 1 can be very large even if p1, p2, . . . , pk are fairly small. In practice, the
sieve of Eratosthenes is much better for generating primes. Much faster algorithms
are known.

Exercise 2.13.12. Let p be a prime. Let a ∈ Z be such that a2 ≡ 1 mod p. Prove
that a ≡ 1 mod p or a ≡ −1 mod p.

Exercise 2.13.13. Let p be a prime. Let k ∈ N. Prove that the nonnegative
divisors of pk are p0, p1, . . . , pk.

2.14. Euler’s totient function (φ-function)

2.14.1. Definition and some formulas

Recall that P stands for the set of all positive integers.

https://en.wikipedia.org/wiki/Generating_primes
https://en.wikipedia.org/wiki/Generating_primes
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Definition 2.14.1. We define a function φ : P → N as follows: For each n ∈ P,
we let φ (n) be the number of all i ∈ {1, 2, . . . , n} that are coprime to n. In other
words,

φ (n) = |{i ∈ {1, 2, . . . , n} | i ⊥ n}| . (55)

This function φ is called Euler’s totient function or just φ-function.

Example 2.14.2. (a) We have φ (12) = 4, since the number of all i ∈ {1, 2, . . . , 12}
that are coprime to 12 is 4 (indeed, these i are 1, 5, 7 and 11).

(b) We have φ (13) = 12, since the number of all i ∈ {1, 2, . . . , 13} that are
coprime to 13 is 12 (indeed, these i are 1, 2, . . . , 12).

(c) We have φ (14) = 6, since the number of all i ∈ {1, 2, . . . , 14} that are
coprime to 14 is 6 (indeed, these i are 1, 3, 5, 9, 11, 13).

(d) We have φ (1) = 1, since the number of all i ∈ {1, 2, . . . , 1} that are coprime
to 1 is 1 (indeed, the only such i is 1).

The φ-function φ is denoted by ϕ by some authors.

Proposition 2.14.3. Let p be a prime. Then, φ (p) = p− 1.

Proof of Proposition 2.14.3. Here is the idea: The definition of φ shows that φ (p) is
the number of all i ∈ {1, 2, . . . , p} that are coprime to p. But we know exactly what
these i are: They are just the first p − 1 positive integers 1, 2, . . . , p − 1. (In fact,
Proposition 2.13.4 shows that each of the integers 1, 2, . . . , p − 1 is coprime to p,
whereas gcd (p, p) = p > 1 shows that p is not coprime to p.) Thus, φ (p) is the
number of these p− 1 integers; in other words, φ (p) = p− 1.

For one last time, here is the proof in detail:
We have p > 1 (since p is a prime), thus p 6= 1. Also, p | p; hence, Proposition 2.9.7 (i)

(applied to a = p and b = p) yields gcd (p, p) = |p| = p (since p > 1 > 0).
Now, we claim that

{i ∈ {1, 2, . . . , p} | i ⊥ p} ⊆ {1, 2, . . . , p− 1} . (56)

[Proof of (56): Let i ∈ {1, 2, . . . , p} be such that i ⊥ p. From i ⊥ p, we obtain gcd (i, p) = 1.

If we had i = p, then we would have gcd

 i︸︷︷︸
=p

, p

 = gcd (p, p) = p 6= 1, which would

contradict gcd (i, p) = 1. Thus, we cannot have i = p. Hence, we have i 6= p. Combining
this with i ∈ {1, 2, . . . , p}, we obtain i ∈ {1, 2, . . . , p} \ {p} = {1, 2, . . . , p− 1}.

Now, forget that we fixed i. We thus have proven that every i ∈ {1, 2, . . . , p} satisfy-
ing i ⊥ p must belong to {1, 2, . . . , p− 1}. In other words, {i ∈ {1, 2, . . . , p} | i ⊥ p} ⊆
{1, 2, . . . , p− 1}. This proves (56).]

Conversely, we have

{1, 2, . . . , p− 1} ⊆ {i ∈ {1, 2, . . . , p} | i ⊥ p} . (57)

[Proof of (57): Let j ∈ {1, 2, . . . , p− 1}. Thus, j is coprime to p (by Proposition 2.13.4,
applied to i = j). In other words, j ⊥ p. Also, j ∈ {1, 2, . . . , p− 1} ⊆ {1, 2, . . . , p}. Hence, j
is an i ∈ {1, 2, . . . , p} satisfying i ⊥ p. In other words, j ∈ {i ∈ {1, 2, . . . , p} | i ⊥ p}.
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Now, forget that we fixed j. We thus have shown that j ∈ {i ∈ {1, 2, . . . , p} | i ⊥ p} for
each j ∈ {1, 2, . . . , p− 1}. In other words, {1, 2, . . . , p− 1} ⊆ {i ∈ {1, 2, . . . , p} | i ⊥ p}.
This proves (57).]

Combining (56) with (57), we obtain

{i ∈ {1, 2, . . . , p} | i ⊥ p} = {1, 2, . . . , p− 1} .

Now, (55) (applied to n = p) yields

φ (p) =

∣∣∣∣∣∣∣{i ∈ {1, 2, . . . , p} | i ⊥ p}︸ ︷︷ ︸
={1,2,...,p−1}

∣∣∣∣∣∣∣ = |{1, 2, . . . , p− 1}| = p− 1.

This proves Proposition 2.14.3.

Proposition 2.14.3 can be generalized as follows:

Exercise 2.14.1. Let p be a prime. Let k be a positive integer. Prove that φ
(

pk) =
(p− 1) pk−1.

Theorem 2.14.4. Let m and n be two coprime positive integers. Then, φ (mn) =
φ (m) · φ (n).

We will prove Theorem 2.14.4 later (in Section 2.16.3).

Theorem 2.14.5. Let n be a positive integer. Then,

φ (n) = ∏
p prime;

p|n

(
(p− 1) pvp(n)−1

)
= n · ∏

p prime;
p|n

(
1− 1

p

)
.

Theorem 2.14.5 will be proven in Section 2.16.3.

Exercise 2.14.2. Let n be a positive integer.
(a) Prove that

n− φ (n) = |{i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}| .

(b) We have n− φ (n) ≥ 0.
(c) Let d be a positive divisor of n. Prove that d− φ (d) ≤ n− φ (n).
(d) Let d be a positive divisor of n such that d 6= n. Prove that d − φ (d) <

n− φ (n).

2.14.2. The totient sum theorem
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Theorem 2.14.6. Let n be a positive integer. Then,

∑
d|n

φ (d) = n.

Here and in the following, the symbol “ ∑
d|n

” stands for “sum over all positive

divisors d of n”.

For example, for n = 12, Theorem 2.14.6 states that

φ (1) + φ (2) + φ (3) + φ (4) + φ (6) + φ (12) = 12.

Before we prove Theorem 2.14.6, let us motivate an argument via a classical
puzzle:

Exercise 2.14.3. You have a corridor with 1000 lamps, which are initially all off.
Each lamp has a lightswitch controlling its state.

Every night, a ghost glides through the corridor (always in the same direction)
and flips some of the switches:

On the 1st night, the ghost flips every switch.
On the 2nd night, the ghost flips switches 2, 4, 6, 8, 10, . . ..
On the 3rd night, the ghost flips switches 3, 6, 9, 12, 15, . . ..
etc.
(That is: For each k ∈ {1, 2, . . . , 1000}, the ghost spends the k-th night flipping

switches k, 2k, 3k, . . ..)
Which lamps will be on after 1000 nights?

In more rigorous terms, Exercise 2.14.3 is simply asking which of the numbers
1, 2, . . . , 1000 have an odd number of positive divisors. (Indeed, the situation after
1000 nights looks as follows: For each n ∈ {1, 2, . . . , 1000}, the n-th switch has been
flipped exactly once for each positive divisor of n; thus, the n-th lamp is on if and
only if n has an odd number of positive divisors.)

Experiments reveal that among the first 10 positive integers, only three have an
odd number of positive divisors: namely, 1, 4 and 9. (For example, 9 has the 3
positive divisors 1, 3 and 9.) This suggests the following:

Proposition 2.14.7. A positive integer n has an odd number of positive divisors
if and only if n is a perfect square.

Proof of Proposition 2.14.7. Fix a positive integer n. If d is a positive divisor of n,



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 132

then n/d is a positive divisor of n as well50. This allows us to define a map

F : {positive divisors of n} → {positive divisors of n} ,
d 7→ n/d.

This map F has the property that F ◦ F = id, because each d ∈ {positive divisors of n}
satisfies

(F ◦ F) (d) = F

 F (d)︸ ︷︷ ︸
=n/d

(by the definition of F)

 = F (n/d)

= n/ (n/d) (by the definition of F)
= d = id (d) .

Hence, the map F is inverse to itself. Thus, the map F is invertible, i.e., is a bijection.
For the rest of this proof, the word “divisor” shall mean “positive divisor of n”.

Thus, F is a map from {divisors} to {divisors}.
The rough idea from here on is the following:51 The map F “pairs up” each

divisor d with the divisor F (d) = n/d. Thus, the divisors are “grouped into pairs”,
except for those that satisfy d = n/d (because these would have to be paired up
with themselves). When n is not a perfect square, there are no such “exceptional”
divisors, since d = n/d means n = d2. When n is a perfect square, there is exactly
one such “exceptional” divisor, namely

√
n. So the number of divisors is even if

n is not a perfect square, and odd otherwise (because clearly, all the pairs have no
effect on the parity of the total number of divisors, and thus can be forgotten). In
other words, n has an odd number of positive divisors if and only if n is a perfect
square.

There are several ways to make this argument rigorous; here is the easiest (though per-
haps the least instructive one): A divisor d shall be called

• small if d < n/d;

• medium if d = n/d;

• large if d > n/d.

50Proof. Let d be a positive divisor of n. Thus, d is a positive integer satisfying d | n. But Proposition

2.2.3 (c) (applied to a = d and b = n) yields that d | n if and only if
n
d
∈ Z (since d 6= 0). Hence,

n
d
∈ Z (since d | n). In other words, n/d ∈ Z. Moreover, n/d is positive (since n and d are

positive).
So n/d is a positive integer (since n/d ∈ Z) and is a divisor of n (since n = (n/d) · d). Hence,

n/d is a positive divisor of n. Qed.
51We shall give a more rigorous proof shortly.
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It is easy to see that if d is a small divisor, then F (d) is a large divisor52. Hence, the map

F+ : {small divisors} → {large divisors} ,
d 7→ F (d)

is well-defined. Similarly, the map

F− : {large divisors} → {small divisors} ,
d 7→ F (d)

is well-defined. These two maps F+ and F− are both restrictions of the map F, and thus are
mutually inverse (since the map F is inverse to itself). Hence, the map F+ is invertible, i.e.,
is a bijection. Thus, we have found a bijection from {small divisors} to {large divisors}
(namely, F+). Therefore,

|{small divisors}| = |{large divisors}| . (58)

On the other hand, let us take a look at medium divisors. If d is a medium divisor, then
d = n/d (by the definition of “medium”), so that d2 = n and thus n must be a perfect
square. Thus, if n is not a perfect square, then there are no medium divisors. In other
words, if n is not a perfect square, then

|{medium divisors}| = 0. (59)

But if n is a perfect square, then n has exactly one medium divisor53. In other words, if
n is a perfect square, then

|{medium divisors}| = 1. (60)

But each divisor is either small or medium or large, and there are no overlaps between
these three classes (i.e., a divisor cannot be small and medium at the same time, or small
and large, or medium and large). Thus, in order to count the number of all divisors, we
can add the number of small divisors, the number of medium divisors and the number of

52Proof. Let d be a small divisor. Thus, d < n/d. Hence, n/d > d = n/ (n/d). In view of
F (d) = n/d, this rewrites as F (d) > n/ (F (d)). In other words, F (d) is a large divisor (by the
definition of “large divisor”). Qed.

53Proof. Assume that n is a perfect square. Thus, n = w2 for some w ∈ Z. Consider this w. Clearly,
w 6= 0 (since ww = w2 = n 6= 0), so that |w| > 0.

Let u = |w|. Thus, u ∈ Z (since w ∈ Z). Hence, u is a positive integer (since u = |w| > 0).
Moreover, from u = |w|, we obtain u2 = |w|2 = w2 = n. Hence, u = n/u.

This positive integer u satisfies uu = u2 = n and thus u | n. Hence, u is a positive divisor of n
(that is, a divisor, as we call it). This divisor u is medium, since it satisfies u = n/u.

Moreover, if d is any medium divisor, then d = n/d (by the definition of “medium”), thus
d2 = n = u2, thus

√
d2 =

√
u2 = |u| = u (since u is positive), thus u =

√
d2 = |d| = d (since d

is positive) and therefore d = u. In other words, any medium divisor must equal u. This shows
that u is the only medium divisor (since we already know that u is a medium divisor). Hence,
n has exactly one medium divisor.
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large divisors. In other words:

|{divisors}| = |{small divisors}|︸ ︷︷ ︸
=|{large divisors}|

(by (58))

+ |{medium divisors}|+ |{large divisors}|

= |{large divisors}|+ |{medium divisors}|+ |{large divisors}|
= 2 · |{large divisors}|︸ ︷︷ ︸

≡0 mod 2

+ |{medium divisors}|

≡ |{medium divisors}|mod 2.

Hence, if n is not a perfect square, then

|{divisors}| ≡ |{medium divisors}| = 0 mod 2

(by (59)). In other words, if n is not a perfect square, then the number of divisors is even.
On the other hand, if n is a perfect square, then

|{divisors}| ≡ |{medium divisors}| = 1 mod 2

(by (60)). In other words, if n is a perfect square, then the number of divisors is odd.
Combining the results of the previous two paragraphs, we conclude that the number of

divisors is odd if n is a perfect square, and is even otherwise. In other words, n has an odd
number of positive divisors if and only if n is a perfect square. This proves Proposition
2.14.7.

Having proven Proposition 2.14.7, we now can answer Exercise 2.14.3: The 31
lamps 12, 22, . . . , 312 (and no others) will be on after the 1000 nights. (Indeed, these
31 lamps correspond to the 31 perfect squares in the set {1, 2, . . . , 1000}.)

The bijection F from the proof of Proposition 2.14.7 will serve us well in our
proof of Theorem 2.14.6. Beside that, we need the following lemma:

Lemma 2.14.8. Let n be a positive integer. Let d be a positive divisor of n. Then,

(the number of i ∈ {1, 2, . . . , n} such that gcd (i, n) = d) = φ (n/d) .

Proof of Lemma 2.14.8. We have d | n (since d is a divisor of n) and d 6= 0 (since d is
positive). Thus, Proposition 2.2.3 (c) (applied to d and n instead of a and b) yields
that d | n if and only if

n
d
∈ Z. Thus,

n
d
∈ Z (since d | n). In other words, n/d ∈ Z.

Thus, n/d is an integer. This integer n/d is positive (since n and d are positive).
Hence, φ (n/d) is well-defined.

Define two sets I and J by

I = {i ∈ {1, 2, . . . , n} | gcd (i, n) = d} (61)

and
J = {i ∈ {1, 2, . . . , n/d} | i ⊥ n/d} . (62)
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But (55) (applied to n/d instead of n) yields

φ (n/d) = |{i ∈ {1, 2, . . . , n/d} | i ⊥ n/d}| = |J| (63)

(since {i ∈ {1, 2, . . . , n/d} | i ⊥ n/d} = J).
We shall next construct a bijection from I to J (which will show that |I| = |J|).
For each a ∈ I, we have a/d ∈ J 54. Hence, we can define a map

f : I → J,
a 7→ a/d.

For each b ∈ J, we have bd ∈ I 55. Thus, we can define a map

g : J → I,
b 7→ bd.

54Proof. Let a ∈ I. Thus, a ∈ I = {i ∈ {1, 2, . . . , n} | gcd (i, n) = d}. In other words, a is an element
of {1, 2, . . . , n} satisfying gcd (a, n) = d.

Thus, d = gcd (a, n) | a. But Proposition 2.2.3 (c) (applied to d and a instead of a and b)

yields that d | a if and only if
a
d
∈ Z. Thus,

a
d
∈ Z (since d | a). In other words, a/d ∈ Z.

Also, a ∈ {1, 2, . . . , n}, so that 0 < a ≤ n. We can divide this chain of inequalities by d (since
d is positive), and thus obtain 0 < a/d ≤ n/d. Hence, a/d ∈ {1, 2, . . . , n/d} (since a/d ∈ Z).
Furthermore, Theorem 2.9.20 (applied to d, a/d and n/d instead of s, a and b) yields

gcd (d (a/d) , d (n/d)) = |d|︸︷︷︸
=d

(since d is positive)

gcd (a/d, n/d) = d gcd (a/d, n/d) .

Solving this for gcd (a/d, n/d), we obtain

gcd (a/d, n/d) =
1
d

gcd

d (a/d)︸ ︷︷ ︸
=a

, d (n/d)︸ ︷︷ ︸
=n

 =
1
d

gcd (a, n)︸ ︷︷ ︸
=d

=
1
d

d = 1.

In other words, a/d ⊥ n/d.
So we know that a/d is an element of {1, 2, . . . , n/d} satisfying a/d ⊥ n/d. In other words,

a/d ∈ {i ∈ {1, 2, . . . , n/d} | i ⊥ n/d} = J. Qed.
55Proof. Let b ∈ J. Thus, b ∈ J = {i ∈ {1, 2, . . . , n/d} | i ⊥ n/d}. In other words, b is an element of
{1, 2, . . . , n/d} satisfying b ⊥ n/d.

From b ∈ {1, 2, . . . , n/d} ⊆ Z and d ∈ Z, we obtain bd ∈ Z. From b ∈ {1, 2, . . . , n/d}, we
obtain 0 < b ≤ n/d. We can multiply this chain of inequalities by d (since d is positive), and
thus obtain 0 < bd ≤ n. Thus, bd ∈ {1, 2, . . . , n} (since bd ∈ Z). Theorem 2.9.20 (applied to d, b
and n/d instead of s, a and b) yields

gcd (db, d (n/d)) = |d|︸︷︷︸
=d

(since d is positive)

gcd (b, n/d)︸ ︷︷ ︸
=1

(since b⊥n/d)

= d.

Thus, d = gcd

 db︸︷︷︸
=bd

, d (n/d)︸ ︷︷ ︸
=n

 = gcd (bd, n), so that gcd (bd, n) = d.

So we know that bd is an element of {1, 2, . . . , n} satisfying gcd (bd, n) = d. In other words,
bd ∈ {i ∈ {1, 2, . . . , n} | gcd (i, n) = d} = I, qed.
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The two maps f and g are mutually inverse (since the map f divides its input by
d, while the map g multiplies its input by d). Hence, f is invertible, i.e., is a bijection.
Thus, there exists a bijection from I to J (namely, f ). Hence, |I| = |J| = φ (n/d) (by
(63)). Thus,

φ (n/d) = |I| = |{i ∈ {1, 2, . . . , n} | gcd (i, n) = d}| (by (61))
= (the number of i ∈ {1, 2, . . . , n} such that gcd (i, n) = d) .

This proves Lemma 2.14.8.

Proof of Theorem 2.14.6. Consider the map F we defined in the proof of Proposition
2.14.7. This map F is a bijection (as we have seen back in that proof). In other
words, the map

{positive divisors of n} → {positive divisors of n} ,
d 7→ n/d

is a bijection (since this is precisely the map F). Thus, we can substitute n/d for d
in the sum ∑

d|n
φ (d) (and, more generally, in any sum that ranges over all positive

divisors d of n). We thus obtain

∑
d|n

φ (d) = ∑
d|n

φ (n/d) . (64)

But

n = |{1, 2, . . . , n}| = (the number of i ∈ {1, 2, . . . , n})
= ∑

d|n
(the number of i ∈ {1, 2, . . . , n} such that gcd (i, n) = d)︸ ︷︷ ︸

=φ(n/d)
(by Lemma 2.14.8)

(because if i ∈ {1, 2, . . . , n} , then gcd (i, n) is a positive divisor of n)

= ∑
d|n

φ (n/d) = ∑
d|n

φ (d) (by (64)) .

This proves Theorem 2.14.6.

Exercise 2.14.4. Let n ∈N satisfy n > 2. Prove that φ (n) is even.

Exercise 2.14.5. Let n ∈N satisfy n > 1. Prove that

∑
i∈{1,2,...,n};

i⊥n

i = nφ (n) /2.
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2.15. Fermat, Euler, Wilson

2.15.1. Fermat and Euler: statements

The following theorem is known as Fermat’s Little Theorem (often abbreviated as
“FLT”):

Theorem 2.15.1. Let p be a prime. Let a ∈ Z.
(a) If p - a, then ap−1 ≡ 1 mod p.
(b) We always have ap ≡ a mod p.

The word “little” in the name of Theorem 2.15.1 is meant to distinguish the
theorem from “Fermat’s Last Theorem”, a much more difficult result only proven
in the 1990s. (Unfortunately, the latter result is also abbreviated as “FLT”.)

We will prove Theorem 2.15.1 soon, by showing a more general result (Theorem
2.15.3). But before we do so, let us convince ourselves that the parts (a) and (b) of
Theorem 2.15.1 are equivalent:

Remark 2.15.2. Theorem 2.15.1 (b) follows from Theorem 2.15.1 (a), because (us-
ing the notations of Theorem 2.15.1):

• If p - a, then Theorem 2.15.1 (a) yields ap−1 ≡ 1 mod p, thus ap =

a ap−1︸︷︷︸
≡1 mod p

≡ a1 = a mod p.

• If p | a, then both ap and a are ≡ 0 mod p (because p | a entails a ≡ 0 mod p
and thus ap ≡ 0p = 0 mod p (since p > 0)), and therefore ap ≡ 0 ≡ a mod p.

Conversely, Theorem 2.15.1 (a) follows from Theorem 2.15.1 (b) by the fol-
lowing argument: Let p and a be as in Theorem 2.15.1. Assume that p - a.
Then, p ⊥ a (by Proposition 2.13.5), so that a ⊥ p. Thus, we can “can-
cel” a from any congruence modulo p (by Lemma 2.10.10). Doing this to the
congruence ap ≡ a mod p (which follows from Theorem 2.15.1 (b)), we obtain
ap−1 ≡ 1 mod p.

The next result is known as Euler’s theorem:

Theorem 2.15.3. Let n be a positive integer. Let a ∈ Z be coprime to n.
Then, aφ(n) ≡ 1 mod n.

Theorem 2.15.3 yields Theorem 2.15.1 (a), since φ (p) = p− 1 when p is prime56.
Since we also know that Theorem 2.15.1 (b) follows from Theorem 2.15.1 (a), we see
that a proof of Theorem 2.15.3 will immediately yield the whole Theorem 2.15.1.
Before we give said proof, let us show an example of how Theorem 2.15.3 can be
used:
56See below for details of this argument.

https://en.wikipedia.org/wiki/Fermat's_Last_Theorem
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Exercise 2.15.1. What is the last digit of 345
?

Notational remark: An expression of the form “abc
” always means a(b

c), not(
ab)c

. (Actually, there is no need for an extra notation for
(
ab)c

, because
(
ab)c

=

abc.)

Solution to Exercise 2.15.1 (sketched). The last digit of a positive integer n is n%10
(that is, the remainder of n upon division by 10). So we need to work modulo 10.

Since 3 is coprime to 10, we can apply Theorem 2.15.3 to n = 10 and a = 3. We
thus get 3φ(10) ≡ 1 mod 10. Since φ (10) = 4, this rewrites as 34 ≡ 1 mod 10. Now,
45 = 4 · 44, so that

345
= 34·44

=

 34︸︷︷︸
≡1 mod 10

44

≡ 144
= 1 mod 10.

So the last digit of 345
is 1.

Theorem 2.15.3 is also the reason why certain rational numbers (such as
2
7

=

0.285714 57) have purely periodic decimal expansions, while others (such as
1
12

= 0.083 = 0.0833333 . . . or
1
2
= 0.50 = 0.50000 . . .) have their periods start only

after some initial nonrepeating block. We refer [ConradE, §4] to the details of this.58

2.15.2. Proving Euler and Fermat

Our proof of Theorem 2.15.3 will rely on the following lemma:

Lemma 2.15.4. Let n be a positive integer. Then,

φ (n) = |{i ∈ {0, 1, . . . , n− 1} | i ⊥ n}| .

First proof of Lemma 2.15.4 (sketched). If n = 1, then this lemma can easily be proven
by hand. Thus, WLOG assume that n 6= 1. Hence, n > 1 (since n is a positive

57The bar ( ) over the “285714” means that we are repeating 285714 over and over. So 0.285714 =
0.285714285714285714 . . ..

58In brief, the rule is as follows: Any fraction
a
b

with a, b ∈ Z (and b 6= 0) has such a decimal
representation with a period. (A period means a part that gets repeated over and over.) A

fraction
a
b

is called purely periodic if its period (in decimal notation) begins straight after the

decimal point. So
2
7

is purely periodic but
1

12
and

1
2

are not. Now, the answer is that a fraction
a
b

(with a ⊥ b) is purely periodic if and only if b ⊥ 10 (in other words, 2 - b and 5 - b). This can
be proven using Theorem 2.15.3.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 139

integer). Thus, neither 0 nor n is coprime to n (since gcd (0, n) = n > 1 and
gcd (n, n) = n > 1). Hence,

{i ∈ {0, 1, . . . , n− 1} | i ⊥ n} = {i ∈ {1, 2, . . . , n} | i ⊥ n}

(because these sets could only differ in the elements 0 and n, but none of these two
elements belongs to any of these two sets59), and therefore

|{i ∈ {0, 1, . . . , n− 1} | i ⊥ n}| = |{i ∈ {1, 2, . . . , n} | i ⊥ n}| = φ (n)

(by (55)). This proves Lemma 2.15.4.

Second proof of Lemma 2.15.4. We have n | n and thus n ≡ 0 mod n. Hence, Propo-
sition 2.9.7 (d) (applied to a = n, b = n and c = 0) yields that gcd (n, n) =
gcd (n, 0) = gcd (0, n) (by Proposition 2.9.7 (b)). Hence, gcd (0, n) = 1 holds if
and only if gcd (n, n) = 1. In other words, the number 0 is coprime to n if and
only if n is coprime to n. Hence, if we remove n from the set {1, 2, . . . , n} and add
0 instead (so that our set becomes {0, 1, . . . , n− 1}), then the number of elements
coprime to n in that set does not change. In other words,

(the number of all i ∈ {0, 1, . . . , n− 1} that are coprime to n)
= (the number of all i ∈ {1, 2, . . . , n} that are coprime to n)
= |{i ∈ {1, 2, . . . , n} | i ⊥ n}| = φ (n) (by (55)) .

In other words,

φ (n) = (the number of all i ∈ {0, 1, . . . , n− 1} that are coprime to n)
= |{i ∈ {0, 1, . . . , n− 1} | i ⊥ n}| .

This proves Lemma 2.15.4 again.

Proof of Theorem 2.15.3. Let

C = {i ∈ {0, 1, . . . , n− 1} | i ⊥ n} .

Then, Lemma 2.15.4 says that φ (n) = |C|.
Now, set

z = ∏
i∈C

i. (65)

Exercise 2.10.5 (applied to I = C, c = n and bi = i) yields ∏
i∈C

i ⊥ n (since each i ∈ C

satisfies i ⊥ n). In other words, z ⊥ n (since z = ∏
i∈C

i).

We have (ai)%n ∈ C for each i ∈ C.
[Proof: Let i ∈ C. Corollary 2.6.9 (a) (applied to u = ai) yields that (ai)%n ∈
{0, 1, . . . , n− 1} and (ai)%n ≡ ai mod n. Thus, ai ≡ (ai)%n mod n.

59since neither 0 nor n is coprime to n
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From a ⊥ n and i ⊥ n, we obtain ai ⊥ n (by Theorem 2.10.9, applied to i and
n instead of b and c). Hence, Exercise 2.10.6 (applied to ai, (ai)%n and n instead
of a, b and c) yields (ai)%n ⊥ n (since ai ≡ (ai)%n mod n). Combining this with
(ai)%n ∈ {0, 1, . . . , n− 1}, we obtain (ai)%n ∈ C (by the definition of C), qed.]

Thus, we can define a map

f : C → C,
i 7→ (ai)%n.

The map f is injective.
[Proof: Let i and j be two elements of C such that f (i) = f (j). We must prove

that i = j.
We have f (i) = f (j). In view of f (i) = (ai)%n (by the definition of f ) and

f (j) = (aj)%n, this rewrites as (ai)%n = (aj)%n. But Exercise 2.6.1 (applied to
u = ai and v = aj) shows that ai ≡ aj mod n if and only if (ai)%n = (aj)%n.
Hence, we have ai ≡ aj mod n (since (ai)%n = (aj)%n). By Lemma 2.10.10, we
can “cancel” a from this congruence (since a ⊥ n), and obtain i ≡ j mod n. But
both i and j belong to C and thus belong to {0, 1, . . . , n− 1} (by the definition of
C). Hence, from i ≡ j mod n, we can easily obtain that i = j 60.

Now, forget that we fixed i and j. We thus have proven that if i and j are two
elements of C such that f (i) = f (j), then i = j. In other words, f is injective.]

The map f is surjective.
[Proof: Let i ∈ C. We shall prove that i ∈ f (C).
Indeed, i ∈ C. By the definition of C, this means that i ∈ {0, 1, . . . , n− 1} and

i ⊥ n.
But Proposition 2.10.8 (b) shows that there exists an a′ ∈ Z such that aa′ ≡

1 mod n (since a ⊥ n). Consider this a′, and denote it by u. Thus, u is an element of
Z and satisfies au ≡ 1 mod n. From ua = au ≡ 1 mod n, we conclude that there
exists an u′ ∈ Z such that uu′ ≡ 1 mod n (namely, u′ = a). Hence, Theorem 2.10.8
(c) (applied to u and u′ instead of a and a′) shows that u ⊥ n.

Now, Corollary 2.6.9 (a) (applied to ui instead of u) shows that
(ui)%n ∈ {0, 1, . . . , n− 1} and (ui)%n ≡ ui mod n. Set j = (ui)%n. Thus,
j = (ui)%n ∈ {0, 1, . . . , n− 1} and j = (ui)%n ≡ ui mod n. Multiplying the
congruences a ≡ a mod n and j ≡ ui mod n, we obtain

aj ≡ au︸︷︷︸
≡1 mod n

i ≡ 1i = i mod n.

In other words, i ≡ aj mod n. Therefore, Corollary 2.6.9 (c) (applied to aj and i
instead of u and c) yields i = (aj)%n (since i ∈ {0, 1, . . . , n− 1}).

Combining u ⊥ n with i ⊥ n, we obtain ui ⊥ n (by Theorem 2.10.9, applied to
u, i and n instead of a, b and c). Also, ui ≡ j mod n (since j ≡ ui mod n). Hence,

60Proof. Corollary 2.6.9 (c) (applied to u = j and c = i) yields i = j%n (since i ≡ j mod n and
i ∈ {0, 1, . . . , n− 1}). But Corollary 2.6.9 (c) (applied to u = j and c = j) yields j = j%n (since
j ≡ j mod n and j ∈ {0, 1, . . . , n− 1}). Hence, i = j%n = j.
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Exercise 2.10.6 (applied to ui, j and n instead of a, b and c) yields j ⊥ n. From
j ∈ {0, 1, . . . , n− 1} and j ⊥ n, we obtain j ∈ C (by the definition of C). Thus, f (j)
is well-defined. The definition of f yields f (j) = (aj)%n = i (since i = (aj)%n).

Hence, i = f

 j︸︷︷︸
∈C

 ∈ f (C).

Now, forget that we fixed i. We thus have proven that i ∈ f (C) for each i ∈ C. In
other words, C ⊆ f (C). In other words, the map f is surjective.]

Now we know that the map f is injective and surjective. Hence, this map f is
bijective. In other words, f is a bijection from C to C. Thus, we can substitute f (s)
for i in the product ∏

i∈C
i. So we obtain

∏
i∈C

i = ∏
s∈C

f (s) . (66)

But for each s ∈ C, we have

f (s) = (as)%n (by the definition of f )
≡ as mod n (by Corollary 2.6.9 (a), applied to u = as) .

Hence, (9) (applied to S = C, as = f (s) and bs = as) yields

∏
s∈C

f (s) ≡ ∏
s∈C

(as) = a|C| ∏
s∈C

s︸︷︷︸
= ∏

i∈C
i=z

(by (65))

= a|C|z = aφ(n)z mod n

(since |C| = φ (n)). Now, (65) becomes

z = ∏
i∈C

i = ∏
s∈C

f (s) (by (66))

≡ aφ(n)z = zaφ(n) mod n.

Thus, z · 1 = z ≡ zaφ(n) mod n. Lemma 2.10.10 lets us “cancel” z from this con-
gruence (since z ⊥ n). We thus obtain 1 ≡ aφ(n) mod n. This proves Theorem
2.15.3.

Proof of Theorem 2.15.1. As we have explained above, Theorem 2.15.1 follows from
Theorem 2.15.3.

Here is the argument in more detail:
(a) Assume that p - a. Proposition 2.14.3 yields φ (p) = p − 1. But Proposition 2.13.5

yields that either p | a or p ⊥ a. Hence, p ⊥ a (since p - a). In other words, a ⊥ p. In other
words, a is coprime to p. Hence, Theorem 2.15.3 (applied to n = p) yields aφ(p) ≡ 1 mod p.
This rewrites as ap−1 ≡ 1 mod p (since φ (p) = p− 1). This proves Theorem 2.15.1 (a).

(b) We are in one of the following two cases:
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Case 1: We have p - a.
Case 2: We have p | a.
Let us first consider Case 1. In this case, we have p - a. Hence, Theorem 2.15.1 (a) yields

ap−1 ≡ 1 mod p. Multiplying this congruence with the congruence a ≡ a mod p, we obtain
ap−1a ≡ 1a = a mod p. In view of ap−1a = ap, this rewrites as ap ≡ a mod p. Hence,
Theorem 2.15.1 (b) is proven in Case 1.

Let us now consider Case 2. In this case, we have p | a. In other words, a ≡ 0 mod p.
Taking this congruence to the p-th power, we obtain ap ≡ 0p = 0 mod p (since p > 0). Thus,
ap ≡ 0 ≡ a mod p (since a ≡ 0 mod p). Hence, Theorem 2.15.1 (b) is proven in Case 2.

We have now proven Theorem 2.15.1 (b) in both Cases 1 and 2. Hence, Theorem 2.15.1
(b) always holds.

The next exercise shows an amusing (and useful) corollary of Fermat’s Little The-
orem: a situation in which congruent exponents lead to congruent powers (albeit
under rather specific conditions, and with the congruent powers being congruent
modulo a different number than the exponents):

Exercise 2.15.2. Let p be a prime. Let a ∈ Z be such that p - a. Let u, v ∈ N

satisfy u ≡ v mod p− 1. Prove that au ≡ av mod p.

2.15.3. The Pigeonhole Principles

In our above proof of Theorem 2.15.3, we have proven that the map f : C → C
(that we constructed) is injective and surjective. It turns out that this was, to some
extent, wasteful: It would have been enough to prove one of the two properties
only (i.e., injectivity or surjectivity). The reason for this are the following two basic
facts about finite sets:

Theorem 2.15.5 (Pigeonhole Principle for Injections). Let A and B be two finite
sets such that |A| ≥ |B|. Let f : A→ B be an injective map. Then, f is bijective.

Theorem 2.15.6 (Pigeonhole Principle for Surjections). Let A and B be two finite
sets such that |A| ≤ |B|. Let f : A→ B be an surjective map. Then, f is bijective.

Theorem 2.15.5 is called the Pigeonhole Principle for Injections, due to the following
interpretation: If a pigeons sit in b pigeonholes with a ≥ b (that is, there are at least
as many pigeons as there are pigeonholes), and if no two pigeons are sharing the
same hole, then every hole must have at least one pigeon in it. (This corresponds
to the statement of Theorem 2.15.5 if you let A be the set of pigeons, B be the set
of holes, and f be the map that sends each pigeon to the hole it is sitting in. The
injectivity of f is then precisely the statement that no two pigeons are sharing the
same hole.)

Likewise, Theorem 2.15.6 is called the Pigeonhole Principle for Surjections, due to
the following interpretation: If a pigeons sit in b pigeonholes with a ≤ b (that
is, there are at most as many pigeons as there are pigeonholes), and if each hole
contains at least one pigeon, then no two pigeons are sharing the same hole.
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Theorem 2.15.5 and Theorem 2.15.6 are both basic facts of set theory; how to
prove them depends on how you define the size of a finite set in the first place. See
[Grinbe15, solution to Exercise 1.1] for one way of proving them (more precisely,
Theorem 2.15.5 is the “=⇒” direction of [Grinbe15, Lemma 1.5], while Theorem
2.15.6 is the “=⇒” direction of [Grinbe15, Lemma 1.4]).

Now, Theorem 2.15.5 can be used to simplify our above proof of Theorem 2.15.3.
Indeed, in the latter proof, once we have shown that f is injective, we can imme-
diately apply Theorem 2.15.5 (to A = C and B = C) in order to conclude that f is
bijective (since C is a finite set and satisfies |C| ≥ |C|). The proof of surjectivity of
f is thus unnecessary. Alternatively, we could have omitted the proof of injectivity
of f , and instead used the surjectivity of f to apply Theorem 2.15.6 (to A = C and
B = C) in order to conclude that f is bijective (since C is a finite set and satisfies
|C| ≤ |C|). Either way, we would have obtained a shorter proof.

2.15.4. Wilson

The next theorem is known as Wilson’s theorem:

Theorem 2.15.7. Let p be a prime. Then, (p− 1)! ≡ −1 mod p.

We shall prove Theorem 2.15.7 using modular inverses modulo p. The main idea
is that we can “pair up” each factor in the product (p− 1)! = 1 · 2 · · · · · (p− 1)
with its modular inverse modulo p, where of course we take the unique modular
inverse that belongs to the set {1, 2, . . . , p− 1}. This relies on the following lemma:

Lemma 2.15.8. Let p be a prime. Set A = {1, 2, . . . , p− 1}.
(a) If a1 and a2 are two elements of A satisfying a1 ≡ a2 mod p, then a1 = a2.
(b) For each a ∈ A, there exists a unique a′ ∈ A satisfying aa′ ≡ 1 mod p.
(c) Define a map J : A→ A as follows: For each a ∈ A, we let J (a) denote the

unique a′ ∈ A satisfying aa′ ≡ 1 mod p. (This unique a′ indeed exists, by Lemma
2.15.8 (b).)

Then, this map J is a bijection satisfying J ◦ J = id.

Proof of Lemma 2.15.8. (a) Let a1 and a2 be two elements of A satisfying a1 ≡ a2 mod p.
We must prove that a1 = a2.

We have a1 ≡ a2 mod p. Hence, Corollary 2.6.9 (c) (applied to p, a2 and a1 instead
of n, u and c) yields a1 = a2%p (since a1 ∈ A = {1, 2, . . . , p− 1} ⊆ {0, 1, . . . , p− 1}).
Also, a2 ≡ a2 mod p. Thus, Corollary 2.6.9 (c) (applied to p, a2 and a2 instead of
n, u and c) yields a2 = a2%p (since a2 ∈ A = {1, 2, . . . , p− 1} ⊆ {0, 1, . . . , p− 1}).
Comparing this with a1 = a2%p, we obtain a1 = a2. This proves Lemma 2.15.8 (a).

(b) Let a ∈ A. Thus, a ∈ A = {1, 2, . . . , p− 1}. Hence, Proposition 2.13.4 (applied
to i = a) shows that a is coprime to p. In other words, a ⊥ p. Hence, Theorem 2.10.8
(a) shows that there exists a a′ ∈ Z such that aa′ ≡ gcd (a, p)mod p. Consider this
a′, and denote it by b. Thus, b is an element of Z and satisfies ab ≡ gcd (a, p)mod p.
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We have ab ≡ gcd (a, p) = 1 mod p (since a ⊥ p). Let c = b%p. Corollary 2.6.9
(a) (applied to n = p and u = b) yields b%p ∈ {0, 1, . . . , p− 1} and b%p ≡ b mod p.
Now, c = b%p ∈ {0, 1, . . . , p− 1} and a c︸︷︷︸

=b%p≡b mod p

≡ ab ≡ 1 mod p.

Assume (for the sake of contradiction) that c = 0. Thus, a c︸︷︷︸
=0

= 0 and thus

0 = ac ≡ 1 mod p. Hence, 1 ≡ 0 mod p. In other words, p | 1− 0 = 1. Hence,
Exercise 2.2.5 (applied to g = p) yields p = 1. But p > 1 (since p is prime). This
contradicts p = 1. This contradiction shows that our assumption (that c = 0) is
false.

Hence, c 6= 0. Combining this with c ∈ {0, 1, . . . , p− 1}, we obtain c ∈ {0, 1, . . . , p− 1} \
{0} = {1, 2, . . . , p− 1} = A. Recall that ac ≡ 1 mod p.

Thus, there exists at least one a′ ∈ A satisfying aa′ ≡ 1 mod p (namely, a′ = c). It
remains to prove that there is only one such a′.

Indeed, let a′1 and a′2 be two elements a′ ∈ A satisfying aa′ ≡ 1 mod p. We shall
prove that a′1 = a′2.

We know that a′1 is an element a′ ∈ A satisfying aa′ ≡ 1 mod p. In other words, a′1
is an element of A and satisfies aa′1 ≡ 1 mod p. Similarly, a′2 is an element of A and
satisfies aa′2 ≡ 1 mod p. Hence, 1 ≡ aa′2 mod p, so that aa′1 ≡ 1 ≡ aa′2 mod p. Thus,
Lemma 2.10.10 (applied to a′1, a′2 and p instead of b, c and n) yields a′1 ≡ a′2 mod p
(since a ⊥ p). Hence, Lemma 2.15.8 (a) (applied to a1 = a′1 and a2 = a′2) yields
a′1 = a′2.

Now, forget that we fixed a′1 and a′2. We thus have shown that if a′1 and a′2 are
two elements a′ ∈ A satisfying aa′ ≡ 1 mod p, then a′1 = a′2. In other words, there
exists at most one a′ ∈ A satisfying aa′ ≡ 1 mod p. Thus, there exists a unique such
a′ (because we have already shown that there exists at least one such a′). In other
words, there exists a unique a′ ∈ A satisfying aa′ ≡ 1 mod p. This proves Lemma
2.15.8 (b).

(c) Let a ∈ A. Then, J (a) is the unique a′ ∈ A satisfying aa′ ≡ 1 mod p (by the
definition of J). Hence, J (a) is an a′ ∈ A satisfying aa′ ≡ 1 mod p. In other words,
J (a) is an element of A and satisfies

aJ (a) ≡ 1 mod p. (67)

Now, forget that we fixed a. We thus have proven (67) for each a ∈ A.
Now, let a ∈ A be arbitrary. Then, J (a) ∈ A (since J is a map from A to A).

Thus, (67) (applied to J (a) instead of a) yields J (a) J (J (a)) ≡ 1 mod p. Also, from
J (a) ∈ A, we obtain J (J (a)) ∈ A (since J is a map from A to A). On the other
hand, (67) yields aJ (a) ≡ 1 mod p. Thus, 1 ≡ aJ (a)mod p. Now,

J (a) J (J (a)) ≡ 1 ≡ aJ (a) = J (a) a mod p.

But J (a) ∈ A = {1, 2, . . . , p− 1}. Hence, Proposition 2.13.4 (applied to i = J (a))
shows that J (a) is coprime to p. In other words, J (a) ⊥ p. Hence, Lemma 2.10.10
(applied to J (a), J (J (a)), a and p instead of a, b, c and n) yields J (J (a)) ≡ a mod p
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(since J (a) J (J (a)) ≡ J (a) a mod p). Therefore, Lemma 2.15.8 (a) (applied to a1 =
J (J (a)) and a2 = a) yields J (J (a)) = a. Thus, (J ◦ J) (a) = J (J (a)) = a = id (a).

Now, forget that we fixed a. We thus have proven that (J ◦ J) (a) = id (a) for
each a ∈ A. In other words, J ◦ J = id. Hence, the maps J and J are mutually
inverse. Thus, the map J is invertible, i.e., is a bijection. Thus, Lemma 2.15.8 (c) is
proven.

Remark 2.15.9. Let S be a set. An involution on S means a map f : S → S
satisfying f ◦ f = id. Thus, Lemma 2.15.8 (c) says that the map J : A → A
defined in this lemma is an involution on A.

We are now ready to prove Theorem 2.15.7:

First proof of Theorem 2.15.7. We have (2− 1)! = 1! = 1 ≡ −1 mod 2 (since 1 −
(−1) = 2 is divisible by 2). In other words, Theorem 2.15.7 holds when p = 2.
Hence, for the rest of this proof, we WLOG assume that we don’t have p = 2.
Hence, p 6= 2. Thus, 1 6= p− 1.

But p is a prime; thus, p > 1, so that p ≥ 2 (since p is an integer). Combining
this with p 6= 2, we obtain p > 2, so that p ≥ 3 (since p is an integer).

Define the set A and the map J : A → A as in Lemma 2.15.8. Hence, Lemma
2.15.8 (c) shows that this map J is a bijection satisfying J ◦ J = id. The equality
J ◦ J = id shows that the map J is inverse to itself. For each a ∈ A, we have

aJ (a) ≡ 1 mod p. (68)

(This congruence is proven in the same way as it was proven in our above proof of
Lemma 2.15.8 (c).)

Now, the rest of our proof shall follow the following plan (using the same “pair-
ing” idea that we have seen in our proof of Proposition 2.14.7 and in the solution
to Exercise 2.14.4): We will use the map J to establish a pairing between the factors
of the product 1 · 2 · · · · · (p− 1) (pairing up each factor a with the factor J (a)),
which will pair up almost all of them – more precisely, all of them except for the
very first and very last factors (since these two factors would have to pair up with
themselves)61. For example, if p = 11, then we have the following table of values
of J:

a 1 2 3 4 5 6 7 8 9 10

J (a) 1 6 4 3 9 2 8 7 5 10

(indeed, for example, J (2) = 6, since 6 is the unique a′ ∈ A satisfying 2 · a′ ≡
1 mod 11), and thus we pair up the factors of the product 1 · 2 · · · · · (p− 1) as
follows:

1 · 2 · · · · · (p− 1) = 1 · 2 · 3 · 4 · 5 · 6 · 7 · 8 · 9 · 10
= 1 · (2 · 6) · (3 · 4) · (5 · 9) · (7 · 8) · 10.

61The reason why it is precisely these two factors that will not be paired up is not completely trivial.
It follows from Exercise 2.13.12.
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By the definition of the map J, each pair has the form (a, J (a)) for some a ∈ A,
and thus the product of any two different factors paired up with each other is
≡ 1 mod p (by (68)). For example, if p = 11, then we have

1 · 2 · · · · · (p− 1) = 1 · (2 · 6)︸ ︷︷ ︸
≡1 mod 11

· (3 · 4)︸ ︷︷ ︸
≡1 mod 11

· (5 · 9)︸ ︷︷ ︸
≡1 mod 11

· (7 · 8)︸ ︷︷ ︸
≡1 mod 11

·10

≡ 1 · 10 mod 11.

Thus, any two different factors paired up with each other “neutralize” each other
when being multiplied (as long as we are computing modulo p). Hence, the prod-
uct of all the p− 1 factors will reduce (when working modulo p) to the product of
the two factors that have not been paired up, which will be 1 · (p− 1) = p− 1 ≡
−1 mod p.

Here are the details of this argument:
An element a of A will be called

• small if a < J (a);

• medium if a = J (a);

• large if a > J (a).

Now, we claim that the medium elements of A are precisely 1 and p− 1.
[Proof: We have 1 ≤ p− 1 (since p ≥ 2). Thus, 1 ∈ {1, 2, . . . , p− 1} = A and p− 1 ∈

{1, 2, . . . , p− 1} = A. The element 1 of A is medium62. The element p− 1 of A is medium63.
Hence, the two numbers 1 and p− 1 are medium elements of A. It remains to prove that
these two numbers are the only medium elements of A.

Indeed, let a be a medium element of A. We shall show that a = 1 or a = p− 1.
Indeed, assume the contrary. Thus, neither a = 1 nor a = p− 1 holds.

62Proof. We have 1 ∈ A. Hence, J (1) ∈ A (since J is a map from A to A). Furthermore, (68)
(applied to a = 1) yields 1J (1) ≡ 1 mod p. Thus, 1 ≡ 1J (1) = J (1)mod p. Thus, Lemma 2.15.8
(a) (applied to a1 = 1 and a2 = J (1)) yields 1 = J (1). In other words, the element 1 of A is
medium.

63Proof. We have p− 1 ∈ A. Hence, J (p− 1) ∈ A (since J is a map from A to A). Furthermore, (68)
(applied to a = p− 1) yields (p− 1) J (p− 1) ≡ 1 mod p. Multiplying this congruence with the
obvious congruence p− 1 ≡ p− 1 mod p, we obtain

(p− 1) (p− 1) J (p− 1) ≡ (p− 1) 1 = p− 1 mod p.

Hence,

p− 1 ≡ (p− 1) (p− 1) J (p− 1) =

 p− 1︸ ︷︷ ︸
≡−1 mod p


2

J (p− 1) ≡ (−1)2︸ ︷︷ ︸
=1

J (p− 1)

= J (p− 1)mod p.

Thus, Lemma 2.15.8 (a) (applied to a1 = p− 1 and a2 = J (p− 1)) yields p− 1 = J (p− 1). In
other words, the element p− 1 of A is medium.
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If we had a ≡ 1 mod p, then Lemma 2.15.8 (a) (applied to a1 = a and a2 = 1) would
yield a = 1, which would contradict the fact that a = 1 does not hold. Thus, we do not
have a ≡ 1 mod p.

If we had a ≡ p− 1 mod p, then Lemma 2.15.8 (a) (applied to a1 = a and a2 = p− 1)
would yield a = p− 1, which would contradict the fact that a = p− 1 does not hold. Thus,
we do not have a ≡ p− 1 mod p.

We have assumed that a is medium. In other words, a = J (a). But (68) yields aJ (a) ≡ 1
mod p. Thus, a2 = a a︸︷︷︸

=J(a)

= aJ (a) ≡ 1 mod p. Hence, Exercise 2.13.12 shows that a ≡

1 mod p or a ≡ −1 mod p. Hence, we must have a ≡ −1 mod p (since we do not have
a ≡ 1 mod p). Thus, a ≡ −1 ≡ p− 1 mod p (since p− 1 ≡ −1 mod p). This contradicts
the fact that we do not have a ≡ p− 1 mod p.

This contradiction shows that our assumption was false. Hence, a = 1 or a = p− 1.
Now, forget that we fixed a. We thus have proven that every medium element a of A

satisfies a = 1 or a = p− 1. In other words, every medium element of A is either 1 or p− 1.
Since we know that 1 and p− 1 actually are medium elements of A, we thus conclude that
the medium elements of A are precisely 1 and p− 1.]

So we have shown that the medium elements of A are precisely 1 and p− 1. Since these
two elements are distinct (because p− 1 6= 1), we thus obtain

∏
a∈A;

a is medium

a = 1 · (p− 1) = p− 1 ≡ −1 mod p. (69)

It is easy to see that if a is a small element of A, then J (a) is a large element of A 64.
Hence, the map

J+ : {small elements of A} → {large elements of A} ,
a 7→ J (a)

is well-defined. Similarly, the map

J− : {large elements of A} → {small elements of A} ,
a 7→ J (a)

is well-defined. These two maps J+ and J− are both restrictions of the map J, and thus are
mutually inverse (since the map J is inverse to itself). Hence, the map J+ is invertible, i.e.,
is a bijection. In other words, the map

{small elements of A} → {large elements of A} ,
a 7→ J (a)

is a bijection (since this map is just the map J+). Thus, we can substitute J (b) for a in the
product ∏

a∈A;
a is large

a. We thus obtain

∏
a∈A;

a is large

a = ∏
b∈A;

b is small

J (b) = ∏
a∈A;

a is small

J (a) (70)

64Proof. Let a be a small element of A. Thus, a < J (a). Note that J (a) ∈ A (since J is a map from A
to A). But J ◦ J = id, so that (J ◦ J) (a) = id a = a < J (a). In view of (J ◦ J) (a) = J (J (a)), this
rewrites as J (J (a)) < J (a). In other words, J (a) > J (J (a)). In other words, the element J (a) of
A is large (by the definition of “large”). Qed.
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(here, we have renamed the index b as a in the product). Now, the definition of (p− 1)!
yields

(p− 1)! = 1 · 2 · · · · · (p− 1) = ∏
a∈A

a

=

 ∏
a∈A;

a is small

a

 ·
 ∏

a∈A;
a is medium

a


︸ ︷︷ ︸
≡−1 mod p

(by (69))

·

 ∏
a∈A;

a is large

a


︸ ︷︷ ︸
= ∏

a∈A;
a is small

J(a)

(by (70))(
since each a ∈ A is either small or medium or large (but never

has more than one of these three attributes simultaneously)

)

≡

 ∏
a∈A;

a is small

a

 · (−1) ·

 ∏
a∈A;

a is small

J (a)

 = −

 ∏
a∈A;

a is small

a

 ·
 ∏

a∈A;
a is small

J (a)


︸ ︷︷ ︸

= ∏
a∈A;

a is small

(aJ(a))

= − ∏
a∈A;

a is small

(aJ (a))mod p. (71)

But it is clear that ∏
a∈A;

a is small

(aJ (a))︸ ︷︷ ︸
≡1 mod p
(by (68))

≡ 1 mod p 65. Hence, (71) rewrites as

(p− 1)! ≡ − ∏
a∈A;

a is small

(aJ (a))

︸ ︷︷ ︸
≡1 mod p

≡ −1 mod p. (72)

65Proof. Here is this argument in more detail:
Every a ∈ {small elements of A} satisfies aJ (a) ≡ 1 mod p (by (68)). Renaming the index

a as s in this statement, we obtain the following: Every s ∈ {small elements of A} satisfies
sJ (s) ≡ 1 mod p. Hence, (9) (applied to n = p, S = {small elements of A}, as = sJ (s) and
bs = 1) yields

∏
s∈{small elements of A}

(sJ (s)) ≡ ∏
s∈{small elements of A}

1 = 1 mod p.

In view of

∏
s∈{small elements of A}

(sJ (s)) = ∏
a∈{small elements of A}

(aJ (a))
(

here, we have renamed the
index s as a in the product

)
= ∏

a∈A;
a is small

(aJ (a)) ,

this rewrites as ∏
a∈A;

a is small

(aJ (a)) ≡ 1 mod p.
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This proves Theorem 2.15.7.

Later, in Section 3.5, we shall give a different version of this proof.
Theorem 2.15.7 has a converse:

Exercise 2.15.3. If an integer p > 1 satisfies (p− 1)! ≡ −1 mod p, then prove that
p is a prime.

(This is actually easier to prove than Theorem 2.15.7 itself.)

Exercise 2.15.4. Let p be a prime. Prove that

(p− 1)! ≡ p− 1 mod 1 + 2 + · · ·+ (p− 1) .

Exercise 2.15.5. Let p be an odd prime. Write p in the form p = 2k + 1 for some
k ∈N. Prove that k!2 ≡ − (−1)k mod p.

[Hint: Each j ∈ Z satisfies j (p− j) ≡ −j2 mod p.]

2.16. The Chinese Remainder Theorem as a bijection

2.16.1. The bijection Km,n

Here comes another of the many facts known as the “Chinese Remainder Theo-
rem”:

Theorem 2.16.1. Let m and n be two coprime positive integers. Then, the map

Km,n : {0, 1, . . . , mn− 1} → {0, 1, . . . , m− 1} × {0, 1, . . . , n− 1} ,
a 7→ (a%m, a%n)

is well-defined and is a bijection.

Example 2.16.2. (a) Theorem 2.16.1 (applied to m = 3 and n = 2) says that the
map

K3,2 : {0, 1, 2, 3, 4, 5} → {0, 1, 2} × {0, 1} ,
a 7→ (a%3, a%2)

is a bijection. This map sends

0, 1, 2, 3, 4, 5 to
(0, 0) , (1, 1) , (2, 0) , (0, 1) , (1, 0) , (2, 1) ,

respectively (since 0%3 = 0 and 0%2 = 0 and 1%3 = 1 and 1%2 = 1 and 2%3 = 2
and 2%2 = 0 and so on). This list of values shows that this map is bijective (since
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it takes on every possible value in {0, 1, 2}× {0, 1} exactly once). Theorem 2.16.1
says that this holds for arbitrary coprime m and n.

(b) Let us see how Theorem 2.16.1 fails when m and n are not coprime. For
example, take m = 6 and n = 4. Then, the map

K6,4 : {0, 1, . . . , 23} → {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3} ,
a 7→ (a%6, a%4)

is not a bijection. Indeed, it is neither injective (for example, it sends both 0 and
12 to the same pair (0, 0)) nor surjective (for example, it never takes the value
(1, 2)).

Proof of Theorem 2.16.1. For every a ∈ {0, 1, . . . , mn− 1}, we have (a%m, a%n) ∈
{0, 1, . . . , m− 1} × {0, 1, . . . , n− 1} 66. Hence, the map Km,n is well-defined. It
remains to prove that this map Km,n is a bijection. To that aim, we shall prove that
Km,n is injective and surjective.

[Proof that the map Km,n is injective: Let a, b ∈ {0, 1, . . . , mn− 1} be such that
Km,n (a) = Km,n (b). We want to prove a = b.

The definition of Km,n yields Km,n (a) = (a%m, a%n) and Km,n (b) = (b%m, b%n).
Hence, the equality Km,n (a) = Km,n (b) (which is true by assumption) rewrites as
(a%m, a%n) = (b%m, b%n). In other words, a%m = b%m and a%n = b%n.

Now, Exercise 2.6.1 (applied to u = a and v = b) yields that a ≡ b mod n if and
only if a%n = b%n. Hence, a ≡ b mod n (since a%n = b%n). In other words,
n | a− b. The same argument (but applied to m instead of n) yields m | a− b.

Now, we have m ⊥ n (since m and n are coprime) and m | a− b and n | a− b.
Hence, Theorem 2.10.7 (applied to m, n and a − b instead of a, b and c) yields
mn | a− b. In other words, a ≡ b mod mn. Hence, Corollary 2.6.9 (c) (applied to
mn, b and a instead of n, u and c) yields a = b% (mn) (since a ∈ {0, 1, . . . , mn− 1}).

On the other hand, b ≡ b mod mn. Hence, Corollary 2.6.9 (c) (applied to mn,
b and b instead of n, u and c) yields b = b% (mn) (since b ∈ {0, 1, . . . , mn− 1}).
Comparing this with a = b% (mn), we obtain a = b.

Now, forget that we fixed a and b. We thus have shown that if a, b ∈ {0, 1, . . . , mn− 1}
are such that Km,n (a) = Km,n (b), then a = b. In other words, the map Km,n is injec-
tive.]

[Proof that the map Km,n is surjective: Fix (a, b) ∈ {0, 1, . . . , m− 1}×{0, 1, . . . , n− 1}.
We want to find a c ∈ {0, 1, . . . , mn− 1} such that Km,n (c) = (a, b).

We have (a, b) ∈ {0, 1, . . . , m− 1}×{0, 1, . . . , n− 1}. In other words, a ∈ {0, 1, . . . , m− 1}
and b ∈ {0, 1, . . . , n− 1}. Theorem 2.12.1 (a) shows that there exists an integer

66Proof. Let a ∈ {0, 1, . . . , mn− 1}. We must prove that (a%m, a%n) ∈ {0, 1, . . . , m− 1} ×
{0, 1, . . . , n− 1}.

Corollary 2.6.9 (a) (applied to u = a) yields that a%n ∈ {0, 1, . . . , n− 1} and a%n ≡
a mod n. Thus, a%n ∈ {0, 1, . . . , n− 1}. The same argument (applied to m instead of n)
yields a%m ∈ {0, 1, . . . , m− 1}. Combining this with a%n ∈ {0, 1, . . . , n− 1}, we obtain
(a%m, a%n) ∈ {0, 1, . . . , m− 1} × {0, 1, . . . , n− 1}. Qed.
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x ∈ Z such that
(x ≡ a mod m and x ≡ b mod n) .

Consider such an x. We have x ≡ a mod m, thus a ≡ x mod m. From x ≡ b mod n,
we obtain b ≡ x mod n.

Let y = x% (mn). Then, Corollary 2.6.9 (a) (applied to mn and x instead of
n and u) yields x% (mn) ∈ {0, 1, . . . , mn− 1} and x% (mn) ≡ x mod mn. Hence,
x ≡ x% (mn) = y mod mn (since y = x% (mn)).

Since m | mn, we thus obtain x ≡ y mod m (by Proposition 2.3.4 (e), applied
to mn, x, y and m instead of n, a, b and m). Thus, a ≡ x ≡ y mod m. Hence,
Corollary 2.6.9 (c) (applied to m, y and a instead of n, u and c) yields a = y%m
(since a ∈ {0, 1, . . . , m− 1}).

Also, from x ≡ y mod mn and n | mn, we obtain x ≡ y mod n (by Proposition
2.3.4 (e), applied to mn, x, y and n instead of n, a, b and m). Thus, b ≡ x ≡ y mod n.
Hence, Corollary 2.6.9 (c) (applied to y and b instead of u and c) yields b = y%n
(since b ∈ {0, 1, . . . , n− 1}).

From a = y%m and b = y%n, we obtain (a, b) = (y%m, y%n).
We have y = x% (mn) ∈ {0, 1, . . . , mn− 1}; thus, the definition of the map Km,n

yields Km,n (y) = (y%m, y%n) = (a, b) (since (a, b) = (y%m, y%n)). Thus, there
exists a c ∈ {0, 1, . . . , mn− 1} such that Km,n (c) = (a, b) (namely, c = y).

Now, forget that we fixed (a, b). We thus have shown that for any (a, b) ∈
{0, 1, . . . , m− 1} × {0, 1, . . . , n− 1}, there exists a c ∈ {0, 1, . . . , mn− 1} such that
Km,n (c) = (a, b). In other words, the map Km,n is surjective.]

We have now proven that the map Km,n is both injective and surjective. Hence,
this map Km,n is bijective, i.e., is a bijection. This proves Theorem 2.16.1.

[Remark: We could have saved ourselves some of the work done in this proof
by invoking the Pigeonhole Principle. Indeed, our goal was to show that the map
Km,n is bijective. By the Pigeonhole Principle for Injections (Theorem 2.15.5), it suf-
fices to prove that it is injective, because {0, 1, . . . , mn− 1} and {0, 1, . . . , m− 1} ×
{0, 1, . . . , n− 1} are two finite sets of the same size. Alternatively, by the Pigeon-
hole Principle for Surjections (Theorem 2.15.6), it would instead suffice to prove
that the map Km,n is surjective].

2.16.2. Coprime remainders

For the rest of this section, we shall use the following notation:

Definition 2.16.3. Let n be a positive integer. Then, let Cn be the subset
{i ∈ {0, 1, . . . , n− 1} | i ⊥ n} of {0, 1, . . . , n− 1}.

For instance,

C4 = {1, 3} , C5 = {1, 2, 3, 4} , C6 = {1, 5} and C1 = {0} .

Now, we claim the following:
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Proposition 2.16.4. Let m and n be two coprime positive integers. Consider the
map Km,n defined in Theorem 2.16.1. Then,

Km,n (Cmn) = Cm × Cn.

(Here, Km,n (Cmn) denotes the image of the subset Cmn of {0, 1, . . . , mn− 1} under
the map Km,n; that is, Km,n (Cmn) = {Km,n (x) | x ∈ Cmn}.)

Example 2.16.5. Theorem 2.16.1 (applied to m = 3 and n = 5) says that the map

K3,5 : {0, 1, . . . , 14} → {0, 1, 2} × {0, 1, 2, 3, 4} ,
a 7→ (a%3, a%5)

is a bijection. Proposition 2.16.4 (applied to m = 3 and n = 5) says that this map
satisfies K3,5 (C15) = C3 × C5. In view of

C15 = {i ∈ {0, 1, . . . , 14} | i ⊥ 15} = {1, 2, 4, 7, 8, 11, 13, 14} ,
C3 = {i ∈ {0, 1, 2} | i ⊥ 3} = {1, 2} , and
C5 = {i ∈ {0, 1, 2, 3, 4} | i ⊥ 5} = {1, 2, 3, 4} ,

this rewrites as

K3,5 ({1, 2, 4, 7, 8, 11, 13, 14}) = {1, 2} × {1, 2, 3, 4} .

And indeed, this can easily be checked: The map K3,5 sends

1, 2, 4, 7, 8, 11, 13, 14, to
(1, 1) , (2, 2) , (1, 4) , (1, 2) , (2, 3) , (2, 1) , (1, 3) (2, 4) ,

respectively, which entails

K3,5 ({1, 2, 4, 7, 8, 11, 13, 14})
= {(1, 1) , (2, 2) , (1, 4) , (1, 2) , (2, 3) , (2, 1) , (1, 3) , (2, 4)} = {1, 2} × {1, 2, 3, 4} .

Proof of Proposition 2.16.4. Theorem 2.16.1 yields that the map Km,n is well-defined
and is a bijection.

The definition of Cn yields

Cn = {i ∈ {0, 1, . . . , n− 1} | i ⊥ n} ⊆ {0, 1, . . . , n− 1} .

The definition of Cm yields

Cm = {i ∈ {0, 1, . . . , m− 1} | i ⊥ m} ⊆ {0, 1, . . . , m− 1} .

The definition of Cmn yields

Cmn = {i ∈ {0, 1, . . . , mn− 1} | i ⊥ mn} ⊆ {0, 1, . . . , mn− 1} .
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Hence, Km,n (Cmn) is well-defined. Also, from Cm ⊆ {0, 1, . . . , m− 1} and Cn ⊆
{0, 1, . . . , n− 1}, we obtain

Cm × Cn ⊆ {0, 1, . . . , m− 1} × {0, 1, . . . , n− 1} .

Now, we claim that
Km,n (Cmn) ⊆ Cm × Cn. (73)

[Proof of (73): Let z ∈ Km,n (Cmn). Thus, z = Km,n (x) for some x ∈ Cmn. Consider
this x.

We have x ∈ Cmn = {i ∈ {0, 1, . . . , mn− 1} | i ⊥ mn}. In other words, x is
an i ∈ {0, 1, . . . , mn− 1} satisfying i ⊥ mn. In other words, x is an element of
{0, 1, . . . , mn− 1} and satisfies x ⊥ mn. In other words, x ⊥ nm (since mn = nm).

We have x | x and m | mn. Hence, Exercise 2.9.4 (applied to a1 = x, a2 = m,
b1 = x and b2 = mn) yields gcd (x, m) | gcd (x, mn) = 1 (since x ⊥ mn). Since
gcd (x, m) is a nonnegative integer67, this entails gcd (x, m) = 1 (by Exercise 2.2.5,
applied to g = gcd (x, m)). In other words, x ⊥ m. But Corollary 2.6.9 (a) (applied
to m and x instead of n and u) yields x%m ∈ {0, 1, . . . , m− 1} and x%m ≡ x mod m.
From x%m ≡ x mod m, we obtain x ≡ x%m mod m. Hence, Exercise 2.10.6 (applied
to x, x%m and m instead of a, b and c) yields x%m ⊥ m (since x ⊥ m). Hence, x%m
is an i ∈ {0, 1, . . . , m− 1} satisfying i ⊥ m (since x%m ∈ {0, 1, . . . , m− 1}). In other
words, x%m ∈ {i ∈ {0, 1, . . . , m− 1} | i ⊥ m}. In other words, x%m ∈ Cm (since
Cm = {i ∈ {0, 1, . . . , m− 1} | i ⊥ m}).

The same argument (with the roles of m and n swapped) yields x%n ∈ Cn (since
x ⊥ nm). Now,

z = Km,n (x) = (x%m, x%n) (by the definition of Km,n)

∈ Cm × Cn (since x%m ∈ Cm and x%n ∈ Cn) .

Now, forget that we fixed z. We thus have proven that z ∈ Cm × Cn for each
z ∈ Km,n (Cmn). In other words, Km,n (Cmn) ⊆ Cm × Cn. This proves (73).]

Next, we claim that
Cm × Cn ⊆ Km,n (Cmn) . (74)

[Proof of (74): Let y ∈ Cm × Cn. We shall prove that y ∈ Km,n (Cmn).
We have y ∈ Cm×Cn ⊆ {0, 1, . . . , m− 1}×{0, 1, . . . , n− 1} = Km,n ({0, 1, . . . , mn− 1})

(since the map Km,n is a bijection). In other words, there exists some x ∈ {0, 1, . . . , mn− 1}
such that y = Km,n (x). Consider this x. The definition of Km,n yields Km,n (x) =
(x%m, x%n). Hence,

(x%m, x%n) = Km,n (x) = y ∈ Cm × Cn.

In other words, x%m ∈ Cm and x%n ∈ Cn.
We have x%m ∈ Cm = {i ∈ {0, 1, . . . , m− 1} | i ⊥ m}. In other words, x%m is

an i ∈ {0, 1, . . . , m− 1} satisfying i ⊥ m. In other words, x%m is an element of
{0, 1, . . . , m− 1} and satisfies x%m ⊥ m.

67because any gcd is a nonnegative integer
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But Corollary 2.6.9 (a) (applied to m and x instead of n and u) yields x%m ∈
{0, 1, . . . , m− 1} and x%m ≡ x mod m. Hence, Exercise 2.10.6 (applied to x%m, x
and m instead of a, b and c) yields x ⊥ m (since x%m ⊥ m). This yields m ⊥ x
(by Proposition 2.10.4). The same argument (applied to n instead of m) yields
n ⊥ x (since x%n ∈ Cn). Hence, Theorem 2.10.9 (applied to m, n and x instead
of a, b and c) yields mn ⊥ x. This yields x ⊥ mn (by Proposition 2.10.4). Thus,
x is an i ∈ {0, 1, . . . , mn− 1} satisfying i ⊥ mn (since x ∈ {0, 1, . . . , mn− 1}). In
other words, x ∈ {i ∈ {0, 1, . . . , mn− 1} | i ⊥ mn}. In other words, x ∈ Cmn (since

Cmn = {i ∈ {0, 1, . . . , mn− 1} | i ⊥ mn}). Hence, y = Km,n

 x︸︷︷︸
∈Cmn

 ∈ Km,n (Cmn).

Now, forget that we fixed y. We thus have shown that y ∈ Km,n (Cmn) for each
y ∈ Cm × Cn. In other words, Cm × Cn ⊆ Km,n (Cmn). This proves (74).]

Combining (73) with (74), we obtain Km,n (Cmn) = Cm × Cn. This proves Propo-
sition 2.16.4.

2.16.3. Proving the formula for φ

We now can prove Theorem 2.14.4:

First proof of Theorem 2.14.4. The definition of Cn yields

Cn = {i ∈ {0, 1, . . . , n− 1} | i ⊥ n} . (75)

Lemma 2.15.4 yields

φ (n) =

∣∣∣∣∣∣∣∣∣{i ∈ {0, 1, . . . , n− 1} | i ⊥ n}︸ ︷︷ ︸
=Cn

(by (75))

∣∣∣∣∣∣∣∣∣ = |Cn| .

The same argument (applied to mn instead of n) yields φ (mn) = |Cmn|.
We have shown that φ (n) = |Cn|, so that |Cn| = φ (n). The same argument

(applied to m instead of n) yields |Cm| = φ (m).
It is well-known that any two finite sets A and B satisfy |A× B| = |A| · |B| 68.

Applying this to A = Cm and B = Cn, we obtain

|Cm × Cn| = |Cm|︸︷︷︸
=φ(m)

· |Cn|︸︷︷︸
=φ(n)

= φ (m) · φ (n) .

Note that Cmn is a subset of {0, 1, . . . , mn− 1} (since the definition of Cmn yields
Cmn = {i ∈ {0, 1, . . . , mn− 1} | i ⊥ mn} ⊆ {0, 1, . . . , mn− 1}).

68This is the so-called product rule in its simplest form (see, e.g., [Loehr11, 1.5] or [LeLeMe18,
§15.2.1]).
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Now, consider the map Km,n defined in Theorem 2.16.1. Then, Theorem 2.16.1
shows that this map Km,n is a bijection. Thus, in particular, Km,n is injective. Hence,
|Km,n (S)| = |S| for each subset S of {0, 1, . . . , mn− 1} 69. Applying this to
S = Cmn, we obtain |Km,n (Cmn)| = |Cmn|. Thus,

|Cmn| =

∣∣∣∣∣∣∣∣∣ Km,n (Cmn)︸ ︷︷ ︸
=Cm×Cn

(by Proposition 2.16.4)

∣∣∣∣∣∣∣∣∣ = |Cm × Cn| = φ (m) · φ (n) .

Hence, φ (mn) = |Cmn| = φ (m) · φ (n). This proves Theorem 2.14.4.

We now take aim at proving Theorem 2.14.5. First, let us extend Theorem 2.14.4
to products of k mutually coprime integers:

Exercise 2.16.1. Let n1, n2, . . . , nk be mutually coprime positive integers. Prove
that φ (n1n2 · · · nk) = φ (n1) · φ (n2) · · · · · φ (nk).

Exercise 2.16.2. Let I be a finite set. For each i ∈ I, let ni be a positive integer.
Assume that

every two distinct elements i and j of I satisfy ni ⊥ nj. (76)

Prove that

φ

(
∏
i∈I

ni

)
= ∏

i∈I
φ (ni) .

We are finally ready to prove Theorem 2.14.5:

Proof of Theorem 2.14.5. The integer n is positive and thus nonzero. In other words,
n 6= 0.

If p is a prime satisfying p - n, then vp (n) = 0 (by Corollary 2.13.26) and therefore

pvp(n) = p0 = 1. (77)

If p is a prime satisfying p | n, then vp (n) is a positive integer70 and therefore
satisfies

φ
(

pvp(n)
)
= (p− 1) pvp(n)−1 (78)

(by Exercise 2.14.1, applied to k = vp (n)).

69This follows from the following general principle: If f : X → Y is an injective map between two
finite sets X and Y, then | f (S)| = |S| for each subset S of X.

70Proof. Let p be a prime satisfying p | n. If we had vp (n) = 0, then we would have p - n (by
Corollary 2.13.26), and this would contradict p | n. Hence, we cannot have vp (n) = 0. Thus,
vp (n) 6= 0. But vp (n) ∈ N (since n is nonzero). Thus, from vp (n) 6= 0, we conclude that vp (n)
is a positive integer. Qed.
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Corollary 2.13.33 yields

n = ∏
p prime

pvp(n) =

 ∏
p prime;

p|n

pvp(n)

 ·
 ∏

p prime;
p-n

pvp(n)︸ ︷︷ ︸
=1

(by (77))


(

since each prime p satisfies either p | n or p - n
(but not both at the same time)

)

=

 ∏
p prime;

p|n

pvp(n)

 ·
 ∏

p prime;
p-n

1


︸ ︷︷ ︸

=1

= ∏
p prime;

p|n

pvp(n). (79)

Let P be the set of all primes p satisfying p | n. This set P is finite71. For
each i ∈ P, the number ivi(n) is a positive integer72. Moreover, every two distinct
elements i and j of P satisfy ivi(n) ⊥ jvj(n) 73. Hence, Exercise 2.16.2 (applied to
I = P and ni = ivi(n)) yields

φ

(
∏
i∈P

ivi(n)

)
= ∏

i∈P
φ
(

ivi(n)
)

.

Renaming the index i as p in both products, we can rewrite this equality as

φ

(
∏
p∈P

pvp(n)

)
= ∏

p∈P
φ
(

pvp(n)
)

. (80)

But the product signs “ ∏
p∈P

” in this equality can be replaced by “ ∏
p prime;

p|n

” without

changing their meaning (since P is the set of all primes p satisfying p | n). Hence,

71Proof. We shall show that P ⊆ {1, 2, . . . , n}.
Indeed, let p ∈ P. Thus, p is a prime satisfying p | n (by the definition of P). Hence, p is

positive (since p is prime). Also, n 6= 0. Thus, from p | n, we obtain |p| ≤ |n| (by Proposition
2.2.3 (b), applied to a = p and b = n). In view of |p| = p (since p is positive) and |n| = n (since
n is positive), this rewrites as p ≤ n. Hence, p ∈ {1, 2, . . . , n} (since p is a positive integer).

Now, forget that we fixed p. We thus have shown that p ∈ {1, 2, . . . , n} for each p ∈ P. In
other words, P ⊆ {1, 2, . . . , n}. Hence, the set P is finite (since the set {1, 2, . . . , n} is finite).

72since vi (n) ∈N (since n is nonzero) and since i is a positive integer
73Proof. Let i and j be two distinct elements of P. All elements of P are primes (by the definition of

P); thus, i and j are primes (since i and j are elements of P). Also, i and j are distinct. Hence,
Exercise 2.13.1 (applied to p = i and q = j) yields i ⊥ j. But vi (n) ∈ N (since n is nonzero) and
vj (n) ∈N (for the same reason). Hence, Exercise 2.10.4 (applied to i, j, vi (n) and vj (n) instead
of a, b, n and m) yields ivi(n) ⊥ jvj(n). Qed.
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the equality (80) rewrites as

φ

 ∏
p prime;

p|n

pvp(n)

 = ∏
p prime;

p|n

φ
(

pvp(n)
)

. (81)

Now, applying the map φ to both sides of the equality (79), we find

φ (n) = φ

 ∏
p prime;

p|n

pvp(n)

 = ∏
p prime;

p|n

φ
(

pvp(n)
)

︸ ︷︷ ︸
=(p−1)pvp(n)−1

(by (78))

(by (81))

= ∏
p prime;

p|n

(
(p− 1) pvp(n)−1

)
︸ ︷︷ ︸
=ppvp(n)−1−pvp(n)−1

=pvp(n)−pvp(n)−1

=pvp(n)−pvp(n)/p

=pvp(n)

(
1−

1
p

)

= ∏
p prime;

p|n

(
pvp(n)

(
1− 1

p

))

=

 ∏
p prime;

p|n

pvp(n)


︸ ︷︷ ︸

=n
(by (79))

· ∏
p prime;

p|n

(
1− 1

p

)
= n · ∏

p prime;
p|n

(
1− 1

p

)
.

This proves Theorem 2.14.5.

Theorem 2.15.3 generalizes Theorem 2.15.1 (a). Likewise, the following exercise
generalizes Theorem 2.15.1 (b):

Exercise 2.16.3. Let a be an integer, and let n be a positive integer. Prove that
an ≡ an−φ(n) mod n.

[Hint: Use Exercises 2.13.9 and 2.14.2 and Theorems 2.15.3 and 2.14.4.]

2.17. Binomial coefficients

2.17.1. Definitions and basics

Next, we shall introduce and briefly study binomial coefficients. While binomial
coefficients belong more to (enumerative) combinatorics than to algebra, they are
used significantly in algebra, so we have to derive some of their properties.

Here is the definition of binomial coefficients (at least the one I am going to
follow in these notes):
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Definition 2.17.1. Let n ∈ Q and k ∈ Q. Then, we define the binomial coefficient(
n
k

)
as follows:

(a) If k ∈N, then we set

(
n
k

)
=

n (n− 1) (n− 2) · · · (n− k + 1)
k!

=

k−1
∏
i=0

(n− i)

k!
.

(b) If k /∈N, then we set
(

n
k

)
= 0.

This definition is exactly the definition of
(

n
k

)
that we used in homework set #0.

It is also almost exactly the definition given in [GrKnPa94, (5.1)] (except that we are
allowing k to be non-integer, while the authors of [GrKnPa94] do not). Definition
2.17.1 (a) is also identical with the definition of binomial coefficients in [Grinbe15].
Our choice to require n ∈ Q is more or less arbitrary – we could have as well made
the same definition for n ∈ R or n ∈ C (but I am not aware of this generality being
of much use).

Generally, when you read literature on binomial coefficients, be aware that some

authors use somewhat different definitions of
(

n
k

)
. All known definitions give the

same results when n and k are nonnegative integers, but in the other cases there
may be discrepancies.

Here are some examples of binomial coefficients:

Example 2.17.2. (a) Definition 2.17.1 (a) yields
(

n
2

)
=

n (n− 1)
2!

=
n (n− 1)

2
for

all n ∈ Q. Thus, for example, (
5
2

)
=

5 · 4
2

= 10.

(b) Definition 2.17.1 (a) yields
(

n
3

)
=

n (n− 1) (n− 2)
3!

=
n (n− 1) (n− 2)

6
for

all n ∈ Q. Thus, for example,(
5
3

)
=

5 · 4 · 3
6

=
60
6

= 10;(
1
3

)
=

1 · 0 · (−1)
6

=
0
6
= 0;(

−2
3

)
=

(−2) · (−3) · (−4)
6

=
−24

6
= −4;(

1/2
3

)
=

(1/2) · (−1/2) · (−3/2)
6

=
3/8

6
=

1
16

.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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(c) Definition 2.17.1 (a) yields
(

n
1

)
=

n
1!

=
n
1
= n for all n ∈ Q.

(d) Definition 2.17.1 (b) yields
(

4
1/2

)
= 0 (since 1/2 /∈N).

The binomial coefficients
(

n
k

)
for n ∈ N and k ∈ {0, 1, . . . , n} are particularly

important. They are usually tabulated in a triangle-shaped table known as Pascal’s
triangle, which starts as follows:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1

.

In this table, the binomial coefficient
(

n
k

)
appears as the k-th entry (from the left)

of the n-th row (but we count the rows from 0; that is, the topmost row, consisting
just of a single “1”, is actually the 0-th row). We advise the reader to peruse the
Wikipedia article for the history and the multiple illustrious properties of Pascal’s
triangle.

The expression
(

n
k

)
is pronounced as “n choose k”. The reason for the word

“choose” will become clearer once we have seen Theorem 2.17.10 further below.
Some of these properties are so fundamental that we are going to list them right

now:

Theorem 2.17.3. Let n ∈N and k ∈N be such that n ≥ k. Then,(
n
k

)
=

n!
k! (n− k)!

.

Proof of Theorem 2.17.3. This was Exercise 3 (a) on homework set #0.

Several authors use the formula
(

n
k

)
=

n!
k! (n− k)!

as a definition of the binomial

coefficients. However, this definition has the massive disadvantage of being less
general than Definition 2.17.1 (since it only covers the case when n, k ∈ N and
n ≥ k). To us, this formula is not a definition, but a result that can be proven.

https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Pascal's_triangle
https://en.wikipedia.org/wiki/Pascal's_triangle
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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Theorem 2.17.4. Let n ∈N and k ∈ Q be such that k > n. Then,(
n
k

)
= 0.

Proof of Theorem 2.17.4. This was Exercise 3 (b) on homework set #0.

Theorem 2.17.5. Let n ∈ Q. Then, (
n
0

)
= 1.

Proof of Theorem 2.17.5. Definition 2.17.1 (a) (applied to k = 0) yields

(
n
0

)
=

0−1
∏
i=0

(n− i)

0!
=

1
1

(since
0−1
∏
i=0

(n− i) = (empty product) = 1 and 0! = 1). Thus,
(

n
0

)
=

1
1
= 1. This

proves Theorem 2.17.5.

Theorem 2.17.6. Let n ∈N and k ∈ Q. Then,(
n
k

)
=

(
n

n− k

)
.

Theorem 2.17.6 is known as the symmetry of binomial coefficients. Note that it fails
if n /∈N; thus, be careful when applying it!

Proof of Theorem 2.17.6. This was Exercise 3 (c) on homework set #0.

Theorem 2.17.7. Let n ∈ Q and k ∈ Z. Then,(
−n
k

)
= (−1)k

(
k + n− 1

k

)
.

Theorem 2.17.7 is one of the versions of the upper negation formula.

Proof of Theorem 2.17.7. This was Exercise 3 (d) on homework set #0.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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Theorem 2.17.8. Any n ∈ Q and k ∈ Q satisfy(
n
k

)
=

(
n− 1

k

)
+

(
n− 1
k− 1

)
.

Theorem 2.17.8 is known as the recurrence of the binomial coefficients, and is the
reason why each entry of Pascal’s triangle is the sum of the two entries above it74.

Proof of Theorem 2.17.8. This was Exercise 3 (e) on homework set #0.

Theorem 2.17.9. Any n ∈ Q and k ∈ Q satisfy

k
(

n
k

)
= n

(
n− 1
k− 1

)
.

Proof of Theorem 2.17.9. This was Exercise 3 (f) on homework set #0.

2.17.2. Combinatorial interpretation

The next property of binomial coefficients is one of the major motivations for defin-
ing them:

Theorem 2.17.10. Let n ∈ N and k ∈ Q. Let N be an n-element set. Then,
(

n
k

)
is the number of k-element subsets of N.

We shall refer to Theorem 2.17.10 as the Combinatorial interpretation of binomial

coefficients. Theorem 2.17.10 can be restated as “
(

n
k

)
is the number of ways to

choose k elements (with no repetitions and with no regard for the order) from a

given n-element set (when n ∈N)”. This is the reason why
(

n
k

)
is called “n choose

k”. Note, however, that Theorem 2.17.10 does not directly help us compute
(

n
k

)
when n /∈N.

Proof of Theorem 2.17.10. What follows is an outline of the proof. For a detailed
proof, see [Grinbe15, Exercise 3.4], where I thoroughly prove Theorem 2.17.10 in
the case k ∈ N. (The remaining case k /∈ N is obvious, because in that case the
theorem simply says 0 = 0.)

We proceed by induction on n:

74Of course, this does not apply to the “1” at the apex of Pascal’s triangle (unless we extend the
triangle further to the top by a (−1)-st row).

https://en.wikipedia.org/wiki/Pascal%27s_triangle
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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Induction base: Let n, k and N be as in Theorem 2.17.10, and let us assume that

n = 0. From n = 0, we obtain
(

n
k

)
=

(
0
k

)
=

{
1, if k = 0;
0, if k 6= 0

(this is easy to derive

from Definition 2.17.175). On the other hand, the set N is empty (since |N| = n = 0).
Thus, its only subset is ∅, which is a 0-element subset. Hence, N has exactly one 0-
element subset, and no subsets of any other size. Hence, the number of k-element

subsets of N is

{
1, if k = 0;
0, if k 6= 0

. Comparing this with
(

n
k

)
=

{
1, if k = 0;
0, if k 6= 0

, we

conclude that
(

n
k

)
is the number of k-element subsets of N. Thus, we have proven

Theorem 2.17.10 under the assumption that n = 0. This completes the induction
base.

Induction step: Let m be a positive integer. Assume (as the induction hypothesis)
that Theorem 2.17.10 holds for n = m− 1. We must now prove that Theorem 2.17.10
holds for n = m.

Let k ∈ Q. Let N be an m-element set. Thus, |N| = m > 0. Hence, the set N is
nonempty; in other words, there exists some a ∈ N. Pick such an a. (It does not
matter which one we choose, but we need to leave it fixed from now on.) Clearly,
|N \ {a}| = m− 1 (since |N| = m). In other words, N \ {a} is an (m− 1)-element
set.

Now, the k-element subsets of N can be classified into two types:

• We say that a k-element subset is type-1 if it doesn’t contain a.

• We say that a k-element subset is type-2 if it does contain a.

(We shall use the adjectives “type-1” and “type-2” for k-element subsets of N
only. Thus, whenever we say “type-1 subset” in the following, we will always
mean “type-1 k-element subset of N”, and similarly for “type-2 subset”.)

Clearly, any k-element subset of N is either type-1 or type-2 (but never both at
the same time).

The type-1 subsets are precisely the k-element subsets of the (m− 1)-element set
N \ {a}. By our induction hypothesis, we know that Theorem 2.17.10 holds for

75To wit:

• If k = 0, then
(

0
k

)
=

(
0
0

)
= 1 (by Theorem 2.17.5).

• If k > 0, then Theorem 2.17.4 (applied to 0 instead of n) yields
(

0
k

)
= 0.

• If k < 0, then k /∈N and thus
(

0
k

)
= 0 (by Definition 2.17.1 (b)).

Thus, in all three cases (k = 0, k > 0 and k < 0), we conclude that
(

0
k

)
=

{
1, if k = 0;
0, if k 6= 0

.
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n = m− 1. Hence, we can apply Theorem 2.17.10 to m− 1 and N \ {a} instead of

n and N. We thus conclude that
(

m− 1
k

)
is the number of k-element subsets of

N \ {a}. In other words,
(

m− 1
k

)
is the number of type-1 subsets (since the type-1

subsets are precisely the k-element subsets of N \ {a}). In other words,(
m− 1

k

)
= (the number of type-1 subsets) . (82)

Now, let us count the type-2 subsets76. This is a bit harder, since they are not sub-
sets of N \ {a} anymore. However, they are in 1-to-1 correspondence (aka bijection)
with some such subsets. Namely, there is a bijection

{(k− 1) -element subsets of N \ {a}} → {type-2 subsets} ,
S 7→ S ∪ {a} .

(The inverse of this bijection sends each type-2 subset T to T \ {a}. You can easily
show that these two maps are actually well-defined and mutually inverse, so that
they really are bijections.) This bijection shows that

|{type-2 subsets}| = |{(k− 1) -element subsets of N \ {a}}| . (83)

But recall that Theorem 2.17.10 holds for n = m− 1. Hence, we can apply Theorem
2.17.10 to m− 1, k− 1 and N \ {a} instead of n, k and N. We thus conclude that(

m− 1
k− 1

)
is the number of (k− 1)-element subsets of N \ {a}. In other words,

(
m− 1
k− 1

)
= |{(k− 1) -element subsets of N \ {a}}| .

Comparing this equality with (83), we obtain(
m− 1
k− 1

)
= |{type-2 subsets}|

= (the number of type-2 subsets) . (84)

Now, recall that any k-element subset of N is either type-1 or type-2 (but never
both at the same time). Hence, we can count all k-element subsets of N by first
counting the type-1 subsets, then counting the type-2 subsets, and then adding

76Keep in mind that “type-2 subset” means “type-2 k-element subset of N”.
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these two results. We thus find77

(the number of k-element subsets of N)

= (the number of type-1 subsets)︸ ︷︷ ︸
=

(
m− 1

k

)
(by (82))

+ (the number of type-2 subsets)︸ ︷︷ ︸
=

(
m− 1
k− 1

)
(by (84))

=

(
m− 1

k

)
+

(
m− 1
k− 1

)
=

(
m
k

)

(since Theorem 2.17.8 (applied to n = m) yields
(

m
k

)
=

(
m− 1

k

)
+

(
m− 1
k− 1

)
). In

other words,
(

m
k

)
is the number of k-element subsets of N.

Now, forget that we fixed N and k. We thus have shown that if k ∈ Q and if N

is an m-element set, then
(

m
k

)
is the number of k-element subsets of N. In other

words, Theorem 2.17.10 holds for n = m. This completes the induction step. Hence,
Theorem 2.17.10 is proven.

Corollary 2.17.11. Let n ∈N and k ∈ Q. Then,
(

n
k

)
is a nonnegative integer.

Proof of Corollary 2.17.11. Let N = {1, 2, . . . , n}; thus, N is an n-element set. Hence,

Theorem 2.17.10 shows that
(

n
k

)
is the number of k-element subsets of N. But the

latter number is clearly a nonnegative integer (since it counts something). Thus,(
n
k

)
is a nonnegative integer. This proves Corollary 2.17.11.

Proposition 2.17.12. Let n ∈ Z and k ∈ Q. Then,
(

n
k

)
is a integer.

Proof of Proposition 2.17.12. If n ≥ 0, then this follows from Corollary 2.17.11 (be-
cause n ≥ 0 implies n ∈ N, and thus we can apply Corollary 2.17.11). Thus, for
the rest of this proof, we WLOG assume that n < 0. Hence, n ≤ −1 (since n is an
integer), so that n + 1 ≤ 0 and thus − (n + 1) ≥ 0. Therefore, − (n + 1) ∈N (since
− (n + 1) is an integer).

If k /∈ N, then
(

n
k

)
is a integer (since Definition 2.17.1 (b) yields

(
n
k

)
= 0

in this case). Thus, for the rest of this proof, we WLOG assume that k ∈ N.

77The combinatorial principle we are using in the following computation is the so-called sum rule
in its simplest form (see, e.g., [Loehr11, 1.1] or [LeLeMe18, §15.2.3]).
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Thus, k + (−n)− 1 = k︸︷︷︸
∈N

+ (− (n + 1))︸ ︷︷ ︸
∈N

∈ N. Hence, Corollary 2.17.11 (applied

to k + (−n)− 1 instead of n) yields that
(

k + (−n)− 1
k

)
is a nonnegative integer.

Thus,
(

k + (−n)− 1
k

)
∈ Z.

Theorem 2.17.7 (applied to −n instead of n) yields(
− (−n)

k

)
= (−1)k︸ ︷︷ ︸

∈Z

(
k + (−n)− 1

k

)
︸ ︷︷ ︸

∈Z

∈ Z.

In other words,
(

n
k

)
∈ Z. In other words,

(
n
k

)
is an integer. Thus, Proposition

2.17.12 is proven.

Exercise 2.17.1. Let k ∈ N. Prove that the product of any k consecutive integers
is divisible by k!.

Exercise 2.17.2. In this exercise, we shall use the Iverson bracket notation: If A is

any statement, then [A] stands for the integer

{
1, if A is true;
0, if A is false

(which is also

known as the truth value of A). For instance, [1 + 1 = 2] = 1 and [1 + 1 = 1] = 0.

(a) Prove that n//k =
n
∑

i=1
[k | i] for any n ∈N and any positive integer k.

(b) Prove that vp (n) = ∑
i≥1

[
pi | n

]
for any prime p and any nonzero integer n.

Here, the sum ∑
i≥1

[
pi | n

]
is a sum over all positive integers; but it is well-defined,

since it has only finitely many nonzero addends.
(c) Prove that vp (n!) = ∑

i≥1
n//pi for any prime p and any n ∈ N. (Here, the

expression “ ∑
i≥1

n//pi” should be understood as ∑
i≥1

(
n//pi). Again, this sum

∑
i≥1

(
n//pi) is well-defined, since it has only finitely many nonzero addends.)

(d) Use part (c) to prove Corollary 2.17.11 again.

The claim of Exercise 2.17.2 (c) is usually rewritten in the form vp (n!) = ∑
i≥1

⌊
n
pi

⌋
(which is equivalent, because of Proposition 2.8.3); in this form, it is known as Leg-
endre’s formula or as de Polignac’s formula (see, e.g., [Grinbe16, Theorem 1.3.3]).
It is often a helpful tool in proving divisibility properties of factorials and bino-
mial coefficients. One application, for example, is to quickly compute how many
zeroes the decimal expansion of n! ends with. (Note that Exercise 2.17.2 (b) can be
rewritten as vp (n) = ∑

i≥1;
pi|n

1; in this form it appears in [Grinbe16, Lemma 1.3.4].)

https://en.wikipedia.org/wiki/Iverson_bracket
https://en.wikipedia.org/wiki/Legendre's_formula
https://en.wikipedia.org/wiki/Legendre's_formula
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2.17.3. Binomial formula and Vandermonde convolution

One of the staples of enumerative combinatorics are identities that involve binomial
coefficients. Hundreds of such identities have been found (see, e.g., Henry W.
Gould’s website for a list of some of them; see also [GrKnPa94, Chapter 5] and
[Grinbe15, Chapter 3] for introductions). At this point, let us only show two of
the most important ones (not counting the ones we have already shown above).
Probably the most famous one is the binomial formula:

Theorem 2.17.13. Let x, y be any numbers (e.g., rational or real or complex num-
bers). Let n ∈N. Then,

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.

Theorem 2.17.13 is known as the binomial formula or the binomial theorem. It gen-
eralizes the well-known and beloved identities

(x + y)2 = x2 + 2xy + y2;

(x + y)3 = x3 + 3x2y + 3xy2 + y3;

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4

(as well as (x + y)1 = x1 + y1 and (x + y)0 = 1, of course).

Proof of Theorem 2.17.13 (sketched). This can be proven by a straightforward induc-
tion on n (using Theorem 2.17.8 in the induction step). See [Grinbe15, Exercise 3.6]
for details of this proof. Alternatively, see [Galvin17, Identity 11.4] for combinato-
rial proofs (which rely on Theorem 2.17.10).

The next identity we want to show is the Vandermonde convolution identity:

Theorem 2.17.14. Let x, y ∈ Q and n ∈N. Then,(
x + y

n

)
=

n

∑
k=0

(
x
k

)(
y

n− k

)
.

For example, for n = 2, Theorem 2.17.14 says that(
x + y

2

)
=

(
x
0

)
︸︷︷︸
=1

(
y
2

)
+

(
x
1

)
︸︷︷︸
=x

(
y
1

)
︸︷︷︸
=y

+

(
x
2

)(
y
0

)
︸︷︷︸
=1

=

(
y
2

)
+ xy +

(
x
2

)
.

The proof of Theorem 2.17.14 that we are soon going to sketch is similar to the
one given in [Grinbe15, §3.3.3] (but, unlike the latter proof, we will use polynomials

https://www.math.wvu.edu/~gould/
https://www.math.wvu.edu/~gould/
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in 1 variable only). It will not be a complete proof, since it will rely on some
properties of polynomials, and not only have we not proven these properties –
we have actually not rigorously defined polynomials yet! (We will do so later,
in Chapter 7.) See [Grinbe15, §3.3.2] for another (more boring and tedious, but
conceptually simpler) proof of Theorem 2.17.14.

Our proof of Theorem 2.17.14 proceeds via several intermediate steps. The first
one is to prove Theorem 2.17.14 in the particular case when x, y ∈N:

Lemma 2.17.15. Let a, b ∈N and n ∈N. Then,(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

(We have renamed the variables x and y from Theorem 2.17.14 as a and b here,
since we will soon use the letter “x” for something completely different.)

Proof of Lemma 2.17.15 (sketched). Let

C = {1, 2, . . . , a} ∪ {−1,−2, . . . ,−b} .

Thus, C is an (a + b)-element set, containing only positive and negative integers.
How many n-element subsets does C have?

• On the one hand: The set C is an (a + b)-element set. Hence, Theorem 2.17.10
(applied to a + b, n and C instead of n, k and N) shows that the number of

n-element subsets of C is
(

a + b
n

)
.

• On the other hand: Let us classify the n-element subsets of C according to
how many positive elements they have. We claim the following:

Claim 1: For each k ∈ {0, 1, . . . , n}, the number of n-element subsets

of C having exactly k positive elements is
(

a
k

)(
b

n− k

)
.

[Proof of Claim 1: Let k ∈ {0, 1, . . . , n}. In order to choose an n-element subset
of C having exactly k positive elements, we need to choose

– its k positive elements from the set of all positive elements of C (that is,
from the set {1, 2, . . . , a}), and

– its remaining n− k (negative) elements from the set of all negative ele-
ments of C (that is, from the set {−1,−2, . . . ,−b}).

In other words, we need to choose

– a k-element subset of the set {1, 2, . . . , a}, and

– an (n− k)-element subset of the set {−1,−2, . . . ,−b}.
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Theorem 2.17.10 (applied to a, k and {1, 2, . . . , a} instead of n, k and N) shows

that the number of k-element subsets of the set {1, 2, . . . , a} is
(

a
k

)
(since

{1, 2, . . . , a} is an a-element set). Similarly, the number of (n− k)-element

subsets of the set {−1,−2, . . . ,−b} is
(

b
n− k

)
. Since we need to choose

one of the former subsets and one of the latter subsets (and our choices are
independent – i.e., any of the former subsets can be combined with any of
the latter), we thus conclude that the total number of options we have is(

a
k

)(
b

n− k

)
78. In other words, the number of n-element subsets of C

having exactly k positive elements is
(

a
k

)(
b

n− k

)
. This proves Claim 1.]

Now, the total number of n-element subsets of C is79

(the number of n-element subsets of C)

=
n

∑
k=0

(the number of n-element subsets of C having exactly k positive elements)︸ ︷︷ ︸
=

(
a
k

)(
b

n− k

)
(by Claim 1)(

since the number of positive elements of an n-element
subset of C must always be an integer between 0 and n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

Now, we have computed the number of n-element subsets of C in two ways. The

first way yielded the result
(

a + b
n

)
, while the second way yielded

n
∑

k=0

(
a
k

)(
b

n− k

)
.

But these two results clearly have to be equal. In other words, we have(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

Thus, Lemma 2.17.15 holds.
(This was an example of a proof by double counting, also known as a combinatorial

proof. See [LeLeMe18, §15.10] for some more examples of such proofs, and see most
textbooks on combinatorics for more.)

78The combinatorial principle we are using here is the so-called product rule (see, e.g., [Loehr11, 1.8]
or [LeLeMe18, §15.2.1]).

79The combinatorial principle we are using in the following computation is the so-called sum rule
(see, e.g., [Loehr11, 1.2] or [LeLeMe18, §15.2.3]).
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This shows that Theorem 2.17.14 holds for all x ∈ N and y ∈ N. In order to
extend its reach to arbitrary rational a and b, we shall use the “polynomial identity
trick”. First, let us briefly explain what polynomials are, without giving a formal
definition.

Informally, a polynomial (in 1 variable x, with rational coefficients) is an “ex-
pression” of the form akxk + ak−1xk−1 + · · ·+ a0, where ak, ak−1, . . . , a0 are (fixed)
rational numbers and where x is a (so far meaningless) symbol (called indeter-

minate or variable). For example, 4x3 + 2x2 − 1
3

x +
2
7

is a polynomial, and so is

0x3 + x2− 0x +
1
3

. We can omit terms of the form “0xi” when writing down a poly-

nomial and treat the result as being the same polynomial; thus, 0x3 + x2 − 0x +
1
3

can also be written as x2 − 0x +
1
3

and as x2 +
1
3

. Likewise, we can treat the “+”
signs as signifying addition and behaving like it, so, e.g., commutativity holds:
2x3 + 5x and 5x + 2x3 are the same polynomial (but 2x + 5x3 is different). We also
pretend that distributivity holds, so “like terms” can be combined: e.g., we have
4x3 + 9x3 = (4 + 9) x3 = 13x3 or 4x3 − 12x3 = (4− 12) x3 = −8x3. Thus, we can
add two polynomials: for example,(

3x2 − 1x +
1
2

)
+ (6x− 7) = 3x2 + (−1 + 6)︸ ︷︷ ︸

=5

x +

(
1
2
− 7
)

︸ ︷︷ ︸
=
−13

2

= 3x2 + 5x +
−13

2
.

By pretending that the xi (with i ∈ N) are actual powers of the symbol x, and that
multiplication obeys the associativity law (so that

(
λxi) xj = λ

(
xixj) = λxi+j for

rational λ and i, j ∈N), we can multiply polynomials as well (first use distributivity
to expand the product):

(3x− 5)
(

x2 + 3x + 2
)
= 3x

(
x2 + 3x + 2

)
− 5

(
x2 + 3x + 2

)
=
(

3x3 + 9x2 + 6x
)
−
(

5x2 + 15x + 10
)

= 3x3 + 4x2 − 9x− 10.

Most importantly, it is possible to substitute a number into a polynomial: If
u ∈ Q and if P = akxk + ak−1xk−1 + · · · + a0 is a polynomial, then we define
P (u) (called the evaluation of P at u, or the result of substituting u for x in P) to
be the number akuk + ak−1uk−1 + · · ·+ a0. More generally, if the polynomial P is
given in any of its forms (e.g., as a product of other polynomials), then we can
compute P (u) by replacing each x appearing in this form by an u. For exam-
ple, if P = (2x + 1) (3x + 1)− (4x + 1) (5x + 1), then P (u) = (2u + 1) (3u + 1)−
(4u + 1) (5u + 1); thus, we do not need to expand P before substituting u into it.

Even more generally, u does not have to be a rational number in order to be
substituted in a polynomial P – it can be (roughly speaking!) anything that can
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be taken to the i-th power for i ∈ N and that can be added and multiplied by a
rational number. For example, u can be a real number or a square matrix or another
polynomial. (We will later learn the precise meaning of “anything” here80.)

We have been vague in our definition of polynomials, since making it rigorous
would take us a fair way afield. But we will eventually (in Chapter 7) define poly-
nomials rigorously and prove that all of the above claims (e.g., about associativity
and distributivity) actually hold. For now, we need a basic property of polynomi-
als:

Proposition 2.17.16. Let P and Q be two polynomials in 1 variable x with rational
coefficients. Assume that infinitely many u ∈ Q satisfy P (u) = Q (u). Then,
P = Q (as polynomials).

We will prove Proposition 2.17.16 later (in Section 7.7).81

Note that polynomials are not functions – despite the fact that we can substitute
numbers into them and obtain other numbers. However, in many regards, they
behave like functions. For what we are going to do in this section, the difference
does not matter; we can treat polynomials as functions here.

With Lemma 2.17.15, we have proven Theorem 2.17.14 in the case when x and y
belong to N. Our goal, however, is to prove it for arbitrary x, y ∈ Q. Let us first
lift it to an intermediate level of generality – allowing x to be arbitrary, but still
requiring y ∈N. Thus, we want to prove the following lemma:

Lemma 2.17.17. Let a ∈ Q, b ∈N and n ∈N. Then,(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

Proof of Lemma 2.17.17 (sketched). Let us define a polynomial P in 1 variable x with
rational coefficients as follows:

P =

(
x + b

n

)
. (85)

The “binomial coefficient”
(

x + b
n

)
here is to be understood by extending Defini-

tion 2.17.1 (a) in the obvious fashion to the case when n is a polynomial (in our
case, x + b) rather than a rational number. Thus,(

x + b
n

)
=

(x + b) (x + b− 1) (x + b− 2) · · · (x + b− n + 1)
n!

.

80Namely, “anything” will be concretized to mean “any element of a Q-algebra”. See Definition
7.6.1 for the details.

81Note that it is closely related to the Proposition 1.6.6 we used above.
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Let us also define a polynomial Q in 1 variable x with rational coefficients as
follows:

Q =
n

∑
k=0

(
x
k

)(
b

n− k

)
. (86)

(Again, the “binomial coefficients”
(

x
k

)
are defined via our extension of Definition

2.17.1 (a), and can be explicitly written as
(

x
k

)
=

x (x− 1) (x− 2) · · · (x− k + 1)
k!

.

Meanwhile, the
(

b
n− k

)
are just constant integers.)

Now, for each u ∈N, we have

P (u) =
(

u + b
n

)
(by substituting u for x in the equality (85))

=
n

∑
k=0

(
u
k

)(
b

n− k

)
(by Lemma 2.17.15, applied to u instead of a) and

Q (u) =
n

∑
k=0

(
u
k

)(
b

n− k

)
(by substituting u for x in the equality (86)). Comparing these two equalities,
we obtain P (u) = Q (u) for all u ∈ N. Hence, infinitely many u ∈ Q satisfy
P (u) = Q (u) (since infinitely many u ∈ Q satisfy u ∈ N). Thus, Proposition
2.17.16 yields P = Q. In view of (85) and (86), this rewrites as(

x + b
n

)
=

n

∑
k=0

(
x
k

)(
b

n− k

)
. (87)

Now, substituting a for x in this equality of polynomials, we obtain
(

a + b
n

)
=

n
∑

k=0

(
a
k

)(
b

n− k

)
. This proves Lemma 2.17.17.

Let us summarize the main idea of this proof: We replaced the rational num-
ber a by the indeterminate x, thus transforming the identity we were proving into
an equality between two polynomials (namely, P = Q). But in order to prove an
equality between polynomials, it suffices to prove that it holds at infinitely many
numbers (by Proposition 2.17.16); thus, in particular, it suffices to check it at all non-
negative integers. But this is precisely what we did in Lemma 2.17.15 above. This
kind of argument (with its use of Proposition 2.17.16) is known as the “polynomial
identity trick”.

Now, let us extend the reach of Lemma 2.17.17 further, allowing both a and b to
be arbitrary (and thus obtaining the whole Theorem 2.17.14):
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Lemma 2.17.18. Let a, b ∈ Q and n ∈N. Then,(
a + b

n

)
=

n

∑
k=0

(
a
k

)(
b

n− k

)
.

Proof of Lemma 2.17.18 (sketched). Deriving Lemma 2.17.18 from Lemma 2.17.17 is
very similar to deriving Lemma 2.17.17 from Lemma 2.17.15. The main difference
is that we replace b (rather than a) by the indeterminate x now.

Here are the details: Let us define a polynomial P in 1 variable x with rational coefficients
as follows:

P =

(
a + x

n

)
. (88)

Let us also define a polynomial Q in 1 variable x with rational coefficients as follows:

Q =
n

∑
k=0

(
a
k

)(
x

n− k

)
. (89)

Now, for each u ∈N, we have

P (u) =
(

a + u
n

)
(by substituting u for x in the equality (88))

=
n

∑
k=0

(
a
k

)(
u

n− k

)
(by Lemma 2.17.17, applied to u instead of b) and

Q (u) =
n

∑
k=0

(
a
k

)(
u

n− k

)
(by substituting u for x in the equality (89)). Comparing these two equalities, we obtain
P (u) = Q (u) for all u ∈ N. Hence, infinitely many u ∈ Q satisfy P (u) = Q (u) (since
infinitely many u ∈ Q satisfy u ∈ N). Thus, Proposition 2.17.16 yields P = Q. In view of
(88) and (89), this rewrites as (

a + x
n

)
=

n

∑
k=0

(
a
k

)(
x

n− k

)
.

Now, substituting b for x in this equality of polynomials, we obtain
(

a + b
n

)
=

n
∑

k=0

(
a
k

)(
b

n− k

)
.

This proves Lemma 2.17.18.

Proof of Theorem 2.17.14 (sketched). Theorem 2.17.14 is just Lemma 2.17.18, with a
and b renamed as x and y.
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Exercise 2.17.3. Let a, b ∈ N and m ∈ Q. Let A be an a-element set. Let B be a
b-element subset of A. Prove that

(the number of m-element subsets S of A satisfying B ⊆ S) =
(

a− b
m− b

)
.

2.17.4. Some divisibilities and congruences

So far we have been proving identities between binomial coefficients. Let us now
step to divisibilities and congruences.

Proposition 2.17.12 shows that binomial coefficients
(

n
k

)
are integers whenever

n is an integer. This allows us to study divisibilities and congruences between
binomial coefficients (and you have seen a few of them on homework set #1). One
of the most important such divisibilities is the following fact:

Theorem 2.17.19. Let p be a prime. Let k ∈ {1, 2, . . . , p− 1}. Then, p |
(

p
k

)
.

First proof of Theorem 2.17.19. Applying Theorem 2.17.9 to n = p, we obtain

k
(

p
k

)
= p

(
p− 1
k− 1

)
.

Thus, p | k
(

p
k

)
(since

(
p− 1
k− 1

)
is an integer82). But Proposition 2.13.4 (applied

to i = k) yields that k is coprime to p. In other words, k ⊥ p, and thus p ⊥ k.

Hence, Theorem 2.10.6 (applied to a = p, b = k and c =
(

p
k

)
) yields p |

(
p
k

)
(since

p | k
(

p
k

)
). This proves Theorem 2.17.19.

We shall see a second, combinatorial proof of Theorem 2.17.19 further below; it
will rely on the concept of group actions.

Let us state two congruences for binomial coefficients, which we will show later
using tools from abstract algebra:

Theorem 2.17.20 (Lucas’s congruence). Let p be a prime. Let a, b ∈ Z. Let
c, d ∈ {0, 1, . . . , p− 1}. Then,(

pa + c
pb + d

)
≡
(

a
b

)(
c
d

)
mod p.

82by an application of Proposition 2.17.12

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw1s.pdf
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Theorem 2.17.21 (Babbage’s congruence). Let p be a prime. Let a, b ∈ Z. Then,(
pa
pb

)
≡
(

a
b

)
mod p2.

For the impatient: Elementary proofs of Theorem 2.17.20 and Theorem 2.17.21
can be found in [Grinbe17].

Remark 2.17.22. Lucas’s congruence has the following consequence: Let p be a
prime. Let a, b ∈N. Write a and b in base p as follows:

a = ak pk + ak−1pk−1 + · · ·+ a0p0 and

b = bk pk + bk−1pk−1 + · · ·+ b0p0

with k ∈ N and ak, ak−1, . . . , a0, bk, bk−1, . . . , b0 ∈ {0, 1, . . . , p− 1}. (Note that we
allow “leading zeroes” – i.e., any of ak and bk can be 0.) Then,(

a
b

)
≡
(

ak
bk

)(
ak−1

bk−1

)
· · ·
(

a0

b0

)
mod p.

(This can be easily proven by induction on k, using Theorem 2.17.20 in the in-

duction step.) This allows for quick computation of remainders of
(

a
b

)
modulo

prime numbers, and also explains (when applied to p = 2) why we can obtain
(an approximation of) Sierpinski’s triangle from Pascal’s triangle by coloring all
even numbers white and all odd numbers black.

See [Mestro14] and [Granvi05] for overviews of more complicated divisibilities
and congruences for binomial coefficients.

Exercise 2.17.4. Let p be a prime.

(a) Prove that
(

2p
p

)
≡ 2 mod p.

(b) Prove that
(

2p− 1
p

)
≡ 1 mod p.

(c) Prove that
(

p− 1 + k
k

)
≡ 0 mod p for each k ∈ {1, 2, . . . , p− 1}.

[Hint: This is very easy using Lucas’s congruence, but you can also solve it
without it.]

2.17.5. Integer-valued polynomials

Now that we have introduced polynomials (albeit informally and on somewhat
shaky foundations) and binomial coefficients (albeit briefly), it would be a shame to

https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
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leave unmentioned a subject that connects the two particularly closely: the integer-
valued polynomials. We are going to state a few basic facts, but we will not prove
them.

If f = akxk + ak−1xk−1 + · · ·+ a0 is a polynomial (in 1 variable x, with rational
coefficients), then the rational numbers ak, ak−1, . . . , a0 are called the coefficients of
f . The coefficients of a polynomial f are uniquely determined by f (except for
the fact that we can always add terms of the form 0x` and thus obtain extra co-
efficients that are equal to 0). (This fact is not obvious, given our “definition” of
polynomials above83. We will later define polynomials more formally as sequences
of coefficients; then this will become clear.)

If f = akxk + ak−1xk−1 + · · ·+ a0 is a polynomial (in 1 variable x, with rational
coefficients) such that ak 6= 0 (each polynomial that is not just 0 can be uniquely
written in such a form), then the integer k is called the degree of f .

Definition 2.17.23. A polynomial P with rational coefficients is said to be integer-
valued if (P (n) ∈ Z for all n ∈ Z).

Of course, a polynomial with integer coefficients is always integer-valued. But
there are other integer-valued polynomials, too:

Example 2.17.24. (a) The polynomial
(

x
2

)
=

x (x− 1)
2

=
1
2

x2 − 1
2

x is integer-

valued (since
(

n
2

)
∈ Z for each n ∈ Z), but its coefficients are

1
2

,−1
2

, 0.

(b) More generally: If k ∈ N is arbitrary, then the polynomial
(

x
k

)
=

x (x− 1) (x− 2) · · · (x− k + 1)
k!

is integer-valued (since
(

n
k

)
∈ Z for each n ∈

Z).

(c) If p is any prime, then the polynomial
xp − x

p
is integer-valued (since Theo-

rem 2.15.1 (b) yields ap ≡ a mod p for each a ∈ Z, which means that
ap − a

p
∈ Z

for each a ∈ Z). Its coefficients are not integers.

This suggests the following question: How can we describe the integer-valued
polynomials? The following result of Pólya [Polya19] gives an answer:

Theorem 2.17.25. Let k ∈N.

83For example, why cannot we start with (say) 6x2 + 5x + 4, then rewrite it as (2x + 1) (3x + 1) + 3,
then do some other transformations (using commutativity, associativity and other laws), and
finally end up with a polynomial that has different coefficients (say, 3x2 + 9x + 4) ? We cannot,
but it is not easy to prove with what we have.
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(a) Any polynomial P (in 1 variable x, with rational coefficients) of degree k
can be uniquely written in the form

P (x) = ak

(
x
k

)
+ ak−1

(
x

k− 1

)
+ · · ·+ a0

(
x
0

)
with rational ak, ak−1, . . . , a0.

(b) The polynomial P is integer-valued if and only if these ak, ak−1, . . . , a0 are
integers.

For example, the integer-valued polynomial
x3 − x

3
can be written as

x3 − x
3

= a3

(
x
3

)
+ a2

(
x
2

)
+ a1

(
x
1

)
+ a0

(
x
0

)
for

a3 = 2, a2 = 2, a1 = 0, a0 = 0.

These a3, a2, a1, a0 are integers – exactly as Theorem 2.17.25 (b) says.
I sketched a proof of Theorem 2.17.25 (b) in a talk in 2013 ( https://www.

cip.ifi.lmu.de/~grinberg/storrs2013.pdf )84. See also [daSilv12] for a self-
contained proof.

2.18. Counting divisors

2.18.1. The number of divisors of n

Now that we have seen some combinatorial reasoning (e.g., in the proof of Theorem
2.17.14), let us solve a rather natural counting problem: Let us count the divisors
of a nonzero integer n.

Proposition 2.18.1. Let n ∈ Z be nonzero. Then:
(a) The product ∏

p prime

(
vp (n) + 1

)
is well-defined, since all but finitely many

of its factors are 1.
(b) We have

(the number of positive divisors of n) = ∏
p prime

(
vp (n) + 1

)
.

(c) We have

(the number of divisors of n) = 2 ∏
p prime

(
vp (n) + 1

)
.

84In this talk, I refer to integer-valued polynomials as “integral-valued polynomials”.

https://www.cip.ifi.lmu.de/~grinberg/storrs2013.pdf
https://www.cip.ifi.lmu.de/~grinberg/storrs2013.pdf
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Example 2.18.2. If n = 12, then

(the number of positive divisors of n) = 6

(since the positive divisors of n = 12 are 1, 2, 3, 4, 6, 12) and

∏
p prime

(
vp (n) + 1

)
=

v2 (n)︸ ︷︷ ︸
=2

+1

v3 (n)︸ ︷︷ ︸
=1

+1

 ∏
p prime;
p/∈{2,3}

vp (n)︸ ︷︷ ︸
=0

+1


= (2 + 1) (1 + 1) ∏

p prime;
p/∈{2,3}

1

︸ ︷︷ ︸
=1

= (2 + 1) (1 + 1) = 6.

This confirms Proposition 2.18.1 (b) for n = 12. In order to confirm Proposition
2.18.1 (c) for n = 12 as well, we observe that (the number of divisors of n) = 12
(since the divisors of n = 12 are −12,−6,−4,−3,−2,−1, 1, 2, 3, 4, 6, 12).

The function

{1, 2, 3, . . .} →N,
n 7→ (the number of positive divisors of n)

is known as the divisor function and is commonly denoted by τ. So Proposition
2.18.1 (b) gives a formula for τ (n). See [Grinbe16, Theorem 2.1.7 (proof sketched
in §2.7)] for a different proof of this formula.

Our proof of Proposition 2.18.1 will rely on the following lemma, which classifies
all divisors of a positive integer in terms of its prime factorization:

Lemma 2.18.3. Let p1, p2, . . . , pu be finitely many distinct primes. For each i ∈
{1, 2, . . . , u}, let ai be a nonnegative integer. Let n = pa1

1 pa2
2 · · · p

au
u .

Define a set T by

T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}
= {(b1, b2, . . . , bu) | bi ∈ {0, 1, . . . , ai} for each i ∈ {1, 2, . . . , u}}
= {(b1, b2, . . . , bu) ∈Nu | bi ≤ ai for each i ∈ {1, 2, . . . , u}} .

Then, the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

is well-defined and bijective.

https://en.wikipedia.org/wiki/Divisor_function
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Example 2.18.4. For this example, let u = 2, p1 = 2, p2 = 3, a1 = 2 and a2 = 1.
Define the integer n and the set T as in Lemma 2.18.3; then,

n = pa1
1 pa2

2 · · · p
au
u = 22 · 31 = 12

and

T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au} = {0, 1, 2} × {0, 1}
= {(0, 0) , (0, 1) , (1, 0) , (1, 1) , (2, 0) , (2, 1)} .

Now, Lemma 2.18.3 says that the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

is well-defined and bijective. Here is a table of values of this map Λ:

b (0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)

Λ (b) 1 3 2 6 4 12
.

Proof of Lemma 2.18.3. The numbers p1, p2, . . . , pu are primes, and thus positive inte-
gers. Hence, the product pa1

1 pa2
2 · · · p

au
u is a positive integer as well (since a1, a2, . . . , au

are nonnegative integers). In other words, n is a positive integer (since n =
pa1

1 pa2
2 · · · p

au
u ). Note that

n = pa1
1 pa2

2 · · · p
au
u =

u

∏
i=1

pai
i .

Each i ∈ {1, 2, . . . , u} satisfies

vpi

 n︸︷︷︸
=p

a1
1 pa2

2 ···p
au
u

 = vpi

(
pa1

1 pa2
2 · · · p

au
u
)
= ai (90)

(by Exercise 2.13.7 (a)). Furthermore, if p is a prime satisfying p /∈ {p1, p2, . . . , pu},
then

vp

 n︸︷︷︸
=p

a1
1 pa2

2 ···p
au
u

 = vp
(

pa1
1 pa2

2 · · · p
au
u
)
= 0 (91)

(by Exercise 2.13.7 (b)).
For each (b1, b2, . . . , bu) ∈ T, we have

pb1
1 pb2

2 · · · p
bu
u ∈ {positive divisors of n} . (92)
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[Proof of (92): Let (b1, b2, . . . , bu) ∈ T. We must prove (92).
We have (b1, b2, . . . , bu) ∈ T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}. In other

words, bi ∈ {0, 1, . . . , ai} for each i ∈ {1, 2, . . . , u}. Hence, for each i ∈ {1, 2, . . . , u}, we have

ai − bi ∈ {0, 1, . . . , ai} (since bi ∈ {0, 1, . . . , ai})
⊆N,

and thus pai−bi
i is an integer. Hence,

u
∏
i=1

pai−bi
i is a product of integers, and thus is an

integer as well. Likewise,
u
∏
i=1

pbi
i is an integer (since bi ∈ {0, 1, . . . , ai} ⊆ N for each i ∈

{1, 2, . . . , u}). Now,

n =
u

∏
i=1

pai
i︸︷︷︸

=p
bi+(ai−bi)
i

=p
bi
i p

ai−bi
i

=
u

∏
i=1

(
pbi

i pai−bi
i

)
=

(
u

∏
i=1

pbi
i

)(
u

∏
i=1

pai−bi
i

)
.

Thus,
u
∏
i=1

pbi
i | n (since

u
∏
i=1

pai−bi
i is an integer). In other words,

u
∏
i=1

pbi
i is a divisor of n.

Hence,
u
∏
i=1

pbi
i is a positive divisor of n (since

u
∏
i=1

pbi
i is clearly positive). In other words,

u
∏
i=1

pbi
i ∈ {positive divisors of n}. Hence, pb1

1 pb2
2 · · · p

bu
u =

u
∏
i=1

pbi
i ∈ {positive divisors of n}.

This proves (92).]
The equality (92) shows that the map Λ in Lemma 2.18.3 is well-defined. It

remains to prove that it is bijective.
We shall achieve this by constructing an inverse to Λ.
Indeed, for each d ∈ {positive divisors of n}, we have(

vp1 (d) , vp2 (d) , . . . , vpu (d)
)
∈ T. (93)

[Proof of (93): Let d ∈ {positive divisors of n}. Thus, d is a positive divisor of n. In other
words, d is a positive integer satisfying d | n.

Fix i ∈ {1, 2, . . . , u}. We shall show that vpi (d) ∈ {0, 1, . . . , ai}.
The integer d is positive and thus nonzero. Hence, vpi (d) ∈ N. But Proposition 2.13.35

(applied to d and n instead of n and m) shows that d | n if and only if each prime p satisfies
vp (d) ≤ vp (n). Thus, each prime p satisfies vp (d) ≤ vp (n) (since d | n). Applying this
to p = pi, we obtain vpi (d) ≤ vpi (n) = ai (by (90)). Hence, vpi (d) ∈ {0, 1, . . . , ai} (since
vpi (d) ∈N).

Now, forget that we fixed i. We thus have shown that vpi (d) ∈ {0, 1, . . . , ai} for each
i ∈ {1, 2, . . . , u}. In other words,(

vp1 (d) , vp2 (d) , . . . , vpu (d)
)
∈ {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au} .

This rewrites as
(
vp1 (d) , vp2 (d) , . . . , vpu (d)

)
∈ T (since T = {0, 1, . . . , a1} × {0, 1, . . . , a2} ×

· · · × {0, 1, . . . , au}). Thus, (93) is proven.]
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We now define a map

V : {positive divisors of n} → T,

d 7→
(
vp1 (d) , vp2 (d) , . . . , vpu (d)

)
.

This map is well-defined, because of (93).
Now, we claim that Λ ◦V = id.
[Proof: Let d ∈ {positive divisors of n}. We shall show that (Λ ◦V) (d) = id (d).
Indeed, d is a positive divisor of n (since d ∈ {positive divisors of n}). Hence, d is a

positive integer and satisfies d | n. But Proposition 2.13.35 (applied to d and n instead
of n and m) shows that d | n if and only if each prime p satisfies vp (d) ≤ vp (n). Thus,
each prime p satisfies vp (d) ≤ vp (n) (since d | n). Hence, if p is a prime satisfying
p /∈ {p1, p2, . . . , pu}, then we have

vp (d) ≤ vp (n) = 0 (by (91))

and therefore

vp (d) = 0
(
since vp (d) ∈N∪ {∞} and vp (d) ≤ 0

)
and therefore

pvp(d) = p0 = 1. (94)

The elements p1, p2, . . . , pu are distinct. Thus, the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→
pi is a bijection85.

But d is a positive integer. Thus, Corollary 2.13.33 (applied to d instead of n) yields

d = ∏
p prime

pvp(d) =

 ∏
p prime;

p∈{p1,p2,...,pu}

pvp(d)


 ∏

p prime;
p/∈{p1,p2,...,pu}

pvp(d)︸ ︷︷ ︸
=1

(by (94))


(

since each prime p satisfies either p ∈ {p1, p2, . . . , pu}
or p /∈ {p1, p2, . . . , pu} (but not both simultaneously)

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

pvp(d)


 ∏

p prime;
p/∈{p1,p2,...,pu}

1


︸ ︷︷ ︸

=1

= ∏
p prime;

p∈{p1,p2,...,pu}︸ ︷︷ ︸
= ∏

p∈{p1,p2,...,pu}
(since each p∈{p1,p2,...,pu}

is a prime)

pvp(d)

= ∏
p∈{p1,p2,...,pu}

pvp(d) =
u

∏
i=1

p
vpi (d)
i(

here, we have substituted pi for p in the product,
since the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection

)
.

85Indeed, this map is injective, since the elements p1, p2, . . . , pu are distinct; and it is surjective, since
its image is clearly {p1, p2, . . . , pu}.
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Comparing this with

(Λ ◦V) (d) = Λ

 V (d)︸ ︷︷ ︸
=(vp1 (d),vp2 (d),...,vpu (d))

(by the definition of V)

 = Λ
((

vp1 (d) , vp2 (d) , . . . , vpu (d)
))

= p
vp1 (d)
1 p

vp2 (d)
2 · · · pvpu (d)

u =
u

∏
i=1

p
vpi (d)
i ,

we obtain (Λ ◦V) (d) = d = id (d).
Now, forget that we fixed d. We thus have shown that (Λ ◦V) (d) = id (d) for each

d ∈ {positive divisors of n}. In other words, Λ ◦V = id.]
Next, we claim that V ◦Λ = id.
[Proof: Let b ∈ T. We shall show that (V ◦Λ) (b) = id (b).
Indeed, we have b ∈ T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}. Thus, b is

a u-tuple of nonnegative integers. Hence, write b in the form b = (b1, b2, . . . , bu) for some
u nonnegative integers b1, b2, . . . , bu. Then, the definition of Λ yields Λ (b) = pb1

1 pb2
2 · · · p

bu
u .

Hence, for each i ∈ {1, 2, . . . , u}, we have

vpi

 Λ (b)︸ ︷︷ ︸
=pb1

1 pb2
2 ···p

bu
u

 = vpi

(
pb1

1 pb2
2 · · · p

bu
u

)
= bi

(by Exercise 2.13.7 (a), applied to bi instead of ai). In other words,(
vp1 (Λ (b)) , vp2 (Λ (b)) , . . . , vpu (Λ (b))

)
= (b1, b2, . . . , bu) .

Now,

(V ◦Λ) (b) = V (Λ (b))
=
(
vp1 (Λ (b)) , vp2 (Λ (b)) , . . . , vpu (Λ (b))

)
(by the definition of V)

= (b1, b2, . . . , bu) = b = id (b) .

Now, forget that we fixed b. We have thus proven that (V ◦Λ) (b) = id (b) for each
b ∈ T. In other words, V ◦Λ = id.]

We have now proven the equalities Λ ◦V = id and V ◦Λ = id. These equalities
show that the maps Λ and V are mutually inverse. Hence, the map Λ is invertible,
i.e., bijective. This completes the proof of Lemma 2.18.3.

Proof of Proposition 2.18.1. The integer |n| is positive (since n is nonzero) and thus
nonzero. We observe that

{positive divisors of |n|} = {positive divisors of n} (95)
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86. Hence,

(the number of positive divisors of |n|)
= (the number of positive divisors of n) . (97)

The same argument (but with the word “positive” removed) yields

(the number of divisors of |n|) = (the number of divisors of n) . (98)

Finally, Exercise 2.13.5 yields that

vp (|n|) = vp (n) for each prime p. (99)

The claim of Proposition 2.18.1 does not change if we replace n by |n| (because
of (97), (98) and (99)). Thus, we can WLOG assume that n ≥ 0 (since otherwise, we
can just replace n by |n|). Assume this. Combining n 6= 0 (since n is nonzero) with
n ≥ 0, we find n > 0. Hence, n is a positive integer.

(a) For every prime p > |n|, we have vp (n) = 0 (by Lemma 2.13.32 (a)) and
thus vp (n)︸ ︷︷ ︸

=0

+1 = 1. Thus, all but finitely many primes p satisfy vp (n) + 1 = 1

(since all but finitely many primes p satisfy p > |n|). Therefore, all but finitely
many factors of the product ∏

p prime

(
vp (n) + 1

)
are 1. In other words, the prod-

uct ∏
p prime

(
vp (n) + 1

)
has only finitely many factors different from 1. Hence, this

product is well-defined. This proves Proposition 2.18.1 (a).
(b) For every prime p > |n|, we have vp (n) = 0 (by Lemma 2.13.32 (a)). Thus,

all but finitely many primes p satisfy vp (n) = 0 (since all but finitely many primes

86Proof of (95): Let d ∈ {positive divisors of |n|}. Thus, d is a positive divisor of |n|. In other words,
d is a positive integer and satisfies d | |n|. But |n| | n (by Exercise 2.2.1 (b), applied to a = n).
Hence, Proposition 2.2.4 (b) (applied to a = d, b = |n| and c = n) shows that d | n. Thus, d is a
positive integer and satisfies d | n. In other words, d is a positive divisor of n. In other words,
d ∈ {positive divisors of n}.

Now, forget that we fixed d. We thus have proven that d ∈ {positive divisors of n} for each
d ∈ {positive divisors of |n|}. In other words,

{positive divisors of |n|} ⊆ {positive divisors of n} . (96)

Let e ∈ {positive divisors of n}. Thus, e is a positive divisor of n. In other words, e is a
positive integer and satisfies e | n. But n | |n| (by Exercise 2.2.1 (a), applied to a = n). Hence,
Proposition 2.2.4 (b) (applied to a = e, b = n and c = |n|) shows that e | |n|. Thus, e is a
positive integer and satisfies e | |n|. In other words, e is a positive divisor of |n|. In other words,
e ∈ {positive divisors of |n|}.

Now, forget that we fixed e. We thus have proven that e ∈ {positive divisors of |n|} for each
e ∈ {positive divisors of n}. In other words,

{positive divisors of n} ⊆ {positive divisors of |n|} .

Combining this with (96), we obtain {positive divisors of |n|} = {positive divisors of n}. Thus,
(95) is proven.
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p satisfy p > |n|). In other words, the set of all primes p satisfying vp (n) 6= 0 is
finite. Let P be this set. Thus, P is finite.

Let (p1, p2, . . . , pu) be a list of elements of P, with no repetitions.87 Thus,

{p1, p2, . . . , pu} = P.

The elements p1, p2, . . . , pu are distinct (since (p1, p2, . . . , pu) is a list with no rep-
etitions). Thus, the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection88.
Moreover, the elements p1, p2, . . . , pu belong to {p1, p2, . . . , pu} = P, and thus are
primes (since P is a set of primes).

If p is a prime such that p /∈ {p1, p2, . . . , pu}, then

vp (n) = 0. (100)

[Proof of (100): Recall that P is the set of all primes p satisfying vp (n) 6= 0 (by the
definition of P). Hence, every prime p satisfying vp (n) 6= 0 must belong to P. Thus, if p is
a prime that does not belong to P, then p cannot satisfy vp (n) 6= 0. In other words, if p is
a prime that does not belong to P, then p must satisfy vp (n) = 0. In other words, if p is a
prime such that p /∈ P, then vp (n) = 0. Since {p1, p2, . . . , pu} = P, this rewrites as follows:
If p is a prime such that p /∈ {p1, p2, . . . , pu}, then vp (n) = 0. This proves (100).]

If p is a prime such that p /∈ {p1, p2, . . . , pu}, then

pvp(n) = p0 (
since (100) yields vp (n) = 0

)
= 1 (101)

and
vp (n)︸ ︷︷ ︸

=0
(by (100))

+1 = 1. (102)

For each i ∈ {1, 2, . . . , u}, define a nonnegative integer ai by

ai = vpi (n) . (103)

This is well-defined, since pi is a prime (because p1, p2, . . . , pu are primes) and since
n is nonzero.

Define a set T as in Lemma 2.18.3.

87Such a list exists, since P is finite.
88Indeed, this map is injective, since the elements p1, p2, . . . , pu are distinct; and it is surjective, since

its image is clearly {p1, p2, . . . , pu}.
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Recall that n is a positive integer. Thus, Corollary 2.13.33 yields

n = ∏
p prime

pvp(n) =

 ∏
p prime;

p∈{p1,p2,...,pu}

pvp(n)


 ∏

p prime;
p/∈{p1,p2,...,pu}

pvp(n)︸ ︷︷ ︸
=1

(by (101))


(

since each prime p satisfies either p ∈ {p1, p2, . . . , pu}
or p /∈ {p1, p2, . . . , pu} (but not both simultaneously)

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

pvp(n)


 ∏

p prime;
p/∈{p1,p2,...,pu}

1


︸ ︷︷ ︸

=1

= ∏
p prime;

p∈{p1,p2,...,pu}︸ ︷︷ ︸
= ∏

p∈{p1,p2,...,pu}
(since each p∈{p1,p2,...,pu}

is a prime)

pvp(n)

= ∏
p∈{p1,p2,...,pu}

pvp(n) =
u

∏
i=1

p
vpi (n)
i︸ ︷︷ ︸
=p

ai
i

(since (103)
yields vpi (n)=ai)(

here, we have substituted pi for p in the product,
since the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection

)
=

u

∏
i=1

pai
i = pa1

1 pa2
2 · · · p

au
u .

Hence, Lemma 2.18.3 shows that the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

is well-defined and bijective.
Thus, there is a bijective map from T to {positive divisors of n} (namely, Λ).

Hence,

|{positive divisors of n}|
= |T| = |{0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}|

(since T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au})
= |{0, 1, . . . , a1}| · |{0, 1, . . . , a2}| · · · · · |{0, 1, . . . , au}|(

since the product rule |A1 × A2 × · · · × Au| = |A1| · |A2| · · · · · |Au|
holds whenever A1, A2, . . . , Au are any u finite sets

)
=

u

∏
i=1
|{0, 1, . . . , ai}|︸ ︷︷ ︸

=ai+1

=
u

∏
i=1

(ai + 1) .
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Comparing this with

∏
p prime

(
vp (n) + 1

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

(
vp (n) + 1

)
 ∏

p prime;
p/∈{p1,p2,...,pu}

(
vp (n) + 1

)︸ ︷︷ ︸
=1

(by (102))


(

since each prime p satisfies either p ∈ {p1, p2, . . . , pu}
or p /∈ {p1, p2, . . . , pu} (but not both simultaneously)

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

(
vp (n) + 1

)
 ∏

p prime;
p/∈{p1,p2,...,pu}

1


︸ ︷︷ ︸

=1

= ∏
p prime;

p∈{p1,p2,...,pu}︸ ︷︷ ︸
= ∏

p∈{p1,p2,...,pu}
(since each p∈{p1,p2,...,pu}

is a prime)

(
vp (n) + 1

)

= ∏
p∈{p1,p2,...,pu}

(
vp (n) + 1

)
=

u

∏
i=1

 vpi (n)︸ ︷︷ ︸
=ai

(by (103))

+1


(

here, we have substituted pi for p in the product,
since the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection

)
=

u

∏
i=1

(ai + 1) ,

we obtain
|{positive divisors of n}| = ∏

p prime

(
vp (n) + 1

)
.

Hence,

(the number of positive divisors of n) = |{positive divisors of n}|
= ∏

p prime

(
vp (n) + 1

)
.

This proves Proposition 2.18.1 (b).
(c) Every divisor of n is either positive or negative89 (but clearly cannot be both

89Proof. Let d be a divisor of n. We must prove that d is either positive or negative.
We have d | n (since d is a divisor of n). Thus, there is an integer e such that n = de. Consider

this e. If we had d = 0, then we would have n = d︸︷︷︸
=0

e = 0, which would contradict the fact that

n is nonzero. Hence, we cannot have d = 0. In other words, we have d 6= 0. Thus, d is a nonzero
integer. Hence, d is either positive or negative. Qed.
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at the same time). Hence,

(the number of divisors of n)
= (the number of positive divisors of n) + (the number of negative divisors of n) .

If d is a positive divisor of n, then −d is a negative divisor of n 90. Hence, we
can define a map

A : {positive divisors of n} → {negative divisors of n} ,
d 7→ −d.

For similar reasons, we can define a map

B : {negative divisors of n} → {positive divisors of n} ,
d 7→ −d.

Consider these two maps A and B. Clearly, A ◦ B = id (since each negative divisor

d of n satisfies (A ◦ B) (d) = A

B (d)︸ ︷︷ ︸
=−d

 = A (−d) = − (−d) = d = id (d)) and

B ◦ A = id (similarly). Thus, these maps A and B are mutually inverse. Hence, the
map A is invertible, i.e., a bijection.

Hence, there is a bijection between {positive divisors of n} and {negative divisors of n}
(namely, A). Thus,

|{negative divisors of n}| = |{positive divisors of n}| ,
so that

(the number of negative divisors of n)
= |{negative divisors of n}| = |{positive divisors of n}|
= (the number of positive divisors of n) .

Therefore,

(the number of divisors of n)
= (the number of positive divisors of n) + (the number of negative divisors of n)︸ ︷︷ ︸

=(the number of positive divisors of n)

= (the number of positive divisors of n) + (the number of positive divisors of n)

= 2 · (the number of positive divisors of n)︸ ︷︷ ︸
= ∏

p prime
(vp(n)+1)

(by Proposition 2.18.1 (b))

= 2 ∏
p prime

(
vp (n) + 1

)
.

Hence, Proposition 2.18.1 (c) follows.
90Proof. Let d be a positive divisor of n. We must prove that −d is a negative divisor of n. Clearly,
−d is negative (since d is positive).

We have assumed that d is a positive divisor of n. In other words, d is a positive integer and
satisfies d | n. But d = (−d) (−1); thus, −d | d (since −1 is an integer). Hence, −d | d | n. Hence,
−d is a divisor of n. Thus, −d is a negative divisor of n (since −d is negative). Qed.
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Remark 2.18.5. Proposition 2.18.1 can be used to re-prove Proposition 2.14.7. We
leave the details of this argument to the reader.

2.18.2. The sum of the divisors of n

The method by which we proved Proposition 2.18.1 can be used (with a minor
modification) to not just count the positive divisors of a positive integer n, but also
(for example) to compute their sum or the sum of their squares. This relies on the
following basic property of ∑ and ∏ signs:

Lemma 2.18.6. Let n ∈ N. For every i ∈ {1, 2, . . . , n}, let Zi be a finite set. For
every i ∈ {1, 2, . . . , n} and every k ∈ Zi, let pi,k be a number. Then,

n

∏
i=1

∑
k∈Zi

pi,k = ∑
(k1,k2,...,kn)∈Z1×Z2×···×Zn

n

∏
i=1

pi,ki .

(Note that if n = 0, then the Cartesian product Z1× Z2× · · · × Zn has no factors;
it is what is called an empty Cartesian product. It is understood to be a 1-element
set, and its single element is the 0-tuple () (also known as the empty list).)

Lemma 2.18.6 is essentially a version of the distributivity law (or the FOIL
method) for expanding a product of several sums, each of which has several fac-
tors. For example, if we take n = 3 and Zi = {1, 2} for each i ∈ {1, 2, 3}, then
Lemma 2.18.6 says that

(p1,1 + p1,2) (p2,1 + p2,2) (p3,1 + p3,2)

= p1,1p2,1p3,1 + p1,1p2,1p3,2 + p1,1p2,2p3,1 + p1,1p2,2p3,2

+ p1,2p2,1p3,1 + p1,2p2,1p3,2 + p1,2p2,2p3,1 + p1,2p2,2p3,2

(which is precisely what you get if you expand the product
(p1,1 + p1,2) (p2,1 + p2,2) (p3,1 + p3,2) using the distributivity law). For another ex-
ample, if we take n = 2 and Zi = {1, 2, 3} for each i ∈ {1, 2}, then Lemma 2.18.6
says that

(p1,1 + p1,2 + p1,3) (p2,1 + p2,2 + p2,3) = p1,1p2,1 + p1,1p2,2 + p1,1p2,3

+ p1,2p2,1 + p1,2p2,2 + p1,2p2,3

+ p1,3p2,1 + p1,3p2,2 + p1,3p2,3

(which is, again, simply the result of expanding the left hand side). In the general

https://en.wikipedia.org/wiki/FOIL_method
https://en.wikipedia.org/wiki/FOIL_method
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case, the idea behind Lemma 2.18.6 is that if you expand the product91

n

∏
i=1

mi

∑
k=1

pi,k

=
n

∏
i=1

(
pi,1 + pi,2 + · · ·+ pi,mi

)
=
(

p1,1 + p1,2 + · · ·+ p1,m1

)
(p2,1 + p2,2 + · · ·+ p2,m2) · · · (pn,1 + pn,2 + · · ·+ pn,mn) ,

then you get a sum of m1m2 · · ·mn terms, each of which has the form

p1,k1 p2,k2 · · · pn,kn =
n

∏
i=1

pi,ki

for some (k1, k2, . . . , kn) ∈ {1, 2, . . . , m1} × {1, 2, . . . , m2} × · · · × {1, 2, . . . , mn}. See
[Grinbe15, proof of Lemma 7.160] for a rigorous proof of Lemma 2.18.6 (which uses
induction and the distributivity law).

Now, we can state a formula for the sum of all positive divisors of a positive
integer n, and more generally for the sum of the k-th powers of these positive
divisors, where k is a fixed integer:

Exercise 2.18.1. Let n be a positive integer. Let k ∈ Z. Prove that:
(a) The product ∏

p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
is well-defined, since all but

finitely many of its factors are 1.
(b) We have

∑
d|n

dk = ∏
p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
.

(Recall that the summation sign “ ∑
d|n

” means a sum over all positive divisors d of

n.)

Example 2.18.7. If n = 6, then the positive divisors of n are 1, 2, 3, 6. Thus, in this
case, the claim of Exercise 2.18.1 (b) becomes

1k + 2k + 3k + 6k = ∏
p prime

(
p0k + p1k + · · ·+ pvp(6)·k

)
.

91We are here assuming (for the sake of simplicity) that each set Zi is {1, 2, . . . , mi} for some mi ∈N.
This does not weaken the reach of Lemma 2.18.6, since each finite set Zi can be relabelled as
{1, 2, . . . , mi} for mi = |Zi|.
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This equality can easily be verified, since the right hand side is

∏
p prime

(
p0k + p1k + · · ·+ pvp(6)·k

)
=
(

20k + 21k + · · ·+ 2v2(6)·k
)

︸ ︷︷ ︸
=20k+21k

(since v2(6)=1)

·
(

30k + 31k + · · ·+ 3v3(6)·k
)

︸ ︷︷ ︸
=30k+31k

(since v3(6)=1)

· ∏
p prime;
p/∈{2,3}

(
p0k + p1k + · · ·+ pvp(6)·k

)
︸ ︷︷ ︸

=p0k

(since vp(6)=0 (because p/∈{2,3}))

=

 20k︸︷︷︸
=1

+ 21k︸︷︷︸
=2k

 ·
 30k︸︷︷︸

=1

+ 31k︸︷︷︸
=3k

 · ∏
p prime;
p/∈{2,3}

p0k︸︷︷︸
=1

=
(

1 + 2k
)
·
(

1 + 3k
)
= 1︸︷︷︸

=1k

+2k + 3k + 2k · 3k︸ ︷︷ ︸
=(2·3)k=6k

= 1k + 2k + 3k + 6k.

Note that Proposition 2.18.1 (b) is the particular case of Exercise 2.18.1 (b) ob-
tained when setting k = 0 (because each integer z satisfies z0 = 1, and thus ∑

d|n
d0 is

the number of positive divisors of n).

Exercise 2.18.2. Let n be a positive integer. Let

z = (the number of positive divisors d of n such that d ≡ 1 mod 4)
− (the number of positive divisors d of n such that d ≡ 3 mod 4) .

Prove the following:
(a) If there exists a prime p satisfying p ≡ 3 mod 4 and vp (n) ≡ 1 mod 2, then

z = 0.
(b) If there exists no prime p satisfying p ≡ 3 mod 4 and vp (n) ≡ 1 mod 2, then

z = ∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
.

[Hint: For every u ∈ Z, set L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise.

Prove that L (uv) =

L (u) · L (v) for any integers u and v. Then, show that z = ∑
d|n

L (d). Exploit the

similarity between the sum ∑
d|n

L (d) and the sum in Exercise 2.18.1 (b).]
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2.19. “Application”: The Erdös–Ginzburg–Ziv theorem

In this section (which can be skipped at will), we shall apply some of what we
learned above to prove a curious result found in 1961 by Erdős, Ginzburg and Ziv
[ErGiZi61]:

Theorem 2.19.1. Let n be a positive integer. Let a1, a2, . . . , a2n−1 be any 2n − 1
integers (not necessarily distinct). Then, there exists an n-element subset S of
{1, 2, . . . , 2n− 1} such that n | ∑

s∈S
as.

In other words, this theorem says that if you are given 2n− 1 integers, then you
can pick n of them (without picking the same one twice92) such that the sum of
your pick is divisible by n.

Example 2.19.2. In the case when n = 2, Theorem 2.19.1 can be restated as
follows: If a, b, c are three integers, then at least one of the sums b + c, c + a and
a + b is even. This is easy to prove by contradiction: Assume the contrary; thus,
all three sums b + c, c + a and a + b are odd. Hence, (b + c) + (c + a) + (a + b)
is a sum of three odd numbers, and thus itself must be odd (since odd + odd
is even, and odd + even is odd). But this contradicts the fact that (b + c) +
(c + a) + (a + b) = 2 (a + b + c) is even. Thus, we have proven Theorem 2.19.1
in the case when n = 2.

Many proofs of Theorem 2.19.1 are known (see [AloDub93] for an exposition),
but none of them is overly easy. We shall present one of these proofs (the one in
[AloDub93, §2.3]) that uses prime factorization, Fermat’s little theorem and bino-
mial coefficients.

First of all, we need a combinatorial lemma, which easily follows from Lemma
2.18.6:

Lemma 2.19.3. Let S be a finite set. For each s ∈ S, let as be an integer. Let
n ∈N. Then, (

∑
s∈S

as

)n

= ∑
(k1,k2,...,kn)∈Sn

n

∏
i=1

aki .

(Note that if n = 0, then the Cartesian power Sn has no factors; it consists of a
single element, namely the empty 0-tuple ().)

Exercise 2.19.1. Prove Lemma 2.19.3.

We shall first prove Theorem 2.19.1 in the case when n is prime; i.e., we shall
prove the following result:

92But if two of the 2n− 1 integers are equal, then you can have them both in your pick.
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Lemma 2.19.4. Let p be a prime. Let a1, a2, . . . , a2p−1 be any 2p− 1 integers (not
necessarily distinct). Then, there exists a p-element subset S of {1, 2, . . . , 2p− 1}
such that p | ∑

s∈S
as.

Proof of Lemma 2.19.4. Assume the contrary. Thus, there exists no p-element subset
S of {1, 2, . . . , 2p− 1} such that p | ∑

s∈S
as.

But p > 1 (since p is a prime) and thus p − 1 > 0, so that p − 1 ∈ N. Also,
2p− 1 = p + (p− 1)︸ ︷︷ ︸

>0

> p > 1, so that 2p− 1 ∈N.

Let A be the set {1, 2, . . . , 2p− 1}. This set A is a (2p− 1)-element set (since
2p− 1 ∈ N). Hence, Theorem 2.17.10 (applied to n = 2p− 1, k = p and N = A)

shows that
(

2p− 1
p

)
is the number of p-element subsets of A. In other words,

(
2p− 1

p

)
= (the number of p-element subsets of A) . (104)

Recall that there exists no p-element subset S of {1, 2, . . . , 2p− 1} such that p |
∑

s∈S
as. Since A = {1, 2, . . . , 2p− 1}, this rewrites as follows: There exists no p-

element subset S of A such that p | ∑
s∈S

as. In other words, for each p-element

subset S of A, we have p - ∑
s∈S

as. Thus, for each p-element subset S of A, we have

(
∑
s∈S

as

)p−1

≡ 1 mod p

(by Theorem 2.15.1 (a), applied to a = ∑
s∈S

as). Summing these congruences over all

p-element subsets S of A, we obtain

∑
S⊆A;
|S|=p

(
∑
s∈S

as

)p−1

︸ ︷︷ ︸
≡1 mod p

≡ ∑
S⊆A;
|S|=p

1

= (the number of p-element subsets S of A) · 1
= (the number of p-element subsets S of A)

= (the number of p-element subsets of A)

=

(
2p− 1

p

)
(by (104))

≡ 1 mod p (by Exercise 2.17.4 (b)) . (105)
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On the other hand, we are going to show that ∑
S⊆A;
|S|=p

(
∑

s∈S
as

)p−1

≡ 0 mod p. Com-

paring these two congruences, we will then obtain a contradiction.
Set n = p− 1. Then, n = p− 1 > 0.
Let S be any subset of A. Then, Lemma 2.19.3 yields(

∑
s∈S

as

)n

= ∑
(k1,k2,...,kn)∈Sn

n

∏
i=1

aki . (106)

But S ⊆ A. Hence, Sn ⊆ An. Thus, the n-tuples (k1, k2, . . . , kn) ∈ Sn are precisely
those n-tuples (k1, k2, . . . , kn) ∈ An that happen to lie in Sn. Therefore, the summa-
tion sign “ ∑

(k1,k2,...,kn)∈Sn
” can be replaced by “ ∑

(k1,k2,...,kn)∈An;
(k1,k2,...,kn)∈Sn

”. Thus, we can rewrite

the equality (106) as (
∑
s∈S

as

)n

= ∑
(k1,k2,...,kn)∈An;
(k1,k2,...,kn)∈Sn

n

∏
i=1

aki . (107)

For any n-tuple (k1, k2, . . . , kn) ∈ An, we have the following chain of equivalences:

((k1, k2, . . . , kn) ∈ Sn) ⇐⇒ (k1, k2, . . . , kn all belong to S)
⇐⇒ ({k1, k2, . . . , kn} ⊆ S) .

Hence, the summation sign “ ∑
(k1,k2,...,kn)∈An;
(k1,k2,...,kn)∈Sn

” can be replaced by “ ∑
(k1,k2,...,kn)∈An;
{k1,k2,...,kn}⊆S

”.

Thus, we can rewrite the equality (107) as(
∑
s∈S

as

)n

= ∑
(k1,k2,...,kn)∈An;
{k1,k2,...,kn}⊆S

n

∏
i=1

aki . (108)

Now, forget that we fixed S. Thus, we have shown the equality (108) for every
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subset S of A. Now,

∑
S⊆A;
|S|=p

(
∑
s∈S

as

)p−1

= ∑
S⊆A;
|S|=p

(
∑
s∈S

as

)n

︸ ︷︷ ︸
= ∑
(k1,k2,...,kn)∈An;
{k1,k2,...,kn}⊆S

n
∏
i=1

aki

(by (108))

(since p− 1 = n)

= ∑
S⊆A;
|S|=p

∑
(k1,k2,...,kn)∈An;
{k1,k2,...,kn}⊆S︸ ︷︷ ︸

= ∑
(k1,k2,...,kn)∈An

∑
S⊆A;
|S|=p;

{k1,k2,...,kn}⊆S

n

∏
i=1

aki︸ ︷︷ ︸
=

(
n
∏
i=1

aki

)
·1

= ∑
(k1,k2,...,kn)∈An

∑
S⊆A;
|S|=p;

{k1,k2,...,kn}⊆S

(
n

∏
i=1

aki

)
· 1

= ∑
(k1,k2,...,kn)∈An

(
n

∏
i=1

aki

)
∑

S⊆A;
|S|=p;

{k1,k2,...,kn}⊆S

1. (109)

Next, we shall analyze the inner sum on the right hand side of this equality.
Fix an n-tuple (k1, k2, . . . , kn) ∈ An. Let B be the subset {k1, k2, . . . , kn} of A. Then,

B consists of the n elements k1, k2, . . . , kn, which may and may not be distinct; but
either way, this shows that B has at least one element (since n > 0). In other
words, |B| ≥ 1. Also, |B| ≤ n (since B consists of the n elements k1, k2, . . . , kn).
Combining |B| ≥ 1 with |B| ≤ n, we obtain |B| ∈ {1, 2, . . . , n} = {1, 2, . . . , p− 1}
(since n = p− 1). Therefore, p− |B| ∈ {1, 2, . . . , p− 1}. Hence, Exercise 2.17.4 (c)
(applied to k = p− |B|) yields(

p− 1 + (p− |B|)
p− |B|

)
≡ 0 mod p. (110)
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Moreover, B is clearly a |B|-element subset of A. Now,

∑
S⊆A;
|S|=p;

{k1,k2,...,kn}⊆S

1

= ∑
S⊆A;
|S|=p;
B⊆S

1 (since {k1, k2, . . . , kn} = B (by the definition of B))

= (the number of p-element subsets S of A satisfying B ⊆ S) · 1
= (the number of p-element subsets S of A satisfying B ⊆ S)

=

(
(2p− 1)− |B|

p− |B|

)
(by Exercise 2.17.3, applied to a = 2p− 1, b = |B| and m = p)

=

(
p− 1 + (p− |B|)

p− |B|

)
(since (2p− 1)− |B| = p− 1 + (p− |B|))

≡ 0 mod p (by (110)) . (111)

Now, forget that we fixed (k1, k2, . . . , kn). We thus have proven (111) for each
n-tuple (k1, k2, . . . , kn) ∈ An. Hence, (109) becomes

∑
S⊆A;
|S|=p

(
∑
s∈S

as

)p−1

= ∑
(k1,k2,...,kn)∈An

(
n

∏
i=1

aki

)
∑

S⊆A;
|S|=p;

{k1,k2,...,kn}⊆S

1

︸ ︷︷ ︸
≡0 mod p
(by (111))

≡ ∑
(k1,k2,...,kn)∈An

(
n

∏
i=1

aki

)
0 = 0 mod p.

Hence,

0 ≡ ∑
S⊆A;
|S|=p

(
∑
s∈S

as

)p−1

≡ 1 mod p (by (105)) .

In other words, p | 0− 1, so that p | 0− 1 = −1 | 1. Hence, p = 1 (by Exercise
2.2.5, applied to g = p). This contradicts p > 1. This contradiction shows that our
assumption was wrong. Hence, Lemma 2.19.4 is proven.

Having established Lemma 2.19.4, we shall next extend it to a larger list of num-
bers:
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Lemma 2.19.5. Let p be a prime. Let u be a positive integer. Let a1, a2, . . . , aup−1
be any up− 1 integers (not necessarily distinct). Then, there exist u− 1 disjoint
p-element subsets S1, S2, . . . , Su−1 of {1, 2, . . . , up− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , u− 1} .

Proof of Lemma 2.19.5 (sketched). We shall give the informal idea of the proof, and
delegate the formalization to an exercise (Exercise 2.19.2 below).

Lemma 2.19.4 can be restated as follows:

Claim 1: If you are given 2p− 1 integers, then you can pick p of them
such that the sum of your pick is divisible by p.

Here and in the following, “picking” is always understood to mean choosing a
subset – i.e., you cannot pick a number more than once. (But if two of the 2p− 1
integers are equal, then you can have them both in your pick.)

Now, imagine that our up − 1 integers a1, a2, . . . , aup−1 are laid out on a desk,
while u− 1 empty bags are laid out on the floor. Lemma 2.19.5 claims that we can
pack some of the integers from the desk into the bags in such a way that each bag
is neatly filled. Here, we say that a bag is neatly filled if it is filled with exactly p
integers and the sum of these p integers is divisible by p. (Note that if u− 1 bags
are neatly filled, then there are a total of (u− 1) p integers in these bags, while the
remaining up− 1− (u− 1) p = p− 1 integers remain on the desk.)

Let us consider the case u = 5. In this case, we have 5p− 1 integers on the desk
and 4 bags that we want neatly filled. To fill the bags, we proceed as follows:

• We have 5p − 1 integers on the desk, thus at least 2p − 1 integers. Hence,
Claim 1 tells us that we can pick p of them such that the sum of our pick is
divisible by p. We do so, and move the p integers we have picked into the
first bag.

• Now, we have 4p− 1 integers on the desk, thus at least 2p− 1 integers. Hence,
Claim 1 tells us that we can pick p of them such that the sum of our pick is
divisible by p. We do so, and move the p integers we have picked into the
second bag.

• Now, we have 3p− 1 integers on the desk, thus at least 2p− 1 integers. Hence,
Claim 1 tells us that we can pick p of them such that the sum of our pick is
divisible by p. We do so, and move the p integers we have picked into the
third bag.

• Now, we have 2p− 1 integers on the desk, thus at least 2p− 1 integers. Hence,
Claim 1 tells us that we can pick p of them such that the sum of our pick is
divisible by p. We do so, and move the p integers we have picked into the
fourth bag.
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Now, all four bags are neatly filled. This proves Lemma 2.19.5 in the case when
u = 5. The general case proceeds in the same way (formally speaking, this is an
induction over u).

Exercise 2.19.2. Formalize the above proof of Lemma 2.19.5.

Now the hard part is done: It turns out that non-prime integers n in Theorem
2.19.1 can be dealt with by splitting out a prime factor p, and applying Lemma
2.19.5 to this p. Here is the argument in detail:

Proof of Theorem 2.19.1. We shall prove Theorem 2.19.1 by strong induction on n.
Induction step: Fix a positive integer m. Assume that Theorem 2.19.1 holds for all

n < m. We must prove that Theorem 2.19.1 holds for n = m.
We have assumed that Theorem 2.19.1 holds for all n < m. In other words, the

following claim holds:

Claim 1: Let n be a positive integer such that n < m. Let a1, a2, . . . , a2n−1
be any 2n − 1 integers. Then, there exists an n-element subset S of
{1, 2, . . . , 2n− 1} such that n | ∑

s∈S
as.

We must prove that Theorem 2.19.1 holds for n = m. In other words, we must
prove the following claim:

Claim 2: Let a1, a2, . . . , a2m−1 be any 2m− 1 integers. Then, there exists
an m-element subset S of {1, 2, . . . , 2m− 1} such that m | ∑

s∈S
as.

[Proof of Claim 2: It is very easy to prove Claim 2 when m = 1 (just take S = {1};
then m | ∑

s∈S
as will automatically hold because m = 1). Thus, for the rest of this

proof, we WLOG assume that we don’t have m = 1. Hence, m > 1 (since m is a
positive integer).

Proposition 2.13.8 (applied to n = m) shows that there exists at least one prime
p such that p | m. Consider this p. We are in one of the following two cases:

Case 1: We have p = m.
Case 2: We have p 6= m.
Let us first consider Case 1. In this case, we have p = m. Hence, the integer m is

prime (since p is prime). Hence, Lemma 2.19.4 (applied to m instead of p) shows
that there exists an m-element subset S of {1, 2, . . . , 2m− 1} such that m | ∑

s∈S
as.

Hence, Claim 2 is proven in Case 1.
Let us now consider Case 2. In this case, we have p 6= m. But p | m; thus, there

exists some integer c such that m = pc. Consider this c. We have c > 0 93 and

93Proof. Assume the contrary. Thus, c ≤ 0. We can multiply this inequality by p (since p > 0), and
thus find pc ≤ p0 = 0, so that m = pc ≤ 0. This contradicts m > 0. This contradiction shows
that our assumption was false. Qed.
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c < m 94. From c > 0, we obtain 2c > 0; thus, 2c is a positive integer.
From m = pc, we obtain 2m = 2pc = (2c) p. Recall that we are given 2m − 1

integers a1, a2, . . . , a2m−1. Since 2m = (2c) p, this rewrites as follows: We are given
(2c) p− 1 integers a1, a2, . . . , a(2c)p−1.

Hence, Lemma 2.19.5 (applied to u = 2c) shows that there exist 2c− 1 disjoint
p-element subsets S1, S2, . . . , S2c−1 of {1, 2, . . . , (2c) p− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , 2c− 1} .

Consider these 2c− 1 subsets S1, S2, . . . , S2c−1.

For each i ∈ {1, 2, . . . , 2c− 1}, we have p | ∑
s∈Si

as and thus
∑

s∈Si

as

p
∈ Z. Thus, for

each i ∈ {1, 2, . . . , 2c− 1}, we can define an integer bi ∈ Z by

bi =

∑
s∈Si

as

p
. (112)

Consider these 2c− 1 integers b1, b2, . . . , b2c−1. Recall that c < m. Hence, Claim 1
(applied to c and bi instead of n and ai) shows that there exists a c-element subset
S of {1, 2, . . . , 2c− 1} such that c | ∑

s∈S
bs. We can WLOG assume that this c-element

subset is actually {1, 2, . . . , c} (because we can always achieve this by changing the
order of the sets S1, S2, . . . , S2c−1). Assume this. Thus, {1, 2, . . . , c} is a c-element
subset S of {1, 2, . . . , 2c− 1} such that c | ∑

s∈S
bs. In other words, {1, 2, . . . , c} is a

c-element subset of {1, 2, . . . , 2c− 1} and satisfies

c | ∑
s∈{1,2,...,c}

bs. (113)

From the divisibility (113), we conclude that there exists an integer d such that

∑
s∈{1,2,...,c}

bs = cd. (114)

Consider this d.
The sets S1, S2, . . . , S2c−1 are subsets of {1, 2, . . . , (2c) p− 1}. In other words, they

are subsets of {1, 2, . . . , 2m− 1} (since 2m = (2c) p).
The sets S1, S2, . . . , S2c−1 are disjoint. Hence, in particular, the sets S1, S2, . . . , Sc

are disjoint. Thus, the size of their union is the sum of their sizes. In other words,

|S1 ∪ S2 ∪ · · · ∪ Sc| = |S1|+ |S2|+ · · ·+ |Sc| =
c

∑
i=1

|Si|︸︷︷︸
=p

(since Si is a
p-element set)

=
c

∑
i=1

p = cp = pc = m.

94Proof. We have p > 1 (since p is prime). Multiplying this inequality by m, we obtain pm > 1m
(since m > 0). Thus, pm > 1m = m = pc. We can divide this inequality by p (since p > 0), and
thus obtain m > c. Hence, c < m.
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In other words, S1 ∪ S2 ∪ · · · ∪ Sc is an m-element set. Of course, this set is a
subset of {1, 2, . . . , 2m− 1} (since S1, S2, . . . , Sc are subsets of {1, 2, . . . , 2m− 1}).
Moreover, since the c sets S1, S2, . . . , Sc are disjoint, we see that each element of
S1 ∪ S2 ∪ · · · ∪ Sc belongs to exactly one of these c sets. Thus, we can split up the
sum ∑

s∈S1∪S2∪···∪Sc

as as follows:

∑
s∈S1∪S2∪···∪Sc

as = ∑
s∈S1

as + ∑
s∈S2

as + · · ·+ ∑
s∈Sc

as =
c

∑
i=1

∑
s∈Si

as︸ ︷︷ ︸
=pbi

(by (112))

=
c

∑
i=1

pbi =
c

∑
s=1

pbs

= ∑
s∈{1,2,...,c}

pbs = p ∑
s∈{1,2,...,c}

bs︸ ︷︷ ︸
=cd

(by (114))

= pc︸︷︷︸
=m

d = md.

Hence, m | ∑
s∈S1∪S2∪···∪Sc

as.

Thus, there exists an m-element subset S of {1, 2, . . . , 2m− 1} such that m | ∑
s∈S

as

(namely, S = S1 ∪ S2 ∪ · · · ∪ Sc). Therefore, Claim 2 is proven in Case 2.
We have now proven Claim 2 in both Cases 1 and 2. Hence, Claim 2 always

holds.]
So we have proven Claim 2. In other words, Theorem 2.19.1 holds for n = m.

This completes the induction step, and with it the proof of Theorem 2.19.1.

3. Equivalence relations and residue classes

3.1. Relations

Loosely speaking, a relation on a set S is a property that two elements a and b of S
(or, more formally, a pair (a, b) ∈ S× S of two elements of S) can either have or not
have. For example, equality (denoted =) is a relation, since two elements a and b of
S are either equal (i.e., satisfy a = b) or not equal. Likewise, the divisibility relation
(denoted |) is a relation on Z, since two elements a and b of Z either satisfy a | b or
do not.

A formal definition of relations proceeds as follows:

Definition 3.1.1. Fix a set S. A binary relation on S is a subset of S× S (that is, a
set of pairs of elements of S).

If R is a binary relation (on S), and if a, b ∈ S, then we write aRb for (a, b) ∈ R.
The word “relation” shall always mean “binary relation” unless we say other-

wise.

So a relation on a set S is, formally speaking, a subset of S× S – but in practice,
we think of it as a property that holds for some pairs (a, b) ∈ S× S (namely, for the
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ones that belong to this subset) and does not hold for some others (namely, for the
ones that do not belong to this subset).95 In order to define a relation R on a given
set S, it suffices to tell which pairs (a, b) ∈ S× S satisfy aRb (because then, R will
simply be the set of all these pairs (a, b)). Let us define several relations on the set
Z by this strategy:

Example 3.1.2. Let S = Z.
(a) The relation = is a binary relation on S. As a subset of S× S, this relation

is

{(a, b) ∈ S× S | a = b}
= {(c, c) | c ∈ S} = {. . . , (−1,−1) , (0, 0) , (1, 1) , . . .} .

(b) The relation < is a binary relation on S. As a subset of S× S, this relation
is

{(a, b) ∈ S× S | a < b} .

(c) The relation ≤ is a binary relation on S. As a subset of S× S, this relation
is

{(a, b) ∈ S× S | a ≤ b} .

(d) The relation 6= is also a binary relation on S.
(e) Fix n ∈ Z. Define a relation ≡

n
on S = Z by(

a ≡
n

b
)
⇐⇒ (a ≡ b mod n) .

As a subset of S× S = Z×Z, this relation ≡
n

is

{(a, b) ∈ Z×Z | a ≡ b mod n}
= {(a, b) ∈ Z×Z | there exists an integer d such that b = a + nd}

(by Exercise 2.3.7)
= {(a, a + nd) | a, d ∈ Z} .

Note that the relation ≡
0

is exactly the relation = (by Example 2.3.2 (c)).

(f) Define a binary relation N on S by(
a N b

)
⇐⇒ (false)

(that is, a N b never holds, no matter what a and b are). As a subset of S× S,
this relation N is just the empty subset of S× S.

(g) On the other extreme: Define a binary relation A on S by(
a A b

)
⇐⇒ (true)

95Here, the word “some” can mean “none” or “all” or anything inbetween.
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(that is, a A b holds for all a and b). As a subset of S× S, this relation A is the
whole set S× S. Note that the relation A is exactly the relation ≡

1
(by Example

2.3.2 (d)).
(h) The relation | (divisibility) is also a relation on S = Z.
(i) The relation ⊥ (coprimality) is also a relation on S = Z.
(j) We have defined several relations on the set S = Z now. The relations =,
6=, N and A (or, rather, relations analogous to them) can be defined on any
set.

3.2. Equivalence relations

Relations occur frequently in mathematics, and there is a bunch of properties that
a relation can have or not have. (See the Wikipedia article on binary relations for a
long list of such properties.) We shall need only the following three:

Definition 3.2.1. Let R be a binary relation on a set S.
(a) We say that R is reflexive if every a ∈ S satisfies aRa.
(b) We say that R is symmetric if every a, b ∈ S satisfying aRb satisfy bRa.
(c) We say that R is transitive if every a, b, c ∈ S satisfying aRb and bRc satisfy

aRc.

(Here are mnemonics for the three words we just defined:

• “Reflexive” should make you think of R as a mirror through which a can see
itself (that is, satisfy aRa).

• “Symmetric” means that the roles of a and b in aRb are interchangeable – a
symmetry.

• “Transitive” means that you can “transit” an element b on your way from a
to c (that is, if you treat aRb as the existence of a “path” from a to b, and bRc
as the existence of a “path” from b to c, then you can combine a “path” from
a to b with a “path” from b to c to get a “path” from a to c).)

Let us see some examples of these properties of relations96:

Example 3.2.2. Let S be the set Z. Consider the relations on Z defined in Exam-
ple 3.1.2.

(a) The relation = is reflexive, symmetric and transitive.
(b) The relation < is transitive, but neither reflexive nor symmetric.
(c) The relation ≤ is transitive and reflexive, but not symmetric.
(d) The relation 6= is symmetric, but neither reflexive nor transitive.
(e) For each n ∈ Z, the relation ≡

n
is reflexive, symmetric and transitive.

96See further below for the proofs of the claims made in this example.

https://en.wikipedia.org/wiki/Binary_relation
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(f) The relation N is symmetric and transitive, but not reflexive.
(g) The relation A is reflexive, symmetric and transitive.
(h) The divisibility relation | is reflexive and transitive, but not symmetric.
(i) The coprimality relation ⊥ is symmetric, but neither reflexive nor transitive.

Proof of Example 3.2.2. (a) Indeed:

• The relation = is reflexive, because every a ∈ S satisfies a = a.

• The relation = is symmetric, because every a, b ∈ S satisfying a = b satisfy
b = a.

• The relation = is transitive, because every a, b, c ∈ S satisfying a = b and
b = c satisfy a = c.

(b) Indeed:

• The relation < is transitive (because every a, b, c ∈ S satisfying a < b and
b < c satisfy a < c).

• Not every a ∈ S satisfies a < a (in fact, no a ∈ S satisfies a < a); thus, < is not
reflexive.

• Similarly, < is not symmetric, since a < b does not imply b < a (quite the
opposite).

(c) Indeed:

• The relation ≤ is transitive (because every a, b, c ∈ S satisfying a ≤ b and
b ≤ c satisfy a ≤ c).

• The relation ≤ is reflexive (since every a ∈ S satisfies a ≤ a).

• The relation ≤ is not symmetric (since a ≤ b does not imply b ≤ a; for
example, 1 ≤ 2 holds but 2 ≤ 1 does not).

(d) Indeed:

• The relation 6= is symmetric (because every a, b ∈ S satisfying a 6= b satisfy
b 6= a).

• The relation 6= is not reflexive (since we don’t have 2 6= 2).

• The relation 6= is not transitive (since 2 6= 3 and 3 6= 2 do not lead to 2 6= 2).

(e) Let n ∈ Z.
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• Proposition 2.3.4 (b) shows that every a, b, c ∈ Z satisfying a ≡ b mod n and
b ≡ c mod n satisfy a ≡ c mod n. In other words, every a, b, c ∈ S satisfying
a ≡

n
b and b ≡

n
c satisfy a ≡

n
c (since the definition of ≡

n
shows that the three

statements (
a ≡

n
b
)

,
(

b ≡
n

c
)

,
(

a ≡
n

c
)

are equivalent to

(a ≡ b mod n) , (b ≡ c mod n) , (a ≡ c mod n) ,

respectively). But this means precisely that the relation ≡
n

is transitive.

• Similarly, the relation ≡
n

is reflexive (by Proposition 2.3.4 (a)).

• Similarly, the relation ≡
n

is symmetric (by Proposition 2.3.4 (c)).

(f) This may appear strange, but is a completely straightforward consequence of
the concept of “vacuous truth”:

• Every a, b ∈ S satisfying a N b satisfy b N a (because there are no such a, b
to begin with – since a N b never holds). Thus, N is symmetric.

• Similarly, N is transitive.

• But N is not reflexive, since (for example) 1 N 1 does not hold.

(g) All of this is trivial, because a A b holds for all a, b ∈ S.
(h) The divisibility relation | is reflexive (by Proposition 2.2.4 (a)) and transitive

(by Proposition 2.2.4 (b)), but not symmetric (since 1 | 2 does not lead to 2 | 1).
(i) The coprimality relation is symmetric (by Proposition 2.10.4), but neither re-

flexive (since we don’t have 2 ⊥ 2) nor transitive (since 2 ⊥ 3 and 3 ⊥ 2 do not lead
to 2 ⊥ 2).

Definition 3.2.3. An equivalence relation on a set S means a relation on S that is
reflexive, symmetric and transitive.

Example 3.2.4. Let S be any set. The relation = on the set S is an equivalence
relation, because it is reflexive, symmetric and transitive.

Example 3.2.5. Let n ∈ Z. The relation ≡
n

on Z (defined in Example 3.1.2 (e)) is
an equivalence relation, because (as we saw in Example 3.2.2 (e)) it is reflexive,
symmetric and transitive.

https://en.wikipedia.org/wiki/Vacuous_truth
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Example 3.2.6. Here are some examples from elementary plane geometry: Con-
gruence (e.g., of triangles) is an equivalence relation. Similarity is also an equiv-
alence relation. The same holds for direct similarity (i.e., orientation-preserving
similarity). The same holds for parallelism of lines.

Example 3.2.7. Let S and T be two sets, and let f : S → T be a map. Define a
relation ≡

f
on S by (

a ≡
f

b
)
⇐⇒ ( f (a) = f (b)) .

This relation ≡
f

is an equivalence relation.

Proof of Example 3.2.7. Indeed:

• The relation ≡
f

is reflexive, because every a ∈ S satisfies a ≡
f

a (since f (a) =

f (a)).

• The relation ≡
f

is symmetric, because every a, b ∈ S satisfying a ≡
f

b satisfy

b ≡
f

a. (Indeed, a ≡
f

b means f (a) = f (b), which entails f (b) = f (a), which

in turn rewrites as b ≡
f

a.)

• The relation ≡
f

is transitive, because every a, b, c ∈ S satisfying a ≡
f

b and

b ≡
f

c satisfy a ≡
f

c. (Indeed, the assumptions a ≡
f

b and b ≡
f

c rewrite

as f (a) = f (b) and f (b) = f (c); therefore, f (a) = f (b) = f (c), which
rewrites as a ≡

f
c.)

Thus, ≡
f

is an equivalence relation.

We will soon learn that every equivalence relation on a set S is actually of the
form ≡

f
for some set T and some map f : S→ T. (Namely, this is proven in Exercise

3.3.3 below.)

Example 3.2.8. Let S be the set of all points on the landmass of the Earth, and let
∼ be the relation on S defined by

(a ∼ b)⇐⇒ (there is a land route from a to b) .

This ∼ is an equivalence relation (with the caveat that S is not a mathematical
object and thus not really well-defined).
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Example 3.2.9. Let

S = Z× (Z \ {0}) = {(a1, a2) | a1 ∈ Z and a2 ∈ Z \ {0}} .

This is the set of all pairs whose first entry is an integer and whose second entry
is a nonzero integer. We define a relation ∼

∗
on S by(

(a1, a2) ∼∗ (b1, b2)
)
⇐⇒ (a1b2 = a2b1) .

This relation ∼
∗

is an equivalence relation.

Proof of Example 3.2.9. Indeed:

• The relation ∼
∗

is reflexive.

[Proof: Let a ∈ S. Thus, a ∈ S = Z× (Z \ {0}); in other words, we can write a as
a = (a1, a2) for some a1 ∈ Z and a2 ∈ Z \ {0}. Consider these a1 and a2.

Clearly, a1a2 = a2a1. In other words, (a1, a2) ∼∗ (a1, a2) (because the definition of the

relation ∼
∗

yields that (a1, a2) ∼∗ (a1, a2) means a1a2 = a2a1). In other words, a ∼
∗

a

(since a = (a1, a2)).

Now, forget that we fixed a. We thus have shown that every a ∈ S satisfies a ∼
∗

a. In
other words, the relation ∼

∗
is reflexive.]

• The relation ∼
∗

is symmetric.

[Proof: Let a, b ∈ S be such that a ∼
∗

b. We shall prove that b ∼
∗

a.

We have a ∈ S = Z× (Z \ {0}); in other words, we can write a as a = (a1, a2) for
some a1 ∈ Z and a2 ∈ Z \ {0}. Similarly, we can write b as b = (b1, b2) for some
b1 ∈ Z and b2 ∈ Z \ {0}. Consider these a1, a2, b1 and b2.

We have assumed that a ∼
∗

b. In other words, (a1, a2) ∼∗ (b1, b2) (since a = (a1, a2)

and b = (b1, b2)). In other words, a1b2 = a2b1 (because this is what (a1, a2) ∼∗ (b1, b2)

means, by the definition of the relation ∼
∗

). Thus, b2a1 = a1b2 = a2b1 = b1a2; in other

words, b1a2 = b2a1. In other words, (b1, b2) ∼∗ (a1, a2) (by the definition of the relation

∼
∗

). In other words, b ∼
∗

a (since a = (a1, a2) and b = (b1, b2)).

Now, forget that we fixed a and b. We thus have shown that every a, b ∈ S satisfying
a ∼
∗

b satisfy b ∼
∗

a. In other words, the relation ∼
∗

is symmetric.]

• The relation ∼
∗

is transitive.

[Proof: Let a, b, c ∈ S be such that a ∼
∗

b and b ∼
∗

c. We shall prove that a ∼
∗

c.

We have a ∈ S = Z× (Z \ {0}); in other words, we can write a as a = (a1, a2) for
some a1 ∈ Z and a2 ∈ Z \ {0}. Similarly, we can write b as b = (b1, b2) for some
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b1 ∈ Z and b2 ∈ Z \ {0}. Similarly, we can write c as c = (c1, c2) for some c1 ∈ Z

and c2 ∈ Z \ {0}. Consider these a1, a2, b1, b2, c1 and c2. Note that b2 ∈ Z \ {0}, so
that b2 6= 0.

We have assumed that a ∼
∗

b. In other words, (a1, a2) ∼∗ (b1, b2) (since a = (a1, a2)

and b = (b1, b2)). In other words, a1b2 = a2b1 (by the definition of the relation
∼
∗

). Similarly (by exploiting the assumption b ∼
∗

c instead of a ∼
∗

b), we can obtain
b1c2 = b2c1. Hence,

a1b2︸︷︷︸
=a2b1

c2 = a2 b1c2︸︷︷︸
=b2c1

= a2b2c1.

We can cancel b2 from this equality (since b2 6= 0), and thus obtain a1c2 = a2c1. In
other words, (a1, a2) ∼∗ (c1, c2) (by the definition of the relation ∼

∗
). In other words,

a ∼
∗

c (since a = (a1, a2) and c = (c1, c2)).

Now, forget that we fixed a, b, c. We thus have shown that every a, b, c ∈ S satisfying
a ∼
∗

b and b ∼
∗

c satisfy a ∼
∗

c. In other words, the relation ∼
∗

is transitive.]

We have now proven that the relation ∼
∗

is reflexive, symmetric and transitive.
In other words, ∼

∗
is an equivalence relation (by the definition of “equivalence

relation”). This proves Example 3.2.9.

The relation ∼
∗

from Example 3.2.9 may appear familiar to you. In fact, its defi-
nition can be restated as follows:(

(a1, a2) ∼∗ (b1, b2)
)
⇐⇒

(
a1

a2
=

b1

b2

)
,

and this makes the claims of Example 3.2.9 a lot more obvious. However, this

is (in a sense) circular reasoning: The statement “
a1

a2
=

b1

b2
” only makes sense if

the rational numbers have been defined97, but the definition of rational numbers
(at least the usual definition, given in [Swanso18, §3.6] and in many other places)
already relies on the claims of Example 3.2.9. (Namely, the rational numbers are
defined as the equivalence classes of the relation ∼

∗
; this is explained in Example

3.3.6 below.) Thus, our above proof of Example 3.2.9 was not a waste of time, but
rather an important prerequisite for the construction of rational numbers (one of
the cornerstones of mathematics).

If you are familiar with basic linear algebra, you may notice that the relation ∼
∗

from Example 3.2.9 can also be regarded as linear dependence. Namely, two pairs
(a1, a2) and (b1, b2) in Z × (Z \ {0}) satisfy (a1, a2) ∼∗ (b1, b2) if and only if the

vectors (a1, a2) and (b1, b2) in Q2 are linearly dependent.98

97since
a1

a2
and

b1

b2
are (in general) not integers but rational numbers

98Note, however, that linear dependence is no longer an equivalence relation if we allow the vector
(0, 0) in our set S, because then, it is no longer transitive (for example, (1, 1) and (0, 0) are
linearly dependent, and (0, 0) and (1, 2) are linearly dependent, but (1, 1) and (1, 2) are not).
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One simple property of symmetric relations will come useful:

Proposition 3.2.10. Let ∼ be a symmetric relation on a set S. Let a, b ∈ S. Then,
a ∼ b if and only if b ∼ a.

Proof of Proposition 3.2.10. The relation ∼ is symmetric. Thus, if a and b satisfy
a ∼ b, then they also satisfy b ∼ a (by the definition of “symmetric”). In other
words, we have the logical implication (a ∼ b) =⇒ (b ∼ a). But the same argument
(with the roles of a and b interchanged) yields the implication (b ∼ a) =⇒ (a ∼ b).
Combining these two implications, we obtain the equivalence (a ∼ b)⇐⇒ (b ∼ a).
This proves Proposition 3.2.10.

3.3. Equivalence classes

3.3.1. Definition of equivalence classes

We can now state one of the most important definitions in mathematics:

Definition 3.3.1. Let ∼ be an equivalence relation on a set S.
(a) For each a ∈ S, we define a subset [a]∼ of S by

[a]∼ = {b ∈ S | b ∼ a} . (115)

This subset [a]∼ is called the equivalence class of a, or the ∼-equivalence class of a.
(b) The equivalence classes of ∼ are defined to be the sets [a]∼ for a ∈ S. They

are also known as the ∼-equivalence classes.

Example 3.3.2. Consider the relation ≡
3

on Z (defined in Example 3.1.2 (e)). We

have

[5]≡
3
=

{
b ∈ Z | b ≡

3
5
}

= {b ∈ Z | b ≡ 5 mod 3}

= {. . . ,−4,−1, 2, 5, 8, 11, 14, . . .}

and

[3]≡
3
=

{
b ∈ Z | b ≡

3
3
}

= {b ∈ Z | b ≡ 3 mod 3}

= {. . . ,−6,−3, 0, 3, 6, 9, 12, . . .}

and

[2]≡
3
=

{
b ∈ Z | b ≡

3
2
}

= {b ∈ Z | b ≡ 2 mod 3}

= {. . . ,−4,−1, 2, 5, 8, 11, 14, . . .} .

Note that [5]≡
3
= [2]≡

3
, as you can easily see.
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3.3.2. Basic properties

Proposition 3.3.3. Let ∼ be an equivalence relation on a set S. Let a ∈ S. Then,

[a]∼ = {b ∈ S | a ∼ b} .

Proof of Proposition 3.3.3. The relation ∼ is symmetric (since it is an equivalence
relation). Thus, for any b ∈ S, we have (a ∼ b if and only if b ∼ a) (by Proposition
3.2.10). Hence, {b ∈ S | a ∼ b} = {b ∈ S | b ∼ a}. Comparing this with (115), we
obtain [a]∼ = {b ∈ S | a ∼ b}. This proves Proposition 3.3.3.

Proposition 3.3.3 shows that we can replace the condition “b ∼ a” by “a ∼ b” in
Definition 3.3.1 (a) without changing the meaning of the definition. (Some authors,
such as Swanson in [Swanso18, Definition 2.3.6], do exactly that.)

Proposition 3.3.4. Let ∼ be an equivalence relation on a set S. Let a ∈ S. Then,
a ∈ [a]∼.

Proof of Proposition 3.3.4. The relation ∼ is reflexive (since it is an equivalence rela-
tion). Thus, a ∼ a. In other words, a is a b ∈ S satisfying b ∼ a. In other words,
a ∈ {b ∈ S | b ∼ a}. But [a]∼ = {b ∈ S | b ∼ a} (by the definition of [a]∼). Hence,
a ∈ {b ∈ S | b ∼ a} = [a]∼. This proves Proposition 3.3.4.

Proposition 3.3.4 shows that all equivalence classes of an equivalence relation are
nonempty sets (because each equivalence class [a]∼ contains at least the element a).

Theorem 3.3.5. Let ∼ be an equivalence relation on a set S. Let x, y ∈ S.
(a) If x ∼ y, then [x]∼ = [y]∼.
(b) If not x ∼ y, then the sets [x]∼ and [y]∼ are disjoint.
(c) We have x ∼ y if and only if x ∈ [y]∼.
(d) We have x ∼ y if and only if y ∈ [x]∼.
(e) We have x ∼ y if and only if [x]∼ = [y]∼.

Proof of Theorem 3.3.5. The relation ∼ is transitive (since it is an equivalence rela-
tion) and symmetric (for the same reason).

The definition of [x]∼ yields [x]∼ = {b ∈ S | b ∼ x}. Similarly, [y]∼ = {b ∈ S | b ∼ y}.
(a) Assume that x ∼ y. Thus, y ∼ x (since the relation ∼ is symmetric).
Let c ∈ [x]∼. Thus, c ∈ [x]∼ = {b ∈ S | b ∼ x}. Thus, c ∼ x. From c ∼

x and x ∼ y, we obtain c ∼ y (since the relation ∼ is transitive). Hence, c ∈
{b ∈ S | b ∼ y}. In other words, c ∈ [y]∼ (since [y]∼ = {b ∈ S | b ∼ y}).

Forget that we fixed c. We thus have proven that c ∈ [y]∼ for each c ∈ [x]∼. Thus,
[x]∼ ⊆ [y]∼. The same argument (with x and y switched) yields [y]∼ ⊆ [x]∼ (since
y ∼ x). Combining [x]∼ ⊆ [y]∼ with [y]∼ ⊆ [x]∼, we obtain [x]∼ = [y]∼. This
proves Theorem 3.3.5 (a).
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(b) Assume that we don’t have x ∼ y. Let c ∈ [x]∼ ∩ [y]∼. We aim for a contra-
diction.

We have c ∈ [x]∼ ∩ [y]∼ ⊆ [x]∼ = {b ∈ S | b ∼ x}, so that c ∼ x. Likewise,
c ∼ y. From c ∼ x, we obtain x ∼ c (since the relation ∼ is symmetric). Combining
this with c ∼ y, we obtain x ∼ y (since ∼ is transitive). This contradicts our
assumption that we don’t have x ∼ y.

Now, forget that we fixed c. So we have found a contradiction for each c ∈
[x]∼ ∩ [y]∼. Thus, there is no such c. In other words, [x]∼ ∩ [y]∼ = ∅. In other
words, the sets [x]∼ and [y]∼ are disjoint. This proves Theorem 3.3.5 (b).

(c) Recall that [y]∼ = {b ∈ S | b ∼ y}. Thus, we have x ∈ [y]∼ if and only if
x ∼ y. In other words, we have x ∼ y if and only if x ∈ [y]∼. This proves Theorem
3.3.5 (c).

(d) Theorem 3.3.5 (c) (applied to y and x instead of x and y) shows that we have
y ∼ x if and only if y ∈ [x]∼. In other words, we have the logical equivalence
(y ∼ x)⇐⇒ (y ∈ [x]∼).

Proposition 3.2.10 (applied to a = x and b = y) shows that we have x ∼ y if and
only if y ∼ x. Thus, we have the following chain of logical equivalences:

(x ∼ y)⇐⇒ (y ∼ x)⇐⇒ (y ∈ [x]∼) .

In other words, we have x ∼ y if and only if y ∈ [x]∼. This proves Theorem 3.3.5
(d).

(e) =⇒: Assume that x ∼ y. Then, Theorem 3.3.5 (a) yields [x]∼ = [y]∼. Thus,
the “=⇒” direction of Theorem 3.3.5 (e) is proven.
⇐=: Assume that [x]∼ = [y]∼. Then, Proposition 3.3.4 (applied to a = x) yields

x ∈ [x]∼ = [y]∼ = {b ∈ S | b ∼ y}. In other words, x ∼ y. This proves the “⇐=”
direction of Theorem 3.3.5 (e).

Theorem 3.3.5 yields an important property of equivalence classes:

Exercise 3.3.1. Let ∼ be an equivalence relation on a set S. Prove that any two
equivalence classes of ∼ are either identical or disjoint.

In the following, we will try to use Greek letters for equivalence classes and
Roman letters for their representatives. (See the solution to Exercise 3.3.1 for an
example.)

3.3.3. More examples

Example 3.3.6. Consider the relation ∼
∗

on S = Z× (Z \ {0}) defined in Example
3.2.9. Its equivalence classes are the rational numbers. Indeed, the equivalence
class [(a1, a2)]∼

∗
of a pair (a1, a2) ∈ S is commonly denoted by

a1

a2
(or by a1/a2).

This is how rational numbers are defined!
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Equivalence classes appear in real life too, at least in the modern world. When
you say that the sun rises approximately at 7 AM in February99, what do “7 AM”
and “February” mean? Clearly, “February” is not a specific month in history, since
each year has its own February. Rather, it stands for an equivalence class of months,
with respect to the relation of “being an integer number of years apart”. Similarly,
“7 AM” means an equivalence class of moments with respect to the relation of
“being an integer number of days apart”. Likewise, “the horse” in “the horse has a
lifespan of 25 years” refers not to a specific horse, but to the whole species, which
is an equivalence class of creatures with respect to a certain relation100. Finally, the
equivalence classes of the relation ∼ in Example 3.2.8 are commonly referred to as
“continents”101 or “islands”. Equivalence classes provide a way to refer to multiple
objects (usually similar in some way) as if they were one.

3.3.4. The “is a permutation of” relation on tuples

Let us give a few more mathematical examples for equivalences and equivalence
classes:

Definition 3.3.7. Let A be a set, and let k ∈ N. As we know, Ak denotes the set
of all k-tuples of elements of A.

The relation ∼
perm

on Ak is defined as follows:

(
p ∼

perm
q
)
⇐⇒ (p is a permutation of q) .

(We are using Definition 2.13.16 here.) For example, (3, 8, 8, 2) ∼
perm

(8, 3, 2, 8).

Exercise 3.3.2. Prove that the relation ∼
perm

is an equivalence relation.

Definition 3.3.8. Let A be a set, and let k ∈ N. The relation ∼
perm

on Ak is an

equivalence relation (by Exercise 3.3.2). Its equivalence classes are called the
unordered k-tuples of elements of A. For example, for k = 2 and A = Z, the two
2-tuples (6, 8) and (8, 6) are permutations of each other, so (6, 8) ∼

perm
(8, 6) and

thus [(6, 8)] ∼
perm

= [(8, 6)] ∼
perm

.

99in Minneapolis
100According to Darwin, the relation is “being able to procreate” – although this is not per se an

equivalence relation, so some tweaks need to be made (“reflexive-and-transitive closure”) to turn
it into one.

101at least if one considers Eurasia to be a single continent
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3.3.5. The “is a cyclic rotation of” relation on tuples

Another example of an equivalence relation is the following:

Definition 3.3.9. Again, let A be a set and k ∈ N. If a = (a1, a2, . . . , ak) ∈ Ak,
then a cyclic rotation of a means a k-tuple of the form

(ai+1, ai+2, . . . , ak, a1, a2, . . . , ai) ∈ Ak

for some i ∈ {0, 1, . . . , k}.
For example, the cyclic rotations of the 3-tuple (1, 4, 5) are (1, 4, 5), (4, 5, 1) and

(5, 1, 4).
(Here is an equivalent description of cyclic rotations: Let C be the map Ak →

Ak that sends each k-tuple (a1, a2, . . . , ak) to (a2, a3, . . . , ak, a1). Then, it is easy
to see that a cyclic rotation of a is the same as a k-tuple of the form Ci (a) for
some i ∈ {0, 1, . . . , k}. But it is also easy to see that Ck = id. Thus, the Ci (a) for
i ∈ {0, 1, . . . , k} are exactly the Ci (a) for i ∈N.)

The relation ∼
cyc

on Ak is defined as follows:

(
p ∼

cyc
q
)
⇐⇒ (p is a cyclic rotation of q)

⇐⇒
(

p = Ci (q) for some i ∈N
)

.

This relation ∼
cyc

is an equivalence relation. Its equivalence classes are called

necklaces of length k over A.

We shall not prove the statements claimed in this definition, since they are par-
ticular cases of more general results that will be proven below (about groups acting
on sets).

For example, the necklaces of length 3 over the set A = {1, 2} are

[(1, 1, 1)]∼
cyc

= {(1, 1, 1)} ,

[(1, 1, 2)]∼
cyc

= {(1, 1, 2) , (1, 2, 1) , (2, 1, 1)} ,

[(1, 2, 2)]∼
cyc

= {(1, 2, 2) , (2, 2, 1) , (2, 1, 2)} ,

[(2, 2, 2)]∼
cyc

= {(2, 2, 2)} .

This may suggest that a necklace [(a1, a2, . . . , ak)]∼
cyc

is uniquely determined by how

often each element appears in the tuple (a1, a2, . . . , ak). But this is not true in gen-
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eral; for example, if A = {1, 2, 3}, then

[(1, 2, 3)]∼
cyc

= {(1, 2, 3) , (2, 3, 1) , (3, 1, 2)} and

[(1, 3, 2)]∼
cyc

= {(1, 3, 2) , (3, 2, 1) , (2, 1, 3)}

are two different necklaces of length 3 over the set A = {1, 2, 3}.
How many necklaces of length k over a q-element set A exist? It turns out that

there is a nice formula for this, involving Euler’s totient function φ:

Theorem 3.3.10. Let k be a positive integer. Let A be a q-element set (where
q ∈N). Then, the number of necklaces of length k over the set A is

1
k ∑

d|k
φ (d) qk/d.

Note that it is not (a priori) clear that
1
k ∑

d|k
φ (d) qk/d is an integer! Actually, this

holds even when q is a negative integer, even though there exist no q-element sets

in that case. Thus,
1
k ∑

d|k
φ (d) xk/d is another integer-valued polynomial for each

positive integer k.
We will prove Theorem 3.3.10 using the concept of group actions further below.

3.3.6. Definition of the quotient set and the projection map

Definition 3.3.11. Let S be a set, and let ∼ be an equivalence relation on S.
(a) The set of equivalence classes of ∼ is denoted by S/ ∼. It is called the

quotient (or quotient set) of S by ∼.
(b) The map

S→ S/ ∼ ,
s 7→ [s]∼

(which sends each element s ∈ S to its equivalence class) is called the canonical
projection (onto the quotient), and we will denote it by π∼.

(c) An element of an equivalence class of ∼ is also called a representative of this
class.

Exercise 3.3.3. Let S be a set.
Recall that if T is a further set, and if f : S → T is a map, then an equivalence

relation ≡
f

is defined on the set S. (See Example 3.2.7 for its definition.)
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Now, let ∼ be any equivalence relation on S. Prove that ∼ has the form ≡
f

for

a properly chosen set T and a properly chosen f : S→ T.
More precisely, prove that ∼ equals ≡

f
, where T is the quotient set S/ ∼ and

where f : S→ T is the canonical projection π∼ : S→ S/ ∼.
[Hint: To prove that two relations R1 and R2 on S are equal, you need to

check that every pair (a, b) of elements of S satisfies the equivalence (aR1b) ⇐⇒
(aR2b).]

3.4. Z/n (“integers modulo n”)

We now come to one of the most important example of equivalence classes: the
residue classes of integers modulo a given positive integer n.

Convention 3.4.1. For the whole Section 3.4, we fix an integer n.

3.4.1. Definition of Z/n

Definition 3.4.2. (a) Define a relation ≡
n

on the set Z by(
a ≡

n
b
)
⇐⇒ (a ≡ b mod n) .

(This is precisely the relation ≡
n

from Example 3.1.2 (e).)
Recall that ≡

n
is an equivalence relation (by Example 3.2.5).

(b) A residue class modulo n means an equivalence class of the relation ≡
n

.

For example,

[0]≡
5
= {. . . ,−15,−10,−5, 0, 5, 10, 15, 20, . . .} ,

[1]≡
5
= {. . . ,−14,−9,−4, 1, 6, 11, 16, 21, . . .} ,

[2]≡
5
= {. . . ,−13,−8,−3, 2, 7, 12, 17, 22, . . .} ,

[3]≡
5
= {. . . ,−12,−7,−2, 3, 8, 13, 18, 23, . . .} ,

[4]≡
5
= {. . . ,−11,−6,−1, 4, 9, 14, 19, 24, . . .}

are all the residue classes modulo 5. As you see, these classes are in 1-to-1 corre-
spondence with the 5 possible remainders 0, 1, 2, 3, 4 modulo 5. This generalizes
(see Theorem 3.4.4 below). First, let us introduce a few notations:
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Definition 3.4.3. (a) If i is an integer, then we denote the residue class [i]≡
n

by

[i]n. (Some authors denote this residue class by in or i mod n. Be careful with
the notation i mod n, since other authors use it for the integer i%n when n is
positive.)

(b) The set Z/ ≡
n

of all residue classes modulo n is called Z/n. (Some authors

call it Z/ (n) or Z/nZ or Zn. Be careful with the notation Zn, since it has a
different meaning, too.)

3.4.2. What Z/n looks like

Let us now state and rigorously prove what we have just observed on the example
of n = 5:

Theorem 3.4.4. Assume that the integer n is positive.
The set Z/n has exactly n elements, namely [0]n , [1]n , . . . , [n− 1]n. (In partic-

ular, these elements [0]n , [1]n , . . . , [n− 1]n are distinct.)

Before we prove this, let us make a simple observation:

Proposition 3.4.5. (a) Each element of Z/n can be written in the form [s]n for
some integer s.

(b) Let a and b be integers. Then, we have [a]n = [b]n if and only if a ≡ b mod n.

Proof of Proposition 3.4.5. (a) If σ ∈ Z/n, then σ is a residue class modulo n (by
the definition of Z/n), and thus is an equivalence class of the relation ≡

n
(by the

definition of a residue class). Hence, this σ can be written in the form [s]≡
n

for some

integer s. In other words, this σ can be written in the form [s]n for some integer s
(since we have defined [s]n to be a shorthand for [s]≡

n
). In other words, each element

of Z/n can be written in the form [s]n for some integer s. This proves Proposition
3.4.5 (a).

(b) Theorem 3.3.5 (e) (applied to Z, ≡
n

, a and b instead of S, ∼, x and y) shows

that we have a ≡
n

b if and only if [a]≡
n
= [b]≡

n
. Thus, we have the logical equivalence

(
a ≡

n
b
)
⇐⇒

(
[a]≡

n
= [b]≡

n

)
. (116)

Definition 3.4.3 (a) shows that [a]n = [a]≡
n

and [b]n = [b]≡
n

. Hence, we have the

following chain of logical equivalences:

([a]n = [b]n) ⇐⇒
(
[a]≡

n
= [b]≡

n

)
⇐⇒

(
a ≡

n
b
)

(by (116))

⇐⇒ (a ≡ b mod n)
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(by the definition of the relation ≡
n

). In other words, we have [a]n = [b]n if and only
if a ≡ b mod n. This proves Proposition 3.4.5 (b).

Proof of Theorem 3.4.4. We have a map

π≡
n

: Z→ Z/n,

s 7→ [s]n .

(This is simply the map π∼ defined in Definition 3.3.11 (b), applied to the case
when S = Z and when ∼ is the equivalence relation ≡

n
.)

We restrict this map ≡
n

to the set {0, 1, . . . , n− 1}; we thus obtain a map

P : {0, 1, . . . , n− 1} → Z/n,
s 7→ [s]n .

Our goal is to prove that this map P is bijective.
In general, there are two ways in which one usually proves that a map is bi-

jective: One way is to prove that it is surjective and injective; the other way is by
constructing an inverse to this map. Both ways can be used here; let us follow the
second way, since it demonstrates an important point about equivalence classes.

So we want to construct an inverse to the map P. To do so, we try to define a
map

R : Z/n→ {0, 1, . . . , n− 1} ,
[s]n 7→ s%n

(that is, a map R : Z/n → {0, 1, . . . , n− 1} that sends each residue class [s]n to the
remainder s%n). Can we do this? Would this map R be actually well-defined?

First of all, our definition of R does indeed specify a value of R (σ) for each
σ ∈ Z/n. This is because each element of Z/n can be written in the form [s]n for
some integer s (because of Proposition 3.4.5 (a)), and therefore our definition tells
us where this element should go under R.

Furthermore, if s is an integer, then s%n ∈ {0, 1, . . . , n− 1} (by Corollary 2.6.9
(a), applied to u = s). Hence, our definition of R does not require the map R to
take values lying outside of its target102.

However, there is one more thing that could go wrong with our definition of R:
One element σ of Z/n can be written as [s]n for several different integers s. For
instance, [2]5 = [7]5 = [12]5 = [17]5 = · · · . If the remainders s%n of these integers
s were different, then the map R would have to send the class σ to several different

102This is one way in which maps can fail to be well-defined. For example, the map

N→N, i 7→ i− 1

is not well-defined for this reason (because i− 1 /∈N for i = 0).
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numbers, and this is not something a map can do. To see an example where this
does go wrong, let us try to define a map

Rwrong : Z/n→ {0, 1, . . . , n− 1} ,
[s]n 7→ s% (n + 1) .

So this definition of Rwrong is identical to our definition of R above, except that
we are sending [s]n to s% (n + 1) rather than to s%n. However, Rwrong does not
actually exist. In fact, if this ostensible map Rwrong would exist, then it would have
to send [0]n to 0% (n + 1) = 0 and send [−n]n to (−n)% (n + 1) = 1 103; however,
[0]n and [−n]n are the same residue class (since 0 ≡ −n mod n), whereas 0 and 1
are not the same number, and thus this map Rwrong would send the same class to
two different numbers. Thus, the map Rwrong does not exist.

We shall now check that our above definition of R does not suffer from this
problem. In other words, we shall check that in the definition of

R : Z/n→ {0, 1, . . . , n− 1} ,
[s]n 7→ s%n,

any two possible integers s leading to the same class [s]n also lead to the same
remainder s%n. In other words, we shall prove the following claim:

Claim 1: If s1 and s2 are two integers such that [s1]n = [s2]n, then s1%n =
s2%n.

[Proof of Claim 1: Let s1 and s2 be two integers such that [s1]n = [s2]n.
Proposition 3.4.5 (b) (applied to s1 and s2 instead of a and b) shows that we

have [s1]n = [s2]n if and only if s1 ≡ s2 mod n. Thus, we have s1 ≡ s2 mod n
(since [s1]n = [s2]n). But Exercise 2.6.1 (applied to u = s1 and v = s2) shows that
s1 ≡ s2 mod n if and only if s1%n = s2%n. Hence, we have s1%n = s2%n. This
proves Claim 1.]

Claim 1 shows that if s is an integer, then s%n depends only on the residue class
[s]n, but not on the actual integer s. Thus, if we have a residue class σ ∈ Z/n, then
we can write σ in the form σ = [s]n for some integer s (since every residue class
in Z/n can be written in this form), and then the integer s%n will depend only
on the class σ and not on the specific choice of this integer s. Hence, the map R is
well-defined.

Now we have two maps

P : {0, 1, . . . , n− 1} → Z/n,
s 7→ [s]n

and

R : Z/n→ {0, 1, . . . , n− 1} ,
[s]n 7→ s%n.

We claim that they are mutually inverse. Indeed:
103The equality (−n)% (n + 1) = 1 follows from writing −n in the form −n = (−1) · (n + 1) + 1.
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• We have P ◦ R = id.

[Proof: Let σ ∈ Z/n. We shall prove that (P ◦ R) (σ) = id (σ).

Proposition 3.4.5 (a) says that each element of Z/n can be written in the
form [s]n for some integer s. Hence, σ can be written in this form. In other
words, σ = [s]n for some integer s. Consider this s. The definition of R yields
R ([s]n) = s%n. Corollary 2.6.9 (a) (applied to u = s) yields s%n ≡ s mod n.
Now, from σ = [s]n, we obtain

(P ◦ R) (σ) = (P ◦ R) ([s]n) = P

R ([s]n)︸ ︷︷ ︸
=s%n

 = P (s%n)

= [s%n]n (by the definition of P)
= [s]n (since s%n ≡ s mod n)
= σ = id (σ) .

Now, forget that we fixed σ. We thus have proven that (P ◦ R) (σ) = id (σ)
for each σ ∈ Z/n. In other words, P ◦ R = id.]

• We have R ◦ P = id.

[Proof: Let s ∈ {0, 1, . . . , n− 1}. Thus, Corollary 2.6.9 (c) (applied to u = s
and c = s) yields s = s%n (since s ≡ s mod n). But the definition of P yields
P (s) = [s]n. Hence,

(R ◦ P) (s) = R

P (s)︸︷︷︸
=[s]n

 = R ([s]n) = s%n (by the definition of R)

= s = id (s) .

Now, forget that we fixed s. We thus have proven that (R ◦ P) (s) = id (s) for
each s ∈ {0, 1, . . . , n− 1}. In other words, R ◦ P = id.]

Combining P ◦ R = id and R ◦ P = id, we conclude that the maps P and R are
mutually inverse. Thus, the map P is invertible, i.e., bijective. Hence, P is surjective
and injective. Since P is injective, we see that P must send the distinct elements
0, 1, . . . , n − 1 of its domain to distinct elements. In other words, the n elements
P (0) , P (1) , . . . , P (n− 1) of Z/n must be distinct.

But recall that P (s) = [s]n for each s ∈ {0, 1, . . . , n− 1} (by the definition of P).
Thus, the n elements P (0) , P (1) , . . . , P (n− 1) can be rewritten as [0]n , [1]n , . . . , [n− 1]n.
Hence, the n elements [0]n , [1]n , . . . , [n− 1]n are distinct (since the n elements
P (0) , P (1) , . . . , P (n− 1) are distinct).
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Moreover, P is surjective. Thus,

Z/n = P ({0, 1, . . . , n− 1})
= {P (0) , P (1) , . . . , P (n− 1)}
= {[0]n , [1]n , . . . , [n− 1]n}

(since P (s) = [s]n for each s ∈ {0, 1, . . . , n− 1}). In other words, the elements of
Z/n are exactly the n elements [0]n , [1]n , . . . , [n− 1]n. These n elements are distinct
(as we have previously shown). Hence, the set Z/n has exactly n elements, namely
[0]n , [1]n , . . . , [n− 1]n. This proves Theorem 3.4.4.

Let us summarize some of the facts we have shown in the above proof as a
separate proposition:

Proposition 3.4.6. Let n be a positive integer.
(a) The two maps

P : {0, 1, . . . , n− 1} → Z/n,
s 7→ [s]n

and

R : Z/n→ {0, 1, . . . , n− 1} ,
[s]n 7→ s%n

are well-defined and mutually inverse, and thus are bijections.
(b) Let α ∈ Z/n. Then, there exists a unique a ∈ {0, 1, . . . , n− 1} satisfying

α = [a]n.

Proof of Proposition 3.4.6. (a) During the proof of Theorem 3.4.4 above, we have
shown that the maps P and R are well-defined and mutually inverse. Hence, these
maps P and R are invertible, i.e., are bijective. In other words, the maps P and R
are bijections. Thus, Proposition 3.4.6 (a) is proven.

(b) Consider the maps P and R from Proposition 3.4.6 (a). Then, Proposition 3.4.6
(a) shows that these two maps P and R are well-defined and mutually inverse, and
thus are bijections.

We have P ◦ R = id (since P and R are mutually inverse). Hence, (P ◦ R) (α) =
id (α) = α. Hence, α = (P ◦ R) (α) = P (R (α)) = [R (α)]n (by the definition of
P). Thus, there exists at least one a ∈ {0, 1, . . . , n− 1} satisfying α = [a]n (namely,
a = R (α)). (Indeed, R (α) ∈ {0, 1, . . . , n− 1} follows from the fact that R is a map
from Z/n to {0, 1, . . . , n− 1}.)

On the other hand, let a ∈ {0, 1, . . . , n− 1} be such that α = [a]n. We shall
prove that a = R (α). Indeed, the definition of P yields P (a) = [a]n = α; hence,
a = P−1 (α) (since the map P is invertible). But P−1 = R (since P and R are
mutually inverse). Thus, a = P−1︸︷︷︸

=R

(α) = R (α).
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Now, forget that we fixed a. We thus have shown that every a ∈ {0, 1, . . . , n− 1}
satisfying α = [a]n must satisfy a = R (α). In other words, every a ∈ {0, 1, . . . , n− 1}
satisfying α = [a]n must be equal to R (α). Hence, there exists at most one such a.

Now, we conclude that there exists a unique a ∈ {0, 1, . . . , n− 1} satisfying α =
[a]n (because we have shown that there exists at least one such a, and we have
shown that there exists at most one such a). This proves Proposition 3.4.6 (b).

Proposition 3.4.6 (b) can be restated as follows: Each residue class α ∈ Z/n has
a unique representative in the set {0, 1, . . . , n− 1}.

3.4.3. Making choices that don’t matter: The universal property of quotient
sets

In the above proof of Theorem 3.4.4, we have witnessed an important issue in
dealing with quotient sets: If you want to define a map f going out of a quotient
set S/ ∼ 104, then the easiest way to do so is often to specify f ([s]∼) for each
s ∈ S; but in order to ensure that this definition is well-defined (i.e., that our map
f actually exists), we need to verify that the value of f ([s]∼) we are specifying
depends only on the equivalence class [s]∼ but not on the representative s. In
other words, we need to verify that if s1 and s2 are two elements of S such that
[s1]∼ = [s2]∼, then our definition of f assigns the same value to f ([s1]∼) as it does
to f ([s2]∼). This verification (which we did in our above proof by proving Claim
1) is often quite easy, but it is necessary.

Let us restate this strategy for defining maps out of a quotient set more rigor-
ously:

Remark 3.4.7. Let S and T be two sets, and let ∼ be an equivalence relation on
S. Assume that we want to define a map

f : S/ ∼ → T,
[s]∼ 7→ F (s) ,

where F (s) is some element of T for each s ∈ S. (That is, we want to define a
map f : S→ T such that every s ∈ S satisfies f ([s]∼) = F (s).)

In order to ensure that this f is well-defined, we need to verify that if s1 and
s2 are two elements of S such that [s1]∼ = [s2]∼, then F (s1) = F (s2). If this
verification has been done, the map f is well-defined.

Further examples of maps out of quotient sets defined in this way can be found
in [ConradW]105.

104In our case, the quotient set was Z/ ≡
n

(also known as Z/n), and the map we wanted to define
was R.

105When reading [ConradW, Example 1.1], keep in mind that rational numbers are defined as equiv-
alence classes of elements of Z× (Z \ {0}), as we have seen in Example 3.3.6. Thus, Q is actually
a quotient set: namely, Q = S/ ∼

∗
using the notations of Example 3.3.6.
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Let us illustrate this method of defining maps on a few more examples:

Example 3.4.8. Let A be a set, and let k ∈N. Fix some c ∈ A. We can then define a map

multc : Ak →N,
(a1, a2, . . . , ak) 7→ (the number of i ∈ {1, 2, . . . , k} such that ai = c) .

This map multc simply sends each k-tuple to the number of times that c appears in this
k-tuple. For example, mult5 (1, 5, 2, 4, 7, 5, 5, 6) = 3, since 5 appears exactly 3 times in the
8-tuple (1, 5, 2, 4, 7, 5, 5, 6) (assuming that k = 8 and A = Z). It is clear that this map
multc is well-defined. (The number multc a for a k-tuple a is called the multiplicity of c in
a. Therefore the notation “multc”.)

Now, it stands to reason that the same can be done with unordered k-tuples: After
all, the number of times that c appears in a k-tuple should not depend on the order of
the entries of the tuple. To formalize this, however, we need to deal with quotient sets.
Indeed, recall that the “unordered k-tuples of elements of A” were defined (in Definition
3.3.8) as equivalence classes of the relation ∼

perm
on the set Ak. So Ak/ ∼

perm
is the set of

all unordered k-tuples of elements of A. The map that counts how often c appears in an
unordered k-tuple should thus have the form

mult′c : Ak/ ∼
perm

→N,

[(a1, a2, . . . , ak)] ∼
perm
7→ (the number of i ∈ {1, 2, . . . , k} such that ai = c) .

Or, to put it more compactly (making use of the map multc for ordered k-tuples defined
above), it should have the form

mult′c : Ak/ ∼
perm

→N,

[a] ∼
perm
7→ multc a.

The question is: Why is this map mult′c well-defined?
Remark 3.4.7 (applied to Ak, N and ∼

perm
instead of S, T and ∼) shows that in order

to ensure that this map mult′c is well-defined, we need to verify that if a1 and a2 are
two elements of Ak (that is, two ordered k-tuples) such that [a1] ∼

perm
= [a2] ∼

perm
, then

multc (a1) = multc (a2). Let us do this: Let a1 and a2 be two elements of Ak (that is, two
ordered k-tuples) such that [a1] ∼

perm
= [a2] ∼

perm
. Now, [a1] ∼

perm
= [a2] ∼

perm
entails a1 ∼perm

a2

(indeed, Theorem 3.3.5 (e) shows that we have a1 ∼perm
a2 if and only if [a1] ∼

perm
= [a2] ∼

perm
).

In other words, a1 is a permutation of a2 (by the definition of ∼
perm

). In other words, the

tuples a1 and a2 differ only in the order of their entries. Hence, Lemma 2.13.21 (applied
to A, a1, a2 and c instead of P, (a1, a2, . . . , ak), (b1, b2, . . . , b`) and p) yields that

(the number of times c appears in a1) = (the number of times c appears in a2) .

This rewrites as multc (a1) = multc (a2) (since (the number of times c appears in a1) =
multc (a1) and (the number of times c appears in a2) = multc (a2)). This is what we
needed to prove. Thus, we have shown that mult′c is well-defined.
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On the other hand, if we tried to define a map

first : Ak/ ∼
perm

→N,

[a] ∼
perm
7→ (the first entry of a)

(assuming that k > 0, so that an ordered k-tuple does indeed have a first entry), then we
would run into troubles, because it is not true that if a1 and a2 are two elements of Ak

such that [a1] ∼
perm

= [a2] ∼
perm

, then (the first entry of a1) = (the first entry of a2). And this

is no surprise: There is no such thing as “the first entry” of an unordered k-tuple. The
first entry of a k-tuple is sensitive to reordering of its entries.

We can restate this method of defining maps as a rigorous theorem:

Theorem 3.4.9. Let S and T be two sets, and let ∼ be an equivalence relation on
S. For each s ∈ S, let F (s) be an element of T. (In other words, let F be a map
from S to T.) Assume that the following assumption holds:

Assumption 1: If s1 and s2 are two elements of S satisfying s1 ∼ s2,
then F (s1) = F (s2).

Then, there exists a unique map f : S/ ∼ → T such that every s ∈ S satisfies
f ([s]∼) = F (s).

Theorem 3.4.9 says that (under the assumption that Assumption 1 holds) we can
define a map

f : S/ ∼ → T,
[s]∼ 7→ F (s) .

For example, the map R defined in our proof of Theorem 3.4.4 was defined in
this way (with Z, Z, ≡

n
and s%n playing the roles of S, T, ∼ and F (s)), and our

proof of Claim 1 was essentially us verifying that Assumption 1 of Theorem 3.4.9
is satisfied.

For the sake of completeness, let us give a formal proof for Theorem 3.4.9 as well:

Proof of Theorem 3.4.9. We need to prove the following two statements:

Statement 1: There exists at least one map f : S/ ∼ → T such that every s ∈ S
satisfies f ([s]∼) = F (s).

Statement 2: There exists at most one map f : S/ ∼ → T such that every s ∈ S
satisfies f ([s]∼) = F (s).

[Proof of Statement 1: We define a map ϕ as follows:
Let σ ∈ S/ ∼ . Thus, σ is an equivalence class of ∼ (by the definition of S/ ∼). In other

words, σ = [s]∼ for some element s ∈ S. In other words, there exists some element s ∈ S
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such that σ = [s]∼. If s1 and s2 are two such elements s, then F (s1) = F (s2) 106. Thus,
the element F (s) ∈ T obtained from such an element s does not depend on the choice of s
(as long as σ is fixed). Hence, we can define ϕ (σ) by setting

ϕ (σ) = F (s) , (117)

where s is any element of S satisfying σ = [s]∼.
Define ϕ (σ) this way. Thus, we have defined an element ϕ (σ) of T for each σ ∈ S/ ∼ .

Hence, we have defined a map ϕ : S/ ∼ → T. Moreover, this map has the property that
every s ∈ S satisfies ϕ ([s]∼) = F (s). (Indeed, this follows from (117) (applied to σ = [s]∼),
since obviously [s]∼ = [s]∼.)

Hence, there exists at least one map f : S/ ∼ → T such that every s ∈ S satisfies
f ([s]∼) = F (s) (namely, the map ϕ). This proves Statement 1.]

[Proof of Statement 2: Let f1 and f2 be two maps f : S/ ∼ → T such that every s ∈ S
satisfies f ([s]∼) = F (s). We shall show that f1 = f2.

We know that f1 is a map f : S/ ∼ → T such that every s ∈ S satisfies f ([s]∼) = F (s).
In other words, f1 is a map from S/ ∼ to T and has the property that

every s ∈ S satisfies f1 ([s]∼) = F (s) . (118)

Likewise, f2 is a map from S/ ∼ to T and has the property that

every s ∈ S satisfies f2 ([s]∼) = F (s) . (119)

Now, let σ ∈ S/ ∼ be arbitrary. Thus, σ is an equivalence class of ∼ (by the definition
of S/ ∼). In other words, σ = [s]∼ for some element s ∈ S. Consider this s. Then,
from σ = [s]∼, we obtain f1 (σ) = f1 ([s]∼) = F (s) (by (118)). Similarly, f2 (σ) = F (s).
Comparing these two equalities, we find f1 (σ) = f2 (σ).

Forget that we fixed σ. We thus have proven that f1 (σ) = f2 (σ) for each σ ∈ S/ ∼ . In
other words, f1 = f2.

Forget that we fixed f1 and f2. We thus have proven that if f1 and f2 are two maps
f : S/ ∼ → T such that every s ∈ S satisfies f ([s]∼) = F (s), then f1 = f2. In other words,
there exists at most one such map f . This proves Statement 2.]

Now, we conclude that there exists a unique map f : S/ ∼ → T such that every s ∈ S
satisfies f ([s]∼) = F (s) (because Statement 1 shows that there exists at least one such map,
while Statement 2 shows that there exists at most one such map). This proves Theorem
3.4.9.

Theorem 3.4.9 is known as the universal property of the quotient set.

3.4.4. Projecting from Z/n to Z/d

As another example of a map from a quotient set, let us define certain maps from
Z/n to Z/d that exist whenever two integers n and d satisfy d | n:

106Proof. Let s1 and s2 be two such elements s. Then, σ = [s1]∼ (since s1 is an element s ∈ S such
that σ = [s]∼) and σ = [s2]∼ (for similar reasons). Hence, [s1]∼ = σ = [s2]∼. But Theorem 3.3.5
(e) (applied to x = s1 and y = s2) yields that we have s1 ∼ s2 if and only if [s1]∼ = [s2]∼. Hence,
we have s1 ∼ s2 (since [s1]∼ = [s2]∼). Thus, Assumption 1 shows that F (s1) = F (s2), qed.
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Proposition 3.4.10. Let n be an integer. Let d be a divisor of n. Then, there is a
map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d .

Example 3.4.11. (a) For example, for n = 6 and d = 2, Proposition 3.4.10 says
that there is a map

π6,2 : Z/6→ Z/2,
[s]6 7→ [s]2 .

This map sends the residue classes

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6
to [0]2 , [1]2 , [2]2 , [3]2 , [4]2 , [5]2 , respectively.

In other words, it sends the residue classes

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6
to [0]2 , [1]2 , [0]2 , [1]2 , [0]2 , [1]2 , respectively

(since [2]2 = [0]2 and [3]2 = [1]2 and [4]2 = [0]2 and [5]2 = [1]2). More generally,
for arbitrary positive integers n and d satisfying d | n, the map πn,d sends the n
residue classes [0]n , [1]n , . . . , [n− 1]n to

[0]d , [1]d , . . . , [d− 1]d , [0]d , [1]d , . . . , [d− 1]d , . . . , [0]d , [1]d , . . . , [d− 1]d

(that is, [0]d , [1]d , . . . , [d− 1]d in this order, repeated
n
d

many times), respectively.
(b) For a non-example, set n = 3 and d = 2. Then, Proposition 3.4.10 does not

apply, since 2 is not a divisor of 3. And for good reason: There is no map

π3,2 : Z/3→ Z/2,
[s]3 7→ [s]2 .

Indeed, this map would have to send [0]3 and [3]3 to [0]2 and [3]2, respectively;
but this means sending two equal inputs to different outputs (since [0]3 = [3]3
but [0]2 6= [3]2), which is impossible. More generally, if a positive integer d is not
a divisor of a positive integer n, then there is no map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d .
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Proof of Proposition 3.4.10. We must prove that, for an integer s ∈ Z, the class [s]d ∈
Z/d depends only on the residue class [s]n but not on the integer s itself. In other
words, we need to prove the following claim:

Claim 1: If s1 and s2 are two integers such that [s1]n = [s2]n, then [s1]d =
[s2]d.

[Proof of Claim 1: Let s1 and s2 be two integers such that [s1]n = [s2]n.
Proposition 3.4.5 (b) (applied to a = s1 and b = s2) shows that we have [s1]n =

[s2]n if and only if s1 ≡ s2 mod n. Thus, we have s1 ≡ s2 mod n (since [s1]n = [s2]n).
Hence, Proposition 2.3.4 (e) (applied to s1, s2 and d instead of a, b and m) yields
s1 ≡ s2 mod d (since d | n).

But Proposition 3.4.5 (b) (applied to d, s1 and s2 instead of n, a and b) shows that
we have [s1]d = [s2]d if and only if s1 ≡ s2 mod d. Thus, we have [s1]d = [s2]d (since
s1 ≡ s2 mod d). This proves Claim 1.]

Having proven Claim 1, we can now conclude that the map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d

is well-defined. (This can be regarded as a consequence of applying Theorem
3.4.9 to Z, Z/d, ≡

n
and [s]d instead of S, T, ∼ and F (s). The Claim 1 that we

proved above guarantees that Assumption 1 of Theorem 3.4.9 is satisfied.) Hence,
Proposition 3.4.10 is proven.

The next exercise is unrelated to Z/n, but has been placed in this section because
it relies on the same sort of “well-definedness” argument that we have seen in our
proofs above:

Exercise 3.4.1. Fix a prime p. For each nonzero rational number r, define an
integer wp (r) (called the extended p-adic valuation of r) as follows: We write r
in the form r = a/b for two nonzero integers a and b, and we set wp (r) =
vp (a)− vp (b). (It also makes sense to set wp (0) = ∞, but we shall not concern
ourselves with this border case in this exercise.)

(a) Prove that this is well-defined – i.e., that wp (r) does not depend on the
precise choice of a and b satisfying r = a/b.

(b) Prove that wp (n) = vp (n) for each nonzero integer n.
(c) Prove that wp (ab) = wp (a) + wp (b) for any two nonzero rational numbers

a and b.
(d) Prove that wp (a + b) ≥ min

{
wp (a) , wp (b)

}
for any two nonzero rational

numbers a and b if a + b 6= 0.

Exercise 3.4.2. Let r be a nonzero rational number. In Exercise 3.4.1, we have
defined an integer wp (r) for each prime p. Prove the following:

(a) All but finitely many primes p satisfy wp (r) = 0.
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(b) We have |r| = ∏
p prime

pwp(r) (and in particular, the product ∏
p prime

pwp(r) is

well-defined, i.e., has only finitely many factors different from 1).
(c) We have r ∈ Z if and only if each prime p satisfies wp (r) ≥ 0.
(d) We have the logical equivalence(

there exists a k ∈N satisfying mkr ∈ Z
)

⇐⇒
(
every prime p satisfying wp (r) < 0 satisfies p | m

)
.

Note that Exercise 3.4.2 (b) can be regarded as a canonical factorization for ra-
tional numbers. (Unlike the canonical factorization for integers, it allows negative
exponents on the primes.)

3.4.5. Addition, subtraction and multiplication in Z/n

Let us recall the concept of a binary operation (defined in Definition 1.6.1). We
shall now define several such operations on the set Z/n 107:

Definition 3.4.12. (a) We define a binary operation + on Z/n (called addition) by
setting

[a]n + [b]n = [a + b]n for any integers a and b.

(In other words, we define a binary operation + on Z/n as follows: For any
α, β ∈ Z/n, we let α + β = [a + b]n, where a and b are two integers satisfying
α = [a]n and β = [b]n.)

(b) We define a binary operation − on Z/n (called subtraction) by setting

[a]n − [b]n = [a− b]n for any integers a and b.

(c) We define a binary operation · on Z/n (called multiplication) by setting

[a]n · [b]n = [a · b]n for any integers a and b.

We also write [a]n [b]n for [a]n · [b]n.

Theorem 3.4.13. Everything defined in Definition 3.4.12 is well-defined.

Proof of Theorem 3.4.13. (a) Let us first prove that the binary operation + in Defini-
tion 3.4.12 (a) is well-defined.

Indeed, here we are in the same situation in which we were when defining the
map R in the proof of Theorem 3.4.4: We are trying to define a map (in the current
case, the binary operation +, which should be a map from (Z/n)× (Z/n) to Z/n)
by specifying how it acts on inputs of the form [a]n, but our definition refers to the

107We will check afterwards that these operations are indeed well-defined.
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integer a. (Actually, it is a little bit more complicated: We have two inputs [a]n and
[b]n and thus two integers a and b. But the problem we are facing is the same.)
We want to prove that this map is well-defined. This requires checking that the
output (that is, [a + b]n) depends only on the two classes [a]n and [b]n, but not on
the integers a and b.

So we have to prove the following:

Claim 1: Let a1 and a2 be two integers such that [a1]n = [a2]n. Let b1 and
b2 be two integers such that [b1]n = [b2]n. Then,

[a1 + b1]n = [a2 + b2]n .

[Proof of Claim 1: Proposition 3.4.5 (b) (applied to a1 and a2 instead of a and b)
shows that we have [a1]n = [a2]n if and only if a1 ≡ a2 mod n. Thus, we have
a1 ≡ a2 mod n (since [a1]n = [a2]n). Similarly, b1 ≡ b2 mod n (since [b1]n = [b2]n).
Adding these two congruences together, we obtain a1 + b1 ≡ a2 + b2 mod n.

But Proposition 3.4.5 (b) (applied to a1 + b1 and a2 + b2 instead of a and b) shows
that we have [a1 + b1]n = [a2 + b2]n if and only if a1 + b1 ≡ a2 + b2 mod n. Thus, we
have [a1 + b1]n = [a2 + b2]n (since a1 + b1 ≡ a2 + b2 mod n). This proves Claim 1.]

Claim 1 shows that in Definition 3.4.12 (a), the residue class [a + b]n depends
only on the two classes [a]n and [b]n, but not on the integers a and b. Thus, the
binary operation + in Definition 3.4.12 (a) is indeed well-defined.

(b) The binary operation − in Definition 3.4.12 (b) is well-defined. This can be
proven in the same way as we just proved that the binary operation + in Definition
3.4.12 (a) is well-defined; the only difference is that we now have to subtract the
congruences a1 ≡ a2 mod n and b1 ≡ b2 mod n instead of adding them together.

(c) The binary operation · in Definition 3.4.12 (c) is well-defined. This can be
proven in the same way as we just proved that the binary operation + in Definition
3.4.12 (a) is well-defined; the only difference is that we now have to multiply the
congruences a1 ≡ a2 mod n and b1 ≡ b2 mod n instead of adding them together.

Thus, we have proven that all three operations +, − and · in Definition 3.4.12 are
well-defined. This proves Theorem 3.4.13.

Recall that Z/n is a finite set (of size n) whenever n is a positive integer. Hence,
for each given positive integer n, we can tabulate all the values of the operations
+, − and ·; the resulting tables are called addition tables, subtraction tables and multi-
plication tables (like in high school, except that we are working with residue classes
now).

Example 3.4.14. (a) If n = 3, then the addition, subtraction and multiplication
tables for Z/n = Z/3 are

+ [0]3 [1]3 [2]3

[0]3 [0]3 [1]3 [2]3
[1]3 [1]3 [2]3 [0]3
[2]3 [2]3 [0]3 [1]3

,

− [0]3 [1]3 [2]3

[0]3 [0]3 [2]3 [1]3
[1]3 [1]3 [0]3 [2]3
[2]3 [2]3 [1]3 [0]3

,

· [0]3 [1]3 [2]3

[0]3 [0]3 [0]3 [0]3
[1]3 [0]3 [1]3 [2]3
[2]3 [0]3 [2]3 [1]3

.
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(Here, the entry in the row corresponding to α and the column corresponding to
β is α + β, α− β and α · β, respectively.)

(b) If n = 2, then the addition, subtraction and multiplication tables for Z/n =
Z/2 are

+ [0]2 [1]2

[0]2 [0]2 [1]2
[1]2 [1]2 [0]2

,

− [0]2 [1]2

[0]2 [0]2 [1]2
[1]2 [1]2 [0]2

,

· [0]2 [1]2

[0]2 [0]2 [0]2
[1]2 [0]2 [1]2

.

(In particular, the addition table is the same as the subtraction table, because any
α, β ∈ Z/2 satisfy α + β = α− β. This follows from Exercise 2.3.1.)

Remark 3.4.15. We cannot define a division operation on Z/n by setting

[a]n / [b]n := [a/b]n for any integers a and b.

Indeed, leaving aside the issues that b could be 0 or a/b could be non-integer,
this would still not be well-defined, because the class [a/b]n depends not just on
[a]n and [b]n but also on the concrete choices of a and b. For example, for n = 4,
this ostensible “division operation” would have to satisfy

“ [6]4 / [2]4 ” = [6/2]4 = [3]4

and
“ [2]4 / [2]4 ” = [2/2]4 = [1]4 ,

but this is impossible (since [6]4 = [2]4 but [3]4 6= [1]4).
For similar reasons, we cannot define ([a]n)

[b]n .

For the outputs of our binary operations +, − and · on Z/n, we shall use the
same terminology as with integers:

Definition 3.4.16. (a) If α and β are two elements of Z/n, then we shall refer to
α + β as the sum of α and β.

(b) If α and β are two elements of Z/n, then we shall refer to α − β as the
difference of α and β.

(c) If α and β are two elements of Z/n, then we shall refer to α · β (also known
as αβ) as the product of α and β.

(d) If α is an element of Z/n, then the difference [0]n − α shall be denoted by
−α.

Caution: While the remainder i%n and the residue class [i]n encode the same
information about an integer i (for a fixed positive integer n), they are not the same
thing! For example, any two integers u and v satisfy [u]n + [v]n = [u + v]n but don’t
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always satisfy u%n + v%n = (u + v)%n 108. Thus, it is important to distinguish
between i%n and [i]n.

Remark 3.4.17. We can view the residue classes modulo 24 (that is, the elements
of Z/24) as the hours of the day. For example, the time “2 AM” can be viewed
as the residue class [2]24, whereas the time “3 PM” can be viewed as the residue
class [15]24. From this point of view, addition of residue classes is a rather famil-
iar operation: For example, the statement that “10 hours from 3 PM is 1 AM” is
saying [15]24 + [10]24 = [1]24.

3.4.6. Scaling by r ∈ Z

Let us define another operation – not binary this time – on Z/n:

Definition 3.4.18. Fix r ∈ Z.
For any α ∈ Z/n, we define a residue class rα ∈ Z/n by setting

(r [a]n = [ra]n for any a ∈ Z) .

(In other words, for any α ∈ Z/n, we let rα = [ra]n, where a is an integer
satisfying α = [a]n.) This is well-defined, because of Proposition 3.4.19 (a) below.

We also write r · [a]n for r [a]n.

Proposition 3.4.19. Fix r ∈ Z.
(a) For any α ∈ Z/n, the residue class rα ∈ Z/n in Definition 3.4.18 is well-

defined.
(b) For any α ∈ Z/n, we have rα = [r]n · α.

Proof of Proposition 3.4.19. (a) We are again in the same situation in which we were
when defining the map R in the proof of Theorem 3.4.4: We are trying to define a
map (in this case, the map

Z/n→ Z/n,
α 7→ rα

) by specifying how it acts on inputs of the form [a]n, but our definition refers to the
integer a. We want to prove that this map is well-defined. This requires checking
that the output (that is, [ra]n) depends only on the class [a]n, but not on the integer
a. So we have to prove the following:

108Here is a specific example:

[2]5 + [3]5 = [2 + 3]5 = [5]5 = [0]5 , but
2%5 + 3%5 = 2 + 3 = 5 6= 0%5;

Exercise 2.6.3 (a) addresses how u%n + v%n differs from (u + v)%n.
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Claim 1: Let a1 and a2 be two integers such that [a1]n = [a2]n. Then,
[ra1]n = [ra2]n.

[Proof of Claim 1: Proposition 3.4.5 (b) (applied to a1 and a2 instead of a and b)
shows that we have [a1]n = [a2]n if and only if a1 ≡ a2 mod n. Thus, we have
a1 ≡ a2 mod n (since [a1]n = [a2]n). On the other hand, we have the (obvious)
congruence r ≡ r mod n. Multiplying this congruence by the congruence a1 ≡
a2 mod n, we obtain ra1 ≡ ra2 mod n.

But Proposition 3.4.5 (b) (applied to ra1 and ra2 instead of a and b) shows that
we have [ra1]n = [ra2]n if and only if ra1 ≡ ra2 mod n. Thus, we have [ra1]n = [ra2]n
(since ra1 ≡ ra2 mod n). This proves Claim 1.]

Claim 1 shows that in Definition 3.4.18, the residue class [ra]n depends only on
the class [a]n, but not on the integer a. Thus, the residue class rα is indeed well-
defined for each α ∈ Z/n. This proves Proposition 3.4.19 (a).

(b) Let α ∈ Z/n. Proposition 3.4.5 (a) shows that each element of Z/n can be
written in the form [s]n for some integer s. Thus, α ∈ Z/n can be written in this
form. In other words, α = [a]n for some integer a. Consider this a. Comparing

r α︸︷︷︸
=[a]n

= r [a]n = [ra]n (by Definition 3.4.18)

with

[r]n · α︸︷︷︸
=[a]n

= [r]n · [a]n = [r · a]n (by Definition 3.4.12 (c))

= [ra]n ,

we obtain rα = [r]n · α. This proves Proposition 3.4.19 (b).

For a fixed r ∈ Z, we shall refer to the map

Z/n→ Z/n,
α 7→ rα

as scaling by r. This map is actually the same as multiplication by the residue class
[r]n (by Proposition 3.4.19 (b)). So why did we define it “from scratch” rather
than piggybacking on the already established definition of multiplication in Z/n
(Definition 3.4.12 (c))? The reason is that scaling operations appear much more fre-
quently in algebra than multiplication operations. (For example, every vector space
has a scaling operation, but usually there is no way of multiplying two vectors.)
Thus, it is useful to have seen a scaling operation constructed independently.

3.4.7. k-th powers for k ∈N

Similarly to Definition 3.4.18, we can define what it means to take the k-th power
of a residue class in Z/n, when k is a nonnegative integer.
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Definition 3.4.20. Fix k ∈N.
For any α ∈ Z/n, we define a residue class αk ∈ Z/n by setting(

([a]n)
k =

[
ak
]

n
for any a ∈ Z

)
.

(In other words, for any α ∈ Z/n, we let αk =
[
ak]

n, where a is an integer
satisfying α = [a]n.) This is well-defined, because of Proposition 3.4.21 below.

If α ∈ Z/n, then we shall refer to αk as the k-th power of α.

Proposition 3.4.21. Fix k ∈ N. For any α ∈ Z/n, the residue class αk ∈ Z/n in
Definition 3.4.20 is well-defined.

Proof of Proposition 3.4.21. This proof is analogous to the above proof of Proposition
3.4.19 (a); but instead of multiplying the two congruences r ≡ r mod n and a1 ≡
a2 mod n, we now need to take the k-th power of the congruence a1 ≡ a2 mod n.
(Exercise 2.3.4 allows us to do that.)

3.4.8. Rules and properties for the operations

Convention 3.4.22. We shall follow the usual “PEMDAS” rules for the order
of operations when interpreting expressions involving the operations defined
in Definition 3.4.12, Definition 3.4.18 and Definition 3.4.20109. Thus, for exam-
ple, the expression “α · β + γ · δ” means (α · β) + (γ · δ) and not α · (β + γ) · δ.
Likewise, the expression “αβk + rγ” (with r ∈ Z) should be understood as
“
(
α
(

βk))+ (rγ)” and not in any other way.

We shall now study some properties of the many “arithmetical” operations we have
defined on Z/n.

Theorem 3.4.23. The following rules for addition, subtraction, multiplication and
scaling in Z/n hold:

(a) We have α + β = β + α for any α, β ∈ Z/n.
(b) We have α + (β + γ) = (α + β) + γ for any α, β, γ ∈ Z/n.
(c) We have α + [0]n = [0]n + α = α for any α ∈ Z/n.
(d) We have α · [1]n = [1]n · α = α for any α ∈ Z/n.
(e) We have α · β = β · α for any α, β ∈ Z/n.
(f) We have α · (β · γ) = (α · β) · γ for any α, β, γ ∈ Z/n.
(g) We have α · (β + γ) = αβ + αγ and (α + β) · γ = αγ + βγ for any α, β, γ ∈

Z/n.
(h) We have α · [0]n = [0]n · α = [0]n for any α ∈ Z/n.
(i) If α, β, γ ∈ Z/n, then we have the equivalence (α− β = γ) ⇐⇒

(α = β + γ).
(j) We have r (α + β) = rα + rβ for any r ∈ Z and α, β ∈ Z/n.
(k) We have (r + s) α = rα + sα for any r, s ∈ Z and α ∈ Z/n.

https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Order_of_operations
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(l) We have r (sα) = (rs) α for any r, s ∈ Z and α ∈ Z/n.
(m) We have r (αβ) = (rα) β = α (rβ) for any r ∈ Z and α, β ∈ Z/n.
(n) We have − (rα) = (−r) α = r (−α) for any r ∈ Z and α ∈ Z/n.
(o) We have 1α = α for any α ∈ Z/n.
(p) We have (−1) α = −α for any α ∈ Z/n.
(q) We have − (α + β) = (−α) + (−β) for any α, β ∈ Z/n.
(r) We have − [0]n = [0]n.
(s) We have − (−α) = α for any α ∈ Z/n.
(t) We have − (αβ) = (−α) β = α (−β) for any α, β ∈ Z/n.
(u) We have α− β− γ = α− (β + γ) for any α, β, γ ∈ Z/n. (Here and in the

following, “α− β− γ” should be read as “(α− β)− γ”.)

These properties should all look familiar, as they mirror the classical properties
of the arithmetic operations on integers, rational numbers and real numbers (with
the caveat that the residue classes [0]n and [1]n take on the roles of the numbers 0
and 1). For example, Theorem 3.4.23 (g) corresponds to the laws of distributivity
for numbers. Parts (a), (b), (c), (i), (j), (k), (l) and (o) of Theorem 3.4.23 furthermore
are reminiscent of the axioms for a vector space (with the caveat that scaling by r is
only defined for integers r here, so Z/n is not precisely a vector space).

Proof of Theorem 3.4.23. Let us first prove Theorem 3.4.23 (f):
(f) Let α, β, γ ∈ Z/n. Proposition 3.4.5 (a) shows that each element of Z/n can

be written in the form [s]n for some integer s. Thus, in particular, the element α can
be written in this form. In other words, there exists an integer a such that α = [a]n.
Similarly, there exists an integer b such that β = [b]n. Similarly, there exists an
integer c such that γ = [c]n. Consider these integers a, b, c.

Now,

α︸︷︷︸
=[a]n

·

 β︸︷︷︸
=[b]n

· γ︸︷︷︸
=[c]n

 = [a]n · ([b]n · [c]n)︸ ︷︷ ︸
=[b·c]n

(by Definition 3.4.12 (c))

= [a]n · [b · c]n

= [a · (b · c)]n (120)

(by Definition 3.4.12 (c)) and α︸︷︷︸
=[a]n

· β︸︷︷︸
=[b]n

 · γ︸︷︷︸
=[c]n

= ([a]n · [b]n)︸ ︷︷ ︸
=[a·b]n

(by Definition 3.4.12 (c))

· [c]n = [a · b]n · [c]n

= [(a · b) · c]n (121)

(by Definition 3.4.12 (c)).
But it is well-known that multiplication of integers is associative. Thus, a ·

(b · c) = (a · b) · c. Hence, [a · (b · c)]n = [(a · b) · c]n. In other words, the right
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hand sides of the equalities (120) and (121) are equal. Hence, the left hand sides
of these equalities must also be equal. In other words, α · (β · γ) = (α · β) · γ. This
proves Theorem 3.4.23 (f).

The idea of the above proof of Theorem 3.4.23 (f) was simple: We fixed a rep-
resentative for each residue class involved (namely, we fixed representatives a, b, c
for the residue classes α, β, γ), and rewrote each of the two sides of the alleged
equality (which, in our case, was α · (β · γ) = (α · β) · γ) in terms of these repre-
sentatives (obtaining [a · (b · c)]n for the left hand side, and [(a · b) · c]n for the right
hand side). Thus, the equality that we had to prove followed from the analogous
equality for integers (in our case, a · (b · c) = (a · b) · c), which was well-known. In
short, we have realized that the equality α · (β · γ) = (α · β) · γ for α, β, γ ∈ Z/n is
“inherited from Z” (in the sense that it follows straightforwardly from the corre-
sponding property a · (b · c) = (a · b) · c of integers a, b, c ∈ Z). This strategy proves
all the other parts of Theorem 3.4.23 in the same way, except for part (i).110 Part
(i) does not lend itself to such a proof, since it claims not an equality but rather an
equivalence between two equalities. So let us prove part (i) separately:

(i) Let α, β, γ ∈ Z/n. Proposition 3.4.5 (a) shows that each element of Z/n can
be written in the form [s]n for some integer s. Thus, in particular, the element α can
be written in this form. In other words, there exists an integer a such that α = [a]n.
Similarly, there exists an integer b such that β = [b]n. Similarly, there exists an
integer c such that γ = [c]n. Consider these integers a, b, c.

We have α︸︷︷︸
=[a]n

− β︸︷︷︸
=[b]n

= [a]n− [b]n = [a− b]n (by Definition 3.4.12 (b)) and β︸︷︷︸
=[b]n

+ γ︸︷︷︸
=[c]n

=

[b]n + [c]n = [b + c]n (by Definition 3.4.12 (a)). Now, we have the following chain of
logical equivalences:

(α− β = γ) ⇐⇒ ([a− b]n = [c]n) (since α− β = [a− b]n and γ = [c]n)
⇐⇒ (a− b ≡ c mod n) (122)

(since Proposition 3.4.5 (b) (applied to a− b and c instead of a and b) shows that
we have [a− b]n = [c]n if and only if a− b ≡ c mod n). Also, we have the following
chain of logical equivalences:

(α = β + γ) ⇐⇒ ([a]n = [b + c]n) (since α = [a]n and β + γ = [b + c]n)
⇐⇒ (a ≡ b + c mod n) (123)

(since Proposition 3.4.5 (b) (applied to b + c instead of b) shows that we have [a]n =
[b + c]n if and only if a ≡ b + c mod n). Finally, Exercise 2.3.8 shows that we have
a − b ≡ c mod n if and only if a ≡ b + c mod n; thus, we have the equivalence
(a− b ≡ c mod n) ⇐⇒ (a ≡ b + c mod n).

110The reason why this works is that the operations +,−, · on Z/n as well as scaling by integers
are defined by picking a representative of each residue class and doing the analogous operation
with the representatives (and then taking the residue class again).
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Now, we have the following chain of logical equivalences:

(α− β = γ) ⇐⇒ (a− b ≡ c mod n) (by (122))
⇐⇒ (a ≡ b + c mod n) ⇐⇒ (α = β + γ) (by (123)) .

This proves Theorem 3.4.23 (i).

Recall the concept of a finite sum of integers (i.e., a sum of the form ∑
i∈I

ai, where

I is a finite set and ai is an integer for each i ∈ I), and the analogous concept
of a finite product of integers (i.e., a product of the form ∏

i∈I
ai). These concepts

are defined recursively111 and satisfy various rules112. See [Grinbe15, §1.4] for a
comprehensive list of these rules and [Grinbe15, §2.14] for their proofs.

Definition 3.4.24. In the same vein, we define the concept of a finite sum of
residue classes in Z/n (i.e., a sum of the form ∑

i∈I
αi, where I is a finite set and

αi ∈ Z/n for each i ∈ I), and the analogous concept of a finite product of
residue classes in Z/n (i.e., a product of the form ∏

i∈I
αi, where I is a finite set

and αi ∈ Z/n for each i ∈ I).
More precisely, the concept of a finite sum ∑

i∈I
αi (with I being a finite set, and

with αi ∈ Z/n for each i ∈ I) is defined recursively as follows:

• If the set I is empty (that is, |I| = 0), then ∑
i∈I

αi is defined to be [0]n ∈ Z/n

(and called an empty sum).

• Otherwise, we pick an arbitrary element t ∈ I, and set

∑
i∈I

αi = αt + ∑
i∈I\{t}

αi.

(The sum ∑
i∈I\{t}

αi on the right hand side is a sum over a smaller set than I,

whence we can assume it to already be defined in this recursive definition.)

This definition is well-defined (i.e., the choice of element t does not influence
the final value of the sum), by Proposition 3.4.25 (a) below.

The concept of a finite product ∏
i∈I

αi is defined similarly, except that we use

multiplication instead of addition (and we define the empty product to be [1]n
instead of [0]n).

111See [Grinbe15, §1.4.1 and §1.4.3] for their definitions, and [Grinbe15, §2.14] for a proof that these
are well-defined.

112such as ∑
i∈I

(ai + bi) = ∑
i∈I

ai + ∑
i∈I

bi (where ai and bi are two integers for each i ∈ I) or ∑
i∈I

ai =

∑
i∈J

ai + ∑
i∈I\J

ai (where J is a subset of I)
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We will use the usual shorthands for special kinds of finite sums and products.
For example, if I is an interval {p, p + 1, . . . , q} of integers (and if αi ∈ Z/n for each

i ∈ I), then the sum ∑
i∈I

αi will also be denoted by
q
∑

i=p
αi or αp + αp+1 + · · · + αq.

Likewise for products. Thus, for example, α1 + α2 + · · · + αk and α1α2 · · · αk are
well-defined whenever α1, α2, . . . , αk ∈ Z/n.

Proposition 3.4.25. (a) Definition 3.4.24 is well-defined.
(b) Finite sums ( ∑

i∈I
αi) and finite products (∏

i∈I
αi) of elements αi ∈ Z/n satisfy

the same rules that finite sums and finite products of integers satisfy.
(c) If a1, a2, . . . , ak are k integers, then

[a1]n + [a2]n + · · ·+ [ak]n = [a1 + a2 + · · ·+ ak]n and
[a1]n · [a2]n · · · · · [ak]n = [a1a2 · · · ak]n .

Proof of Proposition 3.4.25. (a) In [Grinbe15, Theorem 2.118 (a)], it is proven that fi-
nite sums of integers are well-defined. The same argument (but relying on Theorem
3.4.23 instead of the usual rules of commutativity, associativity etc. for integers)
shows that finite sums of elements αi ∈ Z/n are well-defined. The analogous fact
for products is proven in the same way, except that we need to replace [0]n by [1]n
and properties of addition by corresponding properties of multiplication.

(b) The proofs of the properties of finite sums and finite products of elements of
Z/n are identical to the analogous proofs for integers, but (again) rely on Theorem
3.4.23 instead of the usual rules of commutativity, associativity etc. for integers.

(c) This can be proven by a straightforward induction on k.

Also, the standard rules for exponents apply to residue classes:

Theorem 3.4.26. (a) We have α0 = [1]n for any α ∈ Z/n.
(b) We have α1 = α for any α ∈ Z/n.
(c) We have αk = αα · · · α︸ ︷︷ ︸

k times

for any α ∈ Z/n and k ∈N.

(d) We have αu+v = αuαv for any α ∈ Z/n and any u, v ∈N.
(e) We have (αβ)k = αkβk for any α, β ∈ Z/n and k ∈N.
(f) We have (αu)v = αuv for any α ∈ Z/n and any u, v ∈N.

Proof of Theorem 3.4.26. Each part of Theorem 3.4.26 follows from the analogous
property of integers, in the same way as we derived Theorem 3.4.23 (f) from the
associativity of multiplication for integers. (Note that Proposition 3.4.25 (c) has to
be used in proving Theorem 3.4.26 (c).)

Also, the binomial formula holds for residue classes:
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Theorem 3.4.27. Let α, β ∈ Z/n and m ∈N. Then,

(α + β)m =
m

∑
k=0

(
m
k

)
αkβm−k.

Proof. This follows from Theorem 2.17.13, in the same way as we derived Theorem
3.4.23 (f) from the associativity of multiplication for integers.

3.5. Modular inverses revisited

Convention 3.5.1. For the whole Section 3.5, we fix a positive integer n.

In this section, we will see how modular inverses become actual inverses when we
consider residue classes instead of numbers.

Recall that if a is an integer, then an inverse of a in Z means an integer a′ ∈ Z

satisfying aa′ = 1. The only two integers that have an inverse in Z are 1 and −1.
The integer 1 has only one inverse (namely, itself). The integer −1 has only one
inverse (namely, itself). Thus, “inverse in Z” is not a very interesting notion.

Let us now define an analogous notion for Z/n:

Definition 3.5.2. Let α ∈ Z/n. An inverse of α means an α′ ∈ Z/n such that
α · α′ = [1]n.

For example, [2]5 is an inverse of [3]5 for n = 5, since [3]5 · [2]5 = [3 · 2]5 = [6]5 =
[1]5.

It turns out that inverses of residue classes α ∈ Z/n exist much more frequently
than inverses of integers in Z:

Proposition 3.5.3. Let a ∈ Z.
(a) If [a]n ∈ Z/n has an inverse, then a ⊥ n.
(b) If a ⊥ n, then [a]n ∈ Z/n has a unique inverse.

As we will see in the proof of this proposition, the inverse of a residue class [a]n
is simply the residue class [a′]n of a modular inverse a′ of a modulo n; thus, the
existence part of Proposition 3.5.3 (b) (i.e., the claim that [a]n has an inverse) is just
Theorem 2.10.8 (b) in disguise. However, before we start proving Proposition 3.5.3,
let us state the uniqueness part (i.e., the claim that the inverse of [a]n is unique) as
a separate fact:

Proposition 3.5.4. Let α ∈ Z/n. Then, α has at most one inverse.

Proof of Proposition 3.5.4. Let β and γ be two inverses of α. We shall show that
β = γ.
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We have α · β = [1]n (since β is an inverse of α) and α · γ = [1]n (since γ is an
inverse of α). Theorem 3.4.23 (e) (applied to γ and α instead of α and β) yields
γ · α = α · γ = [1]n.

Theorem 3.4.23 (d) (applied to γ instead of α) yields γ · [1]n = [1]n · γ = γ. Also,
Theorem 3.4.23 (d) (applied to β instead of α) yields β · [1]n = [1]n · β = β.

Theorem 3.4.23 (f) (applied to γ, α and β instead of α, β and γ) shows that
γ · (α · β) = (γ · α) · β. Now, comparing

γ ·

α · β︸︷︷︸
=[1]n

 = γ · [1]n = γ

with

γ · (α · β) =

γ · α︸︷︷︸
=[1]n

 · β = [1]n · β = β,

we obtain β = γ.
Now, forget that we fixed β and γ. We thus have proven that if β and γ are two

inverses of α, then β = γ. In other words, any two inverses of α must be equal. In
other words, α has at most one inverse. This proves Proposition 3.5.4.

Note that in the above proof of Proposition 3.5.4, we have never had to pick a
representative of the residue class α (nor of any other class). This is because this
proof is actually an instance of a much more general argument. And indeed, you
might recall that a very similar argument is used to prove the classical facts that

• a map has at most one inverse;

• a matrix has at most one inverse.

To be more precise, the proofs of these two facts differ slightly from our proof of
Proposition 3.5.4, because the definitions of an inverse of a map and of an inverse
of a matrix differ from Definition 3.5.2. Indeed, in Definition 3.5.2, we have only
required the inverse α′ of α ∈ Z/n to satisfy the single equation α · α′ = [1]n,
whereas an inverse g of a map f is required to satisfy the two equations f ◦ g = id
and g ◦ f = id (and likewise, an inverse B of a matrix A is required to satisfy
the two equations AB = I and BA = I for the appropriate identity matrices I).
But this difference is not substantial: The multiplication of residue classes in Z/n
is commutative (by Theorem 3.4.23 (e)) (unlike the composition of maps or the
multiplication of matrices); thus, the single equation α · α′ = [1]n automatically
implies α′ · α = [1]n. Hence, we could have as well required α′ to satisfy both
equations α · α′ = [1]n and α′ · α = [1]n in Definition 3.5.2, and nothing would
change.

Let us now prove Proposition 3.5.3:
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Proof of Proposition 3.5.3. (a) Assume that [a]n ∈ Z/n has an inverse. Let β be this
inverse. Write the residue class β ∈ Z/n in the form [b]n for some integer b. Now,
β is an inverse of [a]n. In other words, [a]n · β = [1]n (by the definition of “inverse”).
But [a]n · β︸︷︷︸

=[b]n

= [a]n · [b]n = [a · b]n (by the definition of multiplication on Z/n).

Comparing this with [a]n · β = [1]n, we obtain [a · b]n = [1]n. By Proposition 3.4.5
(b) (applied to a · b and 1 instead of a and b), this yields a · b ≡ 1 mod n. Hence,
there exists an a′ ∈ Z such that aa′ ≡ 1 mod n (namely, a′ = b). Thus, Theorem
2.10.8 (c) yields a ⊥ n. This proves Proposition 3.5.3 (a).

(b) Assume that a ⊥ n. Hence, Theorem 2.10.8 (b) yields that there exists an
a′ ∈ Z such that aa′ ≡ 1 mod n. Consider this a′. From aa′ ≡ 1 mod n, we obtain
[aa′]n = [1]n (by Proposition 3.4.5 (b), applied to aa′ and 1 instead of a and b). But
the definition of multiplication on Z/n yields [a]n · [a′]n = [a · a′]n = [aa′]n = [1]n.
In other words, [a′]n is an inverse of [a]n. Hence, [a]n has at least one inverse
(namely, [a′]n).

But Proposition 3.5.4 (applied to α = [a]n) shows that [a]n has at most one inverse.
Thus, we conclude that [a]n has a unique inverse (since we already know that

[a]n has at least one inverse and has at most one inverse). This proves Proposition
3.5.3.

Corollary 3.5.5. Let Un be the set of all residue classes α ∈ Z/n that have an
inverse. Then:

(a) For an integer a, we have the logical equivalence ([a]n ∈ Un)⇐⇒ (a ⊥ n).
(b) We have |Un| = φ (n).

Proof of Corollary 3.5.5. (a) Let a be an integer. Proposition 3.5.3 (a) yields the logical
implication

([a]n has an inverse) =⇒ (a ⊥ n) . (124)

But Proposition 3.5.3 (b) yields the logical implication

(a ⊥ n) =⇒ ([a]n has a unique inverse) =⇒ ([a]n has an inverse) . (125)

Combining the two implications (124) and (125), we obtain the equivalence

([a]n has an inverse) ⇐⇒ (a ⊥ n) . (126)

But Un was defined as the set of all residue classes α ∈ Z/n that have an inverse.
Hence, we have the following chain of equivalences:

([a]n ∈ Un) ⇐⇒ ([a]n has an inverse) ⇐⇒ (a ⊥ n)

(by (126)). This proves Corollary 3.5.5 (a).
(b) Theorem 3.4.4 says that the set Z/n has exactly n elements, namely

[0]n , [1]n , . . . , [n− 1]n (and in particular, these n elements are all distinct). Thus,
the map

P : {0, 1, . . . , n− 1} → Z/n,
s 7→ [s]n
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is bijective113. Consider this map P. For each integer a, we have the logical equiva-
lence  P (a)︸ ︷︷ ︸

=[a]n
(by the definition of P)

∈ Un

 ⇐⇒ ([a]n ∈ Un) ⇐⇒ (a ⊥ n) (127)

(by Corollary 3.5.5 (a)).
But the map P is bijective. Hence, we can substitute P (a) for α when counting

the number of α ∈ Un. We thus obtain

(the number of α ∈ Un)

= (the number of a ∈ {0, 1, . . . , n− 1} such that P (a) ∈ Un)

= (the number of a ∈ {0, 1, . . . , n− 1} such that a ⊥ n)(
because for each a ∈ {0, 1, . . . , n− 1} , we have the logical

equivalence (P (a) ∈ Un) ⇐⇒ (a ⊥ n) (by (127))

)
= |{a ∈ {0, 1, . . . , n− 1} | a ⊥ n}|
= |{i ∈ {0, 1, . . . , n− 1} | i ⊥ n}| (here, we have renamed the index a as i)
= φ (n)

(by Lemma 2.15.4). This proves Corollary 3.5.5 (b).

Definition 3.5.6. Let α ∈ Z/n be a residue class that has an inverse. Then,
Proposition 3.5.4 shows that α has a unique inverse. This inverse can thus be
called “the inverse” of α; it will be denoted by α−1.

For example, ([3]5)
−1 = [2]5 for n = 5, since [2]5 is an inverse (and thus the

inverse) of [3]5.
Let us state a couple properties of inverses in Z/n:

Exercise 3.5.1. (a) Let α ∈ Z/n be a residue class that has an inverse. Prove that
its inverse α−1 has an inverse as well, and this inverse is

(
α−1)−1

= α.
(b) Let α, β ∈ Z/n be two residue classes that have inverses. Prove that their

product αβ has an inverse as well, and this inverse is (αβ)−1 = α−1β−1.

The concept of inverses in Z/n lets us prove Theorem 2.15.7 (Wilson’s theorem)
again – or, rather, restate our previous proof of Theorem 2.15.7 in more natural
terms:

Second proof of Theorem 2.15.7 (sketched). Theorem 3.4.4 (applied to n = p) shows
that the set Z/p has exactly p elements, namely [0]p , [1]p , . . . , [p− 1]p. In particu-
lar, these elements [0]p , [1]p , . . . , [p− 1]p are distinct.

113We also have explicitly proven this fact during our proof of Theorem 3.4.4.
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If p = 2, then the claim of Theorem 2.15.7 is easy to check (as we have done
in our First proof above). Thus, we WLOG assume that p 6= 2 for the rest of this
proof. Thus, p − 1 6= 1; in other words, the numbers 1 and p − 1 are distinct.
But p is a prime; thus, p > 1, so that the elements 1 and p − 1 belong to the set
{0, 1, . . . , p− 1}. Thus, the two residue classes [1]p and [p− 1]p are distinct114.

Recall that
(p− 1)! = 1 · 2 · · · · · (p− 1) .

Thus,
[(p− 1)!]p = [1 · 2 · · · · · (p− 1)]p = [1]p · [2]p · · · · · [p− 1]p

(by Proposition 3.4.25 (c)).
Let Up be the set of all residue classes α ∈ Z/p that have an inverse. Then,

[0]p /∈ Up
115. On the other hand, the p− 1 residue classes [1]p , [2]p , . . . , [p− 1]p

all belong to Up
116. Combining these two sentences, we conclude that the p− 1

residue classes [1]p , [2]p , . . . , [p− 1]p are precisely the elements of Up (since the
set Z/p has exactly p elements, namely [0]p , [1]p , . . . , [p− 1]p). Thus, these p− 1
residue classes have inverses (because belonging to Up means having an inverse),
and their inverses in turn have inverses (by Exercise 3.5.1 (a)) and thus belong to
Up (because belonging to Up means having an inverse). Thus, the map

J : Up → Up,

α 7→ α−1

(sending each of the p − 1 residue classes [1]p , [2]p , . . . , [p− 1]p to its inverse) is

well-defined. Moreover, each α ∈ Up satisfies
(
α−1)−1

= α; in other words, each
α ∈ Up satisfies J (J (α)) = α. In other words, J ◦ J = id. Hence, the map J is inverse
to itself. In particular, this shows that J is invertible, i.e., bijective.

(Note that this map J is similar to the map J constructed back in our first proof of Theo-
rem 2.15.7 above, but unlike the latter, it acts on residue classes, not on actual numbers.)

114Proof. Recall that the elements [0]p , [1]p , . . . , [p− 1]p are distinct. In other words, if i and j are two
distinct elements of {0, 1, . . . , p− 1}, then [i]p 6= [j]p. We can apply this to i = 1 and j = p− 1,
since 1 and p− 1 are distinct. Thus, we obtain [1]p 6= [p− 1]p. In other words, the two residue
classes [1]p and [p− 1]p are distinct.

115Proof. We have p > 1; thus, we don’t have |p| = 1. But Exercise 2.10.1 (b) (applied to a = p)
shows that we have 0 ⊥ p if and only if |p| = 1. Thus, we don’t have 0 ⊥ p (since we don’t have
|p| = 1).

Corollary 3.5.5 (a) (applied to n = p and a = 0) shows that we have the logical equivalence(
[0]p ∈ Up

)
⇐⇒ (0 ⊥ p). Since we don’t have 0 ⊥ p, we thus conclude that we don’t have

[0]p ∈ Up. In other words, we have [0]p /∈ Up.
116Proof. We must show that [i]p ∈ Up for each i ∈ {1, 2, . . . , p− 1}.

So let i ∈ {1, 2, . . . , p− 1}. Then, Proposition 2.13.4 shows that i is coprime to p. In other
words, i ⊥ p.

But Corollary 3.5.5 (a) (applied to n = p and a = i) yields the equivalence
(
[i]p ∈ Up

)
⇐⇒

(i ⊥ p). Hence, we have [i]p ∈ Up (since i ⊥ p). Qed.
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Note that
[1]p · [2]p · · · · · [p− 1]p = ∏

α∈Up

α,

since the p− 1 residue classes [1]p , [2]p , . . . , [p− 1]p are precisely the elements of
Up (and are distinct).

Now, we shall complete the proof using the same “pairing” that we used in our
first proof of Theorem 2.15.7, except that we will now be pairing up residue classes
rather than numbers. Namely, we will use the map J to establish a pairing between
the factors of the product [1]p · [2]p · · · · · [p− 1]p = ∏

α∈Up

α (pairing up each factor α

with the factor J (α) = α−1), which will pair up almost all of them – more precisely,
all of them except for the very first and very last factors (since these two factors
would have to pair up with themselves)117. For example, if p = 11, then we have
the following table of values of J:

α [1]11 [2]11 [3]11 [4]11 [5]11 [6]11 [7]11 [8]11 [9]11 [10]11

J (α) [1]11 [6]11 [4]11 [3]11 [9]11 [2]11 [8]11 [7]11 [5]11 [10]11

(since, for example, J ([2]11) = ([2]11)
−1 = [6]11), and thus we pair up the factors of

117The reason why it is precisely these two factors that will not be paired up is the following:
Clearly, the factors [a]p that cannot be paired up are exactly the factors [a]p that satisfy

J
(
[a]p

)
= [a]p – i.e., the ones that are their own inverses. So we must prove that a residue

class [a]p with a ∈ {1, 2, . . . , p− 1} is its own inverse if and only if a is either 1 or p− 1. But this
follows from the following chain of equivalences:(

the residue class [a]p is its own inverse
)

⇐⇒
(
[a]p · [a]p = [1]p

)
⇐⇒

([
a2
]

p
= [1]p

) (
since [a]p · [a]p = [a · a]p =

[
a2
]

p

)
⇐⇒

(
a2 ≡ 1 mod p

)
(by Proposition 3.4.5 (b))

⇐⇒ (a ≡ 1 mod p or a ≡ −1 mod p) indeed, Exercise 2.13.12 yields the
implication

(
a2 ≡ 1 mod p

)
=⇒ (a ≡ 1 mod p or a ≡ −1 mod p) ;

but the converse implication is easy to check


⇐⇒

(
[a]p = [1]p or [a]p = [−1]p

)
(by Proposition 3.4.5 (b))

⇐⇒
(
[a]p = [1]p or [a]p = [p− 1]p

) (
since [−1]p = [p− 1]p (because − 1 ≡ p− 1 mod p)

)
⇐⇒ (a = 1 or a = p− 1)

(since the elements [0]p , [1]p , . . . , [p− 1]p are distinct).
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the product [1]p · [2]p · · · · · [p− 1]p as follows:

[1]p · [2]p · · · · · [p− 1]p
= [1]11 · [2]11 · [3]11 · [4]11 · [5]11 · [6]11 · [7]11 · [8]11 · [9]11 · [10]11
= [1]11 · ([2]11 · [6]11) · ([3]11 · [4]11)

· ([5]11 · [9]11) · ([7]11 · [8]11) · [10]11 . (128)

By the definition of the map J, each pair has the form (α, J (α)) =
(
α, α−1) for some

α ∈ Up, and thus the product of any two different factors paired up with each other
is [1]p (since αα−1 = [1]p). For example, if p = 11, then we have

[1]p · [2]p · · · · · [p− 1]p
= [1]11 · ([2]11 · [6]11)︸ ︷︷ ︸

=[1]11

· ([3]11 · [4]11)︸ ︷︷ ︸
=[1]11

· ([5]11 · [9]11)︸ ︷︷ ︸
=[1]11

· ([7]11 · [8]11)︸ ︷︷ ︸
=[1]11

· [10]11

= [1]11 · [10]11 .

Thus, any two different factors paired up with each other “neutralize” each other
when being multiplied. Hence, the product of all the p − 1 factors will reduce
to the product of the two factors that have not been paired up, which will be
[1]p · [p− 1]p = [p− 1]p. Since this product was [(p− 1)!]p, we thus obtain

[(p− 1)!]p = [p− 1]p . (129)

In other words, (p− 1)! ≡ p − 1 ≡ −1 mod p. Hence, Theorem 2.15.7 is proven
again.

Once again, if you like your proofs rigorous and formal, you may be wondering how
this “pairing up” argument can be formalized. Here is one way to do so: We proceed
similarly to how we formalized our first proof of Theorem 2.15.7 above, but with a minor
complication. We want to call an element α of Up

• small if α < J (α);

• medium if α = J (α);

• large if α > J (α).

However, in order for this definition to make sense, we need to define two relations < and
> on the set Z/p; otherwise, it is not clear what “α < J (α)” and “α > J (α)” should mean.
Fortunately, this is easy: For example, we can

• consider the bijection R : Z/p → {0, 1, . . . , p− 1} defined in Proposition 3.4.6 (a)
(applied to n = p);

• define the binary relation < on the set Z/p by setting

(α < β) ⇐⇒ (R (α) < R (β)) for any α, β ∈ Z/p;



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 241

• define the binary relation > on the set Z/p by setting

(α > β) ⇐⇒ (R (α) > R (β)) for any α, β ∈ Z/p.

The two relations we have just defined have the property that each α, β ∈ Z/p satisfy either
α < β or α = β or α > β but never two or more of these three statements simultaneously
(indeed, this follows easily from the fact that R is a bijection). Thus, each element of Up
is either small or medium or large (and there is no overlap between these three classes of
elements). Hence, the argument that we used to prove (72) in our first proof of Theorem
2.15.7118 can be adapted in order to prove [(p− 1)!]p = [−1]p, except that we have to use
residue classes in Up instead of elements of A. (We could have just as well used any other
bijection from Z/p to {0, 1, . . . , p− 1} instead of R here.) Of course, [(p− 1)!]p = [−1]p
immediately yields (p− 1)! ≡ −1 mod p (by an application of Proposition 3.4.5 (b)), and
thus the proof of Theorem 2.15.7 is complete.

3.6. The Chinese Remainder Theorem as a bijection between
residue classes

Definition 3.6.1. Let n be a positive integer. Let d be a positive divisor of n.
Then, define the map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d .

(This is well-defined, according to Proposition 3.4.10.)

See Example 3.4.11 (a) for what this map looks like.
We can now state another version of the “Chinese Remainder Theorem”, which

claims the existence of a certain bijection. We have already seen such a version
(Theorem 2.16.1), but that one claimed a bijection between two sets of remain-
ders, whereas the following version claims a bijection between two sets of residue
classes. Other than that, the two versions are rather similar.

Theorem 3.6.2. Let m and n be two coprime positive integers. Then, the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. It sends each [s]mn (with s ∈ Z) to the pair
([s]m , [s]n).

118viz., by splitting up the product into a product over small elements, a product over medium
elements, and a product over large elements
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Example 3.6.3. (a) Theorem 3.6.2 (applied to m = 3 and n = 2) says that the map

S3,2 : Z/6→ (Z/3)× (Z/2) ,
α 7→ (π6,3 (α) , π6,2 (α))

is a bijection. This map sends

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6 to
([0]3 , [0]2) , ([1]3 , [1]2) , ([2]3 , [2]2) , ([3]3 , [3]2) , ([4]3 , [4]2) , ([5]3 , [5]2) ,

respectively. In other words, it sends

[0]6 , [1]6 , [2]6 , [3]6 , [4]6 , [5]6 to
([0]3 , [0]2) , ([1]3 , [1]2) , ([2]3 , [0]2) , ([0]3 , [1]2) , ([1]3 , [0]2) , ([2]3 , [1]2) ,

respectively (since [2]2 = [0]2 and [3]3 = [0]3 and [3]2 = [1]2 and so on). This list
of values shows that this map is bijective (since it takes on every possible value
in (Z/3)× (Z/2) exactly once). Theorem 3.6.2 says that this holds for arbitrary
coprime m and n.

(b) Let us see how Theorem 3.6.2 fails when m and n are not coprime. For
example, take m = 6 and n = 4. Then, the map

S6,4 : Z/24→ (Z/6)× (Z/4) ,
α 7→ (π24,6 (α) , π24,4 (α))

is not a bijection. Indeed, it is neither injective (for example, it sends both [0]24
and [12]24 to the same pair ([0]6 , [0]4)) nor surjective (for example, it never takes
the value ([1]6 , [2]4)).

The following proof of Theorem 3.6.2 has the same structure as our proof of
Theorem 2.16.1 above, but is shorter since residue classes are easier to deal with
than remainders.

Proof of Theorem 3.6.2. The maps πmn,m and πmn,n are well-defined, since m and n
are positive divisors of mn. Thus, the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))
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is well-defined. Consider this map Sm,n. Clearly, for each s ∈ Z, we have

Sm,n ([s]mn) =

 πmn,m ([s]mn)︸ ︷︷ ︸
=[s]m

(by the definition of πmn,m)

, πmn,n ([s]mn)︸ ︷︷ ︸
=[s]n

(by the definition of πmn,n)


(by the definition of Sm,n)

= ([s]m , [s]n) . (130)

In other words, the map Sm,n sends each [s]mn (with s ∈ Z) to the pair ([s]m , [s]n).
It thus remains to prove that Sm,n is a bijection. To that aim, we shall prove that

Sm,n is injective and surjective.
[Proof that the map Sm,n is injective: Let α, β ∈ Z/ (mn) be such that Sm,n (α) =

Sm,n (β). We want to prove α = β.
Write the residue classes α and β in the forms α = [a]mn and β = [b]mn for

two integers a and b. (This is possible, because of Proposition 3.4.5 (a).) From
α = [a]mn, we obtain Sm,n (α) = Sm,n ([a]mn) = ([a]m , [a]n) (by (130), applied to
s = a). Similarly, Sm,n (β) = ([b]m , [b]n). Thus, the equality Sm,n (α) = Sm,n (β)
(which we have assumed to hold) rewrites as ([a]m , [a]n) = ([b]m , [b]n). In other
words, [a]m = [b]m and [a]n = [b]n.

Now, we have [a]m = [b]m; equivalently, a ≡ b mod m (by Proposition 3.4.5 (b));
in other words, m | a− b. Similarly, n | a− b.

Now, we have m ⊥ n (since m and n are coprime) and m | a− b and n | a− b.
Hence, Theorem 2.10.7 (applied to m, n and a − b instead of a, b and c) yields
mn | a − b. In other words, a ≡ b mod mn. In other words, [a]mn = [b]mn (by
Proposition 3.4.5 (b)). In other words, α = β (since α = [a]mn and β = [b]mn).

Now, forget that we fixed α and β. We thus have shown that if α, β ∈ Z/ (mn) are
such that Sm,n (α) = Sm,n (β), then α = β. In other words, the map Sm,n is injective.]

[Proof that the map Sm,n is surjective: Fix (α, β) ∈ (Z/m)× (Z/n). We want to find
a γ ∈ Z/ (mn) such that Sm,n (γ) = (α, β).

We have α ∈ Z/m. Thus, we can write the residue class α as α = [a]m for some
integer a (because of Proposition 3.4.5 (a)). Similarly, we can write the residue class
β as β = [b]n for some integer b. Consider these two integers a and b. Theorem
2.12.1 (a) shows that there exists an integer x ∈ Z such that

(x ≡ a mod m and x ≡ b mod n) .

Consider such an x. We have [x]m = [a]m (since x ≡ a mod m) and [x]n = [b]n (since
x ≡ b mod n). Now, (130) (applied to s = x) yields

Sm,n ([x]mn) =

 [x]m︸︷︷︸
=[a]m=α

, [x]n︸︷︷︸
=[b]n=β

 = (α, β) .
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Thus, there exists a γ ∈ Z/ (mn) such that Sm,n (γ) = (α, β) (namely, γ = [x]mn).
Now, forget that we fixed (α, β). We thus have shown that for any (α, β) ∈

(Z/m)× (Z/n), there exists a γ ∈ Z/ (mn) such that Sm,n (γ) = (α, β). In other
words, the map Sm,n is surjective.]

We have now proven that the map Sm,n is both injective and surjective. Hence,
this map Sm,n is bijective, i.e., is a bijection. This completes the proof of Theorem
3.6.2.

[Remark: As in the proof of Theorem 2.16.1, we could have saved ourselves some
of the work by invoking the Pigeonhole Principle. Indeed, our goal was to show
that the map Sm,n is bijective. By the Pigeonhole Principle, it suffices to prove that
it is injective or that it is surjective, since Z/ (mn) and (Z/m)× (Z/n) are finite
sets of the same size. But such a proof would be harder to generalize to certain
settings that we might later want to generalize Theorem 3.6.2 to.]

We have already proven Theorem 2.14.4 using Theorem 2.16.1. Let us now
reprove it using Theorem 3.6.2 instead (by a rather similar argument, but using
residue classes instead of remainders):

Second proof of Theorem 2.14.4. For every positive integer g, we let Ug be the set of
all residue classes α ∈ Z/g that have an inverse. Then, Un is exactly the set that
was called Un in Corollary 3.5.5. Hence, Corollary 3.5.5 (b) yields φ (n) = |Un|.
Similarly, φ (m) = |Um| and φ (mn) = |Umn|.

Theorem 3.6.2 says that the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. Consider this map Sm,n. This map Sm,n is a
bijection, i.e., is injective and surjective. Moreover, the definition of Sm,n yields

Sm,n ([1]mn) =

 πmn,m ([1]mn)︸ ︷︷ ︸
=[1]m

(by the definition of πmn,m)

, πmn,n ([1]mn)︸ ︷︷ ︸
=[1]n

(by the definition of πmn,n)

 = ([1]m , [1]n) .

Let us first prove a trivial fact:

Claim 1: Let α, β ∈ Z/ (mn). Then, πmn,m (αβ) = πmn,m (α) · πmn,m (β).

[Proof of Claim 1: Write the residue classes α and β as α = [a]mn and β = [b]mn
for some integers a and b. (This can be done because of Proposition 3.4.5 (a).)
Now, α︸︷︷︸

=[a]mn

· β︸︷︷︸
=[b]mn

= [a]mn · [b]mn = [ab]mn (by the definition of multiplication on
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Z/ (mn)). Hence,

πmn,m

 αβ︸︷︷︸
=[ab]mn

 = πmn,m ([ab]mn) = [ab]m (by the definition of πmn,m) .

On the other hand, from α = [a]mn, we obtain πmn,m (α) = πmn,m ([a]mn) = [a]m
(by the definition of πmn,m). Similarly, πmn,m (β) = [b]m. Hence,

πmn,m (α)︸ ︷︷ ︸
=[a]m

·πmn,m (β)︸ ︷︷ ︸
=[b]m

= [a]m · [b]m = [ab]m

(by the definition of multiplication on Z/m). Comparing this with πmn,m (αβ) =
[ab]m, we obtain πmn,m (α) · πmn,m (β). This proves Claim 1.]

Also, from Um ⊆ Z/m and Un ⊆ Z/n, we obtain Um ×Un ⊆ (Z/m)× (Z/n).
Now, we claim that

Sm,n (Umn) ⊆ Um ×Un. (131)

[Proof of (131): Let ζ ∈ Sm,n (Umn). Thus, ζ = Sm,n (α) for some α ∈ Umn. Consider
this α.

We have α ∈ Umn. In other words, α is a residue class in Z/ (mn) that has an
inverse (since Umn was defined as the set of all residue classes in Z/ (mn) that have
an inverse). Thus, α is a residue class in Z/ (mn) and has an inverse β ∈ Z/ (mn).
Consider this β. We know that β is an inverse of α; in other words, αβ = [1]mn (by
the definition of “inverse”).

Now, Claim 1 yields πmn,m (αβ) = πmn,m (α) · πmn,m (β), and thus

πmn,m (α) · πmn,m (β) = πmn,m

 αβ︸︷︷︸
=[1]mn

 = πmn,m ([1]mn) = [1]m

(by the definition of πmn,m). Thus, πmn,m (β) is an inverse of πmn,m (α) in Z/m
(by the definition of “inverse”). Hence, πmn,m (α) is a residue class in Z/m that
has an inverse (namely, πmn,m (β)). In other words, πmn,m (α) ∈ Um (since Um was
defined as the set of all residue classes in Z/m that have an inverse). Similarly,
πmn,n (α) ∈ Un. Now,

ζ = Sm,n (α) =

πmn,m (α)︸ ︷︷ ︸
∈Um

, πmn,n (α)︸ ︷︷ ︸
∈Un

 (by the definition of Sm,n)

∈ Um ×Un.

Now, forget that we fixed ζ. We thus have proven that ζ ∈ Um ×Un for each
ζ ∈ Sm,n (Umn). In other words, Sm,n (Umn) ⊆ Um ×Un. This proves (131).]
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Next, we claim that
Um ×Un ⊆ Sm,n (Umn) . (132)

[Proof of (132): Let θ ∈ Um ×Un. We shall prove that θ ∈ Sm,n (Umn).
We have θ ∈ Um×Un ⊆ (Z/m)× (Z/n) = Sm,n (Z/ (mn)) (since the map Sm,n is

a bijection). In other words, there exists some α ∈ Z/ (mn) such that θ = Sm,n (α).
Consider this α. The definition of Sm,n yields Sm,n (α) = (πmn,m (α) , πmn,n (α)).
Hence,

(πmn,m (α) , πmn,n (α)) = Sm,n (α) = θ ∈ Um ×Un.

In other words, πmn,m (α) ∈ Um and πmn,n (α) ∈ Un.
We have πmn,m (α) ∈ Um. In other words, πmn,m (α) is a residue class in Z/m that

has an inverse (since Um was defined as the set of all residue classes in Z/m that
have an inverse). In other words, πmn,m (α) is a residue class in Z/m and has an
inverse γ ∈ Z/m. Likewise, πmn,n (α) is a residue class in Z/n and has an inverse
δ ∈ Z/n. Consider these γ and δ.

We have (γ, δ) ∈ (Z/m)× (Z/n). Since the map Sm,n is surjective, we can thus
find a β ∈ Z/ (mn) such that Sm,n (β) = (γ, δ). Consider this β. We have

(γ, δ) = Sm,n (β) = (πmn,m (β) , πmn,n (β)) (by the definition of Sm,n) .

In other words, γ = πmn,m (β) and δ = πmn,n (β).
Now, we want to prove that β is an inverse of α (in Z/ (mn)).
Indeed,

πmn,m (αβ) = πmn,m (α) · πmn,m (β)︸ ︷︷ ︸
=γ

(by Claim 1)

= πmn,m (α) · γ = [1]m (since γ is an inverse of πmn,m (α))

and similarly πmn,n (αβ) = [1]n. Now, the definition of Sm,n yields

Sm,n (αβ) =

πmn,m (αβ)︸ ︷︷ ︸
=[1]m

, πmn,n (αβ)︸ ︷︷ ︸
=[1]n

 = ([1]m , [1]n) .

Comparing this with Sm,n ([1]mn) = ([1]m , [1]n), we obtain Sm,n (αβ) = Sm,n ([1]mn).
Since the map Sm,n is injective, we thus conclude that αβ = [1]mn. In other words,
β is an inverse of α (by the definition of “inverse”). Hence, α is a residue class in
Z/ (mn) that has an inverse (namely, β). In other words, α ∈ Umn (since Umn was
defined as the set of all residue classes in Z/ (mn) that have an inverse). Now,

θ = Sm,n

 α︸︷︷︸
∈Umn

 ∈ Sm,n (Umn).

Now, forget that we fixed θ. We thus have shown that θ ∈ Sm,n (Umn) for each
θ ∈ Um ×Un. In other words, Um ×Un ⊆ Sm,n (Umn). This proves (132).]
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Combining (131) with (132), we obtain

Sm,n (Umn) = Um ×Un. (133)

It is well-known that any two finite sets A and B satisfy |A× B| = |A| · |B| 119.
Applying this to A = Um and B = Un, we obtain

|Um ×Un| = |Um|︸︷︷︸
=φ(m)

· |Un|︸︷︷︸
=φ(n)

= φ (m) · φ (n) .

Note that Umn is a subset of Z/ (mn) (by its definition).
Recall that the map Sm,n is injective. Hence, |Sm,n (T)| = |T| for each subset T of

Z/ (mn) 120. Applying this to T = Umn, we obtain |Sm,n (Umn)| = |Umn|. Thus,

|Umn| =

∣∣∣∣∣∣∣∣∣Sm,n (Umn)︸ ︷︷ ︸
=Um×Un
(by (133))

∣∣∣∣∣∣∣∣∣ = |Um ×Un| = φ (m) · φ (n) .

Hence, φ (mn) = |Umn| = φ (m) · φ (n). So Theorem 2.14.4 is proven again.

3.7. Substitutivity and chains of congruences revisited

Proposition 3.4.5 (b) can be stated as follows: Given an integer n, two integers a
and b are congruent to each other modulo n if and only if their residue classes [a]n
and [b]n are equal. This lets us see congruences modulo n in a new light (namely,
as equalities). In particular, some previous results about congruences now become
trivial. For example, we can obtain a very short proof of Proposition 2.4.5 using
residue classes:

Proof of Proposition 2.4.5. We have the chain of congruences a1 ≡ a2 ≡ · · · ≡ ak mod n.
In other words,

ai ≡ ai+1 mod n holds for each i ∈ {1, 2, . . . , k− 1}

(by Definition 2.4.4). Thus, for each i ∈ {1, 2, . . . , k− 1}, we have ai ≡ ai+1 mod n
and therefore [ai]n = [ai+1]n (by Proposition 3.4.5 (b), applied to a = ai and b =
ai+1). In other words, we have the chain of equalities [a1]n = [a2]n = · · · = [ak]n.
From this chain, we immediately obtain [au]n = [av]n (by Proposition 2.4.3, applied
to [ai]n instead of ai). Hence, Proposition 3.4.5 (b) (applied to a = au and b = av)
shows that au ≡ av mod n. This proves Proposition 2.4.5.

119This is the so-called product rule in its simplest form (see, e.g., [Loehr11, 1.5] or [LeLeMe18,
§15.2.1]).

120This follows from the following general principle: If f : X → Y is an injective map between two
finite sets X and Y, then | f (T)| = |T| for each subset T of X.
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We can also prove the Principle of substitutivity of congruences (which we infor-
mally stated in Section 2.5, and abbreviated as “PSC”):

Proof of the PSC (informal). We have x ≡ x′mod n. Hence, Proposition 3.4.5 (b) (ap-
plied to a = x and b = x′) yields [x]n = [x′]n.

Now, let α be the expression A, except that each integer appearing in it has
been replaced by its residue class modulo n. (For example, if A is the expression
“3− 2 · 7 + 6”, then α will be “[3]n − [2]n · [7]n + [6]n”.)

Likewise, let α′ be the expression A′, except that each integer appearing in it has
been replaced by its residue class modulo n.

The expression A′ differs from A only in that some appearance of x in it has been
replaced by x′. Thus, the expression α′ differs from α only in that some appearance
of [x]n in it has been replaced by [x′]n. This replacement does not change the value
of the expression, since [x]n = [x′]n. Thus,(

the value of α′
)
= (the value of α) .

We have defined α to be the expression A, except that each integer appearing
in it has been replaced by its residue class modulo n. Thus, the value of α is the
residue class of the value of A modulo n. (For example, if A is “3− 2 · 7 + 6”, then
α will be “[3]n − [2]n · [7]n + [6]n”, and thus

(the value of α) = [3]n − [2]n · [7]n︸ ︷︷ ︸
=[2·7]n

(by Definition 3.4.12 (c))

+ [6]n = [3]n − [2 · 7]n︸ ︷︷ ︸
=[3−2·7]n

(by Definition 3.4.12 (b))

+ [6]n

= [3− 2 · 7]n + [6]n = [3− 2 · 7 + 6]n (by Definition 3.4.12 (a)) ,

which is precisely the residue class of the value of A modulo n.) In other words,
we have

(the value of α) = [the value of A]n .

Similarly, (
the value of α′

)
=
[
the value of A′

]
n .

Hence,[
the value of A′

]
n =

(
the value of α′

)
= (the value of α) = [the value of A]n .

Hence, Proposition 3.4.5 (b) (applied to a = (the value of A′) and b = (the value of A))
yields (the value of A′) ≡ (the value of A)mod n. In other words, the value of the
expression A′ is congruent to the value of A modulo n. This proves the PSC.

3.8. A couple of applications of elementary number theory

In the following short section, we shall see two practical applications of the above
number-theoretical studies. The first is a method for encrypting information (the
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RSA cryptosystem); the second is a trick by which computations with large inte-
gers can be split up into more manageable pieces (and distributed across several
computers, or parallelized across several cores). We shall be brief, since appli-
cations are not a focus of these notes; for further details, see [GalQua17] and
the MathOverflow answer https://mathoverflow.net/a/10022/ . If you are in-
terested in further applications, you may also want to consult the other answers
to https://mathoverflow.net/questions/10014 (for a list of uses of the Chinese
Remainder Theorem – mostly, but not entirely, inside mathematics), as well as
[UspHea39, Appendix to Chapter VII] (for applications of modular arithmetic to
calendar computations), and the Wikipedia page on “Universal hashing” (for an
application of residue classes modulo primes).

3.8.1. The RSA cryptosystem

Let us present the RSA cryptosystem. This is one of the first modern methods for
encrypting data. (The name “RSA” stands for the initials of its three authors: Rivest,
Shamir and Adleman.)

This cryptosystem addresses a fairly standard situation: Albert and Julia are
communicating over a channel (e.g., the Internet), but the channel may have eaves-
droppers. Julia wants to send a secret message to Albert over this channel – i.e., a
message that eavesdroppers should not be able to understand121. But Albert and
Julia have not exchanged any keys with each other in advance; they can start ex-
changing keys now, but the eavesdropper will know all the keys they are sending
each other. How can Albert and Julia start secretly communicating without giving
eavesdroppers all the information they want to give each other?

The RSA cryptosystem allows Albert and Julia to solve this problem as follows:

Setup:

• Julia tells Albert (openly, over the channel) that she wants to communicate
and thus he should start creating keys for that purpose.

• Albert generates two distinct large and sufficiently random primes p and
q. (This involves a lot of technicalities like actually finding large primes.
See Keith Conrad’s note The Solovay-Strassen test [Conrad*] for an algorithm
for generating large primes122, and [GalQua17] for a more comprehensive

121We assume that Julia is merely trying to keep the content of her message secret from the eaves-
droppers; the eavesdroppers can still see that she is sending something to Albert. If Albert and
Julia want to keep even this fact secret, they need a different branch of science – steganography,
not cryptography. (For reasons that become obvious after a bit of thought, steganography is
much less of an exact science than cryptography, and depends heavily on the real-life situation.)

122More precisely, the Solovay-Strassen test is an algorithm for checking (not with 100% surety, but
with high probability, which suffices in practice) whether a given integer is prime. To make
this into an algorithm for generating large primes, you can simply keep randomly picking large
numbers until you hit one that is prime (which you can check using the Solovay–Strassen test).

https://mathoverflow.net/a/10022/
https://mathoverflow.net/questions/10014
https://en.wikipedia.org/wiki/Universal_hashing
https://en.wikipedia.org/wiki/RSA_(cryptosystem)
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treatment. A brief discussion is also found in Garrett’s slides [Garret03]. As
to what “large” means, we refer to the Wikipedia article on “key size”.)

• Albert computes the positive integer m = pq. This number m (called the
modulus) he makes public (i.e., sends to Julia over the channel). (Note that
factoring a number into a product of primes is computationally a lot harder
than multiplying a bunch of primes123. Thus, eavesdroppers will not (likely)
be able to reconstruct the primes p and q from their (public) product m.)

• Albert computes the positive integer ` = (p− 1) (q− 1), but keeps this num-
ber private.

• Albert randomly picks an e ∈ {2, 3, . . . , `− 1} such that e ⊥ `. (Again, we
omit the details of how to pick such an e randomly124.) This number e will be
called the encryption key, and Albert keeps it private.

• Albert computes a positive modular inverse d of e modulo ` (that is, a positive
integer d such that ed ≡ 1 mod `). This number d exists by Theorem 2.10.8 (b);
it will be called the decryption key.

• Albert publishes the pair (e, m) as his public key.

• We assume that the message that Julia wants to send to Albert is an element
of {0, 1, . . . , m− 1}. This assumption is perfectly reasonable, because this
message originally exists in some digital form (e.g., as a bitstring), and it is
easy to translate it from this form into an element of {0, 1, . . . , m− 1} by some
universally agreed rule (e.g., if a bitstring (a1, a2, . . . , ak) is short enough, then
the integer a12k−1 + a22k−2 + · · ·+ ak2k−k will belong to {0, 1, . . . , m− 1}, and
thus we can translate this bitstring into this latter integer; otherwise, we break
it up into shorter chunks and send those as separate messages).

Encrypting a message:
If Julia wants to send a message a ∈ {0, 1, . . . , m− 1} to Albert, then she does the

following:

• She computes the residue class α := [a]m ∈ Z/m.

This doesn’t take too long, because the prime number theorem says that (very roughly speaking!)
the probability for a k-digit number to be prime is ≈ 1/k. (A precise statement of this result
would require us to introduce notions that have nothing to do with algebra; it is commonly done
in courses on analytic number theory. Needless to say, it is perfectly possible to profit from this
result in practice without proving it.)

123See the Wikipedia page on “Integer factorization” for details on what this means. Note that this
is not a proven theorem; any day, someone could come up with a quick algorithm for factoring
integers into products of primes. You would hear about it in the news, though.

124The rough idea is “pick e ∈ {2, 3, . . . , `− 1} randomly; check (using the Euclidean algorithm)
whether e ⊥ `; if not, then pick another e, and keep repeating this until you hit an e such that
e ⊥ `”. In theory, you could be unlucky and keep picking bad e’s forever; but in reality, you will
soon hit an e that satisfies e ⊥ `.

https://en.wikipedia.org/wiki/Key_size
https://en.wikipedia.org/wiki/Prime_number_theorem
https://en.wikipedia.org/wiki/Integer_factorization
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• She computes αe in Z/m. (This can be computed quickly using binary ex-
ponentiation (also known as exponentiation by squaring): If β ∈ Z/m, then all
powers of β can be computed recursively via the formulas β2k =

(
βk)2

and

β2k+1 =
(

βk)2
β. Note that we are working with residue classes in Z/m here,

not with integers, so that the powers βk of β will not grow forever as k gets
large; they stay in the finite set Z/m.)

• She sends the residue class αe (or, more precisely, its unique representative in
the set {0, 1, . . . , m− 1} 125) to Albert.

Decrypting a message:
Albert receives the residue class β = αe (or, more precisely, a representative

thereof, which he can easily turn into the residue class), and recovers the original
message a as follows:

• He sets γ = βd. This γ is the same α that Julia computed, as we shall see
below.

• He recovers the original message a ∈ {0, 1, . . . , m− 1} as the unique repre-
sentative of the residue class γ = α in {0, 1, . . . , m− 1} (since Julia defined α
as the residue class of a).

This way, Julia can send a message to Albert that no eavesdropper can read –
unless said eavesdropper knows d, or possesses an algorithm hitherto unknown to
the world, or has an incredibly fast computer, or Albert’s randomly picked num-
bers were not random enough126, or one of myriad other practical mistakes has
been made. The proper implementation of the RSA cryptosystem, and the real-life

125This unique representative exists by Proposition 3.4.6 (b) (and can be computed by picking an
arbitrary representative b first, and then taking its remainder b%m).

126Computers cannot generate “truly” random numbers (whatever this would even mean!); thus,
you have to get by with number generators which try their best at being unpredictable. Lots of
creativity has gone into finding ways to come up with numbers that are “as random as possible”.
Software alone is, per se, deterministic and thus can at most come up with numbers that “look
random” (“pseudorandom number generators”). Nondeterministic input must come from the
outside world. This is why certain programs that generate keys ask you to move your mouse
around the screen – they are, in fact, using your mouse movements as a source of randomness.
Better randomness comes from hardware random number generators, such as Geiger counters
or lava lamps.

What happens if your randomly picked prime numbers are not random enough? In the
worst case, you never find two distinct primes to begin with. In a more realistic case, your
distinct primes will all belong to a small and predictable set, and an eavesdropper can easily
find them simply by checking all possibilities. In less obvious cases, different keys you generate
for different purposes will occasionally have some primes in common, in which case an easy
application of the Chinese Remainder Theorem will allow an eavesdropper to reconstruct them
and decrypt your messages. See https://factorable.net for a study of RSA keys in the wild,
which found a lot of common primes.

https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Exponentiation_by_squaring
https://en.wikipedia.org/wiki/Random_number_generation
https://en.wikipedia.org/wiki/Pseudorandom_number_generator
https://en.wikipedia.org/wiki/Hardware_random_number_generator
https://www.popularmechanics.com/technology/security/news/a28921/lava-lamp-security-cloudflare/
https://factorable.net
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considerations needed to prevent “leakage” of sensitive data such as the decryption
key d, are a subject in its own right, which we shall not discuss here.

Albert’s method for recovering Julia’s message relies on the following fact (which
we shall prove a bit later):

Lemma 3.8.1. Let p and q be two distinct primes. Let N be a positive integer
such that N ≡ 1 mod (p− 1) (q− 1). Then:

(a) Each a ∈ Z satisfies aN ≡ a mod pq.
(b) Each α ∈ Z/ (pq) satisfies αN = α.

Now, when Albert receives β = αe from Julia, we have

βd = (αe)d = αed.

But d was a modular inverse of e modulo `; thus, ed ≡ 1 mod `. Since ` =
(p− 1) (q− 1), we thus have ed ≡ 1 mod (p− 1) (q− 1). Hence, Lemma 3.8.1
(b) (applied to N = ed) yields αed = α (since α ∈ Z/ m︸︷︷︸

=pq

= Z/ (pq)). Thus,

βd = αed = α. Thus, the residue class γ = βd that Albert computes is exactly Julia’s
α; hence, Albert correctly recovers the message.

Proof of Lemma 3.8.1 (sketched). (a) Let a ∈ Z. We need to show that aN ≡ a mod pq.
In other words, we need to show that pq | aN − a. Since p ⊥ q, it suffices to prove
that p | aN − a and q | aN − a (because then, Theorem 2.10.7 will yield pq | aN − a).

Let us prove that p | aN − a first. Two cases are possible:
Case 1: We have p | a.
Case 2: We have p - a.
Let us first consider Case 1. In this case, we have p | a. Thus, a ≡ 0 mod p.

Hence, aN ≡ 0N = 0 mod p (since N is positive). Thus, aN︸︷︷︸
≡0 mod p

− a︸︷︷︸
≡0 mod p

≡ 0− 0 =

0 mod p, so that p | aN − a. Thus, we have proven p | aN − a in Case 1.
Now, let us consider Case 2. In this case, we have p - a. But we have p − 1 |

(p− 1) (q− 1) and N ≡ 1 mod (p− 1) (q− 1); hence, Proposition 2.3.4 (e) (applied
to (p− 1) (q− 1), p− 1, N and 1 instead of n, m, a and b) yields N ≡ 1 mod p− 1.
Hence, Exercise 2.15.2 (applied to u = N and v = 1) yields aN ≡ a1 = a mod p. In
other words, p | aN − a. Thus, we have proven p | aN − a in Case 2.

So we have proven p | aN − a in both Cases. Hence, p | aN − a always holds.
Similarly, we can prove q | aN − a. This completes our proof of Lemma 3.8.1 (a).

(b) Let α ∈ Z/ (pq). Then, we can write α in the form α = [a]pq for some
a ∈ Z (by Proposition 3.4.5 (a)). Consider this a. From α = [a]pq, we obtain

αN =
(
[a]pq

)N
=
[
aN]

pq = [a]pq (since Lemma 3.8.1 (a) yields aN ≡ a mod pq).

Hence, αN = [a]pq = α. This proves Lemma 3.8.1 (b).
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The RSA cryptosystem, as presented above, is more versatile than it may seem at
first. Once Albert has generated his p, q, `, m, d and e and sent (e, m) to Julia, Julia
can send not just one but multiple messages to Albert using these keys. Albert can
confidentially respond to these messages as well, by having Julia switch roles with
him (i.e., Julia generates keys, Albert encrypts and Julia decrypts). Thus, a secure
channel for communication can be established. Moreover, and less obviously, RSA
can be used to digitally sign messages (i.e., convince the recipient that they really
come from you – or at least from someone who possesses your private key); see,
e.g., [Dummit16] or the Wikipedia.

3.8.2. Computing using the Chinese Remainder Theorem

Next, let us outline a simple yet unexpected application of the Chinese Remainder
Theorem.

Assume that you have an expression a that is made of integers, addition, sub-
traction and multiplication. For example, say

a = 400 · 405 · 409 · 413− 401 · 404 · 408 · 414. (134)

Assume that computing a directly is too hard, because the intermediate results
will be forbiddingly huge numbers, but you know (e.g., from some estimates) that
the final result will be a fairly small number. Let’s say (for simplicity) that you
know that 0 ≤ a < 500 000.

How can you use this information to compute a quickly?
One simple trick is to work with residue classes modulo 500 000 instead of work-

ing with integer. Thus, instead of computing the number a directly through the
equality (134), we can instead compute its residue class

[a]500 000 = [400 · 405 · 409 · 413− 401 · 404 · 408 · 414]500 000
= [400]500 000 · [405]500 000 · [409]500 000 · [413]500 000

− [401]500 000 · [404]500 000 · [408]500 000 · [414]500 000

(which is an easier task, because we can always reduce our intermediate results
using the fact that every integer a satisfies [a]500 000 = [a % 500 000]500 000), and
then recover a by observing that a must be the unique representative of its residue
class [a]500 000 that belongs to {0, 1, . . . , 499 999} (since 0 ≤ a < 500 000). This is
actually how integer arithmetic works in most low-level programming languages;
for example, the most popular integer type of the C++ language is “int”, which
stands not for integers but rather for residue classes modulo 264 (when working on
a 64-bit system). (This is where integer overflow comes from.)

Computing [a]500 000 instead of computing a is already an improvement, but in
practice, the “500 000” might actually be a significantly bigger number. Assume,
for example, that instead of 0 ≤ a < 500 000, you merely know that 0 ≤ a < N for
some fixed number N which is small enough that computing in Z/N is possible,

https://en.wikipedia.org/wiki/RSA_(cryptosystem)#Signing_messages
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but large enough that doing the whole computation of [a]N in Z/N is unviable.
What can we do then?

One thing we can do is to compute the residue classes [a]n for several coprime
“small” integers n. For example, we can compute [a]2 (by performing the whole
computation of a using residue classes modulo 2 instead of integers) and similarly
[a]3 and [a]5 and [a]7 etc.. (We are using prime numbers for n here, which has
certain advantages, but is not strictly necessary; all we need is that the values of n
we are using are coprime.127)

The Chinese Remainder Theorem (in the form of Theorem 3.6.2) shows that if
m and n are two coprime positive integers, then the map Sm,n from Theorem 3.6.2
(sending each [s]mn to the pair ([s]m , [s]n)) is a bijection. In our proof of Theorem
3.6.2 (when proving the surjectivity of Sm,n), we gave an explicit way of constructing
preimages under this map Sm,n (using Bezout’s theorem, which has a fast algorithm
underlying it – the Extended Euclidean algorithm). Thus, we have an explicit way
of recovering the residue class [s]mn from the pair ([s]m , [s]n) whenever s is an
(unknown) integer (and m and n are two coprime positive integers). We shall now
refer to this way as the “patching procedure” (since it lets us “patch” two residue
classes [s]m and [s]n together to a residue class [s]mn).

Now, having computed a bunch of residue classes [a]2 , [a]3 , [a]5 , [a]7 of our un-
known integer a modulo coprime small integers, we can “patch” these classes to-
gether:

• From [a]2 and [a]3, we get [a]2·3 by the “patching procedure”.

• From [a]2·3 and [a]5, we get [a]2·3·5 by the “patching procedure”.

• From [a]2·3·5 and [a]7, we get [a]2·3·5·7 by the “patching procedure”.

• and so on.

We keep “patching” until the product 2 · 3 · 5 · 7 · · · · becomes larger than our N
(which will happen fairly soon, since this product grows super-exponentially with
the number of “patching” steps). At that point, we have found the residue class
[a]m of our unknown integer a modulo some integer m > N. Since 0 ≤ a < N < m,
we can thus recover a itself (as the unique representative of the class [a]m that lies
in the set {0, 1, . . . , m− 1}).

This technique is known as Chinese Remaindering (in its simplest form) and has
been used a lot (for an example, see [Vogan07, pp. 1031–1033]). See [Knuth98,
§4.3.2] for more details.

127Note that the computations of [a]n for different values of n are independent of each other, which
comes handy if you have several processors.

https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm
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3.9. Primitive roots: an introduction

3.9.1. Definition and examples

Let us finally discuss a kind of residue classes that come very useful when they
exist: the primitive roots (modulo a positive integer n). We are not yet able to
ascertain when they exist and when they don’t (this will require some more abstract
algebra); but we can already see some examples of them:

Convention 3.9.1. For the whole Subsection 3.9.1, we fix a positive integer n.

Definition 3.9.2. Let α ∈ Z/n be a residue class.
(a) We say that α is invertible if α has an inverse.
(b) A power of α means a residue class of the form αm for some m ∈N.
(c) Assume that α is invertible. Then, α is said to be a primitive root modulo n if

every invertible residue class β ∈ Z/n is a power of α.

Example 3.9.3. Let n = 9. The invertible residue classes in Z/9 are
[1]9 , [2]9 , [4]9 , [5]9 , [7]9 , [8]9.

Clearly, the residue class [1]9 is not a primitive root modulo 9, since all its
powers equal [1]9.

The powers of [2]9 are

([2]9)
0 = [1]9 ,

([2]9)
1 = [2]9 ,

([2]9)
2 = [4]9 ,

([2]9)
3 = [8]9 ,

([2]9)
4 = [7]9 ,

([2]9)
5 = [5]9 ,

. . . .

128 Thus, they cover all the six invertible residue classes
[1]9 , [2]9 , [4]9 , [5]9 , [7]9 , [8]9. Hence, [2]9 is a primitive root modulo 9.

It is easy to see that [5]9 also is a primitive root modulo 9, and these two
primitive roots are the only ones.
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Note that Corollary 3.5.5 (b) shows that there are exactly φ (n) invertible residue
classes in Z/n. It is easy to see that any power of an invertible residue class is
again invertible.

Euler’s theorem (Theorem 2.15.3) yields that if α ∈ Z/n is an invertible residue
class, then αφ(n) = [1]n (because Corollary 3.5.5 (a) shows that α can be written in
the form α = [a]n for some integer a satisfying a ⊥ n). Thus, it is easy to see that
an invertible residue class α ∈ Z/n has at most φ (n) distinct powers. When an
invertible residue class α ∈ Z/n has exactly φ (n) distinct powers, it is a primitive
root (since there are exactly φ (n) invertible residue classes in Z/n).

Example 3.9.4. Let n = 8. The invertible residue classes in Z/8 are
[1]8 , [3]8 , [5]8 , [7]8.

Again, [1]8 is certainly not a primitive root.
The powers of [3]8 are

([3]8)
0 = [1]8 ,

([3]8)
1 = [3]8 ,

([3]8)
2 = [9]8 = [1]8 ,

. . .

(so the even powers are [1]8 and the odd powers are [3]8). So [3]8 is not a primi-
tive root.

The same behavior prevents [5]8 and [7]8 from being primitive roots.
Thus, we see that there are no primitive roots modulo 8.

128Here is a fast way to compute these powers:

([2]9)
0 = [1]9 ,

([2]9)
1 = [2]9 ,

([2]9)
2 =

 22︸︷︷︸
=4


9

= [4]9 ,

([2]9)
3 =

 23︸︷︷︸
=8


9

= [8]9 ,

([2]9)
4 =

 24︸︷︷︸
=16


9

= [16]9 = [7]9 (since 16 ≡ 7 mod 9) ,

([2]9)
5 = [2]9 · ([2]9)

4︸ ︷︷ ︸
=[7]9

= [2]9 · [7]9 =

2 · 7︸︷︷︸
=14


9

= [14]9 = [5]9 (since 14 ≡ 5 mod 9) ,

. . . .
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Examples 3.9.4 and 3.9.3 suggest the following questions: For what n does a
primitive root modulo n exist, and when it does, how many of them are there?
The following theorem – a result proven in 1801 by Gauss – answers both of these
questions:

Theorem 3.9.5. (a) A primitive root modulo n exists if and only if n is

• either 1,

• or a prime p,

• or a power pk of an odd prime129 p (with k being a positive integer),

• or 4,

• or 2pk for an odd prime p (with k being a positive integer).

(b) If a primitive root modulo n exists, then there are precisely φ (φ (n)) many
of them.

This theorem would be fairly difficult to prove at this point, but will be doable
with some abstract algebra (at least in the case n = p). See [GalQua17, Chapter 4]
for a proof.

4. Complex numbers and Gaussian integers

4.1. Complex numbers

4.1.1. An informal introduction

We now leave (at least for the time being) the study of integers and proceed to
consider a much larger “number system”: the complex numbers.

Before we define these numbers rigorously, let me sketch the idea behind their
construction. Please suspend your disbelief about the not-quite-kosher reasoning
that will follow; we will return to rigorous mathematics in Definition 4.1.1 below.

We know that the number −1 (like any other negative number) has no square
root in R (because the square of any real number is ≥ 0). But let us audaciously
pretend that it does have a square root somewhere else. In other words, let us
pretend that there exists a mythical “number” i such that i2 = −1. Of course, such
a “number” i will not be a real number, but let us assume (without real justification,
for now) that it behaves like a usual number would (to some extent). In particular,
let us assume that it can be added, subtracted and multiplied like the numbers that
we know and love.

So we have extended the set R of real numbers by a new number i. Now, by
applying addition, subtraction and multiplication to this new number (and our

129Recall: Odd primes are the same as primes 6= 2.

https://en.wikipedia.org/wiki/Complex_number
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old numbers), we get a bunch of further new numbers – namely, all numbers of
the form a0 + a1i + a2i2 + · · ·+ akik, where k ∈ N and where a0, a1, . . . , ak are real
numbers. (These can be described as the polynomials in i with real coefficients.)
However, some of these numbers will be equal; in fact, any number of this form
can be reduced to a number of the form a + bi (with a, b ∈ R), because130

i2 = −1, i3 = i i2︸︷︷︸
=−1

= −i, i4 = i i3︸︷︷︸
=−i

= − i2︸︷︷︸
=−1

= − (−1) = 1,

i5 = i i4︸︷︷︸
=1

= i, etc..

For example, the number 3+ 5i+ 9i2 + 7i3 equals 3+ 5i+ 9 (−1)+ 7 (−i) = (3− 9)+
(5− 7) i = −6− 2i.

So all our new numbers have the form a + bi for two reals a and b. We call
them “complex numbers”. (As we have said, we will give a rigorous definition
later.) Since we are assuming that the standard rules of arithmetic still hold for our
new numbers, we can easily find formulas for computing the sum, the difference,
the product and the quotient of two complex numbers written in the form a + bi:
Namely, for any two complex numbers a + bi and c + di (with a, b, c, d ∈ R), we
have

(a + bi) + (c + di) = (a + c) + (b + d) i; (135)
(a + bi)− (c + di) = (a− c) + (b− d) i; (136)

(a + bi) (c + di) = ac + adi + bci + bd i2︸︷︷︸
=−1

= ac + adi + bci− bd

= (ac− bd) + (ad + bc) i; (137)

a + bi
c + di

=
(a + bi) (c− di)
(c + di) (c− di)

=
ac− adi + bci + bdi2

cc− cdi + dci− ddi2 =
ac− adi + bci + bd (−1)
cc− cdi + dci− dd (−1)

=
(ac + bd) + (bc− ad) i

c2 + d2 (if c, d are not both 0) . (138)

(Note that the latter formula is an analogue of the standard procedure for rational-
izing denominators that involve square roots:

a + b
√

2
c + d

√
2
=

(
a + b

√
2
) (

c− d
√

2
)

(
c + d

√
2
) (

c− d
√

2
) =

(ac− 2bd) + (bc− ad)
√

2
c2 − 2d2 ,

except that the square root that we are trying to exorcise from the denominator is
not
√

2 but
√
−1 = i now.)

However, not all features of real numbers carry over to complex numbers: In-
equalities do not make sense for complex numbers. Indeed, if they would make
sense, then we would get a contradiction as follows:

130Of course, we are assuming that the standard rules – such as associativity of multiplication –
apply to our “new” numbers.
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• If i ≥ 0, then i2 ≥ 0, contradicting i2 = −1 < 0.

• If i < 0, then i2 = (−i)2 > 0 (since i < 0 yields −i > 0), contradicting
i2 = −1 < 0.

Here, we have assumed two things about our relations: First, we have assumed
that i is either ≥ 0 or < 0; and second, we have assumed that the square of a non-
negative complex number is nonnegative. Sure, we could avoid the contradiction
by forfeiting one of these assumptions; but then, the ≥ and < relations would not
be worth their names any more.

So we appear to be able to extend the four operations +,−, ·, / to our weird new
numbers, but not the relations <,≤,>,≥ (at least not in any meaningful way). But
how can we be sure that the four operations +,−, ·, / don’t already lead to some
contradictions?

To answer this question, let us forget our daring postulation of the existence of i,
and instead give a formal definition of complex numbers:

4.1.2. Rigorous definition of the complex numbers

Definition 4.1.1. (a) A complex number is defined as a pair (a, b) of two real num-
bers.

(b) We let C be the set of all complex numbers.
(c) For each real number r, we denote the complex number (r, 0) by rC.
(d) We let i be the complex number (0, 1). When the notation “i” is ambiguous,

I will be calling it “iC” instead. (Some authors call it j or ι or
√
−1.)

(e) We define three binary operations +, − and · on C by setting

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac− bd, ad + bc)

for all (a, b) ∈ C and (c, d) ∈ C.
(f) If α and β are two complex numbers, then we write αβ for α · β.
(g) If α is a complex number, then the complex number 0C− α shall be denoted

by −α.

For example, the definition of the operation · on C yields

i︸︷︷︸
=(0,1)

i︸︷︷︸
=(0,1)

= (0, 1) (0, 1) =

0 · 0− 1 · 1︸ ︷︷ ︸
=−1

, 0 · 1 + 1 · 0︸ ︷︷ ︸
=0

 = (−1, 0) = (−1)C .

We will later131 equate the complex number (−1)C with the real number −1; thus,
this equation will simplify to ii = −1. So i “behaves like a square root of −1”. But

131in Convention 4.1.7
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we also have (−i) (−i) = (−1)C, so −i fits the same bill. Thus, we didn’t have to
postulate the existence of a mythical number i satisfying i2 = 1; we simply found
such a number in the set C.

The definitions of the operations +, − and · in Definition 4.1.1 are not chosen
by accident. We shall later identify each complex number (a, b) with a + bi; then,
these definitions will become exactly the equalities (135), (136) and (137) that we
derived unrigorously.

We are leaving division of complex numbers undefined so far, because we will
later get it more or less for free.

We shall follow the usual “PEMDAS” rules for the order of operations when
interpreting expressions involving the operations +, − and · on C. Thus, for ex-
ample, the expression “α + β · γ” shall mean α + (β · γ) and not (α + β) · γ.

4.1.3. Rules for +, − and ·

So we have defined complex numbers as pairs of real numbers, and we have de-
fined three operations on them which we called +, − and ·. But do these operations
really deserve these names? Do they still behave as nicely as the corresponding op-
erations on real numbers? Do they, in particular, satisfy the standard rules of arith-
metic such as commutativity, associativity and distributivity? The next theorem
shows that they indeed do:

Theorem 4.1.2. The following rules for addition, subtraction and multiplication
in C hold:

(a) We have α + β = β + α for any α, β ∈ C.
(b) We have α + (β + γ) = (α + β) + γ for any α, β, γ ∈ C.
(c) We have α + 0C = 0C + α = α for any α ∈ C.
(d) We have α · 1C = 1C · α = α for any α ∈ C.
(e) We have α · β = β · α for any α, β ∈ C.
(f) We have α · (β · γ) = (α · β) · γ for any α, β, γ ∈ C.
(g) We have α · (β + γ) = αβ+ αγ and (α + β) ·γ = αγ+ βγ for any α, β, γ ∈ C.
(h) We have α · 0C = 0C · α = 0C for any α ∈ C.
(i) If α, β, γ ∈ C, then we have the equivalence (α− β = γ)⇐⇒ (α = β + γ).
(j) We have − (α + β) = (−α) + (−β) for any α, β ∈ C.
(k) We have −0C = 0C.
(l) We have − (−α) = α for any α ∈ C.
(m) We have − (αβ) = (−α) β = α (−β) for any α, β ∈ C.
(n) We have α − β − γ = α − (β + γ) for any α, β, γ ∈ C. (Here and in the

following, “α− β− γ” should be read as “(α− β)− γ”.)

Proof of Theorem 4.1.2. All parts of this theorem are straightforward. I will only
prove the two parts (f) and (i).

(f) Let α, β, γ ∈ C. Thus, α is a complex number; in other words, α is a pair of
two real numbers (by the definition of complex numbers). Hence, we can write α
in the form α = (a, a′) for two real numbers a, a′. Similarly, we can write β and γ in

https://en.wikipedia.org/wiki/Order_of_operations
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the forms β = (b, b′) and γ = (c, c′) for four real numbers b, b′, c, c′. Consider these
six real numbers a, a′, b, b′, c, c′. Now, from the equalities α = (a, a′), β = (b, b′) and
γ = (c, c′), we obtain

α · (β · γ) =
(
a, a′

)
·
((

b, b′
)
·
(
c, c′
))︸ ︷︷ ︸

=(bc−b′c′,bc′+b′c)
(by the definition of
the operation · on C)

=
(
a, a′

)
·
(
bc− b′c′, bc′ + b′c

)
=

a
(
bc− b′c′

)
− a′

(
bc′ + b′c

)︸ ︷︷ ︸
=abc−ab′c′−a′bc′−a′b′c

, a
(
bc′ + b′c

)
+ a′

(
bc− b′c′

)︸ ︷︷ ︸
=abc′+ab′c+a′bc−a′b′c′


(by the definition of the operation · on C)

=
(
abc− ab′c′ − a′bc′ − a′b′c, abc′ + ab′c + a′bc− a′b′c′

)
and

(α · β) · γ =
((

a, a′
)
·
(
b, b′

))︸ ︷︷ ︸
=(ab−a′b′,ab′+a′b)
(by the definition of
the operation · on C)

·
(
c, c′
)

=
(
ab− a′b′, ab′ + a′b

)
·
(
c, c′
)

=

(ab− a′b′
)

c−
(
ab′ + a′b

)
c′︸ ︷︷ ︸

=abc−ab′c′−a′bc′−a′b′c

,
(
ab− a′b′

)
c′ +

(
ab′ + a′b

)
c︸ ︷︷ ︸

=abc′+ab′c+a′bc−a′b′c′


(by the definition of the operation · on C)

=
(
abc− ab′c′ − a′bc′ − a′b′c, abc′ + ab′c + a′bc− a′b′c′

)
.

Comparing these two equalities, we see that α · (β · γ) = (α · β) · γ. So Theorem
4.1.2 (f) is proven.

(i) Let α, β, γ ∈ C. Thus, α is a complex number; in other words, α is a pair of
two real numbers (by the definition of complex numbers). Hence, we can write α
in the form α = (a, a′) for two real numbers a, a′. Similarly, we can write β and γ
in the forms β = (b, b′) and γ = (c, c′) for four real numbers b, b′, c, c′. Consider
these six real numbers a, a′, b, b′, c, c′. Now, we have the following chain of logical
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equivalences: α︸︷︷︸
=(a,a′)

− β︸︷︷︸
=(b,b′)

= γ︸︷︷︸
=(c,c′)



⇐⇒


(
a, a′

)
−
(
b, b′

)︸ ︷︷ ︸
=(a−b,a′−b′)

(by the definition of the
operation − on C)

=
(
c, c′
)


⇐⇒
((

a− b, a′ − b′
)
=
(
c, c′
))
⇐⇒

 a− b = c︸ ︷︷ ︸
⇐⇒ (a=b+c)

and a′ − b′ = c′︸ ︷︷ ︸
⇐⇒ (a′=b′+c′)


⇐⇒

(
a = b + c and a′ = b′ + c′

)
⇐⇒

((
a, a′

)
=
(
b + c, b′ + c′

))
⇐⇒

(a, a′
)︸ ︷︷ ︸

=α

=
(
b, b′

)︸ ︷︷ ︸
=β

+
(
c, c′
)︸ ︷︷ ︸

=γ


 since (b + c, b′ + c′) = (b, b′) + (c, c′)

(by the definition of the
operation + on C)


⇐⇒ (α = β + γ) .

This proves Theorem 4.1.2 (i).
All the other parts of Theorem 4.1.2 can be proven by direct computations, just

as we proved Theorem 4.1.2 (f).

4.1.4. Finite sums and finite products

Recall the concept of a finite sum of real numbers (i.e., a sum of the form ∑
i∈I

ai,

where I is a finite set and ai is a real number for each i ∈ I), and the analogous
concept of a finite product of real numbers (i.e., a product of the form ∏

i∈I
ai).

Definition 4.1.3. In the same vein, we define the concept of a finite sum of com-
plex numbers (i.e., a sum of the form ∑

i∈I
αi, where I is a finite set and αi ∈ C for

each i ∈ I), and the analogous concept of a finite product of complex numbers
(i.e., a product of the form ∏

i∈I
αi, where I is a finite set and αi ∈ C for each i ∈ I).

These concepts are well-defined, by Proposition 4.1.4 (a) below.

We will use the usual shorthands for special kinds of finite sums and products.
For example, if I is an interval {p, p + 1, . . . , q} of integers (and if αi ∈ C for each

i ∈ I), then the sum ∑
i∈I

αi will also be denoted by
q
∑

i=p
αi or αp + αp+1 + · · · + αq.
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Likewise for products. Thus, for example, α1 + α2 + · · · + αk and α1α2 · · · αk are
well-defined whenever α1, α2, . . . , αk ∈ C.

Proposition 4.1.4. (a) Definition 4.1.3 is well-defined.
(b) Finite sums ( ∑

i∈I
αi) and finite products (∏

i∈I
αi) of complex numbers αi ∈ C

satisfy the same rules that finite sums and finite products of real numbers satisfy.

Proof of Proposition 4.1.4. (a) In [Grinbe15, Theorem 2.118 (a)], it is proven that fi-
nite sums of real numbers are well-defined. The same argument (but relying on
Theorem 4.1.2 instead of the usual rules of commutativity, associativity etc. for
real numbers) shows that finite sums of complex numbers αi ∈ C are well-defined.
The analogous fact for products is proven in the same way, except that we need to
replace 0 by 1 and properties of addition by corresponding properties of multipli-
cation.

(b) The proofs of the properties of finite sums and finite products of elements
of C are identical to the analogous proofs for real numbers, but (again) rely on
Theorem 4.1.2 instead of the usual rules of commutativity, associativity etc. for real
numbers.

4.1.5. Embedding R into C

Theorem 4.1.5. For any real numbers a and b, we have

(a + b)C = aC + bC and (139)
(a− b)C = aC − bC and (140)

(ab)C = aCbC. (141)

Proof of Theorem 4.1.5. Let a and b be two real numbers. Then, the definitions of aC,
bC and (ab)C yield aC = (a, 0) and bC = (b, 0) and (ab)C = (ab, 0). Now, (141)
follows from

aC︸︷︷︸
=(a,0)

bC︸︷︷︸
=(b,0)

= (a, 0) (b, 0) = (a, 0) · (b, 0) =

ab− 0 · 0︸ ︷︷ ︸
=ab

, a · 0 + 0 · b︸ ︷︷ ︸
=0


(by the definition of the operation · on C)

= (ab, 0) = (ab)C .

Similar straightforward computations prove the equalities (139) and (140). Thus,
Theorem 4.1.5 is proven.

Remark 4.1.6. If a1, a2, . . . , ak are k reals, then

(a1)C + (a2)C + · · ·+ (ak)C = (a1 + a2 + · · ·+ ak)C and
(a1)C · (a2)C · · · · · (ak)C = (a1a2 · · · ak)C .
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Proof of Remark 4.1.6. This can be proven by a straightforward induction on k.

Convention 4.1.7. From now on, for each real number r, we shall identify the
real number r with the complex number rC = (r, 0).

Identifying different things is always risky in mathematics; for example, we have
seen above why it would be a bad idea to identify residue classes [a]n of integers
modulo a positive integer n with the corresponding remainders a%n (even though
there is a 1-to-1 correspondence between the former and the latter). Nevertheless,
the identification made in Convention 4.1.7 is harmless, due to Theorem 4.1.5132

and because the map
R→ C, r 7→ rC

is injective (so we are not identifying two different real numbers with one and the
same complex numbers).

So we have identified each real number with a complex number. Thus, the com-
plex numbers can be seen as an extension of the real numbers: R ⊆ C. (Of course,
this is not literally true, since formally speaking rC is a pair while r is a single real
number. Nevertheless, we will work as if this was true, and hope that the reader
can insert “C” subscripts wherever necessary in order to make our computations
literally true.)

When we defined complex numbers as pairs of real numbers in Definition 4.1.1,
we were intending that the pair (a, b) would correspond to the complex number
a + bi in our previous informal construction of the complex numbers. Convention
4.1.7 makes this actually hold:

Proposition 4.1.8. For any (a, b) ∈ C, we have (a, b) = a + bi.

Proof. Let (a, b) ∈ C. Thus, a and b are real numbers. By Convention 4.1.7, we
identify these real numbers a and b with the complex numbers aC = (a, 0) and

132Why does Theorem 4.1.5 matter here? Well, let us assume for a moment that Theorem 4.1.5 was
false; specifically, let us assume that there are two real numbers a and b such that (ab)C 6= aCbC.
Consider these a and b. Now, Convention 4.1.7 lets us identify the real numbers a, b and ab with
the complex numbers aC, bC and (ab)C. Thus, ab = (ab)C 6= aC︸︷︷︸

=a

bC︸︷︷︸
=b

= ab, which is nonsense.

To make sure that Convention 4.1.7 cannot spawn such absurdities, we had to prove Theorem
4.1.5.
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bC = (b, 0), respectively. Thus, a = aC = (a, 0) and b = bC = (b, 0). Hence,

a︸︷︷︸
=(a,0)

+ b︸︷︷︸
=(b,0)

i︸︷︷︸
=(0,1)

= (a, 0) + (b, 0) (0, 1)︸ ︷︷ ︸
=(b·0−0·1,b·1+0·0)
(by the definition of
the operation · on C)

= (a, 0) +

b · 0− 0 · 1︸ ︷︷ ︸
=0

, b · 1 + 0 · 0︸ ︷︷ ︸
=b



= (a, 0) + (0, b) =

a + 0︸ ︷︷ ︸
=a

, 0 + b︸ ︷︷ ︸
=b


(by the definition of the operation + on C)

= (a, b) .

This proves Proposition 4.1.8.

The next proposition shows that if we multiply a complex number (b, c) with a
real number a (of course, understanding this real number a as the complex number
aC = (a, 0)), then the result will simply be (ab, ac) (that is, multiplying a complex
number by a merely multiplies both of its entries by a):

Proposition 4.1.9. For any a ∈ R and (b, c) ∈ C, we have a (b, c) = (ab, ac).
(Here, of course, “a (b, c)” means the product aC (b, c).)

Proof. This is straightforward: Let a ∈ R and (b, c) ∈ C. By Convention 4.1.7, we
identify the real number a with the complex number aC = (a, 0). Hence, a = aC =
(a, 0). Now,

a︸︷︷︸
=(a,0)

(b, c) = (a, 0) · (b, c) =

ab− 0c︸ ︷︷ ︸
=ab

, ac + 0b︸ ︷︷ ︸
=ac


(by the definition of the operation · on C)

= (ab, ac) .

This proves Proposition 4.1.9.

4.1.6. Inverses and division of complex numbers

Definition 4.1.10. A complex number α is said to be nonzero if and only if it is
distinct from the complex number 0C = (0, 0).

In other words, a complex number α is nonzero if and only if it is distinct from
0 (since we are identifying the real number 0 with 0C). Equivalently, a complex
number α = (a, b) is nonzero if and only if (a, b) 6= (0, 0) as pairs (i.e., if and only
if at least one of the real numbers a and b are nonzero).
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We have so far been adding, subtracting and multiplying complex numbers, but
never dividing them (except briefly, before we formally defined them). We could
define division in the same way as we defined addition, subtraction and multi-

plication – namely, by an explicit formula for
(a, b)
(c, d)

whenever (c, d) is nonzero133.

However, it is more instructive to proceed differently, and construct the division
from the multiplication that was already defined. After all, if our division is to
deserve its name, it should undo multiplication; and this determines it uniquely.
We will not define division right away; instead, we start out by defining an inverse
of a complex number:

Definition 4.1.11. Let α be a complex number. An inverse of α means a complex
number β such that αβ = 1. (Recall that 1 = 1C by Convention 4.1.7.)

The complex number 0 has no inverse (because 0β = 0 6= 1, no matter what β
is). But it turns out that all the other complex numbers have one:

Theorem 4.1.12. Let α be a nonzero complex number. Then, α has a unique
inverse.

Proof of Theorem 4.1.12. We shall separately prove the existence and the uniqueness
of an inverse of α.

Proof of the existence of the inverse: Write the complex number α as α = (c, d)
for two real numbers c and d. Then, (c, d) = α 6= 0 (since α is nonzero). Thus,
(c, d) 6= 0 = (0, 0). In other words, at least one of the two real numbers c and d is
nonzero. Hence, at least one of the two real numbers c2 and d2 is positive134. The
other among these two numbers must, of course, be nonnegative135. Hence, c2 + d2

is the sum of a positive real number with a nonnegative real number. Therefore,
c2 + d2 itself is positive. Thus, c2 + d2 is a nonzero real number; hence, we can
divide by c2 + d2. In particular, we can define a complex number β by

β =

(
c

c2 + d2 ,
−d

c2 + d2

)
.

Consider this β. Multiplying the equalities α = (c, d) and β =

(
c

c2 + d2 ,
−d

c2 + d2

)
,

133This formula would be
(a, b)
(c, d)

=

(
ac + bd
c2 + d2 ,

bc− ad
c2 + d2

)
.

134since the square of a nonzero real number is always positive
135since the square of a real number is always nonnegative
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we find

αβ = (c, d)
(

c
c2 + d2 ,

−d
c2 + d2

)

=

c · c
c2 + d2 − d · −d

c2 + d2︸ ︷︷ ︸
=1

, c · −d
c2 + d2 + d · c

c2 + d2︸ ︷︷ ︸
=0


(by the definition of the operation · on C)

= (1, 0) = 1C.

Thus, β is an inverse of α (by the definition of an inverse of α). Hence, α has at
least one inverse (namely, β).

Proof of the uniqueness of the inverse: We must prove that α has at most one inverse.
This is exactly the statement of Proposition 3.5.4, except that our α is an element of
C rather than of Z/n. But the same argument that we used to prove Proposition
3.5.4 can be applied to α ∈ C instead of α ∈ Z/n 136. Hence, we obtain that α has
at most one inverse.

We have now shown that α has at least one inverse, and we have shown that α
has at most one inverse. Combining these two results, we conclude that α has a
unique inverse. This proves Theorem 4.1.12.

Definition 4.1.13. Let α be a nonzero complex number. Theorem 4.1.12 shows
that α has a unique inverse. This inverse is called α−1, and will be referred to as
the inverse of α.

Definition 4.1.14. (a) Let α and β be two complex numbers such that β 6= 0. Then,
the quotient

α

β
is defined to be the complex number α · β−1. It is sometimes also

denoted by α/β.
(b) The operation that transforms a pair (α, β) of two complex numbers (with

β nonzero) into α/β is called division.

It is easy to see that division undoes multiplication:

Proposition 4.1.15. Let α, β, γ be three complex numbers with β 6= 0. Then, we
have the equivalence (

γ =
α

β

)
⇐⇒ (α = βγ) .

Proof of Proposition 4.1.15. We have β 6= 0. Thus, β has a well-defined inverse β−1.
The definition of this inverse yields ββ−1 = 1; now, Theorem 4.1.2 (e) yields β−1β =

136Of course, we need to make some obvious modifications, such as replacing every appearance of
“[1]n” by “1”, and replacing every reference to Theorem 3.4.23 with a reference to Theorem 4.1.2.
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ββ−1 = 1. Also, Theorem 4.1.2 (e) yields γβ = βγ and β−1α = αβ−1. The definition
of

α

β
yields

α

β
= α · β−1 = αβ−1.

We have to prove the equivalence
(

γ =
α

β

)
⇐⇒ (α = βγ). Let us prove the

“=⇒” and “⇐=” directions of this equivalence separately:
=⇒: Assume that γ =

α

β
. We shall show that α = βγ.

We have γ =
α

β
= αβ−1. Multiplying both sides of this equality with β, we obtain

γβ = α β−1β︸ ︷︷ ︸
=1

= α · 1 = α.

Hence, α = γβ = βγ. This proves the “=⇒” direction of the equivalence
(

γ =
α

β

)
⇐⇒

(α = βγ).
⇐=: Assume that α = βγ. We shall show that γ =

α

β
.

We have β−1 α︸︷︷︸
=βγ

= β−1β︸ ︷︷ ︸
=1

γ = 1γ = γ1 = γ, so that γ = β−1α = αβ−1 =
α

β
. This

proves the “⇐=” direction of the equivalence
(

γ =
α

β

)
⇐⇒ (α = βγ).

Thus, the equivalence
(

γ =
α

β

)
⇐⇒ (α = βγ) holds (since we have proven

both of its directions). That is, we have proven Proposition 4.1.15.

Inverses also have the following properties:

Proposition 4.1.16. (a) Let α ∈ C be a complex number that has an inverse (i.e.,
is nonzero). Then, its inverse α−1 has an inverse as well, and this inverse is(
α−1)−1

= α.
(b) Let α, β ∈ C be two complex numbers that have inverses (i.e., are nonzero).

Then, their product αβ has an inverse as well, and this inverse is (αβ)−1 =
α−1β−1.

Proof of Proposition 4.1.16. This proof is completely analogous to the solution to Ex-
ercise 3.5.1. (Just replace Z/n by C.)

Corollary 4.1.17. Let α, β ∈ C be two nonzero complex numbers. Then, the
complex number αβ is nonzero as well.

Proof of Corollary 4.1.17 (sketched). The complex numbers α and β are nonzero, and
thus have inverses (by Theorem 4.1.12). Hence, Proposition 4.1.16 (b) shows that
their product αβ has an inverse as well. Thus, αβ 6= 0 (since 0 has no inverse). This
proves Corollary 4.1.17.
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4.1.7. Powers of complex numbers

Let us now define powers of complex numbers, where the exponent is a nonnega-
tive integer.

Definition 4.1.18. Let α ∈ C and n ∈N. We define a complex number αn (called
the n-th power of α) by setting αn = αα · · · α︸ ︷︷ ︸

n times

.

Definition 4.1.18 yields
i2 = ii = (−1)C = −1.

Moreover, Definition 4.1.18 yields

α0 = αα · · · α︸ ︷︷ ︸
0 times

= (empty product) = 1 and

α1 = αα · · · α︸ ︷︷ ︸
1 times

= α

for each α ∈ C.
For another example, Definition 4.1.18 yields

(1 + i)2 = (1 + i) (1 + i) = 1 + i + i + ii︸︷︷︸
=−1

= 1 + i + i + (−1) = i + i = 2i

and

(1 + i)4 = (1 + i) (1 + i)︸ ︷︷ ︸
=2i

(1 + i) (1 + i)︸ ︷︷ ︸
=2i

= 2i · 2i = 4 ii︸︷︷︸
=−1

= 4 (−1) = −4.

We shall use the PEMDAS convention for the order of operations when powers
are involved. For example, the expression “αβk + γ” means

(
α
(

βk)) + γ rather
than (say) (αβ)k + γ.

Recall that any nonzero complex number α has an inverse α−1 (by Definition
4.1.13). This allows us to extend our definition of αn to negative n as well:

Definition 4.1.19. Let α ∈ C be nonzero. For any negative n ∈ Z, we define
a complex number αn (called the n-th power of α) by αn =

(
α−1)−n. (This is

well-defined, since
(
α−1)−n is already defined by Definition 4.1.18 (because n is

negative and thus −n ∈N).)

The attentive reader will have noticed that Definition 4.1.19 redefines α−1 when
α is nonzero (indeed, −1 is a negative integer, and thus can be substituted for n in
Definition 4.1.19). Fortunately, this new definition of α−1 does not clash with the
original definition (Definition 4.1.13), because if we set n = −1 in Definition 4.1.19,
then we get α−1 =

(
α−1)1

= α−1 (where the “α−1” on the left hand side is the new
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meaning defined in Definition 4.1.19, whereas the “α−1” on the right hand side is
the old meaning defined in Definition 4.1.13).

If α = 0 and if n ∈ Z is negative, then we leave αn undefined.
Powers of complex numbers satisfy the usual rules for exponents:

Proposition 4.1.20. (a) We have αn+1 = ααn for all α ∈ C and n ∈N.
(b) We have αn+m = αnαm for all α ∈ C and n, m ∈N.
(c) We have (αβ)n = αnβn for all α, β ∈ C and n ∈N.
(d) We have (αn)m = αnm for all α ∈ C and n, m ∈N.
(e) We have 1n = 1 for all n ∈N.
(f) We have αn+1 = ααn for all nonzero α ∈ C and all n ∈ Z.
(g) We have α−n =

(
α−1)n for all nonzero α ∈ C and all n ∈ Z.

(h) We have αn+m = αnαm for all nonzero α ∈ C and all n, m ∈ Z.
(i) We have (αβ)n = αnβn for all nonzero α, β ∈ C and all n ∈ Z.
(j) We have 1n = 1 for all n ∈ Z.
(k) We have (αn)−1 = α−n for all nonzero α ∈ C and all n ∈ Z. (In particular,

αn is nonzero, so that (αn)−1 is well-defined.)
(l) We have (αn)m = αnm for all nonzero α ∈ C and all n, m ∈ Z. (In particular,

αn is nonzero, so that (αn)m is well-defined for all m ∈ Z.)
(m) Complex numbers satisfy the binomial formula: That is, if α, β ∈ C, then

(α + β)n =
n

∑
k=0

(
n
k

)
αkβn−k for n ∈N.

Proposition 4.1.20 can be proven in the same way as the corresponding claims
are proven for real (or rational) numbers:

Exercise 4.1.1. Prove Proposition 4.1.20.

It may be tempting to try to extend Definition 4.1.19 further by defining fractional
powers (such as α1/2). There is a way to do so, but such a definition would be of
questionable use and somewhat fragile (in the sense that it would fail to satisfy
the rules of exponents). For example, if you wanted to define (−1)1/2, then the
only reasonable choices would be i and −i (since these are the only two complex
numbers whose squares are −1); but with either option, the equality (αβ)1/2 =
α1/2β1/2 would fail if we took α = −1 and β = −1. Thus, we prefer to leave
powers of the form αn for n /∈ Z undefined.

4.1.8. The Argand diagram

Let us next make a small detour to demonstrate a geometric representation of the
complex numbers which, while not strictly necessary for what we intend to do
with them, is conducive both to understanding them and to applying them.
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Recall that a complex number was defined as a pair of real numbers. On the
other hand, a point in the Cartesian plane is also defined as a pair of real numbers
(its x-coordinate and its y-coordinate). Thus, it is natural to identify each complex
number (a, b) = a + bi with the point (a, b) ∈ R2 on the Cartesian plane (i.e., the
point with x-coordinate a and y-coordinate b). This identification equates each
complex number with a unique point in the Cartesian plane, and vice versa:

a + bi = (a, b)

b

a
.

The picture below shows some of the points (specifically, all the 25 points (a, b) ∈
{−2,−1, 0, 1, 2}2 whose both coordinates are integers between −2 and 2) labeled
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with the corresponding complex numbers:

−2 −1 0 1 2

−2 + i −1 + i 1 + i 2 + ii

−2− i −1− i 1− i 2− i−i

−2 + 2i −1 + 2i 1 + 2i 2 + 2i2i

−2− 2i −1− 2i 1− 2i 2− 2i−2i

(142)

(as well as the unit circle, which passes through the four points labeled 1, i,−1,−i;
we will encounter these four points rather often in the following).

This identification of complex numbers with points is called the Argand diagram
or the complex plane (although the latter word has yet another, different meaning).
The complex number 0 corresponds to the origin (0, 0) of the plane.

In Definition 4.1.1 (e), we have introduced three operations on complex num-
bers; what do they mean geometrically for the corresponding points? The two
operations + and − are easiest to understand: They are exactly the usual opera-
tions of addition and subtraction for vectors. Thus, if α and β are two complex
numbers, then the points labeled by the four complex numbers 0, α, α + β and β

https://en.wikipedia.org/wiki/Complex_plane
https://en.wikipedia.org/wiki/Complex_plane
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form a parallelogram:

α

β

α + β

0

.

Likewise, the points labeled by the four complex numbers 0, α, β and β− α form a
parallelogram. These parallelograms can be degenerate; in particular, the point −α
is the reflection of the point α through the origin:137

α

−α

0

.

Multiplication is less evident. The easiest case is multiplying by i: If α is a
complex number, then the point iα is obtained from the point α by a 90◦ rotation
(counterclockwise) around the origin. Thus, the four points α, iα, −α and −iα are

137We no longer say “the point labeled by α”, but simply equate α with that point now.
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the vertices of a square centered at the origin:

α

−α

iα

−iα

0

.

More generally, if β is a complex number, then multiplication by β (that is, the
map C → C, α 7→ αβ) is a similitude transformation (so it preserves angles and
ratios of lengths); more precisely it is a rotation around the origin composed with
a homothety from the origin. Combined with the fact that it sends 1 to β, this
uniquely determines it.

This is just the beginning of a rather helpful dictionary between elementary plane
geometry and the algebra of complex numbers. See [AndAnd14] for many appli-
cations of this point of view, particularly to proving results in plane geometry.

4.1.9. Norms and conjugates

Let us now define some further features of complex numbers.

Definition 4.1.21. Let α = (a, b) be a complex number.
The norm of α is defined to be the real number a2 + b2 ∈ R. This norm is called

N (α).

Proposition 4.1.22. Let α be a complex number.
(a) We have N (α) ≥ 0.
(b) We have N (α) = 0 if and only if α = 0.
(c) If α 6= 0, then N (α) > 0.

Proof of Proposition 4.1.22. Write the complex number α in the form α = (a, b) for
two real numbers a and b. Then, N (α) = a2 + b2 (by the definition of the norm).
But a2 and b2 are squares of real numbers and thus ≥ 0 (since a square of a real
number is always ≥ 0). Hence, N (α) = a2︸︷︷︸

≥0

+ b2︸︷︷︸
≥0

≥ 0. This proves Proposition

4.1.22 (a).
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(b) We know that a2 and b2 are≥ 0. In other words, a2 and b2 are two nonnegative
reals. But the sum of two nonnegative reals is 0 if and only if both of these reals
are 0. Applying this to the two nonnegative reals a2 and b2, we conclude that
a2 + b2 = 0 if and only if both a2 and b2 are 0. In other words, we have the logical
equivalence

(
a2 + b2 = 0

)
⇐⇒

(
both a2 and b2 are 0

)
.

Now, we have the following chain of equivalences:

(N (α) = 0) ⇐⇒
(

a2 + b2 = 0
) (

since N (α) = a2 + b2
)

⇐⇒
(

both a2 and b2 are 0
)

⇐⇒
(

a2 = 0 and b2 = 0
)
⇐⇒ (a = 0 and b = 0)

⇐⇒

(a, b)︸ ︷︷ ︸
=α

= (0, 0)︸ ︷︷ ︸
=0C

 ⇐⇒ (α = 0C) ⇐⇒ (α = 0) .

This proves Proposition 4.1.22 (b).
(c) Assume that α 6= 0. But Proposition 4.1.22 (b) shows that we have N (α) = 0

if and only if α = 0. Hence, we have N (α) 6= 0 (since α 6= 0). Combining this with
N (α) ≥ 0, we obtain N (α) > 0. This proves Proposition 4.1.22 (c).

Proposition 4.1.23. Let a ∈ R. Then, N (aC) = a2.

Proof of Proposition 4.1.23. We have aC = (a, 0) (by the definition of aC). Hence,
the definition of the norm yields N (aC) = a2 + 02 = a2. This proves Proposition
4.1.23.

Definition 4.1.24. Let α = (a, b) ∈ C.
The conjugate α of α is defined to be the complex number (a,−b) ∈ C.

From the viewpoint of the Argand diagram, the conjugate α of a complex number
α is simply the result of reflecting α (or, to be pedantic, the point labeled by α) across
the x-axis:

α

α

0

.
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Thus, the following is completely self-evident:

Proposition 4.1.25. Let α ∈ C.
(a) We have α = α if and only if α ∈ R. (Keep in mind that we are follow-

ing Convention 4.1.7, so that the statement “α ∈ R” (for a complex number α)
actually means “α = rC for some r ∈ R”.)

(b) We always have α = α.

Since we don’t want to depend on geometric reasoning, let us nevertheless prove
this fact algebraically:

Proof of Proposition 4.1.25. Write the complex number α in the form α = (a, b) for
two real numbers a and b. Then, α = (a,−b) (by the definition of α). Hence, the

definition of α yields α =

a,− (−b)︸ ︷︷ ︸
=b

 = (a, b) = α. This proves Proposition 4.1.25

(b).
(a)⇐=: Assume that α ∈ R. We must prove that α = α.
We have α ∈ R. In other words, there exists an r ∈ R such that α = rC. Consider

this r. We have α = rC = (r, 0) (by the definition of rC). Hence, the definition of α

yields α =

r, −0︸︷︷︸
=0

 = (r, 0) = α. Thus, α = α. This proves the “⇐=” direction of

Proposition 4.1.25 (a).
=⇒: Assume that α = α. We must prove that α ∈ R.
We have α = α. Thus, (a, b) = α = α = (a,−b). In other words, a = a and

b = −b. From b = −b, we obtain 2b = 0, thus b = 0. Hence, α =

a, b︸︷︷︸
=0

 =

(a, 0) = aC (since aC is defined to be (a, 0)). Thus, there exists an r ∈ R such that
α = rC (namely, r = a). In other words, α ∈ R. This proves the “=⇒” direction of
Proposition 4.1.25 (a).

Proposition 4.1.26. Let α ∈ C.
(a) We have N (α) = αα (or, more formally: (N (α))C = αα).
(b) We have N (α) = N (α).

Proof of Proposition 4.1.26. Write the complex number α in the form α = (a, b) for
two real numbers a and b. Then, α = (a,−b) (by the definition of α) and N (α) =
a2 + b2 (by the definition of N (α)).
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(a) Multiplying the equalities α = (a, b) and α = (a,−b), we obtain

αα = (a, b) (a,−b) =

aa− b (−b)︸ ︷︷ ︸
=a2+b2

, a (−b) + ba︸ ︷︷ ︸
=0


(by the definition of the operation · on C)

=

a2 + b2︸ ︷︷ ︸
=N(α)

, 0

 = (N (α) , 0) = (N (α))C

(since N (α)C is defined to be (N (α) , 0)). In other words, (N (α))C = αα. According
to Convention 4.1.7, we are equating the real number N (α) with the complex num-
ber (N (α))C; hence, this equality rewrites as N (α) = αα. This proves Proposition
4.1.26 (a).

(b) Recall that α = (a,−b). Thus, the definition of N (α) yields N (α) = a2 +

(−b)2︸ ︷︷ ︸
=b2

= a2 + b2 = N (α). This proves Proposition 4.1.26 (b).

Proposition 4.1.27. Let α and β be two complex numbers. Then:
(a) We have α + β = α + β.
(b) We have α− β = α− β.
(c) We have α · β = α · β.
(d) We have N (αβ) = N (α) ·N (β).

(e) If β 6= 0, then N
(

α

β

)
=

N (α)

N (β)
.

Proof of Proposition 4.1.27. Write the complex number α in the form α = (a, b) for
two real numbers a and b. Then, α = (a,−b) (by the definition of α) and N (α) =
a2 + b2 (by the definition of N (α)).

Write the complex number β in the form β = (c, d) for two real numbers c and
d. Then, β = (c,−d) (by the definition of β) and N (β) = c2 + d2 (by the definition
of N (β)).

(c) Multiplying the equalities α = (a, b) and β = (c, d), we obtain α · β =
(a, b) (c, d) = (ac− bd, ad + bc) (by the definition of the operation · on C). Hence,
Definition 4.1.24 yields α · β = (ac− bd,− (ad + bc)).

On the other hand, multiplying the equalities α = (a,−b) and β = (c,−d) yields

α · β =

ac− (−b) (−d)︸ ︷︷ ︸
=ac−bd

, a (−d) + b (−c)︸ ︷︷ ︸
=−(ad+bc)

 = (ac− bd,− (ad + bc))

(by the definition of the operation · on C). Comparing this with
α · β = (ac− bd,− (ad + bc)), we obtain α · β = α · β. This proves Proposition 4.1.27
(c).
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Parts (a) and (b) of Proposition 4.1.27 follow by similar (but easier) computations.
(d) Proposition 4.1.26 (a) yields N (α) = αα. Similarly, N (β) = ββ and N (αβ) =

αβαβ. Hence,

N (αβ) = αβ αβ︸︷︷︸
=α·β=α·β

(by Proposition 4.1.27 (c))

= αβα · β = (αα)︸︷︷︸
=N(α)

·
(

ββ
)︸ ︷︷ ︸

=N(β)

= N (α) ·N (β) .

This proves Proposition 4.1.27 (d).
(e) Assume that β 6= 0. Thus, the quotient

α

β
∈ C is defined (by Definition

4.1.14 (a)). Proposition 4.1.27 (d) (applied to
α

β
instead of α) yields N

(
α

β
· β
)

=

N
(

α

β

)
·N (β). In view of

α

β
· β = α, this rewrites as

N (α) = N
(

α

β

)
·N (β) . (143)

Also, Proposition 4.1.22 (c) (applied to β instead of α) yields that we have N (β) > 0
(since β 6= 0); thus, N (β) 6= 0. Thus, we can divide both sides of the equality (143)

by N (β). We thus obtain
N (α)

N (β)
= N

(
α

β

)
. Proposition 4.1.27 (e) follows.

The properties of the norm of a complex numbers let us see an old fact in new
light: Remember the Brahmagupta–Fibonacci identity (1), which said that(

a2 + b2
) (

c2 + d2
)
= (ad + bc)2 + (ac− bd)2

for a, b, c, d ∈ R. This identity is equivalent to the identity

N (α) ·N (β) = N (αβ)

for the complex numbers α = (a, b) = a + bi and β = (c, d) = c + di. Thus,
the identity (1) is just Proposition 4.1.27 (d), restated without the use of complex
numbers. This answers the question of how you could have come up with this
identity – at least if you know complex numbers. (Brahmagupta must have found
it in a different way, since complex numbers were not known to him.)

Corollary 4.1.28. Let α ∈ C and k ∈N. Then:
(a) We have αk = αk.
(b) We have N

(
αk) = (N (α))k.

Proof of Corollary 4.1.28. (a) This follows by induction on k, using Proposition 4.1.27
(c) and the fact that 1 = 1.

(b) This follows by induction on k, using Proposition 4.1.27 (d) and the fact that
N (1) = 1.
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Using the norm of a complex number, we can define a notion of absolute value
of a complex number:

Definition 4.1.29. Let α = (a, b) be a complex number. The absolute value (or
modulus or length) of α is defined to be

√
N (α) =

√
a2 + b2 ∈ R. (This is well-

defined, because Proposition 4.1.22 (a) shows that N (α) ≥ 0.)
The absolute value of α is denoted by |α|. (This notation does not conflict

with the classical notation |a| for the absolute value of a real number a, because
if a is a real number, then Proposition 4.1.23 yields N (aC) = a2 and therefore√

N (aC) =
√

a2 = |a|, where “|a|” means the classical concept of absolute value
of a.)

In the Argand diagram, the absolute value |α| of a complex number α is simply
the distance of α from the origin. The reason for this is the Pythagorean theorem:

α = a + bi

b

a

|α| =
√

a2 + b2

.

Good references for the basic properties of complex numbers are [LaNaSc16] and
[Swanso18, §3.9–§3.12]. The book [AndAnd14] is a treasure trove of applications
and exercises.

4.1.10. Re, Im and the 2× 2-matrix representation

We define some more attributes of a complex number.

Definition 4.1.30. Let α = (a, b) be a complex number (so that a and b are real
numbers and α = a + bi).

Then, a is called the real part of α and denoted Re α (or Rα).
Also, b is called the imaginary part of α and denoted Im α (or Iα).

The following proposition assigns a real 2× 2-matrix to each complex number:
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Proposition 4.1.31. Let R2×2 be the set of all 2× 2-matrices with real entries.
Define a map µ : C→ R2×2 by setting

µ (a, b) =
(

a b
−b a

)
for each (a, b) ∈ C.

(a) We have µ (α + β) = µ (α) + µ (β) for all α, β ∈ C.
(b) We have µ (α− β) = µ (α)− µ (β) for all α, β ∈ C.
(c) We have µ (α · β) = µ (α) · µ (β) for all α, β ∈ C.
(d) The map µ is injective.

Proof of Proposition 4.1.31. (c) This is a straightforward computation: Let α, β ∈ C.
Write the complex number α in the form α = (a, b) for two real numbers a and b.
Write the complex number β in the form β = (c, d) for two real numbers c and d.
Multiplying the equalities α = (a, b) and β = (c, d), we obtain

α · β = (a, b) · (c, d) = (ac− bd, ad + bc)

(by the definition of ·). Hence,

µ (α · β) = µ (ac− bd, ad + bc) =
(

ac− bd ad + bc
− (ad + bc) ac− bd

)
(144)

(by the definition of µ). On the other hand, from α = (a, b), we obtain

µ (α) = µ (a, b) =
(

a b
−b a

)
(by the definition of µ) ,

and similarly we can find

µ (β) =

(
c d
−d c

)
.

Multiplying these two equalities together, we find

µ (α) · µ (β) =

(
a b
−b a

)
·
(

c d
−d c

)
=

(
ac + b (−d) ad + bc

(−b) c + a (−d) (−b) d + ac

)
=

(
ac− bd ad + bc
− (ad + bc) ac− bd

)
.

Comparing this with (144), we find µ (α · β) = µ (α) · µ (β). This proves Proposition
4.1.31 (c).

Similar (but much simpler) computations prove parts (a) and (b) of Proposition
4.1.31.

(d) We need to show that a complex number α can always be recovered from its
image µ (α).
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But this is easy: If α = (a, b) is a complex number, then µ (α) = µ (a, b) =(
a b
−b a

)
(by the definition of µ), and therefore we can recover a and b from µ (α)

(namely, a and b are the two entries of the first row of the matrix µ (α)). Hence,
we can recover α from µ (α). This shows that the map µ is injective; this proves
Proposition 4.1.31 (d).

Proposition 4.1.31 really says that (instead of regarding complex numbers as
pairs of real numbers) we can regard complex numbers as a specific kind of 2× 2-
matrices with real entries (by identifying each complex number α with the matrix
µ (α)). This viewpoint has the advantage that multiplication of complex numbers
becomes a particular case of matrix multiplication. (We could have saved ourselves
the trouble of proving the associativity of multiplication for complex numbers if
we had taken this viewpoint.)

4.1.11. The fundamental theorem of algebra

Finally, let me mention without proof the so-called Fundamental Theorem of Algebra:

Theorem 4.1.32. Let p (x) be a polynomial of degree n with complex coefficients.
Then, there exist complex numbers α1, α2, . . . , αn and β such that

p (x) = β (x− α1) (x− α2) · · · (x− αn) .

In other words, any polynomial with complex coefficients can be factored into
linear factors. This is in contrast to real numbers, where polynomials can at best
be factored into linear and quadratic factors. (For example, the polynomial x2 + 1
cannot be factored further over the real numbers, but factors as (x + i) (x− i) over
the complex numbers.)

The Fundamental Theorem of Algebra is not actually a theorem of algebra. It
relies heavily on the concepts of real and complex numbers. So it is actually a
theorem of analysis. For a proof, see [LaNaSc16, Theorem 3.2.2].

4.2. Gaussian integers

Inside the set C of all complex numbers (an uncountable set) lies a much smaller
(countable) set of numbers, which are much closer to integers than to real numbers.
We shall study them partly for their own sake, partly as an instructive example
of what we will later call a commutative ring, and partly in order to answer the
questions from Section 1.4 (although complex numbers were never mentioned in
that section).

We shall follow Keith Conrad’s notes [ConradG] for most of this section (but at
the end we will go a bit further in order to answer Question 1.4.2 (b)).
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4.2.1. Definitions and basics

We shall now define the Gaussian integers: a middle ground between integers and
complex numbers.

Definition 4.2.1. A Gaussian integer is a complex number (a, b) with a, b ∈ Z.

For example, 3 + 5i = (3, 5) and 3− 7i = (3,−7) are Gaussian integers. So are
0 = (0, 0), 1 = (1, 0) and i = (0, 1). Every integer is a Gaussian integer138. But
1
2
+ 3i =

(
1
2

, 3
)

and
√

2 + 4i =
(√

2, 4
)

are not Gaussian integers.

Recall that in the Argand diagram, complex numbers correspond to points in the
Cartesian plane. The Gaussian integers thus correspond to a special type of points
– the ones whose both coordinates are integers. These points are called lattice points,
as they form the nodes of a square lattice covering the plane. In the picture (142),
the 25 marked points are precisely the lattice points (i.e., the Gaussian integers)
that happen to fall inside the region drawn.

Remark 4.2.2. In Definition 4.2.1, we have defined Gaussian integers using com-
plex numbers. This can be viewed as somewhat of an overkill, as the notion
of complex numbers depends on the notion of real numbers, which are mostly
useless for Gaussian integers. Thus, one might ask for a different definition of
Gaussian integers – one which relies only on integers and not on real numbers.

Such a definition is easy to make: Just replace every appearance of real num-
bers in Definition 4.1.1 by integers! Thus, define the Gaussian integers as pairs
of two integers; let CZ be the set of these pairs; denote the Gaussian integer
(r, 0) by rC whenever r is an integer; define the operations +, − and · on the
set CZ by the same formulas as in Definition 4.1.1 (e); likewise, adapt the rest
of Definition 4.1.1 to integers. Most of what we have done in Section 4.1 can
be straightforwardly adapted to this notion of Gaussian integers (by making the
obvious changes – i.e., mostly, replacing real numbers by integers); the main
exceptions are the following:

• Not every nonzero Gaussian integer has an inverse (in the set of Gaussian
integers). (In fact, as we will soon see, the only Gaussian integers that
have inverses are 1, i,−1,−i.) Thus, division and negative powers of Gaus-
sian integers are usually not defined (without leaving the set of Gaussian
integers).

• The absolute value |α| of a Gaussian integer α will usually not be an integer
(since it is defined as a square root).

This alternative definition of Gaussian integers is equivalent to Definition 4.2.1;
we are using the latter mainly because it is shorter.

138This relies on Convention 4.1.7, of course. If we avoid this convention, then we should instead
say that for every integer r, the complex number rC = (r, 0) is a Gaussian integer.
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Likewise, we could have defined “Gaussian rationals” by adapting Definition
4.1.1 to rational (instead of real) numbers. Unlike the Gaussian integers, these
“Gaussian rationals” do have inverses (when they are nonzero), and thus divi-
sion and negative powers are well-defined for them.

Definition 4.2.3. We let Z [i] be the set of all Gaussian integers.

Elementary number theory concerns itself with integers (mostly). Our goal in
this section is to replicate as much as we can of this theory in the setting of Gaussian
integers, and then see how it can be applied back to answer some questions about
the usual integers.

We will try to use Greek letters for Gaussian integers and Roman letters for
integers.

Proposition 4.2.4. (a) If α and β are two Gaussian integers, then α + β, α− β and
α · β are Gaussian integers.

(b) If α is a Gaussian integer, then −α is a Gaussian integer.
(c) Sums and products of finitely many Gaussian integers are Gaussian inte-

gers.

Proposition 4.2.4. (a) Let α and β be two Gaussian integers. Write the complex
numbers α and β as α = (a, b) and β = (c, d), respectively (with a, b, c, d ∈ R). The
definition of a Gaussian integer shows that a, b ∈ Z (since (a, b) = α is a Gaussian
integer) and that c, d ∈ Z (since (c, d) = β is a Gaussian integer). Now,

α︸︷︷︸
=(a,b)

· β︸︷︷︸
=(c,d)

= (a, b) · (c, d) = (ac− bd, ad + bc)

(by the definition of the operation · on C). Since ac − bd, ad + bc ∈ Z (because
a, b, c, d ∈ Z), this entails that α · β is a Gaussian integer (by the definition of a
Gaussian integer). Similarly (using the definitions of the operations + and − on
C), we can see that α + β and α− β are Gaussian integers. This proves Proposition
4.2.4 (a).

(b) Let α be a Gaussian integer. Recall that 0 is a Gaussian integer. Thus, Propo-
sition 4.2.4 (a) (applied to 0 and α instead of α and β) yields that 0 + α, 0− α and
0 · α are Gaussian integers. Thus, in particular, 0− α is a Gaussian integer. In other
words, −α is a Gaussian integer (since 0− α = −α). This proves Proposition 4.2.4
(b).

(c) This follows by induction. (The induction base relies on the fact that 0 and 1
are Gaussian integers; the induction step uses Proposition 4.2.4 (a).)

Proposition 4.2.5. Let α be a Gaussian integer. Then, α is a Gaussian integer.

Proof of Proposition 4.2.5. Write the complex number α as α = (a, b) with a, b ∈ R.
Then, a, b ∈ Z (since α is a Gaussian integer). Hence, a,−b ∈ Z. Now, the definition
of α yields α = (a,−b). Hence, α is a Gaussian integer (since a,−b ∈ Z). This
proves Proposition 4.2.5.
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Proposition 4.2.6. Let α ∈ Z [i]. Then, N (α) ∈N.

Proof of Proposition 4.2.6. Write the complex number α as α = (a, b) with a, b ∈ R.
Then, a, b ∈ Z (since α is a Gaussian integer). In other words, a and b are integers.
Hence, a2 and b2 are nonnegative integers (since the square of an integer is always
a nonnegative integer). In other words, a2, b2 ∈ N. Hence, a2 + b2 ∈ N. But the
definition of N (α) yields N (α) = a2 + b2 ∈N. This proves Proposition 4.2.6.

4.2.2. Units and unit-equivalence

Any nonzero Gaussian integer α has an inverse (by Theorem 4.1.12). But usually,
this inverse is not a Gaussian integer, i.e., does not lie in Z [i]. For example, 2−1 /∈
Z [i] and (1 + i)−1 =

1− i
2

/∈ Z [i]. The Gaussian integers whose inverses do lie in

Z [i] have a special name:

Definition 4.2.7. (a) A Gaussian integer α ∈ Z [i] is said to be invertible in Z [i] if
it has an inverse in Z [i].

A unit will mean a Gaussian integer that is invertible in Z [i].
(b) We define a relation ∼ on Z [i] by

(α ∼ β)⇐⇒ (α = γβ for some unit γ ∈ Z [i]) .

This relation will be called unit-equivalence (or equality up to unit). We say that
two Gaussian integers α and β are unit-equivalent if α ∼ β.

For comparison, let us consider analogous concepts for integers instead of Gaus-
sian integers. The units of Z (that is, the integers that are invertible in Z) are 1 and
−1. So if we defined a relation ∼

Z
on Z in the same way as we defined the relation

∼ on Z [i] (but requiring γ ∈ Z instead of γ ∈ Z [i]), then this relation would just
be given by (

a ∼
Z

b
)
⇐⇒ (a = cb for some c ∈ {1,−1})

⇐⇒ (a = b or a = −b)⇐⇒ (|a| = |b|) . (145)

So the relation ∼
Z

is not very exciting: it is simply “equality up to sign”.139 But

the relation ∼ on Z [i] cannot be described as simply as this: It is easy to find
two Gaussian integers α and β such that |α| = |β| holds but α ∼ β does not (for
example, the Gaussian integers α = 16 + 63i and β = 33 + 56i both have absolute
value 65 but are not unit-equivalent).

139In other words, it is precisely the relation ≡
abs

, where abs : Z→N is the map sending each integer

n to its absolute value |n|. (See Example 3.2.7 for how this relation ≡
abs

is defined.)
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Proposition 4.2.8. The relation ∼ on Z [i] is an equivalence relation.

Proof of Proposition 4.2.8. Observe the following:

• The relation ∼ is reflexive.
[Proof: Let α ∈ Z [i]. Then, α = 1α. But 1 is invertible in Z [i] (since 1−1 = 1 ∈ Z [i]).
In other words, 1 is a unit. Hence, α = γα for some unit γ ∈ Z [i] (namely, γ = 1). In
other words, α ∼ α (by the definition of the relation ∼).

Now, forget that we fixed α. We thus have shown that every α ∈ Z [i] satisfies α ∼ α.
In other words, the relation ∼ is reflexive.]

• The relation ∼ is symmetric.
[Proof: Let α, β ∈ Z [i] be such that α ∼ β. We shall prove that β ∼ α.

We have α ∼ β. In other words, α = δβ for some unit δ ∈ Z [i] (by the definition of
the relation ∼). Consider this δ. Note that δ is a unit; in other words, δ is a Gaussian
integer that has an inverse in Z [i]. Thus, δ−1 is well-defined (since δ has an inverse),
and δ−1 ∈ Z [i] (since δ has an inverse in Z [i]). Now, δ−1 is a Gaussian integer (since
δ−1 ∈ Z [i]) and itself has an inverse in Z [i] (since its inverse is

(
δ−1)−1

= δ ∈ Z [i]).
In other words, δ−1 is a unit. Furthermore, dividing both sides of the equality α = δβ
by δ, we find δ−1α = β, so that β = δ−1α. Thus, β = γα for some unit γ ∈ Z [i]
(namely, for γ = δ−1). In other words, β ∼ α (by the definition of the relation ∼).

Now, forget that we fixed α and β. We thus have shown that every α, β ∈ Z [i]
satisfying α ∼ β satisfy β ∼ α. In other words, the relation ∼ is symmetric.]

• The relation ∼ is transitive.
[Proof: Let α, β, γ ∈ Z [i] be such that α ∼ β and β ∼ γ. We shall prove that α ∼ γ.

From α ∼ β, we conclude that α = δβ for some unit δ ∈ Z [i] (by the definition of
the relation ∼). From β ∼ γ, we conclude that β = εγ for some unit ε ∈ Z [i] (by
the definition of the relation ∼). Consider these two units δ and ε. Both δ and ε are
units, and thus have inverses in Z [i] (by the definition of “unit”). In other words,
they have inverses, and these inverses δ−1 and ε−1 belong to Z [i]. Now, Proposition
4.1.16 (b) (applied to δ and ε instead of α and β) yields that the product δε has an
inverse as well, and this inverse is (δε)−1 = δ−1ε−1. Hence, (δε)−1 = δ−1ε−1 ∈ Z [i]
(since both δ−1 and ε−1 belong to Z [i]). Thus, δε is a Gaussian integer (since δ and
ε are Gaussian integers) that has an inverse in Z [i] (since (δε)−1 ∈ Z [i]). In other
words, δε is a unit (by the definition of a “unit”). This unit δε satisfies α = (δε) γ
(since α = δ β︸︷︷︸

=εγ

= δεγ = (δε) γ). Hence, α = ργ for some unit ρ ∈ Z [i] (namely, for

ρ = δε). In other words, α ∼ γ (by the definition of the relation ∼).

Now, forget that we fixed α, β, γ. We thus have shown that every α, β, γ ∈ Z [i]
satisfying α ∼ β and β ∼ γ satisfy α ∼ γ. In other words, the relation ∼ is transitive.]

We have now proven that the relation ∼ is reflexive, symmetric and transitive.
In other words, ∼ is an equivalence relation (by the definition of “equivalence
relation”). This proves Proposition 4.2.8.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 286

Proposition 4.2.9. Let α be a Gaussian integer.
(a) We have N (α) = 0 if and only if α = 0.
(b) We have N (α) = 1 if and only if α is a unit.
(c) If α is nonzero and not a unit, then N (α) > 1.

Proof of Proposition 4.2.9. (a) This is a particular case of Proposition 4.1.22 (b).
(b) =⇒: Assume that N (α) = 1. We must prove that α is a unit.
Proposition 4.1.26 (a) yields N (α) = αα. Hence, αα = N (α) = 1.
But Proposition 4.2.5 shows that α is a Gaussian integer. In other words, α ∈ Z [i].

This Gaussian integer α ∈ Z [i] is an inverse of α (since αα = 1). Thus, α has an
inverse in Z [i] (namely, α). In other words, α is a unit (by the definition of “unit”).
This proves the “=⇒” direction of Proposition 4.2.9 (b).
⇐=: Assume that α is a unit. We must prove that N (α) = 1.
We know that α is a unit. In other words, α is invertible in Z [i]. In other words,

α has an inverse α−1 ∈ Z [i].
This inverse α−1 satisfies αα−1 = 1 = 1C = (1, 0), so that

N
(

αα−1
)
= N ((1, 0)) = 12 + 02 (by the definition of N ((1, 0)))

= 1.

But Proposition 4.1.27 (d) (applied to β = α−1) yields N
(
αα−1) = N (α) ·N

(
α−1).

Hence, N (α) ·N
(
α−1) = N

(
αα−1) = 1. But Proposition 4.2.6 yields N (α) ∈ N.

The same argument (applied to α−1 instead of α) yields N
(
α−1) ∈ N (since α−1 ∈

Z [i]). Hence, the equality N (α) ·N
(
α−1) = 1 entails that N (α) | 1. Consequently,

N (α) = 1 (since N (α) ∈ N). This proves the “⇐=” direction of Proposition 4.2.9
(b).

(c) Assume that α is nonzero and not a unit. Then, α 6= 0 (since α is nonzero).
Hence, Proposition 4.1.22 (c) yields N (α) > 0. But Proposition 4.2.6 yields N (α) ∈
N. Combining this with N (α) > 0, we obtain N (α) ≥ 1. But Proposition 4.2.9
(b) shows that we have N (α) = 1 if and only if α is a unit. Hence, we don’t have
N (α) = 1 (since α is not a unit). In other words, we have N (α) 6= 1. Combining
this with N (α) ≥ 1, we find N (α) > 1. This proves Proposition 4.2.9 (c).

Proposition 4.2.10. The units (in Z [i]) are 1,−1, i,−i.

Proof of Proposition 4.2.10. Each of the four Gaussian integers 1,−1, i,−i is a unit140.
It remains to prove that there are no other units.

140Proof. We have i (−i) = 1. Hence, the Gaussian integer i has an inverse, namely i−1 = −i.
Similarly, the Gaussian integer −i has an inverse, namely (−i)−1 = i.

The Gaussian integer 1 is invertible in Z [i] (since its inverse is 1−1 = 1 ∈ Z [i]), and thus is a
unit.

The Gaussian integer −1 is invertible in Z [i] (since its inverse is (−1)−1 = −1 ∈ Z [i]), and
thus is a unit.

The Gaussian integer i is invertible in Z [i] (since its inverse is i−1 = −i ∈ Z [i]), and thus is a
unit.
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So let α ∈ Z [i] be a unit. We shall prove that α is either 1 or −1 or i or −i.
Proposition 4.2.9 (b) shows that we have N (α) = 1 if and only if α is a unit.

Hence, we have N (α) = 1 (since α is a unit).
Our goal is to prove that α is either 1 or −1 or i or −i. If you don’t insist on

full rigor, then you can easily read this off from the Argand diagram: We have
|α| =

√
N (α) = 1 (since N (α) = 1). Now, the point α is a Gaussian integer, i.e., a

lattice point, and lies on the unit circle (since its distance to the origin is |α| = 1).
But a look at the picture (142) reveals that the only lattice points lying on the unit
circle are 1,−1, i,−i. Hence, if you believe this kind of reasoning, you have shown
that α is either 1 or −1 or i or −i.

Here is a rigorous argument for this:
Let us write the complex number α as α = (a, b). Then, a, b ∈ Z (since α ∈ Z [i]).

Furthermore, the definition of N (α) yields N (α) = a2 + b2, so that a2 + b2 =
N (α) = 1. If both integers a and b were nonzero, then both their squares a2 and
b2 would be ≥ 1 (because the square of any nonzero integer is ≥ 1), and thus the
sum of these squares would be a2︸︷︷︸

≥1

+ b2︸︷︷︸
≥1

≥ 1 + 1 > 1; but this would contradict

a2 + b2 = 1. Hence, the two integers a and b cannot both be nonzero. In other
words, at least one of them is 0. In other words, we have a = 0 or b = 0. Thus, we
are in one of the following two cases:

Case 1: We have a = 0.
Case 2: We have b = 0.
(These two cases could theoretically overlap, though it is easy to see that they

don’t.)
Let us first consider Case 1. In this case, we have a = 0. Hence, a2 + b2 =

02 + b2 = b2, so that b2 = a2 + b2 = 1. Hence, b is either 1 or −1. Thus, the complex
number (0, b) is either (0, 1) or (0,−1). In other words, the complex number α is

either i or −i (since α =

 a︸︷︷︸
=0

, b

 = (0, b) and i = (0, 1) and − i︸︷︷︸
=(0,1)

= − (0, 1) =

(0,−1)). Thus, α is either 1 or −1 or i or −i. So we have shown in Case 1 that α is
either 1 or −1 or i or −i.

Let us next consider Case 2. In this case, we have b = 0. Hence, a2 + b2 =
a2 + 02 = a2, so that a2 = a2 + b2 = 1. Hence, a is either 1 or −1. Thus, the complex
number (a, 0) is either (1, 0) or (−1, 0). In other words, the complex number α is

either 1 or −1 (since α =

a, b︸︷︷︸
=0

 = (a, 0) and 1 = (1, 0) and −1 = (−1, 0)).

Thus, α is either 1 or −1 or i or −i. So we have shown in Case 2 that α is either 1
or −1 or i or −i.

The Gaussian integer −i is invertible in Z [i] (since its inverse is (−i)−1 = i ∈ Z [i]), and thus
is a unit.

Thus, each of the four Gaussian integers 1,−1, i,−i is a unit.
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We have now proven in both Cases 1 and 2 that α is either 1 or −1 or i or −i.
Hence, this always holds.

Now, forget that we fixed α. We thus have shown that if α ∈ Z [i] is a unit,
then α is either 1 or −1 or i or −i. Thus, 1,−1, i,−i are the only possible units.
Since we already know that 1,−1, i,−i are units, we thus conclude that the units
are 1,−1, i,−i. This proves Proposition 4.2.10.

As a consequence of Proposition 4.2.10, if we are given two Gaussian integers α
and β, we can easily check whether α ∼ β holds:

Proposition 4.2.11. Let α and β be two Gaussian integers. Then, we have α ∼ β
if and only if

(α = β or α = −β or α = iβ or α = −iβ) .

Proof of Proposition 4.2.11. Proposition 4.2.10 shows that the units are 1,−1, i,−i. In
other words,

{the units} = {1,−1, i,−i} .

Now, we have the following chain of logical equivalences:

(α ∼ β) ⇐⇒ (α = γβ for some unit γ ∈ Z [i])
(by the definition of the relation ∼)

⇐⇒

α = γβ for some γ ∈ {the units}︸ ︷︷ ︸
={1,−1,i,−i}


⇐⇒ (α = γβ for some γ ∈ {1,−1, i,−i})

⇐⇒

α = 1β︸︷︷︸
=β

or α = −1β︸︷︷︸
=−β

or α = iβ or α = −iβ


⇐⇒ (α = β or α = −β or α = iβ or α = −iβ) .

This proves Proposition 4.2.11.

Definition 4.2.12. We know from Proposition 4.2.8 that the relation ∼ on Z [i] is
an equivalence relation.

The equivalence classes of this relation ∼ shall be called the unit-equivalence
classes. More specifically, for each α ∈ Z [i], we shall denote the ∼-equivalence
class of α as the unit-equivalence class of α.

Proposition 4.2.13. (a) For each α ∈ Z [i], we have

(the unit-equivalence class of α) = {α, iα,−α,−iα} .

(b) The unit-equivalence classes are the sets of the form {α, iα,−α,−iα} for
some α ∈ Z [i].
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Proof of Proposition 4.2.13. (a) Let α ∈ Z [i]. Thus, both i and α belong to Z [i].
Hence, all four of the complex numbers α,−α, iα,−iα belong to Z [i] (by Proposition
4.2.4 (a) and Proposition 4.2.4 (b)).

If b ∈ Z [i] is any Gaussian integer, then we have b ∼ α if and only if
(b = α or b = −α or b = iα or b = −iα) (by Proposition 4.2.11, applied to b and α
instead of α and β). In other words, the logical equivalence

(b ∼ α) ⇐⇒ (b = α or b = −α or b = iα or b = −iα) (146)

holds for each b ∈ Z [i].
Then,

(the unit-equivalence class of α)

= (the ∼ -equivalence class of α) (by Definition 4.2.12)
= [α]∼ = {b ∈ Z [i] | b ∼ α} (by Definition 3.3.1 (a))
= {b ∈ Z [i] | b = α or b = −α or b = iα or b = −iα}

(since the equivalence (146) holds for each b ∈ Z [i])
= {α,−α, iα,−iα} (since α,−α, iα,−iα belong to Z [i])
= {α, iα,−α,−iα} . (147)

This proves Proposition 4.2.13 (a).
(b) The unit-equivalence classes are the sets of the form

(the unit-equivalence class of α) for some α ∈ Z [i] .

Since each α ∈ Z [i] satisfies (147), this rewrites as follows: The unit-equivalence
classes are the sets of the form

{α, iα,−α,−iα} for some α ∈ Z [i] .

This proves Proposition 4.2.13 (b).

Recall that (as we have seen in Subsection 4.1.8) if α is a complex number, then
the four complex numbers α, iα, −α and −iα (represented as points in the Argand
diagram) are the vertices of a square centered at the origin. But when α is a Gaus-
sian integer, these four complex numbers constitute the unit-equivalence class of
α (by Proposition 4.2.13 (a)). Thus, geometrically speaking, the unit-equivalence
class of a Gaussian integer α consists of the four vertices of a square centered at the
origin. (When α = 0, these four vertices coincide.)

Proposition 4.2.14. Let α be a Gaussian integer. Then, α ∼ 1 if and only if α is a
unit.
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Proof of Proposition 4.2.14. We have the following chain of logical equivalences:

(α ∼ 1) ⇐⇒

α = γ · 1︸︷︷︸
=γ

for some unit γ ∈ Z [i]


(by the definition of the relation ∼)

⇐⇒ (α = γ for some unit γ ∈ Z [i])
⇐⇒ (α is a unit) .

This proves Proposition 4.2.14.

Proposition 4.2.15. Let α and β be two unit-equivalent Gaussian integers. Then,
N (α) = N (β).

Proof of Proposition 4.2.15. We have α ∼ β (since α and β are unit-equivalent). In
other words, we have α = γβ for some unit γ ∈ Z [i] (by the definition of the
relation ∼). Consider this γ. Since γ is a unit, we have N (γ) = 1 (by Proposition
4.2.9 (b), applied to γ instead of α). Now,

N

 α︸︷︷︸
=γβ

 = N (γβ) = N (γ)︸ ︷︷ ︸
=1

N (β)

(
by Proposition 4.1.27 (d),
applied to γ instead of α

)
= N (β) .

This proves Proposition 4.2.15.

The converse of Proposition 4.2.15 does not hold: There exist Gaussian integers
α and β satisfying N (α) = N (β) that are not unit-equivalent.

At this point, let us briefly take a look at a seemingly random question: Which
Gaussian integers α are unit-equivalent to their own conjugates (i.e., satisfy α ∼ α)
? Besides being an instructive exercise, answering this question will surprisingly
aid us answer Question 1.4.2 later on!

Here are some examples:

• Every integer g satisfies g ∼ g, since an integer g always satisfies g = g.

• Every integer g satisfies gi ∼ gi. Indeed, if g is an integer, then Proposition
4.1.27 (c) (applied to α = g and β = i) yields

gi = g︸︷︷︸
=g

(since g∈Z⊆R)

· i︸︷︷︸
=−i

= g (−i) = −gi = (−1) · (gi) ,

and this leads to gi ∼ gi (since −1 is a unit); but this, in turn, yields gi ∼ gi
(since Proposition 4.2.8 shows that ∼ is an equivalence relation).
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• Every integer g satisfies g (1 + i) ∼ g (1 + i). Indeed, if g is an integer, then
Proposition 4.1.27 (c) (applied to α = g and β = 1 + i) yields

g (1 + i) = g︸︷︷︸
=g

(since g∈Z⊆R)

· (1 + i)︸ ︷︷ ︸
=1−i

=(−i)(1+i)
(check this!)

= g (−i) (1 + i) = (−i) · (g (1 + i)) ,

and this leads to g (1 + i) ∼ g (1 + i) (since −i is a unit); but this, in turn,
yields g (1 + i) ∼ g (1 + i) (since Proposition 4.2.8 shows that ∼ is an equiva-
lence relation).

• Every integer g satisfies g (1− i) ∼ g (1− i). This can be checked similarly to
how we just checked g (1 + i) ∼ g (1 + i).

Thus, in total, we have found four families of Gaussian integers α satisfying
α ∼ α: namely, those of the form g ∈ Z; those of the form gi with g ∈ Z; those of
the form g (1 + i) with g ∈ Z; and those of the form g (1− i) with g ∈ Z. On the
Argand diagram, these are precisely the lattice points on the four bold red lines on
the following picture:

−2 −1 0 1 2

−2 + i −1 + i 1 + i 2 + ii

−2− i −1− i 1− i 2− i−i

−2 + 2i −1 + 2i 1 + 2i 2 + 2i2i

−2− 2i −1− 2i 1− 2i 2− 2i−2i

.
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Are there any other Gaussian integers α satisfying α ∼ α ? As the following
exercise (or, rather, its part (a)) shows, the answer is “no”; we have found all such
α.

Exercise 4.2.1. Let α be a Gaussian integer satisfying α ∼ α. Prove the following:
(a) There exist some g ∈ Z and τ ∈ {1, i, 1 + i, 1− i} such that α = gτ.
(b) These g and τ satisfy N (α) ∈

{
g2, 2g2}.

(c) The norm N (α) cannot be an odd prime.

(Part (c) of this exercise, strange as it sounds, is the one we will end up using
later.)

For the sake of the next subsection, let us state a simple property of integers:

Lemma 4.2.16. Let a and b be two integers. Then, we have the logical equivalence

(a | b) ⇐⇒ (there exists a Gaussian integer γ such that b = aγ) .

Proof of Lemma 4.2.16. =⇒: Assume that a | b. We must prove that there exists a
Gaussian integer γ such that b = aγ.

We have a | b. Thus, there exists an integer c such that b = ac (by Definition
2.2.1). Consider this c. Then, c is an integer, and thus is a Gaussian integer. Hence,
there there exists a Gaussian integer γ such that b = aγ (namely, γ = c). Thus, the
“=⇒” direction of Lemma 4.2.16 is proven.
⇐=: Assume that there exists a Gaussian integer γ such that b = aγ. We must

prove that a | b.
We have assumed that there exists a Gaussian integer γ such that b = aγ. Con-

sider this γ. Write the complex number γ as γ = (c, d) with c, d ∈ R. Then, c, d ∈ Z

(since γ is a Gaussian integer). In other words, c and d are integers. Furthermore,
b = a γ︸︷︷︸

=(c,d)

= a (c, d) = (ac, ad) (by Proposition 4.1.9, applied to (c, d) instead of

(b, c)). This is an equality between a real number (namely, b) and a complex num-
ber (namely, (ac, ad)); thus, it means bC = (ac, ad) (according to Convention 4.1.7).
But bC = (b, 0) (by the definition of bC). Hence, (b, 0) = bC = (ac, ad). In other
words, b = ac and 0 = ad. Now, from b = ac, we obtain a | b (since c is an integer).
This proves the “⇐=” direction of Lemma 4.2.16.

4.2.3. Divisibility and congruence

Now, let us begin to do proper number theory with Gaussian integers. The next
definition is the straightforward analogue of Definition 2.2.1.

Definition 4.2.17. Let α and β be two Gaussian integers. We say that α | β (or “α
divides β” or “β is divisible by α” or “β is a multiple of α”) if there exists a Gaussian
integer γ such that β = αγ.

We furthermore say that α - β if α does not divide β.
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When making such a definition, we need to be careful: Potentially, it might
create a clash of notations. In fact, if a and b are integers, then the statement
“a | b” already has a meaning (explained in Definition 2.2.1). Definition 4.2.17
gives this statement a new meaning, because we can consider our integers a and
b as Gaussian integers (since every integer is a Gaussian integer). If these two
meanings are not equivalent, then the statement “a | b” becomes ambiguous (as it
now has two different meanings) – so we have laid ourselves a landmine!

Fortunately, these two meanings are equivalent. That is: If a and b are two inte-
gers, then the statement “a | b” interpreted according to Definition 2.2.1 is equiva-
lent to the statement “a | b” interpreted according to Definition 4.2.17. Indeed, if a
and b are two integers, then we have the following chain of equivalences:

(a | b in the sense of Definition 2.2.1)
⇐⇒ (there exists a Gaussian integer γ such that b = aγ) (by Lemma 4.2.16)
⇐⇒ (a | b in the sense of Definition 4.2.17) .

Thus, the two possible meanings of “a | b” are equivalent, and so we are spared of
any ambiguity.

More generally, the following proposition holds:

Proposition 4.2.18. Let a ∈ Z and β = (b, c) ∈ Z [i]. Then, a | β if and only if a
divides both b and c.

Proof of Proposition 4.2.18. =⇒: Assume that a | β. We must prove that a divides
both b and c.

The statement a | β means that there exists a Gaussian integer γ such that β = aγ
(according to Definition 4.2.17). Thus, there exists a Gaussian integer γ such that
β = aγ (since a | β). Consider this γ. Write the complex number γ in the form
γ = (u, v) for some u, v ∈ R. Then, u, v ∈ Z (since γ is a Gaussian integer). In
other words, u and v are integers.

Recall that β = (b, c). Hence, (b, c) = β = a γ︸︷︷︸
=(u,v)

= a (u, v) = (au, av) (by

Proposition 4.1.9, applied to (u, v) instead of (b, c)). In other words, b = au and
c = av. From b = au, we obtain a | b (since u is an integer). From c = av, we obtain
a | c (since v is an integer). Thus, we have a | b and a | c. In other words, a divides
both b and c. This proves the “=⇒” direction of Proposition 4.2.18.
⇐=: Assume that a divides both b and c. We must prove that a | β.
We have assumed that a divides both b and c. In other words, a | b and a | c.

From a | b, we conclude that there exists an integer u such that b = au (by the
definition of divisibility). Consider this u. From a | c, we conclude that there exists
an integer v such that c = av (by the definition of divisibility). Consider this v.
Note that u and v are integers; in other words, u, v ∈ Z.

The complex number (u, v) is a Gaussian integer (since u, v ∈ Z). Moreover,
Proposition 4.1.9 (applied to (u, v) instead of (b, c)) yields a (u, v) = (au, av). Com-



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 294

paring this with β =

(
b︸︷︷︸

=au

, c︸︷︷︸
=av

)
= (au, av), we obtain β = a (u, v). Hence, there

exists a Gaussian integer γ such that β = aγ (namely, γ = (u, v)).
The statement a | β means that there exists a Gaussian integer γ such that β = aγ

(according to Definition 4.2.17). Thus, a | β (since there exists a Gaussian integer γ
such that β = aγ). This proves the “⇐=” direction of Proposition 4.2.18.

The next proposition is a (partial) analogue of Proposition 2.2.3:

Proposition 4.2.19. Let α and β be two Gaussian integers.
(a) If α | β, then N (α) | N (β).
(b) If α | β and β 6= 0, then N (α) ≤ N (β).

(c) Assume that α 6= 0. Then, α | β if and only if
β

α
∈ Z [i].

Note that we are using the norms N (α) and N (β) as analogues of |a| and |b|
here, since the absolute values |α| and |β| of Gaussian integers are often irrational
and thus it makes no sense to talk of their divisibility. (At least, this prevents us
from using the absolute values of α and β in Proposition 4.2.19 (a). We could use
them in Proposition 4.2.19 (b).)

Note that the converse of Proposition 4.2.19 (a) does not hold. (That is, N (α) |
N (β) does not yield α | β.)

Proof of Proposition 4.2.19. Proposition 4.2.6 yields N (α) ∈ N; thus, N (α) is an in-
teger. Similarly, N (β) is an integer. Hence, the statement “N (α) | N (β)” makes
sense.

(a) Assume that α | β. Thus, there exists a Gaussian integer γ such that β = αγ
(by Definition 4.2.17). Consider this γ. We have N (γ) ∈ N (by Proposition 4.2.6,
applied to γ instead of α). Now, from β = αγ, we obtain N (β) = N (αγ) = N (α) ·
N (γ) (by Proposition 4.1.27 (d), applied to γ instead of β). Thus, N (α) | N (β)
(since N (γ) ∈N ⊆ Z). This proves Proposition 4.2.19 (a).

(b) Assume that α | β and β 6= 0. Proposition 4.1.22 (c) (applied to β instead of
α) shows that N (β) > 0 (since β 6= 0). Hence, N (β) 6= 0. Furthermore, Proposition
4.2.19 (a) yields N (α) | N (β). Thus, Proposition 2.2.3 (b) (applied to a = N (α) and
b = N (β)) yields |N (α)| ≤ |N (β)|.

But recall that N (α) ∈ N, so that N (α) ≥ 0 and therefore |N (α)| = N (α).
Similarly, |N (β)| = N (β). Hence, N (α) = |N (α)| ≤ |N (β)| = N (β). This proves
Proposition 4.2.19 (b).

(c) The proof of Proposition 4.2.19 (c) is analogous to the proof of Proposition
2.2.3 (c). (Of course, we need to replace a and b by α and β, and replace integers by
Gaussian integers throughout the argument.)

The next proposition is a straightforward analogue of Proposition 2.2.4:
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Proposition 4.2.20. (a) We have α | α for every α ∈ Z [i]. (This is called the
reflexivity of divisibility for Gaussian integers.)

(b) If α, β, γ ∈ Z [i] satisfy α | β and β | γ, then α | γ. (This is called the
transitivity of divisibility for Gaussian integers.)

(c) If α1, α2, β1, β2 ∈ Z [i] satisfy α1 | β1 and α2 | β2, then α1α2 | β1β2.

Proof of Proposition 4.2.20. This proof is completely analogous to the proof of Propo-
sition 2.2.4. (The only changes you need to make are replacing the Roman letters
a, b, c, a1, a2, b1, b2 by the corresponding Greek letters α, β, γ, α1, α2, β1, β2, and re-
placing integers by Gaussian integers. Of course, the resulting argument will use
Proposition 4.2.4 (a), specifically the fact that the product of two Gaussian integers
is a Gaussian integer.)

The next exercise is a Gaussian-integer analogue of Exercise 2.2.2:

Exercise 4.2.2. Let α and β be two Gaussian integers such that α | β and β | α.
Prove that α ∼ β.

Note that the conclusion “α ∼ β” in Exercise 4.2.2 is the proper Gaussian-integer
analogue of the conclusion “|a| = |b|” in Exercise 2.2.2 (since (145) shows that unit-
equivalence on Z [i] is an analogue of the “have the same absolute value” relation
on Z). (We could have stated the weaker conclusion |α| = |β| as well, but it would
not be half as useful.)

A converse of Exercise 4.2.2 holds as well, so we have the following equivalent
description of unit-equivalence:

Exercise 4.2.3. Let α and β be two Gaussian integers. Prove that we have the
logical equivalence

(α ∼ β) ⇐⇒ (α | β and β | α) .

The next exercise is an analogue of Exercise 2.2.3:

Exercise 4.2.4. Let α, β, γ be three Gaussian integers such that γ 6= 0. Prove that
α | β holds if and only if αγ | βγ.

The next exercise is an analogue of Exercise 2.2.4:

Exercise 4.2.5. Let ν ∈ Z [i]. Let a, b ∈N be such that a ≤ b. Prove that νa | νb.

Needless to say, the a and b in this exercise still have to be nonnegative integers,
since Gaussian integers make no sense as exponents.

The next exercise is an analogue of Exercise 2.2.5:
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Exercise 4.2.6. Let γ be a Gaussian integer such that γ | 1. Prove that γ ∼ 1 (that
is, γ is a unit, i.e., either 1 or −1 or i or −i).

Next come two more trivial facts:

Exercise 4.2.7. Let α and β be Gaussian integers such that α | β. Prove that α | β.

Exercise 4.2.8. Let α, β and γ be three Gaussian integers. Prove the following:
(a) If β ∼ γ, then we have the logical equivalence (α | β)⇐⇒ (α | γ).
(b) If α ∼ β, then we have the logical equivalence (α | γ)⇐⇒ (β | γ).
(c) Let δ be a further Gaussian integer. Assume that α ∼ β and γ ∼ δ. Then,

we have the logical equivalence (α | γ)⇐⇒ (β | δ).

Another useful and easily proven fact is the following:

Exercise 4.2.9. Let α and β be Gaussian integers such that α | β and N (α) =
N (β). Prove that α ∼ β.

We have defined congruence for integers in Definition 2.3.1. We can repeat the
same definition for Gaussian integers:

Definition 4.2.21. Let ν, α, β ∈ Z [i]. We say that α is congruent to β modulo ν if
and only if ν | α− β. We shall use the notation “α ≡ β mod ν” for “α is congruent
to β modulo ν”.

We furthermore shall use the notation “α 6≡ β mod ν” for “α is not congruent
to β modulo ν”.

Once again, such a definition risks sneaking in ambiguity, but fortunately this
one does not: If n, a, b ∈ Z, then the statement “a ≡ b mod n” interpreted accord-
ing to Definition 2.3.1 is equivalent to the statement “a ≡ b mod n” interpreted
according to Definition 4.2.21 (by treating n, a, b as Gaussian integers). To see why,
recall that both statements are defined to mean “n | a− b”, and the meaning of the
latter statement does not depend on whether we interpret n, a, b as integers or as
Gaussian integers141.

The next proposition is a straightforward analogue of Proposition 2.3.3:

Proposition 4.2.22. Let ν ∈ Z [i] and α ∈ Z [i]. Then, α ≡ 0 mod ν if and only if
ν | α.

Proof of Proposition 4.2.22. This proof is analogous to the proof of Proposition 2.3.3.

The next proposition is a straightforward analogue of Proposition 2.3.4:

141We have proven this latter fact shortly after Definition 4.2.17.
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Proposition 4.2.23. Let ν ∈ Z [i].
(a) We have α ≡ α mod ν for every α ∈ Z [i].
(b) If α, β, γ ∈ Z [i] satisfy α ≡ β mod ν and β ≡ γ mod ν, then α ≡ γ mod ν.
(c) If α, β ∈ Z [i] satisfy α ≡ β mod ν, then β ≡ α mod ν.
(d) If α1, α2, β1, β2 ∈ Z [i] satisfy α1 ≡ β1 mod ν and α2 ≡ β2 mod ν, then

α1 + α2 ≡ β1 + β2 mod ν; (148)
α1 − α2 ≡ β1 − β2 mod ν; (149)

α1α2 ≡ β1β2 mod ν. (150)

(e) Let µ ∈ Z [i] be such that µ | ν. If α, β ∈ Z [i] satisfy α ≡ β mod ν, then
α ≡ β mod µ.

Proof of Proposition 4.2.23. This proof is analogous to the proof of Proposition 2.3.4.
(Of course, it relies on parts (a) and (b) of Proposition 4.2.4, and it uses Proposition
4.2.20 instead of Proposition 2.2.4.)

Exercise 4.2.10. Let n be an integer. Let (a, b) and (c, d) be two Gaussian integers.
Prove that we have the following logical equivalence:

((a, b) ≡ (c, d)mod n) ⇐⇒ (a ≡ c mod n and b ≡ d mod n) .

(Of course, the statement “(a, b) ≡ (c, d)mod n” is to be understood by treating
the integer n as a Gaussian integer.)

Exercise 4.2.11. For any Gaussian integer τ, we let ≡
τ

be the binary relation on

Z [i] defined by (
α ≡

τ
β
)
⇐⇒ (α ≡ β mod τ) .

(a) Prove that the relation ≡
τ

is an equivalence relation whenever τ ∈ Z [i].
We shall refer to the equivalence classes of this relation ≡

τ
as the Gaussian

residue classes modulo τ; let Z [i] /τ be the set of all these classes.
(b) Let n be a positive integer. Thus, a relation ≡

n
on Z [i] is defined (by treating

the integer n as a Gaussian integer). Exercise 4.2.11 (a) (applied to τ = n) shows
that this relation ≡

n
is an equivalence relation.

Prove that the equivalence classes of the relation ≡
n

(on Z [i]) are the n2 classes

[a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2, and that these n2 classes are all distinct.

Example 4.2.24. For n = 3, Exercise 4.2.11 (b) is saying that the equivalence
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classes of the relation ≡
3

(on Z [i]) are the 32 classes

[0 + 0i]≡
3

, [0 + 1i]≡
3

, [0 + 2i]≡
3

,

[1 + 0i]≡
3

, [1 + 1i]≡
3

, [1 + 2i]≡
3

,

[2 + 0i]≡
3

, [2 + 1i]≡
3

, [2 + 2i]≡
3

,

and that these 32 classes are distinct. In contrast, the equivalence classes of the
analogous relation ≡

3
on Z are merely the 3 classes [0]≡

3
, [1]≡

3
, [2]≡

3
(by Theorem

3.4.4).

Remark 4.2.25. Exercise 4.2.11 (b) yields |Z [i] /n| = n2 = N (n) for any posi-
tive integer n. This is essentially [ConradG, Lemma 7.15]. (Conrad proves this
“by example”; you can follow the argument but you should write it up in full
generality.)

More generally, |Z [i] /τ| = N (τ) for any nonzero Gaussian integer τ. This is
proven in [ConradG, Theorem 7.14] (using Exercise 4.2.11 as a stepping stone).

4.2.4. Division with remainder

Now, let us try to make division with remainder work for Gaussian integers. This
turns out to be tricky: There is no straightforward analogue of Theorem 2.6.1 for
Gaussian integers. (In fact, it is not clear what {0, 1, . . . , b− 1} would mean if we
let b be a Gaussian integer.) The best thing we can get for Gaussian integers is an
analogue of Exercise 2.6.2 (a):

Theorem 4.2.26. Let α and β 6= 0 be Gaussian integers. There exist Gaussian
integers γ and ρ such that α = γβ + ρ and N (ρ) ≤ N (β) /2.

Note that the pair (γ, ρ) in this theorem is not unique. As we have said, Theorem
4.2.26 is an analogue of Exercise 2.6.2 (a) (with α, β, γ and ρ taking the roles of u, n,
q and r), not an analogue of Theorem 2.6.1; nevertheless, it is the closest we can get
to Theorem 2.6.1 in Z [i], and can often be substituted in places where one would
usually want to apply Theorem 2.6.1 (as long as one does not try to use uniqueness
of quotient and remainder).

Theorem 4.2.26 can be visualized geometrically (similarly to the visualizations
shown in Remark 2.6.8 and Remark 2.6.10, but using the Argand diagram). See
[ConradG, §7] for the details.

The following proof of Theorem 4.2.26 follows [ConradG, proof of Theorem 3.1].

Proof of Theorem 4.2.26. Let n = N (β). Then, n = N (β) > 0 (by Proposition 4.1.22
(c), applied to β instead of α), since β 6= 0. Also, Proposition 4.2.6 (applied to β
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instead of α) yields N (β) ∈N. Thus, n = N (β) ∈N. Hence, n is a positive integer
(since n > 0).

Proposition 4.1.26 (a) (applied to β instead of α) yields N (β) = ββ. Thus, ββ =
N (β) = n.

Furthermore, Proposition 4.1.26 (b) (applied to β instead of α) yields N
(

β
)
=

N (β) = n.
Note that β is a Gaussian integer142. Furthermore, ββ = n 6= 0, so that β 6= 0 and

β 6= 0. Hence, we can divide complex numbers by β and by β. Thus,

α

β
=

αβ

ββ
=

αβ

n
(
since ββ = n

)
.

Note that αβ is a Gaussian integer (since α and β are Gaussian integers); thus, we
can write it in the form

αβ = (u1, u2) for some u1, u2 ∈ Z.

Consider these u1, u2.
Exercise 2.6.2 (a) (applied to u = u1) shows that there exists a pair (q1, r1) ∈

Z×Z such that

u1 = q1n + r1 and |r1| ≤ n/2.

Consider this pair.
Exercise 2.6.2 (a) (applied to u = u2) shows that there exists a pair (q2, r2) ∈

Z×Z such that

u2 = q2n + r2 and |r2| ≤ n/2.

Consider this pair.
Squaring the inequality |r1| ≤ n/2, we obtain |r1|2 ≤ (n/2)2 (since |r1| and n/2

are nonnegative (because n > 0)). But |r1|2 = r2
1 (since |r|2 = r2 for every real

r). Hence, r2
1 = |r1|2 ≤ (n/2)2 = n2/4. Similarly, r2

2 ≤ n2/4. Now, the complex
number r1 + r2i = (r1, r2) satisfies

N (r1 + r2i) = r2
1︸︷︷︸

≤n2/4

+ r2
2︸︷︷︸

≤n2/4

(by the definition of N (r1 + r2i))

≤ n2/4 + n2/4 = n2/2.

We can divide this inequality by n (since n > 0); thus, we find

N (r1 + r2i)
n

≤ n2/2
n

= n/2 = N (β) /2 (151)

(since n = N (β)).

142by Proposition 4.2.5, applied to β instead of α
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But

α

β
=

αβ

n
=

(q1n + r1) + (q2n + r2) i
nsince αβ = (u1, u2) = u1︸︷︷︸

=q1n+r1

+ u2︸︷︷︸
=q2n+r2

i = (q1n + r1) + (q2n + r2) i


= (q1 + q2i) +

r1 + r2i
n

. (152)

Set γ = q1 + q2i and ρ = α − γβ. Note that γ is a Gaussian integer (since γ =
q1 + q2i = (q1, q2) with q1, q2 ∈ Z). Hence, all of α, γ, β are Gaussian integers; thus,
ρ = α− γβ is a Gaussian integer (by multiple applications of Proposition 4.2.4).

From ρ = α − γβ, we obtain α = γβ + ρ. Thus, it remains to prove N (ρ) ≤
N (β) /2.

The equation (152) rewrites as
α

β
= γ +

r1 + r2i
n

(since q1 + q2i = γ). Hence,

r1 + r2i
n

=
α

β
− γ =

α− γβ

β
=

ρ

β

(since α− γβ = ρ). Therefore,

ρ = β · r1 + r2i
n

= β · r1 + r2i
ββ

(
since n = ββ

)
=

r1 + r2i
β

and thus

N (ρ) = N
(

r1 + r2i
β

)
=

N (r1 + r2i)
N
(

β
)(

by Proposition 4.1.27 (e), applied to r1 + r2i
and β instead of α and β

)

=
N (r1 + r2i)

n
(
since N

(
β
)
= n

)
≤ N (β) /2 (by (151)) .

Thus, we have found two Gaussian integers γ and ρ such that α = γβ + ρ and
N (ρ) ≤ N (β) /2. This proves Theorem 4.2.26.

Note that we cannot define α//β or α%β for Gaussian integers α and β, since
there is no uniqueness statement in Theorem 4.2.26.
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4.2.5. Common divisors

Next, we define the Gaussian divisors of a Gaussian integer (in analogy to Defini-
tion 2.9.1):

Definition 4.2.27. Let β ∈ Z [i]. The Gaussian divisors of β are defined as the
Gaussian integers that divide β.

Note that we are calling them “Gaussian divisors” and not “divisors”, because
when β is an actual integer, there are (usually) Gaussian divisors of β that are not
divisors of β (in the sense of Definition 2.9.1). For example, 1 + i is a Gaussian
divisor of 2 (since 2 = (1 + i) (1− i)), but the only divisors of 2 (in the sense
of Definition 2.9.1) are −2,−1, 1, 2. This is one of those situations where using
the same name for a concept and its Gaussian-integer analogue would lead to
ambiguities.

The following is an analogue of Proposition 2.9.2:

Proposition 4.2.28. (a) If β ∈ Z [i], then 1 and β are Gaussian divisors of β.
(b) The Gaussian divisors of 0 are all the Gaussian integers.
(c) Let β ∈ Z [i] be nonzero. Then, all Gaussian divisors of β belong to the set{

x + yi | x, y ∈ Z satisfying x2 ≤ N (β) and y2 ≤ N (β)
}

.

Proof of Proposition 4.2.28. (a) Let β ∈ Z [i]. Then, β = 1β. Hence, 1 | β (since β is a
Gaussian integer). In other words, 1 is a Gaussian divisor of β.

Also, β = β · 1. Hence, β | β (since 1 is a Gaussian integer). In other words, β is
a Gaussian divisor of β.

So we have shown that 1 and β are Gaussian divisors of β. This proves Proposi-
tion 4.2.28 (a).

(b) If β is a Gaussian integer, then 0 = β · 0, and thus β is a Gaussian divisor
of 0 (since 0 is a Gaussian integer). In other words, each Gaussian integer is a
Gaussian divisor of 0. Conversely, each Gaussian divisor of 0 is a Gaussian integer
(by definition). Combining these two statements, we conclude that the Gaussian
divisors of 0 are all the Gaussian integers. This proves Proposition 4.2.28 (b).

(c) Let α be a Gaussian divisor of β. Write the complex number α in the form
α = (a, b) with a, b ∈ C. Then, a, b ∈ Z (since α is a Gaussian integer) and N (α) =
a2 + b2 (by the definition of N (α)). But α | β (since α is a Gaussian divisor of β)
and β 6= 0 (since β is nonzero). Hence, Proposition 4.2.19 (b) yields N (α) ≤ N (β).
But a, b are reals, and thus a2, b2 are nonnegative reals (since the square of a real is
always a nonnegative real). In other words, a2 ≥ 0 and b2 ≥ 0.

Now, N (α) = a2 + b2︸︷︷︸
≥0

≥ a2, so that a2 ≤ N (α) ≤ N (β). Also, N (α) =

a2︸︷︷︸
≥0

+b2 ≥ b2, so that b2 ≤ N (α) ≤ N (β). Also, α = (a, b) = a + bi. Hence, we
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have α = x + yi for some x, y ∈ Z satisfying x2 ≤ N (β) and y2 ≤ N (β) (namely,
for x = a and y = b). In other words,

α ∈
{

x + yi | x, y ∈ Z satisfying x2 ≤ N (β) and y2 ≤ N (β)
}

.

Now, forget that we fixed α. We thus have shown that if α is a Gaussian divisor
of β, then

α ∈
{

x + yi | x, y ∈ Z satisfying x2 ≤ N (β) and y2 ≤ N (β)
}

.

In other words, all Gaussian divisors of β belong to the set{
x + yi | x, y ∈ Z satisfying x2 ≤ N (β) and y2 ≤ N (β)

}
.

This proves Proposition 4.2.28 (c).

Thus, again, finding all Gaussian divisors of a Gaussian integer β is a problem
solvable in finite time. (Indeed, if β = 0, then Proposition 4.2.28 (b) answers this
question; but otherwise, the set in Proposition 4.2.28 (c) is clearly finite.)

The following is a straightforward analogue of Definition 2.9.3:

Definition 4.2.29. Let β1, β2, . . . , βk be Gaussian integers. Then, the common Gaus-
sian divisors of β1, β2, . . . , βk are defined to be the Gaussian integers α that satisfy

(α | βi for all i ∈ {1, 2, . . . , k}) (153)

(in other words, that divide all of the Gaussian integers β1, β2, . . . , βk). We let
DivZ[i] (β1, β2, . . . , βk) denote the set of these common Gaussian divisors.

The reason why I chose the notation DivZ[i] (β1, β2, . . . , βk) rather than the sim-
pler notation Div (β1, β2, . . . , βk) is that the latter would be ambiguous. In fact,
when β1, β2, . . . , βk are integers, the set Div (β1, β2, . . . , βk) of common divisors of
β1, β2, . . . , βk is not the set DivZ[i] (β1, β2, . . . , βk) of common Gaussian divisors of
β1, β2, . . . , βk. (For example, the former set does not contain i, while the latter does.)

We cannot directly define a “greatest common Gaussian divisor of β1, β2, . . . , βk”
to be the greatest element of DivZ[i] (β1, β2, . . . , βk), since “greatest” does not make
sense for complex numbers. (Even if we wanted “greatest in norm”, it would not
a-priori be obvious that there are no ties, i.e., that such a greatest common Gaussian
divisor is unique.)

However, it turns out that a “greatest common Gaussian divisor” gcdZ[i] (β1, β2, . . . , βk)

actually can be defined reasonably (although only up to multiplication by units).
Before we can do so, let us state some basic properties of common Gaussian divi-
sors:143

143Proposition 4.2.30 is an analogue of part of Lemma 2.9.10. Thus, we have chosen to label its
claims in a way that matches the corresponding claims in Lemma 2.9.10. This forced us to skip
claim (e), since there is no analogue of Lemma 2.9.10 (e) for Gaussian integers (because β%α is
not defined when β and α are Gaussian integers).
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Proposition 4.2.30. (a) We have DivZ[i] (α, 0) = DivZ[i] (α) for all α ∈ Z [i].
(b) We have DivZ[i] (α, β) = DivZ[i] (β, α) for all α, β ∈ Z [i].
(c) We have DivZ[i] (α, ηα + β) = DivZ[i] (α, β) for all α, β, η ∈ Z [i].
(d) If α, β, γ ∈ Z [i] satisfy β ≡ γ mod α, then DivZ[i] (α, β) = DivZ[i] (α, γ).
(f) We have DivZ[i] (α, β) ⊆ DivZ[i] (α) and DivZ[i] (α, β) ⊆ DivZ[i] (β) for all

α, β ∈ Z [i].
(g) We have DivZ[i] (ηα, β) = DivZ[i] (α, β) for all α, β ∈ Z [i] and every unit

η ∈ Z [i].
(h) We have DivZ[i] (α, ηβ) = DivZ[i] (α, β) for all α, β ∈ Z [i] and every unit

η ∈ Z [i].
(i) If α, β ∈ Z [i] satisfy α | β, then DivZ[i] (α, β) = DivZ[i] (α).
(j) The common Gaussian divisors of the empty list of Gaussian integers are

DivZ[i] () = Z [i].

Proof of Proposition 4.2.30. Parts (a), (b), (c), (d), (f), (i) and (j) of Proposition 4.2.30
are analogues of the corresponding parts of Lemma 2.9.10. Their proofs also are
straightforward adaptations of the proofs of the latter parts; we trust the reader to
perform the necessary replacements. Thus, it remains to prove parts (g) and (h)
of Proposition 4.2.30 (which are similar to parts (g) and (h) of Lemma 2.9.10, but
perhaps not in a completely evident way). Let us do this now.

(g) Let α, β ∈ Z [i]. Let η ∈ Z [i] be a unit.
Let ξ be a Gaussian integer. We have ηα = γα for some unit γ ∈ Z [i] (namely,

for γ = η). In other words, ηα ∼ α (by the definition of the relation ∼ on Z [i]).
Hence, Exercise 4.2.8 (a) (applied to ξ, ηα and α instead of α, β and γ) shows that
we have the logical equivalence (ξ | α)⇐⇒ (ξ | ηα).

But we have the following chain of equivalences:(
ξ ∈ DivZ[i] (α, β)

)
⇐⇒ (ξ is a common Gaussian divisor of α and β)(

by the definition of DivZ[i] (α, β)
)

⇐⇒

 ξ | α︸︷︷︸
⇐⇒(ξ|ηα)

and ξ | β


(by the definition of a “common Gaussian divisor”)

⇐⇒ (ξ | ηα and ξ | β)

⇐⇒ (ξ is a common Gaussian divisor of ηα and β)

(by the definition of a “common Gaussian divisor”)

⇐⇒
(

ξ ∈ DivZ[i] (ηα, β)
) (

by the definition of DivZ[i] (ηα, β)
)

.

Now, forget that we fixed ξ. We thus have proved the logical equivalence
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(
ξ ∈ DivZ[i] (α, β)

)
⇐⇒

(
ξ ∈ DivZ[i] (ηα, β)

)
for each Gaussian integer ξ. In

other words, a Gaussian integer belongs to DivZ[i] (α, β) if and only if it belongs
to DivZ[i] (ηα, β). Thus, DivZ[i] (α, β) = DivZ[i] (ηα, β) (since both DivZ[i] (α, β) and
DivZ[i] (ηα, β) are sets of Gaussian integers). This proves Proposition 4.2.30 (g).

(h) We can prove Proposition 4.2.30 (h) in a similar way to Proposition 4.2.30 (g).
Alternatively, we can derive it from the already proven parts of Proposition 4.2.30
as follows:

Let α, β ∈ Z [i]. Let η ∈ Z [i] be a unit. Then, Proposition 4.2.30 (b) (applied to
ηβ instead of β) yields

DivZ[i] (α, ηβ) = DivZ[i] (ηβ, α) = DivZ[i] (β, α)(
by Proposition 4.2.30 (g), applied to β and α

instead of α and β

)
= DivZ[i] (α, β) (by Proposition 4.2.30 (b)) .

Thus, Proposition 4.2.30 (h) is proven.

You have reached the end of the finished part.
TODO: Write on from here.

Recall that Proposition 2.9.7 gave us a quick way to compute gcd (a, b) for two
nonnegative integers a and b; this is called the Euclidean algorithm. Likewise,
we can use Proposition 4.2.30 to compute DivZ[i] (α, β) for two Gaussian integers
α and β (or, more precisely, to rewrite DivZ[i] (α, β) in the form DivZ[i] (γ) for a
single Gaussian integer γ). For example, we can compute DivZ[i] (32 + 9i, 4 + 11i)
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as follows:144

DivZ[i] (32 + 9i, 4 + 11i)

= DivZ[i]

4 + 11i, 32 + 9i︸ ︷︷ ︸
=(2−2i)(4+11i)+(2−5i)

 (by Proposition 4.2.30 (b))

= DivZ[i] (4 + 11i, (2− 2i) (4 + 11i) + (2− 5i))

= DivZ[i] (4 + 11i, 2− 5i) (by Proposition 4.2.30 (c))

= DivZ[i]

2− 5i, 4 + 11i︸ ︷︷ ︸
=(−2+i)(2−5i)+(3−i)

 (by Proposition 4.2.30 (b))

= DivZ[i] (2− 5i, (−2 + i) (2− 5i) + (3− i))

= DivZ[i] (2− 5i, 3− i) (by Proposition 4.2.30 (c))

= DivZ[i]

3− i, 2− 5i︸ ︷︷ ︸
=(1−i)(3−i)−i

 (by Proposition 4.2.30 (b))

= DivZ[i] (3− i, (1− i) (3− i)− i)

= DivZ[i] (3− i,−i) (by Proposition 4.2.30 (c))

= DivZ[i]

−i, 3− i︸︷︷︸
=(1+3i)(−i)+0

 (by Proposition 4.2.30 (b))

= DivZ[i] (−i, (1 + 3i) (−i) + 0)

= DivZ[i] (−i, 0) (by Proposition 4.2.30 (c))

= DivZ[i] (−i) (by Proposition 4.2.30 (a))

= {1, i,−1,−i} .

In the same way, for any two Gaussian integers α and β we can find a Gaussian inte-
ger γ such that DivZ[i] (α, β) = DivZ[i] (γ). This resulting γ will actually be unique
up to multiplication by units (i.e., its unit-equivalence class will be unique). Better
yet, we have the following analogue of Bezout’s theorem for Gaussian integers:

Theorem 4.2.31. Let α, β ∈ Z [i]. Then:
(a) There exists a Z [i]-linear combination γ of α and β that is a common

Gaussian divisor of α and β. (Note: A Z [i]-linear combination of α and β means a
Gaussian integer of the form λα + µβ with λ, µ ∈ Z [i].)

(b) Any such γ satisfies DivZ[i] (α, β) = DivZ[i] (γ).
(c) The unit-equivalence class of this γ is uniquely determined.

144This is [ConradG, Example 4.4].
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This theorem is, in a sense, a generalization of Theorem 2.9.12, even though
(unlike the latter theorem) it does not rely on an already existing concept of “great-
est common divisor” but rather builds the foundation for such a concept. With
Theorem 4.2.31 in hand, it makes sense to call γ the “greatest common Gaussian
divisor” of α and β, but rigorously speaking this name should be reserved for the
unit-equivalence class of γ since γ itself is not unique.

Proof of Theorem 4.2.31 (sketched). (a) This is somewhat similar to the proof of Lemma
2.9.13:

For any α, β ∈ Z [i], we let LinZ[i] (α, β) be the set of all Z [i]-linear combinations
of α and β. (This will be called the Z [i]-linear span of α and β later on, in analogy
to spans in classical linear algebra.) Now, the claim of Theorem 4.2.31 (a) can be
restated as follows:

DivZ[i] (α, β) ∩ LinZ[i] (α, β) 6= ∅ (154)

for any α, β ∈ Z [i].
We shall prove (154) by strong induction on N (α) + N (β).
So we fix n ∈ N, and assume as the induction hypothesis that (154) holds for

all α, β ∈ Z [i] satisfying N (α) + N (β) < n. We must now prove (154) for all
α, β ∈ Z [i] satisfying N (α) + N (β) = n.

So let α, β ∈ Z [i] be such that N (α) + N (β) = n. We must prove DivZ[i] (α, β) ∩
LinZ[i] (α, β) 6= ∅. We can WLOG assume N (β) ≥ N (α), since otherwise we can
swap α with β without changing any of the sets DivZ[i] (α, β) and LinZ[i] (α, β).
Assume this. Furthermore, we WLOG assume that α 6= 0 (since otherwise, the set
DivZ[i] (α, β) ∩ LinZ[i] (α, β) = DivZ[i] (0, β) ∩ LinZ[i] (0, β) clearly contains β and
thus is 6= ∅). Hence, N (α) > 0. Now, Theorem 4.2.26 (applied to β and α instead
of α and β) yields that there exist Gaussian integers γ and ρ such that β = γα + ρ
and N (ρ) ≤ N (α) /2. Consider these γ and ρ. From β = γα + ρ, we obtain
ρ = β− γα and β− ρ = γα. From N (ρ) ≤ N (α) /2, we obtain

N (ρ) ≤ N (α) /2 < N (α) .

(This is the only inequality that we will need concerning N (ρ). So, in a sense, the
inequality N (ρ) ≤ N (α) /2 in Theorem 4.2.26 is better than we need it to be.)

The Gaussian integers β and ρ satisfy β ≡ ρ mod α (since α | γα = β− ρ). Hence,
Proposition 4.2.30 (d) yields

DivZ[i] (α, β) = DivZ[i] (α, ρ) . (155)

Also, it is easy to see that LinZ[i] (α, β) ⊆ LinZ[i] (α, ρ) (since every λ, µ ∈ Z [i]
satisfy

λα + µ β︸︷︷︸
=γα+ρ

= λα + µ (γα + ρ) = (λ + µγ) α + µρ ∈ LinZ[i] (α, ρ)
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) and LinZ[i] (α, ρ) ⊆ LinZ[i] (α, β) (since every λ, µ ∈ Z [i] satisfy

λα + µ ρ︸︷︷︸
=β−γα

= λα + µ (β− γα) = (λ− µγ) α + µβ ∈ LinZ[i] (α, β)

). Combining these two relations, we obtain

LinZ[i] (α, β) = LinZ[i] (α, ρ) . (156)

Thus,

DivZ[i] (α, β)︸ ︷︷ ︸
=DivZ[i](α,ρ)

∩LinZ[i] (α, β)︸ ︷︷ ︸
=LinZ[i](α,ρ)

= DivZ[i] (α, ρ) ∩ LinZ[i] (α, ρ) .

Hence, proving DivZ[i] (α, β)∩LinZ[i] (α, β) 6= ∅ boils down to proving DivZ[i] (α, ρ)∩
LinZ[i] (α, ρ) 6= ∅. But this follows from the induction hypothesis (applied to ρ in-
stead of β), since

N (α) + N (ρ)︸ ︷︷ ︸
<N(α)≤N(β)

< N (α) + N (β) = n.

This completes the induction step. Hence, (154) (and thus Theorem 4.2.31 (a))
follows by strong induction.

(b) We shall prove DivZ[i] (α, β) ⊆ DivZ[i] (γ) and DivZ[i] (α, β) ⊇ DivZ[i] (γ)
separately:
⊆: Since γ is a Z [i]-linear combination of α and β, every common Gaussian

divisor of α and β must also divide γ. Thus, DivZ[i] (α, β) ⊆ DivZ[i] (γ).
⊇: Since γ is a common Gaussian divisor of α and β, every Gaussian divisor of γ

must be a common Gaussian divisor of α and β. Thus, DivZ[i] (α, β) ⊇ DivZ[i] (γ).
(c) Let γ1 and γ2 be two such γ’s. We must prove that γ1 ∼ γ2.
We have DivZ[i] (α, β) = DivZ[i] (γ1) and DivZ[i] (α, β) = DivZ[i] (γ2). Com-

paring these two equalities, we obtain DivZ[i] (γ1) = DivZ[i] (γ2). Now, γ1 ∈
DivZ[i] (γ1) = DivZ[i] (γ2), thus γ1 | γ2. Similarly, γ2 | γ1. Combining these,
we obtain γ1 ∼ γ2 (by Exercise 4.2.2). This proves Theorem 4.2.31 (c).

Definition 4.2.32. The greatest common Gaussian divisor (or, short, gcd) of two
Gaussian integers α and β is defined to be the γ from Theorem 4.2.31 (a). It is
called gcdZ[i] (α, β).

So it is a common Gaussian divisor of α and β and also a Z [i]-linear combi-
nation of α and β and satisfies

DivZ[i]

(
gcdZ[i] (α, β)

)
= DivZ[i] (α, β) . (157)

However, it is only well-defined up to unit-equivalence. Thus, if you have
γ1 = gcdZ[i] (α, β) and γ2 = gcdZ[i] (α, β), then you cannot conclude that γ1 = γ2
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(you can only conclude γ1 ∼ γ2). So, strictly speaking, we should have de-
fined gcdZ[i] (α, β) as a unit-equivalence class, not as a concrete Gaussian integer.
But we will allow ourselves this abuse of notation. We shall not write equality
signs like the one in “γ1 = gcdZ[i] (α, β)”, however; we instead prefer to write
“γ1 ∼ gcdZ[i] (α, β)”. Generally, whenever you see gcdZ[i] (α, β) in a statement,
you should be understanding the statement to hold for every possible choice of
gcdZ[i] (α, β).

Proposition 4.2.33. Let a and b be two integers. Then,

gcd (a, b) ∼ gcdZ[i] (a, b) .

(Of course, the gcd on the left hand side is the gcd of the two integers a and b
as defined in Definition 2.9.6, whereas the gcdZ[i] on the right hand side is the
greatest common Gaussian divisor of the Gaussian integers a and b.)

Proof of Proposition 4.2.33. The integer gcd (a, b) is a common divisor of a and b and
also is a Z-linear combination of a and b (by Bezout’s theorem). Therefore, it is
also a common Gaussian divisor of the Gaussian integers a and b and also is a
Z [i]-linear combination of a and b. But this yields that it is gcdZ[i] (a, b) (due to the
definition of gcdZ[i] (a, b)).

This proposition allows us to write “gcd” for both concepts of gcd without hav-
ing to disambiguate the meaning. (We shall not do so, however.)

Proposition 4.2.34. Let α and β be two Gaussian integers, not both equal to
0. Then, the possible values of gcdZ[i] (α, β) (that is, strictly speaking, all four
elements of the unit-equivalence class gcdZ[i] (α, β)) are exactly the elements of
DivZ[i] (α, β) having the largest norm.

Proof. First of all, gcdZ[i] (α, β) is a common Gaussian divisor of α and β, and thus
is 6= 0 (since α and β are not both equal to 0). Thus, there are exactly four Gaussian
integers unit-equivalent to gcdZ[i] (α, β). In other words, there are exactly four
possible values of gcdZ[i] (α, β). We must show that these values are exactly the
elements of DivZ[i] (α, β) having the largest norm.

In other words, we must show the following two claims:

Claim 1: We have N
(

gcdZ[i] (α, β)
)
> N (γ) for each γ ∈ DivZ[i] (α, β)

that does not satisfy γ ∼ gcdZ[i] (α, β).

Claim 2: We have N
(

gcdZ[i] (α, β)
)
= N (γ) for each γ ∈ DivZ[i] (α, β)

that does satisfy γ ∼ gcdZ[i] (α, β).
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Claim 2 is obvious, since any two unit-equivalent Gaussian integers have the
same norm (by Proposition 4.2.15).

[Proof of Claim 1: Let γ ∈ DivZ[i] (α, β) do not satisfy γ ∼ gcdZ[i] (α, β). Now,

γ ∈ DivZ[i] (α, β) = DivZ[i]

(
gcdZ[i] (α, β)

)
(by (157)). Hence, γ | gcdZ[i] (α, β).

Let us set δ = gcdZ[i] (α, β). So γ | δ. We have δ 6= 0 (because α and β are not

both zero) and thus γ 6= 0 (since γ | δ). Thus, γ | δ yields that
δ

γ
is a Gaussian

integer, which is furthermore nonzero (since δ 6= 0). If this Gaussian integer
δ

γ
was a unit, then we would have γ ∼ δ = gcdZ[i] (α, β), which would contradict the

assumption that γ does not satisfy γ ∼ gcdZ[i] (α, β). So
δ

γ
is a nonzero Gaussian

integer that is not a unit. Hence, N
(

δ

γ

)
> 1 (because Proposition 4.2.9 yields that

every nonzero Gaussian integer that is not a unit must have norm > 1). Now,

N (δ) = N
(

δ

γ

)
︸ ︷︷ ︸

>1

·N (γ) > N (γ) .

In other words, N
(

gcdZ[i] (α, β)
)
> N (γ). This proves Claim 1.]

Proposition 4.2.34 shows that gcdZ[i] (α, β) is uniquely determined by the set
DivZ[i] (α, β). (Yes, you have to consider the case α = β = 0 separately in proving
this.) Hence, Proposition 4.2.30 yields:

Proposition 4.2.35. (a) We have gcdZ[i] (α, 0) ∼ gcdZ[i] (α) for all α ∈ Z [i].
(b) We have gcdZ[i] (α, β) ∼ gcdZ[i] (β, α) for all α, β ∈ Z [i].
(c) We have gcdZ[i] (α, ηα + β) ∼ gcdZ[i] (α, β) for all α, β, η ∈ Z [i].
(d) If α, β, γ ∈ Z [i] satisfy β ≡ γ mod α, then gcdZ[i] (α, β) ∼ gcdZ[i] (α, γ).
(g) We have gcdZ[i] (ηα, β) ∼ gcdZ[i] (α, β) for all α, β ∈ Z [i] and every unit

η ∈ Z [i].
(h) We have gcdZ[i] (α, ηβ) ∼ gcdZ[i] (α, β) for all α, β ∈ Z [i] and every unit

η ∈ Z [i].
(i) If α, β ∈ Z [i] satisfy α | β, then gcdZ[i] (α, β) ∼ gcdZ[i] (α).
(j) The greatest common Gaussian divisor of the empty list of Gaussian inte-

gers is gcdZ[i] () = 0.

Theorem 2.9.15 still holds for Gaussian integers.
Theorem 2.9.17 still holds for Gaussian integers.
Theorem 2.9.19 still holds for Gaussian integers.
Theorem 2.9.20 has to be modified as follows:
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Corollary 4.2.36. Let σ, α, β ∈ Z [i]. Then,

gcdZ[i] (σα, σβ) ∼ σ gcdZ[i] (α, β) .

Exercise 2.9.4 still holds for Gaussian integers.
Exercise 2.9.5 becomes the claim that if α1 ∼ α2 and β1 ∼ β2, then gcdZ[i] (α1, β1) ∼

gcdZ[i] (α2, β2). The solution does not carry over, but you can easily prove this new
claim by hand.

Greatest common Gaussian divisors of k Gaussian integers can also be defined.
The next definition is an analogue of Definition 2.10.1:

Definition 4.2.37. Let α and β be two Gaussian integers. We say that α is coprime
to β if and only if gcdZ[i] (α, β) ∼ 1 (that is, gcdZ[i] (α, β) is a unit).

Thus, any two coprime integers are also two coprime Gaussian integers (because
of Proposition 4.2.33), and vice versa (for the same reason). This is why we can
afford speaking of “coprime Gaussian integers” and not just “Gaussian-coprime
Gaussian integers”.

Everything we said about coprimality of integers still holds for Gaussian in-
tegers. In particular, Proposition 2.10.4, Theorem 2.10.6, Theorem 2.10.7, The-
orem 2.10.8 and Theorem 2.10.9 still hold if all integers are replaced by Gaus-
sian integers (with the caveat that the gcd is no longer unique, so for example
“ab ≡ gcd (a, n)mod n” must be interpreted as “ab is congruent to some of the
possible values of gcdZ[i] (a, n) modulo n”).

We could define Gaussian rationals (their set is called Q [i]) as complex numbers
a + bi with a, b ∈ Q. These are exactly the quotients of Gaussian integers.

Lowest common multiples of Gaussian integers still exist, but their definition
has to be modified. For example, we can define lcmZ[i] (α, β) as the (unique up to
unit-equivalence) Gaussian integer γ such that the Gaussian common multiples of
α and β are the Gaussian multiples of γ. (We would have to prove that it actually
is unique and exists.) Theorem 2.11.6 still holds, in the sense that gcdZ[i] (α, β) ·
lcmZ[i] (α, β) ∼ αβ. Many other properties of lowest common multiples extend to
Gaussian integers.

The Chinese remainder theorem (Theorem 2.12.1) still holds for coprime Gaus-
sian integers µ and ν. A similar fact holds for k mutually coprime Gaussian inte-
gers.

4.2.6. Gaussian primes

The next definition is an analogue of Definition 2.13.1:
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Definition 4.2.38. Let π be a nonzero Gaussian integer that is not a unit. We
say that π is a Gaussian prime if each Gaussian divisor of π is either a unit or
unit-equivalent to π.

The letter “π” in this definition is unrelated to the irrational number π = 3.14159 . . ..
It just happens to be the Greek letter corresponding to the Roman “p”.

The Gaussian primes are not a superset of the primes. For example:

Example 4.2.39. The Gaussian integer 2 is not a Gaussian prime.

Proof. We have 2 = (1 + i) (1− i). The factors 1 + i and 1− i have norms 2, which
means that they are neither units themselves (since units would have norm 1) nor
unit-equivalent to 2 (since 2 has norm 4, but unit-equivalent Gaussian integers have
equal norms). Thus, 1+ i is a Gaussian divisor of 2 that is neither a unit nor is unit-
equivalent to 2. Hence, 2 is not a Gaussian prime (by the definition of “Gaussian
prime”).

So don’t forget the word “Gaussian” when you mean it!
Let us search for Gaussian primes. So we know that 2 is not a Gaussian prime.

What about 3?

Example 4.2.40. The Gaussian integer 3 is a Gaussian prime.

Proof of Example 4.2.40. Assume the contrary. Thus, there exists a Gaussian divisor
α of 3 that is neither a unit nor unit-equivalent to 3 (since 3 is a nonzero Gaussian
integer that is not a unit). Consider this α. Then, α is a Gaussian integer and satis-
fies α | 3 (since α is a Gaussian divisor of 3). Hence, Proposition 4.2.19 (a) (applied
to β = 3) yields N (α) | N (3) = 32 + 02 = 9. Also, N (α) ∈ N (by Proposition
4.2.6). Hence, N (α) is a nonnegative integer. Thus, N (α) is a nonnegative divisor
of 9 (because N (α) | 9).

If we had N (α) = N (3), then we would have α ∼ 3 (by Exercise 4.2.9, applied to
β = 3); but this would contradict the fact that α is not unit-equivalent to 3. Hence,
we cannot have N (α) = N (3). Thus, we have N (α) 6= N (3) = 9.

If we had N (α) = 1, then α would be a unit (by Proposition 4.2.9 (b)); but this
would contradict the fact that α is not a unit. Hence, we cannot have N (α) = 1.
Thus, we have N (α) 6= 1.

But the only nonnegative divisors of 9 are 1, 3, 9. Hence, N (α) must be either
1 or 3 or 9 (since N (α) is a nonnegative divisor of 9). Since we have shown that
N (α) 6= 1 and N (α) 6= 9, we thus conclude that N (α) = 3.

But let us write the Gaussian integer α as (a, b) for some a, b ∈ Z. Thus, N (α) =
a2 + b2, so that a2 + b2 = N (α) = 3 ≡ 3 mod 4. This contradicts Exercise 2.7.2
(c). This contradiction shows that our assumption was false. So 3 is a Gaussian
prime.

So we know that 3 is a Gaussian prime, but 2 is not. Is there a way to tell which
integers are Gaussian primes, without checking all Gaussian divisors?

Let us first state a positive criterion, which generalizes Example 4.2.40:
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Lemma 4.2.41. Let p be a prime such that p ≡ 3 mod 4. Then, p is a Gaussian
prime.

Proof of Lemma 4.2.41. Assume the contrary. Thus, there exists a Gaussian divisor α
of p that is neither a unit nor unit-equivalent to p (since p is a nonzero Gaussian
integer that is not a unit145). Consider this α. Then, α is a Gaussian integer and
satisfies α | p (since α is a Gaussian divisor of p). Hence, Proposition 4.2.19 (a)
(applied to β = p) yields N (α) | N (p) = p2 + 02 = p2. Also, N (α) ∈N (by Propo-
sition 4.2.6). Hence, N (α) is a nonnegative integer. Thus, N (α) is a nonnegative
divisor of p2 (because N (α) | p2).

If we had N (α) = N (p), then we would have α ∼ p (by Exercise 4.2.9, applied to
β = p); but this would contradict the fact that α is not unit-equivalent to p. Hence,
we cannot have N (α) = N (p). Thus, we have N (α) 6= N (p) = p2.

If we had N (α) = 1, then α would be a unit (by Proposition 4.2.9 (b)); but this
would contradict the fact that α is not a unit. Hence, we cannot have N (α) = 1.
Thus, we have N (α) 6= 1.

But the only nonnegative divisors of p2 are 1, p, p2 (indeed, this follows by ap-
plying Exercise 2.13.13 to k = 2). Hence, N (α) must be either 1 or p or p2 (since
N (α) is a nonnegative divisor of p2). Since we have shown that N (α) 6= 1 and
N (α) 6= p2, we thus conclude that N (α) = p.

But let us write the Gaussian integer α as (a, b) for some a, b ∈ Z. Thus, N (α) =
a2 + b2, so that a2 + b2 = N (α) = p ≡ 3 mod 4. This contradicts Exercise 2.7.2 (c).
This contradiction shows that our assumption was false. Thus, Lemma 4.2.41 is
proven.

It is clear that no prime is divisible by 4. Thus, there are three types of primes:

• Type 1: Primes that are ≡ 1 mod 4: these are 5, 13, 17, 29, . . ..

• Type 2: Primes that are even: there is only one of these, namely 2.

• Type 3: Primes that are ≡ 3 mod 4: these are 3, 7, 11, 19, 23, . . ..

(One can show that there are infinitely many primes of Type 1 and infinitely
many primes of Type 3. It can also be shown that there are “roughly the same
amount” of Type-1 primes and of Type-3 primes “in theory”, but “in practice” the
Type-3 primes are more frequent. For the concrete meaning of this weird paradox-
ical claim, google for “Chebyshev’s bias”.)

Lemma 4.2.41 says that all Type-3 primes are Gaussian primes. What about the
other primes – are they Gaussian primes? We already know that 2 is not, since
2 = (1 + i) (1− i). Likewise, 5 is not, since 5 = (1 + 2i) (1− 2i). Likewise, 13 is
not, since 13 = (2 + 3i) (2− 3i).

145Why is p not a unit? Because the units are 1,−1, i,−i, and none of these numbers is p.

https://en.wikipedia.org/wiki/Chebyshev's_bias
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This may suggest that primes p satisfying p = 2 or p ≡ 1 mod 4 (that is, primes
of Type 1 or Type 2) not only factor nontrivially, but actually factor as

p = (x + yi) (x− yi) for some integers x and y.

Of course, this equation rewrites as p = x2 + y2. Thus, we are back to asking
Question 1.4.1, at least for primes.

We shall now answer this question, and actually prove a bit more:

Theorem 4.2.42. Let p be a prime such that either p = 2 or p ≡ 1 mod 4.
(a) There exist integers x and y such that p = x2 + y2.
(b) If p ≡ 1 mod 4, then there exist exactly 8 pairs (x, y) of integers such that

p = x2 + y2. (For example, if p = 5, then these 8 pairs are (1, 2), (2, 1), (1,−2),
(−2, 1), (−1, 2), (2,−1), (−1,−2) and (−2,−1).)

(c) There exists a Gaussian prime π such that p = ππ.
(d) The Gaussian integer p itself is not a Gaussian prime.
(e) Assume that p ≡ 1 mod 4. Consider the Gaussian prime π from Theorem

4.2.42 (c). Then, π is also a Gaussian prime, and we do not have π ∼ π.

For example, the Type-1 prime 17 satisfies

17 = 12 + 42 = (1 + 4i) (1− 4i) = (1 + 4i)
(
1 + 4i

)
= (1− 4i)

(
1− 4i

)
= (4 + i)

(
4 + i

)
.

Note that the claim of Theorem 4.2.42 (a) (at least for p 6= 2) also appears in
[AigZie18, Proposition in Chapter 4], with a very different proof.

Before we can prove Theorem 4.2.42, we will have to build up the theory of Gaus-
sian primes a bit more. We first state the Gaussian-integer analogue of Proposition
2.13.5:

Proposition 4.2.43. Let π be a Gaussian prime. Let α ∈ Z [i]. Then, either π | α
or π ⊥ α.

Proof of Proposition 4.2.43. Analogous to our proof of Proposition 2.13.5 above.

Next, we state the analogue to Theorem 2.13.6:

Theorem 4.2.44. Let π be a Gaussian prime. Let α, β ∈ Z [i] such that π | αβ.
Then, π | α or π | β.

Proof of Theorem 4.2.44. Analogous to our proof of Theorem 2.13.6 above.

We also need the following simple fact:
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Lemma 4.2.45. Let α be a Gaussian integer. If N (α) is prime, then α is a Gaussian
prime.

This shows, for example, that 1+ i and 1+ 2i are Gaussian primes. The converse
of Lemma 4.2.45 does not hold (e.g., since 3 is a Gaussian prime, but N (3) = 9 is
not prime).

Proof of Lemma 4.2.45. Assume that N (α) is prime. We must prove that α is a Gaus-
sian prime.

Assume the contrary. Thus, α is not a Gaussian prime, but α is neither zero nor
a unit (since N (α) is prime and therefore > 1). Hence, α has a Gaussian divisor δ
that is neither a unit nor unit-equivalent to α. Consider this δ.

Now, δ is a Gaussian divisor of α; in other words, δ is a Gaussian integer and
satisfies δ | α. Hence, Proposition 4.2.19 (a) (applied to δ and α instead of α and β)
yields N (δ) | N (α). Also, N (δ) ∈ N (by Proposition 4.2.6, applied to δ instead of
α). Hence, N (δ) is a nonnegative integer. Thus, N (δ) is a nonnegative divisor of
N (α) (because N (δ) | N (α)). But the only nonnegative divisors of N (α) are 1 and
N (α) 146. Thus, N (δ) equals either 1 or N (α) (since N (δ) is a nonnegative divisor
of N (α)). But if we had N (δ) = 1, then δ would be a unit, which is impossible
(by the definition of δ). Thus, we cannot have N (δ) = 1. Hence, we must have
N (δ) = N (α) (since N (δ) equals either 1 or N (α)). Hence, Exercise 4.2.9 (applied
to δ and α instead of α and β) shows that δ ∼ α. This contradicts the assumption
that δ is not unit-equivalent to α. This contradiction proves that our assumption
was wrong. Lemma 4.2.45 is proven.

Next, let us show that conjugation does not change Gaussian primeness:

Lemma 4.2.46. Let π be a Gaussian prime. Then, π is a Gaussian prime, too.

Proof of Lemma 4.2.46. Conjugation (of complex numbers) sends Gaussian integers
to Gaussian integers (by Proposition 4.2.5), products to products (by Proposition
4.1.27 (c)) and inverses to inverses (i.e., we have α−1 = α−1 whenever α ∈ C is
nonzero). Furthermore, it is an involution (since α = α for each α ∈ C). Thus,
conjugation preserves all “intrinsic” properties of Gaussian integers; for example:

• If π is nonzero, then π is nonzero, and vice versa.

• If π is not a unit, then π is not a unit, and vice versa.

• If δ is a Gaussian divisor of π, then δ is a Gaussian divisor of π, and vice
versa.

146Proof. The only positive divisors of N (α) are 1 and N (α) (since N (α) is prime). Hence, the only
nonnegative divisors of N (α) are 1 and N (α) and possibly 0. But since 0 is not a nonnegative
divisor of N (α) (indeed, if it was, then N (α) would be a multiple of 0 and therefore equal to
0, which would contradict the fact that N (α) is prime), this yields that the only nonnegative
divisors of N (α) are 1 and N (α).
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• If δ is not a unit, then δ is not a unit, and vice versa.

• If δ is not unit-equivalent to π, then δ is not unit-equivalent to π, and vice
versa.

(These facts are straightforward to prove; see, for example, Exercise 4.2.7 for a proof
of the third one.)

Hence, if you compare what it means for π to be a Gaussian prime with what
it means for π to be a Gaussian prime, then you will see that it means the same
thing. This proves Lemma 4.2.46.

Now, we can prove Theorem 4.2.42:

Proof of Theorem 4.2.42. (d) Assume the contrary. Thus, p is a Gaussian prime. But
2 is not a Gaussian prime (by Example 4.2.39). Hence, p 6= 2. Thus, p ≡ 1 mod 4
(since we assumed that either p = 2 or p ≡ 1 mod 4). Therefore, p = 2k + 1 for
some even k ∈N. Consider this k.

Exercise 2.15.5 yields k!2 ≡ − (−1)k︸ ︷︷ ︸
=1

(since k is even)

= −1 mod p. Set u = k!; thus, this

becomes u2 ≡ −1 mod p. In other words,

p | u2 − (−1) = u2 − i2 = (u + i) (u− i) .

This is a divisibility in Z, thus also a divisibility in Z [i].
Hence, Theorem 4.2.44 (applied to π = p, α = u + i and β = u− i) yields that

p | u + i or p | u− i (since p is a Gaussian prime). But if p | u− i, then p | u + i
holds as well (since Exercise 4.2.7 shows that p | u − i implies p | u− i = u + i,
which means p = p | u + i). Hence, we have p | u + i in both cases.

This means that there exists a Gaussian integer γ such that u + i = pγ. Consider
this γ. Write γ as γ = (a, b) with a, b ∈ Z. Then, (u, 1) = u + i = p γ︸︷︷︸

=(a,b)

=

p (a, b) = (pa, pb). Thus, u = pa and 1 = pb. But 1 = pb leads to p | 1 in Z

(since b ∈ Z), which is absurd (since p is prime). This contradiction shows that our
assumption was wrong. Thus, Theorem 4.2.42 (d) is proven.

(a) We have N (p) = p2 + 02 = p2 > 1 (since p > 1). Thus, p is nonzero and not
a unit. But Theorem 4.2.42 (d) shows that p is not a Gaussian prime. Since p is
nonzero and not a unit, this shows that p has a Gaussian divisor δ that is neither
a unit nor unit-equivalent to p. Consider this δ. Then, δ is a Gaussian integer and
satisfies δ | p (since δ is a Gaussian divisor of p). Hence, Proposition 4.2.19 (a)
(applied to α = δ and β = p) yields N (δ) | N (p) = p2 + 02 = p2. Also, N (δ) ∈ N

(by Proposition 4.2.6, applied to α = δ). Hence, N (δ) is a nonnegative integer.
Thus, N (δ) is a nonnegative divisor of p2 (because N (δ) | p2).

If we had N (δ) = N (p), then we would have δ ∼ p (by Exercise 4.2.9, applied to
α = δ and β = p); but this would contradict the fact that δ is not unit-equivalent to
p. Hence, we cannot have N (δ) = N (p). Thus, we have N (δ) 6= N (p) = p2.
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If we had N (δ) = 1, then δ would be a unit (by Proposition 4.2.9 (b), applied to
α = δ); but this would contradict the fact that δ is not a unit. Hence, we cannot
have N (δ) = 1. Thus, we have N (δ) 6= 1.

But the only nonnegative divisors of p2 are 1, p, p2 (indeed, this follows by ap-
plying Exercise 2.13.13 to k = 2). Hence, N (δ) must be either 1 or p or p2 (since
N (δ) is a nonnegative divisor of p2). Since we have shown that N (δ) 6= 1 and
N (δ) 6= p2, we thus conclude that N (δ) = p.

But let us write the Gaussian integer δ as (a, b) for some a, b ∈ Z. Thus, N (δ) =
a2 + b2, so that a2 + b2 = N (δ) = p. Hence, there exist integers x and y such that
p = x2 + y2 (namely, x = a and y = b). This proves Theorem 4.2.42 (a).

(c) Theorem 4.2.42 (a) shows that there exist integers x and y such that p =
x2 + y2. Consider these x and y. Let π be the Gaussian integer x + iy. Then,
ππ = (x + iy)

(
x + iy

)
= x2 + y2 = p. Thus, p = ππ. It remains to prove that π is

a Gaussian prime.
The norm of π is N (π) = x2 + y2 = p, which is prime. Hence, Lemma 4.2.45

(applied to α = π) shows that π is a Gaussian prime. This completes the proof of
Theorem 4.2.42 (c).

(b) Assume that p ≡ 1 mod 4. We must prove that there exist exactly 8 pairs
(x, y) of integers such that p = x2 + y2.

One such pair is provided by Theorem 4.2.42 (a). Let us call it (a, b). To get the
other 7, we notice that it must satisfy a 6= 0 (since p is not a perfect square) and
b 6= 0 (for the same reason) and a 6= b (since p is not 2n2 for any n ∈ Z). Thus, the
8 pairs

(a, b) , (b, a) , (a,−b) , (−b, a) ,
(−a, b) , (b,−a) , (−a,−b) , (−b,−a)

are all distinct. Each of these 8 distinct pairs is a pair (x, y) of integers such that
p = x2 + y2 (because p = a2 + b2 = b2 + a2 = a2 + (−b)2 etc.).

It thus remains to prove that these 8 pairs are the only pairs (x, y) of integers
such that p = x2 + y2.

In other words, we need to prove that if (x, y) is a pair of integers such that
p = x2 + y2, then (x, y) is one of the above 8 pairs. So let us fix a pair (x, y) of
integers such that p = x2 + y2. We must prove that (x, y) is one of the above 8
pairs. In other words, we must prove that (x, y) equals (a, b) up to order and signs.
This is equivalent to proving that x + yi ∼ a + bi or x− yi ∼ a + bi.

Set π = x + yi and α = a + bi. Then, π and α are Gaussian integers having
norms N (π) = x2 + y2 = p and N (α) = a2 + b2 = p (by the definition of (a, b)).
Thus, N (α) = p is prime. Hence, Lemma 4.2.45 shows that α is a Gaussian prime.
Similarly, π is a Gaussian prime.

We must prove that x + yi ∼ a + bi or x− yi ∼ a + bi. In other words, we must
prove that π ∼ α or π ∼ α (since x + yi = π and x− yi = π and a + bi = α).

Now,
α = a + bi | (a + bi) (a− bi) = a2 + b2 = p = N (π) = ππ.
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Since α is a Gaussian prime, this yields that α | π or α | π (by Theorem 4.2.44).
Thus, we are in one of the following two Cases:

Case 1: We have α | π.
Case 2: We have α | π.
In Case 1, we have α | π. In other words, there exists a Gaussian integer ξ such

that π = αξ. Consider this ξ. We have π = αξ, thus N (π) = N (αξ) = N (α)N (ξ).
Since both N (π) and N (α) are p (because N (π) = x2 + y2 = p and N (α) =
a2 + b2 = p), this rewrites as p = p N (ξ). We can cancel p from this equality, and
obtain N (ξ) = 1. Hence, ξ is a unit. Therefore, π = αξ yields π ∼ α. In other
words, x + yi ∼ a + bi (since π = x + yi and α = a + bi).

In Case 2, we similarly obtain x− yi ∼ a+ bi (since N (π) = N (π) = x2 + y2 = p
and π = x− yi).

Hence, in both Cases, we have proven that x + yi ∼ a + bi or x− yi ∼ a + bi. This
completes our proof of Theorem 4.2.42 (b).

(e) Lemma 4.2.46 yields that π is a Gaussian prime. It remains to prove that we
do not have π ∼ π.

Assume the contrary. Thus, π ∼ π. Hence, Exercise 4.2.1 (c) (applied to π
instead of α) yields that the norm N (π) cannot be an odd prime. In view of
N (π) = ππ = p, this rewrites as follows: p cannot be an odd prime.

But p is odd (since p ≡ 1 mod 4) and prime. In other words, p is an odd prime.
This contradicts the fact that p cannot be an odd prime. This contradiction shows
that our assumption was false. Thus, the proof of Theorem 4.2.42 (e) is complete.

We have thus answered Question 1.4.2 (b) in the case when n is a prime: We have
shown that a prime p is a sum of two perfect squares if and only if either p = 2 or
p ≡ 1 mod 4; and we have shown that the number of pairs (x, y) ∈ Z2 satisfying
p = x2 + y2 is 8 when p ≡ 1 mod 4 and is 4 when p = 2 (the latter claim is easy to
check).

What about the case of arbitrary n?
For n = 21, we have n ≡ 1 mod 4, but n is not a sum of two perfect squares. So

the answer we gave for the case of prime n does not generalize to arbitrary n.
It turns out that the right answer for arbitrary n will come from the analogue of

prime factorization in Z [i].

Proposition 4.2.47. Let ν be a nonzero Gaussian integer that is not a unit. Then,
there exists at least one Gaussian prime π such that π | ν.

Proof of Proposition 4.2.47. This is an analogue of Proposition 2.13.8, and can be
proven in the same way. Just replace d (the smallest positive divisor of n) by δ
(a Gaussian divisor of ν that is not a unit and has the smallest norm among all
such divisors).
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Proposition 4.2.48. Let ν be a nonzero Gaussian integer. Then, ν is unit-
equivalent to a certain product of finitely many Gaussian primes.

Proof of Proposition 4.2.48. This is an analogue of Proposition 2.13.10, and can be
proven in the same way: Strong induction on N (ν). The main difference is that
the case of N (ν) = 1 leads to ν being a unit (hence unit-equivalent to an empty
product of Gaussian primes) rather than ν being 1.

Definition 4.2.49. Let ν be a nonzero Gaussian integer. A Gaussian prime fac-
torization of ν means a tuple (π1, π2, . . . , πk) of Gaussian primes such that
ν ∼ π1π2 · · ·πk.

Why did we require only ν ∼ π1π2 · · ·πk and not ν = π1π2 · · ·πk ? Because
we want −1 to have a Gaussian prime factorization, but there is no way to literally
write −1 as a product of Gaussian primes.

Exercise 4.2.12. Let π and κ be two Gaussian primes that do not satisfy π ∼ κ.
Prove that π ⊥ κ.

Solution sketch. This is an analogue of Exercise 2.13.1, and its solution goes accord-
ingly.

Lemma 4.2.50. Let π be a Gaussian prime. Let α be a nonzero Gaussian integer.
Then, there exists a largest m ∈N such that πm | α.

Proof of Lemma 4.2.50. This is an analogue of Lemma 2.13.22 for Gaussian integers
(with π and α playing the roles of p and n), and the proof also proceeds similarly.
Here are the main differences: Instead of p > 1, we now have N (π) > 1 (which is
because π is nonzero and not a unit). Again, let W be the set of all m ∈N satisfying
πm | α. Then, W is a nonempty set of integers (this is proven as in the proof of
Lemma 2.13.22). Let u = N (α). Thus, u ∈ N. It is easy to see that N

(
πk) > k for

each k ∈ N (indeed, Corollary 4.1.28 (b) yields N
(
πk) = (N (π))k > k by Exercise

2.13.4 (applied to p = N (π))). From this point, we proceed similarly as in the proof
of Lemma 2.13.22.

Similarly to Definition 2.13.23, we can define π-adic valuations:

Definition 4.2.51. Let π be a Gaussian prime.
(a) Let α be a nonzero Gaussian integer. Then, vπ (α) shall denote the largest

m ∈ N such that πm | α. This is well-defined (by Lemma 4.2.50). This non-
negative integer vπ (α) will be called the π-valuation (or the π-adic valuation) of
α.

(b) We extend this definition of vπ (α) to the case of α = 0 as follows: Set
vπ (0) = ∞.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 319

Definition 4.2.51 does not conflict with Definition 2.13.23. Indeed, if a prime p
happens to also be a Gaussian prime, and if n is an integer, then both definitions
yield the same value of vp (n) (since pm | a means the same thing whether we treat
p and a as integers or as Gaussian integers).

Theorem 4.2.52. Let π be a Gaussian prime.
(a) We have vπ (αβ) = vπ (α) + vπ (β) for any two Gaussian integers α and β.
(b) We have vπ (α + β) ≥ min {vπ (α) , vπ (β)} for any two Gaussian integers

α and β.
(c) We have vπ (1) = 0. More generally, vπ (α) = 0 for any unit α ∈ Z [i].

(d) We have vπ (κ) =

{
1, if κ ∼ π;
0, otherwise

for any Gaussian prime κ.

Proof. This is an analogue of Theorem 2.13.28, and is proven similarly.

Proposition 4.2.53. Let ν be a nonzero Gaussian integer. Let (α1, α2, . . . , αk) be a
Gaussian prime factorization of ν. Let π be a Gaussian prime. Then,

(the number of times a Gaussian integer unit-equivalent to π

appears in the tuple (α1, α2, . . . , αk))

= (the number of times [π]∼ appears in the tuple ([α1]∼ , [α2]∼ , . . . , [αk]∼))

= (the number of i ∈ {1, 2, . . . , k} such that αi ∼ π)

= (the number of i ∈ {1, 2, . . . , k} such that [αi]∼ = [π]∼)

= vπ (ν) .

Proof. This is an analogue of Proposition 2.13.30, and is proven similarly.

Theorem 4.2.54. Let ν be a nonzero Gaussian integer.
(a) There exists a Gaussian prime factorization of ν.
(b) Any two such factorizations differ only by reordering their entries and

multiplying them by units. More precisely: If (α1, α2, . . . , αk) and (β1, β2, . . . , β`)
are two Gaussian prime factorizations of ν, then ([α1]∼ , [α2]∼ , . . . , [αk]∼) is a
permutation of ([β1]∼ , [β2]∼ , . . . , [β`]∼).

Proof. This is an analogue of Theorem 2.13.31, and is proven similarly.

Example 4.2.55. We have

5 = (1 + 2i) (1− 2i) = (2 + i) (2− i) .

Thus, both (1 + 2i, 1− 2i) and (2 + i, 2− i) are Gaussian prime factorizations of
5. They may look different, but actually you get the second one from the first
by swapping the two entries and multiplying the first entry by the unit i and
multiplying the second entry by the unit −i. This perfectly agrees with Theorem
4.2.54.
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In analogy to Exercise 2.13.5 (and with the same proof), we have:

Exercise 4.2.13. Let π be a Gaussian prime. Let α, β ∈ Z [i] be such that α ∼ β.
Prove that vπ (α) = vπ (β).

We also have the following:

Exercise 4.2.14. Let π be a Gaussian prime. Let α ∈ Z [i]. Then, π is a Gaussian
prime as well, and satisfies

vπ (α) = vπ (α) .

Solution sketch. Conjugation is a symmetry, taking Gaussian integers to Gaussian
integers and preserving divisibility. Thus, any i ∈ N satisfying πi | α must also
satisfy πi | α, and vice versa. Hence, vπ (α) = vπ (α) easily follows.

Definition 4.2.56. For the rest of this section, let GP be the set of all Gaussian
primes of the form x + yi with x ∈ {1, 2, 3, . . .} and y ∈ {0, 1, 2, . . .}.

The following is easy to see:

Lemma 4.2.57. Let π be a Gaussian prime. Then, there exists exactly one σ ∈ GP
such that π ∼ σ.

In other words, each Gaussian prime is unit-equivalent to exactly one σ ∈ GP.
Thus, the set GP contains exactly one element of each unit-equivalence class of
Gaussian primes. (Thus, GP is what is called a “system of distinct representatives”
for the unit-equivalence classes of all Gaussian primes.)

In analogy to Corollary 2.13.34, we have:

Corollary 4.2.58. Let α be a nonzero Gaussian integer. Then,

α ∼ ∏
π∈GP

πvπ(α).

Here, the infinite product ∏
π∈GP

πvπ(α) is well-defined (according to the

Gaussian-integer analogue of Lemma 2.13.32 (b)).

In analogy to Proposition 2.13.35, we have the following:

Proposition 4.2.59. Let α and β be Gaussian integers. Then, α | β if and only if
each Gaussian prime π satisfies vπ (α) ≤ vπ (β).

If α is a Gaussian integer, and c is a unit-equivalence class of Gaussian integers,
then either all elements of c divide α or none of them does.147 Thus, we can talk of

147This is easy to check. Indeed, it boils down to the fact that any two elements of c divide each
other (because they are unit-equivalent).
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unit-equivalence classes of Gaussian divisors of α (by which we mean unit-equivalence
classes of Gaussian integers whose elements all divide α).

Here is an analogue of Proposition 2.18.1 for Gaussian integers:

Proposition 4.2.60. Let α ∈ Z [i] be a nonzero Gaussian integer. Then:
(a) The product ∏

π∈GP
(vπ (α) + 1) is well-defined, since all but finitely many of

its factors are 1.
(b) We have

(the number of unit-equivalence classes of Gaussian divisors of α)

= ∏
π∈GP

(vπ (α) + 1) .

(c) We have

(the number of Gaussian divisors of α) = 4 · ∏
π∈GP

(vπ (α) + 1) .

Proof. Same proof as for Proposition 2.18.1, but you have to be more careful with
unit-equivalence (since in part (b), you are counting unit-equivalence classes rather
than positive divisors). The analogue of Lemma 2.18.3 we need to use for this proof
is the following lemma:

Lemma 4.2.61. Let π1, π2, . . . , πu be finitely many Gaussian primes, no two of
which are unit-equivalent. For each i ∈ {1, 2, . . . , u}, let ai be a nonnegative
integer. Let α = πa1

1 πa2
2 · · ·π

au
u .

Define a set T by

T = {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au}
= {(b1, b2, . . . , bu) | bi ∈ {0, 1, . . . , ai} for each i ∈ {1, 2, . . . , u}}
= {(b1, b2, . . . , bu) ∈Nu | bi ≤ ai for each i ∈ {1, 2, . . . , u}} .

Then, the map

Λ : T → {unit-equivalence classes of Gaussian divisors of α} ,

(b1, b2, . . . , bu) 7→
[
πb1

1 πb2
2 · · ·π

bu
u

]
∼

is well-defined and bijective.

Now, we can finally answer Question 1.4.2 (b) (following [DumFoo04, §8.3, Corol-
lary 19]):
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Theorem 4.2.62. Let n be a positive integer.
(a) If there is at least one prime p ≡ 3 mod 4 such that vp (n) is odd, then there

is no pair (x, y) ∈ Z2 such that n = x2 + y2.
(b) Assume that for each prime p ≡ 3 mod 4, the number vp (n) is even. Then,(

the number of pairs (x, y) ∈ Z2 such that n = x2 + y2
)

= 4 · ∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
.

Example 4.2.63. (a) Let n = 35. Then, Theorem 4.2.62 (a) yields that there are no
integers x and y such that n = x2 + y2. In fact, the prime 7 ≡ 3 mod 4 satisfies
v7 (n) = 1.

(b) Let n = 45. Then, for each prime p ≡ 3 mod 4, the number vp (n) is even.
Indeed, n = 45 = 32 · 5, so v3 (n) = 2 is even and vp (n) = 0 for all other primes
p of Type 3. Hence, Theorem 4.2.62 (b) yields(

the number of pairs (x, y) ∈ Z2 such that n = x2 + y2
)

= 4 · ∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
︸ ︷︷ ︸

=v5(n)+1
=1+1=2

= 4 · 2 = 8.

Proof of Theorem 4.2.62 (sketched). (a) Assume that there is at least one prime p ≡
3 mod 4 such that vp (n) is odd. We must prove that there is no pair (x, y) ∈ Z2

such that n = x2 + y2.
Indeed, let (x, y) ∈ Z2 be a pair such that n = x2 + y2. We must derive a

contradiction.
Let α be the Gaussian integer x + yi. Thus, αα = x2 + y2 = n.
We have assumed that there is at least one prime p ≡ 3 mod 4 such that vp (n) is

odd. Consider this p. Note that p is a Gaussian prime (by Lemma 4.2.41).
Thus, Exercise 4.2.14 (applied to π = p) yields vp (α) = vp (α). In view of p = p,

this rewrites as vp (α) = vp (α). But

vp

 n︸︷︷︸
=αα

 = vp (αα) = vp (α) + vp (α)︸ ︷︷ ︸
=vp(α)

= vp (α) + vp (α) = 2vp (α) .

Thus, vp (n) is even. This contradicts the fact that vp (n) is odd. Thus, we have
found a contradiction for each pair (x, y) ∈ Z2 such that n = x2 + y2. Hence, there
exists no such pair. This proves Theorem 4.2.62 (a).
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(b) We have

(the number of α ∈ Z [i] such that n = αα)

=
(

the number of pairs (x, y) ∈ Z2 such that n = x2 + y2
)

,

since the map{
(x, y) ∈ Z2 | n = x2 + y2

}
→ {α ∈ Z [i] | n = αα} ,

(x, y) 7→ x + yi

is a bijection.
Write the canonical factorization of n as

n = 2c · pa1
1 pa2

2 · · · p
ak
k · q

b1
1 qb2

2 · · · q
b`
` , (158)

where all the exponents c, ah, bj are ∈N, and where p1, p2, . . . , pk are distinct primes
of Type 1, and where q1, q2, . . . , q` are distinct primes of Type 3. Note that c = 0 if
n is odd.

We have assumed that for each prime p ≡ 3 mod 4, the number vp (n) is even.
In other words, for each prime p of Type 3, the number vp (n) is even. In other
words, b1, b2, . . . , b` are even (since q1, q2, . . . , q` are primes of Type 3, and thus the
corresponding exponents bj = vqj (n) must be even). Hence, bj/2 ∈N for each j.

Each qj is a prime of Type 3, and thus is a Gaussian prime (by Lemma 4.2.41).
Meanwhile, each ph is a prime of Type 1, and thus can be written in the form
ph = πhπh for some Gaussian prime πh (by Theorem 4.2.42 (c)). Consider these
πh. For every h, Theorem 4.2.42 (e) shows that the conjugate πh is also a Gaussian
prime, and that we do not have πh ∼ πh.

Finally, let ρ be the Gaussian prime 1 + i; thus 2 = ρρ. But note that ρ ∼ ρ
(indeed, ρ = 1− i = (−i) (1 + i)︸ ︷︷ ︸

=ρ

= (−i) ρ). Now, (158) becomes

n = 2c︸︷︷︸
=ρcρc

(since 2=ρρ)

·


k

∏
h=1

pah
h︸︷︷︸

=π
ah
h πh

ah

(since ph=πhπh)

 · qb1
1 qb2

2 · · · q
b`
`

= ρcρc ·
(

k

∏
h=1

(
π

ah
h πh

ah
))
· qb1

1 qb2
2 · · · q

b`
` , (159)

and this is a decomposition of n as a product of powers of Gaussian primes (albeit
ρ and ρ are unit-equivalent).

No two of the Gaussian primes ρ, πh, πh, qj are unit-equivalent. (Proof: Compare
their norms (since unit-equivalent Gaussian integers have equal norms). The only



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 324

of these Gaussian primes that have equal norms are πh and πh. So we merely need
to rule out πh ∼ πh. But this is clear, since we already showed that we do not have
πh ∼ πh.)

Now, define a map

F : {1, i,−1,−i} ×
k

∏
h=1
{0, 1, . . . , ah} → {α ∈ Z [i] | n = αα} ,

(γ, (d1, d2, . . . , dk)) 7→ γ · ρc ·
(

k

∏
h=1

(
π

dh
h πh

ah−dh
))
· qb1/2

1 qb2/2
2 · · · qb`/2

` .

It is easy to check that this map F is well-defined148. We claim that this map F is a
bijection.

[Proof: To see that F is injective, we must find a way to reconstruct (γ, (d1, d2, . . . , dk)) ∈

{1, i,−1,−i} ×
k

∏
h=1
{0, 1, . . . , ah} from

α : = F ((γ, (d1, d2, . . . , dk)))

= γ · ρc ·
(

k

∏
h=1

(
π

dh
h πh

ah−dh
))
· qb1/2

1 qb2/2
2 · · · qb`/2

` .

But this is easy: You first reconstruct the k-tuple (d1, d2, . . . , dk) by observing that
dh = vπh (α) for each h. Once you have that, you can reconstruct γ by

γ =
α

ρc ·
(

k
∏

h=1

(
π

dh
h πh

ah−dh
))
· qb1/2

1 qb2/2
2 · · · qb`/2

`

.

So F is injective.
To see that F is surjective, we must prove that each α ∈ Z [i] satisfying n = αα

has the form

α = γ · ρc ·
(

k

∏
h=1

(
π

dh
h πh

ah−dh
))
· qb1/2

1 qb2/2
2 · · · qb`/2

`

for some (γ, (d1, d2, . . . , dk)). To prove this, use canonical factorization of α inside
Z [i] to see that

α = γ · ρc′ ·
(

k

∏
h=1

(
π

d′h
h πh

e′h
))
· qb′1

1 qb′2
2 · · · q

b′`
` (160)

148Just multiply out αα for α = γ · ρc ·
(

k
∏

h=1

(
π

dh
h πh

ah−dh
))
· qb1/2

1 qb2/2
2 · · · qb`/2

` and check that you

obtain n. Corollary 4.1.28 (a) needs to be used.
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for some c′, d′h, e′h, b′j ∈N. Consider these c′, d′h, e′h, b′j ∈N. From (160), we obtain

αα = γ · ρc′ ·
(

k

∏
h=1

(
π

d′h
h πh

e′h
))
· qb′1

1 qb′2
2 · · · q

b′`
` · γ · ρc′ ·

(
k

∏
h=1

(
π

d′h
h πh

e′h
))
· qb′1

1 qb′2
2 · · · q

b′`
`

= γγ︸︷︷︸
=N(γ)=1

(since γ is a unit)

· ρc′ρc′︸ ︷︷ ︸
=(ρρ)c′=2c′

(since ρρ=2)

·
(

k

∏
h=1

(
π

d′h
h πh

e′h π
d′h
h πh

e′h

))
· qb′1

1 qb′2
2 · · · q

b′`
` · qb′1

1 qb′2
2 · · · q

b′`
`︸ ︷︷ ︸

=q
b′1
1 q

b′2
2 ···q

b′
`
`

(since q1,q2,...,q`
are reals)

= 2c′ ·


k

∏
h=1

(
π

d′h
h πh

e′h π
d′h
h πh

e′h

)
︸ ︷︷ ︸

=(πhπh)
d′h+e′h

 · q
b′1
1 qb′2

2 · · · q
b′`
` · q

b′1
1 qb′2

2 · · · q
b′`
`︸ ︷︷ ︸

=q
2b′1
1 q

2b′2
2 ···q

2b′
`

`

= 2c′ ·

 k

∏
h=1

πhπh︸ ︷︷ ︸
=ph

d′h+e′h
 · q2b′1

1 q2b′2
2 · · · q

2b′`
` = 2c′ ·

(
k

∏
h=1

pd′h+e′h
h

)
· q2b′1

1 q2b′2
2 · · · q

2b′`
` .

Thus,

n = αα = 2c′ ·
(

k

∏
h=1

pd′h+e′h
h

)
· q2b′1

1 q2b′2
2 · · · q

2b′`
` . (161)

This is a prime factorization of n as an integer. But so is (158). Since the prime
factorization of an integer is unique (or by comparing p-valuations of the right
hand sides on (161) and (158)), we thus conclude

c′ = c; d′h + e′h = ah for all h;

2b′j = bj for all j.

In other words,

c′ = c; e′h = ah − d′h for all h;

b′j = bj/2 for all j.

Hence, (160) rewrites as

α = γ · ρc ·
(

k

∏
h=1

(
π

d′h
h πh

ah−d′h
))
· qb1/2

1 qb2/2
2 · · · qb`/2

`

= F
((

γ,
(
d′1, d′2, . . . , d′k

)))
(by the definition of F) .

Thus, we have shown that α is a value of F. This proves that F is surjective.
Now, F is injective and surjective, hence bijective.]
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So F is a bijection. Thus,∣∣∣∣∣{1, i,−1,−i} ×
k

∏
h=1
{0, 1, . . . , ah}

∣∣∣∣∣
= |{α ∈ Z [i] | n = αα}|
= (the number of α ∈ Z [i] such that n = αα)

=
(

the number of pairs (x, y) ∈ Z2 such that n = x2 + y2
)

,

so that(
the number of pairs (x, y) ∈ Z2 such that n = x2 + y2

)
=

∣∣∣∣∣{1, i,−1,−i} ×
k

∏
h=1
{0, 1, . . . , ah}

∣∣∣∣∣ = |{1, i,−1,−i}|︸ ︷︷ ︸
=4

·
k

∏
h=1
|{0, 1, . . . , ah}|︸ ︷︷ ︸

=ah+1

= 4 ·
k

∏
h=1

 ah︸︷︷︸
=vph (n)

+1

 = 4 ·
k

∏
h=1

(
vph (n) + 1

)
= 4 · ∏

p prime;
p≡1 mod 4

(
vp (n) + 1

)
.

(The last equality sign is a consequence of the fact that p1, p2, . . . , ph are distinct
primes of Type 1, and that all other primes p /∈ {p1, p2, . . . , ph} of Type 1 satisfy
vp (n) = 0.) This proves Theorem 4.2.62 (b).

One consequence of Theorem 4.2.62 is that a positive integer n can be written in
the form x2 + y2 with x, y ∈ Z if and only if it has the property that for each prime
p ≡ 3 mod 4, the number vp (n) is even. A different proof of this fact appears in
[AigZie18, Theorem in Chapter 4].

4.2.7. What are the Gaussian primes?

We have so far seen the following Gaussian primes:

• Each prime of Type 3 is a Gaussian prime.

• 1 + i is a Gaussian prime.

• For each prime p of Type 1, we have a Gaussian prime π such that p = ππ,
and then π is also a Gaussian prime.

Theorem 4.2.64. Each Gaussian prime is unit-equivalent to one of the Gaussian
primes in this list.

Proof. See homework set #5 exercise 3.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw5s.pdf
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4.3. Brief survey of similar number systems

• Let us now see when a prime p can be written as x2 + 2y2 with x, y ∈ Z.

The set
Z
[√
−2
]
= Z

[√
2i
]

is defined as the set of all complex numbers of the form a + b
√

2i with
a, b ∈ Z. It is perhaps easier to regard it as its own variant of Gaussian
integers, which I will call the “2-Gaussian integers”. These “2-Gaussian in-
tegers” can be defined as pairs (a, b) ∈ Z2 with addition and subtraction
defined entrywise and multiplication defined by

(a, b) (c, d) = (ac− 2bd, ad + bc) .

149 You can then write such pairs (a, b) as a + b
√

2i, where
√

2i is simply a
symbol for the 2-Gaussian integer (0, 1). Each 2-Gaussian integer (a, b) has a
norm, defined by N ((a, b)) = a2 + 2b2.

Much of the theory of Gaussian integers still applies verbatim to 2-Gaussian
integers. In particular, division with remainder still works for 2-Gaussian
integers (like it does for Gaussian integers, i.e., non-uniquely), and the proof
uses the same argument, but this time we have N (ρ) ≤ 3 N (β) /4 instead of
N (ρ) ≤ N (β) /2. Hence, 2-Gaussian integers have unique factorizations into
“2-Gaussian primes”.

This can be used to show that a prime p can be written as x2 + 2y2 if and
only if there is an integer u satisfying u2 ≡ −2 mod p. It can furthermore be
shown that such an integer u exists if and only if p = 2 or p ≡ 1, 3 mod 8
(where “p ≡ 1, 3 mod 8” is shorthand for “p ≡ 1 mod 8 or p ≡ 3 mod 8”). The
proof uses a fact called quadratic reciprocity, which we may see later in this
course.

• When can a prime p be written as x2 + 3y2 with x, y ∈ Z ?

The logical continuation of the above pattern would be “when p = 3 or
p ≡ 1 mod 3”, since these are the cases when there is an integer u satisfying
u2 ≡ −3 mod p. And that is indeed true, but the proof is more complicated.
Indeed, the “3-Gaussian integers” no longer have division with remainder,
as N (ρ) ≤ N (β) /2 turns into N (ρ) ≤ N (β) which is not a strict inequal-
ity. Nevertheless we can prove our guess with more complicated reasoning:
We need to use not Z

[√
−3
]

but rather the Eisenstein integers a + bω with

a, b ∈ Z and ω =
−1 + i

√
3

2
. These are best understood as pairs (a, b) ∈ Z2

149Be careful, however: This definition of 2-Gaussian integers as pairs of integers conflicts with the
definition of complex numbers as pairs of reals; the 2-Gaussian integer (a, b) and the complex
number (a, b) are two different numbers (unless b = 0).

https://en.wikipedia.org/wiki/Eisenstein_integer
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with addition and subtraction defined entrywise and multiplication defined
by

(a, b) (c, d) = (ac− bd, ad + bc− bd) .

Their norm is N ((a, b)) = a2 − ab + b2. They form a triangular lattice, not
a rectangular one, and they do have division with remainder. Note that
N (a + bω) = a2 − ab + b2, so some more work is needed to turn them into
x2 + 3y2 solutions, but it’s doable.

• When can a prime p be written as x2 + 4y2 with x, y ∈ Z ?

This is easy: 4y2 = (2y)2, so we are looking for a way of writing p as x2 + y2

with y even.

I claim that the answer is “when p ≡ 1 mod 4”. Do you see why?

• When can a prime p be written as x2 + 5y2 with x, y ∈ Z ?

Our guess, by following the above pattern, would be “when p = 2 or p = 5
or p ≡ 1, 3, 7, 9 mod 20”, since these are the cases when there is an integer u
satisfying u2 ≡ −5 mod p. But this is not true anymore. The right answer is
“when p = 2 or p = 5 or p ≡ 1, 9 mod 20”. And unsurprisingly, Z

[√
−5
]

does not have division with remainder.

• More generally, you can fix n ∈ N and ask when a prime can be written in
the form x2 + ny2. There is a whole book [Cox13] devoted to this question!
The answer becomes more complicated with n getting large, and touches on
a surprising number of different fields of mathematics (geometry, complex
analysis, elliptic functions and elliptic curves).

• We can also ask when a prime p can be written as x2 − ny2. The appropriate
analogue of Z [i] tailored to this question is Z

[√
n
]
, which however behaves

much differently, since
√

n is real. For example, as you saw on homework set
#4 (in the Remark after Exercise 4), there are infinitely many units in Z

[√
2
]
;

the same is true for each Z
[√

n
]

with n > 1 and n not being a perfect square
(but this is much harder to prove).

• When can an n ∈ N be written as a sum of three squares? Legendre’s three-
squares theorem says that the answer is “if and only if n is not of the form
n = 4a (8b + 7) for a, b ∈N”. This is very hard to prove ([UspHea39, Chapter
XIII] might have the only elementary proof).

• When can an n ∈ N be written as a sum of four squares? Lagrange’s four-
squares theorem reveals that the answer to this question is “always”!150 This

150An application (fortunately, no longer relevant):
“Warning: Due to a known bug, the default Linux document viewer evince prints

N*N copies of a PDF file when N copies requested. As a workaround, use Adobe
Reader acroread for printing multiple copies of PDF documents, or use the fact
that every natural number is a sum of at most four squares.”

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://en.wikipedia.org/wiki/Legendre's_three-square_theorem
https://en.wikipedia.org/wiki/Legendre's_three-square_theorem
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
https://en.wikipedia.org/wiki/Lagrange's_four-square_theorem
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is easier to show, and there is even a formula for the number of representa-
tions: it is 8 ∑

d|n;
4-d

d. The existence part can be proven using “Hurwitz integers”,

which are certain quaternions.

5. Rings and fields

5.1. Definition of a ring

We have seen several “number systems” in the above chapters:

• N (the nonnegative integers);

• Z (the integers);

• R (the real numbers);

• Z/n (the residue classes modulo n) for an integer n;

• C (the complex numbers);

• Z [i] (the Gaussian integers);

• D (the dual numbers – see homework set #4 exercise 3);

• Z
[√

2
]
=
{

a + b
√

2 | a, b ∈ Z
}

(see homework set #4 exercise 4);

• Z [ω] = {a + bω | a, b ∈ Z} (the Eisenstein integers);

• Z
[√
−3
]

(see homework set #5 exercise 6).

It may be a stretch to refer to the elements of some of these systems as “numbers”,
but it is not taboo (the word “number” has no precise meaning in mathematics),
and these sets have a lot in common: We can add, subtract and multiply their
elements (except for N, which does not allow subtraction); these operations satisfy
the usual rules (e.g., associativity of multiplication, distributivity, etc.); these sets
contain some element “behaving like 0” (that is, an element 0 such that a + 0 =
0 + a = a and a · 0 = 0 · a = 0 for all a) and some element “behaving like 1” (that
is, an element 1 such that a · 1 = 1 · a = a for all a). It turns out that just a few
of these rules are sufficient to make “all the other rules” (in a certain appropriate
sense) follow from them. Thus, it is reasonable to crystallize these few rules into
a common, general notion (of which the above examples – excluding N – will be
particular cases); this notion will be called a “ring”. Hence, we shall define a ring
to be (roughly speaking) a set with operations + and · and elements 0 and 1 that
satisfy these few rules. Let us be specific about what these rules are:151

151Recall the definition of a “binary operation” (Definition 1.6.1). In particular, a binary operation
on a set S must have all its values in S.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw5s.pdf


Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 330

Definition 5.1.1. (a) A ring means a set K endowed with

• two binary operations called “addition” and “multiplication”, and denoted
by +K and ·K, respectively, and

• two elements called “zero” (or “origin”) and “unity” (or “one”), and denoted
by 0K and 1K, respectively

such that the following axioms are satisfied:

• Commutativity of addition: We have a +K b = b +K a for all a, b ∈ K.

• Associativity of addition: We have a +K (b +K c) = (a +K b) +K c for all
a, b, c ∈ K.

• Neutrality of zero: We have a +K 0K = 0K +K a = a for all a ∈ K.

• Existence of additive inverses: For any a ∈ K, there exists an element
a′ ∈ K such that a +K a′ = a′ +K a = 0K. (It is not immediately obvious,
but will be shown later, that such an a′ is unique. Thus, a′ is called the
additive inverse of a, and is denoted by −a.)

• Associativity of multiplication: We have a (bc) = (ab) c for all a, b, c ∈ K.
Here and in the following, we use “xy” as an abbreviation for “x ·K y”.

• Neutrality of one: We have a1K = 1Ka = a for all a ∈ K.

• Annihilation: We have a0K = 0Ka = 0K for all a ∈ K.

• Distributivity: We have

a (b +K c) = ab +K ac and (a +K b) c = ac +K bc

for all a, b, c ∈ K. Here and in the following, we are using the PEMDAS
convention for order of operations; thus, for example, “ab +K ac” must be
understood as “(ab) +K (ac)”.

These eight axioms will be called the ring axioms.
(Note that we do not require the existence of a “subtraction” operation −K.

But we will later construct such an operation out of the existing operations and
axioms; it is thus unnecessary to require it. We also do not require the existence
of multiplicative inverses; nor do we require commutativity of multiplication
yet.)

(b) A ring K (with operations +K and ·K) is called commutative if it satisfies
the following extra axiom:

• Commutativity of multiplication: We have ab = ba for all a, b ∈ K.
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Note a few things:

• We shall abbreviate +K, ·K, 0K and 1K as +, ·, 0 and 1 unless there is a
chance of confusion with the “usual” notions of addition, multiplication, zero
and one. (The example of the ring Z′ shown below is a case where such
confusion is possible; but most of the time, it is not.)

• We have not required our rings to be endowed with a “subtraction” operation.
Nevertheless, each ring K automatically has a subtraction operation: Namely,
for any a, b ∈ K, we can define a − b to be a + b′, where b′ is the additive
inverse of b. (We will later see that this operation is well-defined (Definition
5.4.4) and satisfies the rules you would expect (Definition 5.4.5).)

• Some of the ring axioms we required in Definition 5.1.1 are redundant, i.e.,
they follow from other ring axioms. (For example, Annihilation follows from
the other axioms.) We don’t mind this, as long as these axioms are natural
and easy to check in real examples.

• We have required commutativity of addition to hold for all rings, but com-
mutativity of multiplication only to hold for commutative rings. You may
wonder what happens if we also omit the commutativity of addition. The
answer is “nothing new”: Commutativity of addition follows from the other
axioms! (Proving this is a fun, although inconsequential, puzzle.)

• By our definition, a ring consists of a set K, two operations + and · and two
elements 0 and 1. Thus, strictly speaking, a ring is a 5-tuple (K,+, ·, 0, 1).
In reality, we will often just speak of the “ring K” (so we will mention only
the set and not the other four pieces of data) and assume that the reader can
figure out the rest of the 5-tuple. This is okay as long as the rest of the 5-tuple
can be inferred from the context. For example, when we say “the ring Z”,
it is clear that we mean the ring (Z,+, ·, 0, 1) with the usual addition and
multiplication operations and the usual numbers 0 and 1. The same applies
when we speak of “the ring R” or “the ring C” or “the ring Z [i]”. In general,
whenever a set S is equipped with two operations that are called + and · and
two elements that are called 0 and 1 (even if these elements are not literally
the numbers 0 and 1), we automatically understand “the ring S” to be the ring
(S,+, ·, 0, 1) that is defined using these operations and elements. If we want
to make a different ring out of the set S, then we have to say this explicitly.

• Some authors do not require the element 1 as part of what it means to be a
ring. But we do. Be careful when reading the literature, as the truth or false-
hood of many results depends on whether the 1 is included in the definition
of a ring or not. (When authors do not require the element 1 in the definition
of a ring, they reserve the notion of a “unital ring” for a ring that does come
equipped with a 1 that satisfies the “Neutrality of one” axiom; i.e., they call
“unital ring” what we call “ring”.)
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The variant of the notion of rings in which the element 1 is not required is
most commonly called a nonunital ring; it appears in Exercises 1 and 2 of
midterm #3.

5.2. Examples of rings

Many of the “number systems” seen above, and several others, are examples of
rings:

• The sets Z, Q and R (each endowed with the usual addition, multiplication,
0 and 1) are commutative rings. In each case, the additive inverse of an
element a is what we know as −a from high school. (Rigorous proofs of the
ring axioms, as well as rigorous definitions of Z, Q and R, can be found in
textbooks and lecture notes on the construction of the number system – such
as [Swanso18, Chapter 3].)

• The set N (again endowed with the usual addition, multiplication, 0 and 1) is
not a ring. Indeed, the “existence of additive inverses” axiom fails for a = 1,
because the element 1 has no additive inverse in N (that is, there is no 1′ ∈N

such that 1 + 1′ = 1′ + 1 = 0).

• The sets C, Z [i], D, Z
[√

2
]
, Z [ω] and Z

[√
−3
]

(from Chapter 4 and from
the homework sets) are commutative rings. All of the axioms are easy to
check, and some of them we have checked. (For example, the ring axioms
for C follow easily from Theorem 4.1.2.) In each case, the element a′ in the
“existence of additive inverses” axiom is −a.

• If you have seen polynomials: The set Z [x] of all polynomials in a single
variable x with integer coefficients is a commutative ring. Similarly for other
kinds of coefficients, and several variables. We will come back to this once we
have rigorously defined polynomials in Chapter 7.

• We can define a commutative ring Z′ as follows:

We define a binary operation ×̃ on Z by(
a×̃b = −ab for all a, b ∈ Z

)
.

Now, let Z′ be the set Z, endowed with the usual addition + and the unusual
multiplication ×̃ and the elements 0Z′ = 0 and 1Z′ = −1.

Is this Z′ a commutative ring? Let us check the axioms:

– The first four axioms involve only addition and 0 (but not multiplication
and 1), and therefore still hold for Z′ (because Z′ has the same addition
and 0 as Z).

https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt3s.pdf
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– Associativity of multiplication in Z′: We must check that

a×̃
(
b×̃c

)
=
(
a×̃b

)
×̃c for all a, b, c ∈ Z′.

(Note that we cannot omit the “multiplication sign” ×̃ here and simply
write “bc” for “b×̃c”, because “bc” already means something different.
Note also that “a, b, c ∈ Z′” means the same as “a, b, c ∈ Z”, because
Z′ = Z as sets.)

Checking this is straightforward: Let a, b, c ∈ Z′. Then, comparing

a×̃
(
b×̃c

)︸ ︷︷ ︸
=−bc

= a×̃ (−bc) = −a (−bc) = abc with

(
a×̃b

)︸ ︷︷ ︸
=−ab

×̃c = (−ab) ×̃c = − (−ab) c = abc,

we obtain a×̃
(
b×̃c

)
=
(
a×̃b

)
×̃c. Thus, associativity of multiplication

holds for Z′.

– Neutrality of one in Z′: We must check that

a×̃1Z′ = 1Z′×̃a = a for all a ∈ Z′.

This, too, is straightforward: If a ∈ Z′, then a×̃ 1Z′︸︷︷︸
=−1

= a×̃ (−1) =

−a (−1) = a and similarly 1Z′×̃a = a.

– Annihilation and commutativity of multiplication are just as easy to
check.

– Distributivity for Z′: We must check that

a×̃ (b + c) = a×̃b + a×̃c and (a + b) ×̃c = a×̃c + b×̃c

for all a, b, c ∈ Z′.

So let a, b, c ∈ Z′. In order to verify a×̃ (b + c) = a×̃b+ a×̃c, we compare

a×̃ (b + c) = −a (b + c) = −ab− ac

with
a×̃b + a×̃c = (−ab) + (−ac) = −ab− ac.

Similarly we can check (a + b) ×̃c = a×̃c + b×̃c.

So Z′ is a ring.

(Note that
(
Z,+, ×̃, 0, 1

)
is not a ring.)

However, Z′ is not a new ring. It is just Z with its elements renamed. Namely,
if we rename each integer a as −a, then the operations of + and · and the



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 334

elements 0 and 1 of Z turn into the operations + and ×̃ and the elements 0
and 1Z′ of Z′. This is a confusing thing to say (please don’t actually rename
numbers as other numbers!); the rigorous (and hopefully not confusing) way
to say this is as follows: The bijection

ϕ : Z→ Z′, a 7→ −a

satisfies

ϕ (a + b) = ϕ (a) + ϕ (b) for all a, b ∈ Z; (162)

ϕ (ab) = ϕ (a) ×̃ϕ (b) for all a, b ∈ Z; (163)
ϕ (0) = 0 = 0Z′ ; (164)
ϕ (1) = −1 = 1Z′ . (165)

Thus, we can view ϕ as a way of relabelling the integers so that the data
+, ·, 0, 1 of the ring Z become the data +, ×̃, 0Z′ , 1Z′ of the ring Z′. We will
later call bijections like ϕ “ring isomorphisms”. (See Definition 5.10.1 for the
definition of a ring homomorphism.)

• Recall: If A and B are two sets, then

BA := {maps A→ B} .

(This notation is not wantonly chosen to annoy you with its seeming back-
wardness; instead, it harkens back to the fact that

∣∣BA
∣∣ = |B||A|.)

The set QQ of all the maps from Q to Q is a commutative ring, where

– addition and multiplication are defined pointwise: i.e., if f , g ∈ QQ are
two maps, then the maps f + g and f · g are defined by

( f + g) (x) = f (x) + g (x) and
( f · g) (x) = f (x) · g (x) for all x ∈ Q;

– 0 means the “constant 0” function (i.e., the map Q→ Q, x 7→ 0);

– 1 means the “constant 1” function (i.e., the map Q→ Q, x 7→ 1).

All the ring axioms are easy to check. For example, each f ∈ QQ has an
additive inverse (namely, the map − f ∈ QQ that sends each x ∈ Q to − f (x)).

Similarly, the sets QC or QN or RR (the set of “functions” you know from
calculus) or CC (or, more generally, for KS, where K is any commutative ring
and S is any set) can be made into commutative rings; but the set NQ cannot.
The problem with NQ is that “existence of additive inverses” is not satisfied,
since −a /∈N for positive a ∈N.
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• Recall that
Z
[√

2
]
=
{

a + b
√

2 | a, b ∈ Z
}

is a ring.

But the set
{

a + b 3
√

2 | a, b ∈ Z
}

(with the usual addition and multiplication)
is not a ring. The reason is that multiplication is not a binary operation on
this set, since it is possible that two numbers α and β lie in this set but their
product αβ does not. For example, 1 + 3

√
2 lies in this set, but(

1 + 3
√

2
) (

1 + 3
√

2
)
= 1 + 2 3

√
2 + 3
√

4

does not. (That said, this set does satisfy all the eight ring axioms.)

• The set of 2× 2-matrices with rational entries (endowed with matrix addition

as +, matrix multiplication as ·, the zero matrix
(

0 0
0 0

)
as 0, and

(
1 0
0 1

)
as 1) is a ring, but not a commutative ring. Indeed, the ring axioms are true
(this is known from linear algebra), but commutativity of multiplication is not
(the product AB of two 2× 2-matrices A and B is not always equal to BA).
The same applies to n× n-matrices for arbitrary n ∈ N. (We will see this in
Corollary 5.8.11 below, in greater generality.)

• If you like the empty set, you will enjoy the zero ring. This is the one-element
set {0}, endowed with the only possible addition (given by 0 + 0 = 0),
the only possible multiplication (given by 0 · 0 = 0), the only possible zero
(namely, 0) and the only possible unity (also 0). This is a commutative ring,
and is known as the zero ring. Resist the temptation of denoting its unity by
1, as this will quickly lead to painful confusion.

(Some authors choose to forbid this ring, usually for no good reasons.)

• If n is an integer, then Z/n is a ring (with the operations + and · that we
defined, with the zero [0]n and the unity [1]n). When the integer n is positive,
this ring Z/n has n elements. (When n is prime, it can be shown that Z/n
is the only ring with exactly n elements, up to relabeling its elements. In
general, however, there can be several rings with n elements.)

• In set theory, the symmetric difference A4 B of two sets A and B is defined to
be the set

(A ∪ B) \ (A ∩ B) = (A \ B) ∪ (B \ A)

= {x | x belongs to exactly one of A and B} .

Now, let S be any set. Let P (S) denote the power set of S (that is, the set of

https://en.wikipedia.org/wiki/Symmetric_difference
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all subsets of S). Then, it is easy to check that the following properties hold:

A4 B = B4 A for any sets A and B;
A ∩ B = B ∩ A for any sets A and B;

(A4 B)4 C = A4 (B4 C) for any sets A, B, C;
(A ∩ B) ∩ C = A ∩ (B ∩ C) for any sets A, B, C;

A4∅ = ∅4 A = A for any set A;
A ∩ S = S ∩ A = A for any subset A of S;

A4 A = ∅ for any set A;
∅∩ A = A ∩∅ = ∅ for any set A;

A ∩ (B4 C) = (A ∩ B)4 (A ∩ C) for any sets A, B, C;
(A4 B) ∩ C = (A ∩ C)4 (B ∩ C) for any sets A, B, C.

Therefore, the set P (S), endowed with the addition 4, the multiplication ∩,
the zero ∅ and the unity S is a commutative ring. Furthermore, the additive
inverse of any A ∈ P (S) is A itself (since A4 A = ∅). Moreover, each A ∈
P (S) satisfies A ∩ A = A, which means (in the language of ring operations)
that its square is itself. Thus, P (S) is what is called a Boolean ring. (See
Exercise 2 on midterm #2 for the precise definition and a few properties of
Boolean rings.)

Let us now see some non-examples – i.e., examples of things that are not rings:

• You probably remember the cross product from analytic geometry. In a nut-
shell: The set R3 of vectors in 3-dimensional space has a binary operation ×
defined on it, which is given by

(a1, a2, a3)× (b1, b2, b3) = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1) .

Is the set R3, equipped with the addition + and the multiplication × (and
some elements playing the roles of zero and unity) a ring?

The answer is “no”, no matter which elements you want to play the roles of
zero and unity. Indeed, the “Associativity of multiplication” axiom does not
hold, because three vectors a, b, c ∈ R3 usually do not satisfy a× (b× c) =
(a× b)× c.

Nevertheless, not all is lost; for example, the “Distributivity” axiom holds.
The structure formed by the set R3, its addition + and its cross product × is
an instance of a different concept – namely, of a Lie algebra.

• So the cross product does not work; what about the dot product? The dot
product of two vectors (a1, a2, a3) and (b1, b2, b3) in R3 is a real number given
by

(a1, a2, a3) · (b1, b2, b3) = a1b1 + a2b2 + a3b3.

https://en.wikipedia.org/wiki/Boolean_ring
https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt2s.pdf
https://en.wikipedia.org/wiki/Cross_product
https://en.wikipedia.org/wiki/Lie_algebra
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Can this be used to make R3 into a ring?

No, because the dot product is not even a binary operation on R3. Indeed, our
definition of a binary operation requires that its output belongs to the same
domain as its two inputs; this is clearly not true of the dot product (since its
output is a real number, while its two inputs are vectors).

• The set
{

a + b 3
√

2 | a, b ∈ Z
}

is not a ring (despite the superficial similarity

to
{

a + b
√

2 | a, b ∈ Z
}

, which is a ring), at least not if we try to use the
usual multiplication of real numbers as its multiplication. In fact, this multi-
plication is not a binary operation on this set, because the product of 3

√
2 and

3
√

2 is not an element of this set.

However, the larger set
{

a + b 3
√

2 + c
(

3
√

2
)2
| a, b ∈ Z

}
is a ring (endowed

with the usual addition, the usual multiplication, the usual 0 and the usual
1). (Check this!)

• For each a, b ∈ R, we let Aa,b be the function

R→ R, x 7→ ax + b.

This sort of function is called “linear function” in high school; research math-
ematicians prefer to call it “affine-linear function” instead (while reserving
the word “linear” for a more restrictive class of functions). Let ALF be the set
of these affine-linear functions Aa,b for all a, b ∈ R.

We can define a pointwise addition + on ALF; that is, for any f , g ∈ Aa,b, we
define a function f + g ∈ Aa,b by

( f + g) (x) = f (x) + g (x) for all x ∈ R.

We can also try to define a multiplication · on ALF. One obvious choice
would be to define multiplication to be composition (that is, f · g = f ◦ g);
another would be pointwise multiplication (that is, ( f · g) (x) = f (x) · g (x)
for all x ∈ R). Does any of these lead to a ring?

No. If we define multiplication to be composition, then the “Distributivity”
axiom is violated, since affine-linear functions f , g, h do not always satisfy
f ◦ (g + h) = f ◦ g + f ◦ h. If we define multiplication to be pointwise multi-
plication, then it is not a binary operation on ALF, since the pointwise product
of two affine-linear functions is not an affine-linear function in general.

• You know from high school that you cannot divide by 0. Why not?

Let us make the question precise. Of course, we cannot find an integer a that
satisfies 0 · a = 1, or a real, or a complex number, etc. But could we perhaps
find such a number a in some larger “number system”?
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The answer, of course, depends on what “number system” means for you. If
it means a ring, then we cannot find such an a in any ring.

Indeed, assume that we can. In other words, assume that there is a ring K

that contains the usual set Z of integers as well as a new element ∞ such
that 0 ·∞ = 1. And assume (this is a very reasonable assumption) that the
numbers 0 and 1 are indeed the zero and the unity of this ring. Then, the
Annihilation axiom yields 0 ·∞ = 0, so that 0 = 0 ·∞ = 1, which is absurd.
So such a ring K cannot exist. Thus, we cannot divide by 0, even if we extend
our “number system”.

• Here is an “almost-ring” beloved to combinatorialists: the max-plus semiring
T (also known as the tropical semiring152).

We introduce a new symbol −∞, and we set T = Z ∪ {−∞} as sets. But
we do not “inherit” the addition and multiplication from Z. Instead, let us
define two new “addition” and “multiplication” operations +T and ·T (not
to be mistaken for the original addition + and multiplication · of integers) as
follows:

a +T b = max {a, b} ;
a ·T b = a + b (usual addition of integers) ,

where we set

max {−∞, n} = max {n,−∞} = n and
(−∞) + n = n + (−∞) = −∞ for any n ∈ Z∪ {−∞} .

This set T endowed with the “addition” +T, “multiplication” ·T, “zero” −∞
and “unity” 0 satisfies all but one of the ring axioms.153 The only one that it
does not satisfy is the existence of additive inverses. Such a structure is called
a semiring.

• Consider the set

2Z := {2a | a ∈ Z} = {. . . ,−4,−2, 0, 2, 4, . . .} = {all even integers} .

Endowing this set with the usual addition and multiplication (and 0), we
obtain a structure that is like a ring but has no unity. This is called a nonunital
ring. There is no way to find a unity for it, because (for example) 2 is not a
product of any two elements of 2Z.

152To be pedantic: The name “tropical semiring” refers to several different objects, of which T is but
one.

153For example, the distributivity axiom for T boils down to the two identities

a + max {b, c} = max {a + b, a + c} and
max {a, b}+ c = max {a + c, b + c} .
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5.3. Subrings

Looking back at the examples of rings listed above, you might notice that a lot of
them are “nested” inside one another: For example, the rings Z, Q, R and C form
a chain Z ⊆ Q ⊆ R ⊆ C in which each ring not only is a subset of the subsequent
one154, but also has “the same” addition, multiplication, zero and unity as the
subsequent one. Of course, when we are saying “the same” here, we do not literally
mean “the same binary operation”155; we mean that, e.g., if we add two integers
in Z, we get the same result as if we add the same two integers as elements of Q,
or as elements of R, or as elements of C. In other words, the addition operation
of the ring Z is a restriction of the addition operation of the ring Q, which in turn
is a restriction of the addition operation of the ring R, etc.. The same holds for
multiplication. The zeroes of the rings Z, Q, R and C are literally identical, as are
the unities of these rings.

It is worth introducing a name for this situation:

Definition 5.3.1. Let K and L be two rings. We say that K is a subring of L if
and only if it satisfies the following five requirements:

• the set K is a subset of L;

• the addition of K is a restriction of the addition of L (that is, we have
a1 +K a2 = a1 +L a2 for all a1, a2 ∈ K);

• the multiplication of K is a restriction of the multiplication of L (that is, we
have a1 ·K a2 = a1 ·L a2 for all a1, a2 ∈ K);

• the zero of K is the zero of L (that is, we have 0K = 0L);

• the unity of K is the unity of L (that is, we have 1K = 1L).

Thus, according to this definition:

• the ring Z is a subring of Q;

• the ring Q is a subring of R;

• the ring R is a subring of C;

154To be fully honest, we are relying on Convention 4.1.7 in order to make R a subset of C. And
if you look closely at the definitions of Q and R, the relations Z ⊆ Q and Q ⊆ R are also not
immediately satisfied but rather rely on similar conventions. For example, rational numbers are
defined as equivalence classes of pairs of integers; an integer is not an equivalence class of such
pairs. Thus, we need a convention which identifies each integer z with an appropriate rational
number in order to turn Z into a subset of Q. Similarly for turning Q into a subset of R. But let
us not worry about this issue for now.

155The addition of R is a map from R×R to R, while the addition of C is a map from C×C to C.
Thus, of course, these two additions are not literally the same binary operation.
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• the ring Z [i] (of Gaussian integers) is a subring of C;

• every ring K is a subring of itself.

What is an example of two rings K and L for which the set K is a subset of L

yet the ring K is not a subring of L ? Here is one example of an “almost-subring”:

Example 5.3.2. One of our above examples of rings (in Section 5.2) is the power
set of any set S. Namely, if S is any set, then we have observed that its power
set P (S), endowed with the addition 4, the multiplication ∩, the zero ∅ and
the unity S is a commutative ring. We shall refer to this ring by P (S) (omitting
mention of its addition, multiplication, zero and unity).

Now, let T be a subset of a set S. Is P (T) a subring of the ring P (S) ? The first
four requirements of Definition 5.3.1 are satisfied: The set P (T) is a subset of
P (S); its addition is a restriction of the addition of P (S) (indeed, both of these
additions turn two sets A and B into A4 B); its multiplication is a restriction
of the multiplication of P (S); its zero is the zero of P (S). But its unity is not
the unity of P (S) (unless T = S); indeed, the former unity is T, while the latter
unity is S. Thus, P (T) is not a subring of P (S) (unless T = S). It fails the fifth
requirement of Definition 5.3.1.

(As we have remarked, some authors do not require rings to have a unity.
Correspondingly, these authors do not pose the fifth requirement in Definition
5.3.1. Thus, for these authors, P (T) is a subring of P (S).)

For a less subtle example, recall the ring Z′ constructed in Section 5.2. The sets
Z′ and Z are identical, but the rings Z′ and Z are not, so the ring Z′ is not a
subring of Z despite being a subset of Z.

When we have two rings K and L such that K ⊆ L as sets (or, more generally,
such that K and L have elements in common), we generally need to be careful
using the symbol “+”: This symbol may mean both the addition of K and the
addition of L, and these additions might not be the same. Thus it is prudent to
disambiguate its meaning by attaching a subscript “K” or “L” to it. The same
applies to the symbols “·”, “0” and “1” and expressions like “ab” (which have an
implicit multiplication sign). However, when K is a subring of L, we do not need
to take this precaution; in this case, the meaning of expressions like “a + b” does
not depend on whether you read “+” as the addition of K or as the addition of L.

The following facts are essentially obvious:

Proposition 5.3.3. A subring of a commutative ring is always commutative.

Proof of Proposition 5.3.3. Let K be a subring of a commutative ring L. We must
prove that K is commutative.

We have ab = ba for all a, b ∈ L (since L is commutative). Thus, ab = ba for
all a, b ∈ K (since K is a subring of L). In other words, K is commutative. This
completes our proof.
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Note how we were able to write expressions like “ab” and “ba” without specify-
ing whether we were using the multiplication of K or the multiplication of L. This
was legitimate because K is a subring (not just a subset) of L.

Proposition 5.3.4. Let L be a ring. Let S be a subset of L that satisfies the
following four conditions:156

• We have 0 ∈ S and 1 ∈ S.

• The subset S is closed under addition. (This means that all a, b ∈ S satisfy
a + b ∈ S.)

• The subset S is closed under additive inverses. (This means that all a ∈ S
satisfy −a ∈ S.)

• The subset S is closed under multiplication. (This means that all a, b ∈ S
satisfy ab ∈ S.)

Then, the set S itself becomes a ring if we endow it with the following two
operations:

• an addition operation + which is defined as the restriction of the addition
operation of the ring L;

• a multiplication operation · which is defined as the restriction of the mul-
tiplication operation of the ring L,

and the zero 0 and the unity 1. Furthermore, this ring S is a subring of L.

Proof of Proposition 5.3.4. The addition operation + that we are trying to define on S
is indeed a well-defined binary operation on S, because S is closed under addition.
Ditto for the multiplication operation ·. Also, 0 and 1 are elements of S (by the
first of our four conditions). Thus, in order to prove that the subset S becomes a
ring (when endowed with these two operations and two elements), we just need
to check that it satisfies the ring axioms. This is easy: The “Existence of additive
inverses” axiom follows from the fact that S is closed under additive inverses; all
the remaining axioms follow from the fact that L is a ring. Finally, this ring S is a
subring of L, because of how we defined it. Thus, Proposition 5.3.4 is proven.

Definition 5.3.5. Let L be a ring. Let S be a subset of L that satisfies the four
conditions of Proposition 5.3.4. Then, we shall say that “S is a subring of L”.
Technically speaking, this is premature, since S is so far just a subset of L without
the structure of a ring; however, Proposition 5.3.4 shows that there is an obvious

156In this proposition, the symbols “+”, “·”, “0” and “1” mean the addition, the multiplication, the
zero and the unity of L.
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way of turning S into a ring (viz.: define two operations + and · by restricting
the corresponding operations of L, and steal the zero and the unity from L),
and we shall automatically regard S as becoming a ring in this way (unless we
say otherwise). We say that the operations + and · on S (obtained by restricting
the corresponding operations on L) and the zero and the unity of S (which are
exactly those of L) are inherited from L.

Thus, finding subrings of a ring L boils down to finding subsets that contain its
0 and 1 and are closed under addition, under additive inverses and under multi-
plication; the ring axioms don’t need to be re-checked. This offers an easy way to
discover subrings:

Example 5.3.6. Let us define a few subsets of the ring Z [i] and see whether they
are subrings.

(a) Let

S1 = {a + bi | a, b ∈ Z, and b is even} = {a + 2ci | a, c ∈ Z} .

Is S1 a subring of Z [i] ?
It is easy to check that 0 ∈ S1 and 1 ∈ S1. Let us now check that S1 is closed

under multiplication: Let α, β ∈ S1; we need to show that αβ ∈ S1. We have α ∈
S1 = {a + 2ci | a, c ∈ Z}; in other words, we can write α in the form α = x + 2yi
for some x, y ∈ Z. Similarly, we can write β in the form β = z + 2wi for some
z, w ∈ Z. Now, multiplying the two equalities α = x + 2yi and β = z + 2wi, we
obtain

αβ = (x + 2yi) (z + 2wi) = xz + 2xwi + 2yzi + 4yw i2︸︷︷︸
=−1

= (xz− 4yw) + 2 (xw + yz) i.

Thus, αβ can be written in the form a + 2ci for some a, c ∈ Z (namely, for
a = xz − 4yw and c = xw + yz). Thus, αβ ∈ S1. Now, forget that we fixed
α, β. We thus have shown that all α, β ∈ S1 satisfy αβ ∈ S1. In other words, S1
is closed under multiplication. Similar arguments show that S1 is closed under
addition and under additive inverses. Thus, S1 is a subring of Z [i].

This subring S1 is only “half as large” as Z [i] (in a vague sense that can
be made precise), but it has rather different properties. For example, Z [i] has
greatest common divisors and unique factorization into primes; the subring S1
does not.

There is nothing special about the number 2; we could have just as easily
shown that {a + kci | a, c ∈ Z} is a subring of Z [i] for each k ∈ Z.

(b) Let

S2 = {a + bi | a, b ∈ Z, and a is even} = {2c + bi | c, b ∈ Z} .

Is S2 a subring of Z [i] ? No, since 1 /∈ S2.

https://math.stackexchange.com/questions/657058
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(c) Let

S3 = {a + bi | a, b ∈ Z, and b is a multiple of a} = {a + aci | a, c ∈ Z} .

Is S3 a subring of Z [i] ? The subset S3 does contain both 0 and 1 and is closed
under additive inverses; but S3 is not closed under addition (nor under multipli-
cation). Thus, S3 is not a subring of Z [i]. (For a concrete example: The numbers
1 + 2i and 1 + 3i both belong to S3, but their sum 2 + 5i does not.)

(d) Let
S4 = {a + bi | a, b ∈N} .

Is S4 a subring of Z [i] ? No, because S4 is not closed under additive inverses
(although S4 satisfies two of the other conditions of Proposition 5.3.4).

(e) A pattern emerges: It appears that the only subrings of Z [i] are the ones
of the form {a + kci | a, c ∈ Z} for k ∈ Z. This is indeed true. (It is not hard
to prove, if you are so inclined! Hint: Let S be any subring of Z [i]. Clearly, S
contains 1 and therefore all the integer multiples of 1; in other words, Z ⊆ S.
Hence, if S ⊆ Z, then clearly S = Z, which means that S = {a + kci | a, c ∈ Z}
for k = 0. Thus, we can WLOG assume that S 6⊆ Z. Hence, there exists at least
one a + bi ∈ S with b 6= 0. Thus, there exists at least one a + bi ∈ S with b > 0
(indeed, if b < 0, then we replace this element by its additive inverse). Pick
the one with the smallest b. Then, from a + bi ∈ S and a ∈ Z ⊆ S, we obtain
(a + bi)− a ∈ S (since S is a ring), which means that bi ∈ S. Next, argue that
S = {a + kci | a, c ∈ Z} for k = b.)

5.4. Additive inverses, sums, powers and their properties

What can you do when you have a ring?

Convention 5.4.1. For the rest of this section, we fix a ring K, and we denote its
addition, multiplication, zero and unity by +, ·, 0 and 1.

One thing you can do is subtraction. This relies on the following fact:

Theorem 5.4.2. Let a ∈ K. Then, a has exactly one additive inverse.

Before we prove this, let us recall how additive inverses are defined:

Definition 5.4.3. Let a ∈ K. An additive inverse of a means an element a′ of K

such that a + a′ = a′ + a = 0.

Proof of Theorem 5.4.2. By the ring axioms, a has at least one additive inverse. We
must thus only show that a has at most one additive inverse.

This can be done by the same argument that we used previously to prove that
a residue class in Z/n has at most one inverse (in the proof of Proposition 3.5.4),
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but now we need to replace Z/n, multiplication and [1]n by K, addition and 0,
respectively.

In detail: Let b and c be two additive inverses of a. We must prove that b = c.
We have a + b = 0 (since b is an additive inverse of a) and c + a = 0 (since c is an
additive inverse of a). Hence, the associativity of addition yields

(c + a) + b = c + (a + b)︸ ︷︷ ︸
=0

= c + 0 = c

(by the neutrality of zero). Comparing this with

(c + a)︸ ︷︷ ︸
=0

+b = 0 + b = b (by the neutrality of zero) ,

we obtain b = c, so our two additive inverses are equal. This shows that the
additive inverse is unique. Thus, Theorem 5.4.2 is proven.

Definition 5.4.4. (a) If a ∈ K, then the additive inverse of a will be called −a.
(This is well-defined, since Theorem 5.4.2 shows that this additive inverse is
unique.)

(b) If a ∈ K and b ∈ K, then we define the difference a− b to be the element
a + (−b) of K. This new binary operation − on K is called “subtraction”.

Additive inverses and subtraction satisfy certain rules that should not surprise
you:

Proposition 5.4.5. Let a, b, c ∈ K.
(a) We have a− b = c if and only if a = b + c. (Roughly speaking, this means

that subtraction undoes addition.)
(b) We have − (a + b) = (−a) + (−b).
(c) We have −0 = 0.
(d) We have 0− a = −a.
(e) We have − (−a) = a.
(f) We have − (ab) = (−a) b = a (−b).
(g) We have a− b− c = a− (b + c). (Here and in the following, “a− b− c”

should be read as “(a− b)− c”.)
(h) We have a (b− c) = ab− ac and (a− b) c = ac− bc.
(i) We have − (a− b) = b− a.
(j) We have a− (−b) = a + b.
(k) We have (−1) a = −a. (Here, the “1” on the left hand side means the unity

of K.)
(l) If −a = −b, then a = b.

Proof of Proposition 5.4.5. All of this is fairly straightforward to prove:
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(a) =⇒: Assume a − b = c. Thus, c = a − b = a + (−b) (by the definition of
a− b). Adding b on both sides of this equation, we get

c + b = (a + (−b)) + b = a + ((−b) + b)︸ ︷︷ ︸
=0

(since −b is the
additive inverse of b)

(by associativity of addition)

= a + 0 = a

(by the neutrality of zero), so that a = c+ b = b+ c. This proves the “=⇒” direction
of Proposition 5.4.5 (a).
⇐=: Assume a = b + c. Adding −b to both sides of this equation, we get

a + (−b) = (b + c)︸ ︷︷ ︸
=c+b

(by commutativity
of addition)

+ (−b) = (c + b) + (−b) = c + (b + (−b))︸ ︷︷ ︸
=0

(since −b is the
additive inverse of b)

(by associativity of addition)
= c + 0 = c

(by the neutrality of zero), so that c = a + (−b) = a− b. In other words, a− b = c.
This proves the “⇐=” direction of Proposition 5.4.5 (a). Thus, Proposition 5.4.5 (a)
is proven.

(b) We need to prove that (−a) + (−b) = − (a + b). In other words, we need
to prove that (−a) + (−b) is the additive inverse of a + b (because that’s what
− (a + b) is). In other words, we need to prove that

(a + b) + ((−a) + (−b)) = ((−a) + (−b)) + (a + b) = 0.

Associativity of addition yields

(a + b) + ((−a) + (−b)) = a +

b + ((−a) + (−b))︸ ︷︷ ︸
=(−b)+(−a)

 = a + (b + ((−b) + (−a)))︸ ︷︷ ︸
=(b+(−b))+(−a)
(by associativity

of addition)

= a +

 (b + (−b))︸ ︷︷ ︸
=0

(since −b is the
additive inverse of b)

+ (−a)

 = a + (0 + (−a))︸ ︷︷ ︸
=−a

= a + (−a) = 0

(since−a is the additive inverse of a). Also, (a + b)+ ((−a) + (−b)) = ((−a) + (−b))+
(a + b) (by commutativity of addition). Combining these two equalities, we obtain

(a + b) + ((−a) + (−b)) = ((−a) + (−b)) + (a + b) = 0.
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This completes the proof of Proposition 5.4.5 (b).
(c) We have 0 + 0 = 0 (by the neutrality of 0). But this shows precisely that 0 is

an additive inverse of 0. In other words, 0 = −0. This proves Proposition 5.4.5 (c).
(d) The definition of subtraction yields 0− a = 0 + (−a) = −a (by the neutrality

of 0). This proves Proposition 5.4.5 (d).
(e) Since −a is an additive inverse of a, we have (−a) + a = 0 and a + (−a) = 0.

But the same two equations say that a is an additive inverse of −a. In other words,
a = − (−a). This proves Proposition 5.4.5 (e).

(f) We have (−a) + a = 0 (since −a is an additive inverse of a). But distributivity
yields (−a) b + ab = ((−a) + a)︸ ︷︷ ︸

=0

b = 0b = 0 (by annihilation). Likewise, ab +

(−a) b = 0. Hence, (−a) b is an additive inverse of ab. In other words, (−a) b =
− (ab).

We have b + (−b) = 0 (since −b is an additive inverse of b). But distributivity
yields ab + a (−b) = a (b + (−b))︸ ︷︷ ︸

=0

= a0 = 0 (by annihilation). Likewise, a (−b) +

ab = 0. Hence, a (−b) is an additive inverse of ab. In other words, a (−b) = − (ab).
Combining this with (−a) b = − (ab), we obtain − (ab) = (−a) b = a (−b). This
proves Proposition 5.4.5 (f).

(g) The definition of subtraction yields

a− b− c = (a− b)︸ ︷︷ ︸
=a+(−b)

(by the definition of
subtraction)

+ (−c) = (a + (−b)) + (−c) = a + ((−b) + (−c))

(by associativity of addition). But Proposition 5.4.5 (b) (applied to b and c instead
of a and b) yields − (b + c) = (−b) + (−c). The definition of subtraction yields

a− (b + c) = a + (− (b + c))︸ ︷︷ ︸
=(−b)+(−c)

= a + ((−b) + (−c)) .

Comparing this with a − b − c = a + ((−b) + (−c)), we obtain a − b − c = a −
(b + c). This proves Proposition 5.4.5 (g).

(h) Proposition 5.4.5 (f) (applied to c instead of b) yields − (ac) = (−a) c =
a (−c).

The definition of subtraction yields b− c = b + (−c) and

ab− ac = ab + (− (ac))︸ ︷︷ ︸
=a(−c)

= ab + a (−c) = a (b + (−c))︸ ︷︷ ︸
=b−c

(by distributivity)

= a (b− c) .

Thus, a (b− c) = ab− ac. A similar argument show that (a− b) c = ac− bc. This
proves Proposition 5.4.5 (h).
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(i) Proposition 5.4.5 (e) (applied to b instead of a) yields − (−b) = b. But the
definition of subtraction yields a− b = a + (−b). Hence,

− (a− b) = − (a + (−b)) = (−a) + (− (−b))︸ ︷︷ ︸
=b

(by Proposition 5.4.5 (b), applied to − b instead of b)
= (−a) + b = b + (−a) (by commutativity of addition)
= b− a

(since b− a is defined to be b + (−a)). This proves Proposition 5.4.5 (i).
(j) Proposition 5.4.5 (e) (applied to b instead of a) yields − (−b) = b. The defini-

tion of subtraction yields

a− (−b) = a + (− (−b))︸ ︷︷ ︸
=b

= a + b.

This proves Proposition 5.4.5 (j).
(k) Proposition 5.4.5 (f) (applied to 1 and a instead of a and b) yields − (1a) =

(−1) a = 1 (−a). Hence, (−1) a = − (1a)︸︷︷︸
=a

= −a. This proves Proposition 5.4.5 (k).

(l) Assume that −a = −b. Proposition 5.4.5 (e) (applied to b instead of a) yields
− (−b) = b. Proposition 5.4.5 (e) yields − (−a) = a. Thus, a = − (−a)︸ ︷︷ ︸

=−b

= − (−b) =

b. This proves Proposition 5.4.5 (l).

If a, b ∈ K, then the expression “−ab” can be considered ambiguous, since it can
be read either as “(−a) b” or as “− (ab)”. But Proposition 5.4.5 (f) shows that these
two readings yield the same result; therefore, you need not fear this ambiguity.

Furthermore, we don’t need to parenthesize expressions like a + b + c or abc.
Indeed:

Theorem 5.4.6. Finite sums of elements of K can be defined in the same way as
finite sums of usual (i.e., real or rational) numbers (with the empty sum defined
to be 0). That is, if S is a finite set, and if as ∈ K for each s ∈ S, then ∑

s∈S
as is

well-defined and satisfies the usual rules, such as

∑
s∈S

(as + bs) = ∑
s∈S

as + ∑
s∈S

bs.

Thus, in particular, sums like
q
∑

i=p
ai or a1 + a2 + · · ·+ ak are well-defined. We

don’t need to put parentheses or specify the order of summation in order to
make them non-ambiguous.

Proof of Theorem 5.4.6. This is proven just as for numbers. (See [Grinbe15, §2.14 and
§1.4] for how it is proven for numbers.)
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What about finite products? Is ∏
s∈S

as well-defined? Not always, but only for

commutative rings. Indeed, a product like ∏
s∈S

as has no pre-defined order of multi-

plication (in general), so for it to be well-defined, it would have to be independent
of the order; but this would require the commutativity of multiplication.

Theorem 5.4.7. (a) Finite products of elements of K can be defined in the same
way as finite products of usual (i.e., real or rational) numbers (with the empty
product defined to be 1) as long as the ring K is commutative.

(b) For general (not necessarily commutative) rings K, we can still define prod-
ucts with a pre-determined order, such as a1a2 · · · ak (where a1, a2, . . . , ak ∈ K).
These products can be defined recursively as follows:

a1a2 · · · ak = 1 if k = 0;

otherwise,
a1a2 · · · ak = (a1a2 · · · ak−1) ak.

These products still satisfy the rule

a1a2 · · · ak = (a1a2 · · · ai) (ai+1ai+2 · · · ak) for all i ∈ {0, 1, . . . , k} .

Proof of Theorem 5.4.7. (a) This is proven just as for numbers. (See [Grinbe15, §2.14
and §1.4] for how it is proven for numbers, and replace every appearance of A in
that proof by K.)

(b) This follows from Exercise 4 (b) on homework set #0 (applied to the set S = K,
the binary operation · = ∗, and the neutral element e = 1). 157

157To be fully honest, we are skipping over a little subtlety here. Exercise 4 (b) on homework set #0
(applied to S = K, · = ∗ and e = 1) does indeed show that

a1a2 · · · ak = (a1a2 · · · ai) (ai+1ai+2 · · · ak) for all i ∈ {0, 1, . . . , k} .

However, this exercise assumes a slightly different definition of the “k-tuple product” a1a2 · · · ak
(which is denoted by P (a1, a2, . . . , ak) in this exercise); namely, it assumes the following recursive
definition:

• For k = 0, we set a1a2 · · · ak = 1. (This is written as “P () = e” in the exercise.)

• For k = 1, we set a1a2 · · · ak = a1. (This is written as “P (a1) = a1” in the exercise.)

• For k > 1, we set a1a2 · · · ak = (a1a2 · · · ak−1) ak. (This is written as “P (a1, a2, . . . , ak) =
(P (a1, a2, . . . , ak−1)) ∗ ak” in the exercise.)

Comparing this definition to the one we gave in Theorem 5.4.7 (b), we realize that it is slightly
different; to wit, it treats the cases k = 1 and k > 1 separately, while the definition in Theorem
5.4.7 (b) uses the same recursive formula for all k > 0.

Fortunately, these two definitions are nevertheless equivalent, i.e., they yield the same value
for a1a2 · · · ak whenever k ∈N and a1, a2, . . . , ak ∈ K. To see this, you can argue by induction on
k as follows:

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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(Alternatively, you can find proofs in various texts on algebra, such as [Artin10,
Proposition 2.1.4] or [Warner71, Appendix A], or at https://groupprops.subwiki.
org/wiki/Associative_implies_generalized_associative .)

Theorem 5.4.7 (b) is called the general associativity theorem for rings. Note that
Theorem 5.4.7 (b) entails that if we have k elements a1, a2, . . . , ak of a ring K, then
any two ways of parenthesizing the product a1a2 · · · ak yield the same result. For
example, for k = 4, we have

((a1a2) a3) a4 = (a1 (a2a3)) a4 = (a1a2) (a3a4) = a1 ((a2a3) a4) = a1 (a2 (a3a4)) .

(It is not hard to prove this particular chain of identities by applying the associa-
tivity of multiplication in the appropriate places; but for higher values of k, such a
manual approach becomes more and more cumbersome.)

What else can we do with our ring K ?
By definition, we know how to multiply two elements of K. But there is also a

natural way to multiply an element of K with an integer. This is defined as follows:

Definition 5.4.8. Let a ∈ K and n ∈ Z. Then, we define an element na of K by

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0
.

The “na” that we have just defined has nothing to do with the multiplication · of
K, since n is not (generally) an element of K. However, when K is one of the usual

• When k = 0, the two definitions clearly yield the same value for a1a2 · · · ak (namely, the
value 1).

• When k = 1, the two definitions also yield the same value for a1a2 · · · ak (indeed, the
definition from Exercise 4 (b) on homework set #0 defines a1a2 · · · ak to be a1 in this case,
whereas the definition we gave in Theorem 5.4.7 (b) defines it to be

(a1a2 · · · ak−1) ak = (a1a2 · · · a0)︸ ︷︷ ︸
=1

a1 (since k = 1)

= 1a1 = a1 (by the “Neutrality of one” axiom) ,

and obviously these two values are the same).

• When k > 1, the two definitions yield the same value for a1a2 · · · ak, because they define
a1a2 · · · ak by the same recursive formula (viz., a1a2 · · · ak = (a1a2 · · · ak−1) ak) in this case.
(Here, we need the inductive hypothesis to tell us that the two definitions yield the same
value for a1a2 · · · ak−1.)

Thus, Exercise 4 (b) on homework set #0 can indeed be applied to our definition of a1a2 · · · ak,
and as a result, Theorem 5.4.7 (b) follows.

https://groupprops.subwiki.org/wiki/Associative_implies_generalized_associative
https://groupprops.subwiki.org/wiki/Associative_implies_generalized_associative
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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rings of numbers (like Z, Q, R, C), then this kind of multiplication is a restriction
of the multiplication · of K (that is, na means the same thing). Indeed, Definition
5.4.8 clearly generalizes the definition of na for rational numbers a. Furthermore,
when K = Z/n for some integer n, Definition 5.4.8 agrees with Definition 3.4.18
(in the sense that both definitions yield the same result for rα when r ∈ Z and
α ∈ Z/n). (This is easy to prove by induction.)

The “na” multiplication introduced in Definition 5.4.8 has several properties that
you would expect such an operation to have:

Proposition 5.4.9. We have

(n + m) a = na + ma for all a ∈ K and n, m ∈ Z; (166)
n (a + b) = na + nb for all a, b ∈ K and n ∈ Z; (167)
− (na) = (−n) a = n (−a) for all a ∈ K and n ∈ Z; (168)
(nm) a = n (ma) for all a ∈ K and n, m ∈ Z; (169)
n (ab) = (na) b = a (nb) for all a, b ∈ K and n ∈ Z; (170)

n0K = 0K for all n ∈ Z; (171)
1a = a for all a ∈ K (172)

(here, the “1” means the integer 1) ;
0a = 0K for all a ∈ K (173)

(here, the “0” on the left hand side means the integer 0) ;
(−1) a = −a for all a ∈ K; (174)

(here, the “− 1” means the integer − 1) .

In particular:

• The equality (168) shows that the expression “−na” (with a ∈ K and n ∈ Z)
is unambiguous (since its two possible interpretations, namely − (na) and
(−n) a, yield equal results).

• The equality (169) shows that the expression “nma” (with a ∈ K and n, m ∈
Z) is unambiguous.

• The equality (170) shows that the expression “nab” (with a, b ∈ K and
n ∈ Z) is unambiguous.

Exercise 5.4.1. Prove Proposition 5.4.9.
[Hint: The proofs of the rules in Proposition 5.4.9 are analogous to the proofs

of the corresponding rules for rationals – at least if you know the right proofs
of the latter. One way is to start by proving the equalities (173), (172) and (174),
which follow almost immediately from Definition 5.4.8; then, prove (166) for
n, m ∈ N; then, prove (171) and (167) for n ∈ N; then, prove (169) for n, m ∈ N;
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then, prove (170) for n ∈ N; then, show that (−n) a = − (na) for all a ∈ K

and n ∈ Z (by distinguishing between the cases n > 0, n = 0 and n < 0); and
then extend the identities that have already been shown for elements of N to
elements of Z (using Proposition 5.4.5). Note that this is rather similar to the
process by which we proved Proposition 4.1.20 in the solution to Exercise 4.1.1,
with the main difference being that we now are studying multiples instead of
powers (and addition instead of multiplication). Our solution to Exercise 4.1.1
cannot be copied literally, however, because the way we defined na for negative n
in Definition 5.4.8 is somewhat different from the way we defined αn for negative
n in Definition 4.1.19.]

We can also define powers of elements of a ring:

Definition 5.4.10. Let a ∈ K and n ∈N. Then, we define an element an of K by

an = a · a · · · · · a︸ ︷︷ ︸
n times

.

This definition clearly generalizes the definition of an for rational numbers a.
Furthermore, when K = Z/n for some integer n, Definition 5.4.10 agrees with
Definition 3.4.20 (in the sense that both definitions yield the same result for αk

when α ∈ Z/n and k ∈ N). (This follows from Theorem 3.4.26 (c).) Furthermore,
when K = C, Definition 5.4.10 agrees with Definition 4.1.18.

Powers of elements of a ring satisfy some properties you would expect but fail
to satisfy some others:

Proposition 5.4.11. (a) We have

a0 = 1 for all a ∈ K; (175)
1n = 1 for all n ∈N (176)

(here, the “1” means the unity of K) ;

0n =

{
0, if n > 0
1, if n = 0

for all n ∈N (177)

(here, the “0” in “0n” means the zero of K) ;

an+m = anam for all a ∈ K and n, m ∈N; (178)

(an)m = anm for all a ∈ K and n, m ∈N. (179)

(b) For any a, b ∈ K, we have

(a + b)2 = (a + b) (a + b) = a (a + b) + b (a + b)

= aa + ab + ba + bb = a2 + ab + ba + b2.

This further equals a2 + 2ab + b2 if K is commutative.
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(c) Let a, b ∈ K satisfy ab = ba. (This holds automatically when K is commu-
tative.) Then:

abn = bna for all n ∈N; (180)

aibj = bjai for all i, j ∈N; (181)
(ab)n = anbn for all n ∈N; (182)

(a + b)n =
n

∑
k=0

(
n
k

)
akbn−k for all n ∈N. (183)

(d) Let a, b ∈ K satisfy ab = ba. Then,

an − bn = (a− b)
(

an−1 + an−2b + · · ·+ abn−2 + bn−1
)

for all n ∈N.

Proof of Proposition 5.4.11 (sketched). (a) The equality (175) follows from the defini-
tion of products (specifically, the part when empty products were defined to be 1).
The proof of (176) is analogous to the proof of Proposition 4.1.20 (e). The proof of
(177) is almost obvious (just observe that 0n = 0 · 0n−1 = 0 whenever n > 0). The
proof of (178) is analogous to the proof of Proposition 4.1.20 (b). The proof of (179)
is analogous to the proof of Proposition 4.1.20 (d).

(b) Expand using distributivity.
(c) First prove (180) by induction on n 158. Then, prove (181) by induction

on j (using (180) in the induction step)159. Then, prove (182) by induction on n

158Here are the details:
Proof of (180): We shall prove (180) by induction on n:
Induction base: Applying (175) to b instead of a, we conclude that b0 = 1. Thus, a b0︸︷︷︸

=1

= a and

b0︸︷︷︸
=1

a = a. Comparing these two equalities, we find ab0 = b0a. In other words, (180) holds for

n = 0. This completes the induction base.
Induction step: Let m ∈N. Assume that (180) holds for n = m. We must prove that (180) holds

for n = m + 1.
We have assumed that (180) holds for n = m. In other words, we have abm = bma. But the

definition of b1 yields b1 = b · b · · · · · b︸ ︷︷ ︸
1 times

= b. Now, (178) (applied to b, m and 1 instead of a, n and

m) yields bm+1 = bm b1︸︷︷︸
=b

= bmb. Hence,

a bm+1︸ ︷︷ ︸
=bmb

= abm︸︷︷︸
=bma

b = bm ab︸︷︷︸
=ba

= bmb︸︷︷︸
=bm+1

a = bm+1a.

In other words, (180) holds for n = m + 1. This completes the induction step. Hence, the
induction proof of (180) is complete.

159Alternatively, you can prove (181) as follows:
Let i, j ∈N. We must prove that aibj = bjai.
We have ab = ba, thus ba = ab. Hence, (180) (applied to b, a and i instead of a, b and n) yields
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(using (180) in the induction step)160. Finally, prove (183) by induction on n, just as
Theorem 2.17.13 is proven (but using (181) in the induction step in order to move
powers of a past powers of b).

(d) For K = Q, this was proven in Exercise 1 on homework set #0. The proof in
the case of general rings K is analogous161.

5.5. Multiplicative inverses and fields

Convention 5.5.1. For the rest of this section, we fix a ring K, and we denote its
addition, multiplication, zero and unity by +, ·, 0 and 1.

Each element a of the ring K has an additive inverse −a, which satisfies (−a) + a =
a + (−a) = 0. What about a “multiplicative inverse”?

bai = aib. In other words, aib = bai. Thus, (180) (applied to ai and j instead of a and n) yields
aibj = bjai. Thus, (181) is proven.

160Here is the argument in detail:
Proof of (182): We shall prove (182) by induction on n:
Induction base: From (175), we obtain a0 = 1. Similarly, b0 = 1 and (ab)0 = 1. Hence,

(ab)0 = 1 = 1︸︷︷︸
=a0

· 1︸︷︷︸
=b0

= a0b0. In other words, (182) holds for n = 0. This completes the

induction base.
Induction step: Let m ∈N. Assume that (182) holds for n = m. We must prove that (182) holds

for n = m + 1.
We have assumed that (182) holds for n = m. In other words, we have (ab)m = ambm. But the

definition of b1 yields b1 = b · b · · · · · b︸ ︷︷ ︸
1 times

= b. Now, (178) (applied to b, m and 1 instead of a, n and

m) yields bm+1 = bm b1︸︷︷︸
=b

= bmb. Similarly, am+1 = ama.

But (180) (applied to n = m) yields abm = bma. Now,

am+1︸ ︷︷ ︸
=ama

bm+1︸ ︷︷ ︸
=bmb

= am abm︸︷︷︸
=bma

b = ambmab. (184)

But the same argument that we used to show that bm+1 = bmb can be applied to ab instead of
b. We thus obtain

(ab)m+1 = (ab)m︸ ︷︷ ︸
=ambm

(ab) = ambm (ab) = ambmab.

Comparing this with (184), we obtain (ab)m+1 = am+1bm+1. In other words, (182) holds for
n = m + 1. This completes the induction step. Hence, the induction proof of (182) is complete.

161There is only one minor complication: We need to justify that (a− b) a = a (a− b) (since this was
used in the proof). Luckily, this is very easy: Just note that

(a− b) a = aa− ba︸︷︷︸
=ab

= aa− ab = a (a− b) .

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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Definition 5.5.2. Let a ∈ K. A multiplicative inverse of a means an element a′ of
K such that aa′ = a′a = 1.

Multiplicative inverses don’t always exist. In the ring Q, the number 0 has none.

In the ring Z, the number 2 has none (since
1
2

/∈ Z). But when they do exist, they
are unique:

Theorem 5.5.3. Let a ∈ K. Then, a has at most one multiplicative inverse.

Proof of Theorem 5.5.3. This is analogous to Theorem 5.4.2, but we have to replace +
and 0 by · and 1.

Warning: In Definition 5.4.3, we could have replaced “a + a′ = a′ + a = 0” by
“a + a′ = 0”, since a + a′ = a′ + a already follows from commutativity of addition.
But in Definition 5.5.2, we cannot replace “aa′ = a′a = 1” by “aa′ = 1”, since K

need not be commutative. If we require aa′ = 1 only, then a′ is just a right inverse
of a; such a right inverse is not necessarily unique.

The following definition generalizes Definition 3.5.6, Definition 4.1.13 and Defi-
nition 4.1.14:

Definition 5.5.4. (a) An element a ∈ K is said to be invertible if it has a multi-
plicative inverse. An invertible element is also called a unit.

(b) If a ∈ K is invertible, then the multiplicative inverse of a will be called a−1.
(This is well-defined, since Theorem 5.5.3 shows that this multiplicative inverse
is unique.)

(c) Assume that K is commutative. If a ∈ K and b ∈ K are such that b is
invertible, then we define the quotient a/b (also called

a
b

) to be the element ab−1

of K. This new binary partial operation / on K is called “division”.

The word “partial” in “partial operation” means that it is not always defined. We
already have seen this for rational numbers: We cannot divide by 0.

Again, we follow PEMDAS rules as far as division is concerned. Do not use the
ambiguous expression “a/bc”; it can mean either a/ (bc) or (a/b) c, depending on
whom you ask, and thus should always be parenthesized.

The notion of “unit” we have just defined generalizes the units of Z [i]. Don’t
confuse “unit” (= invertible element) with “unity” (= 1K). The unity is always a
unit (by Exercise 5.5.1 (a) further below), but often not the only unit.

Definition 5.5.4 (c) generalizes the usual meaning of a/b in Q, R and C.
Please do not use Definition 5.5.4 (c) when K is not commutative; that would

cause confusion, since ab−1 and b−1a would have equal rights to the name “
a
b

”.
If K = Z/n for a positive integer n, and if α ∈ K, then the multiplicative inverse

of α is the same as an inverse of α (as defined in Definition 3.5.2). Thus, multiplica-
tive inverses in arbitrary rings generalize the concept of inverses in Z/n. Likewise,
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they generalize inverses in C; that is, an inverse of a complex number α ∈ C (as
defined in Definition 4.1.11) is the same as a multiplicative inverse of α.

Again, it is not hard to check that multiplicative inverses and division have the
properties you would hope them to have:

Exercise 5.5.1. Prove the following:
(a) The element 1K of K is always invertible.
(b) The element −1K of K is always invertible. (Note that −1K is not always

distinct from 1K.)
(c) Let a ∈ K be invertible. Then, its inverse a−1 is invertible as well, and its

inverse is
(
a−1)−1

= a.
(d) Let a, b ∈ K be invertible. Then, their product ab is invertible as well, and

its inverse is (ab)−1 = b−1a−1. (Mind the order of multiplication: it is b−1a−1,
not a−1b−1.)

(e) Assume that K is commutative. Let a, b, c, d ∈ K be such that b and d are
invertible. Then,

a/b + c/d = (ad + bc) / (bd) and (a/b) (c/d) = (ac) / (bd) .

Some rings have many invertible elements (such as Q, where each nonzero el-
ement is invertible), while others have few (such as Z, whose only invertible ele-
ments are 1 and −1). The extreme case on the former end is called a skew field or a
field, depending on its commutativity:

Definition 5.5.5. (a) An element a ∈ K is said to be nonzero if a 6= 0. (Here, of
course, 0 means the zero of K.)

(b) We say that K is a skew field if 0 6= 1 in K and if every nonzero a ∈ K is
invertible. (Here, “0 6= 1 in K” means “0K 6= 1K”; we are clearly not requiring
the integers 0 and 1 to be distinct.)

(c) We say that K is a field if K is a commutative skew field.

The condition “0 6= 1 in K” has been made to rule out an annoying exception.
It is easy to see that if a ring K satisfies 0 = 1 in K, then it has only one element
(to wit: any a ∈ K must satisfy a = 1︸︷︷︸

=0

·a = 0 · a = 0), which entails that K is the

zero ring (up to relabeling of its element 0). We do not want the zero ring to count
as a skew field162; thus we require 0 6= 1 in K in Definition 5.5.5.

Some authors call skew fields division rings.

Remark 5.5.6. If you work in constructive logic, you will want to replace the condition

“every nonzero a ∈ K is invertible” (185)

162just as we don’t want the number 1 to count as a prime

https://en.wikipedia.org/wiki/Intuitionistic_logic
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in Definition 5.5.5 (b) by the stronger condition

“every a ∈ K equals 0K or is invertible”. (186)

While the condition (186) is clearly equivalent to (185) in classical logic, it is stronger in
constructive logic, because it can be applied to any a ∈ K that is not a-priori known to
be either zero or nonzero (whereas (185) requires a to be known to be nonzero, which is
too burdensome a requirement to make it useful in constructive logic).

Example 5.5.7. (a) The rings Q, R and C are fields.
If you work in constructive logic, then you cannot prove that R and C are fields,

because constructively there is no way to tell whether a real number is 0 or not. This
is not a big issue for us, since we never truly use R and C in these notes (and when
we do, we can replace them by smaller subrings of C that can be shown to be fields
constructively – such as the Gaussian rationals).

(b) The rings Z, Z [i] and Z
[√

2
]

are not fields (since, for example, 2 is not

invertible in any of these rings). However, Z [i] and Z
[√

2
]

would become fields
if we had used Q instead of Z in their definitions.

(c) The polynomial ring Z [x] (which we will formally define in Chapter 7) is
not a field (since, for example, x is not invertible in it). There is a way to get a
field out of it, similarly to how Q is obtained from Z. (This leads to the so-called
rational functions.)

(d) Recall the commutative ring QQ; the elements of this ring are functions
from Q to Q, and the operations + and · are defined pointwise. Is this ring a
field?

Let us see what the multiplicative inverse of a function f ∈ QQ is. If f , g ∈ QQ

are two functions, then we have the following chain of equivalences:

(g is the multiplicative inverse of f )

⇐⇒
(

f g = g f = 1QQ

)
⇐⇒

(
( f g) (x) = (g f ) (x) = 1QQ (x) for all x ∈ Q

)
⇐⇒ ( f (x) · g (x) = g (x) · f (x) = 1 for all x ∈ Q)(

since each x ∈ Q satisfies ( f g) (x) = f (x) · g (x)
and (g f ) (x) = g (x) · f (x) and 1QQ (x) = 1

)

⇐⇒
(

g (x) =
1

f (x)
for all x ∈ Q

)
.

(Note that this is not the same as saying that f and g are inverse maps! The
multiplication of QQ is not given by composition of maps.)

This shows that a function f ∈ QQ is invertible in QQ if and only if it never
takes the value 0 (because its multiplicative inverse g would have to satisfy

https://en.wikipedia.org/wiki/Rational_function
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g (x) =
1

f (x)
for all x ∈ Q). But a function f ∈ QQ can be 0 at some point

and 6= 0 at another. Then, it is not invertible (since it is 0 at some point) yet
nonzero (since it is 6= 0 at another). For example, the function id ∈ QQ is not
invertible yet nonzero. Thus, QQ is not a field.

(e) The ring Q2×2 of 2× 2-matrices with rational entries is not a skew field.

Indeed, the 2× 2-matrix
(

1 0
1 0

)
is nonzero but not invertible. (More generally:

For each n ∈ N, the n × n-matrices over Q form a ring, which we will study
later. Our notion of “invertible” for elements of this ring coincides with the
usual notion of “invertible” for n× n-matrices in linear algebra.)

What about Z/n ?

Theorem 5.5.8. Let n be a positive integer. The ring Z/n is a field if and only if
n is prime.

Proof of Theorem 5.5.8. ⇐=: Assume that n is prime. We must prove that Z/n is a
field.

First of all, n > 1 (since n is prime). Thus, n - 1, so that 1 6≡ 0 mod n, so that
0 6≡ 1 mod n. In other words, [0]n 6= [1]n. In other words, 0 6= 1 in Z/n (since
0Z/n = [0]n and 1Z/n = [1]n).

Also, the ring Z/n is commutative.
So it remains to prove that every nonzero α ∈ Z/n is invertible (because then,

we will immediately conclude that Z/n is a skew field and therefore a field).
Indeed, let α ∈ Z/n be nonzero. We must prove that α is invertible.
Proposition 3.4.6 (b) shows that there exists a unique a ∈ {0, 1, . . . , n− 1} sat-

isfying α = [a]n. Consider this a. If we had a = 0, then α = [a]n would become
α = [0]n = 0Z/n, which would contradict the assumption that α is nonzero. So
a 6= 0. Thus, a ∈ {1, 2, . . . , n− 1} (since a ∈ {0, 1, . . . , n− 1}). Hence, Proposition
2.13.4 (applied to i = a and p = n) shows that a is coprime to n. In other words,
a ⊥ n.

Now, define a set Un as in Corollary 3.5.5. Then, Corollary 3.5.5 (a) yields [a]n ∈
Un (since a ⊥ n). In other words, [a]n has an inverse (by the definition of Un). In
other words, α has an inverse (since α = [a]n). In other words, α has a multiplicative
inverse (because inverses in Z/n are precisely what we now call multiplicative
inverses). In other words, α is invertible. So we have proven the “⇐=” direction of
Theorem 5.5.8.
=⇒: Rough idea: Assume that Z/n is a field. We must prove that n is a prime.

Assume the contrary.
We have 0 6= 1 in Z/n (since Z/n is a field); in other words, 0 6≡ 1 mod n. Hence,

n 6= 1, so that n > 1 (since n is a positive integer). Hence, there must exist two
elements d, e ∈ {1, 2, . . . , n− 1} such that n = de (since n is not a prime). Consider
these d and e. Theorem 3.4.4 shows that the n residue classes [0]n , [1]n , . . . , [n− 1]n
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are distinct. Hence, the residue classes [d]n and [e]n are nonzero (since d, e ∈
{1, 2, . . . , n− 1} are distinct from 0). Thus, these two residue classes are invert-
ible (since Z/n is a field). Thus, by Exercise 5.5.1 (d), their product [d]n [e]n is
invertible as well. But this product is [d]n [e]n = [de]n = [n]n = [0]n = 0Z/n, which
is not invertible. Contradiction. Thus, the “=⇒” direction of Theorem 5.5.8 is
proven.

It is tricky to find a skew field that is not a field. Here is the simplest example of
such a skew field:

Example 5.5.9. Informally, we have obtained C from R by throwing in a new
number i that satisfies i2 = −1. In order for i not to feel alone, let us introduce
yet another new “number” j such that j2 = −1 and ji = −ij. Now we try to
calculate with these i and j. Of course, i and j cannot belong to a commutative
ring together, but let us assume that they (and the further numbers we obtain
from them) at least satisfy the ring axioms.

We have

i · ij = ii︸︷︷︸
=i2=−1

j = (−1) j = −j and

j · ij = ji︸︷︷︸
=−ij

j = −i jj︸︷︷︸
=j2=−1

= −i (−1) = i and

ij · ij = i ji︸︷︷︸
=−ij

j = − ii︸︷︷︸
=i2=−1

jj︸︷︷︸
=j2=−1

= − (−1) (−1) = −1

and (using the distributivity laws)

(1 + 2i + 3ij) (2− 3j) = 2 + 4i + 6ij− 3j− 6ij− 9i j2︸︷︷︸
=−1

= 2 + 4i− 3j + 9i = 2 + 13i− 3j.

Similarly, any of these new “numbers” can be written in the form a+ bi + cj+ dij
for reals a, b, c, d.

Blithely introducing new “numbers” like this can be risky. It could happen that

(just as with defining ∞ to be
1
0

) our new numbers would lead to contradictions.
For example, what if we have some expression that involves i and j and that
can be simplified to 0 in one way and simplified to 1 in another; would that
mean that 0 = 1 ? No; it would simply mean that the new “numbers” we have
introduced do not actually exist. (Or, speaking more abstractly: that the new
numbers are just the zero ring in a complicated disguise.)

So it makes sense to look for a rigorous definition of our new numbers. There
is a direct (though rather painful) way of doing this: We can rigorously define
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our new numbers as 4-tuples (a, b, c, d) of real numbers, with addition and sub-
traction defined entrywise, and with multiplication given by

(x1, x2, x3, x4) · (y1, y2, y3, y4)

= (x1y1 − x2y2 − x3y3 − x4y4, x1y2 + x2y1 + x3y4 − x4y3,
x1y3 − x2y4 + x3y1 + x4y2, x1y4 + x2y3 − x3y2 + x4y1) .

(The 4-tuple (a, b, c, d) is a rigorous model for the “number” a + bi + cj + dij.)
These new numbers are known as the quaternions. It turns out that they form a

skew field, albeit not a field (since commutativity is lacking). They have several
properties that make them useful in physics and space geometry. For one, they
encode both the dot product and the cross product of two vectors in R3: Namely,

if a =

 a1
a2
a3

 ∈ R3 and b =

 b1
b2
b3

 ∈ R3 are two vectors, then the quaternion

(0, a1, a2, a3) · (0, b1, b2, b3)

=

−a1b1 − a2b2 − a3b3︸ ︷︷ ︸
=−a·b

(where · stands for
the dot product)

, a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1︸ ︷︷ ︸
the three coordinates

of the cross product a×b

 .

Also, the quaternions can be used to encode rotations in 3-dimensional space
(see, e.g., [Jia13]).

Exercise 5.5.2. Let K be a skew field. Let x, y ∈ K satisfy xy = 0. (Here, of
course, “0” means the zero of K.) Prove that x = 0 or y = 0.

Solution to Exercise 5.5.2. Assume the contrary. Thus, neither x = 0 nor y = 0. In other
words, we have x 6= 0 and y 6= 0.

We know that K is a skew field. Thus, every nonzero a ∈ K is invertible (by the definition
of a skew field).

The element x of K is nonzero (since x 6= 0) and thus invertible (since every nonzero
a ∈ K is invertible). Hence, its inverse x−1 exists. Comparing x−1 xy︸︷︷︸

=0

= x−10 = 0 with

x−1x︸ ︷︷ ︸
=1

y = 1y = y, we obtain y = 0; this contradicts y 6= 0. This contradiction shows that our

assumption was false. Hence, Exercise 5.5.2 is solved.

Exercise 5.5.3. Let K be a ring. Let a, b, c ∈ K be such that ab = 1 and bc =
1. Prove that the element b is invertible and its multiplicative inverse satisfies
b−1 = a = c.

https://en.wikipedia.org/wiki/Quaternion
https://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
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Solution to Exercise 5.5.3. Comparing abc = (ab)︸︷︷︸
=1

c = c with abc = a (bc)︸︷︷︸
=1

= a, we obtain

a = c. Furthermore, a is a multiplicative inverse of b (since ab = 1 and b a︸︷︷︸
=c

= bc = 1).

Thus, the element b has a multiplicative inverse, i.e., is invertible. Furthermore, we have
b−1 = a (since a is a multiplicative inverse of b), thus b−1 = a = c. This solves Exercise
5.5.3.

5.6. Hunting for finite fields I

Definition 5.6.1. (a) The ground set of a ring (K,+, ·, 0, 1) is defined to be the set
K.

(b) The elements of a ring are defined to be the elements of its ground set.
(c) The size (or cardinality) of a ring is defined to be the size of its ground set.
(d) A ring is said to be finite if its size is finite (i.e., if it has only finitely many

elements).
(e) A ring is said to be trivial if its size is 1.

We have seen a bunch of finite rings. For example, if S is a finite set, then the com-
mutative ring (P (S) ,4,∩,∅, S) (which was constructed in one of the examples in
Section 5.2) has size |P (S)| = 2|S|, and thus is finite.

We also have seen infinitely many finite fields:

Z/2, Z/3, Z/5, Z/7, Z/11, . . .

Indeed, Theorem 5.5.8 yields that Z/p is a finite field whenever p is a prime.

Question 5.6.2. Are there any further finite fields?

Remark 5.6.3. Why do we care?
Recall Shamir’s Secret Sharing Scheme, which we introduced in Subsection

1.6.7. The way we defined the Scheme, it had a problem: It relied on a spuri-
ous notion of a “uniformly random rational number”, which does not exist in
nature. Now we can fix this problem: Replace rational numbers by elements
of a finite field. More precisely, let N again be the length of the bitstring that
we want to encrypt. Pick a prime p that satisfies both p ≥ 2N and p > n; this
exists due to Theorem 2.13.43. Now, use elements of the finite field Z/p instead
of integers. (Thus, a bitstring aN−1aN−2 · · · a0 will be encoded as the residue
class

[
aN−1 · 2N−1 + aN−2 · 2N−2 + · · ·+ a0 · 20]

p ∈ Z/p rather than as the num-

ber aN−1 · 2N−1 + aN−2 · 2N−2 + · · ·+ a0 · 20 ∈ Z. This encoding can be uniquely
decoded, because p ≥ 2N.) Instead of picking two uniformly random bitstrings
c and b and transforming them into numbers c and b, just pick two uniformly
random residue classes c, b ∈ Z/p. (This is possible, since Z/p is a finite set.)
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This relies on having a well-behaved notion of polynomials over Z/p, which
should satisfy the obvious analogue of Proposition 1.6.6 (with “numbers” re-
placed by “elements of Z/p”). We will give a rigorous definition of this notion
in Chapter 7.

Finite fields have many uses – not just in making Shamir’s Secret Sharing
Scheme work. One great source of applications is coding theory, which we will
briefly encounter in Subsection 7.7.5.

Let us take some first steps towards addressing Question 5.6.2. We have found
a field of size p for each prime p. Are there fields of other finite sizes? Let us
first focus on the probably simplest case beyond Z/p: Given a prime p, can we
construct a field of size p2 ?

First idea: Let us try to get such a field by “duplicating” the known field Z/p.
Thus, we fix a prime p, and consider the Cartesian product (Z/p)× (Z/p). Define
addition, subtraction and multiplication on this Cartesian product entrywise163.
This will yield a commutative ring with zero

(
[0]p , [0]p

)
and unity

(
[1]p , [1]p

)
.

However, the element
(
[0]p , [1]p

)
of this ring is nonzero (because it is not

(
[0]p , [0]p

)
)

but has no inverse (since multiplying it by anything will never make its first entry
anything other than [0]p). So this ring is not a field.

(This is not a useless construction – we will see it in greater generality in Section
5.7 below. But it does not help us find new fields.)

Second idea: We obtained C from R by “adjoining” a square root of −1. (In
abstract algebra, the verb “adjoin” means “insert” or “add” – not in the sense of
the addition operation +, but in the sense of throwing in something new into an
existing collection.)

Let us try to do this with Z/p instead of R.
More generally, let us start with an arbitrary commutative ring K, and try to

“adjoin” a square root of −1 to it. We are bold and don’t care whether there might
already be such a square root in K; if there is, then we will get a second one!

Let 0 and 1 stand for the zero and the unity of K. If K = Z/n for some integer
n, then these are the residue classes [0]n and [1]n.

Now, we want to define a new commutative ring K′ by “adjoining” a square
root of −1 to K. A way to make this rigorous is as follows (just as we defined C

rigorously in Definition 4.1.1):

163That is,

(a, b) + (c, d) = (a + c, b + d) ;
(a, b)− (c, d) = (a− c, b− d) ;

(a, b) (c, d) = (ac, bd)

for all (a, b) , (c, d) ∈ (Z/p)× (Z/p).
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Definition 5.6.4. Let K be a commutative ring.
(a) Let K′ be the set of all pairs (a, b) ∈ K×K.
(b) For each r ∈ K, we denote the pair (r, 0) ∈ K′ by rK′ . We identify r ∈ K

with rK′ = (r, 0) ∈ K′, so that K becomes a subset of K′.
(c) We let i be the pair (0, 1) ∈ K′.
(d) We define three binary operations +, − and · on K′ by setting

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac− bd, ad + bc)

for all (a, b) ∈ K′ and (c, d) ∈ K′.
(e) If α, β ∈ K′, then we write αβ for α · β.

You will, of course, recognize this definition to be a calque of Definition 4.1.1 with
R and C replaced by K and K′. The elements of K′ are like complex numbers, but
built upon K instead of R.

Proposition 5.6.5. (a) The set K′ defined in Definition 5.6.4 (equipped with the
operations + and · and the elements 0K′ and 1K′) is a commutative ring. Its
subtraction is the binary operation − defined in Definition 5.6.4 (d).

(b) Furthermore, the ring K is a subring of K′ (where we regard K as a subset
of K′ as explained in Definition 5.6.4 (b)).

Proof of Proposition 5.6.5. (a) Same argument as we did for C in the proof of Theo-
rem 4.1.2.

(b) This is straightforward to check.

Convention 5.6.6. For the rest of this section, we let K′ be the commutative ring
constructed in Proposition 5.6.5 (i.e., the set K′ equipped with the operations +
and · and the elements 0K′ and 1K′).

Thus, if K = Z/p, then K′ is a commutative ring with p2 elements.

Question 5.6.7. When is K′ is a field?

Assume that 0 6= 1 in K; thus, 0 6= 1 in K′ as well (since 0K′ = (0, 0) 6= (1, 0) =
1K′). Hence, in order for K′ to be a field, every nonzero ξ ∈ K′ needs to have a
multiplicative inverse. Thus, in particular, every nonzero element of K must have
a multiplicative inverse in K′. It is easy to see that such an inverse, if it exists,
must belong to K as well (i.e., it must have the form rK′ for some r ∈ K); thus, this
means that every nonzero element of K must have a multiplicative inverse in K. In
other words, K itself must be a field.

Thus, we assume from now on that K is a field. But we are not done yet. It is
definitely not always true that K′ is a field. For example, if K = Z/2, then the
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element (1, 1) of K′ has no inverse (check this!), and so K′ is not a field in this case.
What must K satisfy in order for K′ to be a field?

We know what it must satisfy: The condition is that every nonzero ξ ∈ K′ has a
multiplicative inverse. We just need to see when this condition holds.

So let ξ = (x, y) ∈ K′ (with x, y ∈ K) be nonzero. Thus, (x, y) 6= (0, 0).
How to find ξ−1 ? Notice that ξ = (x, y) = x + yi (this is proven just as for com-

plex numbers). Thus, you can try to compute ξ−1 by rationalizing the denominator
(just as we learned to divide complex numbers):

1
ξ
=

1
x + yi

=
x− yi

(x + yi) (x− yi)
=

x− yi
x2 + y2

(since (x + yi) (x− yi) = (x, y) (x,−y) =
(
x2 + y2, 0

)
, as you can easily see using

the definition of · on K′).
We need x2 + y2 6= 0 in K for this to work. In other words, we need the following

condition to hold:

Condition 1: For every pair (x, y) ∈ K×K satisfying (x, y) 6= (0, 0), we
have x2 + y2 6= 0 in K.

Thus, K′ is a field if Condition 1 holds. Conversely, if K′ is a field, then Condition
1 holds (because if (x, y) ∈ K×K satisfies (x, y) 6= (0, 0), then (x, y) (x,−y) =(

x2 + y2, 0
)

would have to be 6= (0, 0) in order for K′ to be a field164). So K′ is a
field if and only if Condition 1 holds.

If K = Z/p for some prime p, then Condition 1 can be restated as follows:

Condition 1’: For every pair (x, y) ∈ (Z/p)× (Z/p) satisfying (x, y) 6=
(0, 0), we have x2 + y2 6= 0 in Z/p.

We can further restate Condition 1’ in terms of integers by replacing the residue
classes x and y with their representatives a and b:

Condition 2: For every pair (a, b) ∈ Z×Z such that not both a and b are
divisible by p, the sum a2 + b2 is not divisible by p.

So the ring K′ constructed from K = Z/p is a field if and only if Condition 2
holds. When does Condition 2 hold?

Example 5.6.8. Let K = Z/p.
(a) If p = 2, then Condition 2 fails for (a, b) = (1, 1). So K′ is not a field for

p = 2.
(b) If p = 3, then Condition 2 holds. So K′ is a field for p = 3. Thus we have

found a field with 32 = 9 elements.
(c) If p = 5, then Condition 2 fails for (a, b) = (1, 2). So K′ is not a field for

p = 5.

164by Exercise 5.5.2
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This suggests that the following:

Proposition 5.6.9. A prime p satisfies Condition 2 if and only if p ≡ 3 mod 4.

Proof of Proposition 5.6.9 (sketched). =⇒: Assume that a prime p satisfies Condition
2. Assume (for contradiction) that p 6≡ 3 mod 4. So p is a prime of Type 1 or 2.
Thus, p = x2 + y2 for two integers x, y (by Theorem 4.2.42 (a)). Now, (x, y) is a pair
in Z×Z such that not both x and y are divisible by p (why not?), but the sum
x2 + y2 = p is divisible by p. So Condition 2 fails for (a, b) = (x, y). This proves
the “=⇒” direction of Proposition 5.6.9.
⇐=: Assume that a prime p satisfies p ≡ 3 mod 4. Thus, (p− 1) /2 is an odd

nonnegative integer.
We must prove that Condition 2 holds. In other words, we must prove that for

every pair (a, b) ∈ Z×Z such that not both a and b are divisible by p, the sum
a2 + b2 is not divisible by p.

Let (a, b) ∈ Z×Z be a pair such that not both a and b are divisible by p. We
must prove that the sum a2 + b2 is not divisible by p.

Assume the contrary. Thus, a2 + b2 ≡ 0 mod p.
If we had p | a, then we would have a ≡ 0 mod p and thus a2 + b2 ≡ 02 + b2 =

b2 mod p, so that b2 ≡ a2 + b2 ≡ 0 mod p and thus p | b2 and therefore p | b; but
this would contradict our assumption that not both a and b are divisible by p.
Hence, we cannot have p | a. Thus, we have p - a. Hence, Fermat’s Little Theorem
(Theorem 2.15.1 (a)) yields ap−1 ≡ 1 mod p. Similarly, bp−1 ≡ 1 mod p.

From a2 + b2 ≡ 0 mod p, we get a2 ≡ −b2 mod p. Taking this congruence to the
(p− 1) /2-th power165, we find(

a2
)(p−1)/2

≡
(
−b2

)(p−1)/2
= (−1)(p−1)/2︸ ︷︷ ︸

=−1
(since (p−1)/2 is odd)

(
b2
)(p−1)/2

︸ ︷︷ ︸
=bp−1

≡1 mod p

≡ −1 mod p.

Hence,

−1 ≡
(

a2
)(p−1)/2

= ap−1 ≡ 1 mod p.

Hence, p | (−1)− 1 = −2 | 2, so p = 2 (since p is prime). This contradicts p ≡
3 mod 4. This contradiction shows that our assumption was false; thus, Condition
2 holds. This proves the “⇐=” direction of Proposition 5.6.9.

Thus, if we set K = Z/p where p is a prime of Type 3, then K′ will be a field. So
we have found a field K′ with p2 elements for any prime p of Type 3. What about
the other primes?

We can try to vary the construction above: Instead of adjoining a square root of
−1, we adjoin a square root of some other element η ∈ Z/p.

165We can do this, since (p− 1) /2 is a nonnegative integer.
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Definition 5.6.10. Let K be a ring. A square (in K) means an element of the form
a2 for some a ∈ K.

Now, we generalize Definition 5.6.4 as follows:

Definition 5.6.11. Let K be a commutative ring. Let η ∈ K.
(a) Let K′η be the set of all pairs (a, b) ∈ K×K.
(b) For each r ∈ K, we denote the pair (r, 0) ∈ K′η by rK′η . We identify r ∈ K

with rK′η = (r, 0) ∈ K′η, so that K becomes a subset of K′η.
(c) We let iη be the pair (0, 1) ∈ K′η.
(d) We define three binary operations +, − and · on K′η by setting

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac + ηbd, ad + bc)

for all (a, b) ∈ K′η and (c, d) ∈ K′η.
(e) If α, β ∈ K′η, then we write αβ for α · β.

Note that K′η differs from K′ only in how the multiplication is defined. Note also
that K′−1 = K′.

Theorem 5.6.12. (a) The set K′η defined in Definition 5.6.11 (equipped with the
operations + and · and the elements 0K′η and 1K′η ) is a commutative ring. Its
subtraction is the operation − defined in Definition 5.6.11 (d).

(b) If K is a field and η is not a square in K, then K′η is a field.
(c) Let p be a prime. There always exists an element η ∈ Z/p that is not a

square, unless p = 2.

Proof of Theorem 5.6.12. (a) This is similar to our above proof that C is a commuta-
tive ring.

(b) Assume that K is a field and that η is not a square in K. We need to prove
that K′η is a field. In other words, we need to prove that each nonzero ξ ∈ K′η is
invertible.

So let ξ ∈ K′η be nonzero, and write ξ as ξ = (x, y) with x, y ∈ K. We must show
that ξ is invertible.

We have (x, y) (x,−y) =
(
x2 − ηy2, 0

)
(by the definition of the operation · on

K′η). If x2 − ηy2 is nonzero, then this shows quickly that
(

x
x2 − ηy2 ,

−y
x2 − ηy2

)
is

an inverse of (x, y) = ξ, and thus ξ is invertible. So we need to prove that x2 − ηy2

is nonzero.
Assume the contrary. Thus, x2 − ηy2 = 0, so that x2 = ηy2. If y is nonzero,

then this can be rewritten as
x2

y2 = η, whence η =
x2

y2 =

(
x
y

)2

, which contradicts
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the fact that η is not a square. So y cannot be nonzero. Thus, y = 0. Hence,

x2 = η y2︸︷︷︸
=02

= 0. Since ξ =

x, y︸︷︷︸
=0

 = (x, 0), we know that x is nonzero (since

ξ is nonzero). Hence, x has a multiplicative inverse (since K is a field). Hence,
multiplying x2 = 0 by x−1, we obtain x = 0, which contradicts x being nonzero. So
our assumption was wrong. Theorem 5.6.12 (b) is proven.

(c) Assume that p 6= 2. Thus, p > 2. Hence, the two residue classes [1]p and
[p− 1]p in Z/p are distinct.

Consider the map
Z/p→ Z/p, α 7→ α2.

This map is not injective (since it sends the two distinct residue classes [1]p and
[p− 1]p both to [1]p). Hence, it cannot be surjective either (since otherwise, the
Pigeonhole Principle for Surjections would entail that it is bijective, hence injective).
In other words, there exists some η ∈ Z/p that is not in its image. In other words,
there exists an element η ∈ Z/p that is not a square. This proves Theorem 5.6.12
(c).

Now, if p is a prime with p > 2, then Theorem 5.6.12 (c) yields that there exists
an element η ∈ Z/p that is not a square; therefore, Theorem 5.6.12 (b) shows that
K′η is a field where K = Z/p. This is a field with p2 elements.

Is there a field of size 4, too?
We cannot get such a field by adjoining a square root to Z/2. So let us instead

try to adjoin an element j such that j2 = j + 1. Formally, we can do this as follows:
We define K′′ as the set of all pairs (a, b) ∈ (Z/2)× (Z/2), and we define three
operations +, − and · on K′′ by

(a, b) + (c, d) = (a + c, b + d) ,
(a, b)− (c, d) = (a− c, b− d) , and
(a, b) · (c, d) = (ac + bd, ad + bc + bd) .

You can check that this is a field with 4 elements.
Thus, for each prime p, we have found a field with p2 elements.
For the sake of completeness, let me mention a third idea for constructing fields

of size p2: Recall that our field Z/p of size p consisted of residue classes of inte-
gers modulo p. What happens if we take the residue classes of Gaussian integers
modulo a Gaussian prime π ?

I will not go into details, but here is a summary:

• The result is always a field of size N (π).

• If π is not unit-equivalent to an integer, then this is a field that we already
know (namely, Z/p for p = N (π)) with its elements relabelled.
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• If π is unit-equivalent to an integer, then π is unit-equivalent to a prime p
of Type 3, and the field of residue classes modulo π will be a field with p2

elements. Namely, it will be the field K′ we constructed above (for K = Z/p),
with its elements relabelled.

So this approach only gets us fields of size p2 when p is a prime of Type 3; it is
thus inferior to the second idea above. Nevertheless, it illustrates a general idea:
that residue classes make sense not only for integers.

Warning: When p is a prime, the ring Z/p2 is not a field; thus, the field with p2

elements that we constructed is not Z/p2.
Now, what about finite fields of size p3, p4, . . . ? What about finite fields of size 6

?
Spoiler: It turns out that the former exist, while the latter do not. We will

hopefully prove this later. More generally, for an integer n > 1, there exists a field
of size n if and only if n is a prime power (= a positive power of a prime). Even
better, if n is a prime power, then a field of size n is unique up to relabeling. We
hope to see a proof of this (at least of the existence part) further on in this class.

5.7. Cartesian products

Next comes a basic and unimaginative way of constructing new rings from old:

Definition 5.7.1. Let K1, K2, . . . , Kn be n rings. Consider the set K1×K2× · · · ×
Kn, whose elements are n-tuples (k1, k2, . . . , kn) with ki ∈ Ki.

We define operations + and · on K1 ×K2 × · · · ×Kn by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) and
(a1, a2, . . . , an) · (b1, b2, . . . , bn) = (a1b1, a2b2, . . . , anbn) .

Proposition 5.7.2. Let K1, K2, . . . , Kn be n rings.
(a) The set K1 ×K2 × · · · ×Kn, endowed with the operations + and · we just

defined and with the zero (0, 0, . . . , 0) and the unity (1, 1, . . . , 1), is a ring.
(b) If the rings K1, K2, . . . , Kn are commutative, then so is the ring K1 ×K2 ×
· · · ×Kn.

Proof of Proposition 5.7.2. All axioms are checked entrywise: For example, associa-
tivity of multiplication follows from comparing

((a1, a2, . . . , an) · (b1, b2, . . . , bn))︸ ︷︷ ︸
=(a1b1,a2b2,...,anbn)

· (c1, c2, . . . , cn)

= (a1b1, a2b2, . . . , anbn) · (c1, c2, . . . , cn)

= ((a1b1) c1, (a2b2) c2, . . . , (anbn) cn)

= (a1 (b1c1) , a2 (b2c2) , . . . , an (bncn))
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with

(a1, a2, . . . , an) · (b1, b2, . . . , bn) · (c1, c2, . . . , cn)︸ ︷︷ ︸
=(b1c1,b2c2,...,bncn)

= (a1, a2, . . . , an) · (b1c1, b2c2, . . . , bncn)

= (a1 (b1c1) , a2 (b2c2) , . . . , an (bncn)) .

The additive inverse of (a1, a2, . . . , an) is (−a1,−a2, . . . ,−an).

Definition 5.7.3. The ring K1×K2× · · · ×Kn constructed in Proposition 5.7.2 is
called the Cartesian product (or direct product) of the rings K1, K2, . . . , Kn.

Example 5.7.4. We have already seen a Cartesian product. Indeed, recall the
binary operations XOR defined back in Subsection 1.6.4.

(a) We first defined an operation XOR on bits (Definition 1.6.3), and then de-
fined an operation XOR on bitstrings (Definition 1.6.4). It is easy to see that

({0, 1} , XOR, ·, 0, 1)

is a commutative ring. Let me call this ring X for now. Note that this ring X can
be seen as Z/2 with its elements relabeled (more precisely, the elements [0]2 and
[1]2 of Z/2 need to be relabelled as 0 and 1 in order to get X); for example, the
correspondence between the XOR operation on X and the addition on Z/2 can
be seen by comparing their results face to face:

0 XOR 0 = 0 and [0]2 + [0]2 = [0]2 ,
0 XOR 1 = 1 and [0]2 + [1]2 = [1]2 ,
1 XOR 0 = 1 and [1]2 + [0]2 = [1]2 ,
1 XOR 1 = 0 and [1]2 + [1]2 = [0]2 .

(b) Let m ∈ N. In Definition 1.6.4, we defined a binary operation XOR on
{0, 1}m, i.e., on length-m bitstrings. This gives a ring(

{0, 1}m , XOR, entrywise multiplication, 00 · · · 0, 11 · · · 1
)

of bitstrings. This ring is precisely the Cartesian product

X×X× · · · ×X︸ ︷︷ ︸
m times

.

5.8. Matrices and matrix rings
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Convention 5.8.1. In this section, we fix a ring K.

We take the familiar concept of matrices, and generalize it in a straightforward way,
allowing matrices with entries in K:

Definition 5.8.2. Given n, m ∈ N, we define an n × m-matrix over K to be a
rectangular table with n rows and m columns whose entries are elements of K.
When K is clear from the context (or irrelevant), we just say “n × m-matrix”
instead of “n×m-matrix over K”.

For example, if K = Q, then (
0 1/3 −6
−1 −2/5 1

)
is a 2× 3-matrix over K.

(Formally, an n×m-matrix is defined as a map from {1, 2, . . . , n} × {1, 2, . . . , m}
to K. Its entry in row i and column j is then defined to be the image of the pair
(i, j) under this map.)

Note that the “×” symbol in the notion of an “n× m-matrix” is just a symbol,
not an invitation to actually multiply the numbers n and m together! For example,
2 · 3 = 3 · 2, yet a 2× 3-matrix is not the same as a 3× 2-matrix.

Let us define two pieces of notation:

Definition 5.8.3. Let A be an n × m-matrix over K. Let i ∈ {1, 2, . . . , n} and
j ∈ {1, 2, . . . , m}. The (i, j)-th entry of A is defined to be the entry of A in row i
and column j.

Definition 5.8.4. Let n, m ∈N. Assume that we are given some element ai,j ∈ K

for every (i, j) ∈ {1, 2, . . . , n} × {1, 2, . . . , m}. Then, we shall use the notation(
ai,j
)

1≤i≤n, 1≤j≤m (187)

for the n×m-matrix 
a1,1 a1,2 · · · a1,m
a2,1 a2,2 · · · a2,m

...
... . . . ...

an,1 an,2 · · · an,m


(this is the n×m-matrix whose (i, j)-th entry is ai,j for all i and j).
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For example,

(i + j)1≤i≤3, 1≤j≤4 =

 2 3 4 5
3 4 5 6
4 5 6 7

 and

(i− j)1≤i≤3, 1≤j≤4 =

 0 −1 −2 −3
1 0 −1 −2
2 1 0 −1

 .

The letters i and j in the notation (187) are not set in stone; we can use any other
letters instead. For example,

(i− j)1≤i≤3, 1≤j≤4 = (x− y)1≤x≤3, 1≤y≤4 = (j− i)1≤j≤3, 1≤i≤4 .

Definition 5.8.5. Let n, m ∈ N. Then, Kn×m will denote the set of all n × m-
matrices. (Some call it Mn,m (K) instead.)

Again, the “×” symbol in this notation is just a symbol; it does not stand for a
product of numbers.

Definition 5.8.6. (a) A matrix means an n×m-matrix for some n, m ∈N.
(b) A square matrix means an n× n-matrix for some n ∈N.

For example,
(

1 2 6
3 4 5

)
is a matrix, and

(
2 6
4 5

)
is a square matrix.

We now define various operations with matrices:

Definition 5.8.7. Fix n, m ∈N.
(a) The sum A + B of two n×m-matrices A and B is defined entrywise: i.e., if

A =
(
ai,j
)

1≤i≤n, 1≤j≤m and B =
(
bi,j
)

1≤i≤n, 1≤j≤m, then

A + B =
(
ai,j + bi,j

)
1≤i≤n, 1≤j≤m .

(b) The difference A− B of two n× m-matrices A and B is defined entrywise:
i.e., if A =

(
ai,j
)

1≤i≤n, 1≤j≤m and B =
(
bi,j
)

1≤i≤n, 1≤j≤m, then

A− B =
(
ai,j − bi,j

)
1≤i≤n, 1≤j≤m .

(c) We define scaling of n× m-matrices as follows: If λ ∈ K and A ∈ Kn×m,
then the matrix λA ∈ Kn×m is defined by multiplying each entry of A by λ.
Formally speaking: if A =

(
ai,j
)

1≤i≤n, 1≤j≤m, then

λA =
(
λai,j

)
1≤i≤n, 1≤j≤m .
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To be more honest, the operation we defined in Definition 5.8.7 (c) should have
been called “left scaling” rather than “scaling”. And we should have defined an
analogous operation called “right scaling”, which takes an element λ ∈ K and a
matrix A =

(
ai,j
)

1≤i≤n, 1≤j≤m ∈ Kn×m, and returns a new matrix

Aλ =
(
ai,jλ

)
1≤i≤n, 1≤j≤m .

But we will mostly be dealing with the case when the ring K is commutative; and
in this case, we always have Aλ = λA (meaning that “right scaling” and “left
scaling” are the same operation). Thus, we take the liberty to neglect the “right
scaling” operation. (Its properties are analogous to the corresponding properties
of “left scaling” anyway.)

Let us now define an operation on matrices that is not computed entrywise: their
product.

Definition 5.8.8. Let n, m, p ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m be an n×m-matrix.

Let B =
(
bi,j
)

1≤i≤m, 1≤j≤p be an m× p-matrix. Then, we define the product AB of
the two matrices A and B by

AB =

(
m

∑
k=1

ai,kbk,j

)
1≤i≤n, 1≤j≤p

.

This is an n× p-matrix.

So you can add together two n×m-matrices, but only multiply an n×m-matrix
with an m× p-matrix. (You cannot multiply two n×m-matrices, unless n = m.)

Next, we define two special families of matrices:

Definition 5.8.9. (a) If n, m ∈ N, then the n×m zero matrix is defined to be the
n×m-matrix

(0)1≤i≤n, 1≤j≤m =


0 0 · · · 0
0 0 · · · 0
...

... . . . ...
0 0 · · · 0

 .

It is called 0n×m.
(b) If n ∈N, then the n× n identity matrix is defined to be the n× n-matrix

(
δi,j
)

1≤i≤n, 1≤j≤n =


1 0 · · · 0
0 1 · · · 0
...

... . . . ...
0 0 · · · 1

 ,

where

δi,j =

{
1, if i = j;
0, if i 6= j

.
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(Note that using the Iverson bracket notation we introduced in Exercise 2.17.2,
we have δi,j = [i = j] · 1K.)

The n× n identity matrix is called In.

Note that the 0 and the 1 here are the zero and the unity of K.
Thus, a zero matrix can be of any size, but an identity matrix has to be a square

matrix.
If n, m ∈N and A ∈ Kn×m, then −A shall denote the matrix 0n×m − A ∈ Kn×m.
The following rules hold for addition, subtraction, multiplication and scaling of

matrices:

Theorem 5.8.10. Let n, m, p, q ∈N.
(a) We have A + B = B + A for any A, B ∈ Kn×m.
(b) We have A + (B + C) = (A + B) + C for any A, B, C ∈ Kn×m.
(c) We have A + 0n×m = 0n×m + A = A for any A ∈ Kn×m.
(d) We have A · Im = In · A = A for any A ∈ Kn×m.
(e) In general, we do not have AB = BA. In fact, it can happen that one of AB

and BA is defined and the other is not; but even if both are defined, they can be
distinct (even if K is commutative).

(f) We have A (BC) = (AB)C for any A ∈ Kn×m, B ∈ Km×p and C ∈ Kp×q.
(g) We have A (B + C) = AB + AC for any A ∈ Kn×m and B, C ∈ Km×p.
We have (A + B)C = AC + BC for any A, B ∈ Kn×m and C ∈ Km×p.
(h) We have A · 0m×p = 0n×p and 0p×n · A = 0p×m for any A ∈ Kn×m.
(i) If A, B, C ∈ Kn×m, then we have the equivalence (A− B = C) ⇐⇒

(A = B + C).
(j) We have r (A + B) = rA + rB for any r ∈ K and A, B ∈ Kn×m.
(k) We have (r + s) A = rA + sA for any r, s ∈ K and A ∈ Kn×m.
(l) We have r (sA) = (rs) A for any r, s ∈ K and A ∈ Kn×m.
(m) We have r (AB) = (rA) B = A (rB) for any r ∈ K and A ∈ Kn×m and

B ∈ Km×p if K is commutative. The first equality also holds in general.
(n) We have − (rA) = (−r) A = r (−A) for any r ∈ K and A ∈ Kn×m.
(o) We have 1A = A for any A ∈ Kn×m.
(p) We have (−1) A = −A for any A ∈ Kn×m.
(q) We have − (A + B) = (−A) + (−B) for any A, B ∈ Kn×m.
(r) We have −0n×m = 0n×m.
(s) We have − (−A) = A for any A ∈ Kn×m.
(t) We have − (AB) = (−A) B = A (−B) for any A ∈ Kn×m and B ∈ Km×p.
(u) We have A− B− C = A− (B + C) for any A, B, C ∈ Kn×m. (Here and in

the following, “A− B− C” should be read as “(A− B)− C”.)

Proof of Theorem 5.8.10. Most of these are trivial. The hardest one is part (f). See
[Grinbe18, §2.9] for its proof166.

166To be precise, the proof in [Grinbe18, §2.9] only handles the case when K = R. But the same ar-
gument works whenever K is a commutative ring. With a little modification, it works whenever
K is any ring.
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Corollary 5.8.11. Let n ∈ N. The set Kn×n of all n× n-matrices (endowed with
addition +, multiplication ·, zero 0n×n and unity In) is a ring.

Proof of Corollary 5.8.11. This follows from Theorem 5.8.10. (For example, the “Dis-
tributivity” axiom follows from Theorem 5.8.10 (g), whereas the “Existence of ad-
ditive inverses” follows from the fact that any A ∈ Kn×n has additive inverse −A
167.)

Definition 5.8.12. Let n ∈N. The ring Kn×n defined in Corollary 5.8.11 is called
the n-th matrix ring over K.

So we know that Kn×n is a ring whenever n ∈ N. Hence, Proposition 5.4.6
shows that we can define finite sums and finite products in Kn×n (but finite prod-
ucts need to have the order of their factors specified: i.e., we can make sense of
“A1A2 · · · Ak” but not of “ ∏

s∈S
As”). These also make sense for non-square matrices

whenever “their sizes match”: e.g., you can define a sum of finitely many n× m-
matrices, and a product A1A2 · · · Ak where each Ai is an ni × ni+1-matrix (for any
n1, n2, . . . , nk+1 ∈ N). Standard rules for sums and products hold, at least to the
extent they don’t rely on commutativity of multiplication.

But Kn×n is not the only ring we can make out of matrices. In fact, Kn×n is full
of interesting subrings, which are obtained by restricting ourselves to special kinds
of matrices. Here are some of these:

Definition 5.8.13. Let n ∈N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤n be an n× n-matrix.
(a) We say that A is lower-triangular if and only if

ai,j = 0 whenever i < j.

(b) We say that A is upper-triangular if and only if

ai,j = 0 whenever i > j.

(c) We say that A is diagonal if and only if

ai,j = 0 whenever i 6= j.

For example, the 2× 2-matrix
(

1 2
0 3

)
is upper-triangular (but not lower-triangular),

while the 2× 2-matrix
(

1 0
2 3

)
is lower-triangular (but not upper-triangular).

167This fact can be easily derived from Theorem 5.8.10 (p) and Theorem 5.8.10 (k), for example (or
just checked by hand).
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Proposition 5.8.14. Let n ∈N.
(a) The set of all lower-triangular n× n-matrices is a subring of Kn×n.
(b) The set of all upper-triangular n× n-matrices is a subring of Kn×n.
(c) The set of all diagonal n× n-matrices is a subring of Kn×n.

Example 5.8.15. For n = 2, the multiplication of lower-triangular n× n-matrices
looks as follows: (

a b
0 c

)(
x y
0 z

)
=

(
ax ay + bz
0 cz

)
,

and the multiplication of diagonal n× n-matrices looks as follows:(
a 0
0 c

)(
x 0
0 z

)
=

(
ax 0
0 cz

)
.

Proof of Proposition 5.8.14. The main “difficulty” is showing that the product of two
upper-triangular matrices is upper-triangular (and similarly for lower-triangular
matrices). This is [Grinbe18, Theorem 3.23 (a)].

Note that diagonal n× n-matrices are “essentially” the same as n-tuples of ele-
ments of K; the ring they form is K×K× · · · ×K︸ ︷︷ ︸

n times

in disguise. We will make this

precise in Example 5.10.3 (using the notion of a ring isomorphism).
One of the most important operations on matrices is taking the transpose:

Definition 5.8.16. Let n ∈ N and m ∈ N. Let A =
(
ai,j
)

1≤i≤n, 1≤j≤m be an

n×m-matrix. Then, we define an m× n-matrix AT by

AT =
(
aj,i
)

1≤i≤m, 1≤j≤n .

Thus, for each i ∈ {1, 2, . . . , m} and j ∈ {1, 2, . . . , n}, the (i, j)-th entry of AT is
the (j, i)-th entry of A. This matrix AT is called the transpose of A.

For example,

(
1 2 3
4 5 6

)T

=

 1 4
2 5
3 6

 and
(

1 2
1 0

)T

=

(
1 1
2 0

)
.

Let us use this occasion to define column vectors and row vectors:

Definition 5.8.17. Let n ∈N.
(a) A column vector of size n will mean an n× 1-matrix.
(b) A row vector of size n will mean a 1× n-matrix.
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For example,
(

1
2

)
is a column vector of size 2, while

(
1 2 3

)
is a row vector

of size 3. We will often identify a row vector
(

a1 a2 · · · an
)
∈ K1×n with the

corresponding n-tuple (a1, a2, . . . , an).
If v is a column vector of size n, then vT is a row vector of size n.

5.9. Ring homomorphisms

Definition 5.9.1. Let K and L be two rings. A ring homomorphism from K to L

means a map f : K→ L that satisfies the following four axioms:

• (a) We have f (a + b) = f (a) + f (b) for all a, b ∈ K. (This is called “ f
respects addition” or “ f preserves addition”.)

• (b) We have f (0) = 0. (This, of course, means f (0K) = 0L.)

• (c) We have f (ab) = f (a) f (b) for all a, b ∈ K. (This is called “ f respects
multiplication” or “ f preserves multiplication”.)

• (d) We have f (1) = 1. (This, of course, means f (1K) = 1L.)

Remark 5.9.2. The statement “ f (a + b) = f (a) + f (b)” in Definition 5.9.1
should, of course, be understood as “ f (a +K b) = f (a) +L f (b)”. Likewise,
the statement “ f (ab) = f (a) f (b)” should be understood as “ f (a ·K b) =
f (a) ·L f (b)”. In Definition 5.9.1, we could afford omitting the “K” and “L”
subscripts under the “+” and “·” signs because it is always clear whether the
things being added (or multiplied) are in K or in L; but in many practical situa-
tions we do not have such luxury (for example, because K and L have elements
in common) and thus need to include these subscripts. (See Example 5.10.6 for
an example of such a situation.)

Remark 5.9.3. The axiom (b) in Definition 5.9.1 is redundant – it follows from
axiom (a).

Proof of Remark 5.9.3. Assume that axiom (a) holds. Apply axiom (a) to a = 0 and
b = 0. Thus, you get

f (0 + 0) = f (0) + f (0) .

Since 0 + 0 = 0, this rewrites as

f (0) = f (0) + f (0) .

Subtracting f (0) on both sides (we can do this, since L is a ring), we obtain 0 =
f (0), thus f (0) = 0. Thus, axiom (b) holds.
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If the axiom (b) in Definition 5.9.1 is redundant, then why did we require it? One
reason to do so is purely aesthetic: It ensures that each of the two “multiplicative”
axioms (viz., axioms (c) and (d)) is matched by a corresponding “additive” axiom
(viz., axioms (a) and (b)). We cannot omit axiom (d)168; thus, to avoid breaking
the symmetry, I prefer not to omit axiom (b) either. But there is also another
reason to keep axiom (b). Indeed, if we want to define semiring homomorphisms (i.e.,
the analogue of ring homomorphisms in which rings are replaced by semirings),
then axiom (b) is no longer redundant (since we cannot subtract elements in a
semiring); thus, if we omitted axiom (b), our definition of ring homomorphisms
would become less robust with respect to replacing “ring” by “semiring”.

Example 5.9.4. Let K be any ring. The map id : K→ K is a ring homomorphism.

Proof of Example 5.9.4. Let us check that id satisfies the axiom (c) in Definition 5.9.1:
Indeed, this simply means checking that id (ab) = id (a) id (b) for all a, b ∈ K.
But this rewrites as ab = ab, which is obvious. Similarly, the other three axioms
hold.

We can slightly generalize Example 5.9.4 as follows:

Example 5.9.5. Let K be a subring of a ring L. Let ι : K → L be the map that
sends each a ∈ K to a itself. (This map is called the inclusion map from K to L.)
Then, ι is a ring homomorphism.

Proof of Example 5.9.5. The four axioms in Definition 5.9.1 follow straight from the
five requirements in Definition 5.3.1.

Example 5.9.6. Let K be any ring, and let M be the zero ring {0}. Then, the map

K→M, a 7→ 0

is a ring homomorphism.

Proof of Example 5.9.6. Each of the four axioms in Definition 5.9.1 holds trivially for
this map (since M has only one element, and thus any two elements of M are
equal).

Example 5.9.7. Let n be an integer. Consider the projection

π≡
n

: Z→ Z/n,

s 7→ [s]n .

This is a ring homomorphism.

168More precisely: if we did, then we would obtain a weaker, less useful notion of ring homomor-
phism.
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Proof of Example 5.9.7. Again, let us check axiom (c) only. So let a, b ∈ Z. We must
prove that π≡

n
(ab) = π≡

n
(a) · π≡

n
(b).

The left hand side is [ab]n, while the right hand side is [a]n · [b]n. So they are
equal, because this is how [a]n · [b]n was defined. Thus, axiom (c) holds.

Example 5.9.8. Let n be a positive integer. Consider the map

Rn : Z/n→ Z,
[s]n 7→ s%n.

(This is the map sending [0]n , [1]n , . . . , [n− 1]n to the numbers 0, 1, . . . , n − 1.)
This map Rn is not a ring homomorphism.

Proof of Example 5.9.8. Assume the contrary. Thus, Rn is a ring homomorphism. We
want a contradiction.

We are in one of the following two cases:
Case 1: We have n > 1.
Case 2: We have n = 1.
Let us first consider Case 1. In this case, we have n > 1.
We have assumed that Rn is a ring homomorphism. Thus, axiom (a) can be

applied to a = [1]n and b = [n− 1]n, and thus we get Rn ([1]n + [n− 1]n) =
Rn ([1]n) + Rn ([n− 1]n). But comparing

Rn ([1]n + [n− 1]n) = Rn ([n]n) = Rn ([0]n) = 0

with
Rn ([1]n)︸ ︷︷ ︸

=1

+ Rn ([n− 1]n)︸ ︷︷ ︸
=n−1

= 1 + (n− 1) = n,

we see that this is not true. So we have found a contradiction in Case 1.
Let us now consider Case 2. In this case, we have n = 1. Thus, [1]1 = [0]1. But the

map Rn maps [0]1 to 0 (by its definition). However, axiom (d) forces Rn ([1]1) = 1,
which contradicts Rn ([1]1) = Rn ([0]1) = 0. So we have found a contradiction in
Case 2.

Thus, we always get a contradiction.

Warning: The same people who don’t require rings to have a unity, of course, do
not require ring homomorphisms to satisfy axiom (d). So for them, Rn would be a
ring homomorphism for n = 1.

Example 5.9.9. Let n and d be integers such that d | n. Then, the map

πn,d : Z/n→ Z/d,
[s]n 7→ [s]d

is a ring homomorphism.
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Proof of Example 5.9.9. Let us check axiom (c). So we must prove that πn,d (αβ) =
πn,d (α) · πn,d (β) for all α, β ∈ Z/n.

Fix α, β ∈ Z/n. Write α as α = [a]n with a ∈ Z. Write β as β = [b]n with b ∈ Z.
Thus, πn,d (α) = πn,d ([a]n) = [a]d and πn,d (β) = πn,d ([b]n) = [b]d. Multiplying

these two equalities, we obtain

πn,d (α)︸ ︷︷ ︸
=[a]d

·πn,d (β)︸ ︷︷ ︸
=[b]d

= [a]d · [b]d = [ab]d . (188)

But α︸︷︷︸
=[a]n

β︸︷︷︸
=[b]n

= [a]n · [b]n = [ab]n and thus πn,d (αβ) = πn,d ([ab]n) = [ab]d.

Comparing this equality to (188), we conclude πn,d (αβ) = πn,d (α) · πn,d (β). Thus,
axiom (c) is proven. The other three axioms are proven similarly (we leave the
details to the reader).

Remark 5.9.10. Let n and d be integers. Then:
(a) If d | n, then the only ring homomorphism from Z/n to Z/d is πn,d.
(b) If d - n, then there is no ring homomorphism from Z/n to Z/d.

Remark 5.9.10 is not hard to prove, but we won’t do this here.

Example 5.9.11. Consider the map µ : C → R2×2 defined in Proposition 4.1.31.
This map µ is a ring homomorphism.

Proof. Proposition 4.1.31 yields that the map µ satisfies axioms (a) and (c). It is easy
to see that it satisfies the other two.

Example 5.9.12. Let ιC be the map

R→ C,
r 7→ rC = (r, 0) .

This is a ring homomorphism.

Proof. Theorem 4.1.5 shows that ιC satisfies axioms (a) and (c). As for (b) and (d),
these follow from the fact that the zero of C is 0C = (0, 0) and the unity of C is
1C = (1, 0).

Example 5.9.13. Let K be a commutative ring.
Let K2≤2 be the ring of upper-triangular 2× 2-matrices. (This is a ring, by

Proposition 5.8.14.)
Let K2≥2 be the ring of lower-triangular 2 × 2-matrices. (This is a ring, by

Proposition 5.8.14.)
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(a) Consider the map

K2≤2 → K2≥2,(
a b
0 c

)
7→
(

a 0
b c

)
.

In other words, this is the map sending each A to AT (the transpose of A). Is
this a ring homomorphism? No, because (AB)T is BT AT, not ATBT (in general).
This is called a ring antihomomorphism. Note that if K was an arbitrary (not
commutative) ring, then (AB)T would (in general!) equal neither BT AT nor
ATBT.

(b) Consider the map

K2≤2 → K2≥2,(
a b
0 c

)
7→
(

c 0
b a

)
.

In other words, this is the map that reverses the order of the rows and reverses
the order of the columns. You can check that this is a ring homomorphism. This
holds even if K is an arbitrary (not commutative) ring.

Proposition 5.9.14. Let K and L be two rings. Let f : K → L be a ring homo-
morphism.

(a) We have f (−a) = − f (a) for all a ∈ K. (In other words, f “preserves
additive inverses”.)

(b) If a ∈ K is invertible, then f (a) ∈ L is also invertible, and we have
f
(
a−1) = ( f (a))−1. (In other words, f “preserves multiplicative inverses”.)
(c) We have f (a− b) = f (a)− f (b) for all a, b ∈ K.

(d) If the rings K and L are commutative, then we have f
( a

b

)
=

f (a)
f (b)

for all

a, b ∈ K for which b is invertible.

(e) We have f
(

∑
s∈S

as

)
= ∑

s∈S
f (as) whenever S is a finite set and as ∈ K for all

s ∈ S.
(f) We have f (a1a2 · · · ak) = f (a1) f (a2) · · · f (ak) whenever a1, a2, . . . , ak ∈ K.

(g) If the rings K and L are commutative, then f
(

∏
s∈S

as

)
= ∏

s∈S
f (as) when-

ever S is a finite set and as ∈ K for all s ∈ S.
(h) We have f (an) = ( f (a))n for each a ∈ K and each n ∈N.
(i) We have f (na) = n f (a) for each a ∈ K and each n ∈ Z.

Proof of Proposition 5.9.14. The map f is a ring homomorphism, and thus satisfies
the four axioms (a), (b), (c) and (d) of Definition 5.9.1.
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(b) Let a ∈ K be invertible. We have

f
(

a−1a
)
= f

(
a−1
)

f (a) (by axiom (c)) .

Thus,

f
(

a−1
)

f (a) = f

a−1a︸︷︷︸
=1

 = f (1) = 1 (by axiom (d)) .

Similarly, f (a) f
(
a−1) = 1. These two equations are saying that f

(
a−1) is a mul-

tiplicative inverse of f (a). Thus, f (a) is invertible, and f
(
a−1) = ( f (a))−1. This

proves Proposition 5.9.14 (b).
(a) Repeat the proof we just gave for Proposition 5.9.14 (b), but replace mul-

tiplication and 1 by addition and 0 (and forget about invertibility, because every
element of K or L has an additive inverse).

(c) Let a, b ∈ K. Then, a− b = a + (−b) (by the definition of subtraction). Thus,

f (a− b) = f (a + (−b)) = f (a) + f (−b)︸ ︷︷ ︸
=− f (b)

(by Proposition 5.9.14 (a))

(by axiom (a))

= f (a) + (− f (b)) = f (a)− f (b)

(since the definition of subtraction yields f (a) − f (b) = f (a) + (− f (b))). This
proves Proposition 5.9.14 (c).

(d) Similar to part (c), but addition is replaced by multiplication.
(e) Induction on |S|. The induction base uses axiom (b); the induction step uses

axiom (a).
(f) Induction on k. The induction base uses axiom (d); the induction step uses

axiom (c).
(g) Induction on |S|. The induction base uses axiom (d); the induction step uses

axiom (c).
(h) Follows from Proposition 5.9.14 (f), applied to k = n and ai = a.
(i) If n ≥ 0, then Definition 5.4.8 yields na = a + a + · · ·+ a︸ ︷︷ ︸

n times

and n f (a) =

f (a) + f (a) + · · ·+ f (a)︸ ︷︷ ︸
n times

. Thus, if n ≥ 0, then Proposition 5.9.14 (i) boils down

to

f

a + a + · · ·+ a︸ ︷︷ ︸
n times

 = f (a) + f (a) + · · ·+ f (a)︸ ︷︷ ︸
n times

,

which follows from Proposition 5.9.14 (e) (applied to S = {1, 2, . . . , n} and as = a).
The case when n < 0 can be reduced to the case when n ≥ 0 by using Proposition
5.9.14 (a).

The composition of two ring homomorphisms is again a ring homomorphism,
as the following proposition shows:
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Proposition 5.9.15. Let K, L and M be three rings. Let f : K→ L and g : L→M

be two ring homomorphisms. Then, the composition g ◦ f : K → M is also a
ring homomorphism.

Proof of Proposition 5.9.15. This is exercise 4 (a) on homework set #6.

5.10. Ring isomorphisms

Definition 5.10.1. Let K and L be two rings. Let f : K → L be a map. Then, f
is called a ring isomorphism if and only if f is invertible (i.e., bijective) and both f
and f−1 are ring homomorphisms.

Example 5.10.2. Let K be a ring. The identity map id : K→ K is a ring isomor-
phism.

Example 5.10.3. Let K be a ring. Let n ∈N. Consider the map

dn : K×K× · · · ×K︸ ︷︷ ︸
n times

→ {diagonal n× n-matrices over K} ,

(d1, d2, . . . , dn) 7→


d1 0 0 · · · 0
0 d2 0 · · · 0
0 0 d3 · · · 0
...

...
... . . . ...

0 0 0 · · · dn

 .

Note that both K×K× · · · ×K︸ ︷︷ ︸
n times

and {diagonal n× n-matrices over K} are rings

(the former by Definition 5.7.3; the latter by Proposition 5.8.14 (c)).
The map dn is invertible. I claim that furthermore, dn is a ring isomorphism.

This is easiest to check using Proposition 5.10.5 further below. Note that this
claim is a rigorous version of our earlier informal statement that the ring formed
by the diagonal n× n-matrices is just K×K× · · · ×K︸ ︷︷ ︸

n times

in disguise. The isomor-

phism dn is responsible for the disguise!

Example 5.10.4. The map from K2≤2 to K2≥2 introduced in Example 5.9.13 (b) is
a ring isomorphism. Its inverse is the map

K2≥2 → K2≤2,(
c 0
b a

)
7→
(

a b
0 c

)
.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw6s.pdf
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Proposition 5.10.5. Let K and L be two rings. Let f : K → L be an invertible
ring homomorphism. Then, f is a ring isomorphism.

Proof of Proposition 5.10.5. We just need to show that f−1 is a ring homomorphism.
Let us verify axiom (c) for f−1. This means that we must prove that

f−1 (ab) = f−1 (a) f−1 (b) for all a, b ∈ L.

So let a, b ∈ L. We know that f is a ring homomorphism; thus it satisfies axiom
(c). Applying this axiom to f−1 (a) and f−1 (b) instead of a and b, we find

f
(

f−1 (a) f−1 (b)
)
= f

(
f−1 (a)

)
︸ ︷︷ ︸

=a

· f
(

f−1 (b)
)

︸ ︷︷ ︸
=b

= ab = f
(

f−1 (ab)
)

.

Since f is injective (because f is invertible), we thus conclude

f−1 (a) f−1 (b) = f−1 (ab) ,

which is precisely what we wanted to prove.
So axiom (c) for f−1 is verified. Axiom (a) follows by the same argument with +

instead of ·.
Since f satisfies axiom (d) (being a ring homomorphism), we have f (1) = 1. But

this yields f−1 (1) = 1; thus, f−1 satisfies axiom (d). Similarly, f−1 satisfies axiom
(b).

Thus, the map f−1 : L → K satisfies all four axioms for a ring homomorphism.
Hence, f−1 is a ring homomorphism. Thus, f is a ring isomorphism (by the defini-
tion of a ring isomorphism). This proves Proposition 5.10.5.

Example 5.10.6. Recall the ring Z′ introduced in Section 5.2. It is the set Z,
endowed with the usual addition + and the unusual multiplication ×̃ and the
elements 0Z′ = 0 and 1Z′ = −1.

As we have suggested back in that section, this ring Z′ is simply a relabelled
version of Z. We now have the proper language for this: The map

ϕ : Z→ Z′, a 7→ −a

is a ring isomorphism. This can easily be checked using Proposition 5.10.5, since
this map ϕ is invertible (actually, ϕ ◦ ϕ = id), and since ϕ is a ring homomor-
phism (because of (162), (163), (164) and (165)).

Example 5.10.7. Let m and n be two coprime positive integers. Then, (Z/m)×
(Z/n) is a ring (according to Definition 5.7.3). Theorem 3.6.2 says that the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. This map Sm,n is furthermore a ring isomor-
phism.
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Proof of Example 5.10.7. The map Sm,n is a bijection, thus invertible.
Let us next prove that the map Sm,n is a ring homomorphism.
For each s ∈ Z, we have

Sm,n ([s]mn) =

πmn,m ([s]mn)︸ ︷︷ ︸
=[s]m

, πmn,n ([s]mn)︸ ︷︷ ︸
=[s]n

 = ([s]m , [s]n) . (189)

Let us check axiom (c) from Definition 5.9.1 for f = Sm,n. Let α, β ∈ Z/ (mn).
We must prove that Sm,n (αβ) = Sm,n (α) · Sm,n (β).

Write α and β in the form α = [a]mn and β = [b]mn for some a, b ∈ Z. Then,
αβ = [a]mn [b]mn = [ab]mn, so

Sm,n (αβ) = Sm,n ([ab]mn) = ([ab]m , [ab]n) (by (189)) .

Comparing this with

Sm,n

 α︸︷︷︸
=[a]mn

 · Sm,n

 β︸︷︷︸
=[b]mn


= Sm,n ([a]mn)︸ ︷︷ ︸

=([a]m,[a]n)
(by (189))

· Sm,n ([b]mn)︸ ︷︷ ︸
=([b]m,[b]n)

(by (189))

= ([a]m , [a]n) · ([b]m , [b]n) =

[a]m [b]m︸ ︷︷ ︸
=[ab]m

, [a]n [b]n︸ ︷︷ ︸
=[ab]n


(

since the multiplication · on the Cartesian product (Z/m)× (Z/n)
is defined entrywise

)
= ([ab]m , [ab]n) ,

we obtain Sm,n (αβ) = Sm,n (α) · Sm,n (β). This proves axiom (c) for our map Sm,n.
Similarly, the other axioms can be shown. Thus, Sm,n is a ring homomorphism.
Therefore, Proposition 5.10.5 shows that Sm,n is a ring isomorphism (since Sm,n is
invertible).

Note one more simple general fact:

Proposition 5.10.8. Let K and L be two rings. Let f : K → L be a ring isomor-
phism. Then, f−1 : L→ K is also a ring isomorphism.

Proof of Proposition 5.10.8. Clearly, f−1 is a ring homomorphism (since f is a ring
isomorphism). Furthermore, f−1 is invertible (with inverse

(
f−1)−1

= f ) and

its inverse
(

f−1)−1
= f is a ring homomorphism as well. Thus, f−1 is a ring

isomorphism. This proves Proposition 5.10.8.
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Let me attempt to discuss the use of ring isomorphisms; unfortunately, I will have
to be vague at this point. Ring homomorphisms allow us to transfer some things
from one ring into another. For example, if f : K→ L is a ring homomorphism
from a ring K to a ring L, then f sends any invertible element of K to an invertible
element of L (by Proposition 5.9.14 (b)). However, they are generally only “one-
way roads”. For instance, if f : K→ L is a ring homomorphism from a ring K

to a ring L, and if a ∈ K is such that f (a) ∈ L is invertible, then a may and
may not be invertible. A ring homomorphism from a ring K to a ring L does not
determine either ring in terms of the other. You can have homomorphisms between
completely different rings, such as from Z to the zero ring, or from Z to C.

On the other hand, ring isomorphisms let us go “back and forth” between the
rings they connect; if we have a ring isomorphism f : K → L, we can regard L as
being “the same ring as K, with its elements renamed”. (The isomorphism f does
the renaming: you should think of each a ∈ K being renamed as f (a).)

Thus, when you have a ring isomorphism f : K → L, you can take any “intrin-
sic” property169 of K and obtain the corresponding property of L, and vice versa.
Here is an example:

Proposition 5.10.9. Let K and L be two rings. Let f : K → L be a ring isomor-
phism.

(a) If K is commutative, then L is commutative.
(b) If 0 6= 1 in K, then 0 6= 1 in L.
(c) If K is a skew field, then L is a skew field.
(d) If K is a field, then L is a field.

Proof of Proposition 5.10.9. The proofs given below are exemplary; you should be
able to similarly transfer any other property of K to L and vice versa.

Recall that f is a ring isomorphism. Thus, the map f is invertible, and both f
and f−1 are ring homomorphisms (by the definition of a ring isomorphism).

(a) Assume that K is commutative. We must prove that L is commutative. In
other words, we must prove that ab = ba for any a, b ∈ L.

Fix a, b ∈ L. We know that f is invertible. Hence, f−1 (a) , f−1 (b) ∈ K are
well-defined. Since K is commutative, these satisfy

f−1 (a) f−1 (b) = f−1 (b) f−1 (a) .

Applying f to this equality, we get

f
(

f−1 (a) f−1 (b)
)
= f

(
f−1 (b) f−1 (a)

)
. (190)

169What do we mean by “intrinsic”? Roughly speaking, an intrinsic property of a ring is a property
that can be stated entirely in terms of its structure (i.e., its ground set and its operations + and ·
and its elements 0 and 1), without referring to outside objects. For instance, “every element a of
the ring satisfies a3 = a2” is an intrinsic property (since a3 = aaa and a2 = aa are defined purely
in terms of the operation ·), and “the ring has two nonzero elements a and b such that ab = 0”
is an intrinsic property as well (provided that “nonzero” and “0” refer to the zero of the ring,
rather than the number 0), but “the ring contains the number 3

√
2” is not an intrinsic property

(since it refers to an outside object – namely, the number 3
√

2).
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But since f is a ring homomorphism, we can apply axiom (c) of Definition 5.9.1 to
f−1 (a) and f−1 (b) instead of a and b. We thus obtain

f
(

f−1 (a) f−1 (b)
)
= f

(
f−1 (a)

)
︸ ︷︷ ︸

=a

f
(

f−1 (b)
)

︸ ︷︷ ︸
=b

= ab

and similarly f
(

f−1 (b) f−1 (a)
)
= ba; thus, the equality (190) becomes ab = ba.

This shows that L is commutative. This proves Proposition 5.10.9 (a).
Before I move on to the next part of Proposition 5.10.9, let me explain how the

above proof could be found straightforwardly, without any creative input. The
point of this is to show how to prove not just Proposition 5.10.9 (a), but any similar
claim as well.

The (only) idea involved in the above proof was the following: The two mutually
inverse bijections f : K→ L and f−1 : L→ K provide a “railway system” that can
be used to transport anything (elements, equalities, subsets, etc.) between K and
L. Since these bijections are ring homomorphisms, the structure of the objects that
we are transporting does not get “damaged in transit”: Products remain products
(i.e., if we have three elements a, b and c of K satisfying ab = c, and if we transport
these three elements to L via f , then the resulting three elements of L will still
satisfy f (a) f (b) = f (c)), sums remain sums, etc.. Thus, we can move back and
forth between K and L without keeping track of where precisely we take our sums
and products.

With this in mind, our above proof of Proposition 5.10.9 (a) can be discovered as
follows:

Assume that K is commutative. We must prove that L is commutative. In other
words, we must prove that ab = ba for any a, b ∈ L. So let us fix a, b ∈ L. We want
to prove ab = ba, but all we have is an analogous identity for elements of K (since
we know that K is commutative). In other words, we have

a′b′ = b′a′ for all a′, b′ ∈ K. (191)

So we transport our two elements a, b of L to K (by our “railway system” –
specifically, using the map f−1), in order to be able to apply (191) to them. The
result are the two elements f−1 (a) , f−1 (b) of K. Applying the identity (191) to
a′ = f−1 (a) and b′ = f−1 (b), we obtain f−1 (a) f−1 (b) = f−1 (b) f−1 (a). This is
an equality inside K, whereas our goal is to prove an equality inside L (namely,
the equality ab = ba). So we transport this equality back into L by applying f to
its two sides. We thus obtain

f
(

f−1 (a) f−1 (b)
)
= f

(
f−1 (b) f−1 (a)

)
. (192)

But recalling that f is a ring homomorphism and thus no structure gets “damaged
in transit”, we see that

f
(

f−1 (a) f−1 (b)
)
= f

(
f−1 (a)

)
︸ ︷︷ ︸

=a

f
(

f−1 (b)
)

︸ ︷︷ ︸
=b

= ab
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and similarly f
(

f−1 (b) f−1 (a)
)
= ba. Hence, the equality (192) that we have just

proven rewrites as ab = ba, which is precisely what we wanted to prove. Thus, we
have proven Proposition 5.10.9 (a) by merely going back and forth between K and
L.

Let us now prove the rest of Proposition 5.10.9:
(b) Assume 0 6= 1 in K. We must prove 0 6= 1 in L.
The map f is an isomorphism, thus invertible, thus bijective, thus injective.

Hence, from 0 6= 1 in K, we conclude f (0) 6= f (1) in L. But since f is a ring
homomorphism, we have f (0) = 0 and f (1) = 1; so this rewrites as 0 6= 1 in L.
This proves Proposition 5.10.9 (b).

(c) Assume that K is a skew field. We must prove that L is a skew field.
Since K is a skew field, we have 0 6= 1 in K, thus 0 6= 1 in L (by Proposition

5.10.9 (b)). Hence, it remains to prove that every nonzero element a ∈ L has a
multiplicative inverse.

Let a ∈ L be nonzero. Then, f−1 (a) ∈ K is nonzero (because if it was zero,
then we would have f−1 (a) = 0 and thus f

(
f−1 (a)

)
= f (0) = 0 (since f is a

ring homomorphism); but this would contradict the fact that f
(

f−1 (a)
)
= a is

nonzero). Hence, f−1 (a) ∈ K has a multiplicative inverse b (since K is a skew
field). Consider this b. Thus, f−1 (a) b = b f−1 (a) = 1 (since b is a multiplicative
inverse of f−1 (a)). Applying f to this chain of equalities, we obtain

f
(

f−1 (a) b
)
= f

(
b f−1 (a)

)
= f (1) .

This quickly rewrites as
a f (b) = f (b) a = 1

(since f is a ring homomorphism). Thus, f (b) is a multiplicative inverse of a.
Hence, a has a multiplicative inverse. Thus, we have shown that every nonzero
element a ∈ L has a multiplicative inverse. Since 0 6= 1 in L, this shows that L is a
skew field. This proves Proposition 5.10.9 (c).

(d) Assume that K is a field. We must prove that L is a field.
Since K is a field, K is commutative, and thus L is commutative (by Proposition

5.10.9 (a)).
But K is a field, and thus a skew field. Hence, Proposition 5.10.9 (c) shows that

L is a skew field. Since L is commutative, this yields that L is a field. This proves
Proposition 5.10.9 (d).

The idea of the above proof (and of many similar proofs, which we will omit) is
that if you have a ring isomorphism f : K → L, you can transport any equality
or element from K to L (via f ) or vice versa (via f−1); and each time, the ring
operations (+, −, ·, ∑, 0, 1) do not get damaged on the way (since f and f−1 are
ring homomorphisms).

Here is another example of this sort of reasoning:
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Proposition 5.10.10. Let K and L be two rings. Let f : K→ L be a ring isomor-
phism. Then:

(a) We have

|{invertible elements of K}| = |{invertible elements of L}| .

(b) We have

|{idempotent elements of K}| = |{idempotent elements of L}| .

Here, an element a of a ring K is said to be idempotent if a2 = a.

Proof of Proposition 5.10.10. Proposition 5.10.10 is another instance of the “anything
can be transported along a ring isomorphism” principle (which we have used in
Proposition 5.10.9). Here is a proof in more detail:

(a) If a is an invertible element of K, then f (a) is an invertible element of L

(since we can pick a multiplicative inverse b of a in K, and then f (b) will be a
multiplicative inverse of f (a) in L). Hence, the map

{invertible elements of K} → {invertible elements of L} ,
a 7→ f (a)

is well-defined. Similarly, the map

{invertible elements of L} → {invertible elements of K} ,

a 7→ f−1 (a)

is also well-defined (since Proposition 5.10.8 shows that the map f−1 : L → K is
also a ring isomorphism). These two maps are clearly mutually inverse, and there-
fore are bijections. Hence, we have found a bijection from {invertible elements of K}
to {invertible elements of L}. Thus,

|{invertible elements of K}| = |{invertible elements of L}| .

This proves Proposition 5.10.10 (a).
(b) If a is an idempotent element of K, then f (a) is an idempotent element of L

(since f is a ring homomorphism and thus ( f (a))2 = f

(
a2︸︷︷︸
=a

)
= f (a)). Hence,

the map

{idempotent elements of K} → {idempotent elements of L} ,
a 7→ f (a)

is well-defined. Similarly, the map

{idempotent elements of L} → {idempotent elements of K} ,

a 7→ f−1 (a)
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is also well-defined (since Proposition 5.10.8 shows that the map f−1 : L → K is
also a ring isomorphism). These two maps are clearly mutually inverse, and there-
fore are bijections. Hence, we have found a bijection from {idempotent elements of K}
to {idempotent elements of L}. Thus,

|{idempotent elements of K}| = |{idempotent elements of L}| .

This proves Proposition 5.10.10 (b).

Now let us see some applications of ring isomorphisms.
Recall that we proved Theorem 2.14.4 using the Chinese Remainder Theorem in

Section 3.6. Let us redo this proof in a shorter way:

New version of our Second proof of Theorem 2.14.4. Example 5.10.7 says that the map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is a ring isomorphism. Thus,

|{invertible elements of Z/ (mn)}|
= |{invertible elements of (Z/m)× (Z/n)}| (193)

(by Proposition 5.10.10 (a)).
But if K and L are any two rings, then

{invertible elements of K×L}
= {invertible elements of K} × {invertible elements of L}

(since multiplication on K×L is defined entrywise, so an element (a, b) ∈ K×L

is invertible if and only if both a ∈ K and b ∈ L are invertible). Hence,

{invertible elements of (Z/m)× (Z/n)}
= {invertible elements of Z/m} × {invertible elements of Z/n} ,

so that

|{invertible elements of (Z/m)× (Z/n)}|
= |{invertible elements of Z/m} × {invertible elements of Z/n}|
= |{invertible elements of Z/m}| · |{invertible elements of Z/n}| .

Hence, (193) becomes

|{invertible elements of Z/ (mn)}|
= |{invertible elements of (Z/m)× (Z/n)}|
= |{invertible elements of Z/m}| · |{invertible elements of Z/n}| . (194)



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 389

On the other hand, we know that

φ (n) = |{invertible elements of Z/n}|

(in fact, this is Corollary 3.5.5 (b), since what we called Un in this corollary is exactly
{invertible elements of Z/n}). Similarly,

φ (m) = |{invertible elements of Z/m}| and
φ (mn) = |{invertible elements of Z/ (mn)}| .

So the equality (194) rewrites as φ (mn) = φ (m) ·φ (n). So Theorem 2.14.4 is proven
again.

The next exercise offers another example of the same strategy:

Exercise 5.10.1. Let p and q be two distinct primes. How many idempotent
elements does the ring Z/ (pq) have?

Solution to Exercise 5.10.1 (sketched). The primes p and q are distinct, so they are
coprime. Hence, Example 5.10.7 (applied to m = p and n = q) says that the map

Sp,q : Z/ (pq)→ (Z/p)× (Z/q) ,

α 7→
(
πpq,p (α) , πpq,q (α)

)
is a ring isomorphism. Hence, Proposition 5.10.10 (b) yields

|{idempotent elements of Z/ (pq)}|
= |{idempotent elements of (Z/p)× (Z/q)}|
= |{idempotent elements of Z/p} × {idempotent elements of Z/q}|

(since for any two rings K and L, we have

{idempotent elements of K×L}
= {idempotent elements of K} × {idempotent elements of L} ,

because of the entrywise multiplication on K× L). Thus, it remains to find the
number of idempotent elements of Z/p and the number of idempotent elements
of Z/q.

How many idempotent elements does Z/p have? For any a ∈ Z, we have the
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following chain of equivalences:(
[a]p is idempotent

)
⇐⇒

((
[a]p

)2
= [a]p

)
(by the definition of “idempotent”)

⇐⇒
([

a2
]

p
= [a]p

) (
since

(
[a]p

)2
=
[

a2
]

p

)
⇐⇒

(
a2 ≡ a mod p

)
⇐⇒

p | a2 − a︸ ︷︷ ︸
=a(a−1)

 ⇐⇒ (p | a (a− 1))

⇐⇒ (p | a or p | a− 1) (since p is prime)
⇐⇒ (a ≡ 0 mod p or a ≡ 1 mod p)

⇐⇒
(
[a]p = [0]p or [a]p = [1]p

)
.

In other words, for a given a ∈ Z, the residue class [a]p is idempotent if and only
if [a]p equals [0]p or [1]p. Since every residue class α ∈ Z/p has the form [a]p for
some a ∈ Z, we can restate this as follows: A residue class α ∈ Z/p is idempotent
if and only if it equals [0]p or [1]p. Thus, the ring Z/p has exactly two idempotent
elements (namely, [0]p and [1]p). In other words,

|{idempotent elements of Z/p}| = 2.

Similarly,
|{idempotent elements of Z/q}| = 2.

Now, the above computation becomes

|{idempotent elements of Z/ (pq)}|
= |{idempotent elements of Z/p} × {idempotent elements of Z/q}|
= |{idempotent elements of Z/p}|︸ ︷︷ ︸

=2

· |{idempotent elements of Z/q}|︸ ︷︷ ︸
=2

= 2 · 2 = 4.

In other words, the ring Z/ (pq) has 4 idempotent elements.
Side-note: What are these 4 idempotent elements?
Two of them are easy to find: [0]pq and [1]pq (in fact, 0 and 1 are idempotent

elements in any ring). But how to get the other two?
Here is a systematic approach: Recall that Sp,q : Z/ (pq) → (Z/p)× (Z/q) is a

ring isomorphism. Thus, looking back at the proof of Proposition 5.10.10 (b), we
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see that the idempotent elements of Z/ (pq) are the preimages of the idempotent
elements of (Z/p)× (Z/q) under this isomorphism Sp,q.

The 4 idempotent elements of (Z/p)× (Z/q) are(
[0]p , [0]q

)
,

(
[1]p , [1]q

)
,

(
[0]p , [1]q

)
,

(
[1]p , [0]q

)
.

To find the 4 idempotent elements in Z/ (pq), we thus have to apply the inverse(
Sp,q

)−1 of the isomorphism Sp,q to them.

• The first gets sent to [0]pq.

• The second gets sent to [1]pq.

• The last two get sent to [xp]pq and [yq]pq, where x is a modular inverse of
p modulo q, and where y is a modular inverse of q modulo p. (It does not
matter which inverses we choose; we get the same elements.)

Here is a slightly different way to get the last two idempotent elements: Be-
zout’s theorem yields that there exist integers x and y such that xp + yq = 1.
Then, [xp]pq and [yq]pq are the two missing idempotents. (In truth, this is not
different from the previous answer; in fact, if x and y are integers such that
xp + yq = 1, then x is a modular inverse of p modulo q, and y is a modular
inverse of q modulo p.)

Example 5.10.11. Let A be the 2× 2-matrix
(

0 1
1 1

)
∈ Z2×2.

On midterm #2 exercise 5, you have encountered the ring

F = {aA + bI2 | a, b ∈ Z} =
{(

b a
a a + b

)
| a, b ∈ Z

}
.

This is a subring of the matrix ring Z2×2.
On homework set #5 exercise 5, you have encountered the ring

Z [φ] = {a + bφ | a, b ∈ Z} ,

where φ =
1 +
√

5
2

= 1. 618 . . . is the golden ratio. This is a subring of R.

I claim that there is an isomorphism from Z [φ] to F . Namely, the map

f : Z [φ]→ F ,

a + bφ 7→ bA + aI2 =

(
a b
b a + b

)
is a ring isomorphism (but not the only one!).

https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt2s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw5s.pdf
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(Check this by hand.)

Definition 5.10.12. Let K and L be two rings. We say that the rings K and L are
isomorphic if there exists a ring isomorphism f : K→ L.

We write “K ∼= L (as rings)” to say that the rings K and L are isomorphic.

Example 5.10.13. Let K be any ring, and let M be the zero ring {0}. In Example
5.9.6, we saw that the map

K→M, a 7→ 0

is a ring homomorphism. This homomorphism is a ring isomorphism if and
only if the ring K is trivial (i.e., has only one element). Thus, each trivial ring is
isomorphic to the zero ring.

5.11. Freshman’s Dream

Let us now prove a property of p-th powers in rings. At this point, this property
appears to be a mere curiosity, but it will come useful later (in proving Theorem
2.17.20).

Theorem 5.11.1. Let p be a prime. Let K be a ring such that p · 1K = 0. Let
a, b ∈ K be such that ab = ba. Then,

(a + b)p = ap + bp.

Theorem 5.11.1 is often called “Freshman’s Dream” (in writing) or “Idiot’s Bino-
mial Formula” (colloquially).

Example 5.11.2. Let p be a prime.
(a) The simplest example of a ring K in which p · 1K = 0 (apart from the

zero ring) is the ring Z/p. Unfortunately, this is too simple to make a good
example for Theorem 5.11.1. Indeed, if K = Z/p, then any α ∈ K satisfies
αp = α (because we can write α as [a]p for some a ∈ Z, and then apply Theorem
2.15.1 (b) to this a). Thus, as long as we are staying in K = Z/p, the equality
(a + b)p = ap + bp claimed by Theorem 5.11.1 boils down to a + b = a + b (since
(a + b)p = a + b and ap = a and bp = b).

(b) In Section 5.6, we have taken a prime p > 2, and constructed a finite field
K′η of size p2 (by picking a non-square η ∈ Z/p and performing the construction
in Definition 5.6.11). This field satisfies p · 1K′η = 0, so we can apply Theorem
5.11.1 to it as well. This time, αp = α will no longer hold for all α in the field, so
the result we get will not be obvious.

(c) Here is another example. Let n ∈N, and let K be the matrix ring (Z/p)n×n.
This matrix ring K satisfies p · 1K = 0 (since scaling is defined entrywise on

https://en.wikipedia.org/wiki/Freshman's_dream#Prime_characteristic
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matrices). Thus, Theorem 5.11.1 yields that any a, b ∈ K satisfying ab = ba must
satisfy (a + b)p = ap + bp. Of course, not every two matrices a, b ∈ K satisfy
ab = ba, but there are many matrices that do.

A particularly striking situation is the following: Assume that n ≤ p, and let
N ∈ K be a strictly lower-triangular n× n-matrix. For example, if n = 3, then N

has the form

 0 0 0
u 0 0
v w 0

. Then, I claim that

(In + N)p = In. (195)

To prove this, we observe that In · N = N = N · In. Hence, Theorem 5.11.1 can
be applied to a = In and b = N. As a result, we obtain (In + N)p = Ip

n + Np. But
N is a strictly lower-triangular n× n-matrix, and therefore satisfies Nn = 0n×n
(by [Grinbe18, Corollary 3.78]), and therefore

Np = Nn︸︷︷︸
=0n×n

Np−n (since n ≤ p)

= 0n×nNp−n = 0n×n.

Furthermore, Ip
n = In (since In is the unity of the ring K). Hence, (In + N)p =

Ip
n︸︷︷︸

=In

+ Np︸︷︷︸
=0n×n

= In + 0n×n = In. This proves (195).

Proof of Theorem 5.11.1. For each k ∈ {1, 2, . . . , p− 1}, we have p |
(

p
k

)
(by Theorem

2.17.19) and thus (
p
k

)
1K = 0 (196)

(since p · 1K = 0) 170.
But ab = ba. Hence, the binomial formula (more precisely, the identity (183),

170Here is this argument in more detail:

Let k ∈ {1, 2, . . . , p− 1}. Then, p |
(

p
k

)
(by Theorem 2.17.19). Hence, there exists an integer c

such that
(

p
k

)
= pc. Consider this c. Then,

(
p
k

)
︸︷︷︸
=pc=cp

1K = c p · 1K︸ ︷︷ ︸
=0

= c · 0 = 0,

qed.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 394

applied to n = p) yields

(a + b)p =
p

∑
k=0

(
p
k

)
akbp−k

=

(
p
0

)
︸︷︷︸
=1

a0︸︷︷︸
=1

bp−0︸︷︷︸
=bp

+
p−1

∑
k=1

(
p
k

)
ak︸︷︷︸

=1K·ak

bp−k +

(
p
p

)
︸︷︷︸
=1

ap bp−p︸︷︷︸
=b0=1(

here, we have split off the addends for k = 0 and for k = p
from the sum

)
= bp +

p−1

∑
k=1

(
p
k

)
1K︸ ︷︷ ︸

=0
(by (196))

akbp−k + ap = bp +
p−1

∑
k=1

0akbp−k

︸ ︷︷ ︸
=0

+ap

= bp + ap = ap + bp.

This proves Theorem 5.11.1.

We note that Theorem 5.11.1 would be false if p wasn’t assumed to be prime. For
example, it would be false for p = 4 (a simple counterexample being K = Z/4,
a = 1 and b = 1).

As a consequence of Theorem 5.11.1, we obtain some unexpected ring homomor-
phisms:

Corollary 5.11.3. Let p be a prime. Let K be a commutative ring such that
p · 1K = 0. Let F be the map

K→ K, a 7→ ap.

Then, F is a ring homomorphism.

Proof of Corollary 5.11.3. According to Definition 5.9.1, we must prove that it satis-
fies the following four axioms:

(a) We have F (a + b) = F (a) + F (b) for all a, b ∈ K.
(b) We have F (0) = 0.
(c) We have F (ab) = F (a) F (b) for all a, b ∈ K.
(d) We have F (1) = 1.
The axiom (a) boils down to (a + b)p = ap + bp, which follows from Theorem

5.11.1 (since the commutativity of K entails ab = ba).
The axiom (c) boils down to (ab)p = apbp, which follows from (182) (again be-

cause ab = ba).
The axioms (b) and (d) are obviously satisfied (since 0p = 0 and 1p = 1). Thus,

Corollary 5.11.3 is proven.
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The ring homomorphism F in Corollary 5.11.3 is called the Frobenius endomor-
phism171 of K.

6. Linear algebra over commutative rings

We shall now continue studying rings, but slowly shift our focus: So far, we have
been studying rings themselves, but now we are going to move towards structures
“over” rings, such as matrices and K-modules (a generalization of vector spaces).
The rings will no longer be the place where everything happens, but rather they
will “act” on our structures in the way scalars act on vectors in linear algebra.

6.1. An overview of matrix algebra over fields

Next I shall give a quick review of matrix algebra adapted to the situation in which
the entries of the vectors belong to an arbitrary field. This review will be quick
and terse, but can be skipped, since the rest of this course will not depend on it. It
does, however, provide context and examples for several constructions we will do
further on.

I assume you have seen some basic matrix algebra: Gaussian elimination, ranks
of matrices, inverses of matrices, determinants, etc. (If not, see [Heffer17].)

Usually, these things are done for matrices over R or C. But we can try doing
the same with matrices over an arbitrary commutative ring K.

6.1.1. Matrices over fields

Let us first study the situation when K is a field.

Example: Let K = Z/3, and let A =

 0 1 1
1 0 1
1 1 0

 ∈ K3×3. (Here, of course, “0”

and “1” mean [0]3 and [1]3.) Let b =

 1
1
1

 ∈ K3×1. We want to find a column

vector x ∈ K3×1 such that Ax = b. This means, explicitly, to find x1, x2, x3 ∈ K

such that 
0x1 + 1x2 + 1x3 = 1;
1x1 + 0x2 + 1x3 = 1;
1x1 + 1x2 + 0x3 = 1.

Can we do this? Well, we can try: Augment the matrix A with the column b,

171The word “endomorphism” means “homomorphism of some object (here, a ring) to itself”, i.e.,
“homomorphism whose domain and codomain are the same”.
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obtaining the augmented matrix

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 .

Now, we shall transform this matrix into reduced row echelon form (see [Strick13,
§5] or [Heffer17, Chapter One, §III]172) by a series of row operations (this is called
Gauss–Jordan reduction in [Heffer17, Chapter One, §III], and also appears as Method
6.3 in [Strick13]):

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 swap row 2 with row 17→

 1 0 1 1
0 1 1 1
1 1 0 1


subtract row 1 from row 37→

 1 0 1 1
0 1 1 1
0 1 2 0

 (since − 1 = 2 in Z/3)

subtract row 2 from row 37→

 1 0 1 1
0 1 1 1
0 0 1 2


(this is a row echelon form, but not a reduced one)

subtract row 3 from row 17→

 1 0 0 2
0 1 1 1
0 0 1 2


subtract row 3 from row 27→

 1 0 0 2
0 1 0 2
0 0 1 2

 .

172The reduced row echelon form is called “reduced echelon form” in [Heffer17].
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So for any vector x =

 x1
x2
x3

 ∈ K3×1, we have the following chain of equivalences:

(Ax = b)
⇐⇒ (Ax− b = 03×1)

⇐⇒

(A | b)


x1
x2
x3
−1

 = 03×1


since Ax− b = (A | b)


x1
x2
x3
−1




⇐⇒


 1 0 0 2

0 1 0 2
0 0 1 2




x1
x2
x3
−1

 = 03×1


since (A | b) 7→

 1 0 0 2
0 1 0 2
0 0 1 2

 by a sequence of row operations


⇐⇒

 x1 − 2
x2 − 2
x3 − 2

 =

 0
0
0

 ⇐⇒
 x1

x2
x3

 =

 2
2
2

 .

So our linear system has the unique solution

x =

 2
2
2

 .

Next, let us try doing the same for K = Z/2, with the “same” matrix. (It will
not be literally the same matrix, of course, since 0 and 1 will now mean [0]2 and
[1]2.)

Thus, let K = Z/2, and let A =

 0 1 1
1 0 1
1 1 0

 ∈ K3×3. (Here, of course, “0” and

“1” mean [0]2 and [1]2.) Let b =

 1
1
1

 ∈ K3×1. We want to find a column vector

x ∈ K3×1 such that Ax = b. This means, explicitly, to find x1, x2, x3 ∈ K such that
0x1 + 1x2 + 1x3 = 1;
1x1 + 0x2 + 1x3 = 1;
1x1 + 1x2 + 0x3 = 1.

Can we do this? We can try as before: Augment the matrix A with the column
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b, obtaining

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 .

Now, we shall transform this matrix into reduced row echelon form by a series of
row operations:

(A | b) =

 0 1 1 1
1 0 1 1
1 1 0 1

 swap row 2 with row 17→

 1 0 1 1
0 1 1 1
1 1 0 1


subtract row 1 from row 37→

 1 0 1 1
0 1 1 1
0 1 1 0

 (since − 1 = 1 in Z/2)

subtract row 2 from row 37→

 1 0 1 1
0 1 1 1
0 0 0 1


subtract row 3 from row 17→

 1 0 1 0
0 1 1 1
0 0 0 1


subtract row 3 from row 27→

 1 0 1 0
0 1 1 0
0 0 0 1

 .

So for any vector x =

 x1
x2
x3

 ∈ K3×1, we have the following chain of equivalences:

(Ax = b)
⇐⇒ (Ax− b = 03×1)

⇐⇒

(A | b)


x1
x2
x3
−1

 = 03×1



⇐⇒


 1 0 1 0

0 1 1 0
0 0 0 1




x1
x2
x3
−1

 = 03×1


⇐⇒

 x1 + x3
x2 + x3
−1

 =

 0
0
0

 ⇐⇒ (false)

(since −1 6= 0 in K). So our linear system has no solution.
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By the way, you could have easily seen this from the system itself:
0x1 + 1x2 + 1x3 = 1;
1x1 + 0x2 + 1x3 = 1;
1x1 + 1x2 + 0x3 = 1.

Adding together the three equations, we get 0 = 1 (since 1+ 1 = 0 and 1+ 1+ 1 = 1
in Z/2), which is absurd. So the system has no solution.

Upshot: We can do linear algebra over any field more or less in the same as we
did over real/complex numbers. But the result may depend on the field.

Let me recall a couple theorems from linear algebra that hold (with the same
proofs) over any field:

Theorem 6.1.1. Let K be a field.
(a) Any matrix over K has a unique reduced row echelon form (abbreviated

RREF).
(b) If A ∈ Kn×m is any matrix and R is its RREF, then the row space, kernel (=

nullspace) and rank of A are equal to those of R. (Here, the row space, kernel and
rank of a matrix are defined in the same way as for real/complex matrices.)

(c) If A ∈ Kn×m is any matrix, and if b ∈ Kn×1 is any column vector, then the
equation Ax = b (for an unknown column vector x ∈ Km×1) can be solved us-
ing the Gaussian elimination algorithm (e.g., by forming the augmented matrix
(A | b), then transforming it into RREF, and reading off the solutions from this
RREF by the same method as you learned in Linear Algebra).

(d) If A ∈ Kn×m is a matrix with n < m, then there exists a nonzero x ∈ Km×1

such that Ax = 0n×1. (“Nonzero” means “distinct from 0m×1”; a nonzero vector
can have some zero entries.)

(e) Let A ∈ Kn×n. Then, the following are equivalent:

• The matrix A is invertible.

• The matrix A is row-equivalent to In. (Two matrices are said to be row-
equivalent if one can be transformed into the other via row operations:
swapping rows, scaling rows and adding a multiple of one row to another.)

• The matrix A is column-equivalent to In. (The definition of “column-
equivalent” is the same as of “row-equivalent”, but with columns being
used instead of rows.)

• The RREF of A is In.

• The RREF of A has n pivots.

• The rank of A is n.

• The equation Ax = 0n×1 (for an unknown x ∈ Kn×1) has only the trivial
solution (that is, x = 0n×1).
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• For each vector b ∈ Kn×1, the equation Ax = b has a solution.

• For each vector b ∈ Kn×1, the equation Ax = b has a unique solution.

• The columns of A are linearly independent.

• The rows of A are linearly independent.

• There is a matrix B ∈ Kn×n such that AB = In.

• There is a matrix B ∈ Kn×n such that BA = In.

• We have det A 6= 0. (We will later define determinants.)

(Matrices satisfying these equivalent conditions are called nonsingular.)

Proof of Theorem 6.1.1 (sketched). I shall give references to places where these facts
are proven. Most of these places only consider matrices with real or complex
entries, but the proofs still work for an arbitrary field K.

(a) See [Strick13, §6, proof of Theorem 6.2 (a)] or [Carrel17, Proposition 3.7]
or [GalQua18, Proposition 8.14] for the proof that any matrix has a RREF; see
[Heffer17, Section One.III, Theorem 2.6] or [Carrel05, Proposition 3.18] or [Carrel17,
Proposition 3.12] or [GalQua18, Proposition 8.19] for a proof that this RREF is
unique.

(b) The RREF R of A is obtained from A by a sequence of row operations. Thus,
it suffices to show that the row space, the kernel and the rank of a matrix are pre-
served under row operations. This is well-known and simple. (See, e.g., [Strick13,
Lemma 9.15] or [GalQua18, Proposition 8.13] for a proof that the row space is pre-
served under row operations. The fact that the kernel and the rank are preserved
under row operations is showed in [GalQua18, proof of Proposition 8.13] as well.)

(c) See [Strick13, Method 6.9] or [Knapp16a, Example before Proposition 1.26] or
[GalQua18, §8.11].

(d) This is [Knapp16a, Proposition 1.26 (d)], and also appears in [Strick13, Re-
mark 8.9] (because a relation λ1v1 + · · ·+λmvm = 0 between the columns v1, v2, . . . , vm
of A means precisely that the vector x = (v1, v2, . . . , vm)

T ∈ Km×1 satisfies Ax =
0n×1) and in [GalQua18, Proposition 8.17].

(e) The Wikipedia calls Theorem 6.1.1 (e) (or similar results which have some
more or fewer equivalent conditions) the “invertible matrix theorem”. Most of it
is proven in [Strick13, Theorem 11.5] (for K = R only, but the general case works
in the same way). Some parts are also proven in [Knapp16a, Theorem 1.30 and
Corollary 1.32] and in [GalQua18, Proposition 8.18].

6.1.2. What if K is not a field?

Things get weird when K is not a field. For an example, set K = Z/26. This is not
a field, since 26 is not prime (after all, 26 = 2 · 13). The ring Z/26 has been used

https://en.wikipedia.org/wiki/Invertible_matrix#The_invertible_matrix_theorem
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in classical cryptography, since its elements are in bijection with the letters of the
(modern) Roman alphabet:

0 7→ A, 1 7→ B, 2 7→ C, . . . .

For example, the Hill cipher lets you encrypt a word using a 3× 3-matrix over Z/26
as a key. The idea is simple: You split the word into 3-letter chunks; you turn each
chunk into a column vector in (Z/26)3×1; and you multiply each of these columns
vectors by your key matrix. To decrypt, you would have to invert the key matrix.

So we want to know how to invert a matrix over Z/26.
If Z/26 was a field, you would know how to do this via Gaussian elimination.
Most of Theorem 6.1.1 collapses when K is not a field. For example, let K =

Z/26 and

A =

(
2 13

13 20

)
∈ K2×2.

(We are abusing notation here: In truth, the entries of A are not the integers
2, 13, 13, 20 but rather their residue classes [2]26 , [13]26 , [13]26 , [20]26. But we shall
simply write the integers instead and hope that the reader knows what we mean.)

Is this matrix A invertible?
Let us first try to find the RREF of A. If we would blindly follow the Gaussian

elimination algorithm, we would fail very quickly: None of the 4 entries of A
has a multiplicative inverse; thus we could not transform any entry of A into 1 by
scaling a row of A. But we can try to loosen Gaussian elimination by allowing more
strategic row operations: Instead of trying to get a 1 in a pivot position immediately
by scaling a row, we can attempt to obtain a 1 by row addition operations. For
example, we can transform our matrix A above as follows:(

2 13
13 20

)
subtract 6 times row 1 from row 27→

(
2 13
1 20

)
swap row 1 with row 27→

(
1 20
2 13

)
subtract 2 times row 1 from row 27→

(
1 20
0 25

)
scale row 2 by −17→

(
1 20
0 1

)
subtract 20 times row 2 from row 17→

(
1 0
0 1

)
= I2.

So our matrix A does have a RREF (namely, I2), and even is invertible! (We can
find an inverse of A by computing an RREF of the block matrix (A | I2); see, e.g.,
[Strick13, Method 11.11] for this procedure.)

https://en.wikipedia.org/wiki/Hill_cipher
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What exactly was the method behind our above row-reduction procedure? Let
us see how the first column has been transformed:(

2
13

)
subtract 6 times row 1 from row 27→

(
2
1

)
swap row 1 with row 27→

(
1
2

)
subtract 2 times row 1 from row 27→

(
1
0

)
.

So what we did was progressively making the entries of the first column smaller
by subtracting a multiple of the first entry from the second entry (and swapping
the two entries, in order to move the smaller entry into the first position). This is
exactly the Euclidean algorithm! (Or, rather, it would be the Euclidean algorithm if
we had used honest integers instead of residue classes in Z/26.)

What happens in general? In general, when K = Z/n, the Gaussian elimina-
tion algorithm as defined in linear algebra does not always work. Nevertheless, a
variant of it works, in which you do not directly scale rows to turn entries into 1,
but instead “minimize” the whole column using the Euclidean algorithm as we did
with our matrix A above. You will not always be able to get 1’s in pivot positions,
because the gcd (which the Euclidean algorithm computes) may not be 1; thus,
the result will not always be an RREF in the classical sense, but rather something
loosely resembling it.

For details, look up the Smith normal form (e.g., in [Elman18, §113]). Note that for
n = 0, we have Z/n ∼= Z (as rings), so this applies to matrices with integer entries.

6.1.3. Review of basic notions from linear algebra

Convention 6.1.2. For the rest of this section, we fix a field K. The elements of
K will be referred to as scalars.

In the linear algebra you have seen before, the scalars are usually real numbers (i.e.,
we have K = R), but much of the theory works in the same way for every field.

Definition 6.1.3. Let n ∈ N. Recall that K1×n is the set of all row vectors of size
n.

A subspace of K1×n means a subset S ⊆ K1×n satisfying the following axioms:

• (a) We have 01×n ∈ S.

• (b) If a, b ∈ S, then a + b ∈ S.

• (c) If a ∈ S and λ ∈ K, then λa ∈ S.

In other words, a subspace of K1×n is a subset of K1×n that contains the zero
vector and is closed under addition and scaling.

Subspaces are often called vector subspaces.

https://en.wikipedia.org/wiki/Smith_normal_form
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A similar definition defines subspaces of Kn×1 (column vectors).
There is a more general version of this definition, which extends it to subspaces

of arbitrary vector spaces (see Definition 6.7.3).

Definition 6.1.4. Let n ∈N. Let v1, v2, . . . , vk be some row vectors in K1×n.
(a) A linear combination of v1, v2, . . . , vk means a row vector of the form

λ1v1 + λ2v2 + · · ·+ λkvk, with λ1, λ2, . . . , λk ∈ K.

(b) The span of v1, v2, . . . , vk is defined to be the subset

{λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ K}
= {linear combinations of v1, v2, . . . , vk}

of K1×n. This span is a subspace of K1×n. (This is easy to check.)
(c) The vectors v1, v2, . . . , vk are said to be linearly independent if the only k-tuple

(λ1, λ2, . . . , λk) ∈ Kk satisfying λ1v1 + λ2v2 + · · ·+ λkvk = 01×n is

0, 0, . . . , 0︸ ︷︷ ︸
k times

.

(d) Let U be a subspace of K1×n. We say that v1, v2, . . . , vk form a basis of
U (or, more formally, (v1, v2, . . . , vk) is a basis of U) if and only if the vectors
v1, v2, . . . , vk are linearly independent and their span is U.

(e) Let U be a subspace of K1×n. We say that the list (v1, v2, . . . , vk) spans U
if and only if the span of v1, v2, . . . , vk is U. (More informally, instead of saying
“the list (v1, v2, . . . , vk) spans U”, we can say “the vectors v1, v2, . . . , vk span U”;
of course, this is not the same as saying that each of these k vectors on its own
spans U.)

All the terminology we have just introduced depends on K. Whenever the field
K is not clear from the context, you can insert it into this terminology to make it
unambiguous: e.g., say “K-linear combination” instead of “linear combination”,
and “K-span” instead of “span”.

Theorem 6.1.5. Let n ∈N. Let U be a subspace of K1×n.
(a) There exists at least one basis of U.
(b) Any two bases of U have the same size (= number of vectors).
(c) Given k linearly independent vectors in U, and given ` vectors that span U,

we always have k ≤ `.
(d) Any list of k linearly independent vectors in U can be extended to a basis

of U.
(e) Any list of ` vectors that span U can be shrunk to a basis of U (i.e., we can

remove some vectors from this list to get a basis of U).

Proof of Theorem 6.1.5 (sketched). This all is proven just as in standard linear algebra.
Here are some specific references:
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Theorem 6.1.5 (a) appears in [Strick13, Proposition 20.3, last sentence]173, and
also is a particular case of [ConradD, Theorem 4]174 (applied to V = K1×n and
W = U). It also follows from [Payne09, Theorem 3.2.3 and Lemma 3.2.4]175.

Theorem 6.1.5 (b) is proven in [Heffer17, Chapter Two, Theorem III.2.5], in
[ConradD, Corollary 1], in [GalQua18, Theorem 3.11, last sentence] and in [Payne09,
Lemma 3.2.5]. It also follows from [Strick13, Corollary 20.5 (c)].

Theorem 6.1.5 (d) is proven in [Heffer17, Chapter Two, Corollary III.2.13], in
[ConradD, Theorem 3] (since Theorem 6.1.5 (a) shows that U has a basis) and
[Payne09, Lemma 3.2.8] (since Theorem 6.1.5 (a) shows that U has a basis).

Theorem 6.1.5 (e) is proven in [Heffer17, Chapter Two, Corollary III.2.14], in
[ConradD, Theorem 3], in [Walker87, Theorem 3.3.3], in [GalQua18, Theorem 3.11,
second sentence] and in [Payne09, Theorem 3.2.7].

Theorem 6.1.5 (c) follows from parts (b), (d) and (e) once you extend your list
of k linearly independent vectors in U to a basis of U and shrink your list of `
vectors spanning U to a basis of U. Alternatively, Theorem 6.1.5 (c) follows from
[GalQua18, Proposition 3.10, last sentence] or from [Payne09, Theorem 3.2.2].

Again, the same holds for column vectors.

Definition 6.1.6. Let n ∈N. Let U be a subspace of K1×n.
The dimension of U is defined to be the size of a basis of U. (Parts (a) and (b)

of Theorem 6.1.5 show that this is indeed well-defined.) The dimension of U is
denoted by dim U.

Proposition 6.1.7. Let n ∈ N. Let U and V be two subspaces of K1×n such that
U ⊆ V.

(a) We have dim U ≤ dim V.
(b) If dim U = dim V, then U = V.

Proof sketch. Pick a basis of U. This basis is a list of dim U many linearly indepen-
dent vectors in V (since U ⊆ V). Thus, Theorem 6.1.5 (d) (applied to dim U and V
instead of k and U) shows that this list can be extended to a basis of V. The latter
basis, of course, has size dim V. Thus, dim U ≤ dim V (since we have extended a
list of size dim U and obtained a list of size dim V). This proves Proposition 6.1.7
(a).

(b) Assume that dim U = dim V. We have just found a basis of V by extending a
basis of U. In light of dim U = dim V, this extension must have been trivial – i.e.,

173Note that Strickland works with column vectors in [Strick13, Proposition 20.3, last sentence],
while our U consists of row vectors. But the arguments are the same.

174Note that in the (otherwise excellent) note [ConradD], Conrad follows the inane convention that
an empty list () cannot be a basis. This forces him to make the unnatural requirement “V 6= {0}”
in [ConradD, Theorem 1] and in various other places throughout his note. You should ignore
this special treatment (or, rather, non-treatment) of empty lists when you read the note.

175Note that [Payne09] (just as various other texts) defines a basis as a set rather than a list of vectors.
This is somewhat awkward, but it is not hard to translate between the two concepts of “basis”.
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we must have extended our basis of U by no further vectors. This means that our
basis of U was already a basis of V to begin with. From this, it is easy to see that
U = V (because the span of a basis of U is always U, whereas the span of a basis
of V is always V). This proves Proposition 6.1.7 (b).

Now, let us connect this with matrices:

Definition 6.1.8. Let n, m ∈N. Let A ∈ Kn×m be a matrix.
(a) The row space of A is defined to be the span of the rows of A. This is a

subspace of K1×m, and is called Row A.
(b) The column space of A is defined to be the span of the columns of A. This

is a subspace of Kn×1, and is called Col A.

Theorem 6.1.9. Let A ∈ Kn×m be a matrix. Then, dim Row A = dim Col A.

Proof of Theorem 6.1.9 (sketched). One way to prove this is to transform A into RREF,
and argue that both dim Row A and dim Col A equal the number of pivots in the
RREF. There are other, more abstract ways. See linear algebra textbooks for this
proof: for example, [Heffer17, Chapter Two, Theorem III.3.11] (where dim Row A
is called the “row rank” of A, and dim Col A is called the “column rank” of A).

Definition 6.1.10. Let n, m ∈N. Let A ∈ Kn×m be a matrix. Theorem 6.1.9 shows
that dim Row A = dim Col A. This number dim Row A = dim Col A is called the
rank of A and is denoted by rank A.

The following is easy to see:

Proposition 6.1.11. Let n, m ∈ N. Let A ∈ Kn×m be a matrix. Then, rank A is an
integer between 0 and min {n, m}.

So we have seen that a matrix gives rise to two subspaces: its row space and its
column space. But there is more:

Definition 6.1.12. Let n, m ∈N. Let A ∈ Kn×m be a matrix.
(a) The kernel (or nullspace) of A is defined to be the set of all column vectors

v ∈ Km×1 such that Av = 0n×1. This is a subspace of Km×1, and is called Ker A.
(b) The left kernel (or left nullspace) of A is defined to be the set of all row vectors

w ∈ K1×n such that wA = 01×m. This is a subspace of K1×n.

Altogether, we have thus found four subspaces coming out of a matrix A. These
are the famous “four fundamental subspaces” (in Gilbert Strang’s terminology).
One result that connects two of them is the following fact, known as the rank-nullity
theorem:

https://en.wikipedia.org/wiki/Fundamental_theorem_of_linear_algebra
https://en.wikipedia.org/wiki/Rank-nullity_theorem#Matrices
https://en.wikipedia.org/wiki/Rank-nullity_theorem#Matrices
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Theorem 6.1.13. Let n, m ∈N. Let A ∈ Kn×m be a matrix. Then,

rank A + dim Ker A = m.

Proof of Theorem 6.1.13 (sketched). Most textbooks state Theorem 6.1.13 not in terms
of matrices, but rather in the (equivalent) language of linear maps. For example,
this is how it is stated in [Heffer17, Chapter Three, Theorem II.2.14] or [Carrel05,
Theorem 7.17] or [Knapp16a, Corollary 2.15] or [Payne09, Theorem 4.2.2].

Note that the number dim Ker A is known as the nullity of a matrix A.

6.1.4. Linear algebra over Z/2: “button madness” / “lights out”

We now discuss an old puzzle, which is known as “button madness” or “lights
out” (more precisely, these are two slightly different variants of the same puzzle).
You can try it out on

https://bz.var.ru/comp/web/js/floor.html

(see also https://www.win.tue.nl/~aeb/ca/madness/madrect.html for a list of
mathematical sources on this puzzle).

One version of this puzzle gives you 16 lamps arranged into a 4× 4-grid. Each
lamp comes with a lightswitch; but flipping this lightswitch toggles not just this
lamp, but also its four adjacent lamps (or three or two adjacent lamps, if the switch
you have flipped is at the border of the grid). For example, if your grid looks like
this:

1 0 0 1

0 1 1 0

0 0 1 0

1 1 0 1

(where an entry 1 means a lamp turned on, and an entry 0 means a lamp turned
off), and you flip the lightswitch in cell (2, 3) (that is, the third cell from the left in
the second row from the top), then you obtain the grid

1 0 1 1

0 0 0 1

0 0 0 0

1 1 0 1

.

(A total of 5 lamps have changed their state: three have been turned off, and two
have been turned on.) If you then flip the lightswitch in cell (1, 3) of this new grid,

https://bz.var.ru/comp/web/js/floor.html
https://www.win.tue.nl/~aeb/ca/madness/madrect.html
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then you obtain the grid
1 1 0 0

0 0 1 1

0 0 0 0

1 1 0 1

.

At the beginning, all lamps are turned off. Your goal is to achieve the oppo-
site state (i.e., all lamps being on at the same time) by flipping a sequence of
lightswitches. Is this possible, and how? (In some versions of this puzzle – such
as the “lights out” version – it’s exactly the other way round: The lights are all on
initially, and you must turn them all off. Of course, this makes no difference to the
solution.)

In some versions of this puzzle, the grid is “toroidal”, in the sense that it is
understood to wrap around – for example, the cells (1, 4) and (1, 1) are considered
to be adjacent, and so are the cells (4, 1) and (1, 1). We shall not consider this case
here, but it can be solved by the same method.

Of course, you can play the same game on larger grids, triangular grids, etc.. But
in order to get a grip on how to solve such a puzzle, we shall first analyze a much
simpler version: the “1-dimensional version” of the puzzle.

Here is this “1-dimensional version”: We have 4 lamps in a row (numbered
1, 2, 3, 4), each equipped with a lightswitch. The lightswitch at lamp i toggles lamp
i, lamp i − 1 (if it exists) and lamp i + 1 (if it exists). Initially, all 4 lamps are off.
Can we turn them all on by flipping a sequence of lightswitches?

Yes, of course: we just have to flip the lightswitches at lamps 1 and 4. But let us
pretend that we aren’t that smart, and instead try to solve the puzzle systematically.

We model the states of our lamps by a row vector in (Z/2)1×4. We write a row
vector

(
a1 a2 · · · an

)
as (a1, a2, . . . , an).

More precisely, we model each state by the row vector (a1, a2, a3, a4) ∈ (Z/2)1×4,
where

ai =

{
[0]2 , if lamp i is off;
[1]2 , if lamp i is on

=

[lamp i is on]︸ ︷︷ ︸
Iverson bracket


2︸ ︷︷ ︸

residue class

.

We shall write 0 and 1 for [0]2 and [1]2 throughout this subsection (except in
Proposition 6.1.14), so we can rewrite this as

ai =

{
0, if lamp i is off;
1, if lamp i is on

= [lamp i is on]︸ ︷︷ ︸
Iverson bracket

,

but keep in mind that these values are understood to be in Z/2.
The initial state is (0, 0, 0, 0). The final state that we want to achieve is (1, 1, 1, 1).

Flipping a lightswitch corresponds to adding a certain row vector to our state.
Namely:

https://en.wikipedia.org/wiki/Lights_Out_(game)
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• Flipping lightswitch 1 means adding (1, 1, 0, 0).

• Flipping lightswitch 2 means adding (1, 1, 1, 0).

• Flipping lightswitch 3 means adding (0, 1, 1, 1).

• Flipping lightswitch 4 means adding (0, 0, 1, 1).

Thus, flipping a lightswitch means adding the corresponding row of the matrix

A :=


1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

 ∈ (Z/2)4×4

to our state. The reachable states are thus exactly the elements of Row A, the row
space of A.

Hence, our goal is to show that (1, 1, 1, 1) ∈ Row A.
This is quite easy for the concrete matrix A above (just notice that (1, 1, 1, 1) is

the sum of the 1-st and 4-th rows of A); but let us try a theoretical argument. It
will rely on the following general fact:

Proposition 6.1.14. Let n, m ∈ N. Let K be any field. Let A ∈ Kn×m and
b ∈ K1×m. Assume the following:

Assumption 1: If c ∈ Km×1 satisfies Ac = 0, then bc = 0. (Here, of
course, the “0” in “Ac = 0” means 0n×1.)

Then, b ∈ Row A.

Proof of Proposition 6.1.14. Let
(

A
b

)
denote the (n + 1) × m-matrix formed from

the n × m-matrix A by attaching the row vector b to its bottom. For example, if

A =

(
a1,1 a1,2
a2,1 a2,2

)
and b =

(
b1 b2

)
, then

(
A
b

)
=

 a1,1 a1,2
a2,1 a2,2
b1 b2

.

Theorem 6.1.13 yields rank A + dim Ker A = m. Thus,

rank A = m− dim Ker A. (197)

The same argument can be applied to the matrix
(

A
b

)
instead of A. We thus

obtain

rank
(

A
b

)
= m− dim Ker

(
A
b

)
. (198)

But each c ∈ Ker A satisfies Ac = 0 and thus bc = 0 (by Assumption 1), and there-

fore c ∈ Ker
(

A
b

)
(because the “row-by-column” nature of matrix multiplication
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shows that
(

A
b

)
c =

(
Ac
bc

)
=

(
0
0

)
= 0). So we have Ker A ⊆ Ker

(
A
b

)
.

Also, clearly, Ker
(

A
b

)
⊆ Ker A (because if c ∈ Ker

(
A
b

)
, then

(
A
b

)
c = 0, so

that 0 =

(
A
b

)
c =

(
Ac
bc

)
and thus Ac = 0, so that c ∈ Ker A). Combining these

two relations, we obtain Ker A = Ker
(

A
b

)
. Hence, the right hand sides of (197)

and (198) are equal. Thus, the left hand sides are equal as well. In other words,

rank A = rank
(

A
b

)
. In other words,

dim Row A = dim Row
(

A
b

)

(since rank B = dim Row B for any matrix B). But Row A ⊆ Row
(

A
b

)
(by the

definition of a row space). Combining these facts, we obtain

Row A = Row
(

A
b

)

(by Proposition 6.1.7 (b), applied to U = Row A and V = Row
(

A
b

)
). But the

definition of a row space yields b ∈ Row
(

A
b

)
= Row A. This proves Proposition

6.1.14.

Over the field Z/2, this fact has the following consequence:

Corollary 6.1.15. Let n ∈ N. Let A ∈ (Z/2)n×n be a symmetric matrix. (“Sym-
metric” means that the (i, j)-th entry of A equals the (j, i)-th entry of A for all i
and j. In other words, it means that AT = A.)

Let d be the diagonal of A, written as a row vector. (In other words, let d =
(a1,1, a2,2, . . . , an,n), where ai,j is the (i, j)-th entry of A.)

Then, d ∈ Row A.

Note that Corollary 6.1.15 brutally fails over fields different from Z/2. For ex-

ample, if we allow A to be a matrix in Zn×n instead, then A =

(
1 −1
−1 1

)
is

symmetric but its diagonal d = (1, 1) does not belong to Row A.

Proof of Corollary 6.1.15. Set K = Z/2. By Proposition 6.1.14 (applied to m = n and
b = d), it suffices to show the following:

Assumption 1: If c ∈ Kn×1 satisfies Ac = 0, then dc = 0.
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[Proof of Assumption 1: Let c ∈ Kn×1 satisfy Ac = 0. We must prove that dc = 0.
I claim that dc = cT Ac.
To see this, write c as c = (c1, c2, . . . , cn)

T and A as A =
(
ai,j
)

1≤i≤n, 1≤j≤n. Then,

expanding cT Ac yields

cT Ac = ∑
i,j

ciai,jcj = ∑
i,j

ai,jcicj

= ∑
i<j

ai,jcicj︸ ︷︷ ︸
= ∑

j<i
aj,icjci

(here, we have renamed
the indices i and j as j and i)

+∑
i=j

ai,jcicj︸ ︷︷ ︸
=∑

i
ai,icici

+ ∑
i>j︸︷︷︸
= ∑

j<i

ai,j︸︷︷︸
=aj,i

(since A
is symmetric)

cicj︸︷︷︸
=cjci

= ∑
j<i

aj,icjci + ∑
i

ai,icici + ∑
j<i

aj,icjci = 2︸︷︷︸
=0

(since we are
in Z/2)

∑
j<i

aj,icjci + ∑
i

ai,icici

= ∑
i

ai,i cici︸︷︷︸
=c2

i =ci
(since x2=x

for all x∈Z/2)

= ∑
i

ai,ici = dc

(since c = (c1, c2, . . . , cn)
T and d = (a1,1, a2,2, . . . , an,n)). So dc = cT Ac︸︷︷︸

=0

= cT0 = 0.

Thus, Assumption 1 is proven.]
Corollary 6.1.15 now follows.

Now, why can the “lights out” puzzle be solved?
We want to prove that (1, 1, 1, 1) ∈ Row A for our matrix A ∈ (Z/2)4×4.
This follows from Corollary 6.1.15, since the matrix A is symmetric, and since its

diagonal is (1, 1, 1, 1).
The same argument works for the “proper” (2-dimensional) “lights out” puzzle;

we just have to use row vectors of size 16 (not 4) and 16× 16-matrices (not 4× 4-
matrices). More generally, the same argument works for any such puzzle on any
“grid” as long as:

• each lamp i has a lightswitch which toggles at least lamp i;

• if the lightswitch at lamp i toggles lamp j, then the lightswitch at lamp j
toggles lamp i.

These conditions guarantee that the corresponding matrix A will be symmetric and
its diagonal will be (1, 1, . . . , 1) (and thus we can apply Corollary 6.1.15).

How to find the exact sequence of flips that results in all lights being on? This is
tantamount to finding the coefficients of a linear combination of the rows of A that
equals (1, 1, . . . , 1). This boils down to solving a system of linear equations over
Z/2, which can be achieved using Gaussian elimination.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 411

What other states can be achieved by flipping lightswitches? Again, for each
specific grid and each specific state, this can be solved by Gaussian elimination;
but characterizing the reachable states more explicitly is a hard problem with no
unified answer. (See the link above.)

6.1.5. A warning about orthogonality and positivity

I have said above that “more or less” all linear algebra over R works identically
over any field K. There is an exception: Anything that uses positivity will break
down over some fields K. Let me briefly telegraph what can go wrong. (Don’t
worry if the things I am mentioning are not familiar to you.)

One thing that uses positivity is QR-decomposition. And indeed, not every ma-
trix over an arbitrary field has a QR-decomposition.

You can still define dot products and orthogonal complements of subspaces. But
it is no longer true that Kn×1 = U ⊕ U⊥ for any subspace U of Kn×1. It can
happen that U ∩U⊥ 6= {0}. For example, there are column vectors v 6= 0n×1 that
are orthogonal to themselves with respect to the dot product (that is, vTv = 0).

Example: In Z/3, we have 1
1
1

T  1
1
1

 = (1, 1, 1)

 1
1
1

 = 1 · 1 + 1 · 1 + 1 · 1 = 3 = 0.

So the vector

 1
1
1

 ∈ (Z/3)3×1 is orthogonal to itself.

6.2. Matrix algebra vs. coordinate-free linear algebra

There are two common approaches to linear algebra: The first is the study of ma-
trices and column vectors (or row vectors); this is down-to-earth but often clumsy
and unenlightening. The second is the study of vector spaces and linear trans-
formations; this is more abstract but more general and often better for conceptual
understanding. The first approach is known as matrix algebra; the second is called
coordinate-free linear algebra.

These two approaches are closely connected: The first can be viewed as a partic-
ular case of the second (as the column vectors of a given size n form a vector space,
and any matrix defines a linear map between two such vector spaces); the second
appears more general but in reality can often be reduced to the first (viz., theorems
about vector spaces can often be proven by “picking bases” and representing linear
maps by matrices with respect to these bases). Thus, a sufficiently deep course on
linear algebra will necessarily survey both of these approaches, and practitioners
of the subject will often apply whichever approach fits a problem better.

In the previous section, we have seen how the first approach can be generalized
from real or complex matrices to matrices over any field (and, as far as the basics
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are concerned, over any commutative ring). We shall now try this with the second
approach. Over a field, the second approach turns out to work out in pretty much
the same way as over the real or complex numbers; however, over a commutative
ring, things become a lot more interesting.

6.3. K-modules: the definition

Let us begin by defining the analogue of a vector space: a module. Roughly speak-
ing, a module is the same as a vector space, except that it is over a commutative
ring instead of a field:

Definition 6.3.1. Let K be a commutative ring.
A K-module means a set M equipped with

• a binary operation + on M (called “addition”, and not to be confused with
the addition +K of K),

• a map · : K×M → M (called “scaling”, and not to be confused with the
multiplication ·K of K), and

• an element 0M ∈ M (called “zero vector” or “zero”, and not to be confused
with the zero of K)

satisfying the following axioms:

• (a) We have a + b = b + a for all a, b ∈ M.

• (b) We have a + (b + c) = (a + b) + c for all a, b, c ∈ M.

• (c) We have a + 0M = 0M + a = a for all a ∈ M.

• (d) Each a ∈ M has an additive inverse (i.e., there is an a′ ∈ M such that
a + a′ = a′ + a = 0M).

• (e) We have λ (a + b) = λa+ λb for all λ ∈ K and a, b ∈ M. Here and in the
following, we use the notation “λc” (or, equivalently, “λ · c”) for the image
of a pair (λ, c) ∈ K× M under the “scaling” map · (similarly to how we
write ab for the image of a pair (a, b) ∈ K×K under the “multiplication”
map ·).

• (f) We have (λ + µ) a = λa + µa for all λ, µ ∈ K and a ∈ M.

• (g) We have 0a = 0M for all a ∈ M. (Here, the “0” on the left hand side
means the zero of K.)

• (h) We have (λµ) a = λ (µa) for all λ, µ ∈ K and a ∈ M.

• (i) We have 1a = a for all a ∈ M.

• (j) We have λ · 0M = 0M for all λ ∈ K.

These ten axioms are called the module axioms.
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A K-module is often called a “module over K”.
The axioms “λ (a + b) = λa + λb” and “(λ + µ) a = λa + µa” are known as

the distributivity laws for modules. The axiom “(λµ) a = λ (µa)” is known as the
associativity law for modules.

Definition 6.3.2. If K is a commutative ring and M is a K-module, then the
elements of M are called vectors, while the elements of K are called scalars. If
λ ∈ K and a ∈ M, then λa (that is, the image of (λ, a) under the scaling map
· : K×M→ M) will be called the result of scaling the vector a by the scalar λ.

Definition 6.3.3. If K is a field, then K-modules are called K-vector spaces. (When
K = R, these are the usual real vector spaces known from undergraduate linear
algebra classes.)

6.4. Examples of K-modules

Thus, any vector space you have seen in linear algebra is an example of a module.
Let us see some other examples:

Example 6.4.1. Let K be a commutative ring. Then, K itself is a K-module (with
the addition given by the addition +K of K, and with the scaling given by the
multiplication ·K of K, and with the zero vector given by the zero 0K of K).

Example 6.4.2. Let K be a commutative ring. Let n ∈ N. Equip the set Kn (that
is, the set of all n-tuples of elements of K) with entrywise addition (that is, a
binary operation + on Kn defined by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn)

for all (a1, a2, . . . , an) , (b1, b2, . . . , bn) ∈ Kn) and entrywise scaling (that is, a map
· : K×Kn → Kn defined by

λ (a1, a2, . . . , an) = (λa1, λa2, . . . , λan)

for all λ ∈ K and (a1, a2, . . . , an) ∈ Kn) and the zero vector (0, 0, . . . , 0) ∈ Kn.
Then, Kn becomes a K-module.

Example 6.4.3. Let K be a commutative ring. Let n, m ∈ N. Equip the set
Kn×m (that is, the set of all n × m-matrices over K) with the addition defined
in Definition 5.8.7 (a) and the scaling defined in Definition 5.8.7 (c) and the zero
vector 0n×m. Then, Kn×m becomes a K-module.

Example 6.4.4. Let K be a commutative ring. The one-element set {0} is a K-
module (with + and · and zero vector defined in the only possible way). This is
called the zero module. It is often called 0.
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Example 6.4.5. Let n be an integer. Then:
(a) The set Z/n is a Z-module, if you equip it with the addition and the scaling

that we defined above (in Definition 3.4.12 and Definition 3.4.18) and with the
zero vector [0]n.

(b) The set nZ := {nz | z ∈ Z} = {all multiples of n} is a Z-module (again
equipped with the usual addition as addition, and the usual multiplication as
scaling, and the integer 0 as zero vector).

Example 6.4.6. (a) The set Q (equipped with the usual addition, and with a
scaling defined by the usual multiplication, and the zero vector 0) is a Z-module.

(b) For every q ∈ Q, the subset qZ := {qz | z ∈ Z} of Q (again equipped

with the usual + and · and 0) is a Z-module. For example,
1
2

Z =

{. . . ,−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, . . .} is a Z-module. Note that
1
2

Z is not

a ring (at least not with the usual · as multiplication), since
1
2
· 1

2
=

1
4

/∈ 1
2

Z.
(c) What other Z-modules can we find inside Q ? Quite a few, it turns out.

Here is a more exotic one: Let us call an integer n squarefree if it is not divisible
by any perfect square other than 1. It is easy to see that an integer n is squarefree
if and only if n is a product of distinct primes (or, equivalently, vp (n) ≤ 1 for
each prime p). Thus, the squarefree integers are 1, 2, 3, 5, 6, 7, 10, 11, 13, . . . and
their negatives. Now, let Qsqf be the subset{ a

b
| a, b ∈ Z with b squarefree

}
of Q. Then, Qsqf (equipped with the usual addition as addition, the usual mul-
tiplication as scaling, and the usual 0 as zero vector) is a Z-module. (Check
this!)

6.5. Cartesian products of K-modules

Instead of giving further examples, let us show a way of constructing new K-
modules from old (analogous to Definition 5.7.3):

Definition 6.5.1. Let K be a commutative ring. Let M1, M2, . . . , Mn be n many
K-modules. Consider the set M1 ×M2 × · · · ×Mn, whose elements are n-tuples
(m1, m2, . . . , mn) with mi ∈ Mi.

We define a binary operation + on M1 ×M2 × · · · ×Mn by

(a1, a2, . . . , an) + (b1, b2, . . . , bn) = (a1 + b1, a2 + b2, . . . , an + bn) ,

and we define a “scaling” map · : K× (M1 ×M2 × · · · ×Mn) → M1 × M2 ×
· · · ×Mn by

λ · (a1, a2, . . . , an) = (λa1, λa2, . . . , λan) .
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Proposition 6.5.2. Let K be a commutative ring. Let M1, M2, . . . , Mn be n many
K-modules. The set M1 × M2 × · · · × Mn, endowed with the operation + and
the map · we just defined and with the zero vector (0, 0, . . . , 0), is a K-module.

Proof of Proposition 6.5.2. Similar to the proof of Proposition 5.7.2.

Definition 6.5.3. The K-module M1 × M2 × · · · × Mn constructed in Proposi-
tion 6.5.2 is called the Cartesian product (or direct product) of the K-modules
M1, M2, . . . , Mn.

The K-module Kn introduced in Example 6.4.2 is actually a particular case of
Definition 6.5.3; in fact, it is precisely the Cartesian product K×K× · · · ×K︸ ︷︷ ︸

n times

of the

K-modules K, K, . . . , K (that is, n copies of the K-module K defined in Example
6.4.1).

6.6. Features and rules

Again, we shall follow the PEMDAS convention for addition and scaling. For
example, the expression “a + λb” shall mean a + (λb).

Proposition 6.6.1. Axioms (g) and (j) in Definition 6.3.1 follow from the others.

Proof of Proposition 6.6.1. Assume that all axioms in Definition 6.3.1 are satisfied
except for axioms (g) and (j). We must now show that axioms (g) and (j) are also
satisfied.

Proof of axiom (g): Let a ∈ M. Then, axiom (f) (applied to λ = 0 and µ = 0) yields

(0 + 0) a = 0a + 0a.

This rewrites as 0a = 0a + 0a (since 0+ 0 = 0). We can cancel 0a from this equation
by adding an additive inverse of 0a to both sides (such an inverse exists because of
axiom (d)); we thus get 0M = 0a. In other words, 0a = 0M. This proves axiom (g).

The proof of axiom (j) is analogous, with use of axiom (e) instead of axiom (f).
(This relies on 0M + 0M = 0M, which follows from axiom (c).)

Proposition 6.6.2. Axiom (d) in Definition 6.3.1 follows from the others.

Proof of Proposition 6.6.2. Assume that all axioms in Definition 6.3.1 are satisfied
except for axiom (d). We must now show that axiom (d) is also satisfied.

Let a ∈ M. We must prove that a has an additive inverse.
Axiom (f) in Definition 6.3.1 (applied to λ = 1 and µ = −1) yields (1 + (−1)) a =

1a︸︷︷︸
=a

(by axiom (i))

+ (−1) a = a + (−1) a. Hence,

a + (−1) a = (1 + (−1))︸ ︷︷ ︸
=0

a = 0a = 0M (by axiom (g)) .
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Also, axiom (a) yields a + (−1) a = (−1) a + a, so that a + (−1) a = (−1) a + a =
0M. Thus, (−1) a is an additive inverse of a. Hence, a has an additive inverse. Thus,
axiom (d) is proven.

Note that Proposition 6.6.1 and Proposition 6.6.2 cannot be merged: If we omit
all three axioms (d), (g) and (j), then we cannot recover these axioms any more.
(Indeed, our proof of axiom (d) relied on axiom (g) and vice versa.)

What can you do when you have a K-module?

Convention 6.6.3. For the rest of this section, we fix a commutative ring K, and
we fix a K-module M. We shall denote the zero vector 0M of M by 0. (More
generally, it is common to denote the zero vector of any K-module by 0 as long
as you are not afraid of confusion.)

Just as in a ring, elements of a module have unique additive inverses:

Theorem 6.6.4. Let a ∈ M. Then:
(a) The element a has exactly one additive inverse.
(b) This additive inverse is (−1) a.

Proof of Theorem 6.6.4. (a) Same as the proof of Theorem 5.4.2.
(b) This was shown in the proof of Proposition 6.6.2.

We can now make the following definition, which copies Definition 5.4.4 almost
verbatim:

Definition 6.6.5. (a) If a ∈ M, then the additive inverse of a will be called −a.
(This is well-defined, since Theorem 6.6.4 (a) shows that this additive inverse is
unique.)

(b) If a ∈ M and b ∈ M, then we define the difference a− b to be the element
a + (−b) of M. This new binary operation − on M is called “subtraction”.

Remark 6.6.6. The subtraction we just defined (in Definition 6.6.5 (b)) for an
arbitrary K-module generalizes both

• the subtraction of matrices (when the K-module is Kn×m), and

• the subtraction in Z/n (when K = Z and the K-module is Z/n).

Remark 6.6.6 is easy to prove, but we delay the proof until later, since it will
become even easier after Proposition 6.6.7 has been proven.

Using Definition 6.6.5 (a), we can rewrite Theorem 6.6.4 (b) as follows:

− a = (−1) a for each a ∈ M. (199)

Additive inverses and subtraction satisfy certain rules that should not surprise
you:
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Proposition 6.6.7. Let a, b, c ∈ M.
(a) We have a− b = c if and only if a = b + c. (Roughly speaking, this means

that subtraction undoes addition.)
(b) We have − (a + b) = (−a) + (−b).
(c) We have −0 = 0.
(d) We have 0− a = −a.
(e) We have − (−a) = a.
(f) We have − (λa) = (−λ) a = λ (−a) for all λ ∈ K.
(g) We have a− b− c = a− (b + c). (Here and in the following, “a− b− c”

should be read as “(a− b)− c”.)
(h) We have λ (b− c) = λb− λc and (λ− µ) a = λa− µa for all λ, µ ∈ K.
(i) We have − (a− b) = b− a.
(j) We have a− (−b) = a + b.
(k) We have (−1) a = −a. (Here, the “1” on the left hand side means the unity

of K.)
(l) If −a = −b, then a = b.

Proof of Proposition 6.6.7. Same as for Proposition 5.4.5.

Again, Proposition 6.6.7 shows that certain expressions (such as “−λa” for λ ∈ K

and a ∈ M) are unambiguous.

Proof of Remark 6.6.6. Let us prove that the subtraction we defined (in Definition
6.6.5 (b)) for an arbitrary K-module generalizes the subtraction of matrices (when
the K-module is Kn×m).

The rough idea of the proof is “this is true, because both of these subtractions
undo the same addition”. Here is the argument in detail: Let n, m ∈ N. Let M be
the K-module Kn×m. Let A, B ∈ M. Our goal is then to show that the difference
A − B defined as in Definition 6.6.5 (b) equals the difference A − B defined as
in Definition 5.8.7 (b). Let us denote the former difference by D1 and the latter
difference by D2. Our goal is thus to prove that D1 = D2.

We know that D1 is the difference A − B defined as in Definition 6.6.5 (b). In
other words, A− B = D1, where the minus sign refers to the subtraction defined
in Definition 6.6.5 (b).

But Proposition 6.6.7 (a) (applied to a = A, b = B and c = D1) shows that we
have A − B = D1 if and only if A = B + D1, where the minus sign refers to the
subtraction defined in Definition 6.6.5 (b). Hence, A = B + D1 (since A− B = D1).
Note that the plus sign is unambiguous here: We have defined subtraction on M in
two different ways (and still have to prove that these two definitions are equivalent),
but we have defined addition on M only once.

But Theorem 5.8.10 (i) (applied to C = D1) yields that we have the equivalence
(A− B = D1) ⇐⇒ (A = B + D1), where the minus sign refers to the subtraction
defined in Definition 5.8.7 (b). Hence, we have A − B = D1 (since we have A =
B + D1), where the minus sign refers to the subtraction defined in Definition 5.8.7
(b). In other words, D1 is the difference A− B defined as in Definition 5.8.7 (b).
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In other words, we have D1 = D2 (since D2 was defined to be the difference
A− B defined as in Definition 5.8.7 (b)). This is precisely what we set out to prove.

Thus, we have shown that the subtraction we defined (in Definition 6.6.5 (b))
for an arbitrary K-module generalizes the subtraction of matrices (when the K-
module is Kn×m). A similar argument (but using Theorem 3.4.23 (i) instead of
Theorem 5.8.10 (i)) shows that the former subtraction generalizes the subtraction
in Z/n (when K = Z and the K-module is Z/n). Thus, Remark 6.6.6 is proven.

Theorem 5.4.6 holds for the K-module M just as it holds for the ring K. Thus, we
have a notion of finite sums of elements of M; it behaves exactly like finite sums of
elements of K do. But Theorem 5.4.7 has no analogue for K-modules. (However,
you can get something similar to Theorem 5.4.7 (b) by defining finite products of
the form λ1λ2 · · · λka with λ1, λ2, . . . , λk ∈ K and a ∈ M.)

Definition 5.4.8 can be extended to modules by simply replacing K with M:

Definition 6.6.8. Let a ∈ M and n ∈ Z. Then, we define an element na of M by

na =


a + a + · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0
.

We cannot define an for a ∈ M and n ∈N.
Proposition 5.4.9 has an analogue for a K-module; namely, we have the following:

Proposition 6.6.9. We have

(n + m) a = na + ma for all a ∈ M and n, m ∈ Z; (200)
n (a + b) = na + nb for all a, b ∈ M and n ∈ Z; (201)
− (na) = (−n) a = n (−a) for all a ∈ M and n ∈ Z; (202)
(nm) a = n (ma) for all a ∈ M and n, m ∈ Z; (203)
n (λa) = (nλ) a = λ (na) for all a ∈ M and λ ∈ K and n ∈ Z; (204)

n0M = 0M for all n ∈ Z; (205)
1a = a for all a ∈ M; (206)
0a = 0M for all a ∈ M; (207)

(−1) a = −a for all a ∈ M. (208)

(Here, “1” stands for the integer 1 ∈ Z, not for the scalar 1 ∈ K. Likewise, the
“0” in “0a”, and the “−1” in “(−1) a” stand for integers.) In particular, these
equalities show that certain expressions (like “nma” and “nλa”) are unambigu-
ous.
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Proof of Proposition 6.6.9. This is analogous to the proof of Proposition 5.4.9.

Upshot: All the rules relating to addition that we know from rings are still true
for K-modules. Some basic rules relating to multiplication can be salvaged (i.e.,
made to work for K-modules) by replacing multiplication by scaling.

6.7. Submodules

Convention 6.7.1. For the rest of Chapter 6, we fix a commutative ring K, and
we denote its addition, multiplication, zero and unity by +, ·, 0 and 1.

In Section 5.3, we have defined the notion of a subring of a ring. Similarly, we
shall now define a submodule of a K-module. For example, the Z-modules qZ

and Qsqf from Example 6.4.6 will fall under this concept. The idea is the same as
for subrings: A submodule of a K-module N is a K-module M that is a subset of N
and has “the same” addition, scaling and zero vector. Here is the formal definition
(analogous to Definition 5.3.1):

Definition 6.7.2. Let M and N be two K-modules. We say that M is a K-
submodule (or, for short, submodule) of N if and only if it satisfies the following
four requirements:

• the set M is a subset of N;

• the addition of M is a restriction of the addition of N (that is, we have
a1 +M a2 = a1 +N a2 for all a1, a2 ∈ M);

• the scaling of M is a restriction of the scaling of N (that is, we have λ ·M a =
λ ·N a for all λ ∈ K and a ∈ M);

• the zero vector of M is the zero vector of N (that is, we have 0M = 0N).

Thus, according to this definition:

• the Z-modules nZ from Example 6.4.5 (b) are Z-submodules of Z;

• the Z-modules qZ and Qsqf from Example 6.4.6 are Z-submodules of Q;

• every K-module M is a K-submodule of itself.

Again, you can find examples of two K-modules M and N for which the set M
is a subset of N yet the K-module M is not a K-submodule of N. For example, C

becomes a C-module in the usual way (with addition playing the role of addition,
and multiplication playing the role of scaling); but you can also define a second
“scaling” operation · : C×C→ C by setting

α · β = αβ for all α, β ∈ C.
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Then, we can turn the set C into a C-module by endowing it with the usual ad-
dition, the unusual scaling operation · and the zero vector 0. This new C-module
may be called C, and is useful in studying Hermitian forms. The C-modules C and
C are equal as sets, but neither is a C-submodule of the other.

Definition 6.7.3. If K is a field, then K-submodules are also known as K-vector
subspaces (or, short, K-subspaces).

When we have two K-modules M and N such that M ⊆ N as sets (or, more
generally, such that M and N have elements in common), we generally need to
be careful using the symbol “+”: This symbol may mean both the addition of
M and the addition of N, and these additions might not be the same. Thus it is
prudent to disambiguate its meaning by attaching a subscript “M” or “N” to it. The
same applies to the symbols “·” and “0” and expressions like “λa” (which have an
implicit scaling sign). However, when M is a K-submodule of N, we do not need
to take this precaution; in this case, the meaning of expressions like “a + b” does
not depend on whether you read “+” as the addition of M or as the addition of N.

The following is analogous to Proposition 5.3.4:

Proposition 6.7.4. Let N be a K-module. Let S be a subset of N that satisfies the
following three conditions:176

• We have 0 ∈ S.

• The subset S is closed under addition. (This means that all a, b ∈ S satisfy
a + b ∈ S.)

• The subset S is closed under scaling. (This means that all λ ∈ K and a ∈ S
satisfy λa ∈ S.)

Then, the set S itself becomes a K-module if we endow it with:

• an addition operation + which is defined as the restriction of the addition
operation of the K-module N;

• a scaling map · : K × S → S which is defined as the restriction of the
scaling map of the K-module N,

and the zero vector 0. Furthermore, this K-module S is a K-submodule of N.

Proof of Proposition 6.7.4. Similar to the proof of Proposition 5.3.4, except that we
now need to argue that each a ∈ S satisfies −a ∈ S. (But this is easy: Since S is
closed under scaling, we have (−1) a ∈ S, and thus −a = (−1) a ∈ S.)

176In this proposition, the symbols “+”, “·” and “0” mean the addition, the scaling and the zero
vector of N.

https://en.wikipedia.org/wiki/Sesquilinear_form
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Definition 6.7.5. Let N be a K-module. Let S be a subset of N that satisfies
the three conditions of Proposition 6.7.4. Then, we shall say that “S is a K-
submodule of N”. Technically speaking, this is premature, since S is so far just
a subset of N without the structure of a K-module; however, Proposition 6.7.4
shows that there is an obvious way of turning S into a K-module (viz.: define
an operation + by restricting the corresponding operation of N, define a map ·
similarly, and steal the zero vector from N), and we shall automatically regard S
as becoming a K-module in this way (unless we say otherwise). We say that the
addition operation + on S (obtained by restricting the corresponding operation
on N) and the scaling map · of S and the zero vector of S are inherited from N.

Thus, finding K-submodules of a K-module N boils down to finding subsets that
contain its 0 and are closed under addition and under scaling; the module axioms
don’t need to be re-checked.

Thus, in particular, when K is a field, the vector subspaces of Kn×1 (as in Def-
inition 6.1.3) are precisely the K-submodules of Kn×1. Many examples of K-
submodules can thus be found in textbooks on linear algebra. If M is any K-
module, then both M and the one-element subset {0M} are K-submodules of M
(this is easily checked); the more interesting submodules are the ones that lie in
between these two extremes.

6.8. Linear maps, aka module homomorphisms

Recall Definition 5.9.1. In a similar way, we define K-module homomorphisms, also
known as K-linear maps:

Definition 6.8.1. Let M and N be two K-modules. A K-module homomorphism
from M to N means a map f : M→ N that satisfies the following three axioms:

• (a) We have f (a + b) = f (a) + f (b) for all a, b ∈ M. (This is called “ f
respects addition” or “ f preserves addition”.)

• (b) We have f (0) = 0. (This, of course, means f (0M) = 0N.)

• (c) We have f (λa) = λ f (a) for all λ ∈ K and a ∈ M. (This is called “ f
respects scaling” or “ f preserves scaling”.)

Instead of “K-module homomorphism”, we can also say “K-linear map” or just
“linear map” (when K is clear).

Remark 6.8.2. The axiom (b) in Definition 6.8.1 is redundant – it follows from
axiom (a).

Proof. Same argument as for Remark 5.9.3.
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Some authors (for example, Hefferon in [Heffer17, Chapter Three, Definition
II.1.1], and the authors of [LaNaSc16, Definition 6.1.1]) omit the axiom (b) when
they define K-linear maps. This does not change the concept, as Remark 6.8.2
shows.

What are some examples of module homomorphisms?

Example 6.8.3. Let M be a K-module.
(a) The identity map id : M→ M is K-linear.
(b) For any λ ∈ K, the map Lλ : M→ M, a 7→ λa is K-linear.
(c) If M = K (specifically, the K-module K defined in Example 6.4.1), then the

maps Lλ (for λ ∈ K) that we just defined are the only K-linear maps from M to
M.

Proof of Example 6.8.3. (b) Let λ ∈ K. We must prove that the map Lλ : M →
M, a 7→ λa is K-linear. Thus, we must prove that it satisfies the three axioms (a),
(b) and (c) of Definition 6.8.1. In other words, we must prove the following:

Claim 1: We have Lλ (a + b) = Lλ (a) + Lλ (b) for all a, b ∈ M.

Claim 2: We have Lλ (0) = 0.

Claim 3: We have Lλ (µa) = µLλ (a) for all µ ∈ K and a ∈ M. (Note that
we are using the letter “µ” for what was called “λ” in Definition 6.8.1,
since the letter “λ” is already taken.)

[Proof of Claim 1: Let a, b ∈ M. Then, the definition of Lλ yields Lλ (a + b) =
λ (a + b) and Lλ (a) = λa and Lλ (b) = λb. But axiom (e) in Definition 6.3.1 yields
λ (a + b) = λa + λb. Hence,

Lλ (a + b) = λ (a + b) = λa︸︷︷︸
=Lλ(a)

+ λb︸︷︷︸
=Lλ(b)

= Lλ (a) + Lλ (b) .

This proves Claim 1.]
[Proof of Claim 2: We leave this proof to the reader.]
[Proof of Claim 3: Let µ ∈ K and a ∈ M. Now, axiom (h) in Definition 6.3.1 yields

(λµ) a = λ (µa). The same argument (with the roles of λ and µ swapped) yields
(µλ) a = µ (λa). But K is commutative; thus, λµ = µλ. Now, the definition of Lλ

yields Lλ (a) = λa. Furthermore, the definition of Lλ yields

Lλ (µa) = λ (µa) = (λµ)︸︷︷︸
=µλ

a = (µλ) a = µ (λa)︸︷︷︸
=Lλ(a)

= µLλ (a) .

This proves Claim 3.]
Thus, all three Claims 1, 2 and 3 have been proven. Hence, the map Lλ : M →

M, a 7→ λa is K-linear; this completes the proof of Example 6.8.3 (b).
(a) In Example 6.8.3 (b), we have defined a map Lλ : M → M, a 7→ λa for each

λ ∈ K. Applying this to λ = 1, we obtain a map L1 : M → M, a 7→ 1a. This map
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L1 : M → M is K-linear (by Example 6.8.3 (b), applied to λ = 1). But each a ∈ M
satisfies

L1 (a) = 1a (by the definition of L1)

= a (by axiom (i) in Definition 6.3.1)
= id (a) .

In other words, L1 = id. Hence, the map id : M → M is K-linear (since the map
L1 : M→ M is K-linear). This proves Example 6.8.3 (a).

(c) Assume that M = K (specifically, the K-module K defined in Example 6.4.1).
We must prove that the maps Lλ (for λ ∈ K) that we just defined are the only K-
linear maps from M to M. We already have shown that these maps Lλ are K-linear
(see Example 6.8.3 (b)); thus, it remains to prove that there are no other K-linear
maps from M to M. In other words, it remains to prove that if f is a K-linear map
from M to M, then f = Lλ for some λ ∈ K.

So let f be a K-linear map from M to M. Set ρ = f (1). Then, ρ ∈ M = K. Thus,
a map Lρ : M→ M is well-defined.

Recall that our K-module M is K itself, and its scaling map is exactly the multi-
plication operation of K.

Now, let a ∈ M. Then, a ∈ M = K, so that a = a · 1 (by the “Neutrality of one”
axiom in the ring K). Hence,

f (a) = f (a · 1) = a · f (1)︸︷︷︸
=ρ

(
by the axiom (c) in Definition 6.8.1,

applied to a and 1 instead of λ and a

)
= a · ρ = ρ · a(

since both a and ρ are elements of K, and since K is commutative
(and since the scaling map of M is the multiplication operation of K)

)
= Lρ (a)

(since the definition of Lρ yields Lρ (a) = ρ · a).
Now, forget that we fixed a. We thus have proven that f (a) = Lρ (a) for each

a ∈ M. In other words, f = Lρ. Hence, f = Lλ for some λ ∈ K (namely, for λ = ρ).
As we said, this proves Example 6.8.3 (c).

Next comes a less basic example:

Theorem 6.8.4. Let n, m ∈N. Let A ∈ Kn×m be an n×m-matrix. Define a map

LA : Km×1 → Kn×1,
v 7→ Av.

This map LA is a K-module homomorphism from Km×1 to Kn×1.
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Proof of Theorem 6.8.4. We just need to check that the three axioms (a), (b) and (c)
in Definition 6.8.1 are satisfied for M = Km×1, N = Kn×1 and f = LA.

Proof of axiom (a): We must prove that LA (a + b) = LA (a) + LA (b) for all a, b ∈
Km×1. Indeed: If a, b ∈ Km×1, then we can compare the equalities

LA (a + b) = A (a + b) (by the definition of LA)

= Aa + Ab (by Theorem 5.8.10 (g))

and
LA (a)︸ ︷︷ ︸
=Aa

(by the definition of LA)

+ LA (b)︸ ︷︷ ︸
=Ab

(by the definition of LA)

= Aa + Ab,

and thus obtain LA (a + b) = LA (a) + LA (b). Thus, axiom (a) has been verified.
The axioms (b) and (c) are proven similarly (details are left to the reader).

Proposition 6.8.5. Let n, m ∈ N. Each K-module homomorphism from Km×1

to Kn×1 has the form LA for a unique A ∈ Kn×m (where LA is defined as in
Theorem 6.8.4).

We shall delay the proof of this proposition until we have shown some auxiliary
results. First, we define a specific kind of column vectors:

Definition 6.8.6. Let m ∈ N. For each j ∈ {1, 2, . . . , m}, we let ej ∈ Km×1 be the
column vector 

0
0
...
0
1
0
0
...
0


= (0, 0, . . . , 0, 1, 0, 0, . . . , 0)T

where the 1 is at the j-th position. (Strictly speaking, we should denote it by ej,m
rather than ej, since it depends on m and not just on j; but the m will always be
clear from the context.)

These column vectors e1, e2, . . . , em are called the standard basis vectors of Km×1.

For example, if m = 3, then e1 =

 1
0
0

 and e2 =

 0
1
0

 and e3 =

 0
0
1

.
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Lemma 6.8.7. Let n, m ∈N. Let A ∈ Kn×m be an n×m-matrix.
(a) We have Aej = (the j-th column of A) for all j ∈ {1, 2, . . . , m}.
(b) Consider the map LA defined in Theorem 6.8.4. Then,

LA
(
ej
)
= (the j-th column of A) for all j ∈ {1, 2, . . . , m} .

Proof of Lemma 6.8.7. (a) Let j ∈ {1, 2, . . . , m}. Then, Aej is a column vector in Kn×1.
For each i ∈ {1, 2, . . . , n}, we have(

the i-th entry of the column vector Aej
)

=
(
the (i, 1) -th entry of the matrix Aej

)
=

m

∑
k=1

(the (i, k) -th entry of A) ·
(
the (k, 1) -th entry of ej

)︸ ︷︷ ︸
=

1, if k = j;
0, if k 6= j

(by the definition of ej)

(by the definition of multiplication of matrices)

=
m

∑
k=1

(the (i, k) -th entry of A) ·
{

1, if k = j;
0, if k 6= j

= (the (i, j) -th entry of A) ·
{

1, if j = j;
0, if j 6= j︸ ︷︷ ︸

=1
(since j=j)

+ ∑
k∈{1,2,...,m};

k 6=j

(the (i, k) -th entry of A) ·
{

1, if k = j;
0, if k 6= j︸ ︷︷ ︸

=0
(since k 6=j)

(here, we have split off the addend for k = j from the sum)

= (the (i, j) -th entry of A) + ∑
k∈{1,2,...,m};

k 6=j

(the (i, k) -th entry of A) · 0

︸ ︷︷ ︸
=0

= (the (i, j) -th entry of A) = (the i-th entry of the j-th column of A) .

Hence, Aej = (the j-th column of A). This proves Lemma 6.8.7 (a).
(b) Let j ∈ {1, 2, . . . , m}. The definition of LA yields

LA
(
ej
)
= Aej = (the j-th column of A)

(by Lemma 6.8.7 (a)). This proves Lemma 6.8.7 (b).
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Proposition 6.8.8. Let M and N be two K-modules. Let f : M→ N be a K-linear
map.

(a) We have f (λa + µb) = λ f (a) + µ f (b) for all λ, µ ∈ K and a, b ∈ M.
(b) Let λ1, λ2, . . . , λk ∈ K and a1, a2, . . . , ak ∈ M. Then,

f

(
k

∑
i=1

λiai

)
=

k

∑
i=1

λi f (ai) .

(In words: f “preserves linear combinations”.)

Proof of Proposition 6.8.8. The map f is K-linear, and thus satisfies the axioms (a),
(b) and (c) of Definition 6.8.1. We shall use these axioms in the following.

(a) Let λ, µ ∈ K and a, b ∈ M. Then,

f (λa + µb) = f (λa)︸ ︷︷ ︸
=λ f (a)

(by axiom (c))

+ f (µb)︸ ︷︷ ︸
=µ f (b)

(by axiom (c))

(by axiom (a))

= λ f (a) + µ f (b) .

This proves Proposition 6.8.8 (a).
(b) This is proven by induction on k. The induction base (i.e., the case k = 0)

follows from axiom (b); the induction step uses Proposition 6.8.8 (a) (or axioms (a)
and (c), if you wish). Details are left to the reader.

Proposition 6.8.8 (a) has a converse:

Proposition 6.8.9. Let M and N be two K-modules. Let f : M → N be a map.
Assume that

f (λa + µb) = λ f (a) + µ f (b) for all λ, µ ∈ K and a, b ∈ M. (209)

Then, f is K-linear.

Proof of Proposition 6.8.9. We must prove that the three axioms (a), (b) and (c) of
Definition 6.8.1 are satisfied.

Proof of axiom (a): Let a, b ∈ M. Then, (209) (applied to λ = 1 and µ = 1) yields
f (1a + 1b) = 1 f (a) + 1 f (b). This quickly simplifies to f (a + b) = f (a) + f (b).
Thus, axiom (a) has been verified.

Proof of axiom (b): Applying (209) to λ = 0, µ = 0, a = 0M and b = 0M, we obtain
f (0 · 0M + 0 · 0M) = 0 f (0M)︸ ︷︷ ︸

=0N

+ 0 f (0M)︸ ︷︷ ︸
=0N

= 0N. In view of 0 · 0M + 0 · 0M = 0M, we

can rewrite this as f (0M) = 0N. Thus, axiom (b) has been verified.
Proof of axiom (c): Let λ ∈ K and a ∈ M. Applying (209) to µ = 0 and b = 0M, we

obtain f (λa + 0 · 0M) = λ f (a) + 0 f (0M)︸ ︷︷ ︸
=0N

= λ f (a). In view of λa + 0 · 0M︸ ︷︷ ︸
=0M

= λa +

0M = λa, this rewrites as f (λa) = λ f (a). Thus, axiom (c) has been verified.
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Some authors use the axiom (209) as their definition of what it means for a map
f : M → N between two K-modules M and N to be K-linear. This definition is
equivalent to ours (due to Proposition 6.8.9 and Proposition 6.8.8 (a)).

Lemma 6.8.10. Let m ∈ N, and let N be a K-module. For each j ∈ {1, 2, . . . , m},
we let define a column vector ej ∈ Km×1 as in Definition 6.8.6.

Let f , g : Km×1 → N be two K-linear maps. Assume that f
(
ej
)
= g

(
ej
)

for all
j ∈ {1, 2, . . . , m}. Then, f = g.

Proof of Lemma 6.8.10. Let v ∈ Km×1. Write v as (v1, v2, . . . , vm)
T, where v1, v2, . . . , vm ∈

K. Then,

v = (v1, v2, . . . , vm)
T

=


v1
v2
v3
...

vm

 =


v1
0
0
...
0


︸ ︷︷ ︸

=v1e1

+


0
v2
0
...
0


︸ ︷︷ ︸

=v2e2

+


0
0
v3
...
0


︸ ︷︷ ︸

=v3e3

+ · · ·+


0
0
0
...

vm


︸ ︷︷ ︸
=vmem

(since matrices are added entrywise)

= v1e1 + v2e2 + v3e3 + · · ·+ vmem =
m

∑
i=1

viei.

Hence,

f (v) = f

(
m

∑
i=1

viei

)
=

m

∑
i=1

vi f (ei) (by Proposition 6.8.8 (b))

=
m

∑
j=1

vj f
(
ej
)

(here, we have renamed the summation index i as j)

and similarly g (v) =
m
∑

j=1
vjg
(
ej
)
. Now, the right hand sides of these two equalities

are equal, since we assumed that f
(
ej
)
= g

(
ej
)

for all j ∈ {1, 2, . . . , m}. Hence,
the left hand sides are equal, too. In other words, f (v) = g (v). Since we have
proven this for every v ∈ Km×1, we thus conclude that f = g. This proves Lemma
6.8.10.

We are now ready to prove Proposition 6.8.5:

Proof of Proposition 6.8.5. Let f be a K-module homomorphism from Km×1 to Kn×1.
We must prove that f = LA for a unique A ∈ Kn×m.

For each j ∈ {1, 2, . . . , m}, we let define a column vector ej ∈ Km×1 as in Defini-
tion 6.8.6.
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Now, let F be the n×m-matrix whose columns are the m column vectors
f (e1) , f (e2) , . . . , f (em). We claim that f = LF.

Indeed, both f and LF are K-module homomorphisms from Km×1 to Kn×1.
That is, they are K-linear maps from Km×1 to Kn×1. Furthermore, for each j ∈
{1, 2, . . . , m}, we have

f
(
ej
)
= (the j-th column of F) (by the definition of F)

= LF
(
ej
) (

since Lemma 6.8.7 (b) (applied to A = F)
yields LF

(
ej
)
= (the j-th column of F)

)
.

Hence, Lemma 6.8.10 (applied to N = Kn×1 and g = LF) shows that f = LF. This
shows that f = LA for some A ∈ Kn×m (namely, for A = F).

How to prove that this A is unique? The idea is that A can be reconstructed from
LA, because (the j-th column of A) = LA

(
ej
)

for each j ∈ {1, 2, . . . , m} (by Lemma
6.8.7 (b)).

Definition 6.8.11. Let M and N be two K-modules.
(a) Let Hom (M, N) be the set of all K-module homomorphisms (= linear

maps) from M to N. We shall now turn this set into a K-module.
(b) We define an addition + on Hom (M, N) as follows: If f , g ∈ Hom (M, N),

then f + g ∈ Hom (M, N) is defined by

( f + g) (v) = f (v) + g (v) for all v ∈ M.

(That is, the addition is pointwise. This is well-defined by Proposition 6.8.12 (a)
below.)

(c) We define a scaling · on Hom (M, N) as follows: If λ ∈ K and f ∈
Hom (M, N), then λ f ∈ Hom (M, N) is defined by

(λ f ) (v) = λ · f (v) for all v ∈ M.

(That is, the scaling is pointwise. This is well-defined by Proposition 6.8.12 (b)
below.)

(d) We define a map 0M→N : M→ N by setting

0M→N (v) = 0 for all v ∈ M.

(e) We equip Hom (M, N) with the addition +, the scaling · and the zero vector
0M→N we have just defined. This yields a K-module (by Proposition 6.8.12 (d)
below).

Proposition 6.8.12. (a) The addition + defined in Definition 6.8.11 (b) is well-
defined (i.e., we have f + g ∈ Hom (M, N) for all f , g ∈ Hom (M, N)).

(b) The scaling · defined in Definition 6.8.11 (c) is well-defined (i.e., we have
λ f ∈ Hom (M, N) for all λ ∈ K and f ∈ Hom (M, N)).
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(c) The map 0M→N defined in Definition 6.8.11 (d) belongs to Hom (M, N).
(d) The set Hom (M, N), equipped with the addition +, the scaling · and the

zero vector 0M→N, is a K-module.

Proof of Proposition 6.8.12. (a) Let f , g ∈ Hom (M, N). We must prove that f + g ∈
Hom (M, N). In other words, we must prove that f + g is a K-module homomor-
phism from M to N (by the definition of Hom (M, N)). In other words, we must
prove that the map f + g is K-linear (because a K-module homomorphism is the
same as a K-linear map).

We know two ways of proving that a given map (between two K-modules) is
K-linear: One way is by checking the three axioms in Definition 6.8.1; the other is
through Proposition 6.8.9. Of course, these two ways boil down to the same thing,
but the second one tends to give a shorter proof. So let us go with the second one.

Fix λ, µ ∈ K and a, b ∈ M. We shall prove that ( f + g) (λa + µb) = λ ( f + g) (a)+
µ ( f + g) (b).

We have f ∈ Hom (M, N). In other words, f is a K-module homomorphism from
M to N (by the definition of Hom (M, N)). In other words, the map f : M → N is
K-linear. Thus, Proposition 6.8.8 (a) yields f (λa + µb) = λ f (a) + µ f (b). The same
argument (applied to g instead of f ) yields g (λa + µb) = λg (a) + µg (b). Now, the
definition of f + g yields ( f + g) (a) = f (a) + g (a) and ( f + g) (b) = f (b) + g (b)
and ( f + g) (λa + µb) = f (λa + µb) + g (λa + µb). Hence,

( f + g) (λa + µb) = f (λa + µb)︸ ︷︷ ︸
=λ f (a)+µ f (b)

+ g (λa + µb)︸ ︷︷ ︸
=λg(a)+µg(b)

= λ f (a) + µ f (b) + λg (a)︸ ︷︷ ︸
=λg(a)+µ f (b)
(by axiom (a) in
Definition 6.3.1)

+µg (b)

= λ f (a) + λg (a) + µ f (b) + µg (b) .

Comparing this with

λ ( f + g) (a)︸ ︷︷ ︸
= f (a)+g(a)

+µ ( f + g) (b)︸ ︷︷ ︸
= f (b)+g(b)

= λ ( f (a) + g (a))︸ ︷︷ ︸
=λ f (a)+λg(a)
(by axiom (e) in
Definition 6.3.1)

+ µ ( f (b) + g (b))︸ ︷︷ ︸
=µ f (b)+µg(b)
(by axiom (e) in
Definition 6.3.1)

= λ f (a) + λg (a) + µ f (b) + µg (b) ,

we obtain ( f + g) (λa + µb) = λ ( f + g) (a) + µ ( f + g) (b).
Now, forget that we fixed λ, µ and a, b. We thus have shown that

( f + g) (λa + µb) = λ ( f + g) (a) + µ ( f + g) (b) for all λ, µ ∈ K and a, b ∈ M.

Hence, Proposition 6.8.9 (applied to f + g instead of f ) shows that f + g is K-linear.
As we know, this completes the proof of Proposition 6.8.12 (a).
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(b) The proof of Proposition 6.8.12 (b) is analogous to the above proof of Propo-
sition 6.8.12 (a). The details are left to the reader. (For notational reasons, I rec-
ommend renaming the variable λ as ν in the statement “λ f ∈ Hom (M, N) for all
λ ∈ K and f ∈ Hom (M, N)”, since otherwise the letter “λ” would stand for two
different things.)

(c) The proof of Proposition 6.8.12 (c) is analogous to the above proof of Propo-
sition 6.8.12 (a). Again, the reader can easily fill in the details.

(d) This proof is a series of straightforward verifications: We have to prove that
Hom (M, N) satisfies all the ten module axioms from Definition 6.3.1 (with M re-
placed by Hom (M, N)). I will only show the proof of axiom (e):

[Proof of axiom (e): Let λ ∈ K and a, b ∈ Hom (M, N). We need to prove that
λ (a + b) = λa + λb.

Fix v ∈ M. Then, the definition of the map a+ b yields (a + b) (v) = a (v) + b (v).
Likewise, the definition of the map λa + λb yields

(λa + λb) (v) = (λa) (v)︸ ︷︷ ︸
=λ·a(v)

(by the definition
of the map λa)

+ (λb) (v)︸ ︷︷ ︸
=λ·b(v)

(by the definition
of the map λb)

= λ · a (v) + λ · b (v) .

But the definition of the map λ (a + b) yields

(λ (a + b)) (v) = λ · (a + b) (v)︸ ︷︷ ︸
=a(v)+b(v)

= λ · (a (v) + b (v)) = λ · a (v) + λ · b (v)

(because N is a K-module, and thus satisfies the ten module axioms, in par-
ticular axiom (e)). Comparing these two equalities, we obtain (λ (a + b)) (v) =
(λa + λb) (v).

Now, forget that we fixed v. We thus have proven that (λ (a + b)) (v) = (λa + λb) (v)
for each v ∈ M. In other words, we have λ (a + b) = λa+ λb. Thus, axiom (e) (with
M replaced by Hom (M, N)) is proven.]

The remaining nine module axioms can be proven similarly (and the reader will
have no trouble doing so). Thus, Proposition 6.8.12 (d) follows.

Proposition 6.8.13. Let M, N and P be three K-modules. Let f : M → N and
g : N → P be two K-module homomorphisms. Then, the composition g ◦ f :
M→ P is also a K-module homomorphism.

Proof of Proposition 6.8.13. This is straightforward (and very similar to the proof of
Proposition 5.9.15). We leave the details to the reader.

Note the analogy between Proposition 6.8.13 and Proposition 5.9.15.
We shall follow PEMDAS-style conventions when writing expressions involv-

ing addition and composition of K-linear maps (where we treat composition as a
multiplication-like operation). For example, the expression “ f ◦ h + g ◦ h” (where
f , g, h are three K-linear maps) is to be understood as ( f ◦ h) + (g ◦ h).
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The following rules hold for addition, multiplication and scaling of module ho-
momorphisms (similarly to Theorem 5.8.10):

Theorem 6.8.14. Let N, M, P, Q be K-modules.
(a) We have f + g = g + f for any f , g ∈ Hom (M, N).
(b) We have f + (g + h) = ( f + g) + h for any f , g, h ∈ Hom (M, N).
(c) We have f + 0M→N = 0M→N + f = f for any f ∈ Hom (M, N).
(d) We have f ◦ idM = idN ◦ f = f for any f ∈ Hom (M, N).
(e) In general, we do not have f ◦ g = g ◦ f . In fact, it can happen that one of

f ◦ g and g ◦ f is defined and the other is not; but even if both are defined, they
can be distinct.

(f) We have f ◦ (g ◦ h) = ( f ◦ g) ◦ h for any f ∈ Hom (P, Q), g ∈ Hom (N, P)
and h ∈ Hom (M, N).

(g) We have f ◦ (g + h) = f ◦ g + f ◦ h for any f ∈ Hom (N, P) and g, h ∈
Hom (M, N).

We have ( f + g) ◦ h = f ◦ h + g ◦ h for any f , g ∈ Hom (N, P) and h ∈
Hom (M, N).

(h) We have f ◦ 0P→M = 0P→N and 0N→P ◦ f = 0M→P for any f ∈ Hom (M, N).
(j) We have r ( f + g) = r f + rg for any r ∈ K and f , g ∈ Hom (M, N).
(k) We have (r + s) f = r f + s f for any r, s ∈ K and f ∈ Hom (M, N).
(l) We have r (s f ) = (rs) f for any r, s ∈ K and f ∈ Hom (M, N).
(m) We have r ( f ◦ g) = (r f ) ◦ g = f ◦ (rg) for any r ∈ K and f ∈ Hom (N, P)

and g ∈ Hom (M, N).
(o) We have 1 f = f for any f ∈ Hom (M, N).

(The above list is skipping a few letters since we have not defined subtraction yet;
nevertheless, subtraction exists and satisfies the appropriate rules. See below for
the details.)

Proof of Theorem 6.8.14. Most of these claims are trivial and hold not just for K-
linear maps, but for arbitrary maps. Only the first part of (g), the first part of (h),
and the second equality sign in (m) do not hold for arbitrary maps. So let us prove
the first part of (g) (and leave the rest to the reader):

Let f ∈ Hom (N, P) and g, h ∈ Hom (M, N). We must prove that

f ◦ (g + h) = f ◦ g + f ◦ h.

So let v ∈ M. The map f : N → P is K-linear (because f ∈ Hom (N, P)). The
definition of g + h yields (g + h) (v) = g (v) + h (v). Now, comparing

( f ◦ (g + h)) (v) = f

(g + h) (v)︸ ︷︷ ︸
=g(v)+h(v)

 = f (g (v) + h (v))

= f (g (v)) + f (h (v)) (since f is K-linear)
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with

( f ◦ g + f ◦ h) (v) = ( f ◦ g) (v)︸ ︷︷ ︸
= f (g(v))

+ ( f ◦ h) (v)︸ ︷︷ ︸
= f (h(v))

= f (g (v)) + f (h (v)) ,

we obtain ( f ◦ (g + h)) (v) = ( f ◦ g + f ◦ h) (v). Since we have proven this for all
v ∈ M, we thus conclude that f ◦ (g + h) = f ◦ g + f ◦ h. This finishes the proof of
the first half of (g).

The rest is equally straightforward.

So far, we have not defined a subtraction operation − on Hom (M, N) (where M
and N are two K-modules). But this does not mean that such an operation does
not exist; we simply don’t want to waste our time defining it “manually” when we
can trivially obtain it from general principles. Namely: We know that Hom (M, N)
is a K-module, but Definition 6.6.5 shows that every K-module automatically has
a subtraction operation. Thus, we get a subtraction operation on Hom (M, N) for
free. This subtraction is precisely the pointwise subtraction: i.e., it is given by

( f − g) (v) = f (v)− g (v) (210)
for all f , g ∈ Hom (M, N) and v ∈ M

177.
Proposition 6.6.7 shows that the subtraction operation on Hom (M, N) (for arbi-

trary K-modules M and N) has almost all the properties that one would expect.
The only rule that we do not automatically obtain from these general principles is

− ( f ◦ g) = (− f ) ◦ g = f ◦ (−g) for all f ∈ Hom (N, P) and g ∈ Hom (M, N)

(where M, N and P are three K-modules). But this rule is easily verified by direct
comparison (using (210)).

Corollary 6.8.15. Let M be a K-module. The set Hom (M, M) of all K-linear
maps from M to M (endowed with the addition +, the multiplication ◦, the zero
0M→M and the unity idM) is a ring. This ring is called the endomorphism ring of
M, and is denoted by End M; its elements (i.e., the K-linear maps M → M) are
called the endomorphisms of M.

So the multiplication of the ring End M is composition of maps. This ring End M
is, in general, not commutative.

Note that End M = Hom (M, M) as sets, and the additions of End M and of
Hom (M, M) are the same. But End M is a ring (thus has no scaling), whereas
Hom (M, M) is a K-module (thus has no multiplication).

177Proof of (210): Let f , g ∈ Hom (M, N) and v ∈ M. Then, f − g has the property that f = ( f − g)+ g
(by Proposition 6.6.7 (a)). Applying both sides of this equality to v, we obtain

f (v) = (( f − g) + g) (v) = ( f − g) (v) + g (v) (by the definition of ( f − g) + g) ;

but this yields ( f − g) (v) = f (v)− g (v). This proves (210).
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6.9. K-algebras

There is a notion which combines both the structure of a ring and the structure
of a K-module (so it has both multiplication and scaling); this is the notion of a
K-algebra. It is defined as follows:

Definition 6.9.1. A K-algebra is a set M endowed with two binary operations +
and · (called “addition” and “multiplication”) as well as a scaling map · : K×M→
M (not to be confused with the multiplication map, which is also denoted by ·)
and two elements 0, 1 ∈ M that satisfy all the ring axioms (with K replaced by
M) as well as all the module axioms (where the zero vector 0M is taken to be the
element 0 ∈ M) and also the following axiom:

• Scale-invariance of multiplication: We have λ (ab) = (λa) · b = a · (λb) for
all λ ∈ K and a, b ∈ M. Here, as usual, we omit the “·” sign both for the
multiplication operation · (that is, we write “uv” for “u · v” when u, v ∈ M)
and for the scaling map · (that is, we write “λu” for “λ · u” when λ ∈ K

and u ∈ M).

It seems somewhat confusing that both the multiplication map M×M→ M and
the scaling map K× M → M are denoted by the same symbol ·; but in practice,
this does not cause any trouble, since it is (almost) always clear from the context
which one is being applied (just check if the first argument belongs to M or to K).

So, roughly speaking, a K-algebra is a K-module that is also a ring, with the same
addition and the same zero, and satisfying the “Scale-invariance of multiplication”
axiom. In other words, you get the definition of a K-algebra by throwing the
definitions of a ring and of a K-module together, requiring the two additions + to
be the same map, requiring the zero of the ring to coincide with the zero vector of
the K-module, and requiring the multiplication to be “nice to the scaling” (in the
sense that the “Scale-invariance of multiplication” axiom holds).

Examples of K-algebras include the following:

• The commutative ring K itself is a K-algebra (with both multiplication and
scaling being the usual multiplication · of K).

• If M is any K-module, then the endomorphism ring End M becomes a K-
algebra. (Its multiplication is composition of maps, whereas its scaling is the
scaling on Hom (M, M).)

• The matrix ring Kn×n is a K-algebra for any n ∈N.

• The ring C is an R-algebra.

• The ring R is a Q-algebra.
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• More generally: If a commutative ring K is a subring of a commutative ring
L, then L becomes a K-algebra in a natural way178.

• The polynomial ring K [x] (introduced in Definition 7.4.10) is a K-algebra.

Particularly common are the Z-algebras: In fact, every ring K is a Z-algebra
in a natural way! To see this, we just need to equip every ring K with a scaling
map · : Z×K → K that satisfies the module axioms and the “Scale-invariance of
multiplication” axiom. This is done as follows:

Example 6.9.2. Let K be any ring. Consider the map · : Z×K → K sending
each pair (n, a) ∈ Z ×K to the element na ∈ K defined in Definition 5.4.8.
(This map · is not the multiplication operation of K (unless K = Z), but we still
use the same notation for it, since both of these maps are “multiplications” in
a wide sense.) Then, the set K, equipped with the binary operations + and ·
(the multiplication operation of K), the scaling map · we just defined, and the
elements 0K and 1K is a Z-algebra.

Proof of Example 6.9.2. We must prove that K satisfies the ring axioms, the module
axioms and the “Scale-invariance of multiplication” axiom (but we need to be care-
ful, since the roles of the K and the M in Definition 6.9.1 are now being played by
Z and K). Let us do this:

• The ring axioms are clearly satisfied, since K is a ring.

• The module axioms are satisfied. In fact, the axioms (a), (b), (c) and (d) in
Definition 6.3.1 are satisfied because K is a ring; the axiom (e) follows from
(167); the axiom (f) follows from (166); the axiom (g) follows from (173); the
axiom (h) follows from (169); the axiom (i) follows from (172); the axiom (j)
follows from (171).

• The “Scale-invariance of multiplication” axiom is satisfied, because of (170).

Thus, K is a Z-algebra. This proves Example 6.9.2.

Convention 6.9.3. If M is a K-algebra, then M automatically becomes a ring (by
forgetting the scaling map) and a K-module (by forgetting the multiplication
operation and the unity, and declaring the element 0 to be the zero vector). We
shall automatically treat any K-algebra both as a ring and as a K-module when

178Namely:

– We define the scaling of the K-module L to be the restriction of the multiplication of the ring
L to K×L. (Thus, λ · a = λ · a for all λ ∈ K and a ∈ L, where the “·” sign on the left hand
side stands for scaling and where the “·” sign on the right hand side stands for multiplication.)

– We define the zero vector of L to be the zero of the ring L.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 435

needed: For example, if M and N are two K-algebras, and we speak of a “ring
homomorphism from M to N”, then we mean a ring homomorphism from the
ring M to the ring N, where M and N become rings in the way we just explained.

There is also a notion of a K-subalgebra of a K-algebra, which can be easily
defined as follows:

Definition 6.9.4. Let A and B be two K-algebras. We say that A is a K-subalgebra
(or, for short, subalgebra) of B if and only if it satisfies the following six require-
ments:

• the set A is a subset of B;

• the addition of A is a restriction of the addition of B (that is, we have
a1 +A a2 = a1 +B a2 for all a1, a2 ∈ A);

• the multiplication of A is a restriction of the multiplication of B (that is, we
have a1 ·A a2 = a1 ·B a2 for all a1, a2 ∈ A);

• the zero of A is the zero of B (that is, we have 0A = 0B);

• the unity of A is the unity of B (that is, we have 1A = 1B);

• the scaling of A is a restriction of the scaling of B (that is, we have λ ·A a =
λ ·B a for all λ ∈ K and a ∈ A).

Equivalently, A is a K-subalgebra of B if and only if A is simultaneously a
subring of B and a K-submodule of B. (Here, we are treating K-algebras as
rings and as K-modules, as explained in Convention 6.9.3.)

Similarly, there is a notion of a K-algebra homomorphism:

Definition 6.9.5. Let A and B be two K-algebras. A K-algebra homomorphism from
A to B means a map f : A → B that is simultaneously a ring homomorphism
from A to B and a K-module homomorphism from A to B. (That is, it means a
map f : A → B that respects addition, respects multiplication, respects scaling,
sends 0A to 0B, and sends 1A to 1B.)

Definition 6.9.6. We say that a K-algebra is commutative if the underlying ring
is commutative (i.e., if we have ab = ba for each two elements a and b of this
K-algebra).

The following property of K-algebras is easy to check but quite useful:

Proposition 6.9.7. Let A be a K-algebra. Let k ∈N.
(a) Any λ1, λ2, . . . , λk ∈ K and a1, a2, . . . , ak ∈ A satisfy

(λ1a1) (λ2a2) · · · (λkak) = (λ1λ2 · · · λk) (a1a2 · · · ak) .
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(b) Any λ ∈ K and a ∈ A satisfy (λa)k = λkak.

Proof of Proposition 6.9.7. (a) This can easily be proven by induction on k. (The in-
duction base boils down to the obvious fact that 1A = 1K · 1A. The induction step
uses the identity

(λa) (µb) = (λµ) (ab) for all λ, µ ∈ K and a, b ∈ A;

this identity can be easily proven using “Scale-invariance of multiplication” and
axiom (h) from Definition 6.3.1.)

(b) This is a particular case of Proposition 6.9.7 (a).

6.10. Module isomorphisms

In analogy to Definition 5.10.1, we define:

Definition 6.10.1. Let M and N be two K-modules. Let f : M → N be a map.
Then, f is called a K-module isomorphism if and only if f is invertible (i.e., bijec-
tive) and both f and f−1 are K-module homomorphisms.

Example 6.10.2. Let M be a K-module. The identity map id : M → M is a
K-module isomorphism.

Proof of Example 6.10.2. We already know that the map id : M → M is a K-module
homomorphism. Furthermore, it is invertible, and its inverse id−1 is id itself.
Hence, this inverse id−1 is also a K-module homomorphism (since id is a K-
module homomorphism). Thus, the map id is invertible and both id and id−1

are K-module homomorphisms. In other words, id is a K-module isomorphism
(by Definition 6.10.1). This proves Example 6.10.2.

More generally:

Example 6.10.3. Let M be a K-submodule of a K-module N. Let ι : M → N be
the map that sends each a ∈ M to a itself. (This map is called the inclusion map
from M to N.)

(a) Then, the map ι is a K-module homomorphism.
(b) It is an isomorphism if and only if M = N.

Proof of Example 6.10.3. LTTR.

Proposition 5.10.5 has an analogue for K-module isomorphisms:

Proposition 6.10.4. Let M and N be two K-modules. Let f : M → N be an
invertible K-module homomorphism. Then, f is a K-module isomorphism.

Proof of Proposition 6.10.4. Similar to the proof of Proposition 5.10.5.
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The Chinese Remainder Theorem already brought us an example of a ring iso-
morphism (Example 5.10.7); we can also turn it into an example of a module iso-
morphism:

Example 6.10.5. Let m and n be two coprime positive integers. Then, (Z/m)×
(Z/n) is a Z-module (according to Definition 6.5.3). Theorem 3.6.2 says that the
map

Sm,n : Z/ (mn)→ (Z/m)× (Z/n) ,
α 7→ (πmn,m (α) , πmn,n (α))

is well-defined and is a bijection. This map Sm,n is furthermore a Z-module
isomorphism.

Proof of Example 6.10.5. Similar to the proof of Example 5.10.7.

Definition 6.10.6. Let M and N be two K-modules. We say that the K-modules
M and N are isomorphic if there exists a K-module isomorphism f : M→ N.

We write “M ∼= N (as K-modules)” to say that the K-modules M and N are
isomorphic.

Keep in mind that one and the same symbol can stand both for a ring and for
a K-module. Thus, when saying something like “M ∼= N”, you should clarify
whether you mean “M ∼= N (as rings)” or “M ∼= N (as K-modules)”. For example,
C and R × R are both rings and R-modules179. We do have C ∼= R × R as R-
modules, but we don’t have C ∼= R×R as rings (since C is a field, but R×R is
not a field). So an unqualified statement like “C ∼= R×R” would be dangerous.

Example 6.10.7. Let n, m ∈N. Then, the map

Kn×m → Km×n,

A 7→ AT

is a K-module isomorphism.

Proof of Example 6.10.7. By Proposition 6.10.4, it suffices to prove that this map is

179Indeed:

• The set C becomes an R-module by defining scaling as multiplication (and addition as
addition, and the zero vector as 0), whereas

• the set R×R becomes an R-module according to Definition 6.5.3 (so its scaling is defined
entrywise: that is, λ (u, v) = (λu, λv) for all λ ∈ R and (u, v) ∈ R×R).
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K-linear and invertible. The K-linearity follows from the formulas

(A + B)T = AT + BT;

(0n×m)
T = 0m×n;

(λA)T = λAT,

which hold for arbitrary A, B ∈ Kn×m and λ ∈ K (see [Grinbe15, Exercise 6.5]).
The invertibility follows by constructing its inverse, which is the map

Km×n → Kn×m,

A 7→ AT.

Example 6.10.8. Let n ∈N. Then, the map

Kn×1 → Kn,
a1
a2
...

an

 7→ (a1, a2, . . . , an)

is a K-module isomorphism.

Proof. Easy.

The previous two examples show that

K1×n ∼= Kn×1 ∼= Kn as K-modules.

Example 6.10.9. Let n, m ∈N. Then, we define a map

vec : Kn×m → Knm,(
ai,j
)

1≤i≤n, 1≤j≤m 7→ (a1,1, a1,2, . . . , a1,m, a2,1, a2,2, . . . , a2,m, . . . , an,1, an,2, . . . , an,m) .

For example, if n = 2 and m = 3, then

vec
(

a b c
d e f

)
= (a, b, c, d, e, f ) .

This map vec is called row reading or row vectorization.
This map vec is a K-module isomorphism.

Proof of Example 6.10.9. The map vec is K-linear (since addition and scaling are de-
fined entrywise on both Kn×m and Knm) and invertible. Thus, Proposition 6.10.4
shows that it is a K-module isomorphism.
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Example 6.10.10. Let M be any K-module. Let λ ∈ K. Define the map

Lλ : M→ M,
a 7→ λa.

(This is called “scaling by λ”.) As we know from Example 6.8.3 (b), this map Lλ

is K-linear, i.e., a K-module homomorphism. When is it an isomorphism?
(a) If λ ∈ K is invertible, then Lλ is a K-module isomorphism.
(b) If M = K and Lλ is a K-module isomorphism, then λ is invertible.
(c) If K = Z and M = Z/n for some integer n, then Lλ is a K-module

isomorphism whenever λ ⊥ n.

Proof of Example 6.10.10. (a) If λ ∈ K is invertible, then the map Lλ−1 is inverse to
Lλ. (Actually, we have rules like Lλµ = Lλ ◦ Lµ and Lλ+µ = Lλ + Lµ; see Remark
6.10.11 below.)

(b) LTTR.
(c) Let K = Z and M = Z/n for some integer n. Assume that λ ⊥ n. Then,

λ has a modular inverse µ modulo n. It is now easy to check that the map Lµ is
inverse to Lλ; thus, Lλ is invertible and therefore a K-module isomorphism (since
we already know that Lλ is a K-module homomorphism).

Remark 6.10.11. Fix any K-module M. Then, the map

K→ End M,
λ 7→ Lλ

is a ring homomorphism.

Proof. Straightforward.

We talked for a while about the meaning and use of ring isomorphisms. The
same can be said about K-module isomorphisms. So, in particular, two isomorphic
K-modules can be viewed as being “the same K-module up to renaming its ele-
ments”, and any property of one can be transferred to the other. For example, two
isomorphic K-modules must have the same size; their endomorphism rings must
be isomorphic; etc.

Proposition 6.10.12. Let n, m ∈N. The map

Kn×m → Hom
(

Km×1, Kn×1
)

,

A 7→ LA

(where LA is defined as in Theorem 6.8.4) is a K-module isomorphism.
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Proof of Proposition 6.10.12. This map is K-linear (due to easily proven statements
like LA+B = LA + LB and LλA = λLA) and invertible (since Proposition 6.8.5 shows
that it is bijective).

So Kn×m ∼= Hom
(
Km×1, Kn×1) as K-modules whenever n, m ∈ N. This means

that K-linear maps between Km×1 and Kn×1 are “the same as” n × m-matrices.
This says that the “matrix” way of doing linear algebra can be embedded into the
“K-module” way of doing linear algebra.

Multiplication of matrices is directly connected to composition of linear maps:

Proposition 6.10.13. Let n, m, p ∈ N. Let A ∈ Kn×m and B ∈ Km×p. Then,
LAB = LA ◦ LB.

Proof of Proposition 6.10.13. For any C ∈ Kp×1, we have LAB (C) = (LA ◦ LB) (C)
(this follows by comparing the equalities LAB (C) = (AB)C = ABC and (LA ◦ LB) (C) =
LA (LB (C)) = A (BC) = ABC).

Corollary 6.10.14. Let n ∈N. The map

Kn×n → End
(

Kn×1
)

,

A 7→ LA

(where LA is defined as in Theorem 6.8.4 for m = n) is a ring isomorphism.

Proof of Corollary 6.10.14. This map respects addition (since LA+B = LA + LB for all
A, B ∈ Kn×n) and respects multiplication (by Proposition 6.10.13); furthermore, it
sends the zero matrix 0n×n to the zero map 0 ∈ End

(
Kn×1) (this is easy to see)

and sends the identity matrix In to the identity endomorphism id ∈ End
(
Kn×1)

(this follows from observing that InC = C for each C ∈ Kn×1). Hence, it is a ring
homomorphism. Furthermore, it is invertible180. Thus, it is a ring isomorphism (by
Proposition 5.10.5).

6.11. Linear independence, spans, bases

Now, let us generalize Definition 6.1.4 to arbitrary K-modules (where K is still an
arbitrary commutative ring):

Definition 6.11.1. Let M be a K-module. Let v1, v2, . . . , vk be some vectors in M.
(a) A linear combination of v1, v2, . . . , vk means a vector of the form

λ1v1 + λ2v2 + · · ·+ λkvk, with λ1, λ2, . . . , λk ∈ K. (211)

180The easiest way to see this is to notice that it is the same map as the map from Proposition 6.10.12
(applied to m = n), because End

(
Kn×1) = Hom

(
Kn×1, Kn×1) as sets. Hence, the invertibility

of this map follows from Proposition 6.10.12.
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(b) The span of v1, v2, . . . , vk is defined to be the subset

{λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ K}
= {linear combinations of v1, v2, . . . , vk}

of M. This span is a K-submodule of M. (This is easy to check.)
(c) The vectors v1, v2, . . . , vk are said to be linearly independent if the only k-tuple

(λ1, λ2, . . . , λk) ∈ Kk satisfying λ1v1 + λ2v2 + · · ·+ λkvk = 0 is

0, 0, . . . , 0︸ ︷︷ ︸
k times

.

(d) Let U be a K-submodule of M. We say that v1, v2, . . . , vk form a basis of
U (or, more formally, (v1, v2, . . . , vk) is a basis of U) if and only if the vectors
v1, v2, . . . , vk are linearly independent and their span is U.

(e) Let U be a K-submodule of M. We say that the list (v1, v2, . . . , vk) spans U
if and only if the span of v1, v2, . . . , vk is U. (More informally, instead of saying
“the list (v1, v2, . . . , vk) spans U”, we can say “the vectors v1, v2, . . . , vk span U”;
of course, this is not the same as saying that each of these k vectors on its own
spans U.)

(f) All the terminology we have just introduced depends on K. Whenever
the ring K is not clear from the context, you can insert it into this terminology
to make it unambiguous: e.g., say “K-linear combination” instead of “linear
combination”, and “K-span” instead of “span”.

The following proposition gives an equivalent criterion for a list of vectors to be
a basis of a K-module:

Proposition 6.11.2. Let M be a K-module. Let v1, v2, . . . , vk be some vectors in
M. Then, (v1, v2, . . . , vk) is a basis of M if and only if each vector in M can be
uniquely written in the form (211).181

Proof of Proposition 6.11.2. The following proof is long, but not much is happening
in it (and you may already have seen this argument in a good Linear Algebra class).
=⇒: Assume that (v1, v2, . . . , vk) is a basis of M. We must prove that each vector

in M can be uniquely written in the form (211).
We have assumed that (v1, v2, . . . , vk) is a basis of M. In other words, the vectors

v1, v2, . . . , vk are linearly independent and their span is M (by the definition of
“basis”).

Now, let v ∈ M be any vector. Then, v lies in M. In other words, v lies in the
span of the vectors v1, v2, . . . , vk (since the span of these vectors v1, v2, . . . , vk is M).
In other words,

v ∈ {λ1v1 + λ2v2 + · · ·+ λkvk | λ1, λ2, . . . , λk ∈ K}
181We say that a vector v ∈ M can be uniquely written in the form (211) if there is a unique k-tuple

(λ1, λ2, . . . , λk) ∈ Kk satisfying v = λ1v1 + λ2v2 + · · ·+ λkvk.
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(by the definition of the span). In other words, v can be written in the form (211).
We shall now show that this way of writing v is unique.

Let (α1, α2, . . . , αk) and (β1, β2, . . . , βk) be two k-tuples (λ1, λ2, . . . , λk) ∈ Kk satis-
fying v = λ1v1 +λ2v2 + · · ·+λkvk. We will show that (α1, α2, . . . , αk) = (β1, β2, . . . , βk).

Indeed, (α1, α2, . . . , αk) is a k-tuple (λ1, λ2, . . . , λk) ∈ Kk satisfying v = λ1v1 +
λ2v2 + · · · + λkvk. In other words, (α1, α2, . . . , αk) is a k-tuple of elements of K

such that v = α1v1 + α2v2 + · · · + αkvk. Similarly, (β1, β2, . . . , βk) is a k-tuple of
elements of K such that v = β1v1 + β2v2 + · · ·+ βkvk. Now, multiple uses of the
distributivity law yield

(α1 − β1) v1 + (α2 − β2) v2 + · · ·+ (αk − βk) vk

= (α1v1 − β1v1) + (α2v2 − β2v2) + · · ·+ (αkvk − βkvk)

= (α1v1 + α2v2 + · · ·+ αkvk)︸ ︷︷ ︸
=v

− (β1v1 + β2v2 + · · ·+ βkvk)︸ ︷︷ ︸
=v

= v− v = 0. (212)

But the only k-tuple (λ1, λ2, . . . , λk) ∈ Kk satisfying λ1v1 + λ2v2 + · · ·+ λkvk = 0 is0, 0, . . . , 0︸ ︷︷ ︸
k times

 (since the vectors v1, v2, . . . , vk are linearly independent). Hence, the

k-tuple (α1 − β1, α2 − β2, . . . , αk − βk) ∈ Kk must be

0, 0, . . . , 0︸ ︷︷ ︸
k times

 (since this k-tuple

satisfies (212)). In other words, αi− βi = 0 for each i ∈ {1, 2, . . . , k}. In other words,
αi = βi for each i ∈ {1, 2, . . . , k}. In other words, (α1, α2, . . . , αk) = (β1, β2, . . . , βk).

Now, forget that we fixed (α1, α2, . . . , αk) and (β1, β2, . . . , βk). We thus have
shown that if (α1, α2, . . . , αk) and (β1, β2, . . . , βk) are two k-tuples (λ1, λ2, . . . , λk) ∈
Kk satisfying v = λ1v1 + λ2v2 + · · ·+ λkvk, then (α1, α2, . . . , αk) = (β1, β2, . . . , βk).
In other words, there is at most one such k-tuple. In other words, v can be written
in the form (211) in at most one way. Thus, v can be uniquely written in the form
(211) (because we have previously shown that v can be written in this from). This
proves the “=⇒” direction of Proposition 6.11.2.
⇐=: Assume that each vector in M can be uniquely written in the form (211).

We must prove that (v1, v2, . . . , vk) is a basis of M.
We have assumed that each vector in M can be uniquely written in the form

(211). Thus, in particular, each vector in M can be written in this form. In other
words, for each v ∈ M, there exist λ1, λ2, . . . , λk ∈ K such that v = λ1v1 + λ2v2 +
· · · + λkvk. In other words, each v ∈ M is a linear combination of the vectors
v1, v2, . . . , vk. In other words, each v ∈ M belongs to the span of the vectors
v1, v2, . . . , vk (by the definition of a span). In other words, M is a subset of the
span of the vectors v1, v2, . . . , vk. Hence, the span of the vectors v1, v2, . . . , vk is M
(since this span is clearly a subset of M).

On the other hand, we have assumed that each vector in M can be uniquely
written in the form (211). Thus, if v ∈ M, then v can be uniquely written in this
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form; thus, in particular, any two ways of writing v in this form must be identical.
In other words, if v ∈ M, and if (α1, α2, . . . , αk) and (β1, β2, . . . , βk) are two k-tuples
(λ1, λ2, . . . , λk) ∈ Kk satisfying v = λ1v1 + λ2v2 + · · ·+ λkvk, then

(α1, α2, . . . , αk) = (β1, β2, . . . , βk) . (213)

Now, let us prove that the vectors v1, v2, . . . , vk are linearly independent. Indeed,
let (ρ1, ρ2, . . . , ρk) ∈ Kk be a k-tuple satisfying ρ1v1 + ρ2v2 + · · · + ρkvk = 0. We

shall show that (ρ1, ρ2, . . . , ρk) =

0, 0, . . . , 0︸ ︷︷ ︸
k times

.

We notice that (ρ1, ρ2, . . . , ρk) and

0, 0, . . . , 0︸ ︷︷ ︸
k times

 are two k-tuples (λ1, λ2, . . . , λk) ∈

Kk satisfying 0 = λ1v1 + λ2v2 + · · · + λkvk (since ρ1v1 + ρ2v2 + · · · + ρkvk = 0
and 0v1 + 0v2 + · · ·+ 0vk = 0). Hence, (213) (applied to v = 0, (α1, α2, . . . , αk) =

(ρ1, ρ2, . . . , ρk) and (β1, β2, . . . , βk) =

0, 0, . . . , 0︸ ︷︷ ︸
k times

) yields

(ρ1, ρ2, . . . , ρk) =

0, 0, . . . , 0︸ ︷︷ ︸
k times

 .

Now, forget that we fixed (ρ1, ρ2, . . . , ρk). We thus have shown that if (ρ1, ρ2, . . . , ρk) ∈
Kk is any k-tuple satisfying ρ1v1 + ρ2v2 + · · · + ρkvk = 0, then (ρ1, ρ2, . . . , ρk) =0, 0, . . . , 0︸ ︷︷ ︸

k times

. In other words, the only k-tuple (λ1, λ2, . . . , λk) ∈ Kk satisfying

λ1v1 +λ2v2 + · · ·+λkvk = 0 is

0, 0, . . . , 0︸ ︷︷ ︸
k times

. In other words, the vectors v1, v2, . . . , vk

are linearly independent (by the definition of “linearly independent”).
Now we know that the vectors v1, v2, . . . , vk are linearly independent and their

span is M. In other words, (v1, v2, . . . , vk) is a basis of M (by the definition of
“basis”). This proves the “⇐=” direction of Proposition 6.11.2.

Definition 6.11.3. Let M be a K-module. Then, we say that M is finitely generated
if there exists a k ∈N and k vectors v1, v2, . . . , vk that span M.

Finitely generated K-modules are a generalization of finite-dimensional K-vector
spaces. A classical result from linear algebra says the following:
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Theorem 6.11.4. If K is a field, then every finitely generated K-module (= K-
vector space) has a basis.

Proof. See [ConradD, Theorem 1], for example.182

A version of Theorem 6.11.4 exists for vector spaces that are not finitely gener-
ated; however, stating it would require us to define a more general notion of “basis”
that would allow for infinite bases (and even then, this version would require the
Axiom of Choice).

Theorem 6.11.4 fails horribly when K is not a field. For example, the Z-module
Z/2 has no basis. Indeed, the only Z-linearly independent list of vectors in Z/2 is
the empty list (), since any vector in Z/2 becomes 0 when scaled by the nonzero
integer 2. More generally, if K is not a field, then there is a K-module spanned by
a single vector that has no basis.

Submodules of K1×n fare only somewhat better than arbitrary K-modules in
terms of having bases. It can be shown that every Z-submodule of Z1×n (or, more
generally, of a Z-module that has a basis) must have a basis; thus, Theorem 6.1.5
(a) does hold for K = Z. Theorem 6.1.5 (a) also holds for K = Z [i]. (These facts
are particular cases of [ConradS, Theorem 2.1].) However, Theorem 6.1.5 (a) does
not hold for K = Z

[√
−3
]

or for K = Z/4; in both of these cases, we can find
K-submodules of K itself that have no basis183.

Thus, Theorem 6.1.5 (a) becomes false when K is allowed to be an arbitrary ring.
The same can be said of parts (d) and (e) of Theorem 6.1.5; indeed, they become
false even for K = Z, n = 1 and U = Z1×1. Here are examples of their failure
(where, for the sake of simplicity, we are working not in the Z-module Z1×1, but
in the Z-module Z, which is isomorphic to it):

• The 1-element list (2) of vectors in the Z-module Z (consisting of just the
single vector 2 ∈ Z) is Z-linearly independent (because if λ1 ∈ Z satisfies
λ1 · 2 = 0, then λ1 = 0); but you cannot extend it to a basis of Z (since adding
any further vector to it would break linear independence). Thus, Theorem
6.1.5 (d) fails for K = Z, n = 1 and U = Z1×1.

• The integers 2 and 3 are coprime. Hence, Bezout’s theorem says that 1 is
a Z-linear combination of 2 and 3. (This can be proven more directly: 1 =
1 · 3 + (−1) · 2.) This entails that every integer is a Z-linear combination of 2
and 3. In other words, the span of the 2-element list (2, 3) of vectors in Z is

182Note that in the (otherwise excellent) note [ConradD], Conrad follows the inane convention that
an empty list () cannot be a basis. This forces him to make the unnatural requirement “V 6= {0}”
in [ConradD, Theorem 1]. You should ignore this special treatment (or, rather, non-treatment)
of empty lists when you read the note.

183If K = Z/4, then this is easy: Just take the K-submodule 2K = {[0]4 , [2]4} of K; it has no basis,
since scaling by 2 sends all of its elements to 0.

If K = Z
[√
−3
]
, then the subset

{
a + b

√
−3 | a, b ∈ Z satisfying a ≡ b mod 2

}
of K is a K-

submodule having no basis. This is closely connected to the fact that division with remainder
and unique factorization into primes do not work in the ring Z

[√
−3
]
.
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Z. But neither of these two vectors alone suffices: The span of the 1-element
list (2) is just {multiples of 2}, whereas the span of the 1-element list (3) is
just {multiples of 3}. So the 2-element list (2, 3) spans the Z-module Z, but
cannot be “shrunk” to a basis of Z. Therefore, Theorem 6.1.5 (e) fails for
K = Z, n = 1 and U = Z1×1.

Does Theorem 6.1.5 (b) survive the generalization from fields to commutative
rings? Literally speaking, the answer is “no”. Indeed, if K is the zero ring, then
there is only one K-module (namely, {0}), but it has bases of all sizes (indeed, for
each n ∈ N, the n-element list (0, 0, . . . , 0) is a basis of this K-module). So two
bases of this module can have different sizes.

However, surprisingly, this turns out to be the only counterexample for Theorem
6.1.5 (b)! More precisely, Theorem 6.1.5 (b) holds whenever the ring K has more
than one element. More generally, we have:

Theorem 6.11.5. Let K be a commutative ring with |K| > 1. Let U be a K-
module. Then, any two bases of U have the same size.

This is much harder to prove than the analogue for fields! There is an argument
using determinants.

More generally, Theorem 6.1.5 (c) also holds over commutative rings K such that
|K| > 1.

These results and counterexamples illustrate the fact that K-modules (where K

is a commutative ring) are a much richer structure than just Kn×1’s for n ∈N.

6.12. K-submodules from linear maps

We defined the kernel of a matrix; we can similarly define the kernel of a linear
map, and a slightly more general notion:

Proposition 6.12.1. Let K be a commutative ring. Let M and N be two K-
modules. Let f : M→ N be a K-module homomorphism (i.e., a K-linear map).

(a) The set
{v ∈ M | f (v) = 0}

is a K-submodule of M. This set is called the kernel of f , and is written Ker f (or
ker f ).

(b) Let V be a K-submodule of N. Then, the set

{v ∈ M | f (v) ∈ V}

is a K-submodule of M. This set is called the preimage of V under f , and is written
f−1 (V).

Proof of Proposition 6.12.1. (b) Let us denote the subset {v ∈ M | f (v) ∈ V} of M
by f−1 (V). We must prove that this subset f−1 (V) is a K-submodule of M.
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According to Definition 6.7.5, we can achieve this by proving that this subset
contains 0, is closed under addition and is closed under scaling.

Let us first prove that it contains 0. Indeed, since f is K-linear, we have f (0) =
0 ∈ V (since V is a K-submodule of N). Thus, 0 ∈ f−1 (V) (by the definition of
f−1 (V)). In other words, the subset f−1 (V) contains 0.

Next, let us show that f−1 (V) is closed under addition. Indeed, let a, b ∈
f−1 (V); we must then prove that a + b ∈ f−1 (V).

From a ∈ f−1 (V), we obtain f (a) ∈ V (by the definition of f−1 (V)). Similarly,
f (b) ∈ V. But V is a K-submodule of N and therefore closed under addition;
hence, from f (a) ∈ V and f (b) ∈ V, we conclude that f (a) + f (b) ∈ V. But the
map f is K-linear; thus, f (a + b) = f (a) + f (b) ∈ V. In other words, a + b ∈
f−1 (V) (by the definition of f−1 (V)).

Now, forget that we fixed a, b. We thus have proven that all a, b ∈ f−1 (V) satisfy
a + b ∈ f−1 (V). In other words, the subset f−1 (V) is closed under addition.

A similar argument shows that f−1 (V) is closed under scaling.
Thus, f−1 (V) is a K-submodule of M (according to Definition 6.7.5). This proves

Proposition 6.12.1 (b).
(a) It is easy to see that the one-element set {0N} is a K-submodule of N (since

0N + 0N = 0N and λ · 0N = 0N for each λ ∈ K). Hence, Proposition 6.12.1
(b) (applied to V = {0N}) yields that the set {v ∈ M | f (v) ∈ {0N}} is a K-
submodule of M. But this set is precisely {v ∈ M | f (v) = 0} (since the condition
“ f (v) ∈ {0N}” on a vector v ∈ M is equivalent to “ f (v) = 0”). Hence, we conclude
that {v ∈ M | f (v) = 0} is a K-submodule of M. This proves Proposition 6.12.1
(a).

A second way to construct K-submodules out of linear maps generalizes the
column space of a matrix:

Proposition 6.12.2. Let K be a commutative ring. Let M and N be two K-
modules. Let f : M→ N be a K-module homomorphism (i.e., a K-linear map).

(a) The set f (M) = { f (v) | v ∈ M} is a K-submodule of N. This is called
the image of f .

(b) Let U be a K-submodule of M. Then, the set f (U) = { f (v) | v ∈ U} is a
K-submodule of N. This is called the image of U under f .

Proof of Proposition 6.12.2. This is somewhat similar to the proof of Proposition 6.12.1,
and left to the reader.

How do the kernel and the image of a linear map generalize the kernel and the
column space of a matrix? Again, this comes from the correspondence between
matrices and linear maps:

Remark 6.12.3. Let K be a commutative ring. Let n, m ∈ N. Let A ∈ Kn×m be
an n×m-matrix. Consider the K-linear map LA defined in Theorem 6.8.4. Then:

(a) The kernel of the map LA is the kernel of the matrix A.
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(b) The image of the map LA is the column space of the matrix A.
(Here, we are defining the kernel and the column space of a matrix as we did

in Definition 6.1.12 and Definition 6.1.8, but without requiring K to be a field.)

Proof of Remark 6.12.3. Follows directly from the definitions.

The reader may wonder, after we have stressed certain parallels between rings
and K-modules a few times, whether kernels and images can be defined for ring
homomorphisms in the same way as we have defined them for K-module homo-
morphisms. The answer is “yes”, of course (after all, rings also have a 0, just as
modules do), but the outcome is perhaps somewhat surprising. First, let us show
the analogue of Proposition 6.12.2 for rings:

Proposition 6.12.4. Let K and L be two rings. Let f : K → L be a ring homo-
morphism.

(a) The set f (K) = { f (v) | v ∈ K} is a subring of L. This is called the image
of f .

(b) Let U be a subring of K. Then, the set f (U) = { f (v) | v ∈ U} is a
subring of L. This is called the image of U under f .

Proof of Proposition 6.12.4. This is similar to the proof of Proposition 6.12.2.

Next, we can define the kernel of a ring homomorphism by imitating Proposition
6.12.1; but this kernel will almost never be a subring (as it will almost never contain
1). Instead, it will be a special sort of subset of K: a so-called ideal. Let us define
ideals:

Definition 6.12.5. Let K be a ring. An ideal of K is defined to be a subset I of K

that satisfies the following four conditions:

• The subset I is closed under addition (i.e., we have a + b ∈ I for all a ∈ I
and b ∈ I).

• The subset I contains 0K.

• We have λa ∈ I for all λ ∈ K and a ∈ I.

• We have aλ ∈ I for all λ ∈ K and a ∈ I.

It is easy to see that any ring K is an ideal of itself; furthermore, the 1-element
subset {0K} of K is an ideal of K as well. But there can be many further ideals:

Example 6.12.6. Let K be a commutative ring. Let u ∈ K. Then, the subset

uK := {uz | z ∈ K}
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of K is an ideal of K. Such an ideal is called a principal ideal. Note that {0K}
is a principal ideal (since {0K} = 0K), and K itself is a principal ideal (since
K = 1K).

Let us see what this results in for some specific rings K:

• The principal ideals of the ring Z are the subsets nZ = {nz | z ∈ Z} =
{all multiples of n} with n ∈ Z. For example, 2Z = {all even numbers} is
an ideal of Z. It is not hard to show that all ideals of Z are principal ideals.

• It can also be shown that all ideals of Z [i] are principal ideals. The same
holds for D (the ring of dual numbers), for Z

[√
−2
]

(the ring of “2-
Gaussian integers”), and Q [x] (the ring of polynomials with rational co-
efficients, to be formally defined in Definition 7.4.10 below).

• However, there exist some rings that have non-principal ideals as
well. For example, if K is the ring Z

[√
−3
]
, then the subset{

a + b
√
−3 | a, b ∈ Z satisfying a ≡ b mod 2

}
of K is an ideal but not a

principal ideal. For another example, if K is the ring Z [x] (the ring of
polynomials with integer coefficients, to be formally defined in Definition
7.4.10 below), then the subset of K consisting of all polynomials with even
constant term is an ideal but not a principal ideal.

When K is a commutative ring, the third and fourth conditions in Definition
6.12.5 actually say the same thing (because λa = aλ for all λ ∈ K and a ∈ K). From
this, it is not hard to see the following:

Proposition 6.12.7. Let K be a commutative ring. Then, an ideal of K is the same
thing as a K-submodule of K. (Remember that K itself is a K-module!).

Proof of Proposition 6.12.7. LTTR.

Now, we can state an analogue of Proposition 6.12.1 is the following:

Proposition 6.12.8. Let K and L be two rings. Let f : K → L be a ring homo-
morphism.

(a) The set
{v ∈ K | f (v) = 0}

is an ideal of K. This set is called the kernel of f , and is written Ker f (or ker f ).
(b) Let V be an ideal of L. Then, the set

{v ∈ K | f (v) ∈ V}

is an ideal of K. This set is called the preimage of V under f , and is written
f−1 (V).



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 449

Proof of Proposition 6.12.8. LTTR.

So the kernel of a ring homomorphism is always an ideal. (And conversely, every
ideal can be written as the kernel of a ring homomorphism; this will follow from
Proposition 8.2.6 (g) further below.)

Kernels can also help in checking whether a ring homomorphism or a module
homomorphism is injective. To wit, for ring homomorphisms, the following crite-
rion for injectivity holds:

Proposition 6.12.9. Let K and L be two rings. Let f : K → L be a ring homo-
morphism. Then, f is injective if and only if Ker f = {0K}.

Proof of Proposition 6.12.9. =⇒: Assume that f is injective. We must prove that
Ker f = {0K}.

Recall that f is a ring homomorphism. Thus, f (0) = 0 (by the definition of a
ring homomorphism).

Let a ∈ Ker f . Then, a ∈ Ker f = {v ∈ K | f (v) = 0} (by the definition of
Ker f ). In other words, a ∈ K and f (a) = 0. Comparing this with f (0) = 0, we
obtain f (a) = f (0). Since f is injective, we can thus conclude that a = 0 = 0K ∈
{0K}.

Now, forget that we fixed a. We thus have proven that a ∈ {0K} for each a ∈
Ker f . In other words, Ker f ⊆ {0K}.

On the other hand, f (0K) = f (0) = 0, so that 0K ∈ Ker f (by the definition
of Ker f ), so that {0K} ⊆ Ker f . Combining this with Ker f ⊆ {0K}, we obtain
Ker f = {0K}. This proves the “=⇒” direction of Proposition 6.12.9.
⇐=: Assume that Ker f = {0K}. We must prove that f is injective.
Let a and b be two elements of K satisfying f (a) = f (b). Then, Proposition

5.9.14 (c) yields f (a− b) = f (a)− f (b) = 0 (since f (a) = f (b)). Hence, a− b ∈ K

and f (a− b) = 0. In other words, a− b ∈ Ker f (by the definition of Ker f ). Thus,
a− b ∈ Ker f = {0K}, so that a− b = 0K and thus a = b.

Now, forget that we fixed a and b. We thus have shown that if a and b are two
elements of K satisfying f (a) = f (b), then a = b. In other words, the map f is
injective. This proves the “⇐=” direction of Proposition 6.12.9.

An analogous statement holds for K-module homomorphisms:

Proposition 6.12.10. Let M and N be two K-modules. Let f : M → N be a
K-module homomorphism (i.e., a K-linear map). Then, f is injective if and only
if Ker f = {0M}.

Proof of Proposition 6.12.10. This is proven analogously to Proposition 6.12.9; the
main difference is that instead of applying Proposition 5.9.14 (c), we have to apply
the analogue of Proposition 5.9.14 (c) for K-module homomorphisms (which we
have not stated, but is proven in the same way).
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A curious (and useful) consequence of Proposition 6.12.9 is the following prop-
erty of fields:

Corollary 6.12.11. Let K be a field, and let L be a ring such that L is not trivial
(i.e., we have |L| > 1). Let f : K → L be a ring homomorphism. Then, f is
injective.

Proof of Corollary 6.12.11. Due to Proposition 6.12.9, it suffices to show that Ker f =
{0K}. So let us prove this.

Let a ∈ Ker f . Thus, a ∈ K and f (a) = 0 (by the definition of Ker f ). We are
going to prove that a = 0K.

Indeed, assume the contrary. Thus, a 6= 0K. Hence, the element a of K is
nonzero. But every nonzero element of K is invertible (since K is a field). Hence, a
is invertible (since a is a nonzero element of K). Thus, Proposition 5.9.14 (b) shows
that f (a) ∈ L is also invertible, and that we have f

(
a−1) = ( f (a))−1.

Thus, comparing f (a) · ( f (a))−1 = 1L with f (a)︸︷︷︸
=0

· ( f (a))−1 = 0, we obtain 1L =

0. Hence, each b ∈ L satisfies b = b · 1L︸︷︷︸
=0

= 0 ∈ {0}. Thus, L ⊆ {0}, so that

|L| ≤ |{0}| = 1. This contradicts |L| > 1. This contradiction shows that our
assumption is wrong. Hence, a = 0K is proven. Therefore, a ∈ {0K}.

Now, forget that we fixed a. We thus have shown that a ∈ {0K} for each a ∈
Ker f . In other words, Ker f ⊆ {0K}. From this, we can easily deduce that Ker f =
{0K} (by the same argument that we used in our proof of the “=⇒” direction of
Proposition 6.12.9). Thus, Proposition 6.12.9 shows that f is injective. This proves
Corollary 6.12.11.

7. Polynomials and formal power series

7.1. Motivation

Back in our proof of Theorem 2.17.14, we have used a vague notion of polynomials.
Let us try and formalize this notion. While at that, we shall also try to generalize it
from polynomials with rational coefficients to polynomials with coefficients in an
arbitrary commutative ring.

The most “naive” notion of polynomials is that of a polynomial function:

Definition 7.1.1. Let K be a commutative ring. A function f : K → K is said to
be a polynomial function if there exist some elements a0, a1, . . . , an ∈ K such that
every u ∈ K satisfies

f (u) = a0u0 + a1u1 + · · ·+ anun.
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For example, the function

R→ R, u 7→ 6u3 − 1
2

u +
√

3

is a polynomial function.
Definition 7.1.1 has its uses. In particular, when you are working with real or

complex numbers, it is sufficient for most of what you would want from a poly-
nomial. (This is why numerous authors, particularly with backgrounds in analy-
sis, simply define a polynomial to be a polynomial function.) But when we want
polynomials with coefficients from other rings, this definition starts showing weak-
nesses. In what sense?

Here is an example. In Section 5.6, we constructed a field with 4 elements by
adjoining a j satisfying j2 = j + 1 to Z/2. In other words, we adjoined a root of
“the polynomial x2− x− 1” (whatever this may mean) to Z/2. It would be helpful
to generalize this: How can we adjoin a root of a polynomial to a ring? In particular,
if we can do this with polynomials of higher degree than 2, we may hope to be able
to construct larger finite fields. For example, how do we find a field of size 8 ? We
would hope to get it by adjoining to Z/2 a root of a degree-3 polynomial.

So we need a notion of polynomials over Z/2, and we need there to be infinitely
many of them, ideally at least one of each degree. With polynomial functions, we
cannot get this. In fact, there are only 4 functions from Z/2 to Z/2.

Even for our above construction of a field with 4 elements, polynomial functions
are not suited. In fact, the polynomial function

Z/2→ Z/2, x 7→ x2 − x− 1

is actually just the constant-1 function. So when we adjoined a root of this polyno-
mial, did we just adjoin a root of 1 ? Hardly. (A root of 1 would be a j satisfying
1 = 0; “adjoining” such a thing would yield the zero ring, not a field with 4 ele-
ments.)

The moral of the story for now is that when we adjoin a root of a polynomial
to a field, we certainly are not adjoining a root of a polynomial function. So we
have at least one reason to want a concept of polynomials that is finer than that of
polynomial functions.

Here is another reason: Polynomial functions from K to K can only be applied
to elements of K (because they are defined as functions from K), but we want a
notion of polynomials that can be applied to more general things (such as square
matrices or other polynomials).

For example, in linear algebra, it is extremely useful to apply polynomials to
square matrices. With polynomial functions, this makes no sense: A polynomial
function over R is defined only on R, so how can you apply it to a 2× 2-matrix?
Once again, the discrepancy becomes the most obvious over a finite field: The two
polynomial functions Z/2 → Z/2, x 7→ x2 and Z/2 → Z/2, x 7→ x are identical

(since x2 = x for all x ∈ Z/2); but the matrix A =

(
0 1
0 0

)
∈ (Z/2)2×2 does
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not satisfy A2 = A. So if there was a way to apply these two identical polynomial
functions to A, then we should obtain two different results, which is absurd. Thus,
it makes no sense to apply a polynomial function Z/2 → Z/2 to a square matrix
over Z/2.

Hence, we need a finer definition of a polynomial which doesn’t just remember
its values on the elements of K, but remembers all its coefficients. So we need to
bake the coefficients into the definition.

We already gave a hint of such a definition in Subsection 2.17.3, where we said
that a polynomial (in 1 variable x, with rational coefficients) is an “expression”
(whatever this means) of the form akxk + ak−1xk−1 + · · ·+ a0, where ak, ak−1, . . . , a0
are (fixed) rational numbers and where x is an “indeterminate” (a symbol that itself
does not stand for a number, but we can substitute a number for). This was vague
(what exactly is an “expression”?) but a step in the right direction. We can, of
course, generalize this informal definition to an arbitrary commutative ring K by
replacing “rational numbers” by “elements of K”. But how do we make the notion
of “expression” rigorous?

The idea is to forget (at first) about the specific form of the expression akxk +
ak−1xk−1 + · · ·+ a0 and simply store the coefficients a0, a1, . . . , ak appearing in it in
a list.

For example, let us consider polynomials of degree ≤ 1 over R. These always
have the form a0 + a1x (with a0, a1 ∈ R), so we can simply define them as pairs
(a0, a1) of real numbers a0 and a1. (This is analogous to Definition 4.1.1, where
we defined complex numbers as pairs of real numbers rather than trying to treat
them as “expressions involving i”.) Next, we define an addition operation + on
polynomials of degree ≤ 1 by setting

(a0, a1) + (b0, b1) = (a0 + b0, a1 + b1) ,

which of course imitates the informal computation

(a0 + a1x) + (b0 + b1x) = (a0 + b0) + (a1 + b1) x.

Furthermore, we define a multiplication on these polynomials by setting

(a0, a1) · (b0, b1) = (a0b0, a0b1 + a1b0, a1b1) ,

which imitates the “FOIL” rule

(a0 + a1x) · (b0 + b1x) = a0b0 + (a0b1 + a1b0) x + a1b1x2.

However, this multiplication yields a triple, not a pair, so it is not a binary oper-
ation. So our polynomials of degree ≤ 1 do not form a ring; their multiplication
takes us out of their set.

We can likewise consider polynomials of degree ≤ 2, which can be defined as
triples (a0, a1, a2), but then multiplication yields a 5-tuple rather than a triple.
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More generally: For each n ∈ N, we can define polynomials of degree ≤ n as
(n + 1)-tuples (a0, a1, . . . , an), and define addition and multiplication on them, but
the multiplication will result in (2n + 1)-tuples rather than (n + 1)-tuples.

Hence, if we want to define polynomials in such a way that they form a ring, we
should define them not as pairs or triples or (n + 1)-tuples, but rather as infinite
sequences. In other words, we should define a polynomial as an infinite sequence
(a0, a1, a2, . . .), which will encode the “expression” a0 + a1x + a2x2 + · · · . However,
not every sequence stands for a polynomial; after all, we want polynomials to
be finite expressions, so the sum a0 + a1x + a2x2 + · · · needs to be finite (in the
sense that all but finitely many of its addends are 0) in order for it to qualify
as a polynomial. Thus, our polynomials should be defined as infinite sequences
(a0, a1, a2, . . .) that have only finitely many nonzero entries.

An upside of this strategy is that with such a definition, we get a second object
for free: the formal power series. Those are just going to be all infinite sequences
(a0, a1, a2, . . .), including the ones that have infinitely many nonzero entries. We
will see that the same rules by which we define addition and multiplication of
polynomials can be used to define these operations on formal power series.

7.2. The definition of formal power series and polynomials

Let us now explicitly state the definitions we have been working towards. We shall
only define polynomials (and formal power series) in 1 indeterminate; there is a
version that involves multiple indeterminates, but for now we restrict ourselves to
one.

Convention 7.2.1. For the rest of this chapter, we fix a commutative ring K.

Definition 7.2.2. (a) A formal power series (in 1 indeterminate over K) is defined
to be a sequence (a0, a1, a2, . . .) = (an)n∈N ∈ KN of elements of K.

We abbreviate the words “formal power series” as “FPS”.
We let K [[x]] be the set of all FPSs.
(b) A polynomial (in 1 indeterminate over K) is defined to be an FPS

(a0, a1, a2, . . .) such that

all but finitely many i ∈N satisfy ai = 0

(that is, only finitely many i ∈N satisfy ai 6= 0).
We let K [x] be the set of all polynomials.

So far, our FPSs are just sequences, with no other meaning. We will later see why
they can be viewed as “power series”, what the x in “K [[x]]” means, and why we
can write a sequence (a0, a1, a2, . . .) as a0 + a1x + a2x2 + · · · .

First, let us give two examples to illustrate the above definition:
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Example 7.2.3. In this example, let K = Z.
(a) The sequence (1, 2, 3, 4, 5, . . .) is an FPS, but not a polynomial. We will later

write this FPS as 1 + 2x + 3x2 + 4x3 + 5x4 + · · · .

(b) The sequence

3, 0, 2, 5, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 is a polynomial. We will later write

this polynomial as 3 + 2x2 + 5x3.

Definition 7.2.4. The goal of this definition is to make K [[x]] into a K-algebra.
(a) We define a binary operation + (called addition) on K [[x]] by

(a0, a1, a2, . . .) + (b0, b1, b2, . . .) = (a0 + b0, a1 + b1, a2 + b2, . . .) .

(That is, we define an entrywise addition.)
(b) We define a scaling map · : K×K [[x]]→ K [[x]] by

λ (a0, a1, a2, . . .) = (λa0, λa1, λa2, . . .) .

(That is, we define an entrywise scaling.)
(c) We define a binary operation · (called multiplication) on K [[x]] by

(a0, a1, a2, . . .) · (b0, b1, b2, . . .) = (c0, c1, c2, . . .) ,

where

cn =
n

∑
i=0

aibn−i = ∑
i,j∈N;
i+j=n

aibj = a0bn + a1bn−1 + · · ·+ anb0 for all n ∈N.

(d) For each a ∈ K, we define an FPS a ∈ K [[x]] by

a =

a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 .

This is called a constant FPS.

For example,

(0, 1, 2, 3, 4, . . .) + (1, 1, 1, 1, 1, . . .) = (1, 2, 3, 4, 5, . . .) and
(1, 1, 1, 1, 1, . . .) + (1, 1, 1, 1, 1, . . .) = (2, 2, 2, 2, 2, . . .) and

8 · (1, 1, 1, 1, 1, . . .) = (8, 8, 8, 8, 8, . . .) and
(1, 1, 1, 1, 1, . . .) · (1, 1, 1, 1, 1, . . .) = (1, 2, 3, 4, 5, . . .) and1,−1, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 · (1, 1, 1, 1, 1, . . .) =

1, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = 1. (214)
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Theorem 7.2.5. (a) Equip the set K [[x]] with the addition + defined in Definition
7.2.4 (a), the multiplication · defined in Definition 7.2.4 (c), the scaling · defined
in Definition 7.2.4 (b), the zero 0 and the unity 1. Then, K [[x]] is a K-algebra, a
commutative ring and a K-module.

(b) The subtraction − that comes from the K-algebra structure on K [[x]] is
entrywise; in other words, any two FPSs (a0, a1, a2, . . .) and (b0, b1, b2, . . .) satisfy

(a0, a1, a2, . . .)− (b0, b1, b2, . . .) = (a0 − b0, a1 − b1, a2 − b2, . . .) .

(c) We have

λa = λ · a for each λ ∈ K and a ∈ K [[x]] .

(d) Consider the map

ι : K→ K [[x]] ,
a 7→ a

(sending each element a ∈ K to the corresponding constant FPS a =a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

). This map ι is a K-algebra homomorphism184.

Before we outline a proof of this theorem, let us introduce a helpful notation
(used often in enumerative combinatorics):

Definition 7.2.6. Let n ∈N. Let a = (a0, a1, a2, . . .) ∈ K [[x]]. Then, we define an
element [xn] a ∈ K by

[xn] a = an.

This element [xn] a is called the coefficient of xn in a, or the n-th coefficient of a.
(The letter “x” is so far considered just as a symbolic part of this notation, with
no standalone meaning.)

Be careful with this notation: What you would normally call “the first entry” of
the sequence (a0, a1, a2, . . .) is called its 0-th (not 1-st) coefficient.

Example 7.2.7. We have
[
x0] (1, 2, 3, 4, 5, . . .) = 1 and

[
x3] (1, 2, 3, 4, 5, . . .) = 4.

Definition 7.2.6 has a tautological consequence: Each FPS a satisfies

a =
([

x0
]

a,
[

x1
]

a,
[

x2
]

a, . . .
)

. (215)

184Recall that the notion of a K-algebra homomorphism was introduced in Definition 6.9.5; it means
“map that is a ring homomorphism and a K-module homomorphism at the same time”.
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Thus, an FPS a is uniquely determined by its coefficients
[
x0] a,

[
x1] a,

[
x2] a, . . ..

Hence, if two FPSs a and b satisfy [xn] a = [xn] b for all n ∈N, then a = b.
The definition of the sum of two FPSs (Definition 7.2.4 (a)) rewrites as follows:

[xn] (a + b) = [xn] a + [xn] b for all a, b ∈ K [[x]] and n ∈N. (216)

(Here, the expression “[xn] a + [xn] b” should be read as “([xn] a) + ([xn] b)”.) Fur-
thermore, the definition of scaling on FPSs (Definition 7.2.4 (b)) rewrites as follows:

[xn] (λa) = λ · [xn] a for all λ ∈ K and a ∈ K [[x]] and n ∈N. (217)

Moreover, the definition of the product of two FPSs (Definition 7.2.4 (c)) rewrites
as follows:

[xn] (ab) =
n

∑
i=0

([
xi
]

a
)
·
([

xn−i
]

b
)

(218)

= ∑
i,j∈N;
i+j=n

([
xi
]

a
)
·
([

xj
]

b
)

(219)

=
([

x0
]

a
)
· ([xn] b) +

([
x1
]

a
)
·
([

xn−1
]

b
)
+ · · ·+ ([xn] a) ·

([
x0
]

b
)

for all a, b ∈ K [[x]] and n ∈N.

Thus, any a, b ∈ K [[x]] and n ∈N satisfy

[xn] (ab) =
n

∑
i=0

([
xi
]

a
)
·
([

xn−i
]

b
)

=
n

∑
j=0

([
xn−j

]
a
)
·
([

xj
]

b
)

(220)

(here, we have substituted n − j for i in the sum). Applying (218) to n = 0, we
conclude that[

x0
]
(ab) =

0

∑
i=0

([
xi
]

a
)
·
([

x0−i
]

b
)
=
([

x0
]

a
)
·
([

x0−0
]

b
)

=
([

x0
]

a
)
·
([

x0
]

b
)

(221)

for all a, b ∈ K [[x]]. (But of course, [xn] (ab) is not generally equal to ([xn] a) ·
([xn] b) when n > 0.)

Finally, using the Iverson bracket notation (introduced in Exercise 2.17.2), we can
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rewrite the definition of the constant FPSs a (Definition 7.2.4 (d)) as follows:

[xn] (a) =

{
a, if n = 0;
0, if n 6= 0

(222)

=

{
1, if n = 0;
0, if n 6= 0︸ ︷︷ ︸

=[n=0]

·a

= [n = 0] · a for all a ∈ K and n ∈N. (223)

We are now ready to prove Theorem 7.2.5:

Proof of Theorem 7.2.5. (c) Let λ ∈ K and a ∈ K [[x]]. We must prove that λa = λ · a.
Recall that λ = (λ, 0, 0, 0, 0, . . .), where all entries beyond the first one are zeroes.

In other words, [
x0
]

λ = λ,

and
[xn] λ = 0 for each positive integer n. (224)

Now, let n ∈N. Then, (218) (applied to λ and a instead of a and b) yields

[xn] (λ · a) =
n

∑
i=0

([
xi
]

λ
)
·
([

xn−i
]

a
)

=
([

x0
]

λ
)

︸ ︷︷ ︸
=λ

·
([

xn−0
]

a
)

︸ ︷︷ ︸
=[xn]a

+
n

∑
i=1

([
xi
]

λ
)

︸ ︷︷ ︸
=0

(by (224),
applied to i instead of n)

·
([

xn−i
]

a
)

(here, we have split off the addend for i = 0 from the sum)

= λ · [xn] a +
n

∑
i=1

0 ·
([

xn−i
]

a
)

︸ ︷︷ ︸
=0

= λ · [xn] a = [xn] (λa) (by (217)) .

Since we have proven this for each n ∈N, we conclude that λ · a = λa. This proves
Theorem 7.2.5 (c).

(a) We need to verify:

• the ring axioms,

• the module axioms,

• the “Scale-invariance of multiplication” axiom from Definition 6.9.1;

• the “Commutativity of multiplication” axiom.
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Most of these verifications are easy and straightforward.185 Let us only check
associativity of multiplication (since this is the hardest one):

Let a, b, c ∈ K [[x]]. We must prove that a (bc) = (ab) c. In order to do so, we
shall prove that [xn] (a (bc)) = [xn] ((ab) c) for each n ∈ N. (This is sufficient,
because an FPS is uniquely determined by its coefficients.)

Let n ∈N. Consider the two equalities

[xn] (a (bc)) =
n

∑
i=0

([
xi
]

a
)
·

([
xn−i

]
(bc)

)
︸ ︷︷ ︸

=
n−i
∑

j=0
([xn−i−j]b)·([xj]c)

(by (220), applied to n−j, b and c
instead of n, a and b)

(by (218), applied to bc instead of b)

=
n

∑
i=0

([
xi
]

a
)
·

n−i

∑
j=0

([
xn−i−j

]
b
)
·
([

xj
]

c
)

=
n

∑
i=0

n−i

∑
j=0

([
xi
]

a
)
·
([

xn−i−j
]

b
)
·
([

xj
]

c
)

and

[xn] ((ab) c) =
n

∑
j=0

([
xn−j

]
(ab)

)
︸ ︷︷ ︸

=
n−j
∑

i=0
([xi]a)·([xn−j−i]b)

(by (218), applied to n−j
instead of n)

·
([

xj
]

c
)

(by (220), applied to ab and c instead of a and b)

=
n

∑
j=0

n−j

∑
i=0

([
xi
]

a
)
·
([

xn−j−i
]

b
)
·
([

xj
]

c
)

.

The right hand sides of these two equalities are equal, since we have the following
equality of summation signs:

n

∑
i=0

n−i

∑
j=0

= ∑
i,j∈N;
i+j≤n

=
n

∑
j=0

n−j

∑
i=0

(225)

186 (and since we have n − i − j = n − j − i for all i, j ∈ N). Thus, the left hand
sides of these two equalities are equal as well. In other words, [xn] (a (bc)) =
[xn] ((ab) c).

185Theorem 7.2.5 (c) helps in proving the “Annihilation” and “neutrality of one” axioms.
186An “equality of summation signs” is a statement of the form “A = B”, where A and B are

“summation operators” (i.e., summation signs or compositions of several summation signs). It
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Forget that we fixed n. Thus, we have shown that [xn] (a (bc)) = [xn] ((ab) c) for
each n ∈N. In other words, a (bc) = (ab) c.

Thus, associativity of multiplication is proven for K [[x]]. All the remaining ax-
ioms to be proven are easier but follow from similar reasoning. The “Existence of
additive inverses” axiom follows by recognizing (−a0,−a1,−a2, . . .) as the additive
inverse of the FPS (a0, a1, a2, . . .). Thus, Theorem 7.2.5 (a) is proven.

(b) This follows easily from the fact (noticed in the proof of part (a)) that
(−a0,−a1,−a2, . . .) is the additive inverse of any FPS (a0, a1, a2, . . .).

(d) We need to prove that

a + b = a + b and a · b = ab for all a, b ∈ K,

that λa = λa for all λ ∈ K and a ∈ K, and that 0 = 0K[[x]] and 1 = 1K[[x]]. Most of
these claims follow easily from the definitions. The a · b = ab claim follows easily
from Theorem 7.2.5 (c) (applied to λ = a and a = b).

Convention 7.2.8. From now on, we shall identify each a ∈ K with the FPS
a = (a, 0, 0, 0, . . .) ∈ K [[x]].

This identification is harmless, due to Theorem 7.2.5 (d) and to the fact that the
map

ι : K→ K [[x]] ,
a 7→ a

has to be understood as claiming that the summation signs A and B have “the same effect” (i.e.,
whatever family of elements of K you apply them to, you will get the same result by applying
A as you will get by applying B). For instance, the equality (225) is claiming that if ai,j is an
element of K for each pair (i, j) ∈N2 satisfying i + j ≤ n, then

n

∑
i=0

n−i

∑
j=0

ai,j = ∑
i,j∈N;
i+j≤n

ai,j =
n

∑
j=0

n−j

∑
i=0

ai,j.

(And this is fairly easy to prove: The first equality sign follows from

∑
i,j∈N;
i+j≤n

ai,j = ∑
i∈N

∑
j∈N;

i+j≤n

ai,j =
n

∑
i=0

∑
j∈N;

i+j≤n︸ ︷︷ ︸
=

n−i
∑

j=0

ai,j +
∞

∑
i=n+1

∑
j∈N;

i+j≤n

ai,j

︸ ︷︷ ︸
=(empty sum)

(since there exists no j∈N
satisfying i+j≤n (because i>n))

=
n

∑
i=0

n−i

∑
j=0

ai,j +
∞

∑
i=n+1

(empty sum)︸ ︷︷ ︸
=0

=
n

∑
i=0

n−i

∑
j=0

ai,j +
∞

∑
i=n+1

0︸ ︷︷ ︸
=0

=
n

∑
i=0

n−i

∑
j=0

ai,j.

The second equality sign follows from a similar argument, but with the roles of i and j swapped.)
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is injective (since a =
[
x0] (a) for all a ∈ K). Note that if a ∈ K, then the FPS a

is actually a polynomial (since a = (a, 0, 0, 0, 0, . . .) has at most one nonzero entry),
i.e., belongs to K [x].

The identification we have made in Convention 7.2.8 turns K into a subset of
K [[x]], and more precisely into a K-subalgebra of K [[x]] (by Theorem 7.2.5 (d)).

Theorem 7.2.5 shows that K [[x]] is a K-algebra and a commutative ring, so that
differences, powers, finite sums, and finite products of FPSs are well-defined. But
more can be said. Indeed, sometimes, infinite sums of FPSs make sense. For
example, it is reasonable to write

(1, 1, 1, 1, 1, . . .)
+ (0, 1, 1, 1, 1, . . .)
+ (0, 0, 1, 1, 1, . . .)
+ (0, 0, 0, 1, 1, . . .)
+ (0, 0, 0, 0, 1, . . .)
+ · · ·
= (1, 2, 3, 4, 5, . . .) ,

even though the sum on the left hand side has infinitely many nonzero187 addends!
The addition of K [[x]] is entrywise, so it stands to reason that infinite sums of FPSs
should be defined entrywise as well, and whenever such entrywise sums are well-
defined, it makes sense to call them the sum of the FPSs. Thus, we make the
following definition:

Definition 7.2.9. A (possibly infinite) family (ai)i∈I of FPSs (where I is an arbi-
trary set) is called summable if for each n ∈N, the following requirement holds:

only finitely many i ∈ I satisfy [xn] (ai) 6= 0. (226)

In this case, the sum ∑
i∈I

ai of the family (ai)i∈I is defined as the FPS whose

coefficients are given by

[xn]

(
∑
i∈I

ai

)
= ∑

i∈I
[xn] (ai) for all n ∈N.

(The sum on the right hand side of this equality is well-defined in K, since it is
a sum with only finitely many nonzero addends.)

We notice that the condition (226) is not equivalent to saying “infinitely many
i ∈ I satisfy [xn] (ai) = 0”.

187As usual, “nonzero” means “different from 0K[[x]] = (0, 0, 0, 0, . . .)”.
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Remark 7.2.10. If you work in constructive logic, you should read the condition (226) as
“all but finitely many i ∈ I satisfy [xn] (ai) = 0” (that is, “there exists a finite subset S of
I such that each i ∈ I \ S satisfies [xn] (ai) = 0”).

Proposition 7.2.11. Sums of summable families of FPSs satisfy the usual rules
for summation, as long as all families involved are summable. For example:

• If (ai)i∈I and (bi)i∈I are two summable families of FPSs, then the family
(ai + bi)i∈I is summable as well and its sum is

∑
i∈I

(ai + bi) = ∑
i∈I

ai + ∑
i∈I

bi.

• If (ai)i∈I is a summable family of FPSs, and if J is a subset of I, then the
families (ai)i∈J and (ai)i∈I\J are summable as well and we have

∑
i∈I

ai = ∑
i∈J

ai + ∑
i∈I\J

ai.

• The family (0)i∈I (where 0 stands for the FPS 0K[[x]]) is always summable
(no matter how large I is), and its sum is ∑

i∈I
0 = 0.

• If
(
ai,j
)
(i,j)∈I×J is a summable family of FPSs indexed by pairs (i, j) ∈ I × J,

then
∑
i∈I

∑
j∈J

ai,j = ∑
(i,j)∈I×J

ai,j = ∑
j∈J

∑
i∈I

ai,j. (227)
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Remark 7.2.12. Caveat: The equality (227) implies, in particular, that the sum-
mation signs ∑

i∈I
and ∑

j∈J
can be interchanged. However, the condition that the

family
(
ai,j
)
(i,j)∈I×J is summable is needed for this! If we drop this condition,

and merely require the (weaker!) condition that all the families
(
ai,j
)

j∈J (for each

fixed i),
(
ai,j
)

i∈I (for each fixed j),

(
∑
j∈J

ai,j

)
i∈I

and
(

∑
i∈I

ai,j

)
j∈J

are summable,

then the equality
∑
i∈I

∑
j∈J

ai,j = ∑
j∈J

∑
i∈I

ai,j (228)

may be false. For an example where it is false, consider the family
(
ai,j
)
(i,j)∈I×J

with I = {1, 2, 3, . . .} and J = {1, 2, 3, . . .} and ai,j given by the following table:

ai,j 1 2 3 4 5 · · ·

1 1 −1 · · ·
2 1 −1 · · ·
3 1 −1 · · ·
4 1 −1 · · ·
5 1 · · ·
...

...
...

...
...

... . . .

(where all the entries not shown are 0). Note that the elements of this family
belong to K, and thus can be considered as FPSs via Convention 7.2.8. For
this specific family

(
ai,j
)
(i,j)∈I×J , the equality (228) rewrites as 0 = 1, which is

not a good sign. But this does not contradict the rule (227), since the family(
ai,j
)
(i,j)∈I×J is not summable (it contains infinitely many 1’s).

The upshot of this caveat is that if you want to interchange two summa-
tion signs as in (228), you must check not only that the sums involved are all
well-defined, but also that the sum ∑

(i,j)∈I×J
ai,j is well-defined (i.e., the family(

ai,j
)
(i,j)∈I×J is summable). This is automatically satisfied when the sets I and J

are finite, but in the case of infinite sets can be a serious restriction as we have
just seen.

Proof of Proposition 7.2.11 (sketched). This is boring yet fairly straightforward: Each
of these rules can be derived from the analogous rule for finite sums, once you fix
an n ∈N and look at the xn-coefficients on both sides of the rule.

For example, let us prove the rule (227). Assume that
(
ai,j
)
(i,j)∈I×J is a summable family

of FPSs indexed by pairs (i, j) ∈ I × J. Fix n ∈ N. Then, only finitely many (i, j) ∈ I × J
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satisfy [xn]
(
ai,j
)
6= 0 (since the family

(
ai,j
)
(i,j)∈I×J is summable). In other words, there

exists a finite subset S of I × J such that

all (i, j) ∈ (I × J) \ S satisfy [xn]
(
ai,j
)
= 0. (229)

Consider this S. (Note that S can depend on n.)
Let I′ be the subset {i | (i, j) ∈ S} of I. Let J′ be the subset {j | (i, j) ∈ S} of J. Both of

these subsets I′ and J′ are finite (since S is finite). Moreover, I′ × J′ ⊆ I × J (since I′ ⊆ I
and J′ ⊆ J) and S ⊆ I′ × J′ 188. Thus, if a pair (i, j) ∈ I × J satisfies (i, j) /∈ I′ × J′, then
it must also satisfy (i, j) /∈ S 189 and therefore (i, j) ∈ (I × J) \ S (since (i, j) ∈ I × J and
(i, j) /∈ S) and therefore

[xn]
(
ai,j
)
= 0 (230)

(by (229)).
The sets I′ and J′ are finite. Hence, Fubini’s theorem for finite sums (see, e.g., [Grinbe15,

§1.4.2, “Fubini’s theorem”]) yields

∑
i∈I′

∑
j∈J′

[xn]
(
ai,j
)
= ∑

(i,j)∈I′×J′
[xn]

(
ai,j
)
= ∑

j∈J′
∑
i∈I′

[xn]
(
ai,j
)

. (231)

The sum ∑
(i,j)∈I×J

[xn]
(
ai,j
)

is well-defined (since only finitely many (i, j) ∈ I × J satisfy

[xn]
(
ai,j
)
6= 0). Hence,

∑
(i,j)∈I×J

[xn]
(
ai,j
)
= ∑

(i,j)∈I×J;
(i,j)∈I′×J′︸ ︷︷ ︸
= ∑

(i,j)∈I′×J′

(since I′×J′⊆I×J)

[xn]
(
ai,j
)
+ ∑

(i,j)∈I×J;
(i,j)/∈I′×J′

[xn]
(
ai,j
)︸ ︷︷ ︸

=0
(by (230))

(
since each (i, j) ∈ I × J satisfies either (i, j) ∈ I′ × J′

or (i, j) /∈ I′ × J′ (but never both at the same time)

)
= ∑

(i,j)∈I′×J′
[xn]

(
ai,j
)
+ ∑

(i,j)∈I×J;
(i,j)/∈I′×J′

0

︸ ︷︷ ︸
=0

= ∑
(i,j)∈I′×J′

[xn]
(
ai,j
)

= ∑
i∈I′

∑
j∈J′

[xn]
(
ai,j
)

(232)

(by (231)).

188Proof. Let s ∈ S. Then, s ∈ S ⊆ I × J; thus, we can write s in the form s = (u, v) for some u ∈ I
and v ∈ J. Consider these u and v. We have (u, v) = s ∈ S. Hence, u has the form i for some
(i, j) ∈ S (namely, for (i, j) = (u, v)). Thus, u ∈ {i | (i, j) ∈ S} = I′ (since I′ was defined as
{i | (i, j) ∈ S}). Similarly, v ∈ J′. From u ∈ I′ and v ∈ J′, we obtain (u, v) ∈ I′ × J′. Hence,
s = (u, v) ∈ I′ × J′.

Now, forget that we fixed s. We thus have shown that s ∈ I′ × J′ for each s ∈ S. In other
words, S ⊆ I′ × J′.

189since otherwise, it would satisfy (i, j) ∈ S ⊆ I′ × J′, which would contradict (i, j) /∈ I′ × J′
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Moreover, if i ∈ I, then the sum ∑
j∈J

[xn]
(
ai,j
)

is well-defined and satisfies

∑
j∈J

[xn]
(
ai,j
)
= ∑

j∈J′
[xn]

(
ai,j
)

. (233)

[Proof: Let i ∈ I. If j ∈ J satisfies j /∈ J′, then (i, j) /∈ I′ × J′ (since j /∈ J′) and thus
[xn]

(
ai,j
)
= 0 (by (230)). Thus, all but finitely many j ∈ J satisfy [xn]

(
ai,j
)
= 0 (since all but

finitely many j ∈ J satisfy j /∈ J′ (because the set J′ is finite)). In other words, only finitely
many j ∈ J satisfy [xn]

(
ai,j
)
6= 0. Therefore, the sum ∑

j∈J
[xn]

(
ai,j
)

is well-defined (having

only finitely many nonzero addends). Moreover, each j ∈ J satisfies either j ∈ J′ or j /∈ J′

(but not both at once); thus,

∑
j∈J

[xn]
(
ai,j
)
= ∑

j∈J;
j∈J′︸︷︷︸
= ∑

j∈J′

(since J′⊆J)

[xn]
(
ai,j
)
+ ∑

j∈J;
j/∈J′

[xn]
(
ai,j
)︸ ︷︷ ︸

=0
(by (230) (since j/∈J′

leads to (i,j)/∈I′×J′))

= ∑
j∈J′

[xn]
(
ai,j
)
+ ∑

j∈J;
j/∈J′

0

︸︷︷︸
=0

= ∑
j∈J′

[xn]
(
ai,j
)

.

This proves (233).]
Furthermore, if i ∈ I satisfies i /∈ I′, then

∑
j∈J

[xn]
(
ai,j
)︸ ︷︷ ︸

=0
(by (230) (since i/∈I′

leads to (i,j)/∈I′×J′))

= ∑
j∈J

0 = 0.

Thus, all but finitely many i ∈ I satisfy ∑
j∈J

[xn]
(
ai,j
)
= 0 (since all but finitely many i ∈ I

satisfy i /∈ I′ (because the set I′ is finite)). In other words, only finitely many i ∈ I satisfy
∑
j∈J

[xn]
(
ai,j
)
6= 0. Therefore, the sum ∑

i∈I
∑
j∈J

[xn]
(
ai,j
)

is well-defined (having only finitely

many nonzero addends). Moreover, each i ∈ I satisfies either i ∈ I′ or i /∈ I′ (but not both
at once); thus,

∑
i∈I

∑
j∈J

[xn]
(
ai,j
)
= ∑

i∈I;
i∈I′︸︷︷︸
= ∑

i∈I′
(since I′⊆I)

∑
j∈J

[xn]
(
ai,j
)

︸ ︷︷ ︸
= ∑

j∈J′
[xn](ai,j)

(by (233))

+ ∑
i∈I;
i/∈I′

∑
j∈J

[xn]
(
ai,j
)︸ ︷︷ ︸

=0
(by (230) (since i/∈I′

leads to (i,j)/∈I′×J′))

= ∑
i∈I′

∑
j∈J′

[xn]
(
ai,j
)
+ ∑

i∈I;
i/∈I′

∑
j∈J

0

︸ ︷︷ ︸
=0

= ∑
i∈I′

∑
j∈J′

[xn]
(
ai,j
)

.

Comparing this with (232), we obtain

∑
i∈I

∑
j∈J

[xn]
(
ai,j
)
= ∑

(i,j)∈I×J
[xn]

(
ai,j
)

. (234)
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Now, forget that we fixed n. We thus have proven the equality (234) for each n ∈N. We
have also proven that all the sums appearing in this equality are well-defined (having only
finitely many nonzero addends).

It is now easy to see that for each i ∈ I, the family
(
ai,j
)

j∈J of FPSs is summable190,

and therefore the sum ∑
j∈J

ai,j is well-defined. Moreover, the family

(
∑
j∈J

ai,j

)
i∈I

of FPSs is

summable191. Hence, the sum ∑
i∈I

∑
j∈J

ai,j is well-defined. Finally, recall that the sum of a

summable family of FPSs is defined entrywise; thus, for each n ∈N, we have

[xn]

(
∑
i∈I

∑
j∈J

ai,j

)
= ∑

i∈I
[xn]

(
∑
j∈J

ai,j

)
︸ ︷︷ ︸
= ∑

j∈J
[xn](ai,j)

= ∑
i∈I

∑
j∈J

[xn]
(
ai,j
)
= ∑

(i,j)∈I×J
[xn]

(
ai,j
)

(by (234))

= [xn]

(
∑

(i,j)∈I×J
ai,j

)
.

In other words, each entry of the FPS ∑
i∈I

∑
j∈J

ai,j equals the corresponding entry of the FPS

∑
(i,j)∈I×J

ai,j. Thus, these two FPSs are identical. In other words, ∑
i∈I

∑
j∈J

ai,j = ∑
(i,j)∈I×J

ai,j. This

proves the first equality sign of (227). The second equality sign of (227) is proven similarly
(but with the roles of I and J interchanged).

We shall use standard notations for infinite sums over certain subsets of Z. For
instance, the summation sign “

∞
∑

i=0
” shall mean “ ∑

i∈N

”; more generally, if a ∈ Z, then

the summation sign “
∞
∑

i=a
” shall mean “ ∑

i∈{a,a+1,a+2,...}
”. Also, the summation sign

“ ∑
i>0

” shall mean “
∞
∑

i=1
”, which is the same as “ ∑

i∈{1,2,3,...}
”.

190Proof. Fix i ∈ I. For each n ∈ N, the sum ∑
j∈J

[xn]
(
ai,j
)

has only finitely many nonzero addends

(as we have proven above). In other words, for each n ∈ N, only finitely many j ∈ J satisfy
[xn]

(
ai,j
)
6= 0. In other words, the family

(
ai,j
)

j∈J of FPSs is summable (by the definition of
“summable”).

191Proof. For each n ∈ N, only finitely many i ∈ I satisfy ∑
j∈J

[xn]
(
ai,j
)
6= 0 (as we have proven

above). In other words, for each n ∈N, only finitely many i ∈ I satisfy [xn]

(
∑
j∈J

ai,j

)
6= 0 (since

[xn]

(
∑
j∈J

ai,j

)
= ∑

j∈J
[xn]

(
ai,j
)
). In other words, the family

(
∑
j∈J

ai,j

)
i∈I

of FPSs is summable (by

the definition of “summable”).
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Definition 7.2.13. We let x denote the FPS

0, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

.

Thus, we have [
x1
]

x = 1, and (235)

[xn] x = 0 for all n ∈N satisfying n 6= 1. (236)

In other words, for all n ∈N, we have

[xn] x =

{
1, if n = 1;
0, if n 6= 1

(237)

=

{
1, if n = 1;
0, if n 6= 1︸ ︷︷ ︸

=[n=1]

·1K = [n = 1] · 1K (238)

(using the Iverson bracket notation).

Lemma 7.2.14. Let (a0, a1, a2, . . .) ∈ K [[x]] be an FPS. Then,

x (a0, a1, a2, . . .) = (0, a0, a1, a2, . . .) .

In other words, Lemma 7.2.14 says that multiplying an FPS by x shifts all entries
of the FPS to the right by 1 step, while filling the now-empty 0-th slot with a 0.

Proof of Lemma 7.2.14. We have x =

0, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 and therefore

x (a0, a1, a2, . . .) =

0, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 (a0, a1, a2, . . .) = (0, a0, a1, a2, . . .) ,

where the last equality sign can easily be obtained from the definition of the mul-
tiplication on K [[x]].

Here is a more rigorous way of writing down this argument: Applying (236) to
n = 0, we find

[
x0] x = 0 (since 0 6= 1). Applying (218) to n = 0, a = x and

b = (a0, a1, a2, . . .), we obtain[
x0
]
(x (a0, a1, a2, . . .)) =

0

∑
i=0

([
xi
]

x
)
·
([

x0−i
]
(a0, a1, a2, . . .)

)
=
([

x0
]

x
)

︸ ︷︷ ︸
=0

·
([

x0−0
]
(a0, a1, a2, . . .)

)
= 0.
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In other words, the first entry of the sequence x (a0, a1, a2, . . .) is 0. Moreover, if n is
a positive integer, then (218) (applied to a = x and b = (a0, a1, a2, . . .)) yields

[xn] (x (a0, a1, a2, . . .))

=
n

∑
i=0

([
xi
]

x
)
·

([
xn−i

]
(a0, a1, a2, . . .)

)
︸ ︷︷ ︸

=an−i
(by the definition of [xn−i]a for a∈K[[x]])

=
n

∑
i=0

([
xi
]

x
)
· an−i

=
([

x1
]

x
)

︸ ︷︷ ︸
=1

(by (235))

·an−1 + ∑
i∈{0,1,...,n};

i 6=1

([
xi
]

x
)

︸ ︷︷ ︸
=0

(by (236) (applied
to i instead of n), since i 6=1)

·an−i

(
here, we have split off the addend for i = 1

from the sum, since 1 ∈ {0, 1, . . . , n}

)
= an−1 + ∑

i∈{0,1,...,n};
i 6=1

0 · an−i

︸ ︷︷ ︸
=0

= an−1.

In other words, the entries of the sequence x (a0, a1, a2, . . .) after the first entry are
a0, a1, a2, . . .. Since we already know that the first entry of this sequence is 0, we
thus conclude that

x (a0, a1, a2, . . .) = (0, a0, a1, a2, . . .) .

Thus, Lemma 7.2.14 is proven.

Proposition 7.2.15. For each k ∈N, we have

xk =

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 .

Proof of Proposition 7.2.15. Induction on k. The induction base follows by observing
that x0 = 1K[[x]] = 1 = (1, 0, 0, 0, . . .).

The induction step uses Lemma 7.2.14 and the equality xk = xxk−1 (which holds
for all k > 0).

Proposition 7.2.15 can be restated as follows:

[xn]
(

xk
)
=

{
1, if n = k;
0, if n 6= k

for all n, k ∈N. (239)
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Corollary 7.2.16. Let (a0, a1, a2, . . .) ∈ K [[x]] be any FPS. Then, the family(
akxk)

k∈N
is summable, so that the sum ∑

k∈N

akxk is well-defined. Moreover,

(a0, a1, a2, . . .) = a0 + a1x + a2x2 + a3x3 + · · · = ∑
k∈N

akxk.

Proof of Corollary 7.2.16. For each k ∈N, we have

xk =

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 (by Proposition 7.2.15)

and thus

akxk = ak

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, 1, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes


=

ak · 0, ak · 0, . . . , ak · 0︸ ︷︷ ︸
k times

, ak · 1, ak · 0, ak · 0, ak · 0, ak · 0, . . .︸ ︷︷ ︸
∞ times


=

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, ak, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 (240)

(since ak · 0 = 0 and ak · 1 = ak). Hence, for any k ∈ N and n ∈ N, we have
[xn]

(
akxk) = 0 unless k = n. Thus, for each n ∈ N, only finitely many k ∈ N

satisfy [xn]
(
akxk) 6= 0 (namely, only k = n can satisfy this). In other words, the

family
(
akxk)

k∈N
is summable (by the definition of “summable”). Hence, the sum
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∑
k∈N

akxk is well-defined. Let us now compute this sum:

∑
k∈N

akxk︸︷︷︸
=

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

,ak,0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes


(by (240))

= ∑
k∈N

0, 0, . . . , 0︸ ︷︷ ︸
k zeroes

, ak, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes


= (a0, 0, 0, 0, 0, . . .)
+ (0, a1, 0, 0, 0, . . .)
+ (0, 0, a2, 0, 0, . . .)
+ (0, 0, 0, a3, 0, . . .)
+ · · ·
= (a0, a1, a2, a3, . . .)

(since addition of FPSs is entrywise). Therefore,

(a0, a1, a2, . . .) = ∑
k∈N

akxk = a0x0 + a1x1 + a2x2 + a3x3 + · · ·

= a0 + a1x + a2x2 + a3x3 + · · ·

(since a0 x0︸︷︷︸
=1

= a0 and a1 x1︸︷︷︸
=x

= a1x). Combining these, we conclude that Corol-

lary 7.2.16 holds.

So now we are justified in computing “formally” with FPSs as if they were in-
finite sums of powers of x times scalars, because we have now constructed a ring
with an actual element x in it and we have shown that these infinite sums are well-
defined and just encode the sequences of their coefficients. This is the rigorous
answer to the question “what is an indeterminate in a polynomial or FPS”. This
also explains why we refer to the entries of an FPS (a0, a1, a2, . . .) as its “coeffi-
cients”.

Exercise 7.2.1. Let b ∈ K [[x]] and u, v ∈N. Prove the following:
(a) If u ≥ v, then [xu] (xvb) = [xu−v] b.
(b) If u < v, then [xu] (xvb) = 0.

Solution to Exercise 7.2.1. (a) Assume that u ≥ v. Then, v ≤ u, so that v ∈ {0, 1, . . . , u} (since
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v ∈N). Now, (218) (applied to n = u and a = xv) yields

[xu] (xvb) =
u

∑
i=0

([
xi
]
(xv)

)
︸ ︷︷ ︸

=

1, if i = v;
0, if i 6= v

(by (239), applied to n=i and k=v)

·
([

xu−i
]

b
)
=

u

∑
i=0

{
1, if i = v;
0, if i 6= v

·
([

xu−i
]

b
)

=

{
1, if v = v;
0, if v 6= v︸ ︷︷ ︸

=1
(since v=v)

·
([

xu−v] b
)
+ ∑

i∈{0,1,...,u};
i 6=v

{
1, if i = v;
0, if i 6= v︸ ︷︷ ︸

=0
(since i 6=v)

·
([

xu−i
]

b
)

(
here, we have split off the addend for i = v from the sum,

since v ∈ {0, 1, . . . , u}

)
=
[
xu−v] b + ∑

i∈{0,1,...,u};
i 6=v

0 ·
([

xu−i
]

b
)

︸ ︷︷ ︸
=0

=
[
xu−v] b.

This solves Exercise 7.2.1 (a).
(b) Assume that u < v. Then, each i ∈ {0, 1, . . . , u} satisfies i 6= v (since each i ∈

{0, 1, . . . , u} satisfies i ≤ u < v and thus i 6= v) and therefore{
1, if i = v;
0, if i 6= v

= 0. (241)

Now, (218) (applied to n = u and a = xv) yields

[xu] (xvb) =
u

∑
i=0

([
xi
]
(xv)

)
︸ ︷︷ ︸

=

1, if i = v;
0, if i 6= v

(by (239), applied to n=i and k=v)

·
([

xu−i
]

b
)
=

u

∑
i=0

{
1, if i = v;
0, if i 6= v︸ ︷︷ ︸

=0
(by (241))

·
([

xu−i
]

b
)

=
u

∑
i=0

0 ·
([

xu−i
]

b
)
= 0.

This solves Exercise 7.2.1 (b).

7.3. Inverses in the ring K [[x]]

7.3.1. The invertibility criterion for power series

The equation (214) is not just an example of multiplying two FPSs. It is also an
example of a multiplicative inverse in the ring K [[x]]. Indeed, we can rewrite it as

(1− x) ·
(

1 + x + x2 + x3 + · · ·
)
= 1
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(since

1,−1, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = 1 − x and (1, 1, 1, 1, 1, . . .) = 1 + x + x2 + x3 + · · · ).

Since the ring K [[x]] is commutative, we also have (1− x) ·
(
1 + x + x2 + x3 + · · ·

)
=(

1 + x + x2 + x3 + · · ·
)
· (1− x). Thus,

(1− x) ·
(

1 + x + x2 + x3 + · · ·
)
=
(

1 + x + x2 + x3 + · · ·
)
· (1− x) = 1.

Since 1 is the unity 1K[[x]] of the ring K [[x]], we thus conclude that the FPS 1 + x +

x2 + x3 + · · · is a multiplicative inverse of 1− x. Thus, the FPS 1− x is invertible,
and its multiplicative inverse is

1
1− x

= 1 + x + x2 + x3 + · · · .

This, of course, looks exactly like the well-known geometric series formula from

analysis, which states that
1

1− r
= 1 + r + r2 + r3 + · · · for each real r ∈ (−1, 1).

But keep in mind that our x is an indeterminate over an arbitrary commutative
ring, while the r in the latter formula is a real number between −1 and 1; there are
ways to transfer identities between these two worlds, but they are not a-priori the
same.

Thus we have seen that 1 − x is an invertible FPS. Let us ask a more general
question: When is an FPS invertible? Quite often, as it turns out:

Theorem 7.3.1. Let a ∈ K [[x]]. Then, a is invertible (in the ring K [[x]]) if and
only if the coefficient

[
x0] a is invertible in K.

Proof of Theorem 7.3.1. =⇒: Assume that a is invertible (in the ring K [[x]]). We
must prove that the coefficient

[
x0] a is invertible in K.

The FPS a−1 is well-defined (since a is invertible) and satisfies aa−1 = 1K[[x]] = 1.
But (221) (applied to b = a−1) yields[

x0
] (

aa−1
)
=
([

x0
]

a
)
·
([

x0
] (

a−1
))

.

Hence, ([
x0
]

a
)
·
([

x0
] (

a−1
))

=
[

x0
]aa−1︸︷︷︸

=1

 =
[

x0
]

1 = 1.

Thus, the element
[
x0] (a−1) of K is a multiplicative inverse of

[
x0] a (since K is

commutative, so we only need to check the product in one order). Therefore, the
element

[
x0] a of K has a multiplicative inverse, i.e., is invertible. This proves the

“=⇒” direction of Theorem 7.3.1.
⇐=: Assume that the coefficient

[
x0] a is invertible in K. We must prove that a

is invertible (in the ring K [[x]]).
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Write the FPS a in the form a = (a0, a1, a2, . . .) with a0, a1, a2, . . . ∈ K. Then, the
definition of

[
x0] a yields

[
x0] a = a0. Hence, a0 is invertible in K (since

[
x0] a is

invertible in K). Thus, we can divide elements of K by a0.
Now, we want to find a multiplicative inverse b of a in K [[x]].
Let b = (b0, b1, b2, . . .) ∈ K [[x]]. We want to see when b is a multiplicative

inverse of a.
From a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .), we obtain

ab = (a0, a1, a2, . . .) (b0, b1, b2, . . .)
= (a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a0b3 + a1b2 + a2b1 + a3b0, . . .)

(242)

(by the definition of the product of two FPSs). On the other hand, the definition of
1 yields

1 = (1, 0, 0, 0, 0, . . .) . (243)

Now, by the definition of a multiplicative inverse, we have the following chain of
logical equivalences:

(b is a multiplicative inverse of a)

⇐⇒
(

ab = ba = 1K[[x]]

)
⇐⇒ (ab = ba = 1)

(
since 1K[[x]] = 1

)
⇐⇒ (ab = 1)

(
since ab = ba holds automatically
(because K [[x]] is commutative)

)
⇐⇒ ((a0b0, a0b1 + a1b0, a0b2 + a1b1 + a2b0, a0b3 + a1b2 + a2b1 + a3b0, . . .)

= (1, 0, 0, 0, 0, . . .)) (by (242) and (243))

⇐⇒




a0b0 = 1;
a0b1 + a1b0 = 0;
a0b2 + a1b1 + a2b0 = 0;
a0b3 + a1b2 + a2b1 + a3b0 = 0;
. . . . . . . . . . . .

 . (244)

But if we treat the coefficients b0, b1, b2, . . . as unknowns192, then the statement
a0b0 = 1;
a0b1 + a1b0 = 0;
a0b2 + a1b1 + a2b0 = 0;
a0b3 + a1b2 + a2b1 + a3b0 = 0;
. . . . . . . . . . . .

(245)

is a system of infinitely many linear equations in these unknowns, and this system
can be solved recursively by elimination (thanks to the fact that a0 is invertible!) as
follows:

192while a0, a1, a2, . . ., of course, remain givens
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• First, solve the first equation a0b0 = 1 for b0, thus obtaining a unique value of
b0 (namely, a−1

0 ).

• Next, solve the second equation a0b1 + a1b0 = 0 for b1, thus obtaining a unique
value of b1 (namely, −a−1

0 (a1b0)).

• Next, solve the third equation a0b2 + a1b1 + a2b0 = 0 for b2, thus obtaining a
unique value of b2 (namely, −a−1

0 (a1b1 + a2b0)).

• And so on, obtaining a value for each of b0, b1, b2, . . . eventually.

We thus have found a sequence (b0, b1, b2, . . .) of elements of K satisfying the state-
ment (245). Now, define the FPS b to be this sequence. Then, the statement (245)
holds. In other words, b is a multiplicative inverse of a (because of the equivalence
(244)). Thus, the FPS a has a multiplicative inverse (namely, b). In other words,
a is invertible (in the ring K [[x]]). This proves the “⇐=” direction of Theorem
7.3.1.

7.3.2. Newton’s binomial formula

In Definition 4.1.19, we have defined negative powers (i.e., powers of the form αn

with n being a negative integer) of any nonzero complex number α. All that we
needed from α in that definition was that α has a multiplicative inverse α−1. Thus,
we can straightforwardly extend this definition to any invertible element α of any
ring:

Definition 7.3.2. Let L be a ring. Let α ∈ L be invertible. For any negative n ∈ Z,
we define an element αn ∈ L (called the n-th power of α) by αn =

(
α−1)−n. (This

is well-defined, since
(
α−1)−n is already defined by Definition 5.4.10 (because n

is negative and thus −n ∈N).)

When the ring L is commutative, the powers of its elements satisfy the same
rules as the powers of complex numbers (see Proposition 4.1.20), except that we
have to replace “nonzero” by “invertible” (since negative powers are defined only
for invertible elements of L). For example, if L is a commutative ring, then

(αβ)n = αnβn for all invertible α, β ∈ L and all n ∈ Z.

We can apply this to L = K [[x]] (which is a commutative ring). Recall that the
FPS 1− x is invertible, and its multiplicative inverse is

1
1− x

= 1 + x + x2 + x3 + · · · = ∑
k∈N

xk.

A similar argument shows that the FPS 1 + x is invertible, and its multiplicative
inverse is

1
1 + x

= 1− x + x2 − x3 ± · · · = ∑
k∈N

(−1)k xk.
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Thus, negative powers of 1 + x are well-defined. We can explicitly compute not
just the multiplicative inverse of 1 + x (as we just did), but also all powers of 1 + x.
As far as the nonnegative powers are concerned (that is, (1 + x)u for u ∈ N), this
can easily be done by the binomial formula, and the result can be written either as

u
∑

k=0

(
u
k

)
xk or as the infinite sum ∑

k∈N

(
u
k

)
xk. (The second sum differs from the first

sum only in the presence of addends for k > u; but all these addends are 0, and
thus do not actually affect the sum.) Interestingly, however, the formula

(1 + x)u = ∑
k∈N

(
u
k

)
xk

is also valid for negative integers u – even though there is no binomial formula for
negative exponents any more! This result is called Newton’s (generalized) binomial
theorem for integers; let us state it as follows:

Theorem 7.3.3. (a) The FPS 1 + x is invertible (in K [[x]]). Thus, (1 + x)u is
defined for each u ∈ Z (by Definition 7.3.2).

(b) In the ring K [[x]], we have

(1 + x)u = ∑
k∈N

(
u
k

)
xk for each u ∈ Z.

In particular, the sum ∑
k∈N

(
u
k

)
xk is well-defined (i.e., the family

((
u
k

)
xk
)

k∈N

is summable) for each u ∈ Z.

To prove this, we begin by showing a simple corollary of the binomial formula:

Lemma 7.3.4. Let u ∈N. Let K be any ring, and let a ∈ K. Then,

(1 + a)u = ∑
k∈N

(
u
k

)
ak.

(Here, the sum ∑
k∈N

(
u
k

)
ak is well-defined, since it has only finitely many nonzero

addends.)

Proof of Lemma 7.3.4. For each k ∈ {u + 1, u + 2, u + 3, . . .}, we have k ≥ u + 1 > u
and thus (

u
k

)
= 0 (246)

(by Theorem 2.17.4, applied to n = u). Hence, all of the addends of the sum

∑
k∈N

(
u
k

)
ak with k ≥ u+ 1 are 0. Therefore, this sum has only finitely many nonzero

addends, and thus is well-defined.
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Now, a · 1 = a = 1 · a. Hence, (183) (applied to b = 1 and n = u) yields

(a + 1)u =
u

∑
k=0

(
u
k

)
ak 1u−k︸︷︷︸

=1

=
u

∑
k=0

(
u
k

)
ak.

Thus, 1 + a︸ ︷︷ ︸
=a+1

u

= (a + 1)u =
u

∑
k=0

(
u
k

)
ak.

Comparing this with

∑
k∈N

(
u
k

)
ak =

u

∑
k=0

(
u
k

)
ak +

∞

∑
k=u+1

(
u
k

)
︸︷︷︸
=0

(by (246))

ak =
u

∑
k=0

(
u
k

)
ak +

∞

∑
k=u+1

0ak

︸ ︷︷ ︸
=0

=
u

∑
k=0

(
u
k

)
ak,

we obtain (1 + a)u = ∑
k∈N

(
u
k

)
ak. This proves Lemma 7.3.4.

Lemma 7.3.4 easily implies that Theorem 7.3.3 (b) holds for u ∈ N; but proving
Theorem 7.3.3 (b) for negative integers u requires more work. Here is ours:

Proof of Theorem 7.3.3. Let u ∈ Z. Define Nu to be the FPS((
u
0

)
,
(

u
1

)
,
(

u
2

)
, . . .

)
∈ K [[x]] .

(To be more precise, we mean the FPS
((

u
0

)
· 1K,

(
u
1

)
· 1K,

(
u
2

)
· 1K, . . .

)
, because

the binomial coefficients
(

u
0

)
,
(

u
1

)
,
(

u
2

)
, . . . by themselves are integers, not ele-

ments of K. But we shall abuse notation and drop the “·1K”; thus, if r is any
integer, then we will also denote the corresponding element r · 1K of K by r, as
long as it is clear from the context that we mean an element of K.)

Corollary 7.2.16 (applied to ai =

(
u
i

)
) shows that the family

((
u
k

)
xk
)

k∈N

is

summable, so that the sum ∑
k∈N

(
u
k

)
xk is well-defined, and furthermore

((
u
0

)
,
(

u
1

)
,
(

u
2

)
, . . .

)
=

(
u
0

)
+

(
u
1

)
x +

(
u
2

)
x2 +

(
u
3

)
x3 + · · · = ∑

k∈N

(
u
k

)
xk.

Thus,

Nu =

((
u
0

)
,
(

u
1

)
,
(

u
2

)
, . . .

)
= ∑

k∈N

(
u
k

)
xk. (247)
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Now, forget that we fixed u. Thus, for each u ∈ Z, we have defined an FPS Nu

and showed that it satisfies (247), and, in particular, the sum ∑
k∈N

(
u
k

)
xk is well-

defined (i.e., the family
((

u
k

)
xk
)

k∈N

is summable).

Next, let us prove the following:

Claim 1: We have Nn = (1 + x) Nn−1 for each n ∈ Z.

[Proof of Claim 1: Let n ∈ Z. Then, (247) (applied to u = n− 1) yields Nn−1 =

∑
k∈N

(
n− 1

k

)
xk. Multiplying both sides of this equality with 1 + x, we find

(1 + x) Nn−1 = (1 + x) ∑
k∈N

(
n− 1

k

)
xk

= ∑
k∈N

(
n− 1

k

)
xk + x ∑

k∈N

(
n− 1

k

)
xk. (248)

But

x ∑
k∈N

(
n− 1

k

)
xk = ∑

k∈N

(
n− 1

k

)
xxk =

∞

∑
k=1

(
n− 1
k− 1

)
xxk−1︸ ︷︷ ︸
=xk

(here, we have substituted k− 1 for k in the sum)

=
∞

∑
k=1

(
n− 1
k− 1

)
xk.

Comparing this with

∑
k∈N

(
n− 1
k− 1

)
xk =

(
n− 1
0− 1

)
︸ ︷︷ ︸

=0
(by Definition 2.17.1 (b),

since 0−1=−1/∈N)

x0 +
∞

∑
k=1

(
n− 1
k− 1

)
xk

(here, we have split off the addend for k = 0 from the sum)

=
∞

∑
k=1

(
n− 1
k− 1

)
xk,

we obtain

x ∑
k∈N

(
n− 1

k

)
xk = ∑

k∈N

(
n− 1
k− 1

)
xk.
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Thus, (248) becomes

(1 + x) Nn−1 = ∑
k∈N

(
n− 1

k

)
xk + x ∑

k∈N

(
n− 1

k

)
xk

︸ ︷︷ ︸
= ∑

k∈N

(
n− 1
k− 1

)
xk

= ∑
k∈N

(
n− 1

k

)
xk + ∑

k∈N

(
n− 1
k− 1

)
xk

= ∑
k∈N

((
n− 1

k

)
+

(
n− 1
k− 1

))
︸ ︷︷ ︸

=

(
n
k

)
(by Theorem 2.17.8)

xk = ∑
k∈N

(
n
k

)
xk.

Comparing this with

Nn = ∑
k∈N

(
n
k

)
xk (by (247), applied to u = n) ,

we obtain Nn = (1 + x) Nn−1. This proves Claim 1.]
Also, (247) (applied to u = 0) yields

N0 = ∑
k∈N

(
0
k

)
xk =

(
0
0

)
︸︷︷︸
=1

x0︸︷︷︸
=1K[[x]]

+
∞

∑
k=1

(
0
k

)
︸︷︷︸
=0

(by Theorem 2.17.4
(applied to n=0), since k>0)

xk = 1K[[x]] +
∞

∑
k=1

0xk

︸ ︷︷ ︸
=0

= 1K[[x]].

But Claim 1 (applied to n = 0) yields N0 = (1 + x) N0−1 = (1 + x) N−1. Hence,
(1 + x) N−1 = N0 = 1K[[x]], so that N−1 (1 + x) = (1 + x) N−1 = 1K[[x]]. Thus,
(1 + x) N−1 = N−1 (1 + x) = 1K[[x]]. In other words, the FPS N−1 is a multiplicative
inverse of 1+ x. Hence, the FPS 1+ x has a multiplicative inverse, i.e., is invertible.
This proves Theorem 7.3.3 (a).

Next, we claim the following:

Claim 2: We have (1 + x)−n = N−n for each n ∈N.

[Proof of Claim 2: We shall prove Claim 2 by induction on n:
Induction base: We have (1 + x)−0 = (1 + x)0 = 1K[[x]] = N−0 (since N−0 = N0 =

1K[[x]]). In other words, Claim 2 holds for n = 0. This completes the induction base.
Induction step: Let m ∈N. Assume that Claim 2 holds for n = m. We must prove

that Claim 2 holds for n = m + 1.
We have assumed that Claim 2 holds for n = m. In other words, we have

(1 + x)−m = N−m.
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But Claim 1 (applied to n = −m) yields

N−m = (1 + x) N−m−1 = (1 + x) N−(m+1) = N−(m+1) · (1 + x) .

But − (m + 1) = (−m) + (−1), so that

(1 + x)−(m+1) = (1 + x)(−m)+(−1) = (1 + x)−m︸ ︷︷ ︸
=N−m

=N−(m+1)·(1+x)

· (1 + x)−1

(by the basic rules of exponents)

= N−(m+1) · (1 + x) · (1 + x)−1︸ ︷︷ ︸
=1K[[x]]

= N−(m+1).

In other words, Claim 2 holds for n = m + 1. This completes the induction step.
Thus, Claim 2 is proven by induction.]

(b) Let u ∈ Z. We have already checked that the sum ∑
k∈N

(
u
k

)
xk is well-defined

(i.e., the family
((

u
k

)
xk
)

k∈N

is summable). It remains to prove that (1 + x)u =

∑
k∈N

(
u
k

)
xk.

We are in one of the following two cases:
Case 1: We have u ≥ 0.
Case 2: We have u < 0.
Let us first consider Case 1. In this case, we have u ≥ 0. Thus, u ∈ N. Hence,

Lemma 7.3.4 (applied to K [[x]] and x instead of K and a) yields

(1 + x)u = ∑
k∈N

(
u
k

)
xk.

Thus, Theorem 7.3.3 (b) is proven in Case 1.
Let us now consider Case 2. In this case, we have u < 0. Hence, −u > 0, so that
−u ∈N (since u ∈ Z). Thus, Claim 2 (applied to n = −u) yields

(1 + x)−(−u) = N−(−u) = Nu = ∑
k∈N

(
u
k

)
xk (by (247)) .

In view of − (−u) = u, this rewrites as

(1 + x)u = ∑
k∈N

(
u
k

)
xk.

Thus, Theorem 7.3.3 (b) is proven in Case 2.
We have now proven Theorem 7.3.3 (b) in both Cases 1 and 2. Hence, Theorem

7.3.3 (b) always holds.
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7.4. Polynomials and their degrees

Recall that polynomials have been defined as a special case of FPSs: Namely, a
polynomial is just an FPS with only finitely many nonzero entries (= coefficients).
But polynomials are, in many ways, better behaved than arbitrary FPSs; in particu-
lar, polynomials (unlike FPSs) can be evaluated at elements of K (by plugging these
elements for the “x” in the polynomial), and even at more general things, whereas
FPSs don’t (in general).

We shall now study polynomials in more detail. To that aim, it helps to look a
bit closer and define some smaller classes of polynomials. Namely, we know that
each polynomial has only finitely many nonzero coefficients; we can thus ask what
its last nonzero coefficient is. This leads to the following definition:

Definition 7.4.1. (a) For each n ∈ Z, we define a subset K [x]≤n of K [[x]] by

K [x]≤n = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > n} (249)

=
{

a ∈ K [[x]] |
[

xk
]

a = 0 for all k > n
}

. (250)

(Here, of course, “for all k > n” means “for all k ∈N satisfying k > n”.)
(b) Let a = (a0, a1, a2, . . .) be a polynomial. Then, all but finitely many i ∈ N

satisfy ai = 0 (by the definition of a polynomial); in other words, only finitely
many i ∈ N satisfy ai 6= 0. The degree of a is defined to be the largest i ∈ N

such that ai 6= 0. (If no such i exists, then we define it to be −∞, which is a
symbolic quantity that is understood to be smaller than every integer and to
satisfy (−∞) + m = −∞ for all m.)

The degree of the polynomial a will be denoted deg a.

Example 7.4.2. (a) We have

K [x]≤0 = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > 0}
= {(a0, a1, a2, . . .) ∈ K [[x]] | a1 = a2 = a3 = · · · = 0}

=


a0, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 | a0 ∈ K


=


a, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 | a ∈ K


= {a | a ∈ K}

since

a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = a for each a ∈ K

 .

This is the set of all constant FPSs; these are also known as the constant polynomi-
als. Convention 7.2.8 lets us identify these constant polynomials to the elements
of K; thus, K [x]≤0 simply is K.
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(b) We have

K [x]≤1 = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > 1}
= {(a0, a1, a2, . . .) ∈ K [[x]] | a2 = a3 = a4 = · · · = 0}

=


a0, a1, 0, 0, 0, . . .︸ ︷︷ ︸

zeroes

 | a0, a1 ∈ K


= {a0 + a1x | a0, a1 ∈ K} .

The elements of this set are called the linear polynomials (at least in one sense of
this word).

(c) If n ∈ Z is negative, then

K [x]≤n = {(a0, a1, a2, . . .) ∈ K [[x]] | ak = 0 for all k > n}
= {(a0, a1, a2, . . .) ∈ K [[x]] | a0 = a1 = a2 = · · · = 0}
= {(0, 0, 0, . . .)} = {0} .

(d) The FPS

3, 0, 2, 5, 0, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 is a polynomial of degree 3.

Parts (a) and (b) of Definition 7.4.1 are essentially two different ways to look at
the same thing (viz., at what point the coefficients of a polynomial become 0); the
precise relation is captured by the following lemma:

Lemma 7.4.3. Let n ∈ Z. Let a ∈ K [[x]] be an FPS. Then:
(a) We have the following equivalence:(

a ∈ K [x]≤n
)
⇐⇒

([
xk
]

a = 0 for all k > n
)

.

(b) We have the following equivalence:

(a is a polynomial of degree ≤ n) ⇐⇒
(
a ∈ K [x]≤n

)
.

Note that n is allowed to be negative in Lemma 7.4.3; in this case, Lemma 7.4.3
(b) is simply saying that a is a polynomial of degree −∞ if and only if all its
coefficients a0, a1, a2, . . . are 0 (because the only negative degree that a polynomial
can have is −∞).

Lemma 7.4.3 is an easy consequence of Definition 7.4.1, but the proof grows long
on paper:

Proof of Lemma 7.4.3. (a) This follows directly from (250).
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(b) Write the FPS a in the form a = (a0, a1, a2, . . .). Then, we have the following
equivalence: (

a ∈ K [x]≤n
)
⇐⇒ (ak = 0 for all k > n) (251)

(by (249)).
Now, we shall prove the equivalence

(a is a polynomial of degree ≤ n) ⇐⇒ (ak = 0 for all k > n) . (252)

In order to do so, let us prove the “=⇒” and “⇐=” directions of the equivalence
(252) separately:
=⇒: Assume that a is a polynomial of degree ≤ n. We must prove that

(ak = 0 for all k > n).
If all i ∈N satisfy ai = 0, then this is clearly satisfied. Thus, WLOG assume that

not all i ∈N satisfy ai = 0. Hence, there exists an i ∈N such that ai 6= 0. Moreover,
there exist only finitely many such i (since a is a polynomial). Thus, there exists a
largest such i (since a finite nonempty set of integers always has a largest element).
Let d denote this largest i. Then, d is the degree of a (since this is how the degree
of a was defined). Thus, d ≤ n (since a is a polynomial of degree ≤ n). In other
words, n ≥ d.

But d is the largest i ∈ N such that ai 6= 0. Thus, every larger i ∈ N must satisfy
ai = 0. In other words, we have ai = 0 for all i > d. Hence, ai = 0 for all i > n
(because if i > n, then i > n ≥ d). Renaming the index i as k in this statement,
we obtain (ak = 0 for all k > n). This proves the “=⇒” direction of the equivalence
(252).
⇐=: Assume that (ak = 0 for all k > n). We must prove that a is a polynomial of

degree ≤ n.
If all i ∈ N satisfy ai = 0, then this is clearly satisfied (because in this case, the

degree of a is defined to be −∞, and we have −∞ ≤ n). Thus, WLOG assume that
not all i ∈ N satisfy ai = 0. In other words, there exists some i ∈ N such that
ai 6= 0.

We have assumed that ak = 0 for all k > n. Renaming the index k as i in this
statement, we obtain (ai = 0 for all i > n). Hence, all but finitely many i ∈ N

satisfy ai = 0 (since all but finitely many i ∈ N satisfy i > n). In other words, a is
a polynomial (by the definition of a polynomial).

The set {i ∈N | ai 6= 0} is finite (since all but finitely many i ∈N satisfy ai = 0)
and nonempty (since there exists some i ∈N such that ai 6= 0). Thus, it has a largest
element (since a finite nonempty set of integers always has a largest element). Let
d denote this largest i. Then, d is the degree of a (since this is how the degree of
a was defined). Moreover, d is an i ∈ N satisfying ai 6= 0 (since d belongs to the
set {i ∈N | ai 6= 0}). In other words, d ∈ N and ad 6= 0. If we had d > n, then
we would have ad = 0 (since ak = 0 for all k > n), which would contradict ad 6= 0.
Hence, we cannot have d > n. Thus, we have d ≤ n. In other words, the degree of
a is ≤ n (since d is the degree of a). Thus, a is a polynomial of degree ≤ n. This
proves the “⇐=” direction of the equivalence (252).
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We have now proven both directions of the equivalence (252); thus, this equiva-
lence holds. Now, the equivalence (252) becomes

(a is a polynomial of degree ≤ n) ⇐⇒ (ak = 0 for all k > n) ⇐⇒
(
a ∈ K [x]≤n

)
(by (251)). This proves Lemma 7.4.3 (b).

Remark 7.4.4. If you work in constructive logic, then Lemma 7.4.3 (b) cannot be proven.
In fact, in constructive logic, you cannot prove that each polynomial has a well-defined
degree (since you cannot generally prove that each i ∈N satisfies either ai = 0 or ai 6= 0).
Thus, the notion of “the degree of a polynomial” is not well-behaved in constructive
mathematics. It is also not well-behaved in other ways – e.g., it is not preserved by
ring homomorphisms, and leads to nuisances when K is a trivial ring, as witnessed in
Theorem 7.4.11 (d) below. Thus, I shall avoid this notion wherever I can help it, and
instead use the notion of K [x]≤n (where n ∈ Z). This is a bit less familiar but hopefully
more “philosophically right” (while being essentially equivalent to the notion of degree
under classical logic, because of Lemma 7.4.3 (b)). (The notion of a degree does become
useful again when K is a field, but I will first study a more general setup.)

Corollary 7.2.16 has shown that we can write each FPS as an infinite sum; like-
wise, we can write each polynomial as a finite sum:

Theorem 7.4.5. Let n ∈ Z. Let (a0, a1, a2, . . .) ∈ K [x]≤n. Then,

(a0, a1, a2, . . .) = a0 + a1x + a2x2 + · · ·+ anxn =
n

∑
k=0

akxk.

Note that n is allowed to be negative in Theorem 7.4.5; in this case, the sum
n
∑

k=0
akxk is empty (and thus equals 0K[[x]]), and this should not be surprising (be-

cause in this case, we have (a0, a1, a2, . . .) ∈ K [x]≤n = {0} (by Example 7.4.2 (c)),
so that (a0, a1, a2, . . .) = 0 = (empty sum)).

Proof of Theorem 7.4.5. We have (a0, a1, a2, . . .) ∈ K [x]≤n. Equivalently,

ak = 0 for all k > n (253)

(indeed, this is equivalent to (a0, a1, a2, . . .) ∈ K [x]≤n, because of (249)). Now,
Corollary 7.2.16 yields

(a0, a1, a2, . . .) = ∑
k∈N

akxk =
n

∑
k=0

akxk +
∞

∑
k=n+1

ak︸︷︷︸
=0

(by (253))

xk =
n

∑
k=0

akxk +
∞

∑
k=n+1

0xk

︸ ︷︷ ︸
=0

=
n

∑
k=0

akxk = a0x0 + a1x1 + a2x2 + · · ·+ anxn

= a0 + a1x + a2x2 + · · ·+ anxn
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(since a0 x0︸︷︷︸
=1

= a0 and a1 x1︸︷︷︸
=x

= a1x). This proves Theorem 7.4.5.

Exercise 7.4.1. Let n ∈N. Let a ∈ K [x]≤n. Prove the following:
(a) If [xn] a = 0, then a ∈ K [x]≤n−1.
(b) If [xn] a 6= 0, then deg a = n.
(c) We have deg a = n if and only if [xn] a 6= 0.

Solution to Exercise 7.4.1. Lemma 7.4.3 (a) shows that we have the equivalence(
a ∈ K [x]≤n

)
⇐⇒

([
xk] a = 0 for all k > n

)
. Hence, we have[

xk
]

a = 0 for all k > n (254)

(since we have a ∈ K [x]≤n).
(a) Assume that [xn] a = 0. The equality

[
xk] a = 0 holds for all k > n (by (254)), but

also holds for k = n (since [xn] a = 0). Hence, this equality holds for all k ≥ n. In other
words, it holds for all k > n− 1 (since the k ∈ N satisfying k ≥ n are precisely the k ∈ N

satisfying k > n− 1). Thus, we have proven that
[
xk] a = 0 for all k > n− 1.

But Lemma 7.4.3 (a) (applied to n− 1 instead of n) shows that we have the equivalence(
a ∈ K [x]≤n−1

)
⇐⇒

([
xk] a = 0 for all k > n− 1

)
. Hence, we have a ∈ K [x]≤n−1 (since

we have
[
xk] a = 0 for all k > n− 1). This solves Exercise 7.4.1 (a).

(b) Assume that [xn] a 6= 0. Then, we have [xn] a 6= 0, but
[
xk] a = 0 for all k > n (by

(254)). Hence, n is the largest i ∈N satisfying
[
xi] a 6= 0.

But a =
([

x0] a,
[
x1] a,

[
x2] a, . . .

)
. Hence, the degree of the polynomial a is the largest

i ∈ N satisfying
[
xi] a 6= 0 (because this is how the degree of a was defined). Thus, this

degree is n (since we have shown that n is the largest i ∈ N satisfying
[
xi] a 6= 0). In other

words, deg a = n. This solves Exercise 7.4.1 (b).
(c)⇐=: The “⇐=” direction of Exercise 7.4.1 (c) follows immediately from Exercise 7.4.1

(b).
=⇒: Assume that deg a = n. We must prove that [xn] a 6= 0.
Indeed, assume the contrary. Thus, [xn] a = 0. Hence, Exercise 7.4.1 (a) yields a ∈

K [x]≤n−1. But Lemma 7.4.3 (b) (applied to n− 1 instead of n) yields the equivalence

(a is a polynomial of degree ≤ n− 1) ⇐⇒
(
a ∈ K [x]≤n−1

)
.

Hence, a is a polynomial of degree ≤ n− 1 (since we have a ∈ K [x]≤n−1). Thus, deg a ≤
n− 1 < n. This contradicts deg a = n. This contradiction shows that our assumption was
wrong. Hence, [xn] a 6= 0. This solves the “=⇒” direction of Exercise 7.4.1 (c).

Next, let us prove some basic properties of K [x]≤n:

Lemma 7.4.6. Let n ∈ Z.
(a) We have 0 ∈ K [x]≤n.
(b) If a, b ∈ K [x]≤n, then a + b ∈ K [x]≤n.
(c) If λ ∈ K and a ∈ K [x]≤n, then λa ∈ K [x]≤n.
(d) The subset K [x]≤n of K [[x]] is a K-submodule of K [[x]].
(e) Any finite sum of elements of K [x]≤n belongs to K [x]≤n.
(f) If i ∈N satisfies i ≤ n, then xi ∈ K [x]≤n.
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Proof of Lemma 7.4.6. (b) Let a, b ∈ K [x]≤n.
Lemma 7.4.3 (a) shows that we have the equivalence(

a ∈ K [x]≤n
)
⇐⇒

([
xk
]

a = 0 for all k > n
)

.

Hence, we have [
xk
]

a = 0 for all k > n (255)

(since a ∈ K [x]≤n). Similarly,[
xk
]

b = 0 for all k > n. (256)

Now, for each k ∈N satisfying k > n, we have[
xk
]
(a + b) =

[
xk
]

a︸ ︷︷ ︸
=0

(by (255))

+
[

xk
]

b︸ ︷︷ ︸
=0

(by (256))

(by (216))

= 0 + 0 = 0.

In other words,
[
xk] (a + b) = 0 for all k > n. But Lemma 7.4.3 (a) (applied to a+ b

instead of a) shows that we have the equivalence(
a + b ∈ K [x]≤n

)
⇐⇒

([
xk
]
(a + b) = 0 for all k > n

)
.

Thus, a + b ∈ K [x]≤n (since
[
xk] (a + b) = 0 for all k > n). This proves Lemma

7.4.6 (b).
(a) This is trivial.
(c) This is like Lemma 7.4.6 (b), but easier.
(d) The subset K [x]≤n of K [[x]] contains the zero vector 0 (by Lemma 7.4.6 (a))

and is closed under addition (by Lemma 7.4.6 (b)) and closed under scaling (by
Lemma 7.4.6 (c)). Hence, it is a K-submodule of K [[x]]. This proves Lemma 7.4.6
(d).

(e) This follows from Lemma 7.4.6 (d). (A more down-to-earth way to prove this
is to proceed by induction on the size of the sum; the induction base uses Lemma
7.4.6 (a), while the induction step uses Lemma 7.4.6 (b).)

(f) Let i ∈N be such that i ≤ n. We must prove that xi ∈ K [x]≤n.
Lemma 7.4.3 (a) (applied to a = xi) shows that we have the equivalence(

xi ∈ K [x]≤n

)
⇐⇒

([
xk
] (

xi
)
= 0 for all k > n

)
.

Thus, it remains to show that
[
xk] (xi) = 0 for all k > n. So let us fix a k ∈ N

satisfying k > n. Then, k > n ≥ i (since i ≤ n). Hence, (239) (applied to k and i
instead of n and k) yields

[
xk] (xi) = 0. This is precisely what we wanted to show.

Hence, Lemma 7.4.6 (f) is proven.

Lemma 7.4.6 yields the following converse of Theorem 7.4.5:
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Exercise 7.4.2. Let n ∈ Z. Let a0, a1, . . . , an ∈ K. Prove that
n
∑

k=0
akxk ∈ K [x]≤n.

Solution to Exercise 7.4.2. If k ∈ {0, 1, . . . , n}, then xk ∈ K [x]≤n (by Lemma 7.4.6 (f), applied
to i = k) and therefore akxk ∈ K [x]≤n (by Lemma 7.4.6 (c), applied to λ = ak and a = xk).

Hence,
n
∑

k=0
akxk is a finite sum of elements of K [x]≤n. Because of Lemma 7.4.6 (e), this

entails that
n
∑

k=0
akxk belongs to K [x]≤n. This solves Exercise 7.4.2.

Combining Lemma 7.4.6 with Exercise 7.4.1 (a), we obtain a simple fact: If two
polynomials in K [x]≤n have the same coefficient of xn, then their difference be-
longs to K [x]≤n−1 (since the subtraction “cancels their leading terms”193). This
fact is highly useful in induction proofs (specifically, it helps prove properties of
polynomials by induction on the degree of a polynomial); let us state it as an exer-
cise:

Exercise 7.4.3. Let n ∈ N. Let a, b ∈ K [x]≤n be such that [xn] a = [xn] b. Then,
a− b ∈ K [x]≤n−1.

Solution to Exercise 7.4.3. Lemma 7.4.6 (c) (applied to −1 and b instead of λ and a) shows
that (−1) b ∈ K [x]≤n. Hence, Lemma 7.4.6 (b) (applied to (−1) b instead of b) shows that
a + (−1) b ∈ K [x]≤n. Moreover, (216) (applied to (−1) b instead of b) shows that

[xn] (a + (−1) b) = [xn] a︸ ︷︷ ︸
=[xn]b

+ [xn] ((−1) b)︸ ︷︷ ︸
=(−1)·[xn]b

(by (217), applied to −1 and b
instead of λ and a)

= [xn] b + (−1) · [xn] b = 0.

Hence, Exercise 7.4.1 (a) (applied to a + (−1) b instead of a) yields a + (−1) b ∈ K [x]≤n−1.
In view of

a− b = a + (−b)︸ ︷︷ ︸
=(−1)b

(by (199), applied to M=K[[x]]
and a=b)

= a + (−1) b,

this rewrites as a− b ∈ K [x]≤n−1. This solves Exercise 7.4.3.

Theorem 7.4.7. (a) If u ∈ Z and v ∈ Z satisfy u ≤ v, then K [x]≤u ⊆ K [x]≤v.
(b) If n ∈ Z, then K [x]≤n is a K-submodule of K [x].
(c) If a ∈ K [x], then there exists some n ∈N such that a ∈ K [x]≤n.
(d) If a ∈ K, then a ∈ K [x]≤0.

193I am putting this in quotation marks because I am trying to avoid the notion of “leading term”.
(The leading term of a nonzero polynomial a = a0 + a1x + a2x2 + · · ·+ anxn of degree n is defined
to be anxn. But beware that if a = a0 + a1x + a2x2 + · · ·+ anxn is merely in K [x]≤n, then deg a
may be smaller than n, in which case its leading term is not anxn but rather aixi for i = deg a.
Thus there is a discrepancy between the definition of “leading term” and what we typically want
to say when we use this word.)
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(e) We have x ∈ K [x]≤1.
(f) Let n ∈ N and m ∈ N. Let a ∈ K [x]≤n and b ∈ K [x]≤m. Then, a + b ∈

K [x]≤max{n,m} and ab ∈ K [x]≤n+m.

We shall prove Theorem 7.4.7 in Exercise 7.4.4 below. The hardest part of this
theorem is the claim ab ∈ K [x]≤n+m in its part (f); we can strengthen this part as
follows:

Lemma 7.4.8. Let n, m ∈N. Let a ∈ K [x]≤n and b ∈ K [x]≤m. Then:
(a) We have

[
xn+i] (ab) = ([xn] a) ·

([
xi] b

)
for each integer i ≥ m.

(b) We have ab ∈ K [x]≤n+m.
(c) We have [xn+m] (ab) = ([xn] a) · ([xm] b).

Proof of Lemma 7.4.8. Lemma 7.4.3 (a) shows that we have the equivalence(
a ∈ K [x]≤n

)
⇐⇒

([
xk
]

a = 0 for all k > n
)

.

Hence, we have [
xk
]

a = 0 for all k > n (257)

(since a ∈ K [x]≤n). Similarly,[
xk
]

b = 0 for all k > m. (258)

(a) Let i be an integer such that i ≥ m. Thus, i ≥ m ≥ 0. For each j ∈
{0, 1, . . . , i− 1}, we have j ≤ i − 1 < i and thus n + i − j︸︷︷︸

<i

> n + i − i = n

and thus [
xn+i−j

]
a = 0 (259)

(by (257), applied to k = n + i − j). For each j ∈ {i + 1, i + 2, . . . , n + i}, we have
j ≥ i + 1 > i ≥ m and thus [

xj
]

b = 0 (260)

(by (258), applied to k = j).
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The equality (220) (applied to n + i instead of n) yields[
xn+i

]
(ab) =

n+i

∑
j=0

([
xn+i−j

]
a
)
·
([

xj
]

b
)

=
i

∑
j=0

([
xn+i−j

]
a
)
·
([

xj
]

b
)
+

n+i

∑
j=i+1

([
xn+i−j

]
a
)
·
([

xj
]

b
)

︸ ︷︷ ︸
=0

(by (260))

(since 0 ≤ i ≤ n + i)

=
i

∑
j=0

([
xn+i−j

]
a
)
·
([

xj
]

b
)
+

n+i

∑
j=i+1

([
xn+i−j

]
a
)
· 0︸ ︷︷ ︸

=0

=
i

∑
j=0

([
xn+i−j

]
a
)
·
([

xj
]

b
)

=
i−1

∑
j=0

([
xn+i−j

]
a
)

︸ ︷︷ ︸
=0

(by (259))

·
([

xj
]

b
)
+
([

xn+i−i
]

a
)

︸ ︷︷ ︸
=[xn]a

·
([

xi
]

b
)

(here, we have split off the addend for j = i from the sum)

=
i−1

∑
j=0

0 ·
([

xj
]

b
)

︸ ︷︷ ︸
=0

+ ([xn] a) ·
([

xi
]

b
)
= ([xn] a) ·

([
xi
]

b
)

.

This proves Lemma 7.4.8 (a).
(b) Let k ∈ N be such that k > n + m. Hence, k− n > m ≥ 0, so that k− n ∈ N.

Thus, (258) (applied to k− n instead of k) yields
[
xk−n] b = 0 (since k− n > m).

Again, we have k− n > m; thus, Lemma 7.4.8 (a) (applied to i = k− n) yields[
xn+(k−n)

]
(ab) = ([xn] a) ·

([
xk−n

]
b
)

︸ ︷︷ ︸
=0

= 0.

In other words,
[
xk] (ab) = 0 (since n + (k− n) = k).

Now, forget that we fixed k. Thus we have seen that
[
xk] (ab) = 0 for all k >

n + m.
But Lemma 7.4.3 (a) (applied to n + m and ab instead of n and a) shows that we

have the equivalence(
ab ∈ K [x]≤n+m

)
⇐⇒

([
xk
]
(ab) = 0 for all k > n + m

)
.

Hence, ab ∈ K [x]≤n+m (since
[
xk] (ab) = 0 for all k > n + m). This proves Lemma

7.4.8 (b).
(c) This follows from applying Lemma 7.4.8 (a) to i = m.
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Exercise 7.4.4. Prove Theorem 7.4.7.

Proof of Theorem 7.4.7. (a) Let u ∈ Z and v ∈ Z be such that u ≤ v. Let a ∈ K [x]≤u. We
shall prove that a ∈ K [x]≤v.

We have u ≤ v, thus v ≥ u. Lemma 7.4.3 (a) (applied to n = u) shows that we have the
equivalence (

a ∈ K [x]≤u
)
⇐⇒

([
xk
]

a = 0 for all k > u
)

.

Hence, we have
[
xk] a = 0 for all k > u (since a ∈ K [x]≤u). Therefore,

[
xk] a = 0 for all

k > v (since each k ∈N satisfying k > v must also satisfy k > v ≥ u).
But Lemma 7.4.3 (a) (applied to n = v) shows that we have the equivalence

(
a ∈ K [x]≤v

)
⇐⇒([

xk] a = 0 for all k > v
)
. Hence, we have a ∈ K [x]≤v (since we have

[
xk] a = 0 for all

k > v).
Now, forget that we fixed a. We thus have shown that a ∈ K [x]≤v for each a ∈ K [x]≤u.

In other words, K [x]≤u ⊆ K [x]≤v. This proves Theorem 7.4.7 (a).
(b) Let n ∈ Z. Let a ∈ K [x]≤n. We shall show that a ∈ K [x].
Write the FPS a as a = (a0, a1, a2, . . .). Thus, (a0, a1, a2, . . .) = a ∈ K [x]≤n. According to

(249), this means that ak = 0 for all k > n. Renaming k as i in this statement, we conclude
the following: ai = 0 for all i > n. Hence, all but finitely many i ∈ N satisfy ai = 0
(since all but finitely many i ∈ N satisfy i > n). In other words, the FPS (a0, a1, a2, . . .) is
a polynomial (by the definition of a polynomial). In other words, a is a polynomial (since
a = (a0, a1, a2, . . .)). In other words, a ∈ K [x] (since K [x] is the set of all polynomials).

Forget that we fixed a. We thus have shown that a ∈ K [x] for each a ∈ K [x]≤n. In other
words, K [x]≤n is a subset of K [x].

Furthermore, this subset K [x]≤n contains the zero vector 0 (by Lemma 7.4.6 (a)) and is
closed under addition (by Lemma 7.4.6 (b)) and closed under scaling (by Lemma 7.4.6 (c)).
Hence, it is a K-submodule of K [x]. This proves Theorem 7.4.7 (b).

(c) Let a ∈ K [x]. In other words, a is a polynomial (since K [x] is the set of all polyno-
mials).

Write the FPS a as a = (a0, a1, a2, . . .). Then, (a0, a1, a2, . . .) = a is a polynomial. In other
words, all but finitely many i ∈ N satisfy ai = 0 (by the definition of a polynomial). In
other words, there is a finite subset S of N such that

every i ∈N \ S satisfies ai = 0. (261)

Consider this S.
The subset S∪ {0} of N is finite (since it is the union of the two finite sets S and {0}) and

nonempty (since it contains 0); thus, it has a maximum (since any finite nonempty subset
of N is finite). Let n be this maximum. Then,

every t ∈ S ∪ {0} satisfies n ≥ t (262)

(since n is the maximum of S ∪ {0}).
If k ∈ N satisfies k > n, then ak = 0 194. In other words, (ak = 0 for all k > n). In view

of (249), this rewrites as (a0, a1, a2, . . .) ∈ K [x]≤n. Thus, a = (a0, a1, a2, . . .) ∈ K [x]≤n.

194Proof. Let k ∈N be such that k > n. We must prove that ak = 0.
If we had k ∈ S, then we would have k ∈ S ⊆ S∪ {0} and therefore n ≥ k (by (262), applied to

t = k); but this would contradict k > n. Hence, we cannot have k ∈ S. Thus, k /∈ S. Combining
this with k ∈N, we obtain k ∈N \ S. Hence, (261) (applied to i = k) yields ak = 0. Qed.
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Hence, we have found an n ∈ N such that a ∈ K [x]≤n. Thus, such an n exists. This
proves Theorem 7.4.7 (c).

(d) Lemma 7.4.6 (f) (applied to i = 0 and n = 0) yields x0 ∈ K [x]≤0. Thus, Lemma 7.4.6
(c) (applied to n = 0, λ = a and a = x0) yields ax0 ∈ K [x]≤0. But

a x0︸︷︷︸
=1K[[x]]=1

= a1 = a

1, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 =

a, 0, 0, 0, . . .︸ ︷︷ ︸
zeroes

 = a.

Thus, a = ax0 ∈ K [x]≤0. This proves Theorem 7.4.7 (d).
(e) Lemma 7.4.6 (f) (applied to i = 1 and n = 1) yields x1 ∈ K [x]≤1. Thus, x = x1 ∈

K [x]≤1. This proves Theorem 7.4.7 (e).
(f) Let j = max {n, m}. Then, n ≤ max {n, m} = j and similarly m ≤ j.
But Theorem 7.4.7 (a) (applied to u = n and v = j) yields K [x]≤n ⊆ K [x]≤j (since n ≤ j).

Hence, a ∈ K [x]≤n ⊆ K [x]≤j. Similarly, b ∈ K [x]≤j. Hence, Lemma 7.4.6 (b) (applied to j
instead of n) yields a + b ∈ K [x]≤j = K [x]≤max{n,m} (since j = max {n, m}). Furthermore,
Lemma 7.4.8 (b) yields ab ∈ K [x]≤n+m. Thus, Theorem 7.4.7 (f) is proven.

Corollary 7.4.9. (a) The subset K [x] of K [[x]] is a K-subalgebra of K [[x]].
(b) We have x ∈ K [x].
(c) We have

K [x] =
⋃

n∈N

K [x]≤n .

Here,
⋃

n∈N

K [x]≤n means the union of the sets K [x]≤n over all n ∈ N (in other

words,⋃
n∈N

K [x]≤n = K [x]≤0 ∪K [x]≤1 ∪K [x]≤2 ∪ · · ·

=
{

a | there exists some n ∈N such that a ∈ K [x]≤n
}

).

Exercise 7.4.5. Prove Corollary 7.4.9.

Proof of Corollary 7.4.9. Theorem 7.4.7 (b) (applied to n = 1) yields that K [x]≤1 is a K-
submodule of K [x]. Thus, K [x]≤1 ⊆ K [x]. But Theorem 7.4.7 (e) yields x ∈ K [x]≤1 ⊆
K [x]. This proves Corollary 7.4.9 (b).

(a) Theorem 7.4.7 (b) (applied to n = 0) yields that K [x]≤0 is a K-submodule of K [x].
Thus, K [x]≤0 ⊆ K [x].

Theorem 7.4.7 (e) yields 0 ∈ K [x]≤0 ⊆ K [x] and 1 ∈ K [x]≤0 ⊆ K [x].
Now, let a, b ∈ K [x]. Then, there exists some n ∈ N such that a ∈ K [x]≤n (by Theorem

7.4.7 (c)). Similarly, there exists some m ∈ N such that b ∈ K [x]≤m. Consider these n and
m.

Theorem 7.4.7 (f) yields that a + b ∈ K [x]≤max{n,m} and ab ∈ K [x]≤n+m. But Theorem
7.4.7 (b) (applied to max {n, m} instead of n) yields that K [x]≤max{n,m} is a K-submodule
of K [x]. Thus, K [x]≤max{n,m} ⊆ K [x]. Hence,

a + b ∈ K [x]≤max{n,m} ⊆ K [x] . (263)



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 490

Furthermore, Theorem 7.4.7 (b) (applied to n + m instead of n) yields that K [x]≤n+m is a
K-submodule of K [x]. Thus, K [x]≤n+m ⊆ K [x]. Hence,

ab ∈ K [x]≤n+m ⊆ K [x] . (264)

Now, forget that we fixed a and b. We thus have proven (263) and (264) for every
a, b ∈ K [x].

Thus, in particular, a + b ∈ K [x] for every a, b ∈ K [x]. In other words, the subset K [x]
of K [[x]] is closed under addition.

Furthermore, ab ∈ K [x] for every a, b ∈ K [x] (since we have proven (264) for every
a, b ∈ K [x]). In other words, the subset K [x] of K [[x]] is closed under multiplication.

If λ ∈ K and if a ∈ K [x], then λa ∈ K [x] 195. In other words, the subset K [x] of K [[x]]
is closed under scaling.

The subset K [x] of K [[x]] contains 0K[[x]] (since 0K[[x]] = 0 ∈ K [x]) and is closed under
addition and closed under scaling. Thus, this subset K [x] is a K-submodule of K [[x]].

The subset K [x] of K [[x]] contains 0K[[x]] and contains 1K[[x]] (since 1K[[x]] = 1 ∈ K [x])
and is closed under addition and closed under multiplication. Thus, this subset K [x] is a
subring of K [[x]].

Now, the subset K [x] is both a subring and a K-submodule of K [[x]]. In other words,
K [x] is a K-subalgebra of K [[x]]. This proves Corollary 7.4.9 (a).

(c) If n ∈ N, then K [x]≤n is a K-submodule of K [x] (by Theorem 7.4.7 (b)), and thus
satisfies K [x]≤n ⊆ K [x]. Hence,⋃

n∈N

K [x]≤n︸ ︷︷ ︸
⊆K[x]

⊆
⋃

n∈N

K [x] ⊆ K [x] . (265)

On the other hand, let a ∈ K [x]. Then, Theorem 7.4.7 (c) shows that there exists some
n ∈ N such that a ∈ K [x]≤n. In other words, we have a ∈ ⋃

n∈N

K [x]≤n. Now, forget that

we fixed a. We thus have shown that a ∈ ⋃
n∈N

K [x]≤n for each a ∈ K [x]. In other words,

K [x] ⊆ ⋃
n∈N

K [x]≤n. Combining this with (265), we obtain K [x] =
⋃

n∈N

K [x]≤n. This proves

Corollary 7.4.9 (c).

Definition 7.4.10. Corollary 7.4.9 (a) yields that K [x] is a K-algebra. This K-
algebra is called the polynomial ring over K in the indeterminate x (or the algebra of
polynomials in x over K).

Exercise 7.4.6. Let n ∈ {−1, 0, 1, . . .}. Theorem 7.4.7 (b) shows that K [x]≤n is
a K-submodule of K [x]. Prove that the list

(
x0, x1, . . . , xn) is a basis of this K-

submodule K [x]≤n. (See Definition 6.11.1 (d) for the definition of a basis of a
K-submodule.)

195Proof. Let λ ∈ K and let a ∈ K [x]. We must prove that λa ∈ K [x].
There exists some n ∈ N such that a ∈ K [x]≤n (by Theorem 7.4.7 (c)). Consider this n. Then,

Lemma 7.4.6 (c) yields λa ∈ K [x]≤n. On the other hand, Theorem 7.4.7 (b) yields that K [x]≤n
is a K-submodule of K [x]. Thus, K [x]≤n ⊆ K [x]. Hence, λa ∈ K [x]≤n ⊆ K [x]. Qed.
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Solution to Exercise 7.4.6. Each i ∈ {0, 1, . . . , n} satisfies i ∈N and i ≤ n (since i ∈ {0, 1, . . . , n})
and thus xi ∈ K [x]≤n (by Lemma 7.4.6 (f)). In other words, the n + 1 vectors x0, x1, . . . , xn

all belong to K [x]≤n.
Hence, Proposition 6.11.2 (applied to K [x]≤n, n + 1 and

(
x0, x1, . . . , xn) instead of M, k

and (v1, v2, . . . , vk)) shows that
(
x0, x1, . . . , xn) is a basis of K [x]≤n if and only if each vector

in K [x]≤n can be uniquely written in the form

λ1x0 + λ2x1 + · · ·+ λn+1xn, with λ1, λ2, . . . , λn+1 ∈ K. (266)

We are now going to prove that each vector in K [x]≤n can be uniquely written in this form.
Indeed, let a ∈ K [x]≤n. We are going to show that a can be uniquely written in the form

(266). In order to show this, we must prove the following two claims:

Claim 1: There exists at least one (n + 1)-tuple (λ1, λ2, . . . , λn+1) ∈ Kn+1 such
that a = λ1x0 + λ2x1 + · · ·+ λn+1xn.

Claim 2: There exists at most one (n + 1)-tuple (λ1, λ2, . . . , λn+1) ∈ Kn+1 such
that a = λ1x0 + λ2x1 + · · ·+ λn+1xn.

[Proof of Claim 1: Write the FPS a in the form a = (a0, a1, a2, . . .). Then, (a0, a1, a2, . . .) =
a ∈ K [x]≤n. Hence, Theorem 7.4.5 shows that

(a0, a1, a2, . . .) = a0 + a1x + a2x2 + · · ·+ anxn =
n

∑
k=0

akxk.

Thus,

a =
n

∑
k=0

akxk = a0x0 + a1x1 + · · ·+ anxn.

Thus, there exists at least one (n + 1)-tuple (λ1, λ2, . . . , λn+1) ∈ Kn+1 such that a = λ1x0 +
λ2x1 + · · ·+ λn+1xn (namely, (λ1, λ2, . . . , λn+1) = (a0, a1, . . . , an)). This proves Claim 1.]

[Proof of Claim 2: Let (u0, u1, . . . , un) and (v0, v1, . . . , vn) be two (n + 1)-tuples (λ1, λ2, . . . , λn+1) ∈
Kn+1 such that a = λ1x0 + λ2x1 + · · · + λn+1xn. We shall show that (u0, u1, . . . , un) =
(v0, v1, . . . , vn).

Indeed, (u0, u1, . . . , un) is an (n + 1)-tuple (λ1, λ2, . . . , λn+1) ∈ Kn+1 such that a =
λ1x0 + λ2x1 + · · · + λn+1xn. In other words, (u0, u1, . . . , un) is an (n + 1)-tuple in Kn+1

and satisfies a = u0x0 + u1x1 + · · ·+ unxn. Extend this (n + 1)-tuple to an infinite sequence
(u0, u1, u2, . . .) by setting

uk = 0 for all integers k > n. (267)

Then, (u0, u1, u2, . . .) is an FPS. Corollary 7.2.16 (applied to ai = ui) thus shows that the
family

(
ukxk)

k∈N
is summable, so that the sum ∑

k∈N

ukxk is well-defined, and moreover,

(u0, u1, u2, . . .) = u0 + u1x + u2x2 + u3x3 + · · · = ∑
k∈N

ukxk.
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Hence,

(u0, u1, u2, . . .) = ∑
k∈N

ukxk =
n

∑
k=0

ukxk +
∞

∑
k=n+1

uk︸︷︷︸
=0

(by (267),
since k≥n+1>n)

xk

=
n

∑
k=0

ukxk +
∞

∑
k=n+1

0xk

︸ ︷︷ ︸
=0

=
n

∑
k=0

ukxk = u0x0 + u1x1 + · · ·+ unxn.

Comparing this with a = u0x0 + u1x1 + · · ·+ unxn, we obtain a = (u0, u1, u2, . . .). Hence,
each k ∈ N satisfies

[
xk] a = uk (by the definition of

[
xk] a). Thus, in particular, each

k ∈ {0, 1, . . . , n} satisfies [
xk
]

a = uk. (268)

The same argument (applied to (v0, v1, . . . , vn) instead of (u0, u1, . . . , un)) yields that each
k ∈ {0, 1, . . . , n} satisfies [

xk
]

a = vk. (269)

Hence, each k ∈ {0, 1, . . . , n} satisfies

uk =
[

xk
]

a (by (268))

= vk (by (269)) .

In other words, (u0, u1, . . . , un) = (v0, v1, . . . , vn).
Now, forget that we fixed (u0, u1, . . . , un) and (v0, v1, . . . , vn). We thus have shown that

if (u0, u1, . . . , un) and (v0, v1, . . . , vn) are two (n + 1)-tuples (λ1, λ2, . . . , λn+1) ∈ Kn+1 such
that a = λ1x0 + λ2x1 + · · ·+ λn+1xn, then (u0, u1, . . . , un) = (v0, v1, . . . , vn). In other words,
there exists at most one (n + 1)-tuple (λ1, λ2, . . . , λn+1) ∈ Kn+1 such that a = λ1x0 +λ2x1 +
· · ·+ λn+1xn. This proves Claim 2.]

Combining Claim 1 and Claim 2, we now conclude that there exists a unique (n + 1)-
tuple (λ1, λ2, . . . , λn+1) ∈ Kn+1 such that a = λ1x0 + λ2x1 + · · ·+ λn+1xn. In other words,
a can be uniquely written in the form (266).

Now, forget that we fixed a. We thus have shown that each a ∈ K [x]≤n can be uniquely
written in the form (266). In other words, each vector in K [x]≤n can be uniquely written
in the form (266). Thus, the list

(
x0, x1, . . . , xn) is a basis of K [x]≤n (because we have seen

that the list
(
x0, x1, . . . , xn) is a basis of K [x]≤n if and only if each vector in K [x]≤n can be

uniquely written in the form (266)). This solves Exercise 7.4.6.

We can restate some of Theorem 7.4.7 in terms of degrees:

Theorem 7.4.11. (a) If a ∈ K, then a ∈ K [x] and deg a ≤ 0.
(b) If a ∈ K is nonzero, then deg a = 0.
(c) We have x ∈ K [x] and deg x ≤ 1.
(d) If |K| > 1, then deg x = 1.
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(e) If a and b are two polynomials, then a + b and ab are two polynomials
satisfying

deg (a + b) ≤ max {deg a, deg b} and deg (ab) ≤ deg a + deg b.

(f) If K is a field, and if a and b are two polynomials, then deg (ab) = deg a +
deg b.

We shall prove this in Exercise 7.4.7. The condition “|K| > 1” in Theorem 7.4.11
(d) is a homage to the possibility that K may be a trivial ring (i.e., a ring with only
one element). If K is a trivial ring, then all coefficients of the polynomial x are 0
(because all elements of K are 0), and thus deg x = −∞ rather than deg x = 1. The
zero ring is generally responsible for lots of exceptions in rules about degrees; thus
it is better to speak of “polynomials of degree ≤ n” than of the exact degree of a
polynomial.

Note also that Theorem 7.4.11 (f) would not be true without the “K is a field”
requirement. For example, if K = Z/4 and a = 1 + 2x and b = 1 + 2x (using the
standard shorthand notations 1 = [1]4 and 2 = [2]4 etc.), then the polynomial

ab = (1 + 2x) (1 + 2x) = 1 + 4x + 4x2︸ ︷︷ ︸
=0

(since 4=0 in K)

= 1 (270)

has degree < 2.
Our next lemma is a generalization of Theorem 7.4.11 (f): Instead of requiring

K to be a field, we will merely require that the coefficient [xm] b of b be invertible
(which is automatically satisfied when K is a field and m = deg b).

Lemma 7.4.12. Let m ∈ N. Let a and b be two polynomials with b ∈ K [x]≤m.
Assume that [xm] b ∈ K is invertible. Then, deg (ab) = deg a + m.

Exercise 7.4.7. Prove Theorem 7.4.11 and Lemma 7.4.12.

Proof of Lemma 7.4.12. If a = 0, then the claim that we have to prove boils down to −∞ =
(−∞) + m (since both polynomials a︸︷︷︸

=0

b = 0b and a equal 0 and thus have degree −∞),

which is a consequence of the rules we stipulated for the symbol −∞. Thus, WLOG assume
that a 6= 0. Hence, deg a ∈N. Define n ∈N by n = deg a.

Now, deg a = n ≤ n. Hence, a is a polynomial of degree ≤ n. According to Lemma
7.4.3 (b), this entails that a ∈ K [x]≤n. Hence, Lemma 7.4.8 (b) yields that ab ∈ K [x]≤n+m.
Furthermore, Lemma 7.4.8 (c) yields [xn+m] (ab) = ([xn] a) · ([xm] b).

But Exercise 7.4.1 (c) yields that we have deg a = n if and only if [xn] a 6= 0. Hence,
[xn] a 6= 0 (since deg a = n).

Assume (for the sake of contradiction) that [xn+m] (ab) = 0. Then, 0 = [xn+m] (ab) =
([xn] a) · ([xm] b). We can divide both sides of this equality by [xm] b (since [xm] b is invert-
ible), and thus obtain 0 = [xn] a 6= 0. This is absurd. This contradiction shows that our
assumption was wrong. Hence, [xn+m] (ab) 6= 0. Thus, Exercise 7.4.1 (b) (applied to ab
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and n + m instead of a and n) yields deg (ab) = n + m (since deg (ab) ≤ n + m). In view
of n = deg a, this rewrites as deg (ab) = deg a + m. This proves Lemma 7.4.12.

Proof of Theorem 7.4.11. (a) Let a ∈ K. Theorem 7.4.7 (d) yields a ∈ K [x]≤0. But Lemma
7.4.3 (b) (applied to a = a and n = 0) shows that we have the following equivalence:

(a is a polynomial of degree ≤ 0) ⇐⇒
(
a ∈ K [x]≤0

)
.

Hence, a is a polynomial of degree ≤ 0 (since a ∈ K [x]≤0). In other words, a ∈ K [x] and
deg a ≤ 0. This proves Theorem 7.4.11 (a).

(b) Let a ∈ K be nonzero. Theorem 7.4.7 (d) yields a ∈ K [x]≤0. Moreover,
[
x0] (a) =

a 6= 0 (since a is nonzero). Hence, Exercise 7.4.1 (b) (applied to n = 0 and a = a) yields
deg a = 0. This proves Theorem 7.4.11 (b).

(c) Theorem 7.4.7 (e) yields x ∈ K [x]≤1. But Lemma 7.4.3 (b) (applied to a = x and
n = 1) shows that we have the following equivalence:

(x is a polynomial of degree ≤ 1) ⇐⇒
(
x ∈ K [x]≤1

)
.

Hence, x is a polynomial of degree ≤ 1 (since x ∈ K [x]≤1). In other words, x ∈ K [x] and
deg x ≤ 1. This proves Theorem 7.4.11 (c).

(d) Assume that |K| > 1. Then, 1 6= 0 in K (that is, 1K 6= 0K) 196. Now, Theorem 7.4.7
(e) yields x ∈ K [x]≤1. Moreover,

[
x1] (x) = 1 6= 0. Hence, Exercise 7.4.1 (b) (applied to

n = 1 and a = x) yields deg x = 1. This proves Theorem 7.4.11 (d).
(e) Let a and b be two polynomials. We must prove that a + b and ab are two polyno-

mials satisfying

deg (a + b) ≤ max {deg a, deg b} and deg (ab) ≤ deg a + deg b.

If a = 0, then this is all obvious (because in this case, we have a + b = b and ab = 0 and
deg 0 = −∞). Thus, for the rest of this proof, we WLOG assume that a 6= 0. For a similar
reason, we WLOG assume that b 6= 0. Now, deg a is a well-defined nonnegative integer
(since a 6= 0). Similarly, deg b is a well-defined nonnegative integer.

Define n ∈ N by n = deg a. Define m ∈ N by m = deg b. Lemma 7.4.3 (b) shows that
we have the following equivalence:

(a is a polynomial of degree ≤ n) ⇐⇒
(
a ∈ K [x]≤n

)
.

Hence, a ∈ K [x]≤n (since a is a polynomial of degree ≤ n (since n = deg a)). Similarly,
b ∈ K [x]≤m.

Now, a is a polynomial of degree deg a = n ≤ max {n, m}. But Lemma 7.4.3 (b) (applied
to max {n, m} instead of n) shows that we have the following equivalence:

(a is a polynomial of degree ≤ max {n, m}) ⇐⇒
(

a ∈ K [x]≤max{n,m}

)
.

Hence, a ∈ K [x]≤max{n,m} (since a is a polynomial of degree ≤ max {n, m}). Similarly,
b ∈ K [x]≤max{n,m}. Thus, Lemma 7.4.6 (b) (applied to max {n, m} instead of n) shows that

196Proof: Let us recall how this is proven: If we had 1 = 0 in K, then we would have a = a · 1︸︷︷︸
=0

=

a · 0 = 0 for each a ∈ K, and therefore we would have K ⊆ {0} and thus |K| ≤ |{0}| = 1, which
would contradict |K| > 1. Hence, we cannot have 1 = 0 in K. Thus, 1 6= 0 in K.
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a + b ∈ K [x]≤max{n,m}. But Lemma 7.4.3 (b) (applied to max {n, m} and a + b instead of n
and a) shows that we have the following equivalence:

(a + b is a polynomial of degree ≤ max {n, m}) ⇐⇒
(

a + b ∈ K [x]≤max{n,m}

)
.

Hence, a + b is a polynomial of degree ≤ max {n, m} (since a + b ∈ K [x]≤max{n,m}). In
other words, a + b is a polynomial satisfying deg (a + b) ≤ max {n, m}.

Lemma 7.4.8 (b) yields ab ∈ K [x]≤n+m. But Lemma 7.4.3 (b) (applied to n + m and ab
instead of n and a) shows that we have the following equivalence:

(ab is a polynomial of degree ≤ n + m) ⇐⇒
(
ab ∈ K [x]≤n+m

)
.

Hence, ab is a polynomial of degree ≤ n + m (since ab ∈ K [x]≤n+m). In other words, ab is
a polynomial satisfying deg (ab) ≤ n + m.

So we have shown that a + b and ab are two polynomials, and we have

deg (a + b) ≤ max

 n︸︷︷︸
=deg a

, m︸︷︷︸
=deg b

 = max {deg a, deg b} and

deg (ab) ≤ n︸︷︷︸
=deg a

+ m︸︷︷︸
=deg b

= deg a + deg b.

This completes the proof of Theorem 7.4.11 (e).
(f) Assume that K is a field. Let a and b be two polynomials. We must prove that

deg (ab) = deg a + deg b. If a = 0, then this is obvious (because in this case, we have
ab = 0 and deg 0 = −∞). Thus, for the rest of this proof, we WLOG assume that a 6= 0.
For a similar reason, we WLOG assume that b 6= 0.

Define m ∈ N by m = deg b. (We can do this, since b 6= 0.) Then, deg b ≤ m. In other
words, b is a polynomial of degree ≤ m. Exercise 7.4.1 (c) (applied to m and b instead of
n and a) yields that we have deg b = m if and only if [xm] b 6= 0. Hence, [xm] b 6= 0 (since
deg b = m). Thus, the element [xm] b ∈ K is nonzero and therefore invertible (since K is a
field, and thus every nonzero element of K is invertible). Therefore, Lemma 7.4.12 shows
that deg (ab) = deg a + m︸︷︷︸

=deg b

= deg a + deg b. This proves Theorem 7.4.11 (f).

Proposition 7.4.13. Let a1, a2, . . . , ak ∈ K [x].
(a) Then,

deg (a1a2 · · · ak) ≤ deg (a1) + deg (a2) + · · ·+ deg (ak) .

(b) If K is a field, then this is an equality.

Proof of Proposition 7.4.13. (a) Proceed by induction on k. The base case (k = 0)
follows from Theorem 7.4.11 (a) (applied to a = 1), since the empty product of
polynomials in K [x] is 1K[x] = 1. The induction step relies on Theorem 7.4.11 (e)
(specifically, the inequality deg (ab) ≤ deg a + deg b).

(b) Again, proceed by induction on k. The base case (k = 0) follows from Theo-
rem 7.4.11 (b) (applied to a = 1), since the empty product of polynomials in K [x]
is 1K[x] = 1. The induction step relies on Theorem 7.4.11 (f).
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The following exercise will be useful to us later on:

Exercise 7.4.8. Let m ∈N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible.
Let q ∈ K [x] be such that qb ∈ K [x]≤m−1. Prove that q = 0.

Solution to Exercise 7.4.8. This can be easily solved using classical logic: Assume the con-
trary. Thus, q 6= 0. Hence, deg q is a well-defined nonnegative integer. Thus, deg q ≥ 0.
Now, Lemma 7.4.12 (applied to a = q) yields deg (qb) = deg q︸ ︷︷ ︸

≥0

+m ≥ m. But Lemma 7.4.3

(b) (applied to n = m− 1 and a = qb) shows that we have the following equivalence:

(qb is a polynomial of degree ≤ m− 1) ⇐⇒
(
qb ∈ K [x]≤m−1

)
.

Hence, qb is a polynomial of degree ≤ m− 1 (since qb ∈ K [x]≤m−1). Hence, deg (qb) ≤
m− 1 < m. This contradicts deg (qb) ≥ m. This contradiction shows that our assumption
was false. Thus, the exercise is solved.

Here is a constructive solution: Theorem 7.4.7 (c) (applied to a = q) shows that there
exists some n ∈N such that q ∈ K [x]≤n. Consider this n. We now claim that

q ∈ K [x]≤n−d for each d ∈ {0, 1, . . . , n + 1} . (271)

[Proof of (271): We shall prove (271) by induction on d:
Induction base: We have q ∈ K [x]≤n = K [x]≤n−0 (since n = n− 0). In other words, (271)

holds for d = 0. This completes the induction base.
Induction step: Let p ∈ {0, 1, . . . , n}. Assume that (271) holds for d = p. We must prove

that (271) holds for d = p + 1.
Note that p ∈ {0, 1, . . . , n}, thus p ≤ n, hence n− p ≥ 0 and thus n− p ∈ N. Hence,

(n− p) + m ∈N (since m ∈N). Furthermore, (n− p)︸ ︷︷ ︸
≥0

+m ≥ m > m− 1.

We have assumed that (271) holds for d = p. In other words, we have q ∈ K [x]≤n−p.
Also, n− p ∈ N and b ∈ K [x]≤m. Hence, Lemma 7.4.8 (c) (applied to n− p and q instead
of n and a) yields [

x(n−p)+m
]
(qb) =

([
xn−p] q

)
· ([xm] b) . (272)

Lemma 7.4.3 (a) (applied to qb and m− 1 instead of a and n) shows that we have the
following equivalence:(

qb ∈ K [x]≤m−1
)
⇐⇒

([
xk
]
(qb) = 0 for all k > m− 1

)
.

Hence, we have
[
xk] (qb) = 0 for all k > m− 1 (since qb ∈ K [x]≤m−1). Applying this to

k = (n− p) + m, we obtain
[

x(n−p)+m
]
(qb) = 0 (since (n− p) + m > m− 1). Comparing

this with (272), we obtain ([xn−p] q) · ([xm] b) = 0. We can divide both sides of this equality
by [xm] b (since [xm] b ∈ K is invertible). As a result, we obtain [xn−p] q = 0.

Now, we know that q ∈ K [x]≤n−p and [xn−p] q = 0. Hence, Exercise 7.4.1 (a) (applied to
n− p and q instead of n and a) yields q ∈ K [x]≤n−p−1 = K [x]≤n−(p+1) (since n− p− 1 =

n− (p + 1)). In other words, (271) holds for d = p + 1. This completes the induction step.
Thus, (271) is proven by induction.]
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Now that we have proven (271), we can apply (271) to d = n + 1. As a result, we obtain

q ∈ K [x]≤n−(n+1) = K [x]≤−1 (since n− (n + 1) = −1)

= {0}

(by Example 7.4.2 (c) (applied to −1 instead of n), since −1 is negative). In other words,
q = 0. Thus, Exercise 7.4.8 is solved again (constructively this time).

7.5. Division with remainder

7.5.1. The general case

Polynomials, in many senses, are like numbers. In particular, we can study their
divisibility, congruence and remainder classes just as we did with integers and
Gaussian integers. We will not go deeply into this, but we shall see some of the
very basic properties.

The first basic fact is a version of division with remainder for polynomials (com-
pare with Theorem 2.6.1 and Theorem 4.2.26):

Theorem 7.5.1. Let m ∈N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible.
Let a ∈ K [x] be any polynomial.

(a) Then, there exists a unique pair (q, r) of polynomials such that a = qb + r
and r ∈ K [x]≤m−1.

(b) Moreover, if n ∈ N satisfies a ∈ K [x]≤n, then this pair satisfies q ∈
K [x]≤n−m.

We shall give an example for Theorem 7.5.1 in a moment (and then prove the
theorem after a while); but first, let us comment on the condition that [xm] b be in-
vertible. Indeed, if K is a field, then this condition is equivalent to the requirement
that [xm] b be nonzero; and this latter requirement is equivalent to requiring that
deg b = m (by Exercise 7.4.1 (c)). Hence, if K is a field, then Theorem 7.5.1 can be
applied to any nonzero polynomial b ∈ K [x] (as long as m is chosen to be deg b).
Thus, if b is a nonzero polynomial over a field K, then any polynomial a can be
uniquely divided with remainder by b (in such a way that the remainder will have
degree < deg b). But if K is not a field, then not every polynomial can play the
role of b in Theorem 7.5.1. For example, the polynomial 1+ 2x over K = Z cannot,
because its coefficient of x1 is not invertible (it equals 2). And unsurprisingly, many
polynomials over Z cannot be divided with remainder by 1 + 2x (for example, x2

cannot – unless you allow remainders of degree > 1).

Example 7.5.2. For this example, set K = Z and m = 2 and b = x2 + x + 1.
Then, b ∈ K [x]≤m.

Let n = 4 and a = x4− x2; thus, a ∈ K [x]≤n. Then, Theorem 7.5.1 (a) says that
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there exists a unique pair (q, r) of polynomials such that

a = qb + r
(

that is, x4 − x2 = q ·
(

x2 + x + 1
)
+ r
)

and

r ∈ K [x]≤m−1

(
that is, deg r ≤ m︸︷︷︸

=2

−1 = 1

)
.

Theorem 7.5.1 (b) says that this pair satisfies

q ∈ K [x]≤n−m

that is, deg q ≤ n︸︷︷︸
=4

− m︸︷︷︸
=2

= 2

 .

How can we find this pair?
Consider this, so far unknown, pair. Comparing the coefficients of x4 in the

equality

x4 − x2 = q ·
(

x2 + x + 1
)
+ r =

(
x2 + x + 1

)
q + r, (273)

we obtain 1 = 1 ·
[
x2] q (because deg r ≤ 1 and deg q ≤ 2, so the only contribu-

tion to the coefficient of x4 on the right hand side of (273) comes from picking
the “x2” from the “x2 + x + 1” factor and the “

([
x2] q

)
x2” from the expansion

of q). Hence,
[
x2] q = 1. Since deg q ≤ 2, we can thus write q in the form

q = x2 + q1 for some polynomial q1 with deg q1 ≤ 1.

Consider this q1. Now, (273) can be transformed as follows:x4 − x2 =
(

x2 + x + 1
)

q︸︷︷︸
=x2+q1

+r



⇐⇒

x4 − x2 =
(

x2 + x + 1
) (

x2 + q1

)
︸ ︷︷ ︸
=(x2+x+1)x2+(x2+x+1)q1

+r


⇐⇒

(
x4 − x2 =

(
x2 + x + 1

)
x2 +

(
x2 + x + 1

)
q1 + r

)

⇐⇒

x4 − x2 −
(

x2 + x + 1
)

x2︸ ︷︷ ︸
=−x3−2x2

=
(

x2 + x + 1
)

q1 + r


⇐⇒

(
−x3 − 2x2 =

(
x2 + x + 1

)
q1 + r

)
. (274)
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Comparing the coefficients of x3 in the last equality here, we obtain −1 = 1 ·[
x1] q1 (because deg r ≤ 1 and deg q1 ≤ 1). Hence,

[
x1] q1 = −1. Since deg q1 ≤

1, we can thus write q1 in the form

q1 = −x + q2 for some polynomial q2 with deg q2 ≤ 0.

Consider this q2. Now, the last equality of (274) can be transformed as follows:−x3 − 2x2 =
(

x2 + x + 1
)

q1︸︷︷︸
=−x+q2

+r



⇐⇒

−x3 − 2x2 =
(

x2 + x + 1
)
(−x + q2)︸ ︷︷ ︸

=(x2+x+1)(−x)+(x2+x+1)q2

+r


⇐⇒

(
−x3 − 2x2 =

(
x2 + x + 1

)
(−x) +

(
x2 + x + 1

)
q2 + r

)

⇐⇒

−x3 − 2x2 −
(

x2 + x + 1
)
(−x)︸ ︷︷ ︸

=−x2+x

=
(

x2 + x + 1
)

q2 + r


⇐⇒

(
−x2 + x =

(
x2 + x + 1

)
q2 + r

)
. (275)

Comparing the coefficients of x2 in the last equality here, we obtain −1 = 1 ·[
x0] q2 (because deg r ≤ 1 and deg q2 ≤ 0). Hence,

[
x0] q2 = −1. Since deg q2 ≤

0, we can thus write q2 in the form

q2 = −1 + q3 for some polynomial q3 with deg q3 ≤− 1.

Consider this q3. Of course, q3 must be the zero polynomial (that is, 0 = 0K[x]),
since deg q3 ≤ −1. Now that we have found q3, we can recover q2, q1, q by
back-substitution:

q2 = −1 + q3︸︷︷︸
=0

= −1;

q1 = −x + q2︸︷︷︸
=−1

= −x− 1;

q = x2 + q1︸︷︷︸
=−x−1

= x2 − x− 1.

Finally, we can find r, for instance, by solving the last equality (275):

r = −x2 + x−
(

x2 + x + 1
)

q2︸︷︷︸
=−1

= −x2 + x−
(

x2 + x + 1
)
(−1) = 2x + 1.
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Hence, we have found the pair (q, r). And we can check that this pair (q, r) does
indeed satisfy a = qb + r: Indeed,

q︸︷︷︸
=x2−x−1

b︸︷︷︸
=x2+x+1

+ r︸︷︷︸
=2x+1

=
(

x2 − x− 1
)
·
(

x2 + x + 1
)
+ (2x + 1) = x4 − x2 = a.

Our next goal is to prove Theorem 7.5.1. You may have already spotted a proof
idea in Example 7.5.2; we will essentially follow this idea when proving the “exis-
tence” part of Theorem 7.5.1 (a), while the “uniqueness” part will be proven by a
direct argument using Exercise 7.4.8.

Let us first combine the “existence” part of Theorem 7.5.1 (a) with Theorem 7.5.1
(b) in order to prove both simultaneously:

Lemma 7.5.3. Let m ∈ N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible.
Let n ∈ {−1, 0, 1, . . .}. Let a ∈ K [x]≤n. Then, there exist q ∈ K [x]≤n−m and
r ∈ K [x]≤m−1 such that a = qb + r.

Proof of Lemma 7.5.3. We shall prove Lemma 7.5.3 by strong induction on n (while
keeping m and b fixed).

So let N ∈ {−1, 0, 1, . . .}. We assume (as the induction hypothesis) that Lemma
7.5.3 holds whenever n < N. We must now prove that Lemma 7.5.3 holds for
n = N.

We have assumed that Lemma 7.5.3 holds whenever n < N. In other words, the
following claim holds:

Claim 1: Let n ∈ {−1, 0, 1, . . .} be such that n < N. Let a ∈ K [x]≤n.
Then, there exist q ∈ K [x]≤n−m and r ∈ K [x]≤m−1 such that a = qb+ r.

(We did not have to write “Let m ∈N” and “Let b be a polynomial...” here, since
m and b are fixed.)

We must prove that Lemma 7.5.3 holds for n = N. In other words, we must
prove the following claim:

Claim 2: Let a ∈ K [x]≤N. Then, there exist q ∈ K [x]≤N−m and r ∈
K [x]≤m−1 such that a = qb + r.

[Proof of Claim 2: If N < m, then Claim 2 clearly holds (just take q = 0 and
r = a) 197. Hence, for the rest of this proof of Claim 2, we WLOG assume that

197Proof. Assume that N < m. Then, N ≤ m − 1 (since N and m are integers). Hence, Theorem
7.4.7 (a) (applied to u = N and v = m− 1) yields K [x]≤N ⊆ K [x]≤m−1. Hence, a ∈ K [x]≤N ⊆
K [x]≤m−1. Furthermore, 0 ∈ K [x]≤N−m (by Lemma 7.4.6 (a), applied to n = N − m). Finally,
a = 0 · b + a (obviously). Thus, there exist q ∈ K [x]≤N−m and r ∈ K [x]≤m−1 such that a =
qb + r (namely, q = 0 and r = a). In other words, Claim 2 holds. So we have shown that Claim
2 holds under the assumption that N < m.
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we don’t have N < m. Hence, N ≥ m. Thus, N −m ≥ 0, so that N −m ∈ N. Also,
N ≥ m ≥ 0 (since m ∈N), so that N ∈N and therefore N − 1 ∈ {−1, 0, 1, . . .}.

Define two elements aN and bm of K by aN =
[
xN] a and bm = [xm] b. (These are

well-defined, since N ≥ 0 and m ≥ 0.) Note that bm = [xm] b is invertible (by an
assumption in Lemma 7.5.3).

Define an element λ ∈ K by λ =
aN

bm
. (This is well-defined, since bm is invertible.)

Recall that N −m ∈N and N −m ≤ N −m. Hence, Lemma 7.4.6 (f) (applied to
N−m and N−m instead of n and i) yields that xN−m ∈ K [x]≤N−m. Thus, Lemma
7.4.6 (c) (applied to N − m and xN−m instead of n and a) yields that λxN−m ∈
K [x]≤N−m. Recall also that b ∈ K [x]≤m. Hence, Lemma 7.4.8 (b) (applied to N−m
and λxN−m instead of n and a) yields that λxN−mb ∈ K [x]≤(N−m)+m = K [x]≤N
(since (N −m) + m = N). But we also know that a ∈ K [x]≤N.

We have N ∈N and N −m ∈N and N ≥ N −m (since m ≥ 0). Hence, Exercise
7.2.1 (a) (applied to u = N and v = N −m) yields[

xN
] (

xN−mb
)
=
[

xN−(N−m)
]

b = [xm] b (since N − (N −m) = m)

= bm (by the definition of bm) .

Furthermore, (217) (applied to N and xN−mb instead of n and a) yields[
xN
] (

λxN−mb
)
= λ︸︷︷︸

=
aN

bm

·
[

xN
] (

xN−mb
)

︸ ︷︷ ︸
=bm

=
aN

bm
· bm = aN =

[
xN
]

a

(by the definition of aN); in other words,
[
xN] a =

[
xN] (λxN−mb

)
. Hence, Exercise

7.4.3 (applied to N and λxN−mb instead of n and b) yields that a − λxN−mb ∈
K [x]≤N−1. Hence, Claim 1 (applied to N − 1 and a− λxN−mb instead of n and a)
yields that there exist q ∈ K [x]≤N−1−m and r ∈ K [x]≤m−1 such that a− λxN−mb =
qb + r (since N − 1 < N). Consider these q and r, and denote them by q0 and r0.
Thus, q0 ∈ K [x]≤N−1−m and r0 ∈ K [x]≤m−1 satisfy a− λxN−mb = q0b + r0.

From a− λxN−mb = q0b + r0, we obtain

a = λxN−mb + q0b + r0 =
(

λxN−m + q0

)
b + r0. (276)

We shall next show that λxN−m + q0 ∈ K [x]≤N−m. Indeed, N − 1− m ≤ N −
m; hence, Theorem 7.4.7 (a) (applied to u = N − 1 − m and v = N − m) yields
K [x]≤N−1−m ⊆ K [x]≤N−m. Thus, q0 ∈ K [x]≤N−1−m ⊆ K [x]≤N−m. Furthermore,
λxN−m ∈ K [x]≤N−m (as we already know). Thus, Lemma 7.4.6 (c) (applied to
N −m, λxN−m and q0 instead of n, a and b) yields λxN−m + q0 ∈ K [x]≤N−m.

Altogether, we now know that λxN−m + q0 ∈ K [x]≤N−m and r0 ∈ K [x]≤m−1
and a =

(
λxN−m + q0

)
b + r0 (by (276)). Hence, there exist q ∈ K [x]≤N−m and
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r ∈ K [x]≤m−1 such that a = qb + r (namely, q = λxN−m + q0 and r = r0). This
proves Claim 2.]

Now, we have proven Claim 2; in other words, Lemma 7.5.3 holds for n = N.
This completes the induction step. Thus, Lemma 7.5.3 is proven by induction.

Proof of Theorem 7.5.1. (a) Theorem 7.4.7 (c) shows that there exists some n ∈ N

such that a ∈ K [x]≤n. Consider this n.
Now, Lemma 7.5.3 yields that there exist q ∈ K [x]≤n−m and r ∈ K [x]≤m−1 such

that a = qb + r. Consider these q and r, and denote them by q0 and r0. Thus,
q0 ∈ K [x]≤n−m and r0 ∈ K [x]≤m−1 satisfy a = q0b + r0.

Now, q0 ∈ K [x]≤n−m ⊆ K [x] (since Theorem 7.4.7 (b) (applied to n−m instead
of n) shows that K [x]≤n−m is a K-submodule of K [x]). In other words, q0 is a
polynomial. Similarly, r0 is a polynomial. Hence, (q0, r0) is a pair of polynomials.
As we know, this pair satisfies a = q0b + r0 and r0 ∈ K [x]≤m−1. Thus, there
exists a pair (q, r) of polynomials such that a = qb + r and r ∈ K [x]≤m−1 (namely,
(q, r) = (q0, r0)).

It remains to prove that this pair is unique. In other words, it remains to prove
that any two such pairs (q, r) must be equal. In other words, it remains to prove
the following:

Claim 1: If (q1, r1) and (q2, r2) are two pairs (q, r) of polynomials such
that a = qb + r and r ∈ K [x]≤m−1, then (q1, r1) = (q2, r2).

[Proof of Claim 1: Let (q1, r1) and (q2, r2) be two pairs (q, r) of polynomials such
that a = qb + r and r ∈ K [x]≤m−1. We must prove that (q1, r1) = (q2, r2).

We have assumed that (q1, r1) is a pair (q, r) of polynomials such that a = qb+ r
and r ∈ K [x]≤m−1. In other words, (q1, r1) is a pair of polynomials satisfying
a = q1b + r1 and r1 ∈ K [x]≤m−1. Similarly, (q2, r2) is a pair of polynomials
satisfying a = q2b + r2 and r2 ∈ K [x]≤m−1.

From r1 ∈ K [x]≤m−1 and r2 ∈ K [x]≤m−1, we easily obtain r2 − r1 ∈ K [x]≤m−1
198.

Comparing the equalities a = q1b + r1 and a = q2b + r2, we obtain q1b + r1 =
q2b + r2. In other words, q1b− q2b = r2 − r1. Hence,

(q1 − q2) b = q1b− q2b = r2 − r1 ∈ K [x]≤m−1 .

Hence, Exercise 7.4.8 (applied to q = q1− q2) yields q1− q2 = 0 = 0K[[x]]. In other
words, q1 = q2. Now, comparing the equalities

a = q1︸︷︷︸
=q2

b + r1 = q2b + r1 and a = q2b + r2,

198Proof. Lemma 7.4.6 (c) (applied to m − 1, −1 and r1 instead of n, λ and a) yields (−1) r1 ∈
K [x]≤m−1 (since r1 ∈ K [x]≤m−1). Hence, Lemma 7.4.6 (b) (applied to m − 1, r2 and (−1) r1
instead of n, a and b) yields r2 + (−1) r1 ∈ K [x]≤m−1 (since r2 ∈ K [x]≤m−1). Thus, r2 − r1 =
r2 + (−1) r1 ∈ K [x]≤m−1.
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we obtain q2b + r1 = q2b + r2. Thus, r1 = r2. Combining q1 = q2 with r1 = r2, we
obtain (q1, r1) = (q2, r2). This proves Claim 1.]

As we said, Claim 1 was the only thing that remained for us to prove in order to
obtain Theorem 7.5.1 (a). Thus, having just proven Claim 1, we have finished the
proof of Theorem 7.5.1 (a).

(b) Let n ∈ N be such that a ∈ K [x]≤n. Let (u, v) be the pair (q, r) whose
existence is claimed by Theorem 7.5.1 (a). (We don’t want to call it (q, r) just yet,
since we want to keep the letters q and r free for other uses.) We shall show that
u ∈ K [x]≤n−m.

Indeed, Lemma 7.5.3 yields that there exist q ∈ K [x]≤n−m and r ∈ K [x]≤m−1
such that a = qb + r. Consider these q and r, and denote them by q0 and r0. Thus,
q0 ∈ K [x]≤n−m and r0 ∈ K [x]≤m−1 satisfy a = q0b + r0.

Now, (q0, r0) is a pair of polynomials199. As we know, this pair satisfies a =
q0b + r0 and r0 ∈ K [x]≤m−1. Thus, (q0, r0) is a pair (q, r) of polynomials such
that a = qb + r and r ∈ K [x]≤m−1. But (u, v) also is a pair (q, r) of polynomials
such that a = qb + r and r ∈ K [x]≤m−1 (because this is how (u, v) was defined).
Now, recall the Claim 1 that we stated (and proved) during our proof of Theorem
7.5.1 (a). We can apply this Claim to (q1, r1) = (u, v) and (q2, r2) = (q0, r0) (since
(u, v) and (q0, r0) are two pairs (q, r) of polynomials such that a = qb + r and
r ∈ K [x]≤m−1). As a result, we obtain (u, v) = (q0, r0). In other words, u = q0 and
v = r0. Thus, u = q0 ∈ K [x]≤n−m.

Now, forget that we introduced (u, v). We thus have shown that if (u, v) is the
pair (q, r) whose existence is claimed by Theorem 7.5.1 (a), then u ∈ K [x]≤n−m.
Renaming (u, v) as (q, r) in this statement, we obtain the following: The pair (q, r)
whose existence is claimed by Theorem 7.5.1 (a) satisfies q ∈ K [x]≤n−m. This
proves Theorem 7.5.1 (b).

7.5.2. The case of a field

When K is a field, every nonzero polynomial b ∈ K [x] has an invertible leading
coefficient (i.e., if m = deg b, then [xm] b ∈ K is invertible). Thus, Theorem 7.5.1
(a) shows that we can divide (with remainder) any polynomial a by any nonzero
polynomial b when K is a field. More precisely, the following holds:

Theorem 7.5.4. Let K be a field. Let a and b 6= 0 be polynomials in K [x]. Then,
there exist polynomials q and r in K [x] such that a = qb + r and deg r < deg b.

Proof of Theorem 7.5.4. Let m = deg b. Then, m ∈ N (since b 6= 0) and b ∈ K [x]≤m
(since deg b = m). The coefficient [xm] b ∈ K is nonzero (since deg b = m), and
thus invertible (since any nonzero element of K is invertible200). Thus, Theorem
7.5.1 (a) shows that there exists a unique pair (q, r) of polynomials such that a =
qb + r and r ∈ K [x]≤m−1. In other words, there exists a unique pair (q, r) of

199This can be shown just as in the proof of Theorem 7.5.1 (a) above.
200because K is a field
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polynomials such that a = qb + r and deg r < deg b (because for a polynomial
r ∈ K [x], the condition “r ∈ K [x]≤m−1” is equivalent to the condition “deg r <

deg b” 201). Hence, in particular, there exist polynomials q and r in K [x] such
that a = qb + r and deg r < deg b. This proves Theorem 7.5.4.

I have deliberately stated Theorem 7.5.4 in the above form (omitting the unique-
ness of the pair (q, r), which I could have stated but did not) in order to evoke a
deja-vu; indeed, in this form, Theorem 7.5.4 is obviously an analogue of Theorem
4.2.26. This analogy can be taken much further. When K is a field, the ring K [x]
shares many properties with Z and Z [i]. In particular, there is a good theory of
divisibility, congruence, common divisors and gcds in this ring, which parallels the
corresponding theory for Gaussian integers. The degree of a polynomial plays the
same role in K [x] that the norm of a Gaussian integer plays in Z [i]; in particular,
it can be used for purposes of induction.

In defining the gcd of two polynomials over a field K, we are faced with the same
difficulty as in the case of Z [i]: The gcd is not unique on the nose, but only unique
up to unit-equivalence. However, for polynomials there is a natural choice: Out of
all possible gcds of two polynomials, we pick the gcd whose leading coefficient is
1. (The “leading coefficient” of a polynomial means the coefficient of xn, where n
is the degree of the polynomial.)

There is a Euclidean algorithm for finding gcd’s: For example, if K = Q, then

gcd
(

x2 − 1, x3 − 1
)

= gcd

x2 − 1,
(

x3 − 1
)

%
(

x2 − 1
)

︸ ︷︷ ︸
=x−1


= gcd

(
x2 − 1, x− 1

)
= gcd

(
x− 1, x2 − 1

)

= gcd

x− 1,
(

x2 − 1
)

% (x− 1)︸ ︷︷ ︸
=0

 = gcd (x− 1, 0)

= gcd (x− 1) = x− 1.

Here, of course, the notation a%b for a remainder is defined for polynomials in the
same way as for integers (after all, the q and r in Theorem 7.5.4 are unique, even if
we didn’t say so!).

201Indeed, if r ∈ K [x] is any polynomial, then we have the following chain of equivalences:(
r ∈ K [x]≤m−1

)
⇐⇒ (deg r ≤ m− 1) ⇐⇒ (deg r < m) (since m ∈ Z and deg r ∈ Z∪ {−∞})
⇐⇒ (deg r < deg b) (since m = deg b) .
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7.6. Evaluating polynomials

So far, polynomials have just been sequences of scalars. But recall that the most use-
ful thing about polynomials should be the ability of evaluating them (at numbers,
matrices, other polynomials). So how do we evaluate our polynomials?

Definition 7.6.1. Let U be a K-algebra. Let u ∈ U.
Let a = (a0, a1, a2, . . .) ∈ K [x] be a polynomial over K. (Thus, a = ∑

k∈N

akxk.)

Then, we define
a [u] := ∑

k∈N

akuk ∈ U.

This sum is well-defined, since all but finitely many of its addends are zero
(indeed, (a0, a1, a2, . . .) is a polynomial, and thus all but finitely many k ∈ N

satisfy ak = 0).
We shall call a [u] the value of a at u. This is commonly denoted by a (u),

but that notation is problematic, since expressions like “a (x + 1)” could mean
different things depending on whether they are interpreted as values or as prod-
ucts. (That said, be careful with the notation “a [u]” as well: The expression
“a
[
x2] b” can mean either a times the coefficient

[
x2] b or the value a

[
x2] times

b. Disambiguate such expressions using parentheses or dots.)

Example 7.6.2. Let a = (a0, a1, a2, . . .) ∈ K [x] be a polynomial.
(a) Taking U = K and u = 0 in Definition 7.6.1, we obtain

a [0] = ∑
k∈N

ak0k = a0 00︸︷︷︸
=1

+ ∑
k>0

ak 0k︸︷︷︸
=0

(since k>0)

= a0 =
[

x0
]

a.

(b) Taking U = K and u = 1 in Definition 7.6.1, we obtain

a [1] = ∑
k∈N

ak 1k︸︷︷︸
=1

= ∑
k∈N

ak = a0 + a1 + a2 + · · · .

This is the sum of all coefficients of a.
(c) Taking U = K [x] and u = x in Definition 7.6.1, we obtain

a [x] = ∑
k∈N

akxk = (a0, a1, a2, . . .) = a.

So a [x] is another way of saying “a”.
(d) Furthermore,

a [−x] = ∑
k∈N

ak (−x)k︸ ︷︷ ︸
=(−1)kxk

= ∑
k∈N

(−1)k akxk = (a0,−a1, a2,−a3, a4, . . .) .

(e) Furthermore,

a
[

x2
]
= ∑

k∈N

ak

(
x2
)k

= ∑
k∈N

akx2k = (a0, 0, a1, 0, a2, 0, a3, 0, . . .) .
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In Definition 7.6.1, we have rigorously defined the value a [u] of a polynomial a
at an element u of a K-algebra. In practice, this value is best understood through
the following slogan:

Substitution slogan: Let U be a K-algebra, and let u ∈ U. Let a ∈ K [x]
be a polynomial. Then, a [u] is, roughly speaking, the result of “substi-
tuting u for x” into a.

For example, (
1 + 3x + 8x2

)
[u] = 1 + 3u + 8u2 and (277)(

x9 − 2x
)
[u] = u9 − 2u and (278)(

x4 − (x− 1)2 (x + 1)2
)
[u] = u4 − (u− 1)2 (u + 1)2 . (279)

However, strictly speaking, this is not all obvious at this point yet. While (277)
and (278) can easily be checked using Definition 7.6.1202, it is not so clear how to
obtain (279) from Definition 7.6.1 without multiplying out both sides203. Definition
7.6.1 only justifies the Substitution slogan when the substitution happens in the
expanded form of a (that is, in the form a = a0x0 + a1x1 + a2x2 + · · · ), but not

202Namely: Write the polynomial 1 + 3x + 8x2 in the form (a0, a1, a2, . . .) for some a0, a1, a2, . . . ∈ K.
Then, a0 = 1 and a1 = 3 and a2 = 8 and ak = 0 for all k > 2. But Definition 7.6.1 (applied to
a = 1 + 3x + 8x2) yields(

1 + 3x + 8x2
)
[u] = ∑

k∈N

akuk = a0︸︷︷︸
=1

u0︸︷︷︸
=1

+ a1︸︷︷︸
=3

u1︸︷︷︸
=u

+ a2︸︷︷︸
=8

u2 + ∑
k>2

ak︸︷︷︸
=0

uk

= 1 + 3u + 8u2 + ∑
k>2

0uk

︸ ︷︷ ︸
=0

= 1 + 3u + 8u2.

This proves (277). A similar argument can be used to prove (278).
203Of course, if you multiply them out, then (279) becomes obvious: We have x4− (x− 1)2 (x + 1)2 =

2x2 − 1, so that (
x4 − (x− 1)2 (x + 1)2

)
[u] =

(
2x2 − 1

)
[u] = 2u2 − 1

(this follows from Definition 7.6.1 in the same way as (277) did). Comparing this with

u4 − (u− 1)2 (u + 1)2 = 2u2 − 1,

we obtain
(

x4 − (x− 1)2 (x + 1)2
)
[u] = u4 − (u− 1)2 (u + 1)2, and thus (279) is proven.

But multiplying out is not always viable. Let’s say we want to prove that(
x2n − (x− 1)n (x + 1)n

)
[u] = u2n − (u− 1)n (u + 1)n

for all n ∈ N. This can no longer be proven as easily, since the coefficients of the polynomial
x2n − (x− 1)n (x + 1)n will grow more complicated as n grows larger.
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when it happens in some other form like (1 + x) (1− x) or x2 − (x− 1)2. We shall
soon convince ourselves that the Substitution slogan is true for the latter forms as
well. First, we need to prove some basic properties of values of polynomials:

Theorem 7.6.3. Let U be a K-algebra. Let u ∈ U.
(a) Any a, b ∈ K [x] satisfy

(a + b) [u] = a [u] + b [u] and (ab) [u] = a [u] · b [u] .

(b) Any λ ∈ K and a ∈ K [x] satisfy

(λa) [u] = λ · a [u] .

(c) Any a ∈ K satisfies a [u] = a · 1U. (This is often written as “a [u] = a”, but
keep in mind that the “a” on the right hand side of this equality is understood
to be “coerced into U”, so it actually means “the element of U corresponding to
a”, which is a · 1U.)

(d) We have x [u] = u.
(e) We have xi [u] = ui for each i ∈N.

Proof of Theorem 7.6.3. For each a ∈ K [x], we have a =
([

x0] a,
[
x1] a,

[
x2] a, . . .

)
(by (215)) and therefore

a [u] = ∑
k∈N

([
xk
]

a
)

uk. (280)

(e) Let i ∈N. Then, (280) (applied to a = xi) yields

xi [u] = ∑
k∈N

([
xk
] (

xi
))

︸ ︷︷ ︸
=

1, if k = i;
0, if k 6= i

(by (239), applied
to k and i instead of n and k)

uk = ∑
k∈N

{
1, if k = i;
0, if k 6= i

uk

=

{
1, if i = i;
0, if i 6= i︸ ︷︷ ︸

=1
(since i=i)

ui + ∑
k∈N;
k 6=i

{
1, if k = i;
0, if k 6= i︸ ︷︷ ︸

=0
(since k 6=i)

uk

(here, we have split off the addend for k = i from the sum)

= ui + ∑
k∈N;
k 6=i

0uk

︸ ︷︷ ︸
=0

= ui.

This proves Theorem 7.6.3 (e).
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(d) Theorem 7.6.3 (e) (applied to i = 1) yields x1 [u] = u1 = u. In view of x1 = x,
this rewrites as x [u] = u. This proves Theorem 7.6.3 (d).

(c) Let a ∈ K. Then, (280) (applied to a = a) yields

a [u] = ∑
k∈N

([
xk
]
(a)
)

︸ ︷︷ ︸
=

a, if k = 0;
0, if k 6= 0

(by (222), applied to n=k)

uk = ∑
k∈N

{
a, if k = 0;
0, if k 6= 0

uk

=

{
a, if 0 = 0;
0, if 0 6= 0︸ ︷︷ ︸

=a
(since 0=0)

u0︸︷︷︸
=1U

+ ∑
k∈N;
k 6=0

{
a, if k = 0;
0, if k 6= 0︸ ︷︷ ︸

=0
(since k 6=0)

uk

(here, we have split off the addend for k = 0 from the sum)

= a · 1U + ∑
k∈N;
k 6=0

0uk

︸ ︷︷ ︸
=0

= a · 1U.

This proves Theorem 7.6.3 (c).
(c) This is easy and left to the reader.
(a) Let a, b ∈ K [x]. It is easy to see that (a + b) [u] = a [u] + b [u].
It remains to prove that (ab) [u] = a [u] · b [u].
Write a and b as a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .). Then, the definition

of multiplication on K [[x]] yields

ab = (c0, c1, c2, . . .) , where cn = ∑
i,j∈N;
i+j=n

aibj.
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Hence,

(ab) [u] = ∑
k∈N

ckuk = ∑
n∈N

cn︸︷︷︸
= ∑

i,j∈N;
i+j=n

aibj

un = ∑
n∈N

∑
i,j∈N;
i+j=n

aibj un︸︷︷︸
=ui+j

(since n=i+j)

= ∑
n∈N

∑
i,j∈N;
i+j=n︸ ︷︷ ︸

= ∑
i,j∈N

= ∑
i∈N

∑
j∈N

aibj ui+j︸︷︷︸
=uiuj

= ∑
i∈N

∑
j∈N

aibjuiuj = ∑
i∈N

aiui ∑
j∈N

bjuj

=

(
∑

i∈N

aiui

)
︸ ︷︷ ︸
= ∑

k∈N

akuk

=a[u]

(
∑

j∈N

bjuj

)
︸ ︷︷ ︸
= ∑

k∈N

bkuk

=b[u]

= a [u] · b [u] .

(These manipulations with infinite sums are all kosher, because only finitely many
pairs (i, j) ∈ N×N satisfy aibj 6= 0.) This completes our proof of Theorem 7.6.3
(a).

Corollary 7.6.4. Let U be a K-algebra. Let u ∈ U. Then, the map

evu : K [x]→ U,
a 7→ a [u]

is a K-algebra homomorphism.

Proof of Corollary 7.6.4. We must prove that evu is a K-algebra homomorphism. In
other words, we must prove that evu is a ring homomorphism and a K-module
homomorphism (by the definition of a K-algebra homomorphism).

In order to prove that evu is a ring homomorphism, we must prove the following
four claims:

Claim 1: We have evu (a + b) = evu (a) + evu (b) for all a, b ∈ K [x].

Claim 2: We have evu (0) = 0.

Claim 3: We have evu (ab) = evu (a) evu (b) for all a, b ∈ K [x].

Claim 4: We have evu (1) = 1.

Indeed, these four claims are the axioms in the definition of a ring homomorphism.
In order to prove that evu is a K-module homomorphism, we must prove the

following four claims:
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Claim 5: We have evu (a + b) = evu (a) + evu (b) for all a, b ∈ K [x].

Claim 6: We have evu (0) = 0.

Claim 7: We have evu (λa) = λ evu (a) for all λ ∈ K and a ∈ K [x].

Indeed, these three claims are the axioms in the definition of a K-module homo-
morphism.

Let us first prove Claim 3:
[Proof of Claim 3: Let a, b ∈ K [x]. We must prove that evu (ab) = evu (a) ·

evu (b). But the definition of evu yields evu (ab) = (ab) [u] and evu (a) = a [u] and
evu (b) = b [u]. Hence, proving that evu (ab) = evu (a) · evu (b) is tantamount to
proving that (ab) [u] = a [u] · b [u]. But the latter equality follows from Theorem
7.6.3 (a). Hence, evu (ab) = evu (a) · evu (b) is proven. This proves Claim 3.]

Claim 1 is proven in the same way as Claim 3. Claims 2 and 4 follow easily from
Theorem 7.6.3 (c). Claims 5 and 6 are just Claims 1 and 2, repeated. Claim 7 follows
easily from Theorem 7.6.3 (b). Thus, we have proven all seven Claims 1, 2, ..., 7. As
we explained, this shows that evu is a K-algebra homomorphism. Thus, Corollary
7.6.4 holds.

The map evu in Corollary 7.6.4 is called an evaluation homomorphism (specifically,
the evaluation homomorphism at u), since it “evaluates” each polynomial at u.

Corollary 7.6.5. Let U be a K-algebra. Let u ∈ U. Then:
(a) We have (−a) [u] = −a [u] for each a ∈ K [x].
(b) We have (a− b) [u] = a [u]− b [u] for each a, b ∈ K [x].

(c) We have
(

∑
s∈S

as

)
[u] = ∑

s∈S
(as [u]) whenever S is a finite set and as ∈ K [x]

for all s ∈ S.
(d) We have (a1a2 · · · ak) [u] = a1 [u] · a2 [u] · · · · · ak [u] whenever a1, a2, . . . , ak ∈

K [x].

(e) If the ring U is commutative, then
(

∏
s∈S

as

)
[u] = ∏

s∈S
(as [u]) whenever S is

a finite set and as ∈ K [x] for all s ∈ S.
(f) We have an [u] = (a [u])n for each a ∈ K [x] and each n ∈N.
(g) We have (na) [u] = n · a [u] for each a ∈ K [x] and each n ∈ Z.

Proof of Corollary 7.6.5. Consider the map evu in Corollary 7.6.4. This map is a K-
algebra homomorphism (by Corollary 7.6.4), and thus is a ring homomorphism.
Hence, each part of Corollary 7.6.5 follows from a corresponding part of Proposi-
tion 5.9.14 (applied to K [x], U and evu instead of K, L and f ). For example, let us
show how Corollary 7.6.5 (d) follows from Proposition 5.9.14 (f):

(d) Let a1, a2, . . . , ak ∈ K [x]. Then, Proposition 5.9.14 (f) (applied to K [x], U, evu
and ai instead of K, L, f and ai) yields

evu (a1a2 · · · ak) = evu (a1) evu (a2) · · · evu (ak) .
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Since each b ∈ K [x] satisfies evu (b) = b [u] (by the definition of evu), this equality
rewrites as

(a1a2 · · · ak) [u] = a1 [u] · a2 [u] · · · · · ak [u] .

This proves Corollary 7.6.5 (d). As we said, all the other parts of Corollary 7.6.5
follow similarly from other parts of Proposition 5.9.14.

Theorem 7.6.3 and Corollary 7.6.5 (or, more abstractly, Corollary 7.6.4) justify
the Substitution slogan in general. For example, we can now prove (279) directly,
without multiplying out anything, as follows:(

x4 − (x− 1)2 (x + 1)2
)
[u]

= x4 [u]︸ ︷︷ ︸
=(x[u])4

(by Corollary 7.6.5 (f))

−
(
(x− 1)2 (x + 1)2

)
[u]︸ ︷︷ ︸

=(x−1)2[u]·(x+1)2[u]
(by the second equality of

Theorem 7.6.3 (a))

(by Corollary 7.6.5 (b))

=

 x [u]︸︷︷︸
=u

(by Theorem 7.6.3 (d))


4

− (x− 1)2 [u]︸ ︷︷ ︸
=((x−1)[u])2

(by Corollary 7.6.5 (f))

· (x + 1)2 [u]︸ ︷︷ ︸
=((x+1)[u])2

(by Corollary 7.6.5 (f))

= u4 −

 (x− 1) [u]︸ ︷︷ ︸
=x[u]−1[u]

(by Corollary 7.6.5 (b))


2

·


(x + 1) [u]︸ ︷︷ ︸
=x[u]+1[u]

(by the first equality of
Theorem 7.6.3 (a))



2

= u4 − (x [u]− 1 [u])2 · (x [u] + 1 [u])2

= u4 −

 x [u]︸︷︷︸
=u

(by Theorem 7.6.3 (d))

− 1 [u]︸︷︷︸
=1

(by Theorem 7.6.3 (c))


2

·

 x [u]︸︷︷︸
=u

(by Theorem 7.6.3 (d))

+ 1 [u]︸︷︷︸
=1

(by Theorem 7.6.3 (c))


2

(since our “1” here really means “1”)

= u4 − (u− 1)2 (u + 1)2 .

This argument was completely straightforward (despite its length); all we did was
“opening the parentheses”204 using whatever part of Theorem 7.6.3 or Corollary
7.6.5 would let us do that.

204more formally: rewriting an expression of the form “(something complicated) [u]” in terms of
one or several expressions of the form “(something simpler) [u]”
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Thanks to Corollary 7.6.4 (or the Substitution slogan), the polynomial ring K [x]
is a sort of “forge” for identities that concern an arbitrary element u of an arbitrary
K-algebra U. For example, if you want to prove the identity

u3 − u = u (u− 1) (u + 1) for any K-algebra U and any u ∈ U,

then it suffices to prove the identity

x3 − x = x (x− 1) (x + 1) in K [x]

and then apply evu to both sides of it (or, less formally, take the values of both
sides at u, and simplify them using the Substitution slogan). Indeed, the map evu
sends x to u and is a K-algebra homomorphism, whence it also sends x3 − x to
u3 − u and sends x (x− 1) (x + 1) to u (u− 1) (u + 1). The Substitution slogan is
saying this at a more concrete level: Indeed, applying the map evu is tantamount
to “substituting u for x” in a polynomial.

Remark 7.6.6. Let U be a K-algebra. Let u ∈ U. We have defined a [u] for
a ∈ K [x]. We can try to define it for arbitrary a = (a0, a1, a2, . . .) ∈ K [[x]] as
well. But in general, this will not work, since the sum ∑

k∈N

akuk may not be well-

defined. However, if u itself is a FPS (that is, u ∈ K [[x]]) and satisfies
[
x0] u = 0,

then the family
(
akuk)

k∈N
is summable (because in this case, we have[

x0
] (

uk
)
=
[

x1
] (

uk
)
= · · · =

[
xk−1

] (
uk
)
= 0

for all k ∈ N), and therefore a [u] is well-defined. For example, a
[
x2] is well-

defined, and more generally, a
[
xk] is well-defined for every positive integer k;

but a [1] is not well-defined.

We now define the concept of a root of a polynomial:

Definition 7.6.7. Let U be a K-algebra. Let u ∈ U. Let a ∈ K [x].
We say that u is a root of a if a [u] = 0.

This is a very general notion of “root” that we have just defined. You may be
used to the idea that a polynomial a ∈ K [x] can have roots in the ring K itself,
but we are allowing roots in any arbitrary K-algebra (e.g., in a matrix algebra
Kn×n or even in the polynomial ring K [x] itself). For example, the roots of the
polynomial x (x− 1) in a K-algebra U are the idempotent elements of U, because



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 513

for any element u ∈ U, we have the following equivalence:

(u is a root of x (x− 1))

⇐⇒

(x (x− 1)) [u]︸ ︷︷ ︸
=x[u]·(x−1)[u]

= 0

 ⇐⇒
x [u]︸︷︷︸

=u

· (x− 1) [u]︸ ︷︷ ︸
=u−1

= 0



⇐⇒

u · (u− 1)︸ ︷︷ ︸
=u2−u

= 0

 ⇐⇒ (
u2 − u = 0

)
⇐⇒

(
u2 = u

)
⇐⇒ (u is idempotent) .

If U is a field, then the only idempotent elements of U are 0 and 1 (because u ·
(u− 1) = 0 implies that u or u− 1 is 0). Otherwise, there can be more idempotent
elements; for example, Z/6 has the four idempotent elements [0]6 , [1]6 , [3]6 , [4]6.

We now define divisibility of polynomials in the same way as we defined divisi-
bility of integers (Definition 2.2.1) and divisibility of Gaussian integers (Definition
4.2.17):

Definition 7.6.8. Let a and b be two polynomials in K [x]. We say that a | b (or,
more precisely, “a | b in K [x]”) if there exists a c ∈ K [x] such that b = ac.

Be aware that this is a somewhat slippery notion, as its meaning depends on K,
which is not reflected in the notation “a | b”. For example, the two polynomials

1 + x and 2 + 2x satisfy 2 + 2x | 1 + x when K = Q (since 1 + x = (2 + 2x) · 1
2

), but
not when K = Z. Thus, when ambiguity is possible, K should be specified (i.e.,
you should write “a | b in K [x]” rather than just “a | b”).

The roots of a polynomial a ∈ K [x] are closely connected to divisors of a –
specifically, ones of the form x− u:

Proposition 7.6.9. Let a be a polynomial in K [x]. Let u ∈ K. Then,

(u is a root of a)⇐⇒ (x− u | a) .

(Of course, x− u means x− u.)

Proof of Proposition 7.6.9. =⇒: Assume that u is a root of a. We must prove that
x− u | a.

We have x− u ∈ K [x]≤1, and the coefficient
[
x1] (x− u) ∈ K is invertible (since

this coefficient is 1). Thus, Theorem 7.5.1 (a) (applied to m = 1 and b = x −
u) shows that there exists a unique pair (q, r) of polynomials such that a = q ·
(x− u) + r and r ∈ K [x]≤1−1. Consider this pair.

Now,

r ∈ K [x]≤1−1 = K [x]≤0 = {a | a ∈ K} (by Example 7.4.2 (a))

= {b | b ∈ K} .
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In other words, r = b for some b ∈ K. Consider this b. Thus, a = q · (x− u) +
r︸︷︷︸
=b

= q · (x− u) + b.

We can substitute u for x in this equation (i.e., apply the K-algebra homomor-
phism evu to both sides of it), and obtain

a [u] = (q · (x− u) + b) [u] = q [u] · (x− u) [u]︸ ︷︷ ︸
=u−u=0

+ b [u]︸︷︷︸
=b

= q [u] · 0︸ ︷︷ ︸
=0

+b = b.

Thus, b = a [u] = 0 (since u is a root of a). Hence, b = 0, so that

a = q · (x− u) + b︸︷︷︸
=0

= q · (x− u) , and thus x− u | a.

Thus, the “=⇒” direction of Proposition 7.6.9 is proven.
⇐=: Assume that x− u | a. We must prove that u is a root of a.
We have x − u | a. In other words, a = (x− u) · c for some polynomial c.

Substituting u for x in this equation, we obtain

a [u] = (u− u)︸ ︷︷ ︸
=0

·c [u] = 0,

so that u is a root of a. Thus, the “⇐=” direction of Proposition 7.6.9 is proven.

Example 7.6.10. Let K = Z/6 and a = x2 − x. Then, the roots of a in K are pre-
cisely the idempotent elements of K; these are 0, 1, 3, 4. So the previous proposi-
tion yields that x− 0, x− 1, x− 3 and x− 4 all divide a. However, this does not
mean that the product (x− 0) (x− 1) (x− 3) (x− 4) divides a. Instead, we have

a = (x− 0) (x− 1) = (x− 3) (x− 4) in K [x] .

If this example appears weird, keep in mind that Z/6 is not a field. When K is
a field, the polynomial ring K [x] behaves very much like Z or Z [i]: We have divi-
sion with remainder by any nonzero polynomial; we have gcds; we have a notion
of “primes” (which are called irreducible polynomials); and every nonzero poly-
nomial has a unique factorization into primes (up to units, which are the nonzero
constant polynomials). But when K is merely a commutative ring, this can all break
down; in particular, Example 7.6.10 shows that the factorization into primes (when
it exists) is not unique.

The following theorem is often called the “easy half of the Fundamental Theorem of
Algebra”:

Theorem 7.6.11. Let K be a field. Let n ∈ N. Then, any nonzero polynomial
a ∈ K [x] of degree ≤ n has at most n roots in K. (We are not counting the roots
with multiplicity here.)
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Proof of Theorem 7.6.11. Induction on n.
The base case (n = 0) is obvious, since a nonzero constant polynomial has no

roots.
Induction step: Let n be a positive integer. Assume (as induction hypothesis) that

any nonzero polynomial of degree ≤ n− 1 has at most n− 1 roots in K. We must
prove the analogous fact for n.

Let a ∈ K [x] be a nonzero polynomial of degree ≤ n. We must prove that a has
at most n roots in K. If a has no roots at all, then we are done. So WLOG assume
that a has a root u ∈ K. Then, x− u | a (by Proposition 7.6.9). Hence,

a = (x− u) · c for some c ∈ K [x] .

Consider this c. From a = (x− u) · c, we obtain

deg a = deg ((x− u) · c) = deg (x− u)︸ ︷︷ ︸
=1

+deg c (since K is a field)

= 1 + deg c,

so that deg c = deg a︸ ︷︷ ︸
≤n

−1 ≤ n− 1. Thus, c is a polynomial of degree ≤ n− 1, and

thus has at most n− 1 roots in K (by the induction hypothesis).
Next, we claim that every root of a other than u must be a root of c.
[Proof: Let v be a root of a other than u. We must prove that v is a root of c.
By definition of v, we have v 6= u and a [v] = 0. From v 6= u, we obtain v− u 6= 0,

and thus v − u ∈ K is invertible (since K is a field). But substituting v for x in
a = (x− u) · c, we obtain

a [v] = (v− u) · c [v] .

Thus, (v− u) · c [v] = a [v] = 0. We can divide this equation by v− u (since v− u
is invertible), and thus obtain c [v] = 0. In other words, v is a root of c. As we
claimed.]

The claim that we just proved shows that a has at most one more root than c.
Thus, a has at most n roots (since c has at most n− 1 roots). This completes the
induction step. Hence, Theorem 7.6.11 is proven.

When K is just an arbitrary field, the number of roots of a degree-n nonzero
polynomial over K can be much smaller than n. For example, the polynomial
x2 + 1 ∈ R [x] has 0 roots in R (but it has 2 roots in C). The “hard half” of the
Fundamental Theorem of Algebra says that a nonzero polynomial a ∈ C [x] of
degree n has exactly n roots in C, counted with multiplicity. As I said before, this
is not a theorem of algebra, since it relies on the fact that C has a topology and is
closed in this topology.

Next comes a little potpourri of properties of polynomials:
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Proposition 7.6.12. Let a and b be two nonzero polynomials in K [x].
(a) We have deg (a [b]) ≤ deg a · deg b.
(b) If K is a field, then this inequality is an equality.

Proof of Proposition 7.6.12. Easy.

Proposition 7.6.13. Let U and V be two K-algebras. Let f : U → V be a K-
algebra homomorphism. Let u ∈ U and a ∈ K [x]. Then,

f (a [u]) = a [ f (u)] .

Proof of Proposition 7.6.13. For example, if a = x3 + 2x + 5, then this is saying

f
(

u3 + 2u + 5
)
= ( f (u))3 + 2 f (u) + 5

(because a [u] = u3 + 2u + 5 and a [ f (u)] = ( f (u))3 + 2 f (u) + 5 in this case). But
this equality is true, since f preserves addition, multiplication, scaling, zero and
unity (because f is a K-algebra homomorphism).

The proof of Proposition 7.6.13 in the general case follows this example. Here
are the details:

First we notice that f is a ring homomorphism (since f is a K-algebra homomorphism).
Thus,

f
(

uk
)
= ( f (u))k for all k ∈N (281)

(by Proposition 5.9.14 (h), applied to U, V, u and k instead of K, L, a and n). Now, write
the polynomial a ∈ K [x] in the form a = (a0, a1, a2, . . .). Then, the definition of a [u] yields

a [u] = ∑
k∈N

akuk, (282)

whereas the definition of a [ f (u)] yields

a [ f (u)] = ∑
k∈N

ak ( f (u))k . (283)

Now, applying the map f to both sides of the equality (282), we find

f (a [u]) = f

(
∑

k∈N

akuk

)
= ∑

k∈N

f
(

akuk
)

. (284)

Here, the last equality sign needs a bit of a justification. It is tempting to say that this
equality sign follows from Proposition 5.9.14 (e), but this is not quite precise: The set S in
Proposition 5.9.14 (e) is required to be finite, while the set N, which the sums in (284) are
ranging over, is infinite. However, a is a polynomial; in other words, all but finitely many
i ∈N satisfy ai = 0 (by the definition of a polynomial). In other words, there exists a finite
subset S of Z such that

all i ∈N \ S satisfy ai = 0. (285)
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Consider this S. Now, each k ∈ N satisfies either k ∈ S or k /∈ S (but not both at once);
hence,

∑
k∈N

akuk = ∑
k∈N;
k∈S︸︷︷︸
= ∑

k∈S
(since S⊆N)

akuk + ∑
k∈N;
k/∈S︸︷︷︸

= ∑
k∈N\S

akuk = ∑
k∈S

akuk + ∑
k∈N\S

ak︸︷︷︸
=0

(by (285),
applied to i=k)

uk

= ∑
k∈S

akuk + ∑
k∈N\S

0uk

︸ ︷︷ ︸
=0

= ∑
k∈S

akuk.

Applying the map f to both sides of this equality, we find

f

(
∑

k∈N

akuk

)
= f

(
∑
k∈S

akuk

)
= ∑

k∈S
f
(

akuk
)

(286)

(by Proposition 5.9.14 (e), since the set S is finite). But if k ∈ N \ S, then ak = 0 (by (285),
applied to i = k) and thus ak︸︷︷︸

=0

uk = 0 and thus

f

akuk︸︷︷︸
=0

 = f (0) = 0 (287)

(since f is a K-linear map205). Now, again, recall that each k ∈ N satisfies either k ∈ S or
k /∈ S (but not both at once); hence,

∑
k∈N

f
(

akuk
)
= ∑

k∈N;
k∈S︸︷︷︸
= ∑

k∈S
(since S⊆N)

f
(

akuk
)
+ ∑

k∈N;
k/∈S︸︷︷︸

= ∑
k∈N\S

f
(

akuk
)
= ∑

k∈S
f
(

akuk
)
+ ∑

k∈N\S
f
(

akuk
)

︸ ︷︷ ︸
=0

(by (287))

= ∑
k∈S

f (akuk) .

Comparing this with (286), we obtain f
(

∑
k∈N

akuk
)

= ∑
k∈N

f
(
akuk). Thus, the last equality

sign in (284) has been justified. (This sort of straightforward argument is commonly left
unsaid when working with polynomials, because it is almost completely automatic; the
main idea is “reduce the infinite sum to a finite sum by throwing out vanishing addends”.)

Now that (284) is proven, we can move on. The map f is K-linear (since it is a K-algebra
homomorphism). Hence, for each k ∈N, we have

f
(

akuk
)
= ak f

(
uk
)

︸ ︷︷ ︸
=( f (u))k

(by (281))

= ak ( f (u))k .

205because f is a K-algebra homomorphism
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Hence, (284) rewrites as
f (a [u]) = ∑

k∈N

ak ( f (u))k .

Comparing this with (283), we obtain f (a [u]) = a [ f (u)]. Thus, Proposition 7.6.13 is
proven.

Proposition 7.6.14. Let U be a K-algebra. Let u ∈ U. Let a, b ∈ K [x]. Then,

a [b [u]] = (a [b]) [u] .

Proof of Proposition 7.6.14. The map evu : K [x]→ U is a K-algebra homomorphism
(by Corollary 7.6.4). Hence, Proposition 7.6.13 (applied to K [x], U, evu and b
instead of U, V, f and u) yields evu (a [b]) = a [evu (b)]. But the definition of evu
yields evu (b) = b [u] and evu (a [b]) = (a [b]) [u]. Hence, (a [b]) [u] = evu (a [b]) =

a

evu (b)︸ ︷︷ ︸
=b[u]

 = a [b [u]]. This proves Proposition 7.6.14.

One more notation is needed for the next section.

Definition 7.6.15. Let L be a ring that contains Q as a subring. (For example, L

can be R or C or Q [x].)

Recall that in Definition 2.17.1, we have defined the binomial coefficient
(

n
k

)
for all n ∈ Q and k ∈ Q. We extend the very same definition to all n ∈ L.

Thus, in particular, we have a polynomial
(

x
k

)
∈ Q [x] for each k ∈ Q. This

polynomial
(

x
k

)
is explicitly given by

(
x
k

)
=

x (x− 1) (x− 2) · · · (x− k + 1)
k!

when k ∈N (288)

(and equals 0 when k /∈ N). More generally, for each polynomial a ∈ Q [x] and
each k ∈N, we have a polynomial(

a
k

)
=

a (a− 1) (a− 2) · · · (a− k + 1)
k!

. (289)

The following is easy:

Corollary 7.6.16. Let k ∈N.

(a) Then,
(

x
k

)
is a polynomial of degree k.
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(b) For each u ∈ Q, we have
(

x
k

)
[u] =

(
u
k

)
.

(c) For each a ∈ Q [x] and u ∈ Q, we have
(

a
k

)
[u] =

(
a [u]

k

)
.

Proof of Corollary 7.6.16. (a) This follows from (288) and Proposition 7.4.13 (b) (ap-
plied to ai = x− i + 1).

(b) Let u ∈ Q. Evaluating both sides of the equality (288) at u (that is, applying
the evaluation homomorphism evu : Q [x]→ Q to this equality), we obtain(

x
k

)
[u] =

x (x− 1) (x− 2) · · · (x− k + 1)
k!

[u]

=
(x [u]) (x [u]− 1 [u]) (x [u]− 2 [u]) · · · (x [u]− (k− 1) [u])

k!
(since evu is a Q-algebra homomorphism)

=
u (u− 1) (u− 2) · · · (u− k + 1)

k!
(since x [u] = u and i [u] = i for all integers i)

=

(
u
k

) (
by the definition of

(
u
k

))
.

This proves Corollary 7.6.16 (b).
(c) Let a ∈ Q [x] and u ∈ Q. Evaluating both sides of the equality (289) at u (that

is, applying the evaluation homomorphism evu : Q [x] → Q to this equality), we
obtain (

a
k

)
[u] =

a (a− 1) (a− 2) · · · (a− k + 1)
k!

[u]

=
(a [u]) (a [u]− 1 [u]) (a [u]− 2 [u]) · · · (a [u]− (k− 1) [u])

k!
(since evu is a Q-algebra homomorphism)

=
(a [u]) (a [u]− 1) (a [u]− 2) · · · (a [u]− k + 1)

k!
(since i [u] = i for all integers i)

=

(
a [u]

k

) (
by the definition of

(
a [u]

k

))
.

This proves Corollary 7.6.16 (c).

7.7. The polynomial identity trick
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Convention 7.7.1. For this whole section, let K be a field.

7.7.1. Enough equal values make polynomials equal

Corollary 7.7.2. Let a and b be two polynomials of degree ≤ n over the field
K. Assume that at least n + 1 many elements u ∈ K satisfy a [u] = b [u]. Then,
a = b.

Proof of Corollary 7.7.2. Clearly, a− b is a polynomial of degree ≤ n.
Moreover, at least n + 1 many elements u ∈ K satisfy (a− b) [u] = 0 (since this

is what a [u] = b [u] means). In other words, the polynomial a− b must have at
least n + 1 roots in K.

But Theorem 7.6.11 (applied to a− b instead of a) yields that if a− b is nonzero,
then a− b has at most n roots in K. This would contradict the preceding sentence.
So a− b cannot be nonzero. In other words, a− b = 0. In other words, a = b. This
proves Corollary 7.7.2.

I like to refer to the following corollary as “the polynomial identity trick”:

Corollary 7.7.3. Let a and b be two polynomials over the field K. Assume that
infinitely many elements u ∈ K satisfy a [u] = b [u]. Then, a = b.

Proof of Corollary 7.7.3. Choose an n ∈N such that a and b have degree ≤ n. Then,
apply Corollary 7.7.2.

Example 7.7.4. Corollary 7.7.3 can be false when K is not a field. For an example,
pick any infinite set S, and let K be the commutative ring (P (S) ,4,∩,∅, S)
constructed in Section 5.2. Let n = 2, a = x2 − x and b = 0. Then, each
u ∈ K satisfies a [u] = b [u] (because a [u] = u2 − u = u ∩ u︸ ︷︷ ︸

=u

−u = u− u = ∅ =

0K = 0 [u] = b [u]); thus, in particular, infinitely many elements u ∈ K satisfy
a [u] = b [u]. But it is not true that a = b.

We can now prove Proposition 2.17.16:

Proof of Proposition 2.17.16. The polynomials P and Q are polynomials over the field
Q. We have assumed that infinitely many u ∈ Q satisfy P (u) = Q (u). In other
words, infinitely many u ∈ Q satisfy P [u] = Q [u] (since we are now using the
notation a [u] for what we previously denoted by a (u)). Hence, Corollary 7.7.3
(applied to K = Q, a = P and b = Q) yields P = Q. This proves Proposition
2.17.16.

We can now finish our proof of Theorem 2.17.14 by putting on solid ground
everything we used about polynomials in that proof:
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Finishing touches to our proof of Theorem 2.17.14. In the proof of Lemma 2.17.17, we
defined two polynomials P and Q by (85) and (86). Both of these P and Q are well-
defined polynomials in Q [x], due to Corollary 7.6.16. Moreover, substituting u for x
into these polynomials works exactly as we claimed in our proof of Lemma 2.17.17

(i.e., for example, we have P (u) =
(

u + b
n

)
), due to parts (b) and (c) of Corollary

7.6.16. The same holds for the polynomials P and Q defined in the proof of Lemma
2.17.18. But these two lemmas were the only places in which polynomials were
used in our above proof of Theorem 2.17.14. Hence, our proof of Theorem 2.17.14
is now on solid ground.

7.7.2. Lagrange interpolation

Corollary 7.7.2 shows that for any n ∈ N, a polynomial of degree ≤ n over a field
K is uniquely determined by its values on any n + 1 (given) distinct elements of K.
There is a matching existence claim to this uniqueness claim: To any choice of val-
ues at any n + 1 given distinct elements of K, you can find excatly one polynomial
of degree ≤ n over K that takes these values at these elements. This polynomial
can even be determined explicitly, as the following theorem shows:

Theorem 7.7.5. Let n ∈ N. Let a1, a2, . . . , an+1 be n + 1 distinct elements of a
field K. Let b1, b2, . . . , bn+1 be n + 1 arbitrary elements of K.

(a) There is a unique polynomial f ∈ K [x]≤n satisfying

(f [ai] = bi for all i ∈ {1, 2, . . . , n + 1}) . (290)

(b) This polynomial f is given by

f =
n+1

∑
j=1

bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

)
(where the “ ∏

k 6=j
” signs mean “ ∏

k∈{1,2,...,n+1};
k 6=j

”).

Theorem 7.7.5 is known as the Lagrange interpolation theorem. Before we prove
it, let us remark that it generalizes (and concretizes) Proposition 1.6.6 (which is
its particular case for n = 2 and K = Q or K = R). After proving it, we will
discuss how it helps make Shamir’s Secret Sharing Scheme work. We also notice
that Theorem 7.7.5 requires K to be a field; when K is merely a commutative
ring, both the “existence” and “uniqueness” parts of Theorem 7.7.5 (a) may fail,
and the fractions appearing in Theorem 7.7.5 (b) may fail to be well-defined (since
their denominators aj − ak may fail to be invertible). We have already witnessed
the failure of the “existence” part of Theorem 7.7.5 (a) in the case when K = Z:
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Indeed, if we set

n = 2, a1 = 0, a2 = 1, a3 = 2,
b1 = 0, b2 = 0, b3 = 1,

then there exists no polynomial f ∈ Z [x]≤2 satisfying f [ai] = bi for all i ∈ {1, 2, 3}.

(The polynomial
(

x
2

)
would satisfy this, but it is not a polynomial in Z [x]≤2, since

its coefficients are not integers. We have already observed this in Example 2.17.24
(a).)

Proof of Theorem 7.7.5. Define a polynomial g ∈ K [x] by

g =
n+1

∑
j=1

bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

) (291)

(where the “ ∏
k 6=j

” signs mean “ ∏
k∈{1,2,...,n+1};

k 6=j

”). Note that g is well-defined; indeed,

all the differences aj − ak appearing in the denominators are nonzero (because
a1, a2, . . . , an+1 are distinct) and thus invertible (since K is a field).

Each of the n + 1 addends bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

) on the right hand side of (291) belongs

to K [x]≤n
206. Hence, their sum must belong to K [x]≤n as well (since K [x]≤n is

a K-module). In other words, g belongs to K [x]≤n (since (291) shows that the sum
of these n + 1 addends is g). In other words, g ∈ K [x]≤n.

If i ∈ {1, 2, . . . , n + 1} and j ∈ {1, 2, . . . , n + 1} satisfy j 6= i, then we have

∏
k 6=j

(ai − ak) = 0 (292)

(because in this case, the product ∏
k 6=j

(ai − ak) contains the factor ai− ai (since i 6= j),

but this factor is 0, and therefore the whole product is 0).

206Proof. Let j ∈ {1, 2, . . . , n + 1}. We must prove that bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

) ∈ K [x]≤n.

Indeed, the product ∏
k 6=j

(x− ak) has exactly n factors, each of which is a polynomial of degree

1. Thus, this product has degree ≤ n (by Proposition 7.4.13 (a)), i.e., belongs to K [x]≤n. The

polynomial bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

) is obtained by scaling this product by
bj

∏
k 6=j

(
aj − ak

) ∈ K; thus, it also

belongs to K [x]≤n (since K [x]≤n is a K-module). Qed.
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For each i ∈ {1, 2, . . . , n + 1}, we have

g [ai] =

n+1

∑
j=1

bj

∏
k 6=j

(x− ak)

∏
k 6=j

(
aj − ak

)
 [ai] (by the definition of g)

=
n+1

∑
j=1

bj

∏
k 6=j

(ai − ak)

∏
k 6=j

(
aj − ak

)

= bi

∏
k 6=i

(ai − ak)

∏
k 6=i

(ai − ak)︸ ︷︷ ︸
=1

+ ∑
j∈{1,2,...,n+1};

j 6=i

bj

∏
k 6=j

(ai − ak)

∏
k 6=j

(
aj − ak

)
︸ ︷︷ ︸

=0
(by (292))

(here, we have split off the addend for j = i from the sum)

= bi + ∑
j∈{1,2,...,n+1};

j 6=i

bj0

︸ ︷︷ ︸
=0

= bi.

Hence, g is a polynomial f ∈ K [x]≤n satisfying (290) (since we already know that
g ∈ K [x]≤n).

(a) We need to prove that there is a unique polynomial f ∈ K [x]≤n satisfying
(290). We already know that such an f exists (because we have just shown that g
is such an f); thus, it remains to prove its uniqueness. In other words, we need to
prove the following claim:

Claim 1: Let f1 and f2 be two polynomials f ∈ K [x]≤n satisfying (290).
Then, f1 = f2.

[Proof of Claim 1: We have assumed that f1 is a polynomial f ∈ K [x]≤n satisfying
(290). In other words, f1 ∈ K [x]≤n is a polynomial and satisfies

f1 [ai] = bi for all i ∈ {1, 2, . . . , n + 1} . (293)

Similarly, f2 ∈ K [x]≤n is a polynomial and satisfies

f2 [ai] = bi for all i ∈ {1, 2, . . . , n + 1} . (294)

The polynomials f1 and f2 belong to K [x]≤n; in other words, they have degree
≤ n. Moreover, each i ∈ {1, 2, . . . , n + 1} satisfies f1 [ai] = f2 [ai] (as we can see
by comparing (293) with (294)). Thus, at least n + 1 many elements u ∈ K satisfy
f1 [u] = f2 [u] (namely, the n + 1 elements a1, a2, . . . , an+1 satisfy this207). Hence,

207Recall that a1, a2, . . . , an+1 are distinct (by assumption), so they actually do constitute n + 1 many
elements u ∈ K.
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Corollary 7.7.2 (applied to a = f1 and b = f2) shows that f1 = f2. This proves
Claim 1.]

Now, our proof of Theorem 7.7.5 (a) is complete.
(b) In our above proof of Theorem 7.7.5 (a), we have shown not just that there

is a unique polynomial f ∈ K [x]≤n satisfying (290); we have also shown that g is
such a polynomial. But since this f is unique, this means that g is the only such
polynomial. This proves Theorem 7.7.5 (b).

7.7.3. Application: Curve fitting

Theorem 7.7.5 has multiple applications.
The most obvious one is to treat Theorem 7.7.5 as an interpolation theorem:

Roughly speaking, it says that n + 1 values (at distinct points) in a field can always
be fit by a unique polynomial of degree ≤ n. See the Wikipedia pages for Lagrange
polynomials and polynomial interpolation, but beware that this is not the kind of
interpolation that is a good choice for curve-fitting practical datasets (which rarely
follow a polynomial rule). It is best suited for interpolating functions when you can
freely choose the points at which you sample (i.e., the ai in Theorem 7.7.5); certain
choices of ai fare much better than others. Thus, Lagrange interpolation can also
be used in designing numerical quadrature rules. See [Trefet11] for details.

7.7.4. Application: Shamir’s Secret Sharing Scheme

Here is another application of Theorem 7.7.5. Shamir’s Secret Sharing Scheme
(as presented in Subsection 1.6.7 and fixed in Remark 5.6.3) can now finally be
implemented concretely. Indeed, consider the setting of Section 1.6 with general n
and k, and assume that the secret a that we want to distribute is a bitstring of length
N. As in Remark 5.6.3, we pick a prime p such that both p ≥ 2N and p > n, and
we encode a as a residue class α ∈ Z/p. Pick k − 1 uniformly random elements
β1, β2, . . . , βk−1 of Z/p, and define the polynomial

f = βk−1xk−1 + βk−2xk−2 + · · ·+ β1x1 + α ∈ (Z/p) [x]≤k−1 .

Reveal to each person i ∈ {1, 2, . . . , n} the value f
[
[i]p
]
. Then, Theorem 7.7.5

(applied to k − 1 instead of n) shows that any k of the n people can uniquely re-
construct f (since they know the values of f at k distinct elements of Z/p 208),
whereas k− 1 of the n people cannot gain any knowledge about the secret a (since
they only know the values of f at k− 1 nonzero elements of Z/p 209, and these
values could be combined with any possible value at [0]p to form a valid poly-
nomial in (Z/p) [x]≤k−1). Thus, both Requirements 1 and 2 from Section 1.6 are
satisfied. This is Shamir’s Secret Sharing Scheme in its final form.

208Here we are using the fact that the elements [1]p , [2]p , . . . , [n]p of Z/p are distinct (since p > n).
209Here we are using the fact that the elements [1]p , [2]p , . . . , [n]p of Z/p are nonzero (since p > n).

https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Lagrange_polynomial
https://en.wikipedia.org/wiki/Polynomial_interpolation
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Instead of Z/p we could have used any finite field F whose size is ≥ 2N and > n,
but we would need to be careful, since the elements [1]p , [2]p , . . . , [n]p would no
longer necessarily be distinct and nonzero. Thus, we would have to use n distinct
nonzero elements of F instead.

7.7.5. Application: Reed–Solomon codes

Finally, here is a far more important application of Theorem 7.7.5.
Assume that you want to send digital data over a noisy channel (e.g., radio).

“Noisy” means that the transmission will introduce errors, and you expect (e.g.)
that every bit you send has a small probability p of getting corrupted on its way210.
You want to ensure that the recepient gets the correct bits that you sent him.211

How can you do this?
Of course, you cannot guarantee this with complete surety. But there are several

schemes that you can use to make it rather likely. They are called error-correcting
codes.

• For instance, let us assume you have agreed with your recepient that you will
be sending each bit twice in a row. Then, if the recepient gets two different
bits when they expect the same bit sent twice, he can immediately tell that a
bit got corrupted on its way. He cannot tell which bit you meant to send him –
but at least he knows that he cannot trust the ones he got.212 Of course, there
is a probability that he got the wrong bit twice, in which case he is clueless
about it being wrong; but this probability is p2, which is a lot smaller than p.
This is called error detection.

• An even better scheme is to send each bit thrice in a row. This way, your
recipient can not only tell if some bit was corrupted (with an even smaller
probability of falsely believing that everything went right – namely, p3); he
can also try to guess which bit is the right one, by the “majority rule” (i.e.,
among the 3 bits he obtained, he chooses the one that appears more often).
This is called error correction.

• But sending each bit multiple times is not the only thing you can do; you can
also mix several bits together. For example, you can follow every four bits
a, b, c, d that you are sending with the three bits

a + b + d, a + c + d, b + c + d,
210“Corrupted” means that the recepient will receive a 0 instead of 1, or a 1 instead of a 0. For

simplicity, we assume that bits will not be lost, and the order in which they are received is the
order in which they are sent (so, e.g., messenger pigeons are not the kind of channel we are
considering).

211Another, mostly equivalent, version of this problem is long-term storage of data on a medium
(e.g., a hard drive, a DVD, paper or a scroll) that gradually decays. Here, the sender is you when
you are storing the data; the recepient is you (or whoever wants to read it) in the future. That’s
a noisy channel!

212If he can talk back to you, this means he can ask you to resend the correct one.

https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Error_correction_code
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where you are regarding bits as elements of Z/2 (so that, for example, 1 +
1+ 1 = 1). Thus, you are sending 7 bits instead of 4 bits, but the transmission
has become a lot safer, because:

– If at most 2 of the 7 bits get corrupted along the way, the recepient will
be able to tell that something went wrong. (In the language of coding
theory, this is saying that your code detects up to 2 errors.)

– If at most 1 of the 7 bits gets corrupted along the way, the recepient will
be able to guess the bits you intended to send213. (In the language of
coding theory, this is saying that your code corrects up to 1 error.)

This scheme is called the Hamming(7, 4) code, and was invented by Richard
W. Hamming in 1950 as a tool to make error-prone punch card readers less
likely to fail.

• Here is yet another error-correcting code, which makes use of finite fields.
Fix two integers d, e ∈ N such that d < e, as well as a finite field K and e
distinct elements a1, a2, . . . , ae of K. (You have to agree on these in advance
with your recepient. Of course, the field must satisfy |K| ≥ e.) Now, instead
of transmitting bits, you transmit elements of K. (This does not require a
different kind of channel; you can always, under the hood, re-encode your
elements of K into bitstrings and send those as bits via the channel that you
have.214) Now, when you want to send d + 1 elements u0, u1, . . . , ud of K over
the channel, you instead form the polynomial

f = u0 + u1x + · · ·+ udxd ∈ K [x]≤d ,

and transmit the e values f [a1] , f [a2] , . . . , f [ae] of this polynomial. The re-
cepient will then receive e values of the polynomial f. If all of these values
have been transmitted correctly, then he will be able to pick any d + 1 of
these values215 and use them to reconstruct f (and therefore, your messages
u0, u1, . . . , ud) via Theorem 7.7.5. If at most e− d− 1 of these e values get cor-
rupted along the way, he will be able to recognize that something is wrong216.
Thus, this code detects up to e− d− 1 errors. It furthermore corrects up to⌊

e− d− 1
2

⌋
errors (i.e., there is a way in which the recepient can guess your

original messages, and if no more than
⌊

e− d− 1
2

⌋
of your e values have

gotten corrupted, then his guess will be right).

213without having to ask you to re-send them
214Of course, an element of K is more likely to get corrupted along the way than a single bit (if
|K| > 2), because it will be encoded as several bits (and each of them can get corrupted). But
this is par for the course: After all, an element of K carries more information than a bit, too.

215He can do this, since e ≥ d + 1.
216e.g., by attempting to recover f using some d + 1 of the values, and then checking whether the

resulting polynomial also fits the remaining e− d− 1 values

https://en.wikipedia.org/wiki/Hamming(7,4)
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This is called a Reed–Solomon code; such codes were used by the Voyager space-
craft and later in the storage of data on CDs and DVDs (as said above, storing
data on a decaying medium is transmitting it through a noisy channel).

See [Childs00, Chapter 29] for more about these codes, and see textbooks on
coding theory (e.g., [Garret07]) for much more.217

7.8. Generating functions

7.8.1. A binomial identity

Let me show a further application of the “polynomial identity trick”, which is
interesting in that it uses polynomials in two different ways.

Among many properties of Pascal’s triangle, one rather famous one is that the
sum of all entries in the n-th row is 2n. That is,

n

∑
k=0

(
n
k

)
= 2n for each n ∈N.

This is, in fact, the direct result of applying Theorem 2.17.13 to x = 1 and y = 1.
Likewise, we can apply Theorem 2.17.13 to x = −1 and y = 1, and conclude that

n

∑
k=0

(−1)k
(

n
k

)
= 0n =

{
1, if n = 0;
0, if n 6= 0

for each n ∈N.

In other words, the alternating sum of all entries in the n-th row of Pascal’s triangle
is 0, unless n = 0 (in which case it is 1).

One may wonder what happens if we start summing higher powers of the entries
of a row of Pascal’s triangle. For example, the sum of their squares has a nice
formula:

Proposition 7.8.1. Let n ∈N. Then,

n

∑
k=0

(
n
k

)2

=

(
2n
n

)
.

Proof of Proposition 7.8.1. We have

n

∑
k=0

(
n
k

)2

︸ ︷︷ ︸
=

(
n
k

)(
n
k

) =
n

∑
k=0

(
n
k

) (
n
k

)
︸︷︷︸

=

(
n

n− k

)
(by Theorem 2.17.6)

=
n

∑
k=0

(
n
k

)(
n

n− k

)
.

217Be aware that there are several different ways of defining Reed–Solomon codes; the one in
[Garret07] is not the same as ours.

https://en.wikipedia.org/wiki/Reed-Solomon_error_correction
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Comparing this with(
2n
n

)
=

(
n + n

n

)
=

n

∑
k=0

(
n
k

)(
n

n− k

) (
by Theorem 2.17.14,

applied to x = n and y = n

)
,

we obtain
n
∑

k=0

(
n
k

)2

=

(
2n
n

)
. This proves Proposition 7.8.1.

Now, what about the alternating sum of the squares of the elements of the n-th
row of Pascal’s triangle? Here, the formula turns out to be just as neat, apart from
having two cases to distinguish:

Proposition 7.8.2. Let n ∈N. Then,

n

∑
k=0

(−1)k
(

n
k

)2

=

(−1)n/2
(

n
n/2

)
, if n is even;

0, if n is odd
.

Just as we derived Proposition 7.8.1 from Theorem 2.17.14, we are going to derive
Proposition 7.8.2 from the following fact:

Theorem 7.8.3. Let u ∈ Q and n ∈N. Then,

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
.

Theorem 7.8.3 can be proven in an elementary, computational way (see [Grinbe15,
Second solution to Exercise 3.22] for this proof). Let us, however, prove it by apply-
ing polynomials strategically (this argument is [Grinbe15, First solution to Exercise
3.22], and is folklore). First, we prove the particular case of Theorem 7.8.3 for
u ∈N:

Lemma 7.8.4. Let u ∈N and n ∈N. Then,

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
.
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Proof of Lemma 7.8.4. Let K be the polynomial ring Q [x]. We have

(1− x)u (1 + x)u =

(1− x) (1 + x)︸ ︷︷ ︸
=1−x2=1+(−x2)


u

=
(

1 +
(
−x2

))u
= ∑

k∈N

(
u
k

) (
−x2

)k

︸ ︷︷ ︸
=(−1)kx2k(

by Lemma 7.3.4, applied to a = −x2
)

= ∑
k∈N

(−1)k
(

u
k

)
x2k.

Hence,

[xn]
(
(1− x)u (1 + x)u) = [xn]

(
∑

k∈N

(−1)k
(

u
k

)
x2k

)

=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
. (295)

Let us now compute the left hand side in a different way, using (218). Namely, 1− x︸ ︷︷ ︸
=1+(−x)


u

= (1 + (−x))u = ∑
k∈N

(
u
k

)
(−x)k︸ ︷︷ ︸
=(−1)kxk

(by Lemma 7.3.4, applied to a = −x)

= ∑
k∈N

(−1)k
(

u
k

)
xk.

Hence, each i ∈N satisfies

[
xi
] (

(1− x)u) = [xi
] (

∑
k∈N

(−1)k
(

u
k

)
xk

)
= (−1)i

(
u
i

)
. (296)

A similar argument (without the “−1”) shows that each i ∈N satisfies[
xi
] (

(1 + x)u) = (u
i

)
. (297)
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Now, (218) (applied to a = (1− x)u and b = (1 + x)u) yields

[xn]
(
(1− x)u (1 + x)u) = n

∑
i=0

([
xi
] (

(1− x)u))︸ ︷︷ ︸
=(−1)i

(
u
i

)
(by (296))

·
([

xn−i
] (

(1 + x)u))︸ ︷︷ ︸
=

(
u

n− i

)
(by (297), applied to n−i

instead of i)

=
n

∑
i=0

(−1)i
(

u
i

)(
u

n− i

)
=

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
(here, we have renamed the summation index i as k). Comparing this with (295),
we obtain

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
.

This proves Lemma 7.8.4.

Our proof of Lemma 7.8.4 is an example of the use of “generating functions”: We
have proven that two sequences (a0, a1, a2, . . .) and (b0, b1, b2, . . .) of numbers were
equal218 by showing that the two FPSs ∑

k∈N

akxk and ∑
k∈N

bkxk are equal. (In our case,

these two FPSs were actually the polynomials
(
1− x2)u and (1− x)u (1 + x)u. But

they don’t have to be polynomials in order for the technique of generating functions
to be applicable.) This technique is central to enumerative combinatorics, and also
has many uses in pure algebra. See [Loehr11, Chapters 7 and 8] and [Wilf94] for (a
lot) more about this technique.

We still need to prove Theorem 7.8.3, which generalizes Lemma 7.8.4 from u ∈N

to u ∈ Q. Here, polynomials come useful once again (in the same way as they came
useful when we were generalizing Lemma 2.17.15 to Lemma 2.17.17):

Proof of Theorem 7.8.3. Forget that we fixed u. Define the two polynomials

a =
n

∑
k=0

(−1)k
(

x
k

)(
x

n− k

)
and

b =

(−1)n/2
(

x
n/2

)
, if n is even;

0, if n is odd

218In our case, the two sequences are given by an =
n
∑

k=0
(−1)k

(
u
k

)(
u

n− k

)
and bn =(−1)n/2

(
u

n/2

)
, if n is even;

0, if n is odd
for all n ∈N.
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in 1 variable over the field Q. For each u ∈ Q, we have

a [u] =
n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
and (298)

b [u] =

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
(299)

(since the evaluation map evu is a Q-algebra homomorphism and satisfies Corollary
7.6.16 (b)). Thus, for each u ∈N, we have

a [u] =
n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
(by (298))

=

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
(by Lemma 7.8.4)

= b [u] (by (299)) .

Hence, infinitely many elements u ∈ Q satisfy a [u] = b [u] (since infinitely many
elements u ∈ Q satisfy u ∈ N). Thus, Corollary 7.7.3 (applied to K = Q) yields
a = b. Thus, each u ∈ Q satisfies

n

∑
k=0

(−1)k
(

u
k

)(
u

n− k

)
= a︸︷︷︸

=b

[u] (by (298))

= b [u] =

(−1)n/2
(

u
n/2

)
, if n is even;

0, if n is odd
(by (299)) .

This proves Theorem 7.8.3.

Proof of Proposition 7.8.2. We have

n

∑
k=0

(−1)k
(

n
k

)2

︸ ︷︷ ︸
=

(
n
k

)(
n
k

) =
n

∑
k=0

(−1)k
(

n
k

) (
n
k

)
︸︷︷︸

=

(
n

n− k

)
(by Theorem 2.17.6)

=
n

∑
k=0

(−1)k
(

n
k

)(
n

n− k

)

=

(−1)n/2
(

n
n/2

)
, if n is even;

0, if n is odd

(by Theorem 7.8.3, or just Lemma 7.8.4, applied to u = n). This proves Proposition
7.8.2.
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Remark 7.8.5. We now know

• the sum of all entries of the n-th row of Pascal’s triangle (it is 2n);

• the alternating sum of all entries of the n-th row of Pascal’s triangle (it is 0 if n 6= 0,
and 1 otherwise);

• the sum of the squares of all entries of the n-th row of Pascal’s triangle (it is
(

2n
n

)
);

• the alternating sum of the squares of all entries of the n-th row of Pascal’s triangle
(see Proposition 7.8.2).

How does this pattern continue? We may ask for the sum
n
∑

k=0

(
n
k

)3

of all cubes of all

entries of the n-th row of Pascal’s triangle, as well as their alternating sum.

The numbers
n
∑

k=0

(
n
k

)3

are known as the Franel numbers (OEIS sequence A000172); no

explicit (sum-less) formula for them is known (unlike for the sums of squares).
As for the alternating sum, however, there is a nice formula:

n

∑
k=0

(−1)k
(

n
k

)3

=

(−1)n/2 (3n/2)!
(n/2)!3

, if n is even;

0, if n is odd
for all n ∈N.

In the case when n is odd, this formula is easy to check (indeed, in the sum
n
∑

k=0
(−1)k

(
n
k

)3

, the addend for k = u cancels the addend for k = n − u). In the case

when n is even, it is a particular case of what is known as Dixon’s identity (see, e.g.,
[Ward91]). The sequence of these alternating sums is OEIS sequence A245086.

Higher powers are even more complicated. For example, as far as fourth powers are

concerned, neither
n
∑

k=0

(
n
k

)4

nor
n
∑

k=0
(−1)k

(
n
k

)4

has a known explicit form (see OEIS

sequences A005260 and A228304).

7.8.2. Proving Lucas’s congruence

Recall Lucas’s congruence (Theorem 2.17.20), which we have left unproven back
when we were studying binomial coefficients. Let us now outline how it can be
proven using polynomials and FPSs. We first shall prove a particular case:

Lemma 7.8.6. Let a ∈N and b ∈N. Then, we have the four congruences(
2a
2b

)
≡
(

a
b

)
mod 2;

(
2a

2b + 1

)
≡ 0 mod 2;(

2a + 1
2b

)
≡
(

a
b

)
mod 2;

(
2a + 1
2b + 1

)
≡
(

a
b

)
mod 2.

https://oeis.org/A000172
https://en.wikipedia.org/wiki/Dixon's_identity
https://oeis.org/A245086
https://oeis.org/A005260
https://oeis.org/A228304
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Lemma 7.8.6 is a very particular case of Theorem 2.17.20 – namely, the one when
p = 2 and a ∈ N and b ∈ N. (The four congruences correspond to the four
different options for the pair (c, d) ∈ {0, 1, . . . , p− 1}2.) Nevertheless, it is already
the reason for a curious pattern: If you plot the first 2n rows of Pascal’s triangle (for
some n ∈ N), and color all odd entries black and all even entries white, then you
obtain an (approximation to) Sierpinski’s triangle (the fractal). Lemma 7.8.6 can be
used to prove this (by induction on n).

Proof of Lemma 7.8.6 (sketched). Work in the polynomial ring (Z/2) [x] over Z/2. In
this ring, we have

(1 + x)2 = 1 + 2x︸︷︷︸
=0

(since 2=0 in Z/2)

+x2 = 1 + x2.

Lemma 7.3.4 (applied to (Z/2) [x], a and x2 instead of K, u and a) yields(
1 + x2

)a
= ∑

k∈N

(
a
k

)(
x2
)k

︸ ︷︷ ︸
=x2k

(300)

= ∑
k∈N

(
a
k

)
x2k =

(
a
0

)
x0 +

(
a
1

)
x2 +

(
a
2

)
x4 +

(
a
3

)
x6 + · · · .

Now,

(1 + x)2a+1 = (1 + x)2a︸ ︷︷ ︸
=((1+x)2)

a

(1 + x) =

(1 + x)2︸ ︷︷ ︸
=1+x2


a

(1 + x)

=
(

1 + x2
)a

︸ ︷︷ ︸
=

(
a
0

)
x0+

(
a
1

)
x2+

(
a
2

)
x4+

(
a
3

)
x6+······

(1 + x)

=

((
a
0

)
x0 +

(
a
1

)
x2 +

(
a
2

)
x4 +

(
a
3

)
x6 + · · ·

)
(1 + x)

=

((
a
0

)
x0 +

(
a
1

)
x2 +

(
a
2

)
x4 +

(
a
3

)
x6 + · · ·

)
+

((
a
0

)
x0 +

(
a
1

)
x2 +

(
a
2

)
x4 +

(
a
3

)
x6 + · · ·

)
x

=

(
a
0

)
x0 +

(
a
0

)
x1 +

(
a
1

)
x2 +

(
a
1

)
x3 +

(
a
2

)
x4 +

(
a
2

)
x5 + · · ·

= ∑
k∈N

(
a

k//2

)
xk (301)

https://en.wikipedia.org/wiki/Pascal's_triangle#Overall_patterns_and_properties
https://en.wikipedia.org/wiki/Pascal's_triangle#Overall_patterns_and_properties
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(where we are using Definition 2.6.2).
Comparing this to

(1 + x)2a+1 = ∑
k∈N

(
2a + 1

k

)
xk (302)(

by Lemma 7.3.4, applied to (Z/2) [x] , 2a + 1 and x
instead of K, u and a

)
,

we obtain

∑
k∈N

(
2a + 1

k

)
xk = ∑

k∈N

(
a

k//2

)
xk. (303)

This is an equality of FPSs (actually, polynomials). But recall that FPSs are just
sequences of elements of K (where in our case, K = Z/2). Hence, if two FPSs are
equal, then the coefficients in xn in these two FPSs are equal (whenever n ∈ N).
Hence, from (303), we conclude that

[xn]

(
∑

k∈N

(
2a + 1

k

)
xk

)
= [xn]

(
∑

k∈N

(
a

k//2

)
xk

)

for each n ∈N. In view of

[xn]

(
∑

k∈N

(
2a + 1

k

)
xk

)
=

(
2a + 1

n

)
(304)

(by the definition of [xn] a for an FPS a) and

[xn]

(
∑

k∈N

(
a

k//2

)
xk

)
=

(
a

n//2

)
, (305)

this rewrites as (
2a + 1

n

)
=

(
a

n//2

)
. (306)

Thus, we have proven (306) for each n ∈N. Applying (306) to n = 2b, we obtain(
2a + 1

2b

)
=

(
a

(2b) //2

)
=

(
a
b

)
(since (2b) //2 = b) .

This proves the third of the four congruences that are claimed in Lemma 7.8.6...
except that something is amiss: Why did we get an equality rather than a congru-

ence? As an equality between two integers,
(

2a + 1
2b

)
=

(
a
b

)
is clearly wrong (e.g.,

if a = 1 and b = 1, then it claims that 3 = 1). What did we do wrong?
The culprit is our abuse of notation which lets us use the same symbol for an

integer w and the corresponding element w · 1Z/2 = [w]2 of Z/2. For example,
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the coefficients of the FPS ∑
k∈N

(
2a + 1

k

)
xk on the left hand side of (305) are not the

integers
(

2a + 1
k

)
, but rather the corresponding elements

(
2a + 1

k

)
· 1Z/2 of Z/2

(since λxk = (λ · 1Z/2) · xk for each λ ∈ Z). Thus, the “
(

2a + 1
n

)
” on the right

hand side of (305) should be understood not as the integer
(

2a + 1
n

)
, but rather as

the corresponding element
(

2a + 1
n

)
· 1Z/2 of Z/2. Hence, the equality (306) that

we obtained is not actually an equality between integers (despite looking like one),
but rather an equality between the corresponding elements of Z/2, namely(

2a + 1
n

)
· 1Z/2 =

(
a

n//2

)
· 1Z/2. (307)

Such an equality can be translated into a congruence modulo 2 between the in-
tegers: Indeed, if u and v are two integers satisfying u · 1Z/2 = v · 1Z/2, then
[u]2 = u · 1Z/2 = v · 1Z/2 = [v]2 and thus u ≡ v mod 2. Hence, (307) yields(

2a + 1
n

)
≡
(

a
n//2

)
mod 2.

By applying this to n = 2b, we obtain the third of the four congruences that are
claimed in Lemma 7.8.6. Likewise, we can apply it to n = 2b + 1, and thus obtain
the fourth of these four congruences.

In order to prove the first two of these four congruences, we have to consider
(1 + x)2a instead of (1 + x)2a+1. Thus, the computation (301) is replaced by

(1 + x)2a =

(1 + x)2︸ ︷︷ ︸
=1+x2


a

=
(

1 + x2
)a

=

(
a
0

)
x0 +

(
a
1

)
x2 +

(
a
2

)
x4 +

(
a
3

)
x6 + · · ·

=

(
a
0

)
x0 + 0x1 +

(
a
1

)
x2 + 0x3 +

(
a
2

)
x4 + 0x5 + · · ·

= ∑
k∈N


(

a
k//2

)
, if k is even;

0, if k is odd
xk.

The rest of the argument is similar to the argument we used above to prove the
third and fourth congruences; we leave this to the reader. Thus, Lemma 7.8.6 is
proven.
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Now, how can we extend this proof to a full proof of Theorem 2.17.20? As we
know, Lemma 7.8.6 is the particular case of Theorem 2.17.20 for p = 2 and a ∈ N

and b ∈ N. Thus, we need to lift the three restrictions p = 2, a ∈ N and b ∈ N.
Here is a rough plan:

• To lift the restriction b ∈N, we simply observe that Theorem 2.17.20 is trivial
in the case when b ∈ Z is negative. Indeed, if b ∈ Z is negative, then both
pb + d and b are negative (since d ∈ {0, 1, . . . , p− 1} yields d < p, but b < 0
yields pb ≤ −p), and therefore Theorem 2.17.20 boils down to the obvious

congruence 0 ≡ 0
(

c
d

)
mod p.

• To lift the restriction a ∈ N, we have to tweak our above proof so that it
works for negative a as well. Of course, the first step is to use FPSs instead of
polynomials. There are only two places in our proof where we have used the
nonnegativity of a – namely, the two places where we applied Lemma 7.3.4.
The first place was (300); the second was (302). So we have to prove (300)
and (302) without using the requirement that a ∈ N. But this is easy using
Newton’s binomial theorem. In fact, (302) follows directly from Theorem 7.3.3
(b) (applied to u = 2a + 1), whereas (300) follows by first applying Theorem
7.3.3 (b) to u = a and then substituting x2 for x. (As we explained in Remark
7.6.6, not every element of a K-algebra can be substituted into an FPS; but x2

can always be substituted into an FPS, and the usual properties of substitution
– such as it being a K-algebra homomorphism – are satisfied.)

• Finally, how can we lift the restriction that p be a prime? Recall that we used
the identity (1 + x)2 = 1 + x2 (in (Z/2) [x]) in our above proof. This has to
be replaced by the identity

(1 + x)p = 1 + xp in (Z/p) [x] .

This identity is a consequence of Theorem 5.11.1 (applied to K = (Z/p) [x],
a = 1 and b = x), since p · 1(Z/p)[x] = 0.

Thus, we obtain the following proof of Theorem 2.17.20 in full generality:

Proof of Theorem 2.17.20 (sketched). If b < 0, then both pb + d and b are negative219,

and therefore both
(

pa + c
pb + d

)
and

(
a
b

)
equal 0. Thus, if b < 0, then the claim of

Theorem 2.17.20 rewrites as 0 ≡ 0
(

c
d

)
mod p, which is obvious. Hence, for the rest

of this proof, we WLOG assume that we don’t have b < 0. Thus, b ≥ 0, so that
b ∈N and therefore pb + d ∈N.

219The proof of this is left to the reader. (Hint: From b < 0, we obtain b ≤ −1 and thus pb ≤ −p;
but from d ∈ {0, 1, . . . , p− 1}, we obtain d ≤ p− 1 < p.)
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Let us work in the ring (Z/p) [[x]]. In this ring, we have

p · 1(Z/p)[[x]]︸ ︷︷ ︸
=1Z/p·1(Z/p)[[x]]

= p · 1Z/p︸ ︷︷ ︸
=[p]p=[0]p=0

·1(Z/p)[[x]] = 0 · 1(Z/p)[[x]] = 0.

Thus, Theorem 5.11.1 (applied to K = (Z/p) [[x]], a = 1 and b = x) yields

(1 + x)p = 1p︸︷︷︸
=1

+xp = 1 + xp in (Z/p) [[x]] . (308)

Theorem 7.3.3 (b) (applied to K = Z/p and u = a) yields

(1 + x)a = ∑
k∈N

(
a
k

)
xk.

We can substitute xp for x in this equality220, and thus obtain

(1 + xp)a = ∑
k∈N

(
a
k

)
(xp)k︸ ︷︷ ︸

=xpk=xkp

= ∑
k∈N

(
a
k

)
xkp

= ∑
q∈N

(
a
q

)
xqp (309)

(here, we have renamed the summation index k as q).
On the other hand, c ∈ {0, 1, . . . , p− 1} and thus c ≤ p− 1 < p. Hence, for each

k ∈ {p, p + 1, p + 2, . . .}, we have k ≥ p > c and thus(
c
k

)
= 0 (310)

(by Theorem 2.17.4, applied to n = c). Now, Theorem 7.3.3 (b) (applied to K = Z/p

220Rigorously speaking, this means that we apply the map

K [[x]]→ K [[x]] ,
a 7→ a [xp]

to both sides of this equality. This map is well-defined because of Remark 7.6.6 (since p is a
positive integer), and it is not hard to see that this map is a K-algebra homomorphism (this is
proven just as Corollary 7.6.4 was proven, except that we are now working with FPSs instead of
polynomials) that furthermore respects not just finite sums but also infinite sums (of summable
families). Thus, applying this map to (1 + x)a yields (1 + xp)a (because it is a ring homomor-

phism), and applying it to ∑
k∈N

(
a
k

)
xk yields ∑

k∈N

(
a
k

)
(xp)k (because it respects infinite sums of

summable families).
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and u = c) yields

(1 + x)c = ∑
k∈N

(
c
k

)
xk =

p−1

∑
k=0

(
c
k

)
xk +

∞

∑
k=p

(
c
k

)
︸︷︷︸
=0

(by (310))

xk =
p−1

∑
k=0

(
c
k

)
xk +

∞

∑
k=p

0xk

︸ ︷︷ ︸
=0

=
p−1

∑
k=0

(
c
k

)
xk =

p−1

∑
r=0

(
c
r

)
xr (311)

(here, we have renamed the summation index k as r).
Now,

(1 + x)pa+c = (1 + x)pa︸ ︷︷ ︸
=((1+x)p)

a

(1 + x)c =

(1 + x)p︸ ︷︷ ︸
=1+xp

(by (308))


a

(1 + x)c = (1 + xp)a︸ ︷︷ ︸
= ∑

q∈N

(
a
q

)
xqp

(by (309))

(1 + x)c︸ ︷︷ ︸
=

p−1
∑

r=0

(
c
r

)
xr

(by (311))

=

(
∑

q∈N

(
a
q

)
xqp

)(
p−1

∑
r=0

(
c
r

)
xr

)
= ∑

q∈N

p−1

∑
r=0

(
a
q

)(
c
r

)
xqpxr.

Comparing this with

∑
k∈N

(
a

k//p

)(
c

k%p

)
xk

= ∑
(q,r)∈N×{0,1,...,p−1}︸ ︷︷ ︸

= ∑
q∈N

∑
r∈{0,1,...,p−1}

(
a

(qp + r) //p

)(
c

(qp + r)%p

)
xqp+r︸ ︷︷ ︸
=xqpxr

 here, we have substituted qp + r for k in the sum, since
the map N× {0, 1, . . . , p− 1} →N, (q, r) 7→ qp + r is a

bijection (by Exercise 2.6.4 (b), applied to n = p)


= ∑

q∈N

∑
r∈{0,1,...,p−1}︸ ︷︷ ︸

=
p−1
∑

r=0

(
a

(qp + r) //p

)
︸ ︷︷ ︸

=

(
a
q

)
(since Exercise 2.6.4 (c)

(applied to n=p)
yields (qp+r)//p=q)

(
c

(qp + r)%p

)
︸ ︷︷ ︸

=

(
c
r

)
(since Exercise 2.6.4 (d)

(applied to n=p)
yields (qp+r)%p=r)

xqpxr

= ∑
q∈N

p−1

∑
r=0

(
a
q

)(
c
r

)
xqpxr,
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we obtain

(1 + x)pa+c = ∑
k∈N

(
a

k//p

)(
c

k%p

)
xk. (312)

But Theorem 7.3.3 (b) (applied to K = Z/p and u = pa + c) yields

(1 + x)pa+c = ∑
k∈N

(
pa + c

k

)
xk.

Comparing this with (312), we find

∑
k∈N

(
pa + c

k

)
xk = ∑

k∈N

(
a

k//p

)(
c

k%p

)
xk.

Thus, for each n ∈N, we have

[xn]

(
∑

k∈N

(
pa + c

k

)
xk

)
= [xn]

(
∑

k∈N

(
a

k//p

)(
c

k%p

)
xk

)

=

(
a

n//p

)(
c

n%p

)
· 1Z/p (313)

(by the definition of [xn] a for an FPS a). Here, the “1Z/p” factor on the right hand
side stems from the fact that our FPSs are over Z/p, so their coefficients are not
the integers they seem to be but rather the corresponding elements of Z/p. On the
other hand, for each n ∈N, we have

[xn]

(
∑

k∈N

(
pa + c

k

)
xk

)
=

(
pa + c

n

)
· 1Z/p (314)

(by the definition of [xn] a for an FPS a). Comparing this with (313), we conclude
that (

a
n//p

)(
c

n%p

)
· 1Z/p =

(
pa + c

n

)
· 1Z/p

for each n ∈N. In other words,(
a

n//p

)(
c

n%p

)
≡
(

pa + c
n

)
mod p (315)

for each n ∈ N (because if u and v are two integers satisfying u · 1Z/p = v · 1Z/p,
then [u]p = u · 1Z/p = v · 1Z/p = [v]p and thus u ≡ v mod p).

We can apply this to n = pb + d. Thus, we obtain(
a

(pb + d) //p

)(
c

(pb + d)%p

)
≡
(

pa + c
pb + d

)
mod p.
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Hence, (
pa + c
pb + d

)
≡

(
a

(pb + d) //p

)
︸ ︷︷ ︸

=

(
a

(bp + d) //p

)
=

(
a
b

)
(since Exercise 2.6.4 (c)

(applied to n=p, q=b and r=d)
yields (bp+d)//p=b)

(
c

(pb + d)%p

)
︸ ︷︷ ︸

=

(
c

(bp + d)%p

)
=

(
c
d

)
(since Exercise 2.6.4 (d)

(applied to n=p, q=b and r=d)
yields (bp+d)%p=d)

=

(
a
b

)(
c
d

)
mod p.

This proves Theorem 2.17.20.

7.9. Invertible and nilpotent polynomials

In Subsection 7.3.1, we have seen when an FPS a ∈ K [[x]] is invertible in the ring
K [[x]]. When is a polynomial a ∈ K [x] invertible in the ring K [x] ?

The first hint that the answer is different comes from the example of 1 + x. As
we know, the FPS 1 + x is invertible in K [[x]]. Since this FPS is actually a poly-
nomial, we might wonder whether it is invertible in K [x] as well. The answer is
“no”, unless the ring K is trivial.221 More generally, we can easily characterize the
invertible elements of K [x] when K is a field:

Proposition 7.9.1. Let K be a field. Let a ∈ K [x] be a polynomial. Then, a
is invertible in K [x] if and only if deg a = 0 (that is, a is a nonzero constant
polynomial).

Proof of Proposition 7.9.1 (sketched). ⇐=: Assume that deg a = 0. Then, a = a for
some a ∈ K. This a is nonzero (since otherwise, we would have a = 0 and thus
deg a = −∞, which contradicts deg a = 0), and thus invertible (since K is a field).
Now, it is easy to see that a−1 is a multiplicative inverse of a in K [x]. Hence, a is
invertible in K [x]. This proves the “⇐=” direction of Proposition 7.9.1.
=⇒: Assume that a is invertible in K [x]. Then, a has a multiplicative inverse

a−1 ∈ K [x]. Clearly, aa−1 = 1K[x] = 1, so that deg
(
aa−1) = 0. Also, from aa−1 =

1 6= 0, we conclude that a and a−1 are nonzero. Thus, deg a and deg
(
a−1) are

nonnegative integers. Theorem 7.4.11 (f) (applied to b = a−1) yields deg
(
aa−1) =

deg a + deg
(

a−1
)

︸ ︷︷ ︸
≥0

≥ deg a, thus deg a ≤ deg
(
aa−1) = 0. Hence, deg a = 0 (since

deg a is a nonnegative integer). This proves the “=⇒” direction of Proposition
7.9.1.

221Indeed, if it was invertible in K [x], then its multiplicative inverse in K [x] would also be its
multiplicative inverse in K [[x]]; but we already know that the latter is 1− x + x2 − x3 ± · · · and
therefore does not belong to K [x] unless K is trivial.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 541

If the ring K is not a field, the situation becomes more interesting: As we have
already seen, the polynomial 1+ 2x is invertible when K = Z/4, despite its degree
not being 0, so Proposition 7.9.1 would no longer hold here. Instead, we can give
a necessary and sufficient criterion based on the notion of nilpotent elements. Let us
define this notion:

Definition 7.9.2. Let L be a ring. Let a ∈ L. We say that a is nilpotent if there
exists an r ∈N satisfying ar = 0.

In other words, an element a of a ring L is nilpotent if one of its powers is 0.
For example:

• The element 0 of any ring L is nilpotent, since 0r = 0 holds for r = 1.

• If m ∈ Z and k ∈ N, then the element [m]mk of Z/mk is nilpotent, since its
k-th power is

[
mk]

mk = 0.

• The nilpotent elements of a matrix ring Kn×n are exactly the nilpotent n× n-
matrices. It is well-known that any nilpotent n× n-matrix A over a field K

satisfies An = 0; but this is not always true when K is not a field.

If K is a field, then the only nilpotent element of K is 0 (this can be easily proven
using Exercise 5.5.2).

Let us state two basic and simple properties of nilpotent elements:

Proposition 7.9.3. Let L be a ring. Let a and b be two nilpotent elements of L

such that ab = ba. Then, a + b is also nilpotent.

The requirement ab = ba in Proposition 7.9.3 cannot be removed: e.g., the two

matrices
(

0 1
0 0

)
and

(
0 0
1 0

)
in Q2×2 are nilpotent, but their sum

(
0 1
0 0

)
+(

0 0
1 0

)
=

(
0 1
1 0

)
is not.

Proof of Proposition 7.9.3. We know that a is nilpotent. In other words, there exists a
p ∈ N satisfying ap = 0 (by the definition of “nilpotent”). Similarly, there exists a
q ∈N such that bq = 0 (since b is nilpotent). Consider these p and q.

Now, every k ∈ {0, 1, . . . , p} satisfies

bp+q−k = 0. (316)

[Proof of (316): Let k ∈ {0, 1, . . . , p}. Then, k ≤ p, so that p − k ∈ N. Now,
p + q− k = q + (p− k), so that

bp+q−k = bq+(p−k) = bq︸︷︷︸
=0

bp−k (since p− k ∈N)

= 0bp−k = 0.

https://en.wikipedia.org/wiki/Nilpotent_matrix
https://en.wikipedia.org/wiki/Nilpotent_matrix
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This proves (316).]
Furthermore, every k ∈ {p + 1, p + 2, . . . , p + q} satisfies

ak = 0. (317)

[Proof of (317): Let k ∈ {p + 1, p + 2, . . . , p + q}. Then, k ≥ p + 1 ≥ p, so that
k− p ∈N. Now, k = p + (k− p), so that

ak = ap+(k−p) = ap︸︷︷︸
=0

ak−p (since k− p ∈N)

= 0ak−p = 0.

This proves (317).]
Now, ab = ba. Thus, (183) (applied to K = L and n = p + q) yields

(a + b)p+q =
p+q

∑
k=0

(
n
k

)
akbp+q−k =

p

∑
k=0

(
n
k

)
ak bp+q−k︸ ︷︷ ︸

=0
(by (316))

+
p+q

∑
k=p+1

(
n
k

)
ak︸︷︷︸
=0

(by (317))

bp+q−k

=
p

∑
k=0

(
n
k

)
ak0︸ ︷︷ ︸

=0

+
p+q

∑
k=p+1

(
n
k

)
0bp+q−k

︸ ︷︷ ︸
=0

= 0.

Thus, there exists an r ∈ N satisfying (a + b)r = 0 (namely, r = p + q). In other
words, a + b is nilpotent (by the definition of “nilpotent”). This proves Proposition
7.9.3.

Proposition 7.9.4. Let L be a ring. Let u be an invertible element of L. Let a
be a nilpotent element of L such that ua = au. Then, the element u− a of L is
invertible.

Proof of Proposition 7.9.4 (sketched). The element u is invertible. Thus, it has a multi-
plicative inverse u−1 ∈ L. We have uu−1 = 1L = u−1u.

We know that a is nilpotent. In other words, there exists an r ∈ N satisfying
ar = 0 (by the definition of “nilpotent”). Consider this r.

Applying (182) to K = L, a = u, b = u−1 and n = r, we obtain
(
uu−1)r

=

ur (u−1)r (since uu−1 = u−1u). Thus, ur (u−1)r
=

uu−1︸ ︷︷ ︸
=1L

r

= (1L)
r = 1L.

Furthermore, ua = au. Hence, Proposition 5.4.11 (d) (applied to L, u, a and r
instead of K, a, b and n) yields

ur − ar = (u− a)
(

ur−1 + ur−2a + · · ·+ uar−2 + ar−1
)

.
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Comparing this with ur − ar︸︷︷︸
=0

= ur, we obtain

(u− a)
(

ur−1 + ur−2a + · · ·+ uar−2 + ar−1
)
= ur.

Multiplying both sides of this equality with
(
u−1)r, we obtain

(u− a)
(

ur−1 + ur−2a + · · ·+ uar−2 + ar−1
) (

u−1
)r

= ur
(

u−1
)r

= 1L.

A similar argument (but using products in the opposite order222) shows that(
u−1

)r (
ur−1 + ur−2a + · · ·+ uar−2 + ar−1

)
(u− a) = 1L.

Hence, Exercise 5.5.3 (applied to L,
(
u−1)r (ur−1 + ur−2a + · · ·+ uar−2 + ar−1), u−

a and
(
ur−1 + ur−2a + · · ·+ uar−2 + ar−1) (u−1)r instead of K, a, b and c) shows

that the element u− a is invertible and its multiplicative inverse satisfies

(u− a)−1 =
(

u−1
)r (

ur−1 + ur−2a + · · ·+ uar−2 + ar−1
)

=
(

ur−1 + ur−2a + · · ·+ uar−2 + ar−1
) (

u−1
)r

.

This proves Proposition 7.9.4.

Now, when is a polynomial a ∈ K [x] invertible in K [x] ? The answer is given
by the following result:

Theorem 7.9.5. Let a ∈ K [x] (where K, still, is a commutative ring). Then, a is
invertible in K [x] if and only if

• its coefficient
[
x0] a is invertible in K, and

• its coefficients [xn] a are nilpotent for all positive integers n.

For example, the polynomial a = 1 + 2x over K = Z/4 satisfies this condition,
since its coefficient

[
x0] a = [1]4 is invertible in Z/4 whereas its other coefficients

(which are [2]4 , [0]4 , [0]4 , [0]4 , . . .) are nilpotent.

222and, accordingly, relying on a variant of Proposition 5.4.11 (d) that says

an − bn =
(

an−1 + an−2b + · · ·+ abn−2 + bn−1
)
(a− b)

instead of
an − bn = (a− b)

(
an−1 + an−2b + · · ·+ abn−2 + bn−1

)



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 544

We will not prove Theorem 7.9.5 here. We only notice that its “⇐=” direction is
fairly easy (using Proposition 7.9.3 and Proposition 7.9.4), while its “=⇒” direction
is proven in https://math.stackexchange.com/a/392604/ .

Note the stark contrast between Theorem 7.9.5 and Theorem 7.3.1.
Now that we have introduced nilpotent elements, we might also wonder when a

polynomial is nilpotent. This can also be answered:

Theorem 7.9.6. Let a ∈ K [x] (where K, still, is a commutative ring). Then, a is
nilpotent if and only if its coefficients [xn] a are nilpotent for all n ∈N.

Again, we omit the proof of this theorem.
Note that Theorem 7.9.6 has no analogue for FPSs: An FPS can fail to be nilpotent

even if all its coefficients are nilpotent.
Let us briefly note that the non-invertibility of most polynomials over a field can

be amended: We can introduce formal fractions of polynomials over a field in the
same way as formal fractions of integers (also known as “rational numbers”) were
defined. These fractions are called rational functions223.

7.10. Functoriality of power series and polynomial rings

The polynomial ring K [x], and the ring K [[x]] of FPSs, are defined for every ring
K. How do they depend on K ? For example, does Z [x] lie in Q [x] in the same
way Z lies in Q ? The answer is a “yes”, for fairly simple reasons:

Proposition 7.10.1. Let K be a subring of a commutative ring L. Then:
(a) The polynomial ring K [x] is a subring of L [x].
(b) The ring K [[x]] is a subring of L [[x]].

Proof of Proposition 7.10.1 (sketched). (b) This is easy: The elements of K [[x]] are se-
quences of elements of K. But any sequence of elements of K is a sequence of
elements of L (since K ⊆ L), and thus belongs to L [[x]]. Hence, K [[x]] ⊆ L [[x]].
The rest of the proof is straightforward.

(a) LTTR.

So being a subring is “inherited” to polynomial rings and rings of FPSs.
Does a homomorphism between two commutative rings also yield a homomor-

phism between their polynomial rings or a homomorphism between their FPS
rings? The next theorem shows that the answer is “yes” to both questions:

Theorem 7.10.2. Let K and L be two commutative rings. Let f : K → L be a
ring homomorphism.

223This is a confusing name, because polynomials are not functions. It is an artifact of the history of
the subject.

https://math.stackexchange.com/a/392604/
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(a) Then, the map

K [[x]]→ L [[x]] ,
(a0, a1, a2, . . .) 7→ ( f (a0) , f (a1) , f (a2) , . . .)

is a ring homomorphism.
(b) Its restriction to K [x] is a ring homomorphism from K [x] to L [x].

Proof of Theorem 7.10.2. (a) Let us denote this map by F. We must then prove that F
is a ring homomorphism.

Let us only prove that F (ab) = F (a) F (b) for all a, b ∈ K [[x]]. (This is axiom
(c) in Definition 5.9.1; the other three axioms are proven similarly.)

Let a, b ∈ K [[x]]. Write the FPSs a and b as a = (a0, a1, a2, . . .) and b =
(b0, b1, b2, . . .). Then, their images F (a) and F (b) under F are

F (a) = ( f (a0) , f (a1) , f (a2) , . . .) and F (b) = ( f (b0) , f (b1) , f (b2) , . . .)

(by the definition of F). Hence, the definition of the multiplication on L [[x]] yields

F (a) F (b) = (d0, d1, d2, . . .) , (318)

where

dn =
n

∑
i=0

f (ai) f (bn−i) for all n ∈N. (319)

Consider these dn.
On the other hand, a = (a0, a1, a2, . . .) and b = (b0, b1, b2, . . .). Hence, the defini-

tion of the multiplication on K [[x]] yields

ab = (c0, c1, c2, . . .) , (320)

where

cn =
n

∑
i=0

aibn−i for all n ∈N. (321)

Consider these cn. From (320), we obtain

F (ab) = ( f (c0) , f (c1) , f (c2) , . . .) (by the definition of F) . (322)

But for each n ∈N, we have

f (cn) = f

(
n

∑
i=0

aibn−i

)
(by (321))

=
n

∑
i=0

f (aibn−i)︸ ︷︷ ︸
= f (ai) f (bn−i)

(since f is a ring
homomorphism)

(by Proposition 5.9.14 (e))

=
n

∑
i=0

f (ai) f (bn−i) = dn (by (319)) .
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Hence, ( f (c0) , f (c1) , f (c2) , . . .) = (d0, d1, d2, . . .). Thus, the right hand sides of the
equalities (322) and (318) are equal. Hence, their left hand sides are equal as well.
In other words, we have F (ab) = F (a) F (b). Thus, the map F satisfies axiom (c)
in Definition 5.9.1. As we have said, the other three axioms are proven similarly;
thus, F is a ring homomorphism. This proves Theorem 7.10.2 (a).

(b) LTTR.

8. Quotient constructions

8.1. Residue classes in commutative rings

8.1.1. The general case

We have previously defined

• what it means for an integer to divide an integer (Definition 2.2.1);

• what it means for a Gaussian integer to divide a Gaussian integer (Definition
4.2.17);

• what it means for a polynomial to divide a polynomial (Definition 7.6.8).

These definitions differed only in what kind of “numbers” we were using. So let
us generalize them all together:

Definition 8.1.1. Let L be a commutative ring. Let a and b be two elements of L.
We say that a | b in L (or “a divides b in L” or “b is divisible by a in L” or “b is a
multiple of a in L”) if there exists a c ∈ L such that b = ac.

We furthermore say that a - b in L if a does not divide b in L.

We shall omit the words “in L” whenever L is clear. But keep in mind that L

matters. For example, 2 - 1 in Z, but 2 | 1 in Q (since 1 = 2 · 1
2

). Of course, when
we speak of divisibility between integers, we mean “in Z”, since divisibility in Q

is boring224.
Most of the standard properties of divisibility still work for any commutative

ring L. For example:

• we have a | a for all a ∈ L;

• if a, b, c ∈ L satisfy a | b and b | c, then a | c,

224More generally: If F is any field, then divisibility in F is boring (because a | b holds for any
a, b ∈ F unless we have a = 0 and b 6= 0).
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and so on. (But, for example, the obvious generalization of Exercise 2.2.3 does not
work: In general, we cannot conclude a | b from ac | bc even if c 6= 0.)

We can furthermore generalize the concept of congruence (Definition 2.3.1 and
Definition 4.2.21) to arbitrary commutative rings:

Definition 8.1.2. Let L be a commutative ring. Let w, a, b ∈ L. We say that a is
congruent to b modulo w (in L) if and only if w | a− b. We shall use the notation
“a ≡ b mod w” for “a is congruent to b modulo w”.

We furthermore shall use the notation “a 6≡ b mod w” for “a is not congruent
to b modulo w”.

Again, the standard properties of congruence all hold. For example, the fol-
lowing analogue of Proposition 2.3.4 holds (and is proven in the same way as
Proposition 2.3.4):

Proposition 8.1.3. Let L be a commutative ring. Let w ∈ L.
(a) We have a ≡ a mod w for every a ∈ L.
(b) If a, b, c ∈ L satisfy a ≡ b mod w and b ≡ c mod w, then a ≡ c mod w.
(c) If a, b ∈ L satisfy a ≡ b mod w, then b ≡ a mod w.
(d) If a1, a2, b1, b2 ∈ L satisfy a1 ≡ b1 mod w and a2 ≡ b2 mod w, then

a1 + a2 ≡ b1 + b2 mod w; (323)
a1 − a2 ≡ b1 − b2 mod w; (324)

a1a2 ≡ b1b2 mod w. (325)

(e) Let m ∈ L be such that m | w. If a, b ∈ L satisfy a ≡ b mod w, then
a ≡ b mod m.

Now, we can define the straightforward generalization of residue classes (Defini-
tion 3.4.2 and Definition 3.4.3) and of the standard operations (addition, multipli-
cation and scaling) on them (Definition 3.4.12 and Definition 3.4.18):

Definition 8.1.4. Fix a commutative ring L and an element w ∈ L.
(a) Define a relation ≡

w
on the set L by(

a ≡
w

b
)
⇐⇒ (a ≡ b mod w) .

This ≡
w

is an equivalence relation. (The proof of this is analogous to the proof
of Example 3.2.5.)

(b) A residue class modulo w means an equivalence class of the relation ≡
w

.

(c) If a ∈ L, then we denote the residue class [a]≡
w

by [a]w.

(d) The set L/ ≡
w

of all residue classes modulo w is called L/w.
(e) We define a binary operation + on L/w (called addition) by setting

[a]w + [b]w = [a + b]w for all a, b ∈ L.
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This is well-defined, because of Theorem 8.1.5 (a) below.
(f) We define a binary operation · on L/w (called multiplication) by setting

[a]w · [b]w = [a · b]w for all a, b ∈ L.

This is well-defined, because of Theorem 8.1.5 (a) below.
(g) Fix r ∈ L. For any α ∈ L/w, we define a residue class rα ∈ L/w by setting

(r [a]w = [ra]w for any a ∈ L) .

(In other words, for any α ∈ L/w, we let rα = [ra]w, where a is an element of L

satisfying α = [a]w.) This is well-defined, because of Theorem 8.1.5 (a) below.
We shall also write r · α instead of rα. The map L× (L/w)→ L/w, (r, α) 7→ rα

will be called scaling.

If we set L = Z in Definition 8.1.4, and let w be an integer n, then we recover
our old definitions of residue classes modulo n and of their set Z/n. Note that we
are not defining a subtraction on L/w this time, because we will get it for free once
we recognize L/w as a ring.

Theorem 8.1.5. Fix a commutative ring L and an element w ∈ L.
(a) The operations + and · and the “scaling map” · in Definition 8.1.4 are

well-defined.
(b) The set L/w, equipped with the addition + (defined in Definition 8.1.4

(e)), the multiplication · (defined in Definition 8.1.4 (f)) and the zero [0]w and the
unity [1]w, is a commutative ring.

(c) The set L/w, equipped with the addition + (defined in Definition 8.1.4
(e)), the scaling · (defined in Definition 8.1.4 (g)) and the zero vector [0]w, is an
L-module.

(d) The set L/w, equipped with all of these items, is a commutative L-algebra.
(e) The map

πw : L→ L/w,
a 7→ [a]w

is an L-algebra homomorphism.

Proof of Theorem 8.1.5. All of this is analogous to the proofs we did for integers (but
Z and n have to become L and w). To be more specific:

• The proof of Theorem 8.1.5 (a) is analogous to the proof of Proposition 3.4.13
and Proposition 3.4.19 (a).

• The proof of Theorem 8.1.5 (b) boils down to checking the ring axioms and
the “commutativity of multiplication” axiom. This is analogous to our proof
of Theorem 3.4.23, except that the representatives of our residue classes are
now elements of L rather than integers.
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• The proof of Theorem 8.1.5 (c) boils down to checking the module axioms.
This is analogous to our proof of Theorem 3.4.23.

• The proof of Theorem 8.1.5 (d) boils down to checking the “Scale-invariance of
multiplication” axiom (since all remaining axioms have already been checked
when we proved parts (b) and (c) of this theorem). This is analogous to our
proof of Theorem 3.4.23 (m).

• The proof of Theorem 8.1.5 (e) follows straightforwardly from the definition
of the operations + and · and the scaling map on L/w.

Definition 8.1.6. Consider the setting of Theorem 8.1.5.
The commutative L-algebra L/w constructed in Theorem 8.1.5 (d) is called “L

modulo w” or “L divided by w” or “L quotiented by w”. Whenever we speak of “the
L-algebra L/w”, we shall mean this precise L-algebra.

The reader can easily check the following:

• If we have w = 0 in Theorem 8.1.5, then the map πw is an L-algebra isomor-
phism, so that L/0 ∼= L as rings and as L-modules.

• If we have w = 1 in Theorem 8.1.5, then the ring L/w = L/1 is trivial. More
generally, if w ∈ L is invertible, then the ring L/w is trivial.

8.1.2. The case of a polynomial ring

The commutative L-algebra L/w constructed in Theorem 8.1.5 (d) generalizes not
just the Z-algebras Z/n, but also the Z [i]-algebras Z [i] /α (where α is a Gaussian
integer). But we can apply this construction to other rings L as well. It will prove
particularly useful to apply it to L = K [x], where K is a commutative ring. In
particular, this will help us adjoin a root of a polynomial to a commutative ring K.
First, let us introduce some standard conventions:

Convention 8.1.7. Let K be a commutative ring.
(a) Any K [x]-module automatically becomes a K-module: In fact, let M be a

K [x]-module. Then, am is defined for each a ∈ K [x] and each m ∈ M. But we
have identified each element a ∈ K with the corresponding constant polynomial
a ∈ K [x]. Thus, am is also defined for each a ∈ K and each m ∈ M (because
we can treat a as a constant polynomial); explicitly speaking, it is defined by the
equality

am = am for all a ∈ K and m ∈ M.

Thus, a “scaling” map · : K× M → M is defined. This “scaling” map (along
with the addition and the zero vector that M is already equipped with) makes M
a K-module. Thus, every K [x]-module M automatically becomes a K-module.
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(b) In this way, any K [x]-algebra becomes a K-algebra (because we just ex-
plained how it becomes a K-module, and it is easy to see that this K-module
structure harmonizes with the ring structure in a way that yields a K-algebra225).

(c) Any K [x]-module homomorphism is automatically a K-module homomor-
phism. (This is easy to check.)

(d) Any K [x]-algebra homomorphism is automatically a K-algebra homomor-
phism. (This is easy to check.)

Thus, in particular, if b ∈ K [x] is any polynomial, then the K [x]-algebra K [x] /b
automatically becomes a K-algebra as well.

Proposition 8.1.8. Let K be a commutative ring. Let b ∈ K [x] be a polynomial.
(a) The projection map

πb : K [x]→ K [x] /b,
a 7→ [a]b

is a K [x]-algebra homomorphism and thus a K-algebra homomorphism.
(b) The map

K→ K [x] /b,
a 7→ [a]b

is a K-algebra homomorphism.
(c) We have a [[x]b] = [a]b for any a ∈ K [x].
(d) The element [x]b ∈ K [x] /b is a root of b.

Proof of Proposition 8.1.8. (a) This is a particular case of Theorem 8.1.5 (e) (applied
to L = K [x] and w = b).

(b) This map is a composition of the projection map πb from Proposition 8.1.8
(a) with the map K→ K [x] , a 7→ a. Since both of the maps we are composing are
K-algebra homomorphisms, their composition is therefore a K-algebra homomor-
phism as well.

(c) The projection map

πb : K [x]→ K [x] /b,
a 7→ [a]b

is a K-algebra homomorphism (by Proposition 8.1.8 (a)). Now, let a ∈ K [x]. The
definition of πb yields πb (x) = [x]b and πb (a) = [a]b. But Proposition 7.6.13

225i.e., the “Scale-invariance of multiplication” axiom is satisfied
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(applied to K [x], K [x] /b, πb and x instead of U, V, f and u) yields

πb (a [x]) = a

πb (x)︸ ︷︷ ︸
=[x]b

 (since πb is a K-algebra homomorphism)

= a [[x]b] .

Hence,

a [[x]b] = πb

a [x]︸︷︷︸
=a

 = πb (a) = [a]b .

This proves Proposition 8.1.8 (c).
(d) We must prove that b [[x]b] = 0K[x]/b.
Applying Proposition 8.1.8 (c) to a = b, we obtain

b [[x]b] = [b]b = [0]b (since b ≡ 0 mod b)
= 0K[x]/b,

and this shows that [x]b is a root of b. This proves Proposition 8.1.8 (d).

Theorem 8.1.9. Let K be a commutative ring.
Let m ∈N. Let b ∈ K [x]≤m be such that [xm] b ∈ K is invertible. Then:
(a) Each element of K [x] /b can be uniquely written in the form

λ0

[
x0
]

b
+ λ1

[
x1
]

b
+ · · ·+ λm−1

[
xm−1

]
b

with λ0, λ1, . . . , λm−1 ∈ K.

(b) The m vectors
[
x0]

b ,
[
x1]

b , . . . ,
[
xm−1]

b form a basis of the K-module
K [x] /b. (See Definition 6.11.1 (d) for what “basis” means.)

(c) Assume that m > 0. Then, the K-algebra homomorphism

K→ K [x] /b,
a 7→ [a]b

is injective. Thus, K can be viewed as a K-subalgebra of K [x] /b if we identify
each a ∈ K with the [a]b ∈ K [x] /b.

Proof of Theorem 8.1.9. (a) Let α ∈ K [x] /b. Then, α = [a]b for some polynomial
a ∈ K [x]. Consider this a. Theorem 7.5.1 (a) yields that there is a unique pair (q, r)
of polynomials with a = qb + r and r ∈ K [x]≤m−1. Consider this pair (q, r). Then,
a = qb︸︷︷︸

≡0 mod b

+r ≡ r mod b, so that [a]b = [r]b.
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Write r in the form r = r0x0 + r1x1 + · · · + rm−1xm−1 with r0, r1, . . . , rm−1 ∈ K

(this can be done, since r ∈ K [x]≤m−1). Then,

α = [a]b = [r]b =
[
r0x0 + r1x1 + · · ·+ rm−1xm−1

]
b(

since r = r0x0 + r1x1 + · · ·+ rm−1xm−1
)

= r0

[
x0
]

b
+ r1

[
x1
]

b
+ · · ·+ rm−1

[
xm−1

]
b

.

So we have found a way to write α in the form

λ0

[
x0
]

b
+ λ1

[
x1
]

b
+ · · ·+ λm−1

[
xm−1

]
b

with λ0, λ1, . . . , λm−1 ∈ K

(namely, with (λ0, λ1, . . . , λm−1) = (r0, r1, . . . , rm−1)).
It remains to prove that this way is unique. This can easily be done using the

uniqueness part of Theorem 7.5.1 (a).226 Thus, Theorem 8.1.9 (a) is proven.

226Here is the argument in detail:
Let (µ0, µ1, . . . , µm−1) and (ρ0, ρ1, . . . , ρm−1) be two m-tuples (λ0, λ1, . . . , λm−1) ∈ Km satis-

fying α = λ0
[
x0]

b + λ1
[
x1]

b + · · · + λm−1
[
xm−1]

b. We shall show that (µ0, µ1, . . . , µm−1) =
(ρ0, ρ1, . . . , ρm−1).

Define a polynomial m ∈ K [x] by m = µ0x0 + µ1x1 + · · ·+ µm−1xm−1. Then, m ∈ K [x]≤m−1
and [

xi
]

m = µi for each i ∈ {0, 1, . . . , m− 1} . (326)

We know that (µ0, µ1, . . . , µm−1) is an m-tuple (λ0, λ1, . . . , λm−1) ∈ Km satisfying α =
λ0
[
x0]

b + λ1
[
x1]

b + · · · + λm−1
[
xm−1]

b. In other words, (µ0, µ1, . . . , µm−1) is an m-tuple in
Km and satisfies α = µ0

[
x0]

b + µ1
[
x1]

b + · · ·+ µm−1
[
xm−1]

b. Thus, from α = [a]b, we obtain

[a]b = α = µ0

[
x0
]

b
+ µ1

[
x1
]

b
+ · · ·+ µm−1

[
xm−1

]
b
=
[
µ0x0 + µ1x1 + · · ·+ µm−1xm−1

]
b
= [m]b

(since µ0x0 + µ1x1 + · · · + µm−1xm−1 = m). In other words, a ≡ m mod b. In other words,
b | a−m.In other words, there exists a polynomial c ∈ K [x] such that a−m = bc. Consider
this c. From a−m = bc, we obtain a = m + bc = cb + m.

Now, recall that (q, r) was defined as the unique pair (q, r) of polynomials with a = qb + r
and r ∈ K [x]≤m−1. Thus, in particular, it is the only such pair. In other words, if (q̃, r̃) is a pair
of polynomials with a = q̃b + r̃ and r̃ ∈ K [x]≤m−1, then (q̃, r̃) = (q, r). We can apply this fact
to (q̃, r̃) = (c, m) (since a = cb + m and m ∈ K [x]≤m−1), and thus obtain (c, m) = (q, r). In
other words, c = q and m = r. Now, for each i ∈ {0, 1, . . . , m− 1}, we have

µi =
[

xi
]

m︸︷︷︸
=r

(by (326))

=
[

xi
]

r. (327)

The same argument (applied to (ρ0, ρ1, . . . , ρm−1) instead of (µ0, µ1, . . . , µm−1)) shows that for
each i ∈ {0, 1, . . . , m− 1}, we have

ρi =
[

xi
]

r.

Comparing this with (327), we conclude that for each i ∈ {0, 1, . . . , m− 1}, we have µi = ρi. In
other words, (µ0, µ1, . . . , µm−1) = (ρ0, ρ1, . . . , ρm−1).
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(b) Proposition 6.11.2 shows that Theorem 8.1.9 (b) is a restatement of Theorem
8.1.9 (a). Thus, Theorem 8.1.9 (b) holds.

(c) We already know (from Proposition 8.1.8 (b)) that the map

K→ K [x] /b,
a 7→ [a]b

is a K-algebra homomorphism. We just need to show that it is injective. In other
words, we need to show that if a, b ∈ K satisfy [a]b = [b]b, then a = b.

So let a, b ∈ K satisfy [a]b = [b]b. Note that

[a]b =
[

ax0
]

b

since a = a · 1︸︷︷︸
=x0

= ax0


= a

[
x0
]

b
,

and similarly [b]b = b
[
x0]

b. Hence, the equality [a]b = [b]b rewrites as

a
[

x0
]

b
= b

[
x0
]

b
.

Thus, define an element α ∈ K [x] /b by α = a
[
x0]

b = b
[
x0]

b. Then, we have
found two ways of representing the element α ∈ K [x] /b in the form

λ0

[
x0
]

b
+ λ1

[
x1
]

b
+ · · ·+ λm−1

[
xm−1

]
b

with λ0, λ1, . . . , λm−1 ∈ K:

one way uses λ0 = a and λi = 0 for all i > 0; the other way uses λ0 = b and λi = 0
for all i > 0. But the “uniqueness” statement in Theorem 8.1.9 (a) yields that there
is only one way to represent an element in this form. Hence, these two ways must
be equal. Therefore, a = b.

Note that Theorem 8.1.9 (c) really requires m to be > 0 (otherwise, K [x] /b is a
trivial ring) and [xm] b to be invertible (we will see an example below where [xm] b
is not invertible, and K does not inject into K [x] /b).

We now understand the quotient rings K [x] /b well enough at least in the case
when the leading coefficient of b is invertible. Let us use this to see some examples:

Now, forget that we fixed (µ0, µ1, . . . , µm−1) and (ρ0, ρ1, . . . , ρm−1). We thus have shown that
if (µ0, µ1, . . . , µm−1) and (ρ0, ρ1, . . . , ρm−1) are two m-tuples (λ0, λ1, . . . , λm−1) ∈ Km satisfying
α = λ0

[
x0]

b + λ1
[
x1]

b + · · · + λm−1
[
xm−1]

b, then (µ0, µ1, . . . , µm−1) = (ρ0, ρ1, . . . , ρm−1). In
other words, any two m-tuples (λ0, λ1, . . . , λm−1) ∈ Km satisfying α = λ0

[
x0]

b + λ1
[
x1]

b +

· · ·+ λm−1
[
xm−1]

b must be identical. In other words, there exists at most one such m-tuple. In
other words, there is at most one way to write α in the form

λ0

[
x0
]

b
+ λ1

[
x1
]

b
+ · · ·+ λm−1

[
xm−1

]
b

with λ0, λ1, . . . , λm−1 ∈ K.

Since we already know that such a way exists, we thus conclude that such a way is unique.
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Example 8.1.10. We have C ∼= R [x] /
(
x2 + 1

)
(as rings).

Indeed, the map

C→ R [x] /
(

x2 + 1
)

,

(a, b) = a + bi 7→ [a + bx]x2+1

is a ring homomorphism, and is invertible, with inverse

R [x] /
(

x2 + 1
)
→ C,

[a]x2+1 7→ a [i] .

To see that the latter inverse is well-defined, you have to check that if a and b are
two polynomials in R [x] satisfying a ≡ b mod x2 + 1, then a [i] = b [i]. (LTTR.)

Example 8.1.11. We have Z [i] ∼= Z [x] /
(
x2 + 1

)
(as rings).

Example 8.1.12. Recall the dual numbers D from homework set #4 exercise 3.
Each dual number has the form (a, b) = a + bε for a unique pair (a, b) of real
numbers, and the multiplication of D satisfies ε2 = 0.

We have D ∼= R [x] /x2 (as rings). More precisely, the map

D→ R [x] /x2,
(a, b) = a + bε 7→ [a + bx]x2

is a ring isomorphism.
Moreover, we also have D ∼= R [[x]] /x2 as rings.
Note, however, that this is unusual: Normally, if a ∈ K [x] is a polyno-

mial, then K [[x]] /a is not isomorphic to K [x] /a. For example, the ring
R [x] /

(
x2 + 1

)
is isomorphic to C (as we have seen above), whereas the ring

R [[x]] /
(
x2 + 1

)
is trivial (since the FPS x2 + 1 is invertible, and thus any two

FPSs are congruent to each other modulo x2 + 1).

Example 8.1.13. In Section 5.6, we constructed a field with 4 elements by adjoin-
ing a j satisfying j2 = j + 1 to Z/2. This field is isomorphic to

(Z/2) [x] /
(

x2 − x− 1
)

.

Example 8.1.14. Let m ∈ Z be nonzero. On midterm #2 exercise 1, we defined
Rm to be the set of all m-integers (= rational numbers that can be turned into
integers by multiplying with m often enough). We proved that Rm is a ring.
Each element of Rm can be written in the form

a
mk for some a ∈ Z and some

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw4s.pdf
https://www.cip.ifi.lmu.de/~grinberg/t/19s/mt2s.pdf
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k ∈N (but these a and k are not unique, since
a

mk =
am

mk+1 =
am2

mk+2 = · · · ).
This ring Rm is isomorphic to the ring Z [x] / (mx− 1). Indeed, we have a ring

homomorphism

Z [x] / (mx− 1)→ Rm,

[a]mx−1 7→ a
[

1
m

]
,

and this is invertible, with inverse

Rm → Z [x] / (mx− 1) ,
a

mk 7→
[

axk
]

mx−1
(for a ∈ Z and k ∈N)

(you have to check that this is well-defined).
Note that Theorem 8.1.9 does not apply here (unless m ∈ {1,−1}), and the

Z-module Rm has no basis (again, unless m ∈ {1,−1}).

Note that Rm (the ring of m-integers) is commonly called Z

[
1
m

]
, in analogy

to Z [i].

Example 8.1.15. We have a ring isomorphism

(Z/6) [x] / (2x + 1) ∼= Z/3.

Thus, if we adjoin a root of 2x + 1 to the ring Z/6, then we get a smaller ring
(namely, Z/3). In particular, there is no injective map from Z/6 to the result of
this adjunction!

This is no surprise, since
[
x1] (2x + 1) = [2]6 is not invertible in Z/6, and thus

Theorem 8.1.9 does not apply here.
This is similar to how dividing by 0 makes all numbers equal:

Z [x] / (0x− 1) ∼= {0} .

Let us summarize: We can always adjoin a root of a polynomial b to a com-
mutative ring K by forming the ring K [x] /b. This latter ring will always be a
commutative ring; moreover, if b is “nice” (that is, there is a positive integer m
such that b ∈ K [x]≤m and such that [xm] b is invertible), then Theorem 8.1.9 (c)
shows that this latter ring will contain K as a subring (at least if we make a natural
identification). If b is not as “nice”, then the ring K [x] /b may fail to contain K as
a subring (though it is always a K-algebra), and may be smaller than K and even
trivial.

If K itself is a field, then b will always be “nice” (unless b = 0), but the ring
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K [x] /b may and may not be a field. What must a polynomial b satisfy in order
for K [x] /b to be a field?

Definition 8.1.16. Let F be a field.
A polynomial a ∈ F [x] is said to be irreducible if deg a > 0 and there exist no

two polynomials b, c ∈ F [x] with a = bc and deg b > 0 and deg c > 0.
In other words, a polynomial a ∈ F [x] is said to be irreducible if it is non-

constant but cannot be written as a product of two non-constant polynomials.
(Indeed, the non-constant polynomials are precisely the polynomials having de-
gree > 0.)

Irreducible polynomials over a field F are an analogue of prime numbers (or, to
be more precise, of integers of the form ±p where p is a prime).

Theorem 8.1.17. Let F be a field. Let a ∈ F [x] be a polynomial.
Then, the ring F [x] /a is a field if and only if a is irreducible.

So, for example, the irreducible polynomial x2 + 1 over R yields the field R [x] /
(
x2 + 1

)
(which is ∼= C), but the non-irreducible polynomial x2 over R yields the non-field
R [x] /x2 (which is ∼= D).

Proof of Theorem 8.1.17 (sketched). In Subsection 7.5.2, we have already explained
that there is an analogy between polynomials in F [x] and Gaussian integers in
Z [i] (although we denoted the field by K rather than F in that Subsection). In par-
ticular, the degree of a polynomial is analogous to the norm of a Gaussian integer.
The nonzero constant polynomials in F [x] (that is, the polynomials of degree 0) are
precisely the units of the ring F [x] (that is, the invertible elements of F [x]) 227,
and thus play the same role in F [x] that the units 1,−1, i,−i play in Z [i]. Theo-
rem 7.5.4 serves as an analogue of Theorem 4.2.26, and can be used to prove an
analogue of Bezout’s theorem for polynomials in F [x]. This lets us define an ana-
logue of gcds. Irreducible polynomials in F [x] are an analogue of Gaussian primes.
This analogy between Z [i] and F [x] is not perfect228; but it suffices to prove F [x]-
analogues of all the fundamental results such as Theorem 2.9.12, Theorem 2.9.15,
Theorem 2.10.6, Theorem 2.10.7, Theorem 2.10.8, Proposition 2.13.4, Proposition
2.13.5 and Theorem 2.13.6.229 As a consequence, we can prove an F [x]-analogue
of Theorem 5.5.8. This latter analogue shows that if n ∈ F [x] is a polynomial of
degree deg n > 0, then the ring F [x] /n is a field if and only if n is irreducible.
Applying this to n = a, we obtain Theorem 8.1.17 (after first dealing with the easy
case when deg a ≤ 0).

227This follows from Proposition 7.9.1.
228For example: If n ∈N, then there are only finitely many Gaussian integers α ∈ Z [i] having norm

n, but there are often infinitely many polynomials a ∈ F [x] having degree n.
229The analogue of Proposition 2.13.4 states that if p ∈ F [x] is an irreducible polynomial, then every

polynomial i ∈ F [x] with degree deg i ∈ {1, 2, . . . , deg p− 1} is coprime to p.
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8.2. Quotients modulo ideals

8.2.1. Congruence and quotients modulo ideals

The notion of “congruence modulo w” introduced in Definition 8.1.2 was a gener-
alization of “congruence modulo n” from number theory; but it can be generalized
further. Namely, we can replace w by an ideal I of L. (See Definition 6.12.5 for the
definition of an ideal.) Here is how this general notion is defined:

Definition 8.2.1. Let L be a ring. Let I be an ideal of L. Let a, b ∈ L. We say
that a is congruent to b modulo I (in L) if and only if a− b ∈ I. We shall use the
notation “a ≡ b mod I” for “a is congruent to b modulo I”.

We furthermore shall use the notation “a 6≡ b mod I” for “a is not congruent
to b modulo I”.

Why is this a generalization of “congruence modulo w”? Because congruence
modulo w is recovered if we take I to be the principal ideal230 wL. More precisely,
the following holds:

Proposition 8.2.2. Let L be a commutative ring. Let w ∈ L. Let a, b ∈ L.
Consider the principal ideal wL of L, defined as in Example 6.12.6 (that is, by
wL = {wz | z ∈ L}). Then, a ≡ b mod w holds if and only if a ≡ b mod wL.

Proof of Proposition 8.2.2. The definition of wL yields wL = {wz | z ∈ L}. Now,
We have the following chain of equivalences:

(a ≡ b mod w) ⇐⇒ (w | a− b) (by Definition 8.1.2)
⇐⇒ (a− b = wz for some z ∈ L)

(by Definition 8.1.1)

⇐⇒

a− b ∈ {wz | z ∈ L}︸ ︷︷ ︸
=wL

 ⇐⇒ (a− b ∈ wL)

⇐⇒ (a ≡ b mod wL) (by Definition 8.2.1) .

Thus, Proposition 8.2.2 is proven.

Knowing that “congruence modulo I” is a generalization of “congruence mod-
ulo w” and of “congruence modulo n”, we can play the usual game in which we
recall properties of the latter and check whether they still hold for the former. For
example, the following generalization of Proposition 8.1.3 holds:

Proposition 8.2.3. Let L be a ring. Let I be an ideal of L.
(a) We have a ≡ a mod I for every a ∈ L.
(b) If a, b, c ∈ L satisfy a ≡ b mod I and b ≡ c mod I, then a ≡ c mod I.

230See Example 6.12.6 for the definition of principal ideals.
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(c) If a, b ∈ L satisfy a ≡ b mod I, then b ≡ a mod I.
(d) If a1, a2, b1, b2 ∈ L satisfy a1 ≡ b1 mod I and a2 ≡ b2 mod I, then

a1 + a2 ≡ b1 + b2 mod I; (328)
a1 − a2 ≡ b1 − b2 mod I; (329)

a1a2 ≡ b1b2 mod I. (330)

(e) Let J be an ideal of L such that I ⊆ J. If a, b ∈ L satisfy a ≡ b mod I, then
a ≡ b mod J.

Note how the “I ⊆ J” assumption in Proposition 8.2.3 (e) is the correct gener-
alization of the “m | w” assumption in Proposition 8.1.3, because of the following
fact:

Proposition 8.2.4. Let L be a commutative ring. Let m, w ∈ L. Then, wL ⊆ mL

holds if and only if m | w. (Here, the principal ideals wL and mL are defined as
in Example 6.12.6).

This proposition is so easy it barely needs proof, but it illustrates a useful point
of view: Divisibility of elements of L can be rewritten as containment of ideals of
L.

Proof of Proposition 8.2.4. =⇒: Assume that wL ⊆ mL. We must prove that m | w.
The definition of wL yields wL = {wz | z ∈ L}. Now, w = w · 1; hence, the

element w has the form wz for some z ∈ L (namely, for z = 1). Thus,

w ∈ {wz | z ∈ L} = wL ⊆ mL = {mz | z ∈ L}

(by the definition of mL). In other words, w = mz for some z ∈ L. In other words,
m | w (by Definition 8.1.1). Thus, the “=⇒” part of Proposition 8.2.4 is proven.
⇐=: Assume that m | w. We must prove that wL ⊆ mL.
We have assumed that m | w. In other words, w = mc for some c ∈ L. Consider

this c.
The definition of mL yields mL = {mz | z ∈ L} = {ma | a ∈ L} (here, we

have renamed the index z as a).
Now, let g ∈ wL. Hence, g ∈ wL = {wz | z ∈ L} (by the definition of wL).

In other words, g = wz for some z ∈ L. Consider this z. Then, g = w︸︷︷︸
=mc

z =

mcz. Hence, g = ma for some a ∈ L (namely, for a = cz). In other words, g ∈
{ma | a ∈ L} = mL.

Forget that we fixed g. We thus have shown that g ∈ mL for some g ∈ wL. In
other words, wL ⊆ mL. Thus, the “⇐=” part of Proposition 8.2.4 is proven.

Proof of Proposition 8.2.3. We know that I is an ideal of L. Thus, I satisfies the four
conditions in Definition 6.12.5 (applied to L instead of K). In other words, the
following holds:
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• The subset I is closed under addition (i.e., we have a + b ∈ I for all a ∈ I and
b ∈ I).

• The subset I contains 0L.

• We have
λa ∈ I for all λ ∈ L and a ∈ I. (331)

• We have
aλ ∈ I for all λ ∈ L and a ∈ I. (332)

(a) Let a ∈ L. We know that I contains 0L. Thus, 0L ∈ I. Now, a− a = 0L ∈ I.
This rewrites as a ≡ a mod I (by Definition 8.2.1). This proves Proposition 8.2.3 (a).

(b) Let a, b, c ∈ L satisfy a ≡ b mod I and b ≡ c mod I. Then, a ≡ b mod I, so that
a− b ∈ I (by Definition 8.2.1). Similarly, b− c ∈ I. But we know that I is closed
under addition. Hence, from a− b ∈ I and b− c ∈ I, we obtain (a− b)︸ ︷︷ ︸

∈I

+ (b− c)︸ ︷︷ ︸
∈I

∈

I. Hence, a− c = (a− b) + (b− c) ∈ I. In other words, a ≡ c mod I (by Definition
8.2.1). This proves Proposition 8.2.3 (b).

(c) Let a, b ∈ L satisfy a ≡ b mod I. Thus, a− b ∈ I (by Definition 8.2.1). Hence,
(331) (applied to −1 and a− b instead of λ and a) yields (−1) (a− b) ∈ I. Hence,
b− a = (−1) (a− b) ∈ I. In other words, b ≡ a mod I (by Definition 8.2.1). This
proves Proposition 8.2.3 (c).

(d) Let a1, a2, b1, b2 ∈ L satisfy a1 ≡ b1 mod I and a2 ≡ b2 mod I. We have
a1 ≡ b1 mod I and thus a1 − b1 ∈ I (by Definition 8.2.1). But we know that I
is closed under addition. Hence, from a1 − b1 ∈ I and a2 − b2 ∈ I, we obtain
(a1 − b1)︸ ︷︷ ︸
∈I

+ (a2 − b2)︸ ︷︷ ︸
∈I

∈ I. Hence,

(a1 + a2)− (b1 + b2) = (a1 − b1) + (a2 − b2) ∈ I.

In other words, a1 + a2 ≡ b1 + b2 mod I (by Definition 8.2.1).
Recall that a2 − b2 ∈ I. Hence, (331) (applied to −1 and a2 − b2 instead of λ and

a) yields (−1) (a2 − b2) ∈ I. Hence, b2 − a2 = (−1) (a2 − b2) ∈ I. Recall again that
I is closed under addition. Hence, from a1 − b1 ∈ I and b2 − a2 ∈ I, we obtain
(a1 − b1)︸ ︷︷ ︸
∈I

+ (b2 − a2)︸ ︷︷ ︸
∈I

∈ I. Hence,

(a1 − a2)− (b1 − b2) = (a1 − b1) + (b2 − a2) ∈ I.

In other words, a1 − a2 ≡ b1 − b2 mod I (by Definition 8.2.1).
It remains to prove that a1a2 ≡ b1b2 mod I.
Let us first show that a1a2 ≡ a1b2 mod I. Indeed, a1a2 − a1b2 = a1 (a2 − b2) ∈ I

(by (331), applied to a1 and a2− b2 instead of λ and a), because a2− b2 ∈ I. In other
words, a1a2 ≡ a1b2 mod I.
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Next, we shall show that a1b2 ≡ b1b2 mod I. Indeed, a1b2− b1b2 = (a1 − b1) b2 ∈ I
(by (332), applied to b2 and a1− b1 instead of λ and a), because a1− b1 ∈ I. In other
words, a1b2 ≡ b1b2 mod I.

Now, we have a1a2 ≡ a1b2 mod I and a1b2 ≡ b1b2 mod I. Hence, Proposition 8.2.3
(b) (applied to a = a1a2, b = a1b2 and c = b1b2) yields a1a2 ≡ b1b2 mod I. This
completes the proof of Proposition 8.2.3 (d).

(e) Let a, b ∈ L satisfy a ≡ b mod I. Thus, a− b ∈ I (by Definition 8.2.1). Hence,
a − b ∈ I ⊆ J. In other words, a ≡ b mod J (by Definition 8.2.1). This proves
Proposition 8.2.3 (e).

The following definition generalizes Definition 8.1.4 (and thus also generalizes
our construction of Z/n for n ∈ Z):

Definition 8.2.5. Fix a ring L and an ideal I of L.
(a) Define a relation ≡

I
on the set L by

(
a ≡

I
b
)
⇐⇒ (a ≡ b mod I) .

This ≡
I

is an equivalence relation. (The proof of this is analogous to the proof

of Example 3.2.5.)
(b) A residue class modulo I means an equivalence class of the relation ≡

I
.

(c) If a ∈ L, then we denote the residue class [a]≡
I

by [a]I .

(d) The set L/ ≡
I

of all residue classes modulo I is called L/I.

(e) We define a binary operation + on L/I (called addition) by setting

[a]I + [b]I = [a + b]I for all a, b ∈ L.

This is well-defined, because of Theorem 8.2.6 (a) below.
(f) We define a binary operation · on L/I (called multiplication) by setting

[a]I · [b]I = [a · b]I for all a, b ∈ L.

This is well-defined, because of Theorem 8.2.6 (a) below.
(g) Fix r ∈ L. For any α ∈ L/I, we define a residue class rα ∈ L/I by setting

(r [a]I = [ra]I for any a ∈ L) .

(In other words, for any α ∈ L/I, we let rα = [ra]I , where a is an element of L

satisfying α = [a]I .) This is well-defined, because of Theorem 8.2.6 (a) below.
We shall also write r · α instead of rα. The map L× (L/I)→ L/I, (r, α) 7→ rα

will be called scaling.
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Theorem 8.2.6. Fix a ring L and an ideal I of L.
(a) The operations + and · and the “scaling map” · in Definition 8.2.5 are

well-defined.
(b) The set L/I, equipped with the addition + (defined in Definition 8.2.5

(e)), the multiplication · (defined in Definition 8.2.5 (f)) and the zero [0]I and the
unity [1]I , is a commutative ring.

(c) The set L/I, equipped with the addition + (defined in Definition 8.2.5
(e)), the scaling · (defined in Definition 8.2.5 (g)) and the zero vector [0]I , is an
L-module when L is commutative.

(d) The set L/I, equipped with all of these items, is an L-algebra when L is
commutative.

(e) The map

πI : L→ L/I,
a 7→ [a]I

is an L-algebra homomorphism.
(f) If the ring L is commutative, then the ring L/I is a commutative L-algebra.
(g) The kernel of the L-algebra homomorphism πI is Ker (πI) = I. (See Propo-

sition 6.12.8 (a) for the definition of a kernel.)

Proof of Theorem 8.2.6. Parts (a), (b), (c), (d) and (e) of this theorem are proven in
the same way as the corresponding parts of Theorem 8.1.5. Part (f) is easy.

(g) The map πI is an L-algebra homomorphism (by Theorem 8.2.6 (e)), thus a
ring homomorphism.

For each a ∈ L, we have the following chain of equivalences:

(πI (a) = 0L/I)

⇐⇒ ([a]I = [0]I)
(since πI (a) = [a]I (by the definition of πI) and 0L/I = [0]I)

⇐⇒
(
[a]≡

I
= [0]≡

I

)
(

since Definition 8.2.5 (c) yields [a]I = [a]≡
I

and [0]I = [0]≡
I

)
⇐⇒

(
a ≡

I
0
) (

since Proposition 3.3.5 (e) yields that
we have a ≡

I
0 if and only if [a]≡

I
= [0]≡

I

)
⇐⇒ (a ≡ 0 mod I) (by Definition 8.2.5 (a))
⇐⇒ (a− 0 ∈ I) (by Definition 8.2.1)
⇐⇒ (a ∈ I) (since a− 0 = a) .

Hence,
{a ∈ L | πI (a) = 0L/I} = {a ∈ L | a ∈ I} = I
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(since I ⊆ L). Now, the definition of Ker (πI) yields

Ker (πI) = {v ∈ L | πI (v) = 0L/I} = {a ∈ L | πI (a) = 0L/I}
(here, we have renamed the index v as a)

= I.

This proves Theorem 8.2.6 (g).

Proposition 8.2.2 shows that Definition 8.2.5 generalizes Definition 8.1.4: Namely,
if L is a commutative ring, and if the ideal I in Definition 8.2.5 is a principal ideal
wL (for some w ∈ L), then the relation ≡

I
and the ring L/I are precisely the

relation ≡
w

and the ring L/w defined in Definition 8.1.4. Thus, if w is any element
of a commutative ring L, then

L/w = L/wL.

Thus, in particular, Z/n = Z/nZ for any n ∈ Z. Most authors prefer the notation
Z/nZ to our notation Z/n (since it is an instance of the more general construction
L/I).

9. Epilogue (UMN Fall 2019 Math 4281)

Here ends our one-semester course on abstract algebra (Fall 2019 at UMN). I will
now tie up some loose ends and point into a few directions for further study.

9.1. Roads not taken

During the course of the past semester, we have learned new things about old
concepts (such as the integers) as well as new concepts – both concrete (such as the
Gaussian integers) and abstract (such as arbitrary rings and fields).

A one-semester course on abstract algebra always has to decide between many
things of roughly equal importance; not everything can get its day231. The main
topics we missed are:

• Groups (and monoids, and group homomorphisms, and subgroups, etc.).
Many algebra classes start with this topic, since much of it can be done with
almost no prerequisites. I have kept delaying this topic and, in the end, did
not get to it at all. My main excuse is that it would have taken me afield – we
haven’t needed groups in what we did above (though they would have sim-
plified a few of our proofs). Nevertheless, groups are worth learning about.
Readable introductions into groups include [Siksek15], [GalQua17, §4.1–§4.2],
[Goodma16, Chapters 1–5] and [Pinter10, Chapter 1–16]; other sources are

231The alternative is to skimp on proofs; I consider this the worst option.
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[Armstr18, Abstract Algebra I] (with a historical perspective), [Artin10, Chap-
ter 2], [Bosch18, Chapter 1], [Carrel17, Chapter 2], [Elman18, Chapters III–IV],
[Knapp16a, Chapter IV], [Loehr11, Chapter 9], [Milne17].

Only a few dozen pages of basic properties of groups will get you ready for
the proof of Theorem 3.9.5, which we left unproved. See [GalQua17, §4.1–
§4.2] or [Conrad*, “Cyclicity of (Z/ (p))×”] (for the case n = p).

• Permutations. The basics of this subject are extremely important throughout
mathematics; in particular, the notion of the sign of a permutation is needed
for the study of determinants of matrices and of signed volumes in geometry.
Concerning this notion, see [Strick13, Appendix B] for a quick “from-scratch”
introduction, and [Conrad*, “The sign of a permutation”] for an approach
using group theory.

You can learn more about permutations from a textbook on enumerative com-
binatorics (such as [Loehr11]) or on permutation puzzles (such as [Bump02],
[Joyner08] or [Mulhol16]). The latter texts focus on permutation-related puz-
zles such as Rubik’s cube and the 15-game; but in doing so, they motivate
and introduce the properties of permutations and even the basics of group
theory.

• Determinants. Determinants belong equally to combinatorics, abstract alge-
bra and linear algebra. As a consequence, none of these courses covers them
well; usually, only the most basic properties are stated, and their proofs out-
lined as best. Strickland, in [Strick13, §12 and Appendix B], gives a short but
rigorous and honest treatment of the fundamentals. Other good introductions
are found in Day’s [Day16, Chapter 6], Mate’s [Mate14], Walker’s [Walker87,
§5.4], and Pinkham’s [Pinkha15, Chapter 11] (but they all limit themselves to
the basics). In [Grinbe15, Chapter 6], I prove a variety of results (including
some nonstandard ones) in much detail (probably too much). The “bible”
on determinants is [MuiMet60] (and, for the particularly bold, [Muir30] is a
goldmine of forgotten results).

The determinant used to be one of the central notions in mathematics, and
even predated the notion of matrices! (Determinants first appear in a 1693
letter of Leibniz. The word “matrix” was coined in 1850 by J. J. Sylvester, as
a “womb” (this is what “matrix” means in Latin) from which determinants
spring out.) Determinants have become less central since, thanks to abstract
algebra incorporating many ideas that were first stated in their language.
Nevertheless, they are still one of the strongest tools on the algebraic side of
mathematics.

• Multivariate polynomials (i.e., polynomials in several variables). This is a
highly useful topic, but it is rarely done justice in one-semester courses on
algebra, since it takes some amount of notational work. For example, 3+ 2x+
3x2y + 6y2 is a polynomial in the two variables x, y over the ring Q. To define

https://mathoverflow.net/questions/35988/why-were-matrix-determinants-once-such-a-big-deal/
https://www-history.mcs.st-and.ac.uk/HistTopics/Matrices_and_determinants.html
https://www-history.mcs.st-and.ac.uk/HistTopics/Matrices_and_determinants.html
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such polynomials rigorously, we recall that we defined FPSs in one variable as
infinite sequences of elements of our ring K. Likewise, we can define FPSs in
two variables as infinite “2-dimensional sequences” of elements of K, where
a “2-dimensional sequence” is a family

(
ai,j
)
(i,j)∈N2 of elements of K indexed

by pairs of nonnegative integers.232 Such an FPS is called a polynomial if the
family has only finitely many nonzero entries. Then, x is defined to be the
family

(
ai,j
)
(i,j)∈N2 whose only nonzero entry is a1,0 = 1, and y is defined to

be the family
(
ai,j
)
(i,j)∈N2 whose only nonzero entry is a0,1 = 1. The theory

of polynomials (and FPSs) in two variables can thus be built up in analogy
to our 1-variable theory; details can be found in [Hunger03, Chapter III, §5],
[Loehr11, §7.16], [GalQua18, §30.2] and [AmaEsc05, §I.8].

Eventually, the theory of multivariate polynomials becomes more complicated
than the 1-variable theory. The first point where it significantly differs is di-
vision with remainder: There is no analogue of Theorem 7.5.1; instead there
is a rich and highly useful theory of Gröbner bases ([CoLiOs15]). Also, a poly-
nomial f in two variables x and y can be evaluated at two elements u and v
of a K-algebra U only if u and v commute (that is, uv = vu).

• Galois theory (i.e., the theory of field extensions and roots of polynomials).
This is the study of field extensions. In the simplest case, this is about how a
field K grows when a root of some polynomial is adjoined to it. We saw a
small bit of it when we constructed C, or finite fields of size p2, by adjoining
roots of quadratic polynomials; but the game can be played in greater gener-
ality. When a field K is a subring of a field L, the pair (K, L) is called a field
extension (and is often written as L/K, a notation that has nothing to do with
quotients despite its look). The Galois theory proper studies the K-algebra
isomorphisms from L to L. (For example, there are two R-algebra homomor-
phisms from C to C; one of them is simply the identity map, while the other
is the conjugation map z 7→ z. The dimension of the R-vector space C also
happens to be 2. Coincidence?)

A one-semester class on Galois theory usually covers only the very basics,
but undergraduate-level introductions to the theory exist. Two of them are
[Stewar15] and [Tignol01]. Some algebra texts centered on Galois theory are
[Armstr18], [Goodma16] and [Bosch18].

• Finite fields (also known as Galois fields). We have started exploring them by

232You can think of such a “2-dimensional sequence” as an infinite table

a0,0 a0,1 a0,2 · · ·
a1,0 a1,1 a1,2 · · ·
a2,0 a2,1 a2,2 · · ·

...
...

...
. . .

.
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defining the ones of size p and p2 (for p prime). But as I already mentioned,
there exists a finite field of any prime-power size, and it is unique up to
isomorphism. Most algebra textbooks that go deeper than a one-semester
course will prove this and perhaps say more – Galois theory texts in particular.
But there are also books specifically devoted to finite fields, such as [Wan11]
and [LidNie97].

Then, there are deeper topics such as representation theory, algebraic number
theory and algebraic geometry, which we have grazed at best (see, e.g., [DumFoo04],
[Knapp16a] and [Knapp16b]).

9.2. A quick history of algebraic equations

Algebraic equations (i.e., equations of the form P (x) = 0, where P is a given
polynomial) were the historical origin of much of abstract algebra. Thus, I am
going to say a few words about them, even though they eventually lead into topics
(like Galois theory and algebraic geometry) which have not been the subject of this
course.

The Babylonians knew the quadratic formula: The solutions to a quadratic equa-

tion ax2 + bx + c = 0 (say, over C) are x =
−b±

√
b2 − 4ac

2a
. (Of course, the Baby-

lonians did not know C; even the negative numbers only appeared during the
Chinese Han Dynasty and took a long time to propagate into the West. But the
idea was there.)

The question of solving cubic equations (ax3 + bx2 + cx + d = 0) and equations
of higher degree has puzzled people for centuries, until the case of the cubic was
solved by Scipione del Ferro and Niccolò Tartaglia (and written up by Girolamo
Cardano) in the early 16th Century. The history of their solution has been amply
discussed and dramatized in the literature (even over-dramatized, as if the truth
wasn’t interesting enough!); see the lecture slides

https://cs.uwaterloo.ca/~cbruni/CO480Resources/lectures/CO480MayAug2017/lecture11.pdf

for a highly readable chronology, and see [Rothma15] for some pop-science claims
debunked (including some from the slides).

The formula they found is surprising in its practical uselessness. Consider the
case of a “depressed” cubic polynomial; this is a polynomial of the form x3 + px+ q
(so the coefficient of x2 is 0). In this particular case, the Cardano formula233 says
that the roots of this polynomial are

3

√√√√−q
2
+

√
q2

4
+

p3

27
+

3

√√√√−q
2
−

√
q2

4
+

p3

27
.

233The attentive reader will have noticed that this is another instance of an object named for its first
expositor, not for its original discoverer. There is a moral here.

https://en.wikipedia.org/wiki/Quadratic_formula#Historical_development
https://en.wikipedia.org/wiki/Negative_number
https://en.wikipedia.org/wiki/Negative_number
https://cs.uwaterloo.ca/~cbruni/CO480Resources/lectures/CO480MayAug2017/lecture11.pdf
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The cubic roots here are understood to be complex cubic roots234, which is why

you get not 1 but 3 roots235. Note that

√
q2

4
+

p3

27
may be non-real, even if the

polynomial has a real root! Ironically, this happens precisely in the case when the
cubic polynomial has 3 real roots (which is the maximum possible number); thus,
it qualifies as an explicit formula only if we tolerate the presence of cubic roots of
complex numbers inside it.

Worse yet: Even if the Cardano formula does not involve any non-real numbers,
it is still far from the expression you might be looking for. For instance, let us try
to find the roots of the polynomial x3 + 3x− 4 using this formula. By plugging in
p = 3 and q = −4, we get the expression

3
√

2 +
√

4 + 1 +
3
√

2−
√

4 + 1 =
3
√

2 +
√

5 +
3
√

2−
√

5

for its roots. To find the real root, we take the usual (i.e., non-complex) cubic roots.
Thus we conclude that 3

√
2 +
√

5+ 3
√

2−
√

5 is a root of the polynomial x3 + 3x− 4.
But a bit of numerical computation suggests that this root is actually the number 1.
And this is indeed the case, as you can easily verify by evaluating the polynomial
x3 + 3x− 4 at 1; but how could you have guessed this from the cube-root formula?
So the Cardano formula gave us a complicated expression for the number 1, and
no way to simplify it!236

Nevertheless, the discovery of the Cardano formula has proven highly useful, as
it forced the introduction of complex numbers! While complex numbers already
appear as solutions of quadratic equations, this has not convinced anyone to define
them, because everyone would content themselves with the answer “no solutions”.
But cubic equations like x3− x + 1 = 0 tease you with their 3 real roots which, nev-
ertheless, cannot be expressed through 3

√ and √ signs until complex numbers are
defined. Thus, it was the cubic equation that made complex numbers accepted.237

Cardano went on and solved the general quartic equation ax4 + bx3 + cx2 + dx +
e = 0 with an even longer formula. The proofs of these formulas have remained
tricky and computational (see, e.g., [Armstr18, Week 1] for the case of the cubic),
even as some of the tricks have since been explained using abstract algebra.

234If z ∈ C is a complex number, then the complex cubic roots of z are the complex numbers w
satisfying w3 = z. There are three of them (unless z = 0), and (in terms of the Argand diagram)
they form the vertices of an equilateral triangle with center at 0.

235Actually, you get 9 roots if you are not careful (because there are two 3
√ signs in the formula).

When picking complex cubic roots of − q
2
+

√
q2

4
+

p3

27
and − q

2
−
√

q2

4
+

p3

27
, you should choose

not all 3 · 3 = 9 combinations, but only the ones whose product is −1
3

p.

236Actually, you can prove that 3
√

2 +
√

5 + 3
√

2−
√

5 = 1 by showing that 3
√

2 +
√

5 =
1
2

(
1 +
√

5
)

and 3
√

2−
√

5 =
1
2

(
1−
√

5
)

. But how would you have found these two identities?
237There may be a moral here as well.

https://en.wikipedia.org/wiki/Quartic_function#Solving_a_quartic_equation
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For three more centuries, the quintic equation ax5 + bx4 + cx3 + dx2 + ex + f = 0
stumped mathematicians. Finally, in 1824, Niels Henrik Abel (based on work by
Paolo Ruffini) showed that a general formula for the roots of a degree-5 polynomial
(using +, −, ·, / and √ signs only) does not exist (not even an impractical one
like Cardano’s). A real understanding of the reasons behind this emerged when
Évariste Galois introduced the notion of groups, and what later became known as
Galois groups, in 1832. This formed the beginning of Galois theory (for which see
the references in Section 9.1).

From a modern viewpoint, the question of finding explicit formulas for roots
of polynomials appears arbitrary and inconsequential. After all, why exactly are
we allowing √ signs in these formulas, if computing n

√
a is already tantamount

to finding a root of a polynomial (namely, xn − a) ? Why do some roots count as
explicit, but the ones we are looking for don’t? In the case of quadratic polynomials,
at least the formula ends up quite useful; for higher degrees, this is almost never
the case. Expressions involving third (and higher) roots are hard to work with
(recall our difficulties recognizing 3

√
2 +
√

5 +
3
√

2−
√

5 as 1!), and if one wants
numerical results, the standard numerical methods (such as Newton’s) are much
simpler. Algebraists generally want to compute precisely, but they don’t care for
the arbitrary limitations of +, −, ·, / and √ signs; thus, much of the time, they
end up formally adjoining their roots (using the K [x] /b construction in Theorem
8.1.9) and computing in the resulting rings. Thus, despite giving birth to some of
the algebra we know and love, Cardano’s formulas eventually became historical
footnotes.

9.3. Irreducible polynomials over finite fields

I have told you that there exists a field of any prime-power size; but I only showed
this for the sizes p and p2 (where p is a prime). Let me go one step further and
prove this for size p3 as well, just to illustrate the use of the K [x] /b construction
from Theorem 8.1.9. More generally, I claim the following:

Lemma 9.3.1. Let F be a finite field.
(a) There exists an irreducible polynomial a ∈ F [x] of degree 2.
(b) There exists an irreducible polynomial a ∈ F [x] of degree 3.

Proof of Lemma 9.3.1 (sketched). If n ∈ N, then a polynomial a ∈ F [x] is said to be
monic of degree n if and only if a ∈ F [x]≤n and [xn] a = 1. Thus, a polynomial
is monic of degree n if and only if it can be written in the form xn + an−1xn−1 +
an−2xn−2 + · · ·+ a0x0 for some a0, a1, . . . , an−1 ∈ F. In particular, the monic poly-
nomials of degree 1 have the form x + b for b ∈ F, while the monic polynomials of
degree 2 have the form x2 + bx + c for b, c ∈ F. It is clear that for each n ∈ N, we
have

|{monic polynomials a ∈ F [x] of degree n}| = |F|n (333)

https://en.wikipedia.org/wiki/Galois_theory
https://en.wikipedia.org/wiki/Root-finding_algorithm
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(because in order to choose a monic polynomial xn + an−1xn−1 + an−2xn−2 + · · ·+
a0x0, we just have to choose the n coefficients a0, a1, . . . , an−1, and we have |F|
options for each of these coefficients).

It is easy to see that if n ∈N and if a ∈ F [x] has degree n, then

there exists some λ ∈ F such that λa is monic of degree n. (334)

(Indeed, it suffices to choose λ =
1

[xn] a
; then, [xn] (λa) = 1, and therefore λa is

monic of degree n.)
(a) Assume the contrary. Thus, there exists no irreducible polynomial a ∈ F [x]

of degree 2.
As a consequence, I claim the following:

Claim 1: Each monic polynomial a ∈ F [x] of degree 2 has the form
(x + b) (x + c) for some b, c ∈ F.

[Proof of Claim 1: Let a ∈ F [x] be a monic polynomial of degree 2. Then,
[
x2] a =

1. But we know that a is not irreducible (since we assumed that there exists no
irreducible polynomial a ∈ F [x] of degree 2). In other words, a can be written
in the form a = bc for two polynomials b and c with deg b > 0 and deg c > 0.
Consider these b and c. From a = bc, we obtain deg a = deg (bc) = deg b + deg c
and thus deg b + deg c = deg a = 2. In view of deg b > 0 and deg c > 0, this leads
to deg b = 1 and deg c = 1. Hence, (334) (applied to 1 and b instead of n and a)
shows that there exists some λ ∈ F such that λb is monic of degree 1. Similarly,
there exists some µ ∈ F such that µc is monic of degree 1. Consider these λ and µ.
Now, λb = x + b for some b ∈ F (since λb is monic of degree 1), and µc = x + c
for some c ∈ F (similarly). Consider these b and c. Now,

λµ a︸︷︷︸
=bc

= λµbc = (λb)︸ ︷︷ ︸
=x+b

(µc)︸︷︷︸
=x+c

= (x + b) (x + c) .

Comparing the coefficients of x2 on both sides of this equality, we find λµ = 1
(because the coefficient of x2 in λµa is λµ

[
x2
]

a︸ ︷︷ ︸
=1

= λµ, but the coefficient of x2 in

(x + b) (x + c) is 1). Thus, λµa = (x + b) (x + c) rewrites as a = (x + b) (x + c).
Hence, we have written our polynomial a in the form (x + b) (x + c) for some
b, c ∈ F. This proves Claim 1.]

Claim 1 shows that the map

F×F→ {monic polynomials a ∈ F [x] of degree 2} ,
(b, c) 7→ (x + b) (x + c)

is surjective. But this is a map between two finite sets of equal sizes (because
|F×F| = |F|2, but (333) (applied to n = 2) shows that
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|{monic polynomials a ∈ F [x] of degree 2}| = |F|2 as well). Thus, the Pigeonhole
Principle for Surjections shows that this map is bijective. Thus, in particular, this
map is injective. But this is absurd, because it sends the two different pairs (0, 1)
and (1, 0) to one and the same polynomial (x + 0) (x + 1) = (x + 1) (x + 0). This
contradiction shows that our assumption was wrong. Hence, Lemma 9.3.1 (a) is
proven.

(b) This is similar to our proof of Lemma 9.3.1 (a), with just one more little twist.
Here are the details:

Assume the contrary. Thus, there exists no irreducible polynomial a ∈ F [x] of degree 3.
As a consequence, I claim the following:

Claim 2: Each monic polynomial a ∈ F [x] of degree 3 has the form (x + b)
(
x2 + cx + d

)
for some b, c, d ∈ F.

[Proof of Claim 2: Let a ∈ F [x] be a monic polynomial of degree 3. Then,
[
x3] a = 1.

But we know that a is not irreducible (since we assumed that there exists no irreducible
polynomial a ∈ F [x] of degree 3). In other words, a can be written in the form a = bc for
two polynomials b and c with deg b > 0 and deg c > 0. Consider these b and c. From
a = bc, we obtain deg a = deg (bc) = deg b+deg c and thus deg b+deg c = deg a = 3. In
view of deg b > 0 and deg c > 0, this shows that we have either (deg b = 1 and deg c = 2)
or (deg b = 2 and deg c = 1). We WLOG assume that we are in the first of these two cases
(since otherwise, we can simply swap b with c). Thus, deg b = 1 and deg c = 2. Hence,
(334) (applied to 1 and b instead of n and a) shows that there exists some λ ∈ F such that
λb is monic of degree 1. Similarly, there exists some µ ∈ F such that µc is monic of degree
2. Consider these λ and µ. Now, λb = x + b for some b ∈ F (since λb is monic of degree
1), and µc = x2 + cx + d for some c, d ∈ F (since µc is monic of degree 2). Consider these
b, c, d. Now,

λµ a︸︷︷︸
=bc

= λµbc = (λb)︸ ︷︷ ︸
=x+b

(µc)︸︷︷︸
=x2+cx+d

= (x + b)
(
x2 + cx + d

)
.

Comparing the coefficients of x3 on both sides of this equality, we find λµ = 1 (because the
coefficient of x3 in λµa is λµ

[
x3] a︸ ︷︷ ︸
=1

= λµ, but the coefficient of x3 in (x + b)
(
x2 + cx + d

)
is 1). Thus, λµa = (x + b)

(
x2 + cx + d

)
rewrites as a = (x + b)

(
x2 + cx + d

)
. Hence, we

have written our polynomial a in the form (x + b)
(
x2 + cx + d

)
for some b, c, d ∈ F. This

proves Claim 2.]
Claim 2 shows that the map

F×F×F→ {monic polynomials a ∈ F [x] of degree 3} ,

(b, c, d) 7→ (x + b)
(
x2 + cx + d

)
is surjective. But this is a map between two finite sets of equal sizes (because |F×F×F| =
|F|3, but (333) (applied to n = 3) shows that |{monic polynomials a ∈ F [x] of degree 3}| =
|F|3 as well). Thus, the Pigeonhole Principle for Surjections shows that this map is bijective.
Thus, in particular, this map is injective. But this is absurd, because it sends the two dif-
ferent triples (0, 2, 1) and (1, 1, 0) to one and the same polynomial (x + 0)

(
x2 + 2x + 1

)
=

(x + 1)
(
x2 + 1x + 0

)
. This contradiction shows that our assumption was wrong. Hence,

Lemma 9.3.1 (b) is proven.
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Note that we could not use the same argument to prove the existence of an ir-
reducible polynomial a ∈ F [x] of degree 4. Indeed, if we tried, we would have
to deal with the two substantially different possibilities (deg b = 1 and deg c = 3)
and (deg b = 2 and deg c = 2), which would prevent us from obtaining a surjec-
tive map from F×F×F×F to {monic polynomials a ∈ F [x] of degree 4}.

Corollary 9.3.2. Let F be a finite field, and let q = |F|. Then, there exist finite
fields of sizes q2 and q3.

Proof of Corollary 9.3.2 (sketched). Lemma 9.3.1 (a) shows that there exists an irre-
ducible polynomial a ∈ F [x] of degree 2. Consider this a. Then, Theorem 8.1.17
shows that the ring F [x] /a is a field. Moreover, a is a monic polynomial of degree
2; thus, a ∈ F [x]≤2, and the coefficient

[
x2] a = 1 is invertible. Hence, Theorem

8.1.9 (a) (applied to K = F, m = 2 and b = a) shows that each element of F [x] /a
can be uniquely written in the form

λ0

[
x0
]

a
+ λ1

[
x1
]

a
with λ0, λ1 ∈ F.

Therefore, the number of elements of F [x] /a is |F|2 (since there are |F| many
choices for λ0, and |F| many choices for λ1). In other words, the field F [x] /a has
size |F|2. In other words, the field F [x] /a has size q2 (since |F| = q). Thus, there
exists a finite field of size q2.

A similar argument (using Lemma 9.3.1 (b) instead of Lemma 9.3.1 (a)) shows
that there exists a finite field of size q3. Thus, Corollary 9.3.2 is proven.

Now, if p is a prime, then Corollary 9.3.2 (applied to F = Z/p and q = p) shows
that there exist finite fields of sizes p2 and p3. Moreover, by applying Corollary
9.3.2 twice, we can see that there exists a finite field of size

(
p2)2

= p4. However,
this method fails at proving that there exists a finite field of size p5.

For a proper proof of the existence of a finite field of size pn (for any prime p and
integer n ≥ 1), see [LidNie97, Theorem 2.5], [Knapp16a, Theorem 9.14], [Loehr11,
Exercise 12.126], [ConradF, Theorem 2.2], [Hunger14, Corollary 11.26], [Hunger03,
Chapter V, Proposition 5.6], [Stewar15, Theorem 19.3], [Walker87, Theorem 6.2.11]
or [Escofi01, 14.5.1] or [Grinbe19b]. However, each of these proofs, except for the
one in [Grinbe19b], uses at least something we have not seen so far. (The proof in
[Grinbe19b], on the other hand, is fairly long.)

10. Solutions to the exercises

10.1. Solution to Exercise 2.2.1
Solution to Exercise 2.2.1. The definition of |a| shows that |a| equals either a or −a. In other
words, |a| equals either 1a or (−1) a. In other words, |a| = qa for some q ∈ {1,−1}.
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Consider this q. Clearly, q is an integer. Now, from |a| = qa = aq, we conclude that a | |a|
(since q is an integer). This solves Exercise 2.2.1 (a).

(b) From q ∈ {1,−1}, we obtain q2 ∈
{

12, (−1)2
}
= {1, 1} = {1}, so that q2 = 1. Now,

multiplying the equality |a| = qa by q, we obtain q |a| = qq︸︷︷︸
=q2=1

a = a. Hence, a = q |a| =

|a| · q. Thus, |a| | a (since q is an integer). This solves Exercise 2.2.1 (b).

10.2. Solution to Exercise 2.2.2
Solution to Exercise 2.2.2. We are in one of the following two cases:

Case 1: We have b 6= 0.
Case 2: We have b = 0.
Let us first consider Case 1. In this case, we have b 6= 0. Thus, Proposition 2.2.3 (b)

yields |a| ≤ |b| (since a | b).
We have a | b. In other words, there exists an integer c such that b = ac. Consider this c.

If we had a = 0, then we would have b = a︸︷︷︸
=0

c = 0, which would contradict b 6= 0. Thus,

we cannot have a = 0. Hence, a 6= 0. Thus, Proposition 2.2.3 (b) (applied to b and a instead
of a and b) yields |b| ≤ |a| (since b | a). Combining this with |a| ≤ |b|, we obtain |a| = |b|.
Thus, Exercise 2.2.2 is solved in Case 1.

Let us now consider Case 2. In this case, we have b = 0. But we have b | a. In other words,
there exists an integer c such that a = bc. Consider this c. Hence, a = b︸︷︷︸

=0

c = 0c = 0 = b

(since b = 0). Thus, |a| = |b|. Hence, Exercise 2.2.2 is solved in Case 2.
Now, we have solved Exercise 2.2.2 in both Cases 1 and 2. Hence, Exercise 2.2.2 always

holds.

10.3. Solution to Exercise 2.2.3
Solution to Exercise 2.2.3. =⇒: Assume that a | b holds. We must prove that ac | bc.

It is easy to do this straight from the definition of divisibility, but here is a shorter
argument: Proposition 2.2.4 (a) (applied to c instead of a) yields c | c. Also, a | b. Hence,
Proposition 2.2.4 (c) (applied to a1 = a, b1 = b, a2 = c and b2 = c) yields ac | bc. This proves
the “=⇒” direction of Exercise 2.2.3.
⇐=: Assume that ac | bc holds. We must prove that a | b.
We have ac | bc. In other words, there exists an integer d such that bc = (ac) d (by

Definition 2.2.1). Consider this d. We have bc = (ac) d = adc. We can divide both sides
of this equality by c (since c 6= 0), and thus obtain b = ad. Thus, there exists an integer e
such that b = ae (namely, e = d). In other words, a | b (by Definition 2.2.1). This proves the
“⇐=” direction of Exercise 2.2.3.

10.4. Solution to Exercise 2.2.4
Solution to Exercise 2.2.4. We have b− a ≥ 0 (since a ≤ b), thus b− a ∈ N. Hence, nb−a is a
well-defined integer. Now, nb = nanb−a (since nanb−a = na+(b−a) = nb). Hence, there exists
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an integer c such that nb = nac (namely, c = nb−a). In other words, na | nb (by the definition
of divisibility). This solves Exercise 2.2.4.

10.5. Solution to Exercise 2.2.5
First solution to Exercise 2.2.5. Assume the contrary. Thus, g 6= 1. But Proposition 2.2.3 (b)
(applied to g and 1 instead of a and b) yields |g| ≤ |1| (since g | 1 and 1 6= 0). But g is
nonnegative; hence, |g| = g, so that g = |g| ≤ |1| = 1. Combining this with g 6= 1, we
obtain g < 1. Hence, g = 0 (since g is a nonnegative integer).

But g | 1. In other words, there exists an integer c such that 1 = gc (by Definition 2.2.1).
Consider this c. Now, 1 = g︸︷︷︸

=0

c = 0c = 0. This contradicts 1 6= 0. This contradiction

shows that our assumption was wrong. Hence, Exercise 2.2.5 is solved.

Second solution to Exercise 2.2.5. We have g = 1g. Hence, there exists an integer c such that
g = 1c (namely, c = g). In other words, 1 | g (by the definition of divisibility). But we
also have g | 1 (by assumption). Hence, Exercise 2.2.2 (applied to a = g and b = 1) yields
|g| = |1| = 1. But g is nonnegative; thus, |g| = g. Hence, g = |g| = 1. Hence, Exercise 2.2.5
is solved.

10.6. Solution to Exercise 2.2.6
Solution to Exercise 2.2.6. We have a | b. In other words, there exists an integer d such that
b = ad (by Definition 2.2.1). Consider this d. Clearly, dk is an integer (since d is an integer
and k ∈ N). From b = ad, we obtain bk = (ad)k = akdk. Hence, there exists an integer c
such that bk = akc (namely, c = dk). In other words, ak | bk (by Definition 2.2.1). This solves
Exercise 2.2.6.

10.7. Solution to Exercise 2.3.1
Solution to Exercise 2.3.1. According to Definition 2.3.1, we have a + b ≡ a− b mod 2 if and
only if 2 | (a + b)− (a− b). Thus, it remains to prove that 2 | (a + b)− (a− b). But this
follows immediately from (a + b)− (a− b) = 2b. Thus Exercise 2.3.1 is solved.

10.8. Solution to Exercise 2.3.2
Solution to Exercise 2.3.2. There are many such examples. Here is one:

n = 8, a1 = 10, a2 = 2, b1 = 10, b2 = 10.

These satisfy a1 ≡ b1 mod n and a2 ≡ b2 mod n but neither a1/a2 ≡ b1/b2 mod n nor aa2
1 ≡

bb2
1 mod n.

It is much easier to find examples which fail only one of the two congruences a1/a2 ≡
b1/b2 mod n and aa2

1 ≡ bb2
1 mod n.
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10.9. Solution to Exercise 2.3.3
Solution to Exercise 2.3.3. We have a ≡ b mod n. In other words, n | a− b (by the definition
of congruence). Note that all of a/d, b/d and n/d are integers (since d divides each of
a, b, n). Hence, (a− b) /d = a/d− b/d is an integer as well. Hence, Exercise 2.2.3 (applied
to n/d, (a− b) /d and d instead of a, b and c) shows that n/d | (a− b) /d holds if and only
if (n/d) d | ((a− b) /d) d. Since (n/d) d | ((a− b) /d) d does hold (indeed, this is just a
complicated way to say n | a− b), we thus conclude that n/d | (a− b) /d holds. In other
words, n/d | a/d− b/d (since (a− b) /d = a/d− b/d). In other words, a/d ≡ b/d mod n/d
(by the definition of congruence). This solves Exercise 2.3.3.

10.10. Solution to Exercise 2.3.4
First solution to Exercise 2.3.4. We want to prove that

ak ≡ bk mod n for each k ∈N. (335)

We shall prove this by induction on k:
Induction base: Proposition 2.3.4 (a) yields 1 ≡ 1 mod n. In view of a0 = 1 and b0 = 1,

this rewrites as a0 ≡ b0 mod n. In other words, (335) holds for k = 0. This completes the
induction base.

Induction step: Let ` ∈ N. Assume that (335) holds for k = `. We must prove that (335)
holds for k = `+ 1.

We have assumed that (335) holds for k = `. In other words, we have a` ≡ b` mod n. Also,
recall that a ≡ b mod n. Hence, (6) (applied to c = a` and d = b`) yields aa` ≡ bb` mod n.
In other words, a`+1 ≡ b`+1 mod n (since aa` = a`+1 and bb` = b`+1). In other words, (335)
holds for k = `+ 1. This completes the induction step. Thus, (335) is proven by induction.
Therefore, Exercise 2.3.4 is solved.

Second solution to Exercise 2.3.4. Recall that

(a− b)
(

ak−1 + ak−2b + ak−3b2 + · · ·+ abk−2 + bk−1
)
= ak − bk (336)

for every k ∈ N. (This is a well-known identity, and it appears (with k renamed as n) as
the first half of Exercise 1 on homework set #0.)

Now, let k ∈ N. We have assumed that a ≡ b mod n. In other words, n | a− b. In other
words, there exists an integer c such that a− b = nc. Consider this c. Now, (336) yields

ak − bk = (a− b)︸ ︷︷ ︸
=nc

(
ak−1 + ak−2b + ak−3b2 + · · ·+ abk−2 + bk−1

)
= nc

(
ak−1 + ak−2b + ak−3b2 + · · ·+ abk−2 + bk−1

)
.

The right hand side of this equality is clearly divisible by n. Hence, so is the left hand side.
In other words, n | ak − bk. In other words, ak ≡ bk mod n. Hence, Exercise 2.3.4 is solved
again.

https://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf
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10.11. Solution to Exercise 2.3.5
Solution to Exercise 2.3.5. (a) We shall solve Exercise 2.3.5 (a) by induction on |S|:

Induction base: Exercise 2.3.5 (a) holds whenever |S| = 0 238. This completes the
induction base.

Induction step: Fix k ∈ N. Assume that Exercise 2.3.5 (a) holds whenever |S| = k. We
must prove that Exercise 2.3.5 (a) holds whenever |S| = k + 1.

We have assumed that Exercise 2.3.5 (a) holds whenever |S| = k. In other words, the
following statement is true:

Statement 1: Let n, S, as and bs be as in Exercise 2.3.5. Assume that |S| = k.
Then, ∑

s∈S
as ≡ ∑

s∈S
bs mod n.

Now, we must prove that Exercise 2.3.5 (a) holds whenever |S| = k + 1. In other words,
we must prove the following statement:

Statement 2: Let n, S, as and bs be as in Exercise 2.3.5. Assume that |S| = k + 1.
Then, ∑

s∈S
as ≡ ∑

s∈S
bs mod n.

[Proof of Statement 2: We have |S| = k + 1 > k ≥ 0; thus, the set S is nonempty. Hence,
there exists some t ∈ S. Pick such a t. Thus, |S \ {t}| = |S| − 1 = k (since |S| = k + 1).
Moreover, from (7), we immediately obtain that

as ≡ bs mod n for each s ∈ S \ {t}

(since each s ∈ S \ {t} belongs to S). Hence, we can apply Statement 1 to S \ {t} instead of
S. We thus obtain

∑
s∈S\{t}

as ≡ ∑
s∈S\{t}

bs mod n.

Also, we have
at ≡ bt mod n

(by (7), applied to s = t). Adding these two congruences together, we obtain

∑
s∈S\{t}

as + at ≡ ∑
s∈S\{t}

bs + bt mod n.

In view of

∑
s∈S

as = ∑
s∈S\{t}

as + at

(
here, we have split off the addend

for s = t from the sum

)

238Proof. Let n, S, as and bs be as in Exercise 2.3.5, and assume that |S| = 0. Then, the set S is
empty (since |S| = 0), and thus we have ∑

s∈S
as = (empty sum) = 0. Similarly, ∑

s∈S
bs = 0. Now,

Proposition 2.3.4 (a) yields 0 ≡ 0 mod n. In view of ∑
s∈S

as = 0 and ∑
s∈S

bs = 0, this rewrites as

∑
s∈S

as ≡ ∑
s∈S

bs mod n. Thus, Exercise 2.3.5 (a) holds in our case.

So we have shown that Exercise 2.3.5 (a) holds whenever |S| = 0.
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and

∑
s∈S

bs = ∑
s∈S\{t}

bs + bt

(
here, we have split off the addend

for s = t from the sum

)
,

this can be rewritten as
∑
s∈S

as ≡ ∑
s∈S

bs mod n.

This proves Statement 2.]
We have now proven Statement 2; this means that Exercise 2.3.5 (a) holds whenever

|S| = k + 1. This completes the induction step; thus, Exercise 2.3.5 (a) is solved.
(b) The solution to Exercise 2.3.5 (b) is analogous to the one we gave above for Exercise

2.3.5 (a); the main difference is that we have to replace sums by products (and 0 by 1).

10.12. Solution to Exercise 2.3.6
Solution to Exercise 2.3.6. No, it is not true. For example, a1 = 1, a2 = 1, b1 = 1, b2 = 0,
n1 = 0 and n2 = 1 yield a counterexample.

10.13. Solution to Exercise 2.3.7
Solution to Exercise 2.3.7. If a ≡ b mod n, then b ≡ a mod n (by Proposition 2.3.4 (c)). In
other words, the implication (a ≡ b mod n) =⇒ (b ≡ a mod n) holds. The same argument
(but with the roles of a and b swapped) shows that the implication (b ≡ a mod n) =⇒
(a ≡ b mod n) holds. Combining these two implications, we obtain the logical equivalence
(a ≡ b mod n) ⇐⇒ (b ≡ a mod n). Thus, we have the following chain of logical equiva-
lences:

(a ≡ b mod n) ⇐⇒ (b ≡ a mod n)
⇐⇒ (n | b− a) (by the definition of congruence)
⇐⇒ (there exists an integer d such that b− a = nd)

(by the definition of divisibility)
⇐⇒ (there exists an integer d such that b = a + nd)

(since the equation b− a = nd for an integer d is equivalent to b = a + nd). In other words,
a ≡ b mod n if and only if there exists some d ∈ Z such that b = a+ nd. This solves Exercise
2.3.7.

10.14. Solution to Exercise 2.3.8
Solution to Exercise 2.3.8. We have a − b ≡ c mod n if and only if n | (a− b) − c (by the
definition of congruence). Thus, we have the logical equivalence

(a− b ≡ c mod n) ⇐⇒ (n | (a− b)− c) . (337)

On the other hand, we have a ≡ b+ c mod n if and only if n | a− (b + c) (by the definition
of congruence). Thus, we have the logical equivalence

(a ≡ b + c mod n) ⇐⇒ (n | a− (b + c)) . (338)
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Now, we have the following chain of logical equivalences:

(a− b ≡ c mod n) ⇐⇒

n | (a− b)− c︸ ︷︷ ︸
=a−(b+c)

 (by (337))

⇐⇒ (n | a− (b + c)) ⇐⇒ (a ≡ b + c mod n) (by (338)) .

In other words, we have a− b ≡ c mod n if and only if a ≡ b + c mod n. This solves Exercise
2.3.8.

10.15. Solution to Exercise 2.3.9
Solution to Exercise 2.3.9. Let us first prove the logical implication

(a ≡ b mod n) =⇒ (a ≡ b mod−n) . (339)

[Proof of (339): Assume that a ≡ b mod n. We must show that a ≡ b mod−n.
We have n = (−n) (−1). Since −1 is an integer, this shows that −n | n (by the definition

of divisibility). Thus, Proposition 2.3.4 (e) (applied to m = −n) yields a ≡ b mod−n. This
proves (339).]

So we have proven the logical implication (339). The same reasoning (applied to −n
instead of n) yields the logical implication

(a ≡ b mod−n) =⇒ (a ≡ b mod− (−n)) .

Since − (−n) = n, this rewrites as follows:

(a ≡ b mod−n) =⇒ (a ≡ b mod n) .

Combining this implication with the implication (339), we obtain the equivalence

(a ≡ b mod n) ⇐⇒ (a ≡ b mod−n) .

This solves Exercise 2.3.9.

10.16. Solution to Exercise 2.5.1

Solution to Exercise 2.5.1. We have 32n+1 =

 32︸︷︷︸
=9≡2 mod 7

n

· 3 ≡ 2n · 3 mod 7. (This follows

from the PSC, in its extended form that allows k-th powers in the expression A. Alterna-
tively, you can argue by hand as follows: We have 32 = 9 ≡ 2 mod 7. Thus, Exercise 2.3.4
(applied to 7, 32, 2 and n instead of n, a, b and k) yields

(
32)n ≡ 2n mod 7. Multiplying

this congruence by the obvious congruence 3 ≡ 3 mod 7, we obtain
(
32)n · 3 ≡ 2n · 3 mod 7.

Thus, 32n+1 =
(
32)n · 3 ≡ 2n · 3 mod 7.)

Hence, again using the PSC, we obtain

32n+1︸ ︷︷ ︸
≡2n·3 mod 7

+ 2n+2︸︷︷︸
=2n·22=2n·4

≡ 2n · 3 + 2n · 4 = 2n · (3 + 4)︸ ︷︷ ︸
=7

= 2n · 7 ≡ 0 mod 7
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(since 2n · 7 is clearly divisible by 7). In other words, 7 | 32n+1 + 2n+2. This solves Exercise
2.5.1.

[Remark: Here is a sketch of a different solution: If we set an = 32n+1 + 2n+2 for each
n ∈ N, then we must prove that 7 | an for all n ∈ N. But a straightforward computation
reveals that

an = 11an−1 − 18an−2 for each n ≥ 2. (340)

Thus, once we check that 7 | a0 and 7 | a1, we can use a straightforward strong induction
on n to see that 7 | an for all n ∈ N, which is exactly the claim of Exercise 2.5.1. Of course,
finding the relation (340) was the main trick in this solution; it becomes somewhat natural
once you know the theory of linear recurrences (such as the Fibonacci sequence).]

10.17. Solution to Exercise 2.6.1
Solution to Exercise 2.6.1. =⇒: Assume that u ≡ v mod n. We must prove that u%n = v%n.

Corollary 2.6.9 (a) yields that u%n ∈ {0, 1, . . . , n− 1} and u%n ≡ u mod n. Hence,
u%n ≡ u ≡ v mod n.

But Corollary 2.6.9 (c) (applied to v instead of u) yields that if c ∈ {0, 1, . . . , n− 1} is such
that c ≡ v mod n, then c = v%n. Applying this to c = u%n, we obtain u%n = v%n (since
u%n ∈ {0, 1, . . . , n− 1} and u%n ≡ v mod n). This proves the “=⇒” direction of Exercise
2.6.1.
⇐=: Assume that u%n = v%n. We must prove that u ≡ v mod n.
Corollary 2.6.9 (a) yields that u%n ∈ {0, 1, . . . , n− 1} and u%n ≡ u mod n. Corollary

2.6.9 (a) (applied to v instead of u) yields that v%n ∈ {0, 1, . . . , n− 1} and v%n ≡ v mod n.
From u%n ≡ u mod n, we obtain u ≡ u%n = v%n ≡ v mod n. Thus, we have proven

u ≡ v mod n. This proves the “⇐=” direction of Exercise 2.6.1.

10.18. Solution to Exercise 2.6.2
Solution to Exercise 2.6.2. (a) Theorem 2.6.1 shows that there exists a unique pair (q, r) ∈
Z × {0, 1, . . . , n− 1} such that u = qn + r. Consider this pair (q, r), and denote it by
(s, t). Thus, (s, t) ∈ Z × {0, 1, . . . , n− 1} is a pair satisfying u = sn + t. From (s, t) ∈
Z× {0, 1, . . . , n− 1}, we obtain s ∈ Z and t ∈ {0, 1, . . . , n− 1} ⊆ Z.

We are in one of the following two cases:
Case 1: We have t ≤ n/2.
Case 2: We have t > n/2.
Let us first consider Case 1. In this case, we have t ≤ n/2. But t is nonnegative (since

t ∈ {0, 1, . . . , n− 1}); thus, |t| = t ≤ n/2. So we have (s, t) ∈ Z×Z (since s ∈ Z and t ∈ Z)
and u = sn + t and |t| ≤ n/2. Hence, there exists a pair (q, r) ∈ Z×Z such that u = qn + r
and |r| ≤ n/2 (namely, (q, r) = (s, t)). Thus, Exercise 2.6.2 (a) is solved in Case 1.

Let us now consider Case 2. In this case, we have t > n/2. But t ∈ {0, 1, . . . , n− 1}, thus
t ≤ n− 1 ≤ n. Hence, t− n ≤ 0. Hence, |t− n| = − (t− n) = n− t︸︷︷︸

>n/2

< n− n/2 = n/2.

Therefore, |t− n| ≤ n/2. Furthermore, t− n ∈ Z (since t ∈ Z and n ∈ Z) and s + 1 ∈ Z

(since s ∈ Z). So we have (s + 1, t− n) ∈ Z×Z (since s + 1 ∈ Z and t − n ∈ Z) and
u = (s + 1) n + (t− n) (since (s + 1) n + (t− n) = sn + t = u) and |t− n| ≤ n/2. Hence,
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there exists a pair (q, r) ∈ Z×Z such that u = qn + r and |r| ≤ n/2 (namely, (q, r) =
(s + 1, t− n)). Thus, Exercise 2.6.2 (a) is solved in Case 2.

We have now solved Exercise 2.6.2 (a) in each of the two Cases 1 and 2. Since these two
Cases cover all possibilities, we thus conclude that Exercise 2.6.2 (a) always holds.

(b) For example, if n = 2 and u = 5, then both (2, 1) and (3,−1) are pairs (q, r) ∈ Z×Z

such that u = qn + r and |r| ≤ n/2.
More generally: If n = 2k for some positive integer k, and if u ≡ k mod n, then both

((u− k) /n, k) and ((u + k) /n,−k) are pairs (q, r) ∈ Z × Z such that u = qn + r and
|r| ≤ n/2.

[It is not hard to see that these are the only cases in which the pair (q, r) from Exercise
2.6.2 (a) is not unique.]

10.19. Solution to Exercise 2.6.3
Solution to Exercise 2.6.3. (a) Corollary 2.6.9 (a) yields that u%n ∈ {0, 1, . . . , n− 1} and
u%n ≡ u mod n. From u%n ∈ {0, 1, . . . , n− 1}, we conclude that u%n is an integer sat-
isfying 0 ≤ u%n ≤ n− 1.

Corollary 2.6.9 (a) (applied to v instead of u) yields that v%n ∈ {0, 1, . . . , n− 1} and
v%n ≡ v mod n. From v%n ∈ {0, 1, . . . , n− 1}, we conclude that v%n is an integer satisfy-
ing 0 ≤ v%n ≤ n− 1.

Corollary 2.6.9 (a) (applied to u+ v instead of u) yields that (u + v)%n ∈ {0, 1, . . . , n− 1}
and (u + v)%n ≡ u + v mod n. From (u + v)%n ∈ {0, 1, . . . , n− 1}, we conclude that
(u + v)%n is an integer satisfying 0 ≤ (u + v)%n ≤ n− 1.

Adding the congruences u%n ≡ u mod n and v%n ≡ v mod n together, we obtain
u%n + v%n ≡ u + v mod n. Subtracting the congruence (u + v)%n ≡ u + v mod n from
this congruence, we obtain u%n + v%n − (u + v)%n ≡ (u + v) − (u + v) = 0 mod n. By
Proposition 2.3.3 (applied to a = u%n + v%n− (u + v)%n), this entails n | u%n + v%n−
(u + v)%n. In other words, there exists an integer c such that u%n + v%n− (u + v)%n =
nc. Consider this c.

Hence,
nc = u%n︸︷︷︸

≤n−1<n

+ v%n︸︷︷︸
≤n−1<n

− (u + v)%n︸ ︷︷ ︸
≥0

< n + n− 0 = 2n = n · 2.

We can divide this inequality by n (since n is positive). We thus obtain c < 2. Hence, c ≤ 1
(since c is an integer).

On the other hand,

nc = u%n︸︷︷︸
≥0

+ v%n︸︷︷︸
≥0

− (u + v)%n︸ ︷︷ ︸
≤n−1<n

> 0 + 0− n = −n = n · (−1) .

We can divide this inequality by n (since n is positive). We thus obtain c > −1. Hence,
c ≥ 0 (since c is an integer).

Combining c ≥ 0 with c ≤ 1, we obtain c ∈ {0, 1} (since c is an integer). In other words,
we have c = 0 or c = 1. Hence, we have nc = n · 0 = 0 or nc = n · 1 = n. In other words,
nc ∈ {0, n}. Now, recall that u%n + v%n− (u + v)%n = nc ∈ {0, n}. This solves Exercise
2.6.3 (a).

(b) Exercise 2.6.3 (a) yields u%n + v%n− (u + v)%n ∈ {0, n}.
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The integer n is positive and thus nonzero. Corollary 2.6.9 (d) yields u = (u//n) n +
(u%n). Solving this equation for u//n, we find

u//n =
u− u%n

n
(341)

(since n is nonzero). The same argument (applied to v instead of u) yields

v//n =
v− v%n

n
. (342)

Finally, the same argument that we used to prove (341) can be applied to u + v instead of
u, and thus we obtain

(u + v) //n =
(u + v)− (u + v)%n

n
. (343)

Now,

(u + v) //n︸ ︷︷ ︸
=
(u + v)− (u + v)%n

n
(by (343))

− u//n︸ ︷︷ ︸
=

u− u%n
n

(by (341))

− v//n︸ ︷︷ ︸
=

v− v%n
n

(by (342))

=
(u + v)− (u + v)%n

n
− u− u%n

n
− v− v%n

n

=
1
n
(((u + v)− (u + v)%n)− (u− u%n)− (v− v%n))︸ ︷︷ ︸

=u%n+v%n−(u+v)%n

=
1
n
(u%n + v%n− (u + v)%n)

∈
{

1
n

0,
1
n

n
}

(since u%n + v%n− (u + v)%n ∈ {0, n})

= {0, 1}
(

since
1
n

0 = 0 and
1
n

n = 1
)

.

This solves Exercise 2.6.3 (b).

10.20. Solution to Exercise 2.6.4
Solution to Exercise 2.6.4. (a) The map

Z× {0, 1, . . . , n− 1} → Z,
(q, r) 7→ qn + r

is clearly well-defined. Let us denote this map by A. Then, in order to solve Exercise 2.6.4
(a), we must prove that this map A is a bijection.

We shall achieve this by showing that A is injective and surjective:
[Proof of the injectivity of A: Let x and y be two elements of Z×{0, 1, . . . , n− 1} such that

A (x) = A (y). We shall show that x = y.
Define a u ∈ Z by u = A (x). Then, u = A (x) = A (y).
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Now, x is an element of Z× {0, 1, . . . , n− 1}. In other words, x is a pair (q, r) ∈ Z×
{0, 1, . . . , n− 1}. Moreover, if we write x in the form x = (q, r) for some (q, r) ∈ Z ×
{0, 1, . . . , n− 1}, then

u = A

 x︸︷︷︸
=(q,r)

 = A ((q, r)) = qn + r (by the definition of A) .

Hence, x is a pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r. Similarly, y is a pair
(q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r (since u = A (y)).

But Lemma 2.6.5 shows that there exists at most one pair (q, r) ∈ Z× {0, 1, . . . , n− 1}
such that u = qn + r. Hence, any two such pairs (q, r) must be equal. Thus, x and y must
be equal (since x and y are two pairs (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r). In
other words, x = y.

Now, forget that we fixed x and y. We thus have shown that if x and y are two elements
of Z× {0, 1, . . . , n− 1} such that A (x) = A (y), then x = y. In other words, the map A is
injective.]

[Proof of the surjectivity of A: Let u ∈ Z. We shall find an x ∈ Z× {0, 1, . . . , n− 1} such
that u = A (x).

Indeed, Lemma 2.6.4 shows that there exists at least one pair (q, r) ∈ Z×{0, 1, . . . , n− 1}
such that u = qn + r. Consider this (q, r). Now, the definition of A yields A ((q, r)) =
qn + r = u. Hence, u = A ((q, r)). Thus, there exists an x ∈ Z× {0, 1, . . . , n− 1} such that
u = A (x) (namely, x = (q, r)).

Now, forget that we fixed u. We thus have shown that for each u ∈ Z, there exists an
x ∈ Z× {0, 1, . . . , n− 1} such that u = A (x). In other words, the map A is surjective.]

We have now shown that the map A is injective and surjective. Hence, A is bijective. In
other words, A is a bijection. As we explained above, this solves Exercise 2.6.4 (a).

(b) The map

N× {0, 1, . . . , n− 1} →N,
(q, r) 7→ qn + r

is clearly well-defined239. Let us denote this map by B. Then, in order to solve Exercise
2.6.4 (b), we must prove that this map B is a bijection.

We shall achieve this by showing that B is injective and surjective:
[Proof of the injectivity of B: In our solution to Exercise 2.6.4 (a), we have defined a map

A and proven that this map A is injective. The very same argument (with A replaced by B,
and Z replaced by N) shows that the map B is injective.]

[Proof of the surjectivity of B: Let u ∈ N. We shall find an x ∈ N× {0, 1, . . . , n− 1} such
that u = B (x).

Indeed, Lemma 2.6.4 shows that there exists at least one pair (q, r) ∈ Z×{0, 1, . . . , n− 1}
such that u = qn + r. Consider this (q, r). From (q, r) ∈ Z× {0, 1, . . . , n− 1}, we obtain
q ∈ Z and r ∈ {0, 1, . . . , n− 1}. From r ∈ {0, 1, . . . , n− 1}, we obtain r ≤ n− 1 < n, so that
u = qn + r︸︷︷︸

<n

< qn + n = (q + 1) n. Thus, (q + 1) n > u ≥ 0 (since u ∈ N). But if we had

q + 1 ≤ 0, then we would have (q + 1)︸ ︷︷ ︸
≤0

n ≤ 0 (since n is positive), which would contradict

239since qn + r ∈N for each (q, r) ∈N× {0, 1, . . . , n− 1} (because n is positive)
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(q + 1) n > 0. Thus, we cannot have q + 1 ≤ 0. Hence, we have q + 1 > 0, and therefore
q + 1 ≥ 1 (since q + 1 is an integer), so that q ≥ 0. In other words, q ∈ N. Combining
this with r ∈ {0, 1, . . . , n− 1}, we obtain (q, r) ∈ N× {0, 1, . . . , n− 1}. Thus, B ((q, r)) is
well-defined. The definition of B yields B ((q, r)) = qn+ r = u. Hence, u = B ((q, r)). Thus,
there exists an x ∈N× {0, 1, . . . , n− 1} such that u = B (x) (namely, x = (q, r)).

Now, forget that we fixed u. We thus have shown that for each u ∈ N, there exists an
x ∈N× {0, 1, . . . , n− 1} such that u = B (x). In other words, the map B is surjective.]

We have now shown that the map B is injective and surjective. Hence, B is bijective. In
other words, B is a bijection. As we explained above, this solves Exercise 2.6.4 (b).

(c) Let a ∈ Z and b ∈ {0, 1, . . . , n− 1}. We shall show that (an + b) //n = a. (This is, of
course, the claim of Exercise 2.6.4 (c) with q and r renamed as a and b.)

Let u = an + b. Then, u ∈ Z (since a, n and b are integers). We have (a, b) ∈ Z ×
{0, 1, . . . , n− 1} (since a ∈ Z and b ∈ {0, 1, . . . , n− 1}) and u = an + b. Hence, (a, b) is a
pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r. But Theorem 2.6.1 shows that there
exists a unique pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r. This unique pair
(q, r) must be (a, b) (because we have just shown that (a, b) is such a pair). Hence, Definition
2.6.2 (a) yields u//n = a. In view of u = an + b, this rewrites as (an + b) //n = a.

Now, forget that we fixed a and b. We thus have shown that any a ∈ Z and b ∈
{0, 1, . . . , n− 1} satisfy (an + b) //n = a. Renaming a and b as q and r in this statement,
we obtain the following: Any q ∈ Z and r ∈ {0, 1, . . . , n− 1} satisfy (qn + r) //n = q. This
solves Exercise 2.6.4 (c).

(d) Let a ∈ Z and b ∈ {0, 1, . . . , n− 1}. We shall show that (an + b)%n = b. (This is, of
course, the claim of Exercise 2.6.4 (d) with q and r renamed as a and b.)

Let u = an + b. Then, u ∈ Z (since a, n and b are integers). We have (a, b) ∈ Z ×
{0, 1, . . . , n− 1} (since a ∈ Z and b ∈ {0, 1, . . . , n− 1}) and u = an + b. Hence, (a, b) is
a pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r. But Theorem 2.6.1 shows that
there exists a unique pair (q, r) ∈ Z× {0, 1, . . . , n− 1} such that u = qn + r. This unique
pair (q, r) must be (a, b) (because we have just shown that (a, b) is such a pair). Hence,
Definition 2.6.2 (b) yields u%n = b. In view of u = an + b, this rewrites as (an + b)%n = b.

Now, forget that we fixed a and b. We thus have shown that any a ∈ Z and b ∈
{0, 1, . . . , n− 1} satisfy (an + b)%n = b. Renaming a and b as q and r in this statement,
we obtain the following: Any q ∈ Z and r ∈ {0, 1, . . . , n− 1} satisfy (qn + r)%n = r. This
solves Exercise 2.6.4 (d).

10.21. Solution to Exercise 2.7.1
Solution to Exercise 2.7.1. Corollary 2.6.9 (b) (applied to n = 2) shows that we have 2 | u if
and only if u%2 = 0. In other words, we have the logical equivalence

(2 | u) ⇐⇒ (u%2 = 0) . (344)

Corollary 2.6.9 (a) (applied to n = 2) yields that u%2 ∈ {0, 1, . . . , 2− 1} and u%2 ≡
u mod 2. Thus, in particular, u%2 ∈ {0, 1, . . . , 2− 1} = {0, 1}. Hence, u%2 is either 0 or 1.
Thus, the number u%2 is 1 if and only if it is not 0. In other words, we have the equivalence

(u%2 = 1) ⇐⇒ (u%2 6= 0) . (345)
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Proposition 2.3.3 (applied to a = u and n = 2) shows that u ≡ 0 mod 2 if and only if
2 | u. In other words, we have the equivalence

(u ≡ 0 mod 2) ⇐⇒ (2 | u) . (346)

(a) We have the following chain of equivalences:

(u is even) ⇐⇒ (u is divisible by 2) (by the definition of “even”)
⇐⇒ (2 | u) ⇐⇒ (u%2 = 0) (by (344)) .

In other words, u is even if and only if u%2 = 0. This solves Exercise 2.7.1 (a).
(b) We have the following chain of equivalences:

(u is odd) ⇐⇒ (u is not divisible by 2) (by the definition of “odd”)
⇐⇒ (we don’t have 2 | u) ⇐⇒ (we don’t have u%2 = 0)

(because of the equivalence (2 | u) ⇐⇒ (u%2 = 0))
⇐⇒ (u%2 6= 0) (347)
⇐⇒ (u%2 = 1) (by (345)) .

In other words, u is odd if and only if u%2 = 1. This solves Exercise 2.7.1 (b).
(c) We have the following chain of equivalences:

(u is even) ⇐⇒ (u is divisible by 2) (by the definition of “even”)
⇐⇒ (2 | u) ⇐⇒ (u ≡ 0 mod 2) (by (346)) .

In other words, u is even if and only if u ≡ 0 mod 2. This solves Exercise 2.7.1 (c).
(d) =⇒: Assume that u is odd. We must prove that u ≡ 1 mod 2.
We know that u is odd. In other words, u%2 = 1 (by Exercise 2.7.1 (b)). But recall that

u%2 ≡ u mod 2. Thus, u ≡ u%2 = 1 mod 2. This proves the “=⇒” direction of Exercise
2.7.1 (d).
⇐=: Assume that u ≡ 1 mod 2. We must prove that u is odd.
We have 1 ≡ u mod 2 (since u ≡ 1 mod 2) and 1 ∈ {0, 1, . . . , 2− 1}. But Corollary 2.6.9

(c) (applied to n = 2) says that if c ∈ {0, 1, . . . , 2− 1} satisfies c ≡ u mod 2, then c = u%2.
Applying this to c = 1, we find 1 = u%2 (since 1 ∈ {0, 1, . . . , 2− 1} and 1 ≡ u mod 2).
In other words, u%2 = 1. According to Exercise 2.7.1 (b), this means that u is odd. This
proves the “⇐=” direction of Exercise 2.7.1 (d).

(e) =⇒: Assume that u is odd. We must prove that u + 1 is even.
We have assumed that u is odd. According to Exercise 2.7.1 (d), this means that u ≡

1 mod 2. On the other hand, 1 ≡ −1 mod 2 (since 2 | 1− (−1)). Adding these two congru-
ences together, we find u + 1 ≡ 1 + (−1) = 0 mod 2.

But Exercise 2.7.1 (c) (applied to u + 1 instead of u) shows that u + 1 is even if and only
if u + 1 ≡ 0 mod 2. Hence, u + 1 is even (since u + 1 ≡ 0 mod 2). This proves the “=⇒”
direction of Exercise 2.7.1 (e).
⇐=: Assume that u + 1 is even. We must prove that u is odd.
We know that u + 1 is even. But Exercise 2.7.1 (c) (applied to u + 1 instead of u) shows

that u + 1 is even if and only if u + 1 ≡ 0 mod 2. Hence, u + 1 ≡ 0 mod 2 (since u + 1 is
even). On the other hand, −1 ≡ 1 mod 2 (since 2 | (−1)− 1). Adding these two congruences
together, we obtain (u + 1) + (−1) ≡ 0 + 1 = 1 mod 2. In view of (u + 1) + (−1) = u, this
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rewrites as u ≡ 1 mod 2. According to Exercise 2.7.1 (d), this means that u is odd. This
proves the “⇐=” direction of Exercise 2.7.1 (e).

(f) We have the equivalence (u is divisible by 2) ⇐⇒ (u is even) (by the definition of
“even”).

Exercise 2.7.1 (e) shows that u is odd if and only if u + 1 is even. Thus, we have the
following chain of equivalences:

(u + 1 is even)
⇐⇒ (u is odd) ⇐⇒ (u is not divisible by 2) (by the definition of “odd”)
⇐⇒ (u is not even)

(because of the equivalence (u is divisible by 2) ⇐⇒ (u is even)). In other words, u + 1 is
even if and only if u is not. In other words, exactly one of the two numbers u and u + 1 is
even. This solves Exercise 2.7.1 (f).

(g) Exercise 2.7.1 (f) shows that exactly one of the two numbers u and u + 1 is even.
Thus, in particular, at least one of these two numbers is even. Hence, the product u (u + 1)
has at least one even factor. But a product of any even integer with any integer is even240.
Hence, a product that has at least one even factor is always even. Thus, u (u + 1) is even
(since u (u + 1) is a product that has at least one even factor). In other words, 2 | u (u + 1).
In other words, u (u + 1) ≡ 0 mod 2. This solves Exercise 2.7.1 (g).

(h) We have u2 − (−u) = u2 + u = u (u + 1) ≡ 0 mod 2 (by Exercise 2.7.1 (g)). In other
words, 2 | u2 − (−u). In other words, u2 ≡ −u mod 2.

Also, 2 | (−u)− u (since (−u)− u = 2 (−u) is clearly divisible by 2); in other words,
−u ≡ u mod 2. Hence, u2 ≡ −u ≡ u mod 2. This solves Exercise 2.7.1 (h).

(i) Exercise 2.6.1 (applied to n = 2) shows that u ≡ v mod 2 if and only if u%2 = v%2.
We are in one of the following four cases:
Case 1: We have u%2 = 0 and v%2 = 0.
Case 2: We have u%2 = 0 and v%2 6= 0.
Case 3: We have u%2 6= 0 and v%2 = 0.
Case 4: We have u%2 6= 0 and v%2 6= 0.
Let us first consider Case 1. In this case, we have u%2 = 0 and v%2 = 0. Thus,

u%2 = 0 = v%2 and therefore u ≡ v mod 2 (since we know that u ≡ v mod 2 if and only if
u%2 = v%2). But recall that u%2 = 0. Equivalently, u is even (because of Exercise 2.7.1 (a)).
Similarly, from v%2 = 0, we conclude that v is even. Thus, u and v are either both odd or
both even (namely, they are both even).

Thus, u ≡ v mod 2 holds if and only if u and v are either both odd or both even (because
both statements “u ≡ v mod 2” and “u and v are either both odd or both even” hold).
Hence, Exercise 2.7.1 (i) is solved in Case 1.

Let us now consider Case 2. In this case, we have u%2 = 0 and v%2 6= 0. Thus,
u%2 = 0 6= v%2. In other words, “u%2 = v%2” is false. Thus, “u ≡ v mod 2” is false as
well (since we know that u ≡ v mod 2 if and only if u%2 = v%2). But recall that u%2 = 0.
Equivalently, u is even (because of Exercise 2.7.1 (a)). Hence, u is not odd241. Thus, u and
v are not both odd. Also, Exercise 2.7.1 (a) (applied to v instead of u) shows that v is even

240Proof. We must prove that if a is an even integer, and if b is an integer, then the product ab is even.
So let a be an even integer, and let b be an integer. Then, a is even; in other words, 2 | a (by

the definition of “even”). But a | ab. Hence, 2 | a | ab; in other words, ab is even. Qed.
241because an integer is either even or odd (but not both at the same time)
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if and only if v%2 = 0. Since we don’t have v%2 = 0 (because v%2 6= 0), we thus conclude
that v is not even. Thus, u and v are not both even.

So u and v are neither both odd nor both even. In other words, the statement “u and v
are either both odd or both even” is false.

Thus, u ≡ v mod 2 holds if and only if u and v are either both odd or both even (because
both statements “u ≡ v mod 2” and “u and v are either both odd or both even” are false).
Hence, Exercise 2.7.1 (i) is solved in Case 2.

Case 3 is analogous to Case 2 (it differs from Case 2 only in that u and v trade places).
Let us finally consider Case 4. In this case, we have u%2 6= 0 and v%2 6= 0. By (347), we

have the logical equivalence (u is odd) ⇐⇒ (u%2 6= 0). Hence, u is odd (since u%2 6= 0).
Similarly, v is odd. Thus, u and v are both odd. Thus, u and v are either both odd or both
even (namely, they are both odd). Moreover, we know that u is odd; equivalently, u%2 = 1
(by Exercise 2.7.1 (b)). Similarly, v%2 = 1. Hence, u%2 = 1 = v%2. Therefore, u ≡ v mod 2
(since we know that u ≡ v mod 2 if and only if u%2 = v%2).

Thus, u ≡ v mod 2 holds if and only if u and v are either both odd or both even (because
both statements “u ≡ v mod 2” and “u and v are either both odd or both even” hold).
Hence, Exercise 2.7.1 (i) is solved in Case 4.

We have now solved Exercise 2.7.1 (i) in all four Cases 1, 2, 3 and 4. Hence, Exercise 2.7.1
(i) is solved.

10.22. Solution to Exercise 2.7.2
Solution to Exercise 2.7.2. (a) Let u be an even integer. Thus, u is even. In other words, u is
divisible by 2. In other words, there exists some integer c such that u = 2c. Consider this c.

From u = 2c, we obtain u2 = (2c)2 = 4c2, which is clearly divisible by 4. So we have
4 | u2 = u2 − 0. In other words, u2 ≡ 0 mod 4. This solves Exercise 2.7.2 (a).

(b) Let u be an odd integer. Thus, u is odd. Equivalently, u ≡ 1 mod 2 (by Exercise
2.7.1 (d)). In other words, 2 | u− 1. In other words, there exists some integer c such that
u− 1 = 2c. Consider this c.

From u− 1 = 2c, we obtain u = 2c + 1 and thus u2 = (2c + 1)2 = 4c2 + 4c + 1. Hence,
u2 − 1 = 4c2 + 4c = 4

(
c2 + c

)
, which is clearly divisible by 4. So we have 4 | u2 − 1. In

other words, u2 ≡ 1 mod 4. This solves Exercise 2.7.2 (b).
(c) Let x and y be two integers such that x2 + y2 ≡ 3 mod 4. We shall derive a contradic-

tion.
Recall that an integer is always either even or odd. Thus, x is either even or odd. Simi-

larly, y is either even or odd. Thus, we are in one of the following four cases:
Case 1: The integer x is even, and the integer y is even.
Case 2: The integer x is even, and the integer y is odd.
Case 3: The integer x is odd, and the integer y is even.
Case 4: The integer x is odd, and the integer y is odd.
Let us first consider Case 1. In this case, the integer x is even, and the integer y is

even. Hence, Exercise 2.7.2 (a) (applied to u = x) yields x2 ≡ 0 mod 4 (since x is even).
Also, Exercise 2.7.2 (a) (applied to u = y) yields y2 ≡ 0 mod 4 (since y is even). Thus,

x2︸︷︷︸
≡0 mod 4

+ y2︸︷︷︸
≡0 mod 4

≡ 0 + 0 = 0 mod 4. Hence, 0 ≡ x2 + y2 ≡ 3 mod 4. But Exercise 2.6.1

(applied to n = 4, u = 0 and v = 3) shows that 0 ≡ 3 mod 4 if and only if 0%4 = 3%4.
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Hence, 0%4 = 3%4 (since 0 ≡ 3 mod 4). This contradicts the fact that 0%4 = 0 6= 3 = 3%4.
Hence, we have obtained a contradiction in Case 1.

Let us next consider Case 2. In this case, the integer x is even, and the integer y is
odd. Hence, Exercise 2.7.2 (a) (applied to u = x) yields x2 ≡ 0 mod 4 (since x is even).
Also, Exercise 2.7.2 (b) (applied to u = y) yields y2 ≡ 1 mod 4 (since y is odd). Thus,

x2︸︷︷︸
≡0 mod 4

+ y2︸︷︷︸
≡1 mod 4

≡ 0 + 1 = 1 mod 4. Hence, 1 ≡ x2 + y2 ≡ 3 mod 4. But Exercise 2.6.1

(applied to n = 4, u = 1 and v = 3) shows that 1 ≡ 3 mod 4 if and only if 1%4 = 3%4.
Hence, 1%4 = 3%4 (since 1 ≡ 3 mod 4). This contradicts the fact that 1%4 = 1 6= 3 = 3%4.
Hence, we have obtained a contradiction in Case 2.

The arguments in Cases 3 and 4 are completely analogous (in Case 3, we obtain x2 + y2 ≡
1 mod 4 again, whereas in Case 4 we obtain x2 + y2 ≡ 2 mod 4). Thus, we have obtained a
contradiction in each of the four Cases 1, 2, 3 and 4. Hence, we always have a contradiction.

Now, forget that we fixed x and y. We thus have obtained a contradiction whenever x
and y are two integers such that x2 + y2 ≡ 3 mod 4. Thus, there are no such two integers.
This solves Exercise 2.7.2 (c).

(d) The solution of Exercise 2.7.2 (d) is very similar to the above solution of Exercise
2.7.2 (c) (indeed, we have to consider the same four cases, but this time we don’t get a
contradiction in Case 4) and is left to the reader.

10.23. Solution to Exercise 2.7.3
Solution to Exercise 2.7.3. (a) Define two sets A and B by

A = {i ∈N | i is even} (348)

and
B = {d ∈N | d ≡ 1 mod 4} . (349)

For each u ∈ A, we have 2u + 1 ∈ B 242. Renaming the variable u as i in this statement,
we obtain the following: For each i ∈ A, we have 2i + 1 ∈ B. Thus, the map

A→ B,
i 7→ 2i + 1

is well-defined. Let us denote this map by f .

242Proof. Let u ∈ A. Thus, u ∈ A = {i ∈N | i is even}. In other words, u is an i ∈ N such that
i is even. In other words, u is an element of N and is even. Thus, u ∈ N, so that 2u + 1 ∈ N.
Moreover, u is even; in other words, u ≡ 0 mod 2 (by Exercise 2.7.1 (c)). In other words, 2 | u− 0.
In other words, there exists an integer c such that u− 0 = 2c. Consider this c. Now, u = u− 0 =
2c, so that 2 u︸︷︷︸

=2c

= 2 · 2c = 4c ≡ 0 mod 4 (since we clearly have 4 | 4c). Hence,

2u︸︷︷︸
≡0 mod 4

+1 ≡ 0 + 1 = 1 mod 4.

Hence, 2u + 1 is an element of N (since 2u + 1 ∈ N) and satisfies 2u + 1 ≡ 1 mod 4.
In other words, 2u + 1 is a d ∈ N satisfying d ≡ 1 mod 4. In other words, 2u + 1 ∈
{d ∈N | d ≡ 1 mod 4}. In view of (349), this rewrites as 2u + 1 ∈ B. Qed.
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For each v ∈ B, we have (v− 1) /2 ∈ A 243. Hence, the map

B→ A,
v 7→ (v− 1) /2

is well-defined. Let us denote this map by g.
We have f ◦ g = id 244 and g ◦ f = id 245. Thus, the maps f and g are mutually inverse.

Hence, the map f is invertible, i.e., bijective. In other words, the map f is a bijection.
So we have proven that the map f is well-defined and is a bijection. In other words, the

map

A→ B,
i 7→ 2i + 1

is well-defined and is a bijection246. Using (348) and (349), we can rewrite this as follows:
The map

{i ∈N | i is even} → {d ∈N | d ≡ 1 mod 4} ,
i 7→ 2i + 1

243Proof. Let v ∈ B. Thus, v ∈ B = {d ∈N | d ≡ 1 mod 4}. In other words, v is a d ∈ N satisfying
d ≡ 1 mod 4. In other words, v is an element of N and satisfies v ≡ 1 mod 4. Thus, in particular,
v ≡ 1 mod 4; in other words, 4 | v − 1. In other words, there exists an integer w such that
v− 1 = 4w. Consider this w. We have v ≥ 0 (since v is an element of N) and thus v︸︷︷︸

≥0

−1 ≥ −1.

If we had w ≤ −1, then we would have v − 1 = 4 w︸︷︷︸
≤−1

≤ 4 (−1) = −4 < −1, which would

contradict v− 1 ≥ −1. Thus, we cannot have w ≤ −1. Hence, we have w > −1. Thus, w ≥ 0
(since w is an integer), so that w ∈ N. Hence, 2w ∈ N. Moreover, 2 | 2w (since w is an integer).
Thus, 2w is even. Hence, 2w is an i ∈ N such that i is even (since 2w ∈ N). In other words,
2w ∈ {i ∈N | i is even}. In view of (348), this rewrites as 2w ∈ A. But v− 1 = 4w = 2 · 2w, so
that (v− 1) /2 = 2w ∈ A. Qed.

244Proof. Let v ∈ B. Then, the definition of g yields g (v) = (v− 1) /2. But the definition of f
yields f (g (v)) = 2 g (v)︸︷︷︸

=(v−1)/2

+1 = 2 (v− 1) /2 + 1 = v = id (v). Comparing this with f (g (v)) =

( f ◦ g) (v), we obtain ( f ◦ g) (v) = id (v).
Now, forget that we fixed v. We thus have proven that ( f ◦ g) (v) = id (v) for each v ∈ B. In

other words, f ◦ g = id.
245Proof. Let i ∈ A. Then, the definition of f yields f (i) = 2i + 1. But the definition of g yields

g ( f (i)) =

 f (i)︸︷︷︸
=2i+1

−1

 /2 = (2i + 1− 1) /2 = i = id (i). Comparing this with g ( f (i)) =

(g ◦ f ) (i), we obtain (g ◦ f ) (i) = id (i).
Now, forget that we fixed i. We thus have proven that (g ◦ f ) (i) = id (i) for each i ∈ A. In

other words, g ◦ f = id.
246since the map f is the map

A→ B,
i 7→ 2i + 1
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is well-defined and is a bijection. This solves Exercise 2.7.3 (a).
(b) Define two sets A and B by

A = {i ∈N | i is odd} (350)

and
B = {d ∈N | d ≡ 3 mod 4} . (351)

For each u ∈ A, we have 2u + 1 ∈ B 247. Renaming the variable u as i in this statement,
we obtain the following: For each i ∈ A, we have 2i + 1 ∈ B. Thus, the map

A→ B,
i 7→ 2i + 1

is well-defined. Let us denote this map by f .
For each v ∈ B, we have (v− 1) /2 ∈ A 248. Hence, the map

B→ A,
v 7→ (v− 1) /2

is well-defined. Let us denote this map by g.

247Proof. Let u ∈ A. Thus, u ∈ A = {i ∈N | i is odd}. In other words, u is an i ∈ N such that
i is odd. In other words, u is an element of N and is odd. Thus, u ∈ N, so that 2u + 1 ∈ N.
Moreover, u is odd; in other words, u ≡ 1 mod 2 (by Exercise 2.7.1 (d)). In other words, 2 | u− 1.
In other words, there exists an integer c such that u− 1 = 2c. Consider this c. Now, 2u− 2 =
2 (u− 1)︸ ︷︷ ︸

=2c

= 2 · 2c = 4c ≡ 0 mod 4 (since we clearly have 4 | 4c). Hence,

2u + 1 = 2u− 2︸ ︷︷ ︸
≡0 mod 4

+3 ≡ 0 + 3 = 3 mod 4.

Hence, 2u + 1 is an element of N (since 2u + 1 ∈ N) and satisfies 2u + 1 ≡ 3 mod 4.
In other words, 2u + 1 is a d ∈ N satisfying d ≡ 3 mod 4. In other words, 2u + 1 ∈
{d ∈N | d ≡ 3 mod 4}. In view of (351), this rewrites as 2u + 1 ∈ B. Qed.

248Proof. Let v ∈ B. Thus, v ∈ B = {d ∈N | d ≡ 3 mod 4}. In other words, v is a d ∈ N satisfying
d ≡ 3 mod 4. In other words, v is an element of N and satisfies v ≡ 3 mod 4. Thus, in particular,
v ≡ 3 mod 4; in other words, 4 | v − 3. In other words, there exists an integer w such that
v− 3 = 4w. Consider this w. We have v ≥ 0 (since v is an element of N) and thus v︸︷︷︸

≥0

−3 ≥ −3.

If we had w ≤ −1, then we would have v − 3 = 4 w︸︷︷︸
≤−1

≤ 4 (−1) = −4 < −3, which would

contradict v− 3 ≥ −3. Thus, we cannot have w ≤ −1. Hence, we have w > −1. Thus, w ≥ 0
(since w is an integer), so that w ∈ N. Hence, 2w + 1 ∈ N. Moreover, 2︸︷︷︸

≡0 mod 2

w + 1 ≡ 0w + 1 =

1 mod 2. But Exercise 2.7.1 (d) (applied to u = 2w + 1) shows that 2w + 1 is odd if and only if
2w + 1 ≡ 1 mod 2. Hence, 2w + 1 is odd (since 2w + 1 ≡ 1 mod 2). Hence, 2w + 1 is an i ∈ N

such that i is odd (since 2w + 1 ∈ N). In other words, 2w + 1 ∈ {i ∈N | i is odd}. In view
of (350), this rewrites as 2w + 1 ∈ A. But v − 1 = v− 3︸ ︷︷ ︸

=4w

+2 = 4w + 2 = 2 (2w + 1), so that

(v− 1) /2 = 2w + 1 ∈ A. Qed.
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The maps f and g are mutually inverse249. Hence, the map f is invertible, i.e., bijective.
In other words, the map f is a bijection.

So we have proven that the map f is well-defined and is a bijection. In other words, the
map

A→ B,
i 7→ 2i + 1

is well-defined and is a bijection250. Using (350) and (351), we can rewrite this as follows:
The map

{i ∈N | i is odd} → {d ∈N | d ≡ 3 mod 4} ,
i 7→ 2i + 1

is well-defined and is a bijection. This solves Exercise 2.7.3 (b).
[Remark: The reader can easily find an alternative solution to Exercise 2.7.3, which pro-

ceeds by restricting the bijection from Exercise 2.6.4 (b). We chose to give the above solution
instead since it is more explicit.]

10.24. Solution to Exercise 2.9.1
Solution to Exercise 2.9.1. Assume that {b1, b2, . . . , bk} = {c1, c2, . . . , c`}.

Let a be an integer. Then, a is a common divisor of b1, b2, . . . , bk if and only if a satisfies
(a | bi for all i ∈ {1, 2, . . . , k}) (by the definition of “common divisor”). Hence, we have the
following chain of equivalences:

(a is a common divisor of b1, b2, . . . , bk)

⇐⇒ (a | bi for all i ∈ {1, 2, . . . , k})
⇐⇒ (a | b1 and a | b2 and · · · and a | bk)

⇐⇒ (a | u for each u ∈ {b1, b2, . . . , bk}) .

But Div (b1, b2, . . . , bk) is the set of all common divisors of b1, b2, . . . , bk. Hence, we have
a ∈ Div (b1, b2, . . . , bk) if and only if a is a common divisor of b1, b2, . . . , bk. Thus, we have
the following chain of equivalences:

(a ∈ Div (b1, b2, . . . , bk))

⇐⇒ (a is a common divisor of b1, b2, . . . , bk)

⇐⇒ (a | u for each u ∈ {b1, b2, . . . , bk}) . (352)

249This can be proven in the exact same way as the analogous statement was shown in our above
solution to Exercise 2.7.3 (a). In fact, the maps f and g here act in the exact same way as the maps
f and g in our solution to Exercise 2.7.3 (a); the only thing that is different are their domains
and codomains A and B.

250since the map f is the map

A→ B,
i 7→ 2i + 1
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The same argument (applied to ` and (c1, c2, . . . , c`) instead of k and (b1, b2, . . . , bk)) yields
the equivalence

(a ∈ Div (c1, c2, . . . , c`))
⇐⇒ (a | u for each u ∈ {c1, c2, . . . , c`}) . (353)

Now, we have the following chain of equivalences:

(a ∈ Div (b1, b2, . . . , bk))

⇐⇒

a | u for each u ∈ {b1, b2, . . . , bk}︸ ︷︷ ︸
={c1,c2,...,c`}

 (by (352))

⇐⇒ (a | u for each u ∈ {c1, c2, . . . , c`})
⇐⇒ (a ∈ Div (c1, c2, . . . , c`)) (by (353)) .

Now, forget that we fixed a. We thus have proven the equivalence

(a ∈ Div (b1, b2, . . . , bk)) ⇐⇒ (a ∈ Div (c1, c2, . . . , c`))

for each integer a. In other words, an integer a belongs to the set Div (b1, b2, . . . , bk) if and
only if it belongs to the set Div (c1, c2, . . . , c`). In other words, the two sets Div (b1, b2, . . . , bk)
and Div (c1, c2, . . . , c`) contain the exact same integers. Since both of these sets consist of
integers only, this entails that these two sets are equal. In other words, Div (b1, b2, . . . , bk) =
Div (c1, c2, . . . , c`). This solves Exercise 2.9.1.

10.25. Solution to Exercise 2.9.2
Solution to Exercise 2.9.2. Assume that {b1, b2, . . . , bk} = {c1, c2, . . . , c`}. Then, Exercise 2.9.1
yields Div (b1, b2, . . . , bk) = Div (c1, c2, . . . , c`). Hence, Lemma 2.9.9 yields gcd (b1, b2, . . . , bk) =
gcd (c1, c2, . . . , c`). This solves Exercise 2.9.2.

10.26. Solution to Exercise 2.9.3
Solution to Exercise 2.9.3. (a) Let a ∈N and b ∈N be such that b ≥ a.

We have b− a ≥ 0 (since b ≥ a), hence b− a ∈N. Thus, ub−a is an integer. We have(
ub − 1

)
− (ua − 1) = ub − ua = u(b−a)+a︸ ︷︷ ︸

=ub−aua

−ua (since b = (b− a) + a)

= ub−aua − ua =
(

ub−a − 1
)

ua.

Thus, ub−a − 1 |
(
ub − 1

)
− (ua − 1) (since ua is an integer). In other words, ub − 1 ≡

ua − 1 mod ub−a − 1. This solves Exercise 2.9.3 (a).
(b) The following argument will imitate our proof of Lemma 2.9.13 above.
We use strong induction on a + b. Thus, we fix an n ∈ N, and assume (as induction

hypothesis) that Exercise 2.9.3 (b) holds whenever a + b < n. We must now prove that
Exercise 2.9.3 (b) holds whenever a + b = n.

We have assumed that Exercise 2.9.3 (b) holds whenever a + b < n. In other words, the
following statement holds:
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Statement 1: Let a ∈N and b ∈N be such that a+ b < n. Then, gcd
(
ua − 1, ub − 1

)
=∣∣∣ugcd(a,b) − 1

∣∣∣.
Now, we must prove that Exercise 2.9.3 (b) holds whenever a + b = n. Let us first prove

this in the case when b ≥ a:

Statement 2: Let a ∈ N and b ∈ N be such that a + b = n and b ≥ a. Then,
gcd

(
ua − 1, ub − 1

)
=
∣∣∣ugcd(a,b) − 1

∣∣∣.
[Proof of Statement 2: We are in one of the following two cases:
Case 1: We have a = 0.
Case 2: We have a 6= 0.
Let us first consider Case 1. In this case, we have a = 0. Hence, ua = u0 = 1 and thus

ua − 1 = 0. Thus,

gcd

ua − 1︸ ︷︷ ︸
=0

, ub − 1

 = gcd
(

0, ub − 1
)
= gcd

(
ub − 1, 0

)
(

by Proposition 2.9.7 (b), applied to 0 and ub − 1
instead of a and b

)
=
∣∣∣ub − 1

∣∣∣ (354)

(since Proposition 2.9.7 (a) (applied to ub− 1 instead of a) yields gcd
(
ub − 1, 0

)
= gcd

(
ub − 1

)
=∣∣ub − 1

∣∣).
But Proposition 2.9.7 (b) yields gcd (a, b) = gcd

b, a︸︷︷︸
=0

 = gcd (b, 0). Now, Proposi-

tion 2.9.7 (a) (applied to b instead of a) yields gcd (b, 0) = gcd (b) = |b|. Hence, gcd (a, b) =
gcd (b, 0) = |b| = b (since b is nonnegative). Hence,

∣∣∣ugcd(a,b) − 1
∣∣∣ = ∣∣ub − 1

∣∣. Comparing

this equality with (354), we obtain gcd
(
ua − 1, ub − 1

)
=
∣∣∣ugcd(a,b) − 1

∣∣∣. Thus, Statement 2
is proven in Case 1.

Let us next consider Case 2. In this case, we have a 6= 0. Hence, a > 0 (since a ∈ N), so
that a + b > b. Hence, b < a + b = n.

From b ≥ a, we obtain b− a ∈ N. Moreover, a ∈ N and b− a ∈ N satisfy a + (b− a) =
b < n. Therefore, we can apply Statement 1 to b − a instead of b. Thus we obtain that
gcd

(
ua − 1, ub−a − 1

)
=
∣∣∣ugcd(a,b−a) − 1

∣∣∣.
But Proposition 2.9.7 (c) (applied to u = −1) yields gcd (a, (−1) a + b) = gcd (a, b). This

rewrites as gcd (a, b− a) = gcd (a, b) (since (−1) a + b = b− a).
Recall that b− a ∈ N. Also, b ≥ b− a (since a ≥ 0). Hence, Exercise 2.9.3 (a) (applied

to b− a instead of a) yields ub − 1 ≡ ub−a − 1 mod ub−(b−a) − 1. Since b− (b− a) = a, this
rewrites as ub − 1 ≡ ub−a − 1 mod ua − 1. Hence, Proposition 2.9.7 (d) (applied to ua − 1,
ub − 1 and ub−a − 1 instead of a, b and c) yields

gcd
(

ua − 1, ub − 1
)
= gcd

(
ua − 1, ub−a − 1

)
=
∣∣∣ugcd(a,b−a) − 1

∣∣∣
=
∣∣∣ugcd(a,b) − 1

∣∣∣ (since gcd (a, b− a) = gcd (a, b)) .
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Thus, Statement 2 is proven in Case 2.
We have now proven Statement 2 in both Cases 1 and 2. Hence, Statement 2 is always

proven.]
Now, we can prove that Exercise 2.9.3 (b) holds whenever a + b = n:

Statement 3: Let a ∈N and b ∈N be such that a+ b = n. Then, gcd
(
ua − 1, ub − 1

)
=∣∣∣ugcd(a,b) − 1

∣∣∣.
[Proof of Statement 3: We are in one of the following two cases:
Case 1: We have b ≥ a.
Case 2: We have b < a.
Let us first consider Case 1. In this case, we have b ≥ a. Hence, Statement 2 shows that

gcd
(
ua − 1, ub − 1

)
=
∣∣∣ugcd(a,b) − 1

∣∣∣. Thus, Statement 3 is proven in Case 1.
Let us next consider Case 2. In this case, we have b < a. Hence, a > b, so that a ≥ b.

This shows that we can apply Statement 2 to b and a instead of a and b. Thus we obtain
gcd

(
ub − 1, ua − 1

)
=
∣∣∣ugcd(b,a) − 1

∣∣∣. But Proposition 2.9.7 (b) yields gcd (a, b) = gcd (b, a).

Moreover, Proposition 2.9.7 (b) (applied to ua − 1 and ub − 1 instead of a and b) yields

gcd
(

ua − 1, ub − 1
)
= gcd

(
ub − 1, ua − 1

)
=
∣∣∣ugcd(b,a) − 1

∣∣∣ = ∣∣∣ugcd(a,b) − 1
∣∣∣

(since gcd (b, a) = gcd (a, b)). Thus, Statement 3 is proven in Case 2.
We have now proven Statement 3 in both Cases 1 and 2. Hence, Statement 3 is always

proven.]
By proving Statement 3, we have shown that Exercise 2.9.3 (b) holds whenever a+ b = n.

This completes the induction step. Thus, Exercise 2.9.3 (b) is proven by strong induction.
[See also https://math.stackexchange.com/questions/7473/ for various solutions of

Exercise 2.9.3 (b).]

10.27. Solution to Exercise 2.9.4
Solution to Exercise 2.9.4. Proposition 2.9.7 (f) (applied to a = a1 and b = a2) yields that we
have gcd (a1, a2) | a1 and gcd (a1, a2) | a2. Thus, gcd (a1, a2) | a1 | b1 and gcd (a1, a2) | a2 | b2.

So we know that gcd (a1, a2) | b1 and gcd (a1, a2) | b2. Hence, Lemma 2.9.16 (applied to
m = gcd (a1, a2), a = b1 and b = b2) yields gcd (a1, a2) | gcd (b1, b2). This solves Exercise
2.9.4.

10.28. Solution to Exercise 2.9.5
Solution to Exercise 2.9.5. (a) If b ≥ 0, then |b| = b. Hence, if b ≥ 0, then Exercise 2.9.5 (a)

holds (since gcd

a, |b|︸︷︷︸
=b

 = gcd (a, b)). Thus, for the rest of this solution to Exercise 2.9.5

(a), we WLOG assume that we don’t have b ≥ 0. Hence, we have b < 0. Thus, |b| = −b and

https://math.stackexchange.com/questions/7473/
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therefore gcd

a, |b|︸︷︷︸
=−b

 = gcd (a,−b) = gcd (a, b) (by Proposition 2.9.7 (h)). This solves

Exercise 2.9.5 (a).
(b) If a ≥ 0, then |a| = a. Hence, if a ≥ 0, then Exercise 2.9.5 (b) holds (since

gcd

 |a|︸︷︷︸
=a

, b

 = gcd (a, b)). Thus, for the rest of this solution to Exercise 2.9.5 (b), we

WLOG assume that we don’t have a ≥ 0. Hence, we have a < 0. Thus, |a| = −a and

therefore gcd

 |a|︸︷︷︸
=−a

, b

 = gcd (−a, b) = gcd (a, b) (by Proposition 2.9.7 (g)). This solves

Exercise 2.9.5 (b).
(c) Exercise 2.9.5 (b) (applied to |b| instead of b) yields gcd (|a| , |b|) = gcd (a, |b|) =

gcd (a, b) (by Exercise 2.9.5 (a)). This solves Exercise 2.9.5 (c).

10.29. Solution to Exercise 2.9.6
Solution to Exercise 2.9.6. Theorem 2.9.20 yields

gcd (sa, sb) = |s| gcd (a, b) . (355)

But gcd (a, b) is a nonnegative integer (by the definition of gcd (a, b)). The equality (3)
(applied to x = s and y = gcd (a, b)) yields

|s gcd (a, b)| = |s| · |gcd (a, b)|︸ ︷︷ ︸
=gcd(a,b)

(since gcd(a,b) is nonnegative)

= |s| gcd (a, b)

= gcd (sa, sb) (by (355)) . (356)

Now, Theorem 2.9.21 (d) (applied to 3 and (a, b, c) instead of k and (b1, b2, . . . , bk)) yields

gcd (a, b, c) = gcd (gcd (a, b) , c) . (357)

The same argument (applied to sa, sb, sc instead of a, b, c) yields

gcd (sa, sb, sc)

= gcd

gcd (sa, sb)︸ ︷︷ ︸
=|s gcd(a,b)|

(by (356))

, sc

 = gcd (|s gcd (a, b)| , sc)

= gcd (s gcd (a, b) , sc)
(

by Exercise 2.9.5 (b), applied to s gcd (a, b)
and sc instead of a and b

)
= |s| gcd (gcd (a, b) , c)︸ ︷︷ ︸

=gcd(a,b,c)
(by (357))

(
by Theorem 2.9.20, applied to gcd (a, b)

and c instead of a and b

)

= |s| gcd (a, b, c) .

This solves Exercise 2.9.6.
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10.30. Solution to Exercise 2.9.7
Solution to Exercise 2.9.7. We shall show that

gcd (sa1, sa2, . . . , sai) = |s| gcd (a1, a2, . . . , ai) (358)

for each i ∈ {0, 1, . . . , k}.
[Proof of (358): We proceed by induction on i:
Induction base: Proposition 2.9.7 (j) shows that the greatest common divisor of the empty

list of integers is gcd () = 0. Now, comparing gcd (sa1, sa2, . . . , sa0) = gcd () = 0 with
|s| gcd (a1, a2, . . . , a0)︸ ︷︷ ︸

=gcd()=0

= 0, we obtain gcd (sa1, sa2, . . . , sa0) = |s| gcd (a1, a2, . . . , a0). In other

words, (358) holds for i = 0. This completes the induction base.
Induction step: Let j ∈ {1, 2, . . . , k}. Assume that (358) holds for i = j− 1. We must prove

that (358) holds for i = j.
We have assumed that (358) holds for i = j− 1. In other words, we have

gcd
(
sa1, sa2, . . . , saj−1

)
= |s| gcd

(
a1, a2, . . . , aj−1

)
. (359)

But gcd
(
a1, a2, . . . , aj−1

)
is a nonnegative integer (by the definition of gcd

(
a1, a2, . . . , aj−1

)
).

The equality (3) (applied to x = s and y = gcd
(
a1, a2, . . . , aj−1

)
) yields∣∣s gcd

(
a1, a2, . . . , aj−1

)∣∣ = |s| · ∣∣gcd
(
a1, a2, . . . , aj−1

)∣∣︸ ︷︷ ︸
=gcd(a1,a2,...,aj−1)

(since gcd(a1,a2,...,aj−1) is nonnegative)

= |s| gcd
(
a1, a2, . . . , aj−1

)

= gcd
(
sa1, sa2, . . . , saj−1

)
(by (359)) . (360)

Theorem 2.9.21 (d) (applied to j and ai instead of k and bi) yields

gcd
(
a1, a2, . . . , aj

)
= gcd

(
gcd

(
a1, a2, . . . , aj−1

)
, aj
)

. (361)

Theorem 2.9.21 (d) (applied to j and sai instead of k and bi) yields

gcd
(
sa1, sa2, . . . , saj

)

= gcd

gcd
(
sa1, sa2, . . . , saj−1

)︸ ︷︷ ︸
=|s gcd(a1,a2,...,aj−1)|

(by (360))

, saj


= gcd

(∣∣s gcd
(
a1, a2, . . . , aj−1

)∣∣ , saj
)

= gcd
(
s gcd

(
a1, a2, . . . , aj−1

)
, saj

)(
by Exercise 2.9.5 (b), applied to s gcd

(
a1, a2, . . . , aj−1

)
and saj instead of a and b

)
= |s| gcd

(
gcd

(
a1, a2, . . . , aj−1

)
, aj
)︸ ︷︷ ︸

=gcd(a1,a2,...,aj)
(by (361))(

by Theorem 2.9.20, applied to gcd
(
a1, a2, . . . , aj−1

)
and aj instead of a and b

)
= |s| gcd

(
a1, a2, . . . , aj

)
.
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In other words, (358) holds for i = j. This completes the induction step. Thus, (358) is
proven.]

Now, (358) (applied to i = k) yields gcd (sa1, sa2, . . . , sak) = |s| gcd (a1, a2, . . . , ak). This
solves Exercise 2.9.7.

10.31. Solution to Exercise 2.10.1
Solution to Exercise 2.10.1. (a) We have 1 | a (since a = 1 · a). Thus, Proposition 2.9.7 (i)
(applied to 1 and a instead of a and b) yields gcd (1, a) = |1| = 1. In other words, 1 ⊥ a (by
the definition of “coprime”). This solves Exercise 2.10.1 (a).

(b) Proposition 2.9.7 (a) yields gcd (a, 0) = gcd (a) = |a|. But Proposition 2.9.7 (b)
(applied to b = 0) yields gcd (a, 0) = gcd (0, a). Hence, gcd (0, a) = gcd (a, 0) = |a|. Now,
we have the following chain of logical equivalences:

(0 ⊥ a) ⇐⇒ (gcd (0, a) = 1) (by the definition of “coprime”)
⇐⇒ (|a| = 1) (since gcd (0, a) = |a|) .

In other words, we have 0 ⊥ a if and only if |a| = 1. This solves Exercise 2.10.1 (b).

10.32. Solution to Exercise 2.10.2
Solution to Exercise 2.10.2. Let us prove that

a1a2 · · · ai ⊥ c for each i ∈ {0, 1, . . . , k} . (362)

Proof of (362): We shall prove (362) by induction on i:
Induction base: Exercise 2.10.1 (a) (applied to a = c) yields 1 ⊥ c. Now, a1a2 · · · a0 =

(empty product) = 1 ⊥ c. Hence, (362) holds for i = 0. This completes the induction base.
Induction step: Let j ∈ {1, 2, . . . , k}. Assume that (362) holds for i = j− 1. We must now

prove that (362) holds for i = j.
We have assumed that (362) holds for i = j− 1. In other words, a1a2 · · · aj−1 ⊥ c.
We have assumed that each i ∈ {1, 2, . . . , k} satisfies ai ⊥ c. Applying this to i = j, we

find aj ⊥ c.
Now we know that a1a2 · · · aj−1 ⊥ c and aj ⊥ c. Hence, Theorem 2.10.9 (applied to

a = a1a2 · · · aj−1 and b = aj) yields
(
a1a2 · · · aj−1

)
aj ⊥ c. In other words, a1a2 · · · aj ⊥ c

(since a1a2 · · · aj =
(
a1a2 · · · aj−1

)
aj). In other words, (362) holds for i = j. This completes

the induction step. Thus, (362) is proven by induction.
Now, we can apply (362) to i = k. We thus obtain a1a2 · · · ak ⊥ c. This proves Exercise

2.10.2.

10.33. Solution to Exercise 2.10.3
Solution to Exercise 2.10.3. We assumed that the integers b1, b2, . . . , bk are mutually coprime.
In other words, we have

bi ⊥ bj for all i, j ∈ {1, 2, . . . , k} satisfying i 6= j. (363)
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Let us prove that

b1b2 · · · bi | c for each i ∈ {0, 1, . . . , k} . (364)

Proof of (364): We shall prove (364) by induction on i:
Induction base: We have b1b2 · · · b0 = (empty product) = 1 | c. Hence, (364) holds for

i = 0. This completes the induction base.
Induction step: Let j ∈ {1, 2, . . . , k}. Assume that (364) holds for i = j− 1. We must now

prove that (364) holds for i = j.
We have assumed that (364) holds for i = j− 1. In other words, b1b2 · · · bj−1 | c.
We have assumed that each i ∈ {1, 2, . . . , k} satisfies bi | c. Applying this to i = j, we find

bj | c.
For each i ∈ {1, 2, . . . , j− 1}, we have i ≤ j− 1 < j and thus i 6= j and therefore bi ⊥ bj

(by (363)). Hence, Exercise 2.10.3 (applied to j− 1, bj and
(
b1, b2, . . . , bj−1

)
instead of k, c

and (a1, a2, . . . , ak)) yields b1b2 · · · bj−1 ⊥ bj.
Now we know that b1b2 · · · bj−1 | c and bj | c and b1b2 · · · bj−1 ⊥ bj. Hence, Theorem

2.10.7 (applied to a = b1b2 · · · bj−1 and b = bj) yields
(
b1b2 · · · bj−1

)
bj | c. In other words,

b1b2 · · · bj | c (since b1b2 · · · bj =
(
b1b2 · · · bj−1

)
bj). In other words, (364) holds for i = j. This

completes the induction step. Thus, (364) is proven by induction.
Now, we can apply (364) to i = k. We thus obtain b1b2 · · · bk | c. This proves Exercise

2.10.3.

10.34. Solution to Exercise 2.10.4
Solution to Exercise 2.10.4. We have a ⊥ b. Thus, Exercise 2.10.2 (applied to n, b anda, a, . . . , a︸ ︷︷ ︸

n times

 instead of k, c and (a1, a2, . . . , ak)) yields that aa · · · a︸ ︷︷ ︸
n times

⊥ b. In other words,

an ⊥ b.
According to Proposition 2.10.4 (applied to an instead of a), we have an ⊥ b if and only

if b ⊥ an. Thus, b ⊥ an (since an ⊥ b). Hence, Exercise 2.10.2 (applied to m, an andb, b, . . . , b︸ ︷︷ ︸
m times

 instead of k, c and (a1, a2, . . . , ak)) yields that bb · · · b︸ ︷︷ ︸
m times

⊥ an. In other words,

bm ⊥ an.
According to Proposition 2.10.4 (applied to an and bm instead of a and b), we have an ⊥ bm

if and only if bm ⊥ an. Hence, an ⊥ bm (since bm ⊥ an). This solves Exercise 2.10.4.

10.35. Solution to Exercise 2.10.5
Solution to Exercise 2.10.5. Exercise 2.10.2 and Exercise 2.10.5 say the same thing: They say
that if c is a fixed integer, then a product of finitely many integers that are coprime to c
will also be coprime to c. The difference between these two exercises is merely how the
product is indexed. Thus, deriving Exercise 2.10.5 from Exercise 2.10.2 is merely a matter
of bookkeeping. Let us do this bookkeeping:

By assumption, we have
bi ⊥ c for each i ∈ I. (365)
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The set I is finite; thus, we can define some k ∈ N by k = |I|. Consider this k.
There exists a bijection f : {1, 2, . . . , k} → I (since k = |I|). Pick such an f . Thus,
f (1) , f (2) , . . . , f (k) are the k elements of I; hence, b f (1), b f (2), . . . , b f (k) are k integers. More-
over, each j ∈ {1, 2, . . . , k} satisfies b f (j) ⊥ c (by (365), applied to i = f (j)). Renaming the
index j as i in this statement, we obtain: Each i ∈ {1, 2, . . . , k} satisfies b f (i) ⊥ c. Hence,
Exercise 2.10.2 (applied to ai = b f (i)) shows that

b f (1)b f (2) · · · b f (k) ⊥ c. (366)

The map f : {1, 2, . . . , k} → I is a bijection. Hence, we can substitute f (j) for i in the
product ∏

i∈I
bi. We thus find

∏
i∈I

bi = ∏
j∈{1,2,...,k}

b f (j) =
k

∏
j=1

b f (j) = b f (1)b f (2) · · · b f (k).

Thus, (366) can be rewritten as ∏
i∈I

bi ⊥ c. This solves Exercise 2.10.5.

10.36. Solution to Exercise 2.10.6
Solution to Exercise 2.10.6. Assume that a ⊥ c. But Proposition 2.10.4 (applied to c instead
of b) shows that a ⊥ c if and only if c ⊥ a. Thus, we have c ⊥ a (since a ⊥ c). In other
words, c is coprime to a. In other words, gcd (c, a) = 1 (by the definition of “coprime”).

But a ≡ b mod c. Hence, Proposition 2.9.7 (d) (applied to c, a and b instead of a, b and c)
yields gcd (c, a) = gcd (c, b). Hence, gcd (c, b) = gcd (c, a) = 1. In other words, c is coprime
to b. In other words, c ⊥ b. But Proposition 2.10.4 (applied to c instead of a) shows that
c ⊥ b if and only if b ⊥ c. Hence, b ⊥ c (since c ⊥ b). This solves Exercise 2.10.6.

10.37. Solution to Exercise 2.10.7
Solution to Exercise 2.10.7. Proposition 2.9.7 (b) (applied to b− a instead of a) yields

gcd (b− a, b) = gcd

b, b− a︸ ︷︷ ︸
=1b+(−a)

 = gcd (b, 1b + (−a))

= gcd (b,−a)
(

by Proposition 2.9.7 (c),
applied to b, − a and 1 instead of a, b and u

)
= gcd (b, a)

(
by Proposition 2.9.7 (h),

applied to b and a instead of a and b

)
= gcd (a, b) (by Proposition 2.9.7 (b)) .

Now, we have the following chain of logical equivalences:

(b− a ⊥ b) ⇐⇒

gcd (b− a, b)︸ ︷︷ ︸
=gcd(a,b)

= 1

 (by the definition of “coprime”)

⇐⇒ (gcd (a, b) = 1) ⇐⇒ (a ⊥ b) (by the definition of “coprime”) .

In other words, b− a ⊥ b holds if and only if a ⊥ b. This solves Exercise 2.10.7.
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10.38. Solution to Exercise 2.10.8

Solution to Exercise 2.10.8. Proposition 2.10.12 yields 1 + 2 + · · ·+ n =
n (n + 1)

2
. Thus, we

need to prove that
n (n + 1)

2
| 1d + 2d + · · ·+ nd.

This is equivalent to
n (n + 1) | 2

(
1d + 2d + · · ·+ nd

)
(367)

(by Exercise 2.2.3, applied to a =
n (n + 1)

2
, b = 1d + 2d + · · ·+ nd and c = 2). Hence, it

suffices to prove (367).
In order to prove (367), it suffices to show that

n | 2
(

1d + 2d + · · ·+ nd
)

and (368)

n + 1 | 2
(

1d + 2d + · · ·+ nd
)

. (369)

Indeed, the integers n and n + 1 are coprime (by Example 2.10.2 (c), applied to a =
n); in other words, n ⊥ n + 1. Hence, if we can prove (368) and (369), then Theorem
2.10.7 (applied to a = n, b = n + 1 and c = 2

(
1d + 2d + · · ·+ nd)) will yield n (n + 1) |

2
(
1d + 2d + · · ·+ nd); this will prove (367) and therefore complete our solution.
We shall prove (369) first:
Proof of (369): We have

2
(

1d + 2d + · · ·+ nd
)
=
(

1d + 2d + · · ·+ nd
)
+
(

1d + 2d + · · ·+ nd
)

=
(

1d + 2d + · · ·+ nd
)
+
(

nd + (n− 1)d + · · ·+ 1d
)

=
n

∑
k=1

kd +
n

∑
k=1

(n + 1− k)d

=
n

∑
k=1

(
kd + (n + 1− k)d

)
. (370)

But if k ∈ Z, then Lemma 2.10.11 (b) (applied to x = k and y = n + 1 − k) shows
that kd + (n + 1− k)d is divisible by k + (n + 1− k) = n + 1. Hence, each addend in the
sum on the right hand side of (370) is divisible by n + 1. Therefore, the whole sum is
divisible by n + 1 as well. Thus, the left hand side is divisible by n + 1, too. In other words,
n + 1 | 2

(
1d + 2d + · · ·+ nd). Thus, (369) is proven.

Proof of (368): If n = 0, then (368) boils down to 0 | 2 · 0 (since empty sums are 0); this
is obvious. Thus, for the rest of this proof, we WLOG assume that n 6= 0. Hence, n is a
positive integer, and thus n− 1 ∈ N. Therefore, we can apply (369) to n− 1 instead of n
(since we have already proven (369) for each n ∈N). We thus obtain

n | 2
(

1d + 2d + · · ·+ (n− 1)d
)

.
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In other words, 2
(

1d + 2d + · · ·+ (n− 1)d
)
≡ 0 mod n. Now,

2
(

1d + 2d + · · ·+ nd
)
− 2

(
1d + 2d + · · ·+ (n− 1)d

)
= 2 ·

((
1d + 2d + · · ·+ nd

)
−
(

1d + 2d + · · ·+ (n− 1)d
))

︸ ︷︷ ︸
=nd

= 2nd = n · 2nd−1 (since d ≥ 1 (because d is odd))

is clearly divisible by n. In other words,

2
(

1d + 2d + · · ·+ nd
)
≡ 2

(
1d + 2d + · · ·+ (n− 1)d

)
mod n.

Hence,
2
(

1d + 2d + · · ·+ nd
)
≡ 2

(
1d + 2d + · · ·+ (n− 1)d

)
≡ 0 mod n.

That is, n | 2
(
1d + 2d + · · ·+ nd). This proves (368).

We have now proven both (368) and (369). As we have explained, this yields (367), which
in turn solves Exercise 2.10.8.

10.39. Solution to Exercise 2.10.9
Solution to Exercise 2.10.9. Proposition 2.9.28 yields gcd (a, b) | xa + yb = 1. But gcd (a, b) is
a nonnegative integer. Hence, Exercise 2.2.5 (applied to g = gcd (a, b)) yields gcd (a, b) = 1
(since gcd (a, b) | 1). In other words, a is coprime to b. In other words, a ⊥ b. This solves
Exercise 2.10.9.

10.40. Solution to Exercise 2.10.10
Solution to Exercise 2.10.10. Let g = gcd (x, y). Then, g is a nonnegative integer (since any
gcd is a nonnegative integer); thus, |g| = g.

Theorem 2.9.26 (applied to 2, (ux, uy), 2 and (vx, vy) instead of k, (b1, b2, . . . , bk), ` and
(c1, c2, . . . , c`)) yields

gcd (ux, uy, vx, vy) = gcd (gcd (ux, uy) , gcd (vx, vy)) . (371)

Theorem 2.9.20 (applied to s = u, a = x and b = y) yields

gcd (ux, uy) = |u| gcd (x, y)︸ ︷︷ ︸
=g

= |u| g = g |u| .

The same argument (applied to v instead of u) yields

gcd (vx, vy) = g |v| .
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Now, (371) becomes

gcd (ux, uy, vx, vy) = gcd

gcd (ux, uy)︸ ︷︷ ︸
=g|u|

, gcd (vx, vy)︸ ︷︷ ︸
=g|v|

 = gcd (g |u| , g |v|)

= |g|︸︷︷︸
=g

=gcd(x,y)

gcd (|u| , |v|)︸ ︷︷ ︸
=gcd(u,v)

(by Exercise 2.9.5 (c),
applied to a=u and b=v)

(by Theorem 2.9.20, applied to s = g, a = |u| and b = |v|)
= gcd (x, y) · gcd (u, v) = gcd (u, v) · gcd (x, y) .

This solves Exercise 2.10.10.

10.41. Solution to Exercise 2.10.11
Solution to Exercise 2.10.11. (a) Let g = gcd (a, b, c). Then, g = gcd (a, b, c) ≥ 0 (since any
gcd is a nonnegative integer) and thus |g| = g. But Exercise 2.9.6 (applied to s = a) yields

gcd (aa, ab, ac) = |a| gcd (a, b, c)︸ ︷︷ ︸
=g=|g|

= |a| · |g| = |ag| (372)

(since (3) yields |ag| = |a| · |g|).
Exercise 2.10.10 (applied to u = a, v = c, x = a and y = b) yields

gcd (a, c) · gcd (a, b)

= gcd

aa, ab, ca︸︷︷︸
=ac

, cb︸︷︷︸
=bc

 = gcd (aa, ab, ac, bc) = gcd

gcd (aa, ab, ac)︸ ︷︷ ︸
=|ag|

(by (372))

, bc


(

by Theorem 2.9.21 (d)
(applied to 4 and (aa, ab, ac, bc) instead of k and (b1, b2, . . . , bk) )

)
= gcd (|ag| , bc) = gcd (ag, bc)

(by Exercise 2.9.5 (b), applied to ag and bc instead of a and b). In other words, gcd (a, b) ·
gcd (a, c) = gcd (ag, bc). This solves Exercise 2.10.11 (a).

(b) Assume that b ⊥ c. Thus, gcd (b, c) = 1.
Let g = gcd (a, b, c). Theorem 2.9.26 (applied to 1, (a), 2 and (b, c) instead of k, (b1, b2, . . . , bk),

` and (c1, c2, . . . , c`)) yields

gcd (a, b, c) = gcd

gcd (a) , gcd (b, c)︸ ︷︷ ︸
=1

 = gcd (gcd (a) , 1) | 1

(by Proposition 2.9.7 (f), applied to gcd (a) and 1 instead of a and b). This rewrites as g | 1
(since g = gcd (a, b, c)).
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But g = gcd (a, b, c) is a nonnegative integer (since any gcd is a nonnegative integer).
Hence, Exercise 2.2.5 yields g = 1 (since g | 1). Now, Exercise 2.10.11 (a) yields

gcd (a, b) · gcd (a, c) = gcd

a g︸︷︷︸
=1

, bc

 = gcd (a, bc) .

This solves Exercise 2.10.11 (b).

10.42. Solution to Exercise 2.10.12
Solution to Exercise 2.10.12. We have assumed that a and b are not both zero. In other words,
the two integers a, b are not all zero. Hence, Definition 2.9.6 shows that gcd (a, b) is defined
as the largest element of the set Div (a, b) and is a positive integer.

Now, g = gcd (a, b). Hence, g is a positive integer (since gcd (a, b) is a positive integer).
Thus, |g| = g. Also, g 6= 0 (since g is positive).

Proposition 2.9.7 (f) yields gcd (a, b) | a and gcd (a, b) | b. Hence, g = gcd (a, b) | a. But
Proposition 2.2.3 (c) (applied to g and a instead of a and b) shows that g | a if and only if
a
g
∈ Z. Hence, we have

a
g
∈ Z (since g | a). Similarly,

b
g
∈ Z. Thus,

a
g

and
b
g

are integers.

It remains to prove that
a
g
⊥ b

g
. But Theorem 2.9.20 (applied to g,

a
g

and
b
g

instead of s,

a and b) shows that

gcd
(

g · a
g

, g · b
g

)
= |g|︸︷︷︸

=g

gcd
(

a
g

,
b
g

)
= g gcd

(
a
g

,
b
g

)
.

Comparing this with

gcd

g · a
g︸︷︷︸

=a

, g · b
g︸︷︷︸

=b

 = gcd (a, b) = g,

we obtain g gcd
(

a
g

,
b
g

)
= g. We can cancel g from this equality (since g 6= 0), and thus

obtain gcd
(

a
g

,
b
g

)
= 1. In other words,

a
g
⊥ b

g
. Thus, the solution of Exercise 2.10.12 is

finished.

10.43. Solution to Exercise 2.10.13
Solution to Exercise 2.10.13. If k = 0, then Exercise 2.10.13 holds251. Hence, for the rest of
this solution, we WLOG assume that k 6= 0. Thus, k is a positive integer (since k ∈ N);
therefore, 0k = 0.

251Proof. Assume that k = 0. Thus, (gcd (a, b))k = (gcd (a, b))0 = 1.
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If the integers a and b are both zero, then Exercise 2.10.13 holds252. Thus, for the rest of
this solution, we WLOG assume that a and b are not both zero. Let g = gcd (a, b). Then,
g ≥ 0 (since any gcd is nonnegative) and therefore gk ≥ 0. But Exercise 2.10.12 yields that
a
g

and
b
g

are integers satisfying
a
g
⊥ b

g
. Therefore, Exercise 2.10.4 (applied to

a
g

,
b
g

, k and k

instead of a, b, n and m) yields
(

a
g

)k

⊥
(

b
g

)k

. In other words, gcd

((
a
g

)k

,
(

b
g

)k
)

= 1.

Note that
(

a
g

)k

and
(

b
g

)k

are integers (since
a
g

and
b
g

are integers). Thus, Theorem

2.9.20 (applied to gk,
(

a
g

)k

and
(

b
g

)k

instead of s, a and b) yields

gcd

(
gk
(

a
g

)k

, gk
(

b
g

)k
)

=
∣∣∣gk
∣∣∣︸︷︷︸

=gk

(since gk≥0)

gcd

((
a
g

)k

,
(

b
g

)k
)

︸ ︷︷ ︸
=1

= gk = (gcd (a, b))k

(since g = gcd (a, b)). Comparing this with

gcd

gk
(

a
g

)k

︸ ︷︷ ︸
=ak

, gk
(

b
g

)k

︸ ︷︷ ︸
=bk

 = gcd
(

ak, bk
)

,

we obtain gcd
(
ak, bk) = (gcd (a, b))k. This solves Exercise 2.10.13.

10.44. Solution to Exercise 2.10.14
Solution to Exercise 2.10.14. We have r ∈ Q. In other words, r is a rational number. Thus,
r can be written in the form r = x/y for some x ∈ Z and some nonzero y ∈ Z (by the

But 1 | 1. Thus, Proposition 2.9.7 (i) (applied to 1 and 1 instead of a and b) yields gcd (1, 1) =

|1| = 1. From k = 0, we obtain gcd
(

ak, bk
)
= gcd

 a0︸︷︷︸
=1

, b0︸︷︷︸
=1

 = gcd (1, 1) = 1. Comparing

this with (gcd (a, b))k = 1, we obtain gcd
(

ak, bk
)
= (gcd (a, b))k. Hence, Exercise 2.10.13 holds

(under the assumption that k = 0).
252Proof. Assume that a and b are both zero. In other words, a = 0 and b = 0. Thus,

gcd
(

ak, bk
)
= gcd

 0k︸︷︷︸
=0

, 0k︸︷︷︸
=0

 = gcd (0, 0) = |0|

(by Proposition 2.9.7 (i), applied to 0 and 0 instead of a and b). Thus, gcd
(

ak, bk
)
= |0| = 0.

But the integers a, b are all zero (since a = 0 and b = 0). Thus, the definition of gcd yields

gcd (a, b) = 0. Hence, (gcd (a, b))k = 0k = 0. Comparing this with gcd
(

ak, bk
)
= 0, we obtain

gcd
(

ak, bk
)
= (gcd (a, b))k. Hence, Exercise 2.10.13 holds (under the assumption that a and b

are both zero).
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definition of a rational number). Consider these x and y. The integers x and y are not
both zero (since y is nonzero). Let g = gcd (x, y). Exercise 2.10.12 (applied to a = x and

b = y) yields that
x
g

and
y
g

are integers satisfying
x
g
⊥ y

g
. These two integers

x
g

and
y
g

are

coprime (since
x
g
⊥ y

g
) and satisfy r =

x
g

/
y
g

(since
x
g

/
y
g
= x/y = r). Hence, there exist

two coprime integers a and b satisfying r = a/b (namely, a =
x
g

and b =
y
g

). This solves

Exercise 2.10.14.

10.45. Solution to Exercise 2.10.15
Solution to Exercise 2.10.15. (a) Let u be a positive integer that is not a perfect square. We
must prove that

√
u is irrational.

Assume the contrary. Thus,
√

u is rational. In other words,
√

u ∈ Q. Hence, Exercise
2.10.14 (applied to r =

√
u) yields that there exist two coprime integers a and b satisfying√

u = a/b. Consider these a and b.
We have a ⊥ b (since a and b are coprime). Thus, Exercise 2.10.4 (applied to n = 2

and m = 2) yields a2 ⊥ b2. In other words, b2 ⊥ a2 (by Proposition 2.10.4). In other
words, gcd

(
b2, a2) = 1. Also, b2 is nonnegative (since the square of any real number is

nonnegative).
Squaring both sides of the equality

√
u = a/b, we obtain u = (a/b)2 = a2/b2, so that

a2 = b2u. Hence, b2 | a2 (since u is an integer). Thus, Proposition 2.9.7 (i) (applied to b2 and
a2 instead of a and b) yields gcd

(
b2, a2) = ∣∣b2

∣∣ = b2 (since b2 is nonnegative). Comparing
this with gcd

(
b2, a2) = 1, we obtain b2 = 1. Hence, u = a2/ b2︸︷︷︸

=1

= a2. Thus, u is a perfect

square (since a is an integer). This contradicts the fact that u is not a perfect square.
This contradiction shows that our assumption was false. Hence,

√
u is irrational. This

solves Exercise 2.10.15 (a).
(b) Let u and v be two positive integers that are not both perfect squares. We must prove

that
√

u +
√

v is irrational.
Assume the contrary. Thus,

√
u +
√

v is rational. Denote this rational number
√

u +
√

v
by x. Thus, x =

√
u +
√

v, so that x−
√

u =
√

v. Squaring both sides of this equality, we
obtain

(
x−
√

u
)2

= v. Hence,

v =
(
x−
√

u
)2

= x2 − 2x
√

u +
(√

u
)2

= x2 − 2x
√

u + u.

Subtracting x2 + u from both sides of this equation, we obtain

v−
(
x2 + u

)
= −2x

√
u. (373)

But x =
√

u +
√

v > 0 (since u and v are positive) and thus x 6= 0, so that −2x 6= 0.
Hence, we can solve the equation (373) for

√
u; we thus obtain

√
u =

v−
(
x2 + u

)
−2x

.

Thus,
√

u is rational (since v, x and u are rational). Therefore, u must be a perfect square
(since otherwise, Exercise 2.10.15 (a) would yield that

√
u is irrational). Similarly, v must
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be a perfect square. This shows that both u and v are perfect squares; but this contradicts
the fact that u and v are not both perfect squares.

This contradiction shows that our assumption was false. Hence,
√

u +
√

v is irrational.
This solves Exercise 2.10.15 (b).

10.46. Solution to Exercise 2.10.16
Solution to Exercise 2.10.16. A gcd of a list of integers is always a nonnegative integer (by
the definition of a gcd). Hence, in particular, gcd (a1, a2, . . . , ak) is a nonnegative integer.
Thus, we can define a nonnegative integer h by h = gcd (a1, a2, . . . , ak). Consider this h. We
have |h| = h (since h is nonnegative).

Theorem 2.9.26 (applied to (a1x, a2x, . . . , akx), k and (a1y, a2y, . . . , aky) instead of (b1, b2, . . . , bk),
` and (c1, c2, . . . , c`)) yields

gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky)
= gcd (gcd (a1x, a2x, . . . , akx) , gcd (a1y, a2y, . . . , aky)) . (374)

But (a1x, a2x, . . . , akx) = (xa1, xa2, . . . , xak) (since aix = xai for each i ∈ {1, 2, . . . , k}) and
thus

gcd (a1x, a2x, . . . , akx) = gcd (xa1, xa2, . . . , xak) = |x| gcd (a1, a2, . . . , ak)

(by Exercise 2.9.7, applied to s = x) .

Comparing this with

|xh| = |x| · |h|︸︷︷︸
=h

(by (3) (applied to h instead of y))

= |x| · h︸︷︷︸
=gcd(a1,a2,...,ak)

= |x| gcd (a1, a2, . . . , ak) ,

we obtain
gcd (a1x, a2x, . . . , akx) = |xh| .

The same argument (applied to y instead of x) yields

gcd (a1y, a2y, . . . , aky) = |yh| .
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Thus, (374) becomes

gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky)

= gcd

gcd (a1x, a2x, . . . , akx)︸ ︷︷ ︸
=|xh|

, gcd (a1y, a2y, . . . , aky)︸ ︷︷ ︸
=|yh|

 = gcd (|xh| , |yh|)

= gcd

 xh︸︷︷︸
=hx

, yh︸︷︷︸
=hy

 (
by Exercise 2.9.5 (c) (applied to xh and yh

instead of a and b)

)

= gcd (hx, hy) = |h|︸︷︷︸
=h

gcd (x, y)
(

by Theorem 2.9.20 (applied to h, x and y
instead of s, a and b)

)
= h︸︷︷︸

=gcd(a1,a2,...,ak)

gcd (x, y) = gcd (a1, a2, . . . , ak) · gcd (x, y) .

This solves Exercise 2.10.16.

10.47. Solution to Exercise 2.10.17
Solution to Exercise 2.10.17. Theorem 2.9.21 (d) (applied to 3 and (x, y, z) instead of k and
(b1, b2, . . . , bk)) yields gcd (x, y, z) = gcd (gcd (x, y) , z). But Exercise 2.9.5 (a) (applied to
gcd (x, y) and z instead of a and b) yields gcd (gcd (x, y) , |z|) = gcd (gcd (x, y) , z). Com-
paring these two equalities, we obtain

gcd (gcd (x, y) , |z|) = gcd (x, y, z) . (375)

A gcd of a list of integers is always a nonnegative integer (by the definition of a gcd).
Hence, in particular, gcd (a1, a2, . . . , ak) is a nonnegative integer. Thus, we can define a
nonnegative integer h by h = gcd (a1, a2, . . . , ak). Consider this h. We have |h| = h (since h
is nonnegative).

Multiplying both sides of the equality h = gcd (a1, a2, . . . , ak) by gcd (x, y), we obtain

h gcd (x, y) = gcd (a1, a2, . . . , ak) · gcd (x, y)
= gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky) (376)

(by Exercise 2.10.16).
But (a1z, a2z, . . . , akz) = (za1, za2, . . . , zak) (since aiz = zai for each i ∈ {1, 2, . . . , k}) and

thus
gcd (a1z, a2z, . . . , akz) = gcd (za1, za2, . . . , zak) = |z| gcd (a1, a2, . . . , ak)

(by Exercise 2.9.7, applied to s = z). Thus,

gcd (a1z, a2z, . . . , akz) = |z| gcd (a1, a2, . . . , ak)︸ ︷︷ ︸
=h

= |z| h = h |z| . (377)
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Theorem 2.9.26 (applied to 2k, (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky), k and (a1z, a2z, . . . , akz)
instead of k, (b1, b2, . . . , bk), ` and (c1, c2, . . . , c`)) yields

gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky, a1z, a2z, . . . , akz)

= gcd

gcd (a1x, a2x, . . . , akx, a1y, a2y, . . . , aky)︸ ︷︷ ︸
=h gcd(x,y)

(by (376))

, gcd (a1z, a2z, . . . , akz)︸ ︷︷ ︸
=h|z|

(by (377))


= gcd (h gcd (x, y) , h |z|) = |h|︸︷︷︸

=h
=gcd(a1,a2,...,ak)

gcd (gcd (x, y) , |z|)︸ ︷︷ ︸
=gcd(x,y,z)

(by (375))

(by Theorem 2.9.20 (applied to h, gcd (x, y) and |z| instead of s, a and b))
= gcd (a1, a2, . . . , ak) · gcd (x, y, z) .

This solves Exercise 2.10.17.

10.48. Solution to Exercise 2.10.18
Solution to Exercise 2.10.18. Exercise 2.10.10 (applied to u = b, v = c, x = c and y = a)
yields

gcd (b, c) · gcd (c, a) = gcd (bc, ba, cc, ca) . (378)

Multiplying both sides of this equality by gcd (a, b), we find

gcd (b, c) · gcd (c, a) · gcd (a, b)
= gcd (bc, ba, cc, ca) · gcd (a, b)
= gcd (bca, baa, cca, caa, bcb, bab, ccb, cab) (379)

(by Exercise 2.10.16, applied to a, b, 4 and (bc, ba, cc, ca) instead of x, y, k and (a1, a2, . . . , ak)).
On the other hand, Exercise 2.10.17 (applied to bc, ca, ab, 3 and (a, b, c) instead of x, y, z,

k and (a1, a2, . . . , ak)) yields

gcd (a, b, c) · gcd (bc, ca, ab)
= gcd (abc, bbc, cbc, aca, bca, cca, aab, bab, cab) . (380)

But comparing bca︸︷︷︸
=abc

, baa︸︷︷︸
=a2b

, cca︸︷︷︸
=c2a

, caa︸︷︷︸
=a2c

, bcb︸︷︷︸
=b2c

, bab︸︷︷︸
=b2a

, ccb︸︷︷︸
=c2b

, cab︸︷︷︸
=abc


=
{

abc, a2b, c2a, a2c, b2c, b2a, c2b, abc
}
=
{

abc, b2c, c2b, c2a, a2c, a2b, b2a
}

with abc, bbc︸︷︷︸
=b2c

, cbc︸︷︷︸
=c2b

, aca︸︷︷︸
=a2c

, bca︸︷︷︸
=abc

, cca︸︷︷︸
=c2a

, aab︸︷︷︸
=a2b

, bab︸︷︷︸
=b2a

, cab︸︷︷︸
=abc


=
{

abc, b2c, c2b, a2c, abc, c2a, a2b, b2a, abc
}
=
{

abc, b2c, c2b, c2a, a2c, a2b, b2a
}

,
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we obtain

{bca, baa, cca, caa, bcb, bab, ccb, cab} = {abc, bbc, cbc, aca, bca, cca, aab, bab, cab} .

Hence, Exercise 2.9.2 (applied to 8, (bca, baa, cca, caa, bcb, bab, ccb, cab), 9 and
(abc, bbc, cbc, aca, bca, cca, aab, bab, cab) instead of k, (b1, b2, . . . , bk), ` and (c1, c2, . . . , c`)) yields

gcd (bca, baa, cca, caa, bcb, bab, ccb, cab) = gcd (abc, bbc, cbc, aca, bca, cca, aab, bab, cab) .

Comparing this with (380), we obtain

gcd (a, b, c) · gcd (bc, ca, ab) = gcd (bca, baa, cca, caa, bcb, bab, ccb, cab) .

Comparing this with (379), we obtain

gcd (b, c) · gcd (c, a) · gcd (a, b) = gcd (a, b, c) · gcd (bc, ca, ab) .

This solves Exercise 2.10.18.

10.49. Solution to Exercise 2.10.19
Solution to Exercise 2.10.19. Let W be the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and
x + y ≤ n. Any pair (x, y) ∈ [n]2 satisfying x ⊥ y must satisfy either x + y ≤ n or x + y > n

(but not both at the same time). Hence, we can split the sum ∑
(x,y)∈[n]2;

x⊥y

1
xy

as follows:

∑
(x,y)∈[n]2;

x⊥y

1
xy

= ∑
(x,y)∈[n]2;

x⊥y;
x+y≤n︸ ︷︷ ︸
= ∑

(x,y)∈W
(since W is the set of
all pairs (x,y)∈[n]2

satisfying x⊥y and x+y≤n)

1
xy

+ ∑
(x,y)∈[n]2;

x⊥y;
x+y>n︸ ︷︷ ︸
= ∑

(x,y)∈Z
(since Z is the set of
all pairs (x,y)∈[n]2

satisfying x⊥y and x+y>n)

1
xy

= ∑
(x,y)∈W

1
xy

+ ∑
(x,y)∈Z

1
xy

. (381)

On the other hand, let A be the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x < y.
Let B be the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x = y. Let C be the set of all
pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x > y.

Now, any pair (x, y) ∈ [n]2 satisfying x ⊥ y must satisfy exactly one of the three relations
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x < y and x = y and x > y. Hence, we can split the sum ∑
(x,y)∈[n]2;

x⊥y

1
xy

as follows:

∑
(x,y)∈[n]2;

x⊥y

1
xy

= ∑
(x,y)∈[n]2;

x⊥y;
x<y︸ ︷︷ ︸

= ∑
(x,y)∈A

(since A is the set of
all pairs (x,y)∈[n]2

satisfying x⊥y and x<y)

1
xy

+ ∑
(x,y)∈[n]2;

x⊥y;
x=y︸ ︷︷ ︸

= ∑
(x,y)∈B

(since B is the set of
all pairs (x,y)∈[n]2

satisfying x⊥y and x=y)

1
xy

+ ∑
(x,y)∈[n]2;

x⊥y;
x>y︸ ︷︷ ︸

= ∑
(x,y)∈C

(since C is the set of
all pairs (x,y)∈[n]2

satisfying x⊥y and x>y)

1
xy

= ∑
(x,y)∈A

1
xy

+ ∑
(x,y)∈B

1
xy

+ ∑
(x,y)∈C

1
xy

. (382)

We shall now study the three sums on the right hand side of this equality. We begin with
the first one: We claim that

∑
(x,y)∈A

1
xy

= ∑
(x,y)∈W

1
x (x + y)

. (383)

[Proof of (383): We shall establish a bijection between A and W.
Indeed, if (u, v) ∈W, then (u, u + v) ∈ A 253. Hence, we can define a map

f : W → A,
(u, v) 7→ (u, u + v) .

Consider this map f .
On the other hand, if (u, v) ∈ A, then (u, v− u) ∈W 254. Hence, we can define a map

g : A→W,
(u, v) 7→ (u, v− u) .

253Proof. Let (u, v) ∈ W. Thus, (u, v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x + y ≤ n (because
W is the set of all such pairs). In other words, (u, v) belongs to [n]2 and satisfies u ⊥ v and
u + v ≤ n.

We know that (u, v) belongs to [n]2; hence, u ∈ [n] and v ∈ [n]. From u ∈ [n] = {1, 2, . . . , n},
we obtain 1 ≤ u ≤ n. From v ∈ [n] = {1, 2, . . . , n}, we obtain 1 ≤ v ≤ n. Now, 1 ≤ v, so that
v ≥ 1 > 0 and therefore u + v > u, so that u < u + v. From u + v > u, we obtain u + v ≥ u ≥ 1
(since 1 ≤ u) and thus 1 ≤ u + v ≤ n. Hence, u + v ∈ {1, 2, . . . , n} = [n].

We have u ⊥ v. In other words, the numbers u and v are coprime (by Definition 2.10.3). In
other words, gcd (u, v) = 1 (by the definition of “coprime”). But Proposition 2.9.7 (c) (applied
to u, v and 1 instead of a, b and u) yields gcd (u, 1u + v) = gcd (u, v) = 1. In other words,
gcd (u, u + v) = 1 (since 1u = u). In other words, u and u + v are coprime (by the definition of
“coprime”). In other words, u ⊥ u + v.

Now, (u, u + v) ∈ [n]2 (since u ∈ [n] and u + v ∈ [n]) and u ⊥ u + v and u < u + v. In other
words, (u, u + v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x < y. In other words, (u, u + v) ∈ A
(since A is the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x < y). Qed.

254Proof. Let (u, v) ∈ A. Thus, (u, v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x < y (because A is
the set of all such pairs). In other words, (u, v) belongs to [n]2 and satisfies u ⊥ v and u < v.

We know that (u, v) belongs to [n]2; hence, u ∈ [n] and v ∈ [n]. From u ∈ [n] = {1, 2, . . . , n},
we obtain 1 ≤ u ≤ n. From v ∈ [n] = {1, 2, . . . , n}, we obtain 1 ≤ v ≤ n. Now, v − u > 0
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Consider this map g.
We have f ◦ g = id 255 and g ◦ f = id 256. Hence, the maps f and g are mutually

inverse, and thus are invertible. In other words, the maps f and g are bijections.
In particular, the map f is a bijection. In other words, the map

W → A,
(u, v) 7→ (u, u + v)

is a bijection (since this map is precisely the map f (by the definition of f )). Hence, we can

(since u < v) and thus v− u ≥ 1 (since v− u is an integer). Also, 0 < 1 ≤ u and thus u > 0;
hence, v − u < v ≤ n and therefore v − u ≤ n. From v − u ≥ 1 and v − u ≤ n, we obtain
v− u ∈ {1, 2, . . . , n} = [n].

We have u ⊥ v. In other words, the numbers u and v are coprime (by Definition 2.10.3). In
other words, gcd (u, v) = 1 (by the definition of “coprime”). But Proposition 2.9.7 (c) (applied
to u, v and −1 instead of a, b and u) yields gcd (u, (−1) u + v) = gcd (u, v) = 1. In other words,
gcd (u, v− u) = 1 (since (−1) u + v = v− u). In other words, u and v− u are coprime (by the
definition of “coprime”). In other words, u ⊥ v− u.

Now, (u, v− u) ∈ [n]2 (since u ∈ [n] and v − u ∈ [n]) and u ⊥ v − u and u + (v− u) ≤ n
(since u + (v− u) = v ≤ n). In other words, (u, v− u) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and
x + y ≤ n. In other words, (u, v− u) ∈ W (since W is the set of all pairs (x, y) ∈ [n]2 satisfying
x ⊥ y and x + y ≤ n). Qed.

255Proof. Let p ∈ A. Thus, p is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x < y (because A is the set of
all such pairs). Consider this pair (x, y). Thus, p = (x, y).

Applying the map g to both sides of this equality, we find g (p) = g ((x, y)) = (x, y− x) (by
the definition of g). Applying the map f to both sides of this equality, we find

f (g (p)) = f ((x, y− x)) =

x, x + (y− x)︸ ︷︷ ︸
=y

 (by the definition of f )

= (x, y) = p.

Thus, ( f ◦ g) (p) = f (g (p)) = p = id (p).
Forget that we fixed p. We thus have shown that ( f ◦ g) (p) = id (p) for each p ∈ A. In other

words, f ◦ g = id.
256Proof. Let p ∈ W. Thus, p is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x + y ≤ n (because W is the

set of all such pairs). Consider this pair (x, y). Thus, p = (x, y).
Applying the map f to both sides of this equality, we find f (p) = f ((x, y)) = (x, x + y) (by

the definition of f ). Applying the map g to both sides of this equality, we find

g ( f (p)) = g ((x, x + y)) =

x, (x + y)− x︸ ︷︷ ︸
=y

 (by the definition of g)

= (x, y) = p.

Thus, (g ◦ f ) (p) = g ( f (p)) = p = id (p).
Forget that we fixed p. We thus have shown that (g ◦ f ) (p) = id (p) for each p ∈ W. In other

words, g ◦ f = id.
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substitute (u, u + v) for (x, y) in the sum ∑
(x,y)∈A

1
xy

. We thus obtain

∑
(x,y)∈A

1
xy

= ∑
(u,v)∈W

1
u (u + v)

= ∑
(x,y)∈W

1
x (x + y)

(here, we have renamed the summation index (u, v) as (x, y)). This proves (383).]
Next, we claim that

∑
(x,y)∈C

1
xy

= ∑
(x,y)∈W

1
y (x + y)

. (384)

[Proof of (384): We shall establish a bijection between C and W.
Indeed, if (u, v) ∈W, then (u + v, v) ∈ C 257. Hence, we can define a map

f : W → C,
(u, v) 7→ (u + v, v) .

Consider this map f .

257Proof. Let (u, v) ∈ W. Thus, (u, v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x + y ≤ n (because
W is the set of all such pairs). In other words, (u, v) belongs to [n]2 and satisfies u ⊥ v and
u + v ≤ n.

We know that (u, v) belongs to [n]2; hence, u ∈ [n] and v ∈ [n]. From u ∈ [n] = {1, 2, . . . , n},
we obtain 1 ≤ u ≤ n. From v ∈ [n] = {1, 2, . . . , n}, we obtain 1 ≤ v ≤ n. Now, 1 ≤ u, so that
u ≥ 1 > 0 and therefore u + v > v. Hence, u + v ≥ v ≥ 1 (since 1 ≤ v) and thus 1 ≤ u + v ≤ n.
Hence, u + v ∈ {1, 2, . . . , n} = [n].

We have u ⊥ v. In other words, the numbers u and v are coprime (by Definition 2.10.3). In
other words, gcd (u, v) = 1 (by the definition of “coprime”). Proposition 2.9.7 (b) (applied to
a = v and b = u) yields gcd (v, u) = gcd (u, v) = 1. But Proposition 2.9.7 (c) (applied to v, u and
1 instead of a, b and u) yields gcd (v, 1v + u) = gcd (v, u) = 1. In other words, gcd (v, u + v) = 1
(since 1v + u = u + v). Now, Proposition 2.9.7 (b) (applied to a = u + v and b = v) yields
gcd (u + v, v) = gcd (v, u + v) = 1. In other words, u + v and v are coprime (by the definition of
“coprime”). In other words, u + v ⊥ v.

Now, (u + v, v) ∈ [n]2 (since u + v ∈ [n] and v ∈ [n]) and u + v ⊥ v and u + v > v. In other
words, (u + v, v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x > y. In other words, (u + v, v) ∈ C
(since C is the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x > y). Qed.
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On the other hand, if (u, v) ∈ C, then (u− v, v) ∈W 258. Hence, we can define a map

g : C →W,
(u, v) 7→ (u− v, v) .

Consider this map g.
We have f ◦ g = id 259 and g ◦ f = id 260. Hence, the maps f and g are mutually

258Proof. Let (u, v) ∈ C. Thus, (u, v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x > y (because C is
the set of all such pairs). In other words, (u, v) belongs to [n]2 and satisfies u ⊥ v and u > v.

We know that (u, v) belongs to [n]2; hence, u ∈ [n] and v ∈ [n]. From u ∈ [n] = {1, 2, . . . , n},
we obtain 1 ≤ u ≤ n. From v ∈ [n] = {1, 2, . . . , n}, we obtain 1 ≤ v ≤ n. Now, u − v > 0
(since u > v) and thus u− v ≥ 1 (since u− v is an integer). Also, 0 < 1 ≤ v and thus v > 0;
hence, u − v < u ≤ n and therefore u − v ≤ n. From u − v ≥ 1 and u − v ≤ n, we obtain
u− v ∈ {1, 2, . . . , n} = [n].

We have u ⊥ v. In other words, the numbers u and v are coprime (by Definition 2.10.3). In
other words, gcd (u, v) = 1 (by the definition of “coprime”). Proposition 2.9.7 (b) (applied to
a = v and b = u) yields gcd (v, u) = gcd (u, v) = 1. But Proposition 2.9.7 (c) (applied to v,
u and −1 instead of a, b and u) yields gcd (v, (−1) v + u) = gcd (v, u) = 1. In other words,
gcd (v, u− v) = 1 (since (−1) v + u = u − v). Furthermore, Proposition 2.9.7 (b) (applied to
a = u− v and b = v) yields gcd (u− v, v) = gcd (v, u− v) = 1. In other words, u− v and v are
coprime (by the definition of “coprime”). In other words, u− v ⊥ v.

Now, (u− v, v) ∈ [n]2 (since u − v ∈ [n] and v ∈ [n]) and u − v ⊥ v and (u− v) + v ≤ n
(since (u− v) + v = u ≤ n). In other words, (u− v, v) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and
x + y ≤ n. In other words, (u− v, v) ∈ W (since W is the set of all pairs (x, y) ∈ [n]2 satisfying
x ⊥ y and x + y ≤ n). Qed.

259Proof. Let p ∈ C. Thus, p is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x > y (because C is the set of
all such pairs). Consider this pair (x, y). Thus, p = (x, y).

Applying the map g to both sides of this equality, we find g (p) = g ((x, y)) = (x− y, y) (by
the definition of g). Applying the map f to both sides of this equality, we find

f (g (p)) = f ((x− y, y)) =

(x− y) + y︸ ︷︷ ︸
=x

, y

 (by the definition of f )

= (x, y) = p.

Thus, ( f ◦ g) (p) = f (g (p)) = p = id (p).
Forget that we fixed p. We thus have shown that ( f ◦ g) (p) = id (p) for each p ∈ C. In other

words, f ◦ g = id.
260Proof. Let p ∈ W. Thus, p is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x + y ≤ n (because W is the

set of all such pairs). Consider this pair (x, y). Thus, p = (x, y).
Applying the map f to both sides of this equality, we find f (p) = f ((x, y)) = (x + y, y) (by

the definition of f ). Applying the map g to both sides of this equality, we find

g ( f (p)) = g ((x + y, y)) =

(x + y)− y︸ ︷︷ ︸
=x

, y

 (by the definition of g)

= (x, y) = p.

Thus, (g ◦ f ) (p) = g ( f (p)) = p = id (p).
Forget that we fixed p. We thus have shown that (g ◦ f ) (p) = id (p) for each p ∈ W. In other

words, g ◦ f = id.
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inverse, and thus are invertible. In other words, the maps f and g are bijections.
In particular, the map f is a bijection. In other words, the map

W → C,
(u, v) 7→ (u + v, v)

is a bijection (since this map is precisely the map f (by the definition of f )). Hence, we can

substitute (u + v, v) for (x, y) in the sum ∑
(x,y)∈C

1
xy

. We thus obtain

∑
(x,y)∈C

1
xy

= ∑
(u,v)∈W

1
(u + v) v︸ ︷︷ ︸

=
1

v (u + v)

= ∑
(u,v)∈W

1
v (u + v)

= ∑
(x,y)∈W

1
y (x + y)

(here, we have renamed the summation index (u, v) as (x, y)). This proves (384).]
Next, we claim that

∑
(x,y)∈B

1
xy

= 1. (385)

[Proof of (385): It is easy to see that {(1, 1)} ⊆ B 261 and B ⊆ {(1, 1)} 262. Combining
these two relations, we obtain B = {(1, 1)}. Thus,

∑
(x,y)∈B

1
xy

= ∑
(x,y)∈{(1,1)}

1
xy

=
1

1 · 1 = 1.

This proves (385).]

261Proof. We know that n is a positive integer. Thus, 1 ∈ {1, 2, . . . , n} = [n]. Hence, (1, 1) ∈ [n]2

(since 1 ∈ [n] and 1 ∈ [n]) and 1 ⊥ 1 (by Exercise 2.10.1 (a), applied to a = 1) and 1 = 1. In other
words, (1, 1) is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x = y. In other words, (1, 1) ∈ B (since
B is the set of all pairs (x, y) ∈ [n]2 satisfying x ⊥ y and x = y). Hence, {(1, 1)} ⊆ B.

262Proof. Let p ∈ B. Thus, p is a pair (x, y) ∈ [n]2 satisfying x ⊥ y and x = y (because B is the set of
all such pairs). Consider this pair (x, y). Thus, p = (x, y). From (x, y) ∈ [n]2, we obtain x ∈ [n]
and y ∈ [n]. Hence, x ∈ [n] = {1, 2, . . . , n}, so that x is a positive integer. Now, we have y | y.
In other words, x | y (since x = y). Hence, Proposition 2.9.7 (i) (applied to a = x and b = y)
yields gcd (x, y) = |x| = x (since x is positive). However, we have x ⊥ y. In other words, x is
coprime to y (by the definition of the notation “x ⊥ y”). In other words, gcd (x, y) = 1 (by the
definition of “coprime”). Comparing this with gcd (x, y) = x, we obtain x = 1. From x = y,
we now obtain y = x = 1. Combining x = 1 with y = 1, we see that (x, y) = (1, 1). Hence,
p = (x, y) = (1, 1) ∈ {(1, 1)}.

Forget that we fixed p. We thus have shown that p ∈ {(1, 1)} for each p ∈ B. In other words,
B ⊆ {(1, 1)}.
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Now, (382) becomes

∑
(x,y)∈[n]2;

x⊥y

1
xy

= ∑
(x,y)∈A

1
xy︸ ︷︷ ︸

= ∑
(x,y)∈W

1
x (x + y)

(by (383))

+ ∑
(x,y)∈B

1
xy︸ ︷︷ ︸

=1
(by (385))

+ ∑
(x,y)∈C

1
xy︸ ︷︷ ︸

= ∑
(x,y)∈W

1
y (x + y)

(by (384))

= ∑
(x,y)∈W

1
x (x + y)

+ 1 + ∑
(x,y)∈W

1
y (x + y)

= ∑
(x,y)∈W

1
x (x + y)

+ ∑
(x,y)∈W

1
y (x + y)︸ ︷︷ ︸

= ∑
(x,y)∈W

( 1
x (x + y)

+
1

y (x + y)

)
+1

= ∑
(x,y)∈W

(
1

x (x + y)
+

1
y (x + y)

)
︸ ︷︷ ︸

=
y + x

xy (x + y)
=

1
xy

+1 = ∑
(x,y)∈W

1
xy

+ 1.

Comparing this with (381), we obtain

∑
(x,y)∈W

1
xy

+ ∑
(x,y)∈Z

1
xy

= ∑
(x,y)∈W

1
xy

+ 1

Subtracting ∑
(x,y)∈W

1
xy

from both sides of this equality, we obtain ∑
(x,y)∈Z

1
xy

= 1. This

solves Exercise 2.10.19.

10.50. Solution to Exercise 2.11.1
Solution to Exercise 2.11.1. The lowest common multiple of any set of integers is a non-
negative integer (by Definition 2.11.4). Thus, in particular, lcm (a, b) and lcm (b, a) and
lcm (−a, b) are nonnegative integers.

(a) Proposition 2.11.5 (c) (applied to b and a instead of a and b) yields b | lcm (b, a)
and a | lcm (b, a). Thus, a | lcm (b, a) and b | lcm (b, a). Hence, Lemma 2.11.8 (ap-
plied to m = lcm (b, a)) yields lcm (a, b) | lcm (b, a). The same argument (applied to b
and a instead of a and b) yields lcm (b, a) | lcm (a, b). Hence, Exercise 2.2.2 (applied to
lcm (a, b) and lcm (b, a) instead of a and b) yields |lcm (a, b)| = |lcm (b, a)| = lcm (b, a)
(since lcm (b, a) is nonnegative). But lcm (a, b) is nonnegative; thus, |lcm (a, b)| = lcm (a, b).
Hence, lcm (a, b) = |lcm (a, b)| = lcm (b, a). This solves Exercise 2.11.1 (a).

(b) Proposition 2.11.5 (c) (applied to −a instead of a) yields −a | lcm (−a, b) and b |
lcm (−a, b). But a | −a (since −a = a · (−1)). Thus, a | −a | lcm (−a, b) and b | lcm (−a, b).
Hence, Lemma 2.11.8 (applied to m = lcm (−a, b)) yields lcm (a, b) | lcm (−a, b). The
same argument (applied to −a instead of a) yields lcm (−a, b) | lcm (− (−a) , b). In view
of − (−a) = a, this rewrites as lcm (−a, b) | lcm (a, b). Hence, Exercise 2.2.2 (applied to
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lcm (a, b) and lcm (−a, b) instead of a and b) yields |lcm (a, b)| = |lcm (−a, b)| = lcm (−a, b)
(since lcm (−a, b) is nonnegative). But lcm (a, b) is nonnegative; thus, |lcm (a, b)| = lcm (a, b).
Hence, lcm (a, b) = |lcm (a, b)| = lcm (−a, b). This solves Exercise 2.11.1 (b).

(c) Exercise 2.11.1 (a) (applied to −b instead of b) yields lcm (a,−b) = lcm (−b, a) =
lcm (b, a) (by Exercise 2.11.1 (b), applied to b and a instead of a and b). But Exercise 2.11.1
(a) yields lcm (a, b) = lcm (b, a) = lcm (a,−b) (since lcm (a,−b) = lcm (b, a)). This solves
Exercise 2.11.1 (c).

(d) Assume that a | b. Thus, a | b and b | b. Hence, Lemma 2.11.8 (applied to m = b)
yields lcm (a, b) | b. But Proposition 2.11.5 (c) yields a | lcm (a, b) and b | lcm (a, b). Hence,
Exercise 2.2.2 (applied to b and lcm (a, b) instead of a and b) yields |b| = |lcm (a, b)| =
lcm (a, b) (since lcm (a, b) is nonnegative). In other words, lcm (a, b) = |b|. This solves
Exercise 2.11.1 (d).

(e) If s = 0, then Exercise 2.11.1 (e) holds263. Hence, for the rest of this solution, we
WLOG assume that s 6= 0.

Recall that any lcm is a nonnegative integer. Thus, lcm (sa, sb) is a nonnegative integer.
Proposition 2.11.5 (c) (applied to sa and sb instead of a and b) yields sa | lcm (sa, sb) and

sb | lcm (sa, sb). Hence, s | sa | lcm (sa, sb). In other words, there exists some integer d such
that lcm (sa, sb) = sd. Consider this d.

Now, as = sa | lcm (sa, sb) = sd = ds. But Exercise 2.2.3 (applied to a, d and s instead of
a, b and c) yields that a | d holds if and only if as | ds. Thus, we have a | d (since as | ds).

Also, bs = sb | lcm (sa, sb) = sd = ds. But Exercise 2.2.3 (applied to b, d and s instead of
a, b and c) yields that b | d holds if and only if bs | ds. Thus, we have b | d (since bs | ds).

From a | d and b | d, we obtain lcm (a, b) | d (by Lemma 2.11.8, applied to m = d).
Hence, Proposition 2.2.4 (c) (applied to a1 = s, a2 = lcm (a, b), b1 = s and b2 = d) yields
s lcm (a, b) | sd (since s | s). In view of lcm (sa, sb) = sd, this rewrites as s lcm (a, b) |
lcm (sa, sb).

Proposition 2.11.5 (c) yields a | lcm (a, b) and b | lcm (a, b). Hence, Proposition 2.2.4
(c) (applied to a1 = s, a2 = a, b1 = s and b2 = lcm (a, b)) yields sa | s lcm (a, b) (since
s | s and a | lcm (a, b)). Similarly, we obtain sb | s lcm (a, b) (since s | s and b | lcm (a, b)).
Hence, Lemma 2.11.8 (applied to sa, sb and s lcm (a, b) instead of a, b and m) yields that
lcm (sa, sb) | s lcm (a, b).

Now, we know that s lcm (a, b) | lcm (sa, sb) and lcm (sa, sb) | s lcm (a, b). Hence, Exer-
cise 2.2.2 (applied to s lcm (a, b) and lcm (sa, sb) instead of a and b) yields |s lcm (a, b)| =
|lcm (sa, sb)| = lcm (sa, sb) (since lcm (sa, sb) is nonnegative). Hence,

lcm (sa, sb) = |s lcm (a, b)| = |s| · |lcm (a, b)|︸ ︷︷ ︸
=lcm(a,b)

(since lcm(a,b)
is nonnegative)

(by (3))

= |s| lcm (a, b) .

This solves Exercise 2.11.1 (e).
263Proof. Assume that s = 0. Thus, s︸︷︷︸

=0

a = 0. Hence, the integers sa, sb are not all nonzero. Hence,

lcm (sa, sb) = 0 (by Definition 2.11.4). Comparing this with

∣∣∣∣∣∣ s︸︷︷︸
=0

∣∣∣∣∣∣ lcm (a, b) = |0|︸︷︷︸
=0

lcm (a, b) = 0,

we obtain lcm (sa, sb) = |s| lcm (a, b). Hence, Exercise 2.11.1 (e) holds. Qed.
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10.51. Solution to Exercise 2.11.2
First solution to Exercise 2.11.2. Let us prove a more general fact:

Claim 1: Let x, y, z, N be four integers such that ax = by = cz = N. Then,
gcd (a, b, c) · lcm (x, y, z) = |N|.

Once we have proven Claim 1, we will immediately obtain Exercise 2.11.2 (a) by applying
Claim 1 to x = bc, y = ca, z = ab and N = abc; and we will obtain Exercise 2.11.2 (b) in a
similar way (see below for the details). Thus, let us focus on proving Claim 1.

Proof of Claim 1: If the integers x, y, z are not all nonzero, then Claim 1 holds264. Thus,
for the rest of this proof, we WLOG assume that the integers x, y, z are all nonzero. Hence,
lcm (x, y, z) is the smallest positive element of the set Mul (x, y, z) (by Definition 2.11.4).
Thus, lcm (x, y, z) is a positive integer.

If the integers a, b, c are all zero, then Claim 1 holds265. Hence, for the rest of this proof,
we WLOG assume that the integers a, b, c are not all zero. Hence, gcd (a, b, c) is a positive
integer (by Definition 2.9.6). Denote this positive integer by g. Hence, g = gcd (a, b, c).

Definition 2.9.6 also shows that gcd (a, b, c) is the largest element of the set Div (a, b, c)
(since a, b, c are not all zero). Hence, gcd (a, b, c) ∈ Div (a, b, c). In other words, g ∈
Div (a, b, c) (since g = gcd (a, b, c)). In other words, g is a common divisor of a, b, c (by the
definition of Div (a, b, c)). In other words, g is an integer satisfying (g | a and g | b and g | c).
Thus, g | a | ax = N. In other words, there exists an integer h such that N = gh. Consider
this h.

It is easy to see that N 6= 0 266. Now, gh = N 6= 0 and thus h 6= 0. Hence, |h| is a
positive integer (since h is an integer). Denote this positive integer by m. Thus, m = |h|.

264Proof. Assume that the integers x, y, z are not all nonzero. In other words, x = 0 or y = 0 or
z = 0. We thus WLOG assume that x = 0 (since the proofs in the two cases y = 0 and z = 0 are
analogous).

The integers x, y, z are not all nonzero. Hence, Definition 2.11.4 yields that their lowest com-
mon multiple is 0. In other words, lcm (x, y, z) = 0.

But ax = N, thus N = a x︸︷︷︸
=0

= 0. Hence, |N| = |0| = 0. Comparing this with gcd (a, b, c) ·

lcm (x, y, z)︸ ︷︷ ︸
=0

= 0, we obtain gcd (a, b, c) · lcm (x, y, z) = |N|. Hence, Claim 1 holds, qed.

265Proof. Assume that the integers a, b, c are all zero. Hence, gcd (a, b, c) = 0 (by Definition 2.9.6).
Also, a = 0 (since a, b, c are all zero).

But ax = N, thus N = a︸︷︷︸
=0

x = 0. Hence, |N| = |0| = 0. Comparing this with

gcd (a, b, c)︸ ︷︷ ︸
=0

· lcm (x, y, z) = 0, we obtain gcd (a, b, c) · lcm (x, y, z) = |N|. Hence, Claim 1 holds,

qed.
266Proof. Assume the contrary. Thus, N = 0. But x 6= 0 (since x, y, z are nonzero). Hence, from

ax = N = 0, we obtain a = 0. Similarly, b = 0 and c = 0. Thus, the integers a, b, c are all zero.
This contradicts the fact that the integers a, b, c are not all zero. This contradiction shows that
our assumption was wrong, qed.
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Also, set N′ = |N|. Thus, N′ is an integer satisfying

N′ =

∣∣∣∣∣∣ N︸︷︷︸
=gh

∣∣∣∣∣∣ = |gh| = |g|︸︷︷︸
=g

(since g is positive)

· |h|︸︷︷︸
=m

(by (3))

= gm. (386)

Our next goal is to prove that m = lcm (x, y, z). First, we shall prove that m ∈ Mul (x, y, z).
Indeed, we have h 6= 0. Hence, Exercise 2.2.3 (applied to g, a and h instead of a, b and

c) shows that g | a holds if and only if gh | ah. Hence, gh | ah holds (since g | a holds).
Now, xa = ax = N = gh | ah = ha. But a 6= 0 (since ax = N 6= 0). Thus, Exercise
2.2.3 (applied to x, h and a instead of a, b and c) shows that x | h holds if and only if
xa | ha. Hence, x | h holds (since xa | ha holds). But Exercise 2.2.1 (a) (applied to h instead
of a) yields h | |h| = m. Thus, x | h | m. Similarly, y | m and z | m. Thus, we have
(x | m and y | m and z | m). In other words, m is a common multiple of x, y, z. In other
words, m ∈ Mul (x, y, z). So we know that m is a positive element of the set Mul (x, y, z)
(since m is positive).

We shall now show that m is the smallest positive element of this set. Indeed, let w be
any positive element of Mul (x, y, z). We are going to prove that w ≥ m.

In fact, w ∈ Mul (x, y, z). In other words, w is a common multiple of x, y, z. In other
words, we have (x | w and y | w and z | w). Also, w 6= 0 (since w is positive).

We have wa 6= 0 (since w 6= 0 and a 6= 0). Hence, the integers wa, wb, wc are not all
zero. Thus, Definition 2.9.6 shows that gcd (wa, wb, wc) is the largest element of the set
Div (wa, wb, wc).

We have a 6= 0. Hence, Exercise 2.2.3 (applied to x, w and a instead of a, b and c)
shows that x | w holds if and only if xa | wa. Hence, xa | wa holds (since x | w). Thus,
N = ax = xa | wa. But Exercise 2.2.1 (b) (applied to N instead of a) yields |N| | N. In other
words, N′ | N (since N′ = |N|). Hence, N′ | N | wa. Similarly, N′ | wb and N′ | wc. Thus,
(N′ | wa and N′ | wb and N′ | wc). In other words, N′ is a common divisor of wa, wb, wc.
In other words, N′ ∈ Div (wa, wb, wc). Hence, N′ ≤ gcd (wa, wb, wc) (since gcd (wa, wb, wc)
is the largest element of the set Div (wa, wb, wc)). Now, (386) yields

gm = N′ ≤ gcd (wa, wb, wc) = |w|︸︷︷︸
=w

(since w is positive)

gcd (a, b, c)︸ ︷︷ ︸
=g

(by Exercise 2.9.6 (applied to s = w))
= wg = gw.

We can divide both sides of this inequality by g (since g is positive), and thus obtain m ≤ w.
In other words, w ≥ m.

Now, forget that we fixed w. We thus have proven that each positive element w of
the set Mul (x, y, z) satisfies w ≥ m. Hence, m is the smallest positive element of the set
Mul (x, y, z) (since we already know that m is a positive element of the set Mul (x, y, z)). In
other words, m is lcm (x, y, z) (since lcm (x, y, z) is the smallest positive element of the set
Mul (x, y, z)). In other words, m = lcm (x, y, z). Hence, (386) becomes

N′ = g︸︷︷︸
=gcd(a,b,c)

m︸︷︷︸
=lcm(x,y,z)

= gcd (a, b, c) · lcm (x, y, z) .
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Thus, gcd (a, b, c) · lcm (x, y, z) = N′ = |N|. This proves Claim 1.
We can now solve the actual exercise:
(a) We have a (bc) = b (ca) = c (ab) = abc. Hence, Claim 1 (applied to x = bc, y = ca,

z = ab and N = abc) yields gcd (a, b, c) · lcm (bc, ca, ab) = |abc|. This solves Exercise 2.11.2
(a).

(b) We have (bc) a = (ca) b = (ab) c = abc. Hence, Claim 1 (applied to bc, ca, ab,
a, b, c and abc instead of a, b, c, x, y, z and N) yields gcd (bc, ca, ab) · lcm (a, b, c) = |abc|.
Thus, lcm (a, b, c) ·gcd (bc, ca, ab) = gcd (bc, ca, ab) · lcm (a, b, c) = |abc|. This solves Exercise
2.11.2 (b).

10.52. Solution to Exercise 2.13.1
Solution to Exercise 2.13.1. We have p 6= q (since p and q are distinct). Hence, p - q 267.

But Proposition 2.13.5 (applied to a = q) shows that either p | q or p ⊥ q. Since p | q
cannot hold (because we have p - q), we thus conclude that p ⊥ q. This solves Exercise
2.13.1.

10.53. Solution to Exercise 2.13.2
Solution to Exercise 2.13.2. The integer p is positive (since p > 1 > 0). Thus, |p| = p.

Let d be a positive divisor of p other than 1 and p. We shall derive a contradiction.
We know that d is a divisor of p other than 1 and p. Hence, d 6= 1 and d 6= p.
But d is a divisor of p. In other words, there exists an integer c such that p = dc. Consider

this c.
The integer d is positive, therefore nonzero. Hence, we can solve the equality p = dc for

c; thus we find c = p/d > 0 (since both p and d are positive). Thus, the integer c is positive;
hence, c ≥ 1. Also, d ≥ 1 (since d is a positive integer). Combining this with d 6= 1, we
obtain d > 1.

Since c > 0, we can multiply the inequality d > 1 by c. We thus find cd > c · 1 = c.
Hence, c < cd = dc = p. Since c is positive, we have |c| = c < p. But p is positive; thus,
|p| = p > |c| (since |c| < p).

Since d > 0, we can multiply the inequality c ≥ 1 by d. We thus find dc ≥ d · 1 = d.
Hence, d ≤ dc = p. Combining this with d 6= p, we obtain d < p. Since d is positive, we
have |d| = d < p. But p is positive; thus, |p| = p > |d| (since |d| < p).

We have p | p = dc. But let us recall that for every a, b ∈ Z satisfying p | ab, we must
have p | a or p | b. Applying this to a = d and b = c, we conclude that p | d or p | c.

We have d 6= 0 (since d > 0). Hence, if we had p | d, then we would have |p| ≤ |d|
(by Proposition 2.2.3 (b), applied to a = p and b = d); but this would contradict |p| > |d|.
Hence, we cannot have p | d.

267Proof. Assume the contrary. Thus, p | q. In other words, p is a divisor of q.
But q is a prime. According to the definition of a prime, this means that q > 1 and that the

only positive divisors of q are 1 and q.
Also, p is a prime; thus, p > 1 (by the definition of a prime); hence, p > 1 > 0. Thus, p is

positive. So we know that p is a positive divisor of q. Hence, p must be either 1 or q (since the
only positive divisors of q are 1 and q). Since p cannot be 1 (because p > 1), we thus conclude
that p must be q. In other words, p = q. This contradicts p 6= q. This contradiction shows that
our assumption was false, qed.
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We have c 6= 0 (since c > 0). Hence, if we had p | c, then we would have |p| ≤ |c|
(by Proposition 2.2.3 (b), applied to a = p and b = c); but this would contradict |p| > |c|.
Hence, we cannot have p | c.

Thus, we have neither p | d nor p | c. This contradicts the fact that p | d or p | c.
Now, forget that we have fixed d. We thus have found a contradiction for each positive

divisor d of p other than 1 and p. Thus, there exists no positive divisor d of p other than
1 and p. In other words, each positive divisor of p is either 1 or p. Thus, the only positive
divisors of p are 1 and p (since 1 and p are indeed positive divisors of p). In other words,
p is prime (by the definition of “prime”). This solves Exercise 2.13.2.

10.54. Solution to Exercise 2.13.3
Solution to Exercise 2.13.3. =⇒: Assume that a ⊥ pk holds. We must prove that p - a.

Assume the contrary. Thus, p | a. But k ≥ 1 (since k is a positive integer), so that 1 ≤ k.
Hence, Exercise 2.2.4 (applied to p, 1 and k instead of n, a and b) yields p1 | pk. In other
words, p | pk (since p1 = p). Now, Lemma 2.9.16 (applied to m = p and b = pk) yields
p | gcd

(
a, pk) (since p | a and p | pk). But from a ⊥ pk, we obtain gcd

(
a, pk) = 1. Hence,

p | gcd
(
a, pk) = 1. But p is prime; hence, p > 1 > 0, so that p is nonnegative. Hence,

Exercise 2.2.5 (applied to g = p) yields p = 1 (since p | 1). This contradicts p > 1. This
contradiction shows that our assumption was false. Hence, p - a is proven. This concludes
the proof of the “=⇒” direction of Exercise 2.13.3.
⇐=: Assume that p - a. We must prove that a ⊥ pk.
Proposition 2.13.5 yields that either p | a or p ⊥ a. Since p | a does not hold (because

p - a), we thus conclude that p ⊥ a. But Proposition 2.10.4 (applied to b = p) yields that
a ⊥ p if and only if p ⊥ a. Hence, a ⊥ p (since p ⊥ a). Thus, Exercise 2.10.4 (applied to
b = p, n = 1 and m = k) yields a1 ⊥ pk. In other words, a ⊥ pk. This concludes the proof
of the “⇐=” direction of Exercise 2.13.3.

10.55. Solution to Exercise 2.13.4
Solution to Exercise 2.13.4. This exercise can easily be solved by induction on k; but here is
a more artful proof:

Let k ∈N. We have p ≥ 2 (since p is an integer and satisfies p > 1). Thus, p− 1 ≥ 1.
Recall the identity (25), which holds for every a, b ∈ Q. Let us apply this identity to

a = p and b = 1. We thus obtain

(p− 1)
(

pk−1 + pk−2 · 1 + pk−3 · 12 + · · ·+ p · 1k−2 + 1k−1
)
= pk − 1k︸︷︷︸

=1

= pk − 1.
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Thus,

pk − 1 = (p− 1)
(

pk−1 + pk−2 · 1 + pk−3 · 12 + · · ·+ p · 1k−2 + 1k−1
)

︸ ︷︷ ︸
=

k−1
∑

i=0
pi1k−i

= (p− 1)︸ ︷︷ ︸
≥1

k−1

∑
i=0

pi1k−i ≥ 1
k−1

∑
i=0

pi1k−i

(
since

k−1

∑
i=0

pi1k−i is clearly ≥ 0

)

=
k−1

∑
i=0

pi1k−i︸ ︷︷ ︸
=pi≥1i

(since p≥1)

≥
k−1

∑
i=0

1i︸︷︷︸
=1

=
k−1

∑
i=0

1 = k.

Hence, pk ≥ k + 1 > k. This solves Exercise 2.13.4.

10.56. Solution to Exercise 2.13.5
Solution to Exercise 2.13.5. If n ≥ 0, then we have |n| = n and thus vp (|n|) = vp (n). Hence,
if n ≥ 0, then Exercise 2.13.5 holds. Thus, for the rest of this solution, we WLOG assume
that n < 0. Hence, |n| = −n.

We have −1 | p (since p = (−1) · (−p)). Thus, Proposition 2.9.7 (i) (applied to a = −1
and b = p) yields gcd (−1, p) = |−1| = 1. In other words, −1 ⊥ p. Also, −1 = (−1) · p0

(since p0 = 1). Thus, Lemma 2.13.27 (b) (applied to −1, 0 and 1 instead of n, i and w)
yields vp (−1) = 0. Now, Theorem 2.13.28 (a) (applied to a = −1 and b = n) yields
vp ((−1) n) = vp (−1)︸ ︷︷ ︸

=0

+vp (n) = vp (n). In view of (−1) n = −n = |n|, this rewrites as

vp (|n|) = vp (n). This solves Exercise 2.13.5.

10.57. Solution to Exercise 2.13.6
Solution to Exercise 2.13.6. Corollary 2.13.29 (applied to ai = a) yields

vp

aa · · · a︸ ︷︷ ︸
k times

 = vp (a) + vp (a) + · · ·+ vp (a)︸ ︷︷ ︸
k times

= kvp (a) .

In view of aa · · · a︸ ︷︷ ︸
k times

= ak, this rewrites as vp
(
ak) = kvp (a). This solves Exercise 2.13.6.

10.58. Solution to Exercise 2.13.7
Solution to Exercise 2.13.7. For each i ∈ {1, 2, . . . , u}, the number pai

i is a well-defined posi-
tive integer (since pi is a prime, and since ai is a nonnegative integer). Thus, pa1

1 pa2
2 · · · p

au
u

is a product of positive integers, and therefore itself a positive integer.
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Now, let p be a prime. Note that pa1
1 , pa2

2 , . . . , pau
u are u integers. Hence, Corollary 2.13.29

(applied to u and p
aj
j instead of k and aj) yields

vp
(

pa1
1 pa2

2 · · · p
au
u
)
= vp

(
pa1

1

)
+ vp (pa2

2 ) + · · ·+ vp (pau
u )

=
u

∑
j=1

vp

(
p

aj
j

)
︸ ︷︷ ︸
=ajvp(pj)

(by Exercise 2.13.6,
applied to a=pj and k=aj)

=
u

∑
j=1︸︷︷︸

= ∑
j∈{1,2,...,u}

aj vp
(

pj
)︸ ︷︷ ︸

=


1, if pj = p;

0, if pj 6= p
(by Theorem 2.13.28 (d),

applied to q=pj
(since pj is prime))

= ∑
j∈{1,2,...,u}

aj

{
1, if pj = p;

0, if pj 6= p
. (387)

Now, forget that we fixed p. We thus have proven the equality (387) for each prime p.
(a) Let i ∈ {1, 2, . . . , u}. Then, pi is a prime. Hence, (387) (applied to p = pi) yields

vp
(

pa1
1 pa2

2 · · · p
au
u
)
= ∑

j∈{1,2,...,u}
aj

{
1, if pj = pi;

0, if pj 6= pi

= ai

{
1, if pi = pi;
0, if pi 6= pi

+ ∑
j∈{1,2,...,u};

j 6=i

aj

{
1, if pj = pi;

0, if pj 6= pi
(388)

(here, we have split off the addend for j = i from the sum). But if j ∈ {1, 2, . . . , u} satisfies
j 6= i, then it must satisfy pj 6= pi (since the primes p1, p2, . . . , pu are distinct) and therefore{

1, if pj = pi;

0, if pj 6= pi
= 0. (389)

Hence, (388) becomes

vp
(

pa1
1 pa2

2 · · · p
au
u
)
= ai

{
1, if pi = pi;
0, if pi 6= pi︸ ︷︷ ︸

=1
(since pi=pi)

+ ∑
j∈{1,2,...,u};

j 6=i

aj

{
1, if pj = pi;

0, if pj 6= pi︸ ︷︷ ︸
=0

(by (389))

= ai1 + ∑
j∈{1,2,...,u};

j 6=i

aj0

︸ ︷︷ ︸
=0

= ai1 = ai.

This solves Exercise 2.13.7 (a).
(b) Let p be a prime satisfying p /∈ {p1, p2, . . . , pu}. Then, for each j ∈ {1, 2, . . . , u}, we

have pj 6= p (since otherwise, we would have pj = p and therefore p = pj ∈ {p1, p2, . . . , pu},
which would contradict p /∈ {p1, p2, . . . , pu}) and therefore{

1, if pj = p;

0, if pj 6= p
= 0. (390)
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Hence, (387) becomes

vp
(

pa1
1 pa2

2 · · · p
au
u
)
= ∑

j∈{1,2,...,u}
aj

{
1, if pj = p;

0, if pj 6= p︸ ︷︷ ︸
=0

(by (390))

= ∑
j∈{1,2,...,u}

aj0 = 0.

This solves Exercise 2.13.7 (b).

10.59. Solution to Exercise 2.13.8
Solution to Exercise 2.13.8. Applying (41) to p = 2, we obtain v2 (n) = v2 (m) (since 2 is a
prime).

If n is nonzero, then vp (n) is a nonnegative integer for every prime p (by Definition
2.13.23 (a)). Applying this to p = 2, we conclude the following: If n is nonzero, then v2 (n)
is a nonnegative integer and thus satisfies v2 (n) 6= ∞. Thus, we have shown that

if n is nonzero, then v2 (n) 6= ∞. (391)

The same argument (applied to m instead of n) shows that

if m is nonzero, then v2 (m) 6= ∞. (392)

We are in one of the following two cases:
Case 1: We have n = 0.
Case 2: We have n 6= 0.
Let us first consider Case 1. In this case, we have n = 0. Thus, v2 (n) = v2 (0) = ∞

(by Definition 2.13.23 (b)). Comparing this with v2 (n) = v2 (m), we obtain v2 (m) = ∞.
But if m was nonzero, then we would have v2 (m) 6= ∞ (by (392)), which would contradict
v2 (m) = ∞. Hence, m cannot be nonzero. In other words, m must be 0. Thus, m = 0.
Comparing this with n = 0, we obtain n = m. Hence, Exercise 2.13.8 is solved in Case 1.

Let us now consider Case 2. In this case, we have n 6= 0. Thus, n is nonzero; hence,

v2 (n) 6= ∞ (by (391)). If we had m = 0, then we would have v2 (n) = v2

 m︸︷︷︸
=0

 =

v2 (0) = ∞ (by Definition 2.13.23 (b)), which would contradict v2 (n) 6= ∞. Thus, we cannot
have m = 0. Hence, m is nonzero.

The integer n is nonzero and nonnegative; thus, the integer n is positive. Thus, Corollary
2.13.33 yields

n = ∏
p prime

pvp(n)︸ ︷︷ ︸
=pvp(m)

(since (41)
yields vp(n)=vp(m))

= ∏
p prime

pvp(m). (393)

The integer m is nonzero and nonnegative; thus, the integer m is positive. Hence, Corol-
lary 2.13.33 (applied to m instead of n) yields

m = ∏
p prime

pvp(m).

Comparing this with (393), we obtain n = m. Thus, Exercise 2.13.8 is solved in Case 2.
We have now solved Exercise 2.13.8 in both of the Cases 1 and 2. Hence, Exercise 2.13.8

always holds.
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10.60. Second solution to Exercise 2.11.2
Second solution to Exercise 2.11.2 (sketched). WLOG assume that a, b, c are nonzero (since oth-
erwise, the claim of Exercise 2.11.2 easily reduces to 0 = 0). Then, abc is nonzero as well.
Hence, Corollary 2.13.34 yields

|abc| = ∏
p prime

pvp(abc).

We have

gcd (a, b, c)︸ ︷︷ ︸
= ∏

p prime
pmin{vp(a),vp(b),vp(c)}

(by Proposition 2.13.40)

· lcm (bc, ca, ab)︸ ︷︷ ︸
= ∏

p prime
pmax{vp(bc),vp(ca),vp(ab)}

(by Proposition 2.13.40)

=

(
∏

p prime
pmin{vp(a),vp(b),vp(c)}

)
·
(

∏
p prime

pmax{vp(bc),vp(ca),vp(ab)}
)

= ∏
p prime

(
pmin{vp(a),vp(b),vp(c)}pmax{vp(bc),vp(ca),vp(ab)}

)
︸ ︷︷ ︸

=pmin{vp(a),vp(b),vp(c)}+max{vp(bc),vp(ca),vp(ab)}

= ∏
p prime

pmin{vp(a),vp(b),vp(c)}+max{vp(bc),vp(ca),vp(ab)}. (394)

Let us now fix a prime p, and try to simplify
min

{
vp (a) , vp (b) , vp (c)

}
+ max

{
vp (bc) , vp (ca) , vp (ab)

}
. Indeed, set u = vp (abc). Note

that u ∈N (since abc is nonzero).
Theorem 2.13.28 (a) (applied to ca and b instead of a and b) yields vp (cab) = vp (ca) +

vp (b). Comparing this with vp

 cab︸︷︷︸
=abc

 = vp (abc) = u, we obtain u = vp (ca) + vp (b).

Subtracting vp (b) from this equality268, we obtain u − vp (b) = vp (ca). Thus, vp (ca) =
u− vp (b). Similarly, vp (ab) = u− vp (c) and vp (bc) = u− vp (a). Now,

min
{

vp (a) , vp (b) , vp (c)
}
+ max

 vp (bc)︸ ︷︷ ︸
=u−vp(a)

, vp (ca)︸ ︷︷ ︸
=u−vp(b)

, vp (ab)︸ ︷︷ ︸
=u−vp(c)


= min

{
vp (a) , vp (b) , vp (c)

}
+ max

{
u− vp (a) , u− vp (b) , u− vp (c)

}︸ ︷︷ ︸
=u−min{vp(a),vp(b),vp(c)}

(since any three reals x,y,z
satisfy max{u−x,u−y,u−z}=u−min{x,y,z})

= min
{

vp (a) , vp (b) , vp (c)
}
+
(
u−min

{
vp (a) , vp (b) , vp (c)

})
= u = vp (abc) . (395)

268This is allowed, since vp (b) ∈N (because b is nonzero).
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Now, forget that we fixed p. We thus have proven (395) for each prime p. Thus, (394)
becomes

gcd (a, b, c) · lcm (bc, ca, ab)

= ∏
p prime

pmin{vp(a),vp(b),vp(c)}+max{vp(bc),vp(ca),vp(ab)}︸ ︷︷ ︸
=pvp(abc)

(by (395))

= ∏
p prime

pvp(abc) = |abc| .

This solves Exercise 2.11.2 (a) again. Similarly we can re-solve Exercise 2.11.2 (b).

Remark 10.60.1. Similarly, we could show that any four integers a, b, c, d satisfy

gcd (a, b, c, d) · lcm (bcd, cda, dab, abc) = |abcd| and
lcm (a, b, c, d) · gcd (bcd, cda, dab, abc) = |abcd| .

Indeed, the last equality holds since each prime p satisfies

min
{

vp (a) , vp (b) , vp (c) , vp (d)
}

+ max

 vp (bcd)︸ ︷︷ ︸
=vp(abcd)−vp(a)

, vp (cda)︸ ︷︷ ︸
=vp(abcd)−vp(b)

, vp (dab)︸ ︷︷ ︸
=vp(abcd)−vp(c)

, vp (abc)︸ ︷︷ ︸
=vp(abcd)−vp(d)


= min

{
vp (a) , vp (b) , vp (c) , vp (d)

}
+ max

{
vp (abcd)− vp (a) , vp (abcd)− vp (b) , vp (abcd)− vp (c) , vp (abcd)− vp (d)

}︸ ︷︷ ︸
=vp(abcd)−min{vp(a),vp(b),vp(c),vp(d)}

= min
{

vp (a) , vp (b) , vp (c) , vp (d)
}
+
(
vp (abcd)−min

{
vp (a) , vp (b) , vp (c) , vp (d)

})
= vp (abcd)

(assuming that a, b, c, d are nonzero). Similarly, the first equality holds. You can likewise
prove generalizations to k integers.269

10.61. Solution to Exercise 2.13.9
First solution to Exercise 2.13.9. We must prove that a ≡ b mod n. If a = b, then this is true
(because if a = b, then a = b ≡ b mod n). Thus, for the rest of this proof, we WLOG assume
that we don’t have a = b. Hence, a 6= b, so that a− b 6= 0. Thus, a− b is a nonzero integer.
Hence, vp (a− b) ∈N for every prime p.

269That said, it is probably better (and easier) to generalize Claim 1 from the first solution of Exercise
2.11.2 to k integers:

Claim 2: Let k > 0. Let N be an integer. Let a1, a2, . . . , ak be k integers, and
let x1, x2, . . . , xk be k integers such that a1x1 = a2x2 = · · · = akxk = N. Then,
gcd (a1, a2, . . . , ak) · lcm (x1, x2, . . . , xk) = |N|.

This Claim 2 can be proven either by generalizing the proof of Claim 1 from the first solution
of Exercise 2.11.2, or (again) using Proposition 2.13.38.
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Let p be any prime. Then, (49) yields a ≡ b mod pvp(n). In other words, pvp(n) | a− b. But
Lemma 2.13.25 (applied to vp (n) and a− b instead of i and n) yields that pvp(n) | a− b if
and only if vp (a− b) ≥ vp (n). Hence, we have vp (a− b) ≥ vp (n) (since pvp(n) | a− b). In
other words, vp (n) ≤ vp (a− b).

Now, forget that we fixed p. We thus have proven that each prime p satisfies vp (n) ≤
vp (a− b). But Proposition 2.13.35 (applied to a − b instead of m) shows that n | a − b if
and only if each prime p satisfies vp (n) ≤ vp (a− b). Hence, n | a− b (since each prime p
satisfies vp (n) ≤ vp (a− b)). In other words, a ≡ b mod n. This solves Exercise 2.13.9.

Second solution to Exercise 2.13.9. Define an integer c by c = a− b.
We shall show that

d | c for every positive divisor d of n. (396)

[Proof of (396): We shall prove (396) by strong induction on d:
Let e be a positive divisor of n. Assume that (396) holds for all positive divisors d of n

satisfying d < e. We must prove that (396) holds for d = e. In other words, we must prove
that e | c.

We have assumed that (396) holds for all positive divisors d of n satisfying d < e. In
other words, if d is a positive divisor of n satisfying d < e, then

d | c. (397)

Note that the integer e is nonzero (since e is positive); thus, vp (e) ∈N. Also, vp (n) ∈N

(since n is nonzero). We know that e | n (since e is a divisor of n). But Proposition 2.13.35
(applied to e and n instead of n and m) shows that e | n if and only if each prime p satisfies
vp (e) ≤ vp (n). Hence,

each prime p satisfies vp (e) ≤ vp (n) (398)

(since e | n).
We must prove that e | c. If e = 1, then this follows from the (obvious) fact that 1 | c.

Thus, for the rest of this proof, we WLOG assume that e 6= 1. Hence, e > 1 (since e is a
positive integer). Thus, Proposition 2.13.8 (applied to e instead of n) shows that there exists
at least one prime p such that p | e. Consider this p. Theorem 2.13.27 (a) (applied to e
instead of n) shows that there exists a nonzero integer u such that u ⊥ p and e = upvp(e).
Consider this u. From e = upvp(e), we obtain u = e/pvp(e); therefore, u is positive (since e
and pvp(e) are positive).

Lemma 2.13.25 (applied to 1 and e instead of i and n) shows that p1 | e if and only if
vp (e) ≥ 1. Hence, vp (e) ≥ 1 (since p1 = p | e). Hence, pvp(e) ≥ p1 = p > 1. Now,
e = u pvp(e)︸ ︷︷ ︸

>1

> u (since u is positive). Thus, u < e. Furthermore, pvp(e) is an integer; hence,

the equality e = upvp(e) yields that u | e. Thus, u | e | n. Hence, u is a divisor of n. Thus, u
is a positive divisor of n (since u is positive). Since u < e, we can thus apply (397) to d = u.
We thus obtain u | c.

On the other hand, (49) yields a ≡ b mod pvp(n). In other words, pvp(n) | a − b. This
rewrites as pvp(n) | c (since c = a− b). But vp (e) ≤ vp (n) (by (398)). Hence, Exercise 2.2.4
(applied to p, vp (e) and vp (n) instead of n, a and b) yields pvp(e) | pvp(n) | c.

Recall that u ⊥ p. Thus, Exercise 2.10.4 (applied to u, p, 1 and vp (e) instead of a, b, n
and m) yields u1 ⊥ pvp(e). In view of u1 = u, this rewrites as u ⊥ pvp(e).
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Now we know that u ∈ Z and pvp(e) ∈ Z and c ∈ Z and u | c and pvp(e) | c and u ⊥ pvp(e).
Hence, Theorem 2.10.7 (applied to u and pvp(e) instead of a and b) yields upvp(e) | c. In view
of e = upvp(e), this rewrites as e | c. In other words, (396) holds for d = e. This completes
the induction step. Hence, (396) is proven by strong induction.]

Let n′ = |n|. Then, n′ = |n| > 0 (since n is nonzero). Moreover, Exercise 2.2.1 (b) (applied
to n instead of a) yields |n| | n. Since n′ = |n|, this rewrites as n′ | n. Hence, n′ is a divisor
of n. Since n′ is positive, we thus conclude that n′ is a positive divisor of n. Hence, (396)
(applied to d = n′) yields n′ | c. But Exercise 2.2.1 (a) (applied to n instead of a) yields
n | |n|. Since n′ = |n|, this rewrites as n | n′. Hence, n | n′ | c = a− b. In other words,
a ≡ b mod n. This solves Exercise 2.13.9 again.

10.62. Solution to Exercise 2.13.10
Solution to Exercise 2.13.10. (a) Forget that we fixed p. We thus must prove that

vp (gcd (n, m)) = min
{

vp (n) , vp (m)
}

for each prime p. (399)

We are in one of the following two cases:
Case 1: The integers n and m are both nonzero.
Case 2: The integers n and m are not both nonzero.
Let us first consider Case 1. In this case, the integers n and m are both nonzero. Thus,

(50) yields
gcd (n, m) = ∏

p prime
pmin{vp(n),vp(m)}.

In particular, the product ∏
p prime

pmin{vp(n),vp(m)} is well-defined. In other words:

• The number min
{

vp (n) , vp (m)
}

is a nonnegative integer for each prime p;

• all but finitely many primes p satisfy min
{

vp (n) , vp (m)
}
= 0.

(Both of these facts were proven during our proof of Proposition 2.13.38.)
Hence, Corollary 2.13.37 (applied to gcd (n, m) and min

{
vp (n) , vp (m)

}
instead of n and

bp) shows that

vq (gcd (n, m)) = min
{

vq (n) , vq (m)
}

for each prime q.

Renaming q as p in this statement, we obtain

vp (gcd (n, m)) = min
{

vp (n) , vp (m)
}

for each prime p.

Thus, (399) is proven in Case 1.
Now, let us consider Case 2. In this case, the integers n and m are not both nonzero. In

other words, we have n = 0 or m = 0. Thus, we can WLOG assume that m = 0 (because in
the case n = 0, we can swap n with m without changing the meaning of our claim, since n
and m play symmetric roles270). Assume this.

270Here we are using the fact that gcd (n, m) = gcd (m, n) (which follows from Proposition 2.9.7 (b)).
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Fix a prime p. Now, gcd

n, m︸︷︷︸
=0

 = gcd (n, 0) = |n| (since Proposition 2.9.7 (a) (ap-

plied to a = n) yields gcd (n, 0) = gcd (n) = |n|). Hence,

vp (gcd (n, m)) = vp (|n|) = vp (n) (by Exercise 2.13.5) .

On the other hand, from m = 0, we obtain vp (m) = vp (0) = ∞ (by Definition 2.13.23 (b)).
Thus,

min

vp (n) , vp (m)︸ ︷︷ ︸
=∞

 = min
{

vp (n) , ∞
}
= vp (n)

(by our rules for the symbol ∞). Comparing this with vp (gcd (n, m)) = vp (n), we obtain
vp (gcd (n, m)) = min

{
vp (n) , vp (m)

}
.

Now, forget that we fixed p. We thus have proven that vp (gcd (n, m)) = min
{

vp (n) , vp (m)
}

for each prime p. Thus, (399) is proven in Case 2.
We have now proven (399) in each of the two Cases 1 and 2. Thus, (399) always holds.

This solves Exercise 2.13.10 (a).
(b) Forget that we fixed p. We thus must prove that

vp (lcm (n, m)) = max
{

vp (n) , vp (m)
}

for each prime p. (400)

We are in one of the following two cases:
Case 1: The integers n and m are both nonzero.
Case 2: The integers n and m are not both nonzero.
Let us first consider Case 1. In this case, the integers n and m are both nonzero. Thus,

(51) yields
lcm (n, m) = ∏

p prime
pmax{vp(n),vp(m)}.

In particular, the product ∏
p prime

pmax{vp(n),vp(m)} is well-defined. In other words:

• The number max
{

vp (n) , vp (m)
}

is a nonnegative integer for each prime p;

• all but finitely many primes p satisfy max
{

vp (n) , vp (m)
}
= 0.

(Both of these facts were proven during our proof of Proposition 2.13.38.)
Hence, Corollary 2.13.37 (applied to lcm (n, m) and max

{
vp (n) , vp (m)

}
instead of n

and bp) shows that

vq (lcm (n, m)) = max
{

vq (n) , vq (m)
}

for each prime q.

Renaming q as p in this statement, we obtain

vp (lcm (n, m)) = max
{

vp (n) , vp (m)
}

for each prime p.

Thus, (400) is proven in Case 1.
Now, let us consider Case 2. In this case, the integers n and m are not both nonzero. In

other words, we have n = 0 or m = 0. Thus, we can WLOG assume that m = 0 (because in
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the case n = 0, we can swap n with m without changing the meaning of our claim, since n
and m play symmetric roles271). Assume this.

Fix a prime p. The numbers n, m are not all nonzero (since m = 0). Hence, lcm (n, m) = 0
(by the definition of lcm (n, m)). Thus,

vp (lcm (n, m)) = vp (0) = ∞ (by Definition 2.13.23 (b)) .

On the other hand, from m = 0, we obtain vp (m) = vp (0) = ∞ (by Definition 2.13.23 (b)).
Thus,

max

vp (n) , vp (m)︸ ︷︷ ︸
=∞

 = max
{

vp (n) , ∞
}
= ∞

(by our rules for the symbol ∞). Comparing this with vp (lcm (n, m)) = ∞, we obtain
vp (lcm (n, m)) = max

{
vp (n) , vp (m)

}
.

Now, forget that we fixed p. We thus have proven that vp (lcm (n, m)) = max
{

vp (n) , vp (m)
}

for each prime p. Thus, (400) is proven in Case 2.
We have now proven (400) in each of the two Cases 1 and 2. Thus, (400) always holds.

This solves Exercise 2.13.10 (b).

10.63. Solution to Exercise 2.13.11
We shall solve Exercise 2.13.11 in two different ways. The first solution uses p-valuations
(and Exercise 2.13.10 in particular) to reduce the claim of the exercise to a simple identity
between minima and maxima of sets of numbers. This solution (just as our Second proof of
Theorem 2.11.6 above) illustrates how properties of gcds and lcms of integers can be proven
in a straightforward way using p-valuations. The second solution (due to Bill Dubuque),
in contrast, completely avoids the use of prime numbers.

First solution to Exercise 2.13.11. (a) Let us first show an auxiliary claim:

Claim 1: Let i, j, k ∈N∪ {∞} be arbitrary. Then,

min {i, max {j, k}} = max {min {i, j} , min {i, k}} .

[Proof of Claim 1: We have j ≤ k or j ≥ k. Since j and k play symmetric roles in
Claim 1, we can always swap j and k; thus, we can WLOG assume that j ≤ k. As-
sume this. From j ≤ k, we obtain max {j, k} = k. Moreover, any element of a set
must be ≥ to the minimum of this set; hence, i ≥ min {i, j} and j ≥ min {i, j}. The
minimum min {i, k} must be one of the two elements i and k (since the minimum of
a set must always be an element of this set); but both of these elements i and k are
≥ min {i, j} (because i ≥ min {i, j} and k ≥ j ≥ min {i, j}). Hence, min {i, k} must
be ≥ min {i, j}. Hence, max {min {i, j} , min {i, k}} = min {i, k}. Comparing this with

min

i, max {j, k}︸ ︷︷ ︸
=k

 = min {i, k}, we obtain min {i, max {j, k}} = max {min {i, j} , min {i, k}}.

This proves Claim 1.]

271Here we are using the fact that lcm (n, m) = lcm (m, n) (which follows from Exercise 2.11.1 (a)).
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Now, fix a prime p. Then, Exercise 2.13.10 (a) (applied to n = a and m = lcm (b, c))
yields

vp (gcd (a, lcm (b, c))) = min


vp (a) , vp (lcm (b, c))︸ ︷︷ ︸

=max{vp(b),vp(c)}
(by Exercise 2.13.10 (b),

applied to n=b and m=c)


= min

{
vp (a) , max

{
vp (b) , vp (c)

}}
= max

{
min

{
vp (a) , vp (b)

}
, min

{
vp (a) , vp (c)

}}
(401)

(by Claim 1, applied to i = vp (a), j = vp (b) and k = vp (c)). On the other hand, Exercise
2.13.10 (b) (applied to n = gcd (a, b) and m = gcd (a, c)) yields

vp (lcm (gcd (a, b) , gcd (a, c))) = max


vp (gcd (a, b))︸ ︷︷ ︸
=min{vp(a),vp(b)}

(by Exercise 2.13.10 (a),
applied to n=a and m=b)

, vp (gcd (a, c))︸ ︷︷ ︸
=min{vp(a),vp(c)}

(by Exercise 2.13.10 (a),
applied to n=a and m=c)


= max

{
min

{
vp (a) , vp (b)

}
, min

{
vp (a) , vp (c)

}}
.

Comparing this with (401), we obtain

vp (gcd (a, lcm (b, c))) = vp (lcm (gcd (a, b) , gcd (a, c))) .

Now, forget that we fixed p. We thus have proven that

vp (gcd (a, lcm (b, c))) = vp (lcm (gcd (a, b) , gcd (a, c))) for every prime p.

Thus, Exercise 2.13.8 (applied to n = gcd (a, lcm (b, c)) and m = lcm (gcd (a, b) , gcd (a, c)))
yields that gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)) (since gcd (a, lcm (b, c)) and
lcm (gcd (a, b) , gcd (a, c)) are nonnegative integers272). This solves Exercise 2.13.11 (a).

(b) Exercise 2.13.11 (b) can be solved in the same way as we solved Exercise 2.13.11 (a)
above, after making the obvious changes (i.e., all minima should be replaced by maxima
and vice versa; all inequalities in the proof of Claim 1 need to be flipped; all gcds should
be replaced by lcms and vice versa). For example, instead of Claim 1, we now need the
following claim (with an analogous proof):

Claim 2: Let i, j, k ∈N∪ {∞} be arbitrary. Then,

max {i, min {j, k}} = min {max {i, j} , max {i, k}} .

272because any gcd and any lcm is a nonnegative integer
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Second solution to Exercise 2.13.11. (a) We are in one of the following two cases:
Case 1: The two integers b, c are all 0.
Case 2: The two integers b, c are not all 0.
Let us first consider Case 1. In this case, the two integers b, c are all 0. In other words,

b = 0 and c = 0. Clearly, |a| | |a|. Thus, Exercise 2.11.1 (e) (applied to |a| and |a| instead of
a and b) yields lcm (|a| , |a|) = ||a|| = |a| (since |a| ≥ 0).

Proposition 2.9.7 (a) yields gcd (a, 0) = gcd (a) = |a|. Now,

lcm

gcd

a, b︸︷︷︸
=0

 , gcd

a, c︸︷︷︸
=0

 = lcm

gcd (a, 0)︸ ︷︷ ︸
=|a|

, gcd (a, 0)︸ ︷︷ ︸
=|a|

 = lcm (|a| , |a|) = |a| .

On the other hand, lcm

 b︸︷︷︸
=0

, c︸︷︷︸
=0

 = lcm (0, 0) = 0 (by Definition 2.11.4, because the

integers 0, 0 are not all nonzero). Hence,

gcd

a, lcm (b, c)︸ ︷︷ ︸
=0

 = gcd (a, 0) = |a| .

Comparing this with lcm (gcd (a, b) , gcd (a, c)) = |a|, we find
gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)). Thus, Exercise 2.13.11 (a) is solved in Case
1.

Let us now consider Case 2. In this case, the two integers b, c are not all 0. Thus, gcd (b, c)
is a positive integer (by Definition 2.9.6). Hence, gcd (b, c) > 0, so that gcd (b, c) 6= 0.

Theorem 2.9.20 (applied to a, b and c instead of s, a and b) yields gcd (ab, ac) = |a| gcd (b, c).
But (3) (applied to x = a and y = gcd (b, c)) yields |a gcd (b, c)| = |a| · |gcd (b, c)|︸ ︷︷ ︸

=gcd(b,c)
(since gcd(b,c)>0)

=

|a| gcd (b, c). Comparing this with gcd (ab, ac) = |a| gcd (b, c), we obtain

|a gcd (b, c)| = gcd

(
ab, ac︸︷︷︸

=ca

)
= gcd (ab, ca) . (402)

On the other hand, Theorem 2.11.6 (applied to b and c instead of a and b) yields
gcd (b, c) · lcm (b, c) = |bc|.

Now, Theorem 2.9.20 (applied to gcd (b, c), a and lcm (b, c) instead of s, a and b) yields

gcd (gcd (b, c) a, gcd (b, c) lcm (b, c)) = |gcd (b, c)|︸ ︷︷ ︸
=gcd(b,c)

(since gcd(b,c)>0)

gcd (a, lcm (b, c))

= gcd (b, c) gcd (a, lcm (b, c)) .
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Hence,

gcd (b, c) gcd (a, lcm (b, c))

= gcd

gcd (b, c) a︸ ︷︷ ︸
=a gcd(b,c)

, gcd (b, c) lcm (b, c)︸ ︷︷ ︸
=gcd(b,c)·lcm(b,c)=|bc|


= gcd (a gcd (b, c) , |bc|) = gcd (a gcd (b, c) , bc) (403)

(by Exercise 2.9.5 (a), applied to a gcd (b, c) and bc instead of a and b).
On the other hand, Exercise 2.9.5 (b) (applied to a gcd (b, c) and bc instead of a and b)

yields
gcd (|a gcd (b, c)| , bc) = gcd (a gcd (b, c) , bc) .

Comparing this with (403), we obtain

gcd (b, c) gcd (a, lcm (b, c)) = gcd

|a gcd (b, c)|︸ ︷︷ ︸
=gcd(ab,ca)

(by (402))

, bc

 = gcd (gcd (ab, ca) , bc) .

On the other hand, Theorem 2.9.21 (d) (applied to 3 and (ab, ca, bc) instead of k and
(b1, b2, . . . , bk)) yields

gcd (ab, ca, bc) = gcd (gcd (ab, ca) , bc) .

Comparing these two equalities, we obtain

gcd (b, c) gcd (a, lcm (b, c)) = gcd (ab, ca, bc) . (404)

But {bc, ca, ab} = {ab, ca, bc}. Thus, Exercise 2.9.1 (applied to 3, (bc, ca, ab), 3 and
(ab, ca, bc) instead of k, (b1, b2, . . . , bk), ` and (c1, c2, . . . , c`)) yields gcd (bc, ca, ab) = gcd (ab, ca, bc).
Comparing this with (404), we obtain

gcd (b, c) gcd (a, lcm (b, c)) = gcd (bc, ca, ab) .

We can divide both sides of this equality by gcd (b, c) (since gcd (b, c) 6= 0); thus we obtain

gcd (a, lcm (b, c)) =
gcd (bc, ca, ab)

gcd (b, c)
. (405)

On the other hand, the three integers a, b, c are not all 0 (since the two integers b, c are not
all 0). Thus, gcd (a, b, c) is a positive integer (by Definition 2.9.6). Hence, gcd (a, b, c) > 0,
so that gcd (a, b, c) 6= 0. From gcd (a, b, c) 6= 0 and gcd (b, c) 6= 0, we obtain gcd (a, b, c) ·
gcd (b, c) 6= 0.

Recall that a gcd of a finite list of integers is always nonnegative. Hence, the two num-
bers gcd (a, b) and gcd (a, c) are nonnegative. Thus, their product gcd (a, b) gcd (a, c) is
nonnegative as well.
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Now, Theorem 2.11.6 (applied to gcd (a, b) and gcd (a, c) instead of a and b) yields

gcd (gcd (a, b) , gcd (a, c)) · lcm (gcd (a, b) , gcd (a, c))
= |gcd (a, b) gcd (a, c)| = gcd (a, b) gcd (a, c)︸ ︷︷ ︸

=gcd(c,a)
(by Proposition 2.9.7 (b),
applied to c instead of b)

(since gcd (a, b) gcd (a, c) is nonnegative)
= gcd (a, b) · gcd (c, a) = gcd (c, a) · gcd (a, b) . (406)

But {a, b, a, c} = {a, b, c}. Hence, Exercise 2.9.1 (applied to 4, (a, b, a, c), 3 and (a, b, c)
instead of k, (b1, b2, . . . , bk), ` and (c1, c2, . . . , c`)) yields

gcd (a, b, a, c) = gcd (a, b, c) .

But Theorem 2.9.26 (applied to 2, (a, b), 2 and (a, c) instead of k, (b1, b2, . . . , bk), ` and
(c1, c2, . . . , c`)) yields

gcd (a, b, a, c) = gcd (gcd (a, b) , gcd (a, c)) .

Comparing these two equalities, we obtain

gcd (gcd (a, b) , gcd (a, c)) = gcd (a, b, c) .

Now, (406) yields

gcd (c, a) · gcd (a, b) = gcd (gcd (a, b) , gcd (a, c))︸ ︷︷ ︸
=gcd(a,b,c)

· lcm (gcd (a, b) , gcd (a, c))

= gcd (a, b, c) · lcm (gcd (a, b) , gcd (a, c)) .

Dividing both sides of this equality by gcd (a, b, c) (we can do this, since gcd (a, b, c) 6= 0),
we obtain

gcd (c, a) · gcd (a, b)
gcd (a, b, c)

= lcm (gcd (a, b) , gcd (a, c)) . (407)

However, Exercise 2.10.18 yields

gcd (b, c) · gcd (c, a) · gcd (a, b) = gcd (a, b, c) · gcd (bc, ca, ab) .

We can divide both sides of this equality by gcd (a, b, c) · gcd (b, c) (since gcd (a, b, c) ·
gcd (b, c) 6= 0); we thus obtain

gcd (c, a) · gcd (a, b)
gcd (a, b, c)

=
gcd (bc, ca, ab)

gcd (b, c)
.

Comparing this with (407), we find

lcm (gcd (a, b) , gcd (a, c)) =
gcd (bc, ca, ab)

gcd (b, c)
= gcd (a, lcm (b, c))

(by (405)). Thus, Exercise 2.13.11 (a) is solved in Case 2.
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We have now solved Exercise 2.13.11 (a) in each of the two Cases 1 and 2. Thus, Exercise
2.13.11 (a) is solved in all cases.

[Remark: The above solution to Exercise 2.13.11 (a) is (an expanded version of) Bill
Dubuque’s post https://math.stackexchange.com/a/147992/. Note that Dubuque uses
the notations (x1, x2, . . . , xk) and [x1, x2, . . . , xk] for what we call gcd (x1, x2, . . . , xk) and
lcm (x1, x2, . . . , xk).]

(b) We are in one of the following two cases:
Case 1: We have a = 0.
Case 2: We have a 6= 0.
Let us first consider Case 1. In this case, we have a = 0. Thus, the two integers a, gcd (b, c)

are not all nonzero. Hence, Definition 2.11.4 yields lcm (a, gcd (b, c)) = 0. Also, the two
integers a, b are not all nonzero (since a = 0). Hence, lcm (a, b) = 0 (again by Definition
2.11.4). Similarly, lcm (a, c) = 0. Now,

gcd

lcm (a, b)︸ ︷︷ ︸
=0

, lcm (a, c)︸ ︷︷ ︸
=0

 = gcd (0, 0) = 0

(by Definition 2.9.6, since all of the integers 0, 0 are 0). Comparing this with lcm (a, gcd (b, c)) =
0, we obtain lcm (a, gcd (b, c)) = gcd (lcm (a, b) , lcm (a, c)). Thus, Exercise 2.13.11 (b) is
solved in Case 1.

Let us now consider Case 2. In this case, we have a 6= 0. Hence, the two integers a, b are
not all 0. Thus, gcd (a, b) is a positive integer (by Definition 2.9.6). Similarly, gcd (a, c) is a
positive integer. Also, the three integers a, b, c are not all 0 (since a 6= 0). Thus, gcd (a, b, c)
is a positive integer (by Definition 2.9.6). Hence, gcd (a, b, c) 6= 0.

The numbers gcd (a, b) and gcd (a, c) are positive integers. Hence, their product gcd (a, b) ·
gcd (a, c) is a positive integer as well. Let us denote this positive integer by g. Thus,

g = gcd (a, b) · gcd (a, c)︸ ︷︷ ︸
=gcd(c,a)

(by Proposition 2.9.7 (b),
applied to c instead of b)

= gcd (a, b) · gcd (c, a)

= gcd (c, a) · gcd (a, b) . (408)

Also, g 6= 0 (since g is positive).
Theorem 2.11.6 yields gcd (a, b) · lcm (a, b) = |ab|. Also, Theorem 2.11.6 (applied to c

instead of b) yields gcd (a, c) · lcm (a, c) = |ac|.
Theorem 2.9.20 (applied to g, lcm (a, b) and lcm (a, c) instead of s, a and b) yields

gcd (g lcm (a, b) , g lcm (a, c)) = |g|︸︷︷︸
=g

(since g is positive)

gcd (lcm (a, b) , lcm (a, c))

= g gcd (lcm (a, b) , lcm (a, c)) .

https://math.stackexchange.com/a/147992/
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Hence,

g gcd (lcm (a, b) , lcm (a, c))

= gcd

 g︸︷︷︸
=gcd(c,a)·gcd(a,b)

lcm (a, b) , g︸︷︷︸
=gcd(a,b)·gcd(a,c)

lcm (a, c)


= gcd

gcd (c, a) · gcd (a, b) · lcm (a, b)︸ ︷︷ ︸
=|ab|

, gcd (a, b) · gcd (a, c) · lcm (a, c)︸ ︷︷ ︸
=|ac|


= gcd (gcd (c, a) · |ab| , gcd (a, b) · |ac|) . (409)

On the other hand, Theorem 2.9.20 (applied to ab, c and a instead of s, a and b) yields

gcd (abc, aba) = |ab| gcd (c, a) = gcd (c, a) · |ab| . (410)

Also, Theorem 2.9.20 (applied to ac, a and b instead of s, a and b) yields

gcd (aca, acb) = |ac| gcd (a, b) = gcd (a, b) · |ac| . (411)

Also,

abc, aba︸︷︷︸
=aab

, aca, acb︸︷︷︸
=abc

 = {abc, aab, aca, abc} = {abc, aca, aab}. Hence, Exercise 2.9.1

(applied to 4, (abc, aba, aca, acb), 3 and (abc, aca, aab) instead of k, (b1, b2, . . . , bk), ` and
(c1, c2, . . . , c`)) yields

gcd (abc, aba, aca, acb) = gcd (abc, aca, aab) = |a| gcd (bc, ca, ab)

(by Exercise 2.9.7, applied to a, 3 and (bc, ca, ab) instead of s, k and (a1, a2, . . . , ak)). Hence,

|a| gcd (bc, ca, ab) = gcd (abc, aba, aca, acb) = gcd

gcd (abc, aba)︸ ︷︷ ︸
=gcd(c,a)·|ab|

(by (410))

, gcd (aca, acb)︸ ︷︷ ︸
=gcd(a,b)·|ac|

(by (411))


(

by Theorem 2.9.26, applied to 2, (abc, aba) , 2 and (aca, acb)
instead of k, (b1, b2, . . . , bk) , ` and (c1, c2, . . . , c`)

)
= gcd (gcd (c, a) · |ab| , gcd (a, b) · |ac|) = g gcd (lcm (a, b) , lcm (a, c))

(by (409)). We can divide both sides of this equality by g (since g 6= 0); thus we obtain

|a| gcd (bc, ca, ab)
g

= gcd (lcm (a, b) , lcm (a, c)) . (412)

Proposition 2.9.7 (b) (applied to gcd (b, c) instead of b) yields
gcd (a, gcd (b, c)) = gcd (gcd (b, c) , a). But Theorem 2.9.21 (d) (applied to 3 and (b, c, a)
instead of k and (b1, b2, . . . , bk)) yields gcd (b, c, a) = gcd (gcd (b, c) , a). Comparing these
two equalities, we obtain

gcd (a, gcd (b, c)) = gcd (b, c, a) . (413)
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But {b, c, a} = {a, b, c}. Thus, Exercise 2.9.1 (applied to 3, (b, c, a), 3 and (a, b, c) instead of
k, (b1, b2, . . . , bk), ` and (c1, c2, . . . , c`)) yields gcd (b, c, a) = gcd (a, b, c). Thus, (413) becomes

gcd (a, gcd (b, c)) = gcd (b, c, a) = gcd (a, b, c) . (414)

The gcd of any list of integers is a nonnegative integer. Thus, gcd (b, c) is a nonnegative
integer. Now, Theorem 2.11.6 (applied to gcd (b, c) instead of b) yields

gcd (a, gcd (b, c)) · lcm (a, gcd (b, c))
= |a gcd (b, c)| = |a| · |gcd (b, c)|︸ ︷︷ ︸

=gcd(b,c)
(since gcd(b,c)
is nonnegative)

(by (3), applied to x = a and y = gcd (b, c))

= |a| gcd (b, c) .

In view of (414), this rewrites as

gcd (a, b, c) · lcm (a, gcd (b, c)) = |a| gcd (b, c) . (415)

Multiplying both sides of this equality by g, we obtain

gcd (a, b, c) · lcm (a, gcd (b, c)) · g = |a| gcd (b, c) · g︸︷︷︸
=gcd(c,a)·gcd(a,b)

(by (408))

= |a| gcd (b, c) · gcd (c, a) · gcd (a, b)︸ ︷︷ ︸
=gcd(a,b,c)·gcd(bc,ca,ab)

(by Exercise 2.10.18)

= |a| gcd (a, b, c) · gcd (bc, ca, ab)
= gcd (a, b, c) · |a| gcd (bc, ca, ab) .

We can divide both sides of this equality by gcd (a, b, c) (since gcd (a, b, c) 6= 0); we thus
obtain

lcm (a, gcd (b, c)) · g = |a| gcd (bc, ca, ab) .

We can divide both sides of this equality by g (since g 6= 0); thus we find

lcm (a, gcd (b, c)) =
|a| gcd (bc, ca, ab)

g
= gcd (lcm (a, b) , lcm (a, c))

(by (412)). Thus, Exercise 2.13.11 (b) is solved in Case 2.
We have now solved Exercise 2.13.11 (b) in each of the two Cases 1 and 2. Thus, Exercise

2.13.11 (b) is solved in all cases.

10.64. Solution to Exercise 2.13.12
Solution to Exercise 2.13.12. We have a2 ≡ 1 mod p. In other words, p | a2− 1 = (a− 1) (a + 1).
Hence, Theorem 2.13.6 (applied to a− 1 and a + 1 instead of a and b) yields that p | a− 1
or p | a + 1. In view of the logical equivalences

(p | a− 1) ⇐⇒ (a ≡ 1 mod p)
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and p | a + 1︸ ︷︷ ︸
=a−(−1)

 ⇐⇒ (p | a− (−1)) ⇐⇒ (a ≡ −1 mod p) ,

this rewrites as follows: a ≡ 1 mod p or a ≡ −1 mod p. This solves Exercise 2.13.12.

10.65. Solution to Exercise 2.13.13
Solution to Exercise 2.13.13. The number p is a prime, and thus is a positive integer. Hence,
pk is a positive integer as well (since k ∈N).

For each i ∈ {0, 1, . . . , k}, the integer pi is a nonnegative divisor of pk 273. In other
words, the integers p0, p1, . . . , pk are nonnegative divisors of pk. In other words, we have{

p0, p1, . . . , pk
}
⊆
{

the nonnegative divisors of pk
}

. (416)

Now we shall show that
{

the nonnegative divisors of pk} ⊆ {p0, p1, . . . , pk}.
Indeed, let d ∈

{
the nonnegative divisors of pk}. Thus, d is a nonnegative divisor of

pk. Hence, in particular, d is a divisor of pk; thus, d | pk. In other words, there exists
an integer c such that pk = dc. Consider this c. If we had d = 0, then we would have
pk = d︸︷︷︸

=0

c = 0c = 0, which would contradict the fact that pk is positive. Hence, we

cannot have d = 0. Thus, we have d 6= 0. Hence, d is nonzero. Therefore, Lemma 2.13.27
(a) (applied to n = d) shows that there exists a nonzero integer u such that u ⊥ p and
d = upvp(d). Consider this u. From d = upvp(d), we obtain u = d/pvp(d), and thus u is
nonnegative (since d is nonnegative and p is positive).

Let i = vp (d). Then, i = vp (d) ∈ N (since d is nonzero). Moreover, from i = vp (d), we
obtain upi = upvp(d) = d (since d = upvp(d)). Moreover, u is an integer; thus,

pi | upi = d | pk.

But Lemma 2.13.25 (applied to n = pk) yields that pi | pk if and only if vp
(

pk) ≥ i. Hence,
vp
(

pk) ≥ i (since pi | pk).

However, Theorem 2.13.28 (d) (applied to q = p) yields vp (p) =

{
1, if p = p;
0, if p 6= p

= 1

(since p = p). But Exercise 2.13.6 (applied to a = p) yields vp
(

pk) = k vp (p)︸ ︷︷ ︸
=1

= k · 1 = k.

Hence, k = vp
(

pk) ≥ i, so that i ≤ k and thus i ∈ {0, 1, . . . , k} (since i ∈N).
We have u ⊥ p. Thus, Exercise 2.10.4 (applied to a = u, b = p, n = 1 and m = k) yields

u1 ⊥ pk. In other words, u ⊥ pk (since u1 = u). In other words, gcd
(
u, pk) = 1 (by the

definition of coprimality).

273Proof. Let i ∈ {0, 1, . . . , k}. We must show that the integer pi is a nonnegative divisor of pk.
The number p is a positive integer. Thus, pi is a positive integer (since i ∈ {0, 1, . . . , k} ⊆ N).

Hence, pi is a nonnegative integer. Furthermore, i ≤ k (since i ∈ {0, 1, . . . , k}). Hence, Exercise
2.2.4 (applied to n = p, a = i and b = k) yields pi | pk. Thus, pi is a divisor of pk. Hence, pi is a
nonnegative divisor of pk (since pi is nonnegative). Qed.



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 635

But u | upi | pk (as we have shown above). Hence, Proposition 2.9.7 (i) (applied to
a = u and b = pk) yields gcd

(
u, pk) = |u| = u (since u is nonnegative). Thus, u =

gcd
(
u, pk) = 1. Therefore, from upi = d, we obtain d = u︸︷︷︸

=1

pi = pi ∈
{

p0, p1, . . . , pk}
(since i ∈ {0, 1, . . . , k}).

Now, forget that we fixed d. We thus have shown that d ∈
{

p0, p1, . . . , pk} for each
d ∈

{
the nonnegative divisors of pk}. In other words,{

the nonnegative divisors of pk
}
⊆
{

p0, p1, . . . , pk
}

.

Combining this with (416), we obtain{
the nonnegative divisors of pk

}
=
{

p0, p1, . . . , pk
}

.

In other words, the nonnegative divisors of pk are p0, p1, . . . , pk. This solves Exercise 2.13.13.

10.66. Solution to Exercise 2.14.1
Solution to Exercise 2.14.1. Let M be the set

{
1p, 2p, . . . , pk−1 p

}
=
{

cp | c ∈
{

1, 2, . . . , pk−1}}.
This set M has pk−1 elements (since the pk−1 numbers 1p, 2p, . . . , pk−1 p are all distinct). In
other words, |M| = pk−1. Also, M ⊆

{
1, 2, . . . , pk} 274. Hence,∣∣∣{1, 2, . . . , pk

}
\M

∣∣∣ = ∣∣∣{1, 2, . . . , pk
}∣∣∣︸ ︷︷ ︸

=pk

− |M|︸︷︷︸
=pk−1

= pk − pk−1. (417)

Next, we claim that{
i ∈

{
1, 2, . . . , pk

}
| i ⊥ pk

}
⊆
{

1, 2, . . . , pk
}
\M. (418)

[Proof of (418): Let a ∈
{

i ∈
{

1, 2, . . . , pk} | i ⊥ pk}. In other words, a is an element of{
1, 2, . . . , pk} and satisfies a ⊥ pk.
Exercise 2.13.3 shows that a ⊥ pk holds if and only if p - a. Hence, p - a (since a ⊥ pk),

and therefore a /∈ M 275. Combining a ∈
{

1, 2, . . . , pk} with a /∈ M, we obtain a ∈{
1, 2, . . . , pk} \M.

274Proof. Let m ∈ M. Thus, m ∈ M =
{

1p, 2p, . . . , pk−1 p
}

; in other words, m = cp for some

c ∈
{

1, 2, . . . , pk−1
}

. Consider this c. From c ∈
{

1, 2, . . . , pk−1
}

, we obtain c ≤ pk−1. We can

multiply this inequality by p (since p > 0) and thus obtain cp ≤ pk−1 p = pk. Also, cp is a
positive integer (since c and p are positive integers). Thus, cp is a positive integer and ≤ pk. In
other words, cp ∈

{
1, 2, . . . , pk

}
. Thus, m = cp ∈

{
1, 2, . . . , pk

}
.

Now, forget that we fixed m. We thus have shown that m ∈
{

1, 2, . . . , pk
}

for each m ∈ M. In

other words, M ⊆
{

1, 2, . . . , pk
}

.
275Proof. Assume the contrary. Thus, a ∈ M =

{
1p, 2p, . . . , pk−1 p

}
. In other words, a = cp for some

c ∈
{

1, 2, . . . , pk−1
}

. Consider this c. Clearly, c is an integer; thus, from a = cp = pc, we obtain
p | a. But this contradicts p - a. This contradiction shows that our assumption was false, qed.
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Now, forget that we fixed a. Thus, we have shown that a ∈
{

1, 2, . . . , pk} \ M for
each a ∈

{
i ∈

{
1, 2, . . . , pk} | i ⊥ pk}. In other words,

{
i ∈

{
1, 2, . . . , pk} | i ⊥ pk} ⊆{

1, 2, . . . , pk} \M. This proves (418).]
Furthermore, we have{

1, 2, . . . , pk
}
\M ⊆

{
i ∈

{
1, 2, . . . , pk

}
| i ⊥ pk

}
. (419)

[Proof of (419): Let a ∈
{

1, 2, . . . , pk} \M. In other words, a ∈
{

1, 2, . . . , pk} and a /∈ M.
We have p - a 276. But Exercise 2.13.3 shows that a ⊥ pk holds if and only if p - a.

Hence, a ⊥ pk (since p - a). Now, we know that a is an i ∈
{

1, 2, . . . , pk} satisfying i ⊥ pk

(since a ∈
{

1, 2, . . . , pk} and a ⊥ pk). In other words, a ∈
{

i ∈
{

1, 2, . . . , pk} | i ⊥ pk}.
Now, forget that we fixed a. Thus, we have shown that a ∈

{
i ∈

{
1, 2, . . . , pk} | i ⊥ pk}

for each a ∈
{

1, 2, . . . , pk} \M. In other words,
{

1, 2, . . . , pk} \M ⊆
{

i ∈
{

1, 2, . . . , pk} | i ⊥ pk}.
This proves (419).]

Combining (418) with (419), we obtain{
i ∈

{
1, 2, . . . , pk

}
| i ⊥ pk

}
=
{

1, 2, . . . , pk
}
\M.

Now, (55) (applied to n = pk) yields

φ
(

pk
)
=

∣∣∣∣∣∣∣∣∣
{

i ∈
{

1, 2, . . . , pk
}
| i ⊥ pk

}
︸ ︷︷ ︸

={1,2,...,pk}\M

∣∣∣∣∣∣∣∣∣ =
∣∣∣{1, 2, . . . , pk

}
\M

∣∣∣
= pk︸︷︷︸

=ppk−1

−pk−1 (by (417))

= ppk−1 − pk−1 = (p− 1) pk−1.

This solves Exercise 2.14.1.

10.67. Solution to Exercise 2.14.2
Solution to Exercise 2.14.2. (a) If I is any set, and if we are given a statement A (i) for each
i ∈ I, then

{i ∈ I | we don’t have A (i)} = I \ {i ∈ I | A (i)} . (420)

(This is one of the basic rules of sets and logic.)

276Proof. Assume the contrary. Thus, p | a. In other words, a = pc for some integer c. Consider
this c. We have a = pc, thus c = a/p (since p is nonzero). Also, c = a/p > 0 (since a and p are
positive). Hence, c is a positive integer. Furthermore, from a ∈

{
1, 2, . . . , pk

}
, we obtain a ≤ pk

and thus a/p ≤ pk/p = pk−1, so that c = a/p ≤ pk−1. Thus, c ∈
{

1, 2, . . . , pk−1
}

(since c is

a positive integer) and therefore cp ∈
{

1p, 2p, . . . , pk−1 p
}
= M (by the definition of M). Now,

a = pc = cp ∈ M; but this contradicts a /∈ M. This contradiction shows that our assumption
was false, qed.
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Now, ∣∣∣∣∣∣∣∣∣∣
{i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}︸ ︷︷ ︸

={1,2,...,n}\{i∈{1,2,...,n} | i⊥n}
(by (420), applied to I={1,2,...,n} and A(i)=(i⊥n))

∣∣∣∣∣∣∣∣∣∣
= |{1, 2, . . . , n} \ {i ∈ {1, 2, . . . , n} | i ⊥ n}|
= |{1, 2, . . . , n}|︸ ︷︷ ︸

=n

− |{i ∈ {1, 2, . . . , n} | i ⊥ n}|︸ ︷︷ ︸
=φ(n)

(by (55))

(since {i ∈ {1, 2, . . . , n} | i ⊥ n} ⊆ {1, 2, . . . , n})
= n− φ (n) .

This solves Exercise 2.14.2 (a).
(b) Exercise 2.14.2 (a) yields

n− φ (n) = |{i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}| ≥ 0

(since |X| ≥ 0 for any finite set X). This solves Exercise 2.14.2 (b).
(c) We have d | n and n 6= 0 (since n is positive). Thus, Proposition 2.2.3 (a) (applied to

a = d and b = n) yields |d| ≤ |n| = n (since n is positive). But |d| = d (since d is positive).
Hence, d = |d| ≤ n.

It is easy to see that

{i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d}
⊆ {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n} . (421)

[Proof of (421): Let j ∈ {i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d}. Thus, j is an i ∈
{1, 2, . . . , d} such that we don’t have i ⊥ d. In other words, j is an element of {1, 2, . . . , d}
and has the property that we don’t have j ⊥ d.

Now, recall that j is an element of {1, 2, . . . , d}. Hence, j ∈ {1, 2, . . . , d} ⊆ {1, 2, . . . , n}
(since d ≤ n). In other words, j is an element of {1, 2, . . . , n}.

Also, we don’t have j ⊥ d. Hence, we don’t have j ⊥ n 277. Now, we know
that j is an element of {1, 2, . . . , n} and has the property that we don’t have j ⊥ n. In
other words, j is an i ∈ {1, 2, . . . , n} such that we don’t have i ⊥ n. In other words,
j ∈ {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}.

Now, forget that we fixed j. We thus have proven that
j ∈ {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n} for each
j ∈ {i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d}. In other words,

{i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d} ⊆ {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n} .

277Proof: Assume the contrary. Thus, j ⊥ n. In other words, gcd (j, n) = 1. But j | j and d | n. Hence,
Exercise 2.9.4 (applied to j, d, j and n instead of a1, a2, b1 and b2) yields gcd (j, d) | gcd (j, n) = 1.
But gcd (j, d) is a nonnegative integer (since the gcd of any list of integers is a nonnegative
integer). Hence, Exercise 2.2.5 (applied to g = gcd (j, d)) yields gcd (j, d) = 1 (since gcd (j, d) | 1).
In other words, j ⊥ d. This contradicts the fact that we don’t have j ⊥ d. This contradiction
shows that our assumption was wrong, qed.
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This proves (421).]
Now, Exercise 2.14.2 (a) (applied to d instead of n) yields

d− φ (d) =

∣∣∣∣∣∣∣∣∣∣
{i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d}︸ ︷︷ ︸

⊆{i∈{1,2,...,n} | we don’t have i⊥n}
(by (421))

∣∣∣∣∣∣∣∣∣∣
≤ |{i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}| = n− φ (n)

(by Exercise 2.14.2 (a)). Thus, Exercise 2.14.2 (c) is solved.
(d) In our solution to Exercise 2.14.2 (c) above, we have shown that d ≤ n. Combining

this with d 6= n, we obtain d < n. Thus, n > d. Also, d ≥ 1 (since d is a positive integer).
Hence, n > d ≥ 1.

Define two finite sets

D = {i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d} and
N = {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n} .

In our solution to Exercise 2.14.2 (c) above, we have proven (421). Thus,

D = {i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d}
⊆ {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n} (by (421))
= N.

Now, we have n ∈ N.
[Proof: We have n ∈ {1, 2, . . . , n} (since n ≥ 1), but we don’t have n ⊥ n 278. Thus,

n is an element of {1, 2, . . . , n} such that we don’t have n ⊥ n. In other words, n is an
i ∈ {1, 2, . . . , n} such that we don’t have i ⊥ n. Hence,

n ∈ {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n} .

This rewrites as n ∈ N (since N = {i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}). Qed.]
Now, we claim that D 6= N.
[Proof: Assume the contrary. Thus, D = N. Hence, N = D. Now,

n ∈ N = D = {i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d} ⊆ {1, 2, . . . , d} ,

so that n ≤ d. This contradicts d < n. This contradiction shows that our assumption was
false. Hence, D 6= N is proven.]

Now, D is a subset of N (since D ⊆ N), and hence is a proper subset of N (since D 6= N).
Hence, |D| < |N| (because if X is a proper subset of a finite set Y, then |X| < |Y|). But

278Proof. Assume the contrary. Thus, n ⊥ n. In other words, gcd (n, n) = 1. But Proposition 2.9.7 (i)
(applied to a = n and b = n) yields gcd (n, n) = |n| (since n | n). Hence, gcd (n, n) = |n| = n
(since n > 1 > 0). Therefore, n = gcd (n, n) = 1. This contradicts n > 1. This contradiction
shows that our assumption was wrong, qed.
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Exercise 2.14.2 (a) (applied to d instead of n) yields

d− φ (d) =

∣∣∣∣∣∣{i ∈ {1, 2, . . . , d} | we don’t have i ⊥ d}︸ ︷︷ ︸
=D

∣∣∣∣∣∣ = |D|
<

∣∣∣∣∣∣ N︸︷︷︸
={i∈{1,2,...,n} | we don’t have i⊥n}

∣∣∣∣∣∣
= |{i ∈ {1, 2, . . . , n} | we don’t have i ⊥ n}| = n− φ (n)

(by Exercise 2.14.2 (a)). Thus, Exercise 2.14.2 (d) is solved.

10.68. Solution to Exercise 2.14.4
Solution to Exercise 2.14.4. The following solution is mostly a calque of the proof of Propo-
sition 2.14.7 we gave above, but using subtraction instead of division and using the relation
“coprime” instead of “divides”.

Clearly, n is a positive integer (since n > 2), so that φ (n) is well-defined.
Let C = {i ∈ {1, 2, . . . , n} | i ⊥ n}. An element c of C is said to be

• small if c < n− c;

• medium if c = n− c;

• large if c > n− c.

Now, it is easy to see that the set C has no medium elements279. In other words,

|{medium elements of C}| = 0.

Furthermore, if c ∈ C, then n− c ∈ C 280. This allows us to define a map

F : C → C,
c 7→ n− c.

279Proof. Let c be a medium element of C. We shall derive a contradiction.
We have c ∈ C = {i ∈ {1, 2, . . . , n} | i ⊥ n}. In other words, c is an element of {1, 2, . . . , n}

and satisfies c ⊥ n. Clearly, the integer c is positive (since c ∈ {1, 2, . . . , n}) and we have
gcd (c, n) = 1 (since c ⊥ n).

Furthermore, c is medium; in other words, c = n− c. Thus, 2c = n, so that n = 2c = c · 2.
Hence, c | n. Thus, Proposition 2.9.7 (i) (applied to a = c and b = n) yields gcd (c, n) = |c| = c
(since c is positive). But from 2c = n, we also obtain c = n/2 > 2/2 (since n > 2). Thus,
gcd (c, n) = c > 2/2 = 1. This contradicts gcd (c, n) = 1.

Forget that we fixed c. We thus have obtained a contradiction for each medium element c of
C. Thus, there are no such elements. In other words, the set C has no medium elements.

280Proof. Let c ∈ C.
We have c ∈ C = {i ∈ {1, 2, . . . , n} | i ⊥ n}. In other words, c is an element of {1, 2, . . . , n}

and satisfies c ⊥ n. From c ⊥ n, we obtain n ⊥ c (by Proposition 2.10.4) and thus gcd (n, c) = 1.
But n | n. Hence, Proposition 2.9.7 (i) (applied to a = n and b = n) yields gcd (n, n) = |n| = n

(since n is positive). Thus, gcd (n, n) = n > 2 > 1, so that gcd (n, n) 6= 1 = gcd (n, c) and
therefore n 6= c. In other words, c 6= n.

Combining c ∈ {1, 2, . . . , n} with c 6= n, we find c ∈ {1, 2, . . . , n} \ {n} = {1, 2, . . . , n− 1}.
Hence, n− c ∈ {1, 2, . . . , n− 1} ⊆ {1, 2, . . . , n}.
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This map F has the property that F ◦ F = id, because each c ∈ C satisfies

(F ◦ F) (c) = F

 F (c)︸︷︷︸
=n−c

(by the definition of F)

 = F (n− c)

= n− (n− c) (by the definition of F)
= c = id (c) .

Hence, the map F is inverse to itself. Thus, the map F is invertible, i.e., is a bijection.
It is easy to see that if c is a small element of C, then F (c) is a large element of C 281.

Hence, the map

F+ : {small elements of C} → {large elements of C} ,
c 7→ F (c)

is well-defined. Similarly, the map

F− : {large elements of C} → {small elements of C} ,
c 7→ F (c)

is well-defined. These two maps F+ and F− are both restrictions of the map F, and thus
are mutually inverse (since the map F is inverse to itself). Hence, the map F+ is invert-
ible, i.e., is a bijection. Thus, we have found a bijection from {small elements of C} to
{large elements of C} (namely, F+). Therefore,

|{small elements of C}| = |{large elements of C}| .

We have n︸︷︷︸
≡0 mod n

−c ≡ −c mod n. Hence, Proposition 2.9.7 (d) (applied to n, n − c and −c

instead of a, b and c) yields

gcd (n, n− c) = gcd (n,−c)
= gcd (n, c) (by Proposition 2.9.7 (h) (applied to a = n and b = c))
= 1.

In other words, n ⊥ n− c. In other words, n− c ⊥ n (by Proposition 2.10.4).
Combining this with n− c ∈ {1, 2, . . . , n}, we conclude that n− c is an i ∈ {1, 2, . . . , n} satis-

fying i ⊥ n. In other words, n− c ∈ {i ∈ {1, 2, . . . , n} | i ⊥ n} = C. Qed.
281Proof. Let c be a small element of C. Thus, c < n− c. Hence, n− c > c = n− (n− c). In view of

F (c) = n− c, this rewrites as F (c) > n− F (c). In other words, F (c) is a large element of C (by
the definition of “large”). Qed.
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Now, (55) yields

φ (n) =

∣∣∣∣∣∣{i ∈ {1, 2, . . . , n} | i ⊥ n}︸ ︷︷ ︸
=C

∣∣∣∣∣∣ = |C|
= |{small elements of C}|︸ ︷︷ ︸

=|{large elements of C}|

+ |{medium elements of C}|︸ ︷︷ ︸
=0

+ |{large elements of C}|

(
since each element of C is either small or medium or large

(and there is no overlap between these three classes of elements)

)
= |{large elements of C}|+ |{large elements of C}|
= 2 · |{large elements of C}| .

Thus, 2 | φ (n) (since |{large elements of C}| is an integer). In other words, φ (n) is even.
This solves Exercise 2.14.4.

10.69. Solution to Exercise 2.14.5
Our below solution to Exercise 2.14.5 imitates the proof of Proposition 2.10.12.

Solution to Exercise 2.14.5. We do not have n ⊥ n 282. Hence,

{i ∈ {1, 2, . . . , n} | i ⊥ n} = {i ∈ {1, 2, . . . , n− 1} | i ⊥ n} (422)

283. Now, (55) yields

φ (n) = |{i ∈ {1, 2, . . . , n} | i ⊥ n}|
= |{i ∈ {1, 2, . . . , n− 1} | i ⊥ n}| (423)

282Proof. Assume the contrary. Thus, n ⊥ n. In other words, gcd (n, n) = 1. But Proposition 2.9.7 (i)
(applied to a = n and b = n) yields gcd (n, n) = |n| (since n | n). Hence, gcd (n, n) = |n| = n
(since n > 1 > 0). Therefore, n = gcd (n, n) = 1. This contradicts n > 1. This contradiction
shows that our assumption was wrong, qed.

283Proof of (422): Let j ∈ {i ∈ {1, 2, . . . , n} | i ⊥ n}. Thus, j is an element i of {1, 2, . . . , n} satisfying
i ⊥ n. In other words, j is an element of {1, 2, . . . , n} and satisfies j ⊥ n. We have j ⊥ n. If we
had j = n, then this would rewrite as n ⊥ n, which would contradict the fact that we do not have
n ⊥ n. Thus, we cannot have j = n. In other words, we have j 6= n. Combining j ∈ {1, 2, . . . , n}
with j 6= n, we obtain j ∈ {1, 2, . . . , n} \ {n} = {1, 2, . . . , n− 1}. Hence, j is an element of
{1, 2, . . . , n− 1} and satisfies j ⊥ n. In other words, j is an element i of {1, 2, . . . , n− 1} satisfying
i ⊥ n. In other words, j ∈ {i ∈ {1, 2, . . . , n− 1} | i ⊥ n}.

Now, forget that we fixed j. We thus have proven that j ∈ {i ∈ {1, 2, . . . , n− 1} | i ⊥ n} for
each j ∈ {i ∈ {1, 2, . . . , n} | i ⊥ n}. In other words,

{i ∈ {1, 2, . . . , n} | i ⊥ n} ⊆ {i ∈ {1, 2, . . . , n− 1} | i ⊥ n} .

Combining this withi ∈ {1, 2, . . . , n− 1}︸ ︷︷ ︸
⊆{1,2,...,n}

| i ⊥ n

 ⊆ {i ∈ {1, 2, . . . , n} | i ⊥ n} ,

we obtain {i ∈ {1, 2, . . . , n} | i ⊥ n} = {i ∈ {1, 2, . . . , n− 1} | i ⊥ n}. This proves (422).
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(by (422)).
On the other hand, for each k ∈ Z, we have the logical equivalence

(n− k ⊥ n) ⇐⇒ (k ⊥ n) (424)

(because Exercise 2.10.7 (applied to a = k and b = n) shows that n− k ⊥ n holds if and
only if k ⊥ n). Now,

2 · ∑
i∈{1,2,...,n};

i⊥n

i = 2 · ∑
k∈{1,2,...,n};

k⊥n︸ ︷︷ ︸
= ∑

k∈{i∈{1,2,...,n} | i⊥n}
= ∑

k∈{i∈{1,2,...,n−1} | i⊥n}
(by (422))

k
(

here, we have renamed the
summation index i as k

)

= 2 · ∑
k∈{i∈{1,2,...,n−1} | i⊥n}︸ ︷︷ ︸

= ∑
k∈{1,2,...,n−1};

k⊥n

k = 2 · ∑
k∈{1,2,...,n−1};

k⊥n

k

= ∑
k∈{1,2,...,n−1};

k⊥n

k + ∑
k∈{1,2,...,n−1};

k⊥n

k

= ∑
k∈{1,2,...,n−1};

k⊥n

k + ∑
k∈{1,2,...,n−1};

n−k⊥n︸ ︷︷ ︸
= ∑

k∈{1,2,...,n−1};
k⊥n

(by the equivalence (424))

(n− k)

(here, we have substituted n− k for k in the second sum)

= ∑
k∈{1,2,...,n−1};

k⊥n

k + ∑
k∈{1,2,...,n−1};

k⊥n

(n− k) = ∑
k∈{1,2,...,n−1};

k⊥n

(k + (n− k))︸ ︷︷ ︸
=n

= ∑
k∈{1,2,...,n−1};

k⊥n

n = ∑
i∈{1,2,...,n−1};

i⊥n

n
(

here, we have renamed the
summation index k as i

)

= |{i ∈ {1, 2, . . . , n− 1} | i ⊥ n}|︸ ︷︷ ︸
=φ(n)

(by (423))

·n = φ (n) · n = nφ (n) .

Dividing this equality by 2, we obtain

∑
i∈{1,2,...,n};

i⊥n

i = nφ (n) /2.

This solves Exercise 2.14.5.
[Remark: Alternatively, instead of doubling the sum we wanted to compute, we could

have paired its addends up with each other: every i gets paired with the respective n− i.
But this is slightly messy, since

n
2

can happen to be a term of the sum (this happens when
n = 2), which necessitates a separate argument.]
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10.70. Solution to Exercise 2.15.2
Solution to Exercise 2.15.2. From u ≡ v mod p− 1, we obtain v ≡ u mod p− 1. Likewise, the
congruence au ≡ av mod p, which we need to prove, is clearly equivalent to av ≡ au mod p.
Hence, the numbers u and v play symmetric roles in Exercise 2.15.2. Thus, we can WLOG
assume that u ≤ v (since otherwise, we can simply swap u with v). Assume this.

We have v ≡ u mod p− 1. In other words, p− 1 | v− u. Thus, there exists an integer c
such that v− u = (p− 1) c. Consider this c. Thus, (p− 1) c = v− u︸︷︷︸

≤v

≥ v− v = 0. But

p > 1 (since p is a prime), thus p− 1 > 0. Hence, we can divide the inequality (p− 1) c ≥ 0
by p− 1, and obtain c ≥ 0. Hence, c ∈N.

Now, Theorem 2.15.1 (a) yields ap−1 ≡ 1 mod p. We can take this congruence to the c-th
power (since c ∈ N), and obtain

(
ap−1)c ≡ 1c = 1 mod p. But

(
ap−1)c

= a(p−1)c = av−u

(since (p− 1) c = v− u). Hence, av−u =
(
ap−1)c ≡ 1 mod p. Multiplying this congruence

by the obvious congruence au ≡ au mod p, we obtain av−uau ≡ 1au = au mod p. Hence,
au ≡ av−uau = a(v−u)+u = av mod p. This solves Exercise 2.15.2.

10.71. Solution to Exercise 2.15.4
Solution to Exercise 2.15.4. Theorem 2.15.7 yields

(p− 1)! ≡ −1 ≡ p− 1 mod p

(since p− 1 ≡ −1 mod p). In other words, p | (p− 1)!− (p− 1).
On the other hand, p > 1 (since p is a prime). Now, the definition of (p− 1)! yields

(p− 1)! = 1 · 2 · · · · · (p− 1) = (1 · 2 · · · · · (p− 2)) · (p− 1) .

Subtracting p− 1 from both sides of this equality, we obtain

(p− 1)!− (p− 1) = (1 · 2 · · · · · (p− 2)) · (p− 1)− (p− 1)
= (1 · 2 · · · · · (p− 2)− 1) · (p− 1)
= (p− 1) · (1 · 2 · · · · · (p− 2)− 1) .

Hence, p− 1 | (p− 1)!− (p− 1) (since 1 · 2 · · · · · (p− 2)− 1 is an integer).
Now, it is easy to see that p− 1 ⊥ p 284. Furthermore, recall that p− 1 | (p− 1)!−

(p− 1) and p | (p− 1)!− (p− 1). Hence, Theorem 2.10.7 (applied to a = p− 1, b = p and

284Proof. Proposition 2.9.7 (c) (applied to a = p − 1, b = 1 and u = 1) yields
gcd (p− 1, 1 (p− 1) + 1) = gcd (p− 1, 1). But Proposition 2.9.7 (f) (applied to a = p − 1 and
b = 1) yields gcd (p− 1, 1) | p− 1 and gcd (p− 1, 1) | 1. Since gcd (p− 1, 1) is a nonnegative
integer satisfying gcd (p− 1, 1) | 1, we obtain gcd (p− 1, 1) = 1 (by Exercise 2.2.5, applied to
g = gcd (p− 1, 1)). Hence,

gcd

p− 1, p︸︷︷︸
=1(p−1)+1

 = gcd (p− 1, 1 (p− 1) + 1) = gcd (p− 1, 1) = 1.

In other words, p− 1 ⊥ p.
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c = (p− 1)!− (p− 1)) yields

(p− 1) p | (p− 1)!− (p− 1) . (425)

But Proposition 2.10.12 (applied to n = p− 1) yields

1 + 2 + · · ·+ (p− 1) =
(p− 1) ((p− 1) + 1)

2
=

(p− 1) p
2

.

Hence, (p− 1) p = (1 + 2 + · · ·+ (p− 1)) · 2, so that

1 + 2 + · · ·+ (p− 1) | (p− 1) p | (p− 1)!− (p− 1)

(by (425)). In other words, (p− 1)! ≡ p− 1 mod 1 + 2 + · · ·+ (p− 1). This solves Exercise
2.15.4.

10.72. Solution to Exercise 2.15.5
Solution to Exercise 2.15.5. From p = 2k + 1, we obtain p − 1 = 2k. But Theorem 2.15.7
yields (p− 1)! ≡ −1 mod p. In view of p− 1 = 2k, this rewrites as (2k)! ≡ −1 mod p.

But the definition of (2k)! yields

(2k)! = 1 · 2 · · · · · (2k) =
2k

∏
j=1

j =

(
k

∏
j=1

j

)
·
(

2k

∏
j=k+1

j

)
(426)

(here, we have split the product at j = k, because 0 ≤ k ≤ 2k). But
k

∏
j=1

j = 1 · 2 · · · · · k = k!

(by the definition of k!). Furthermore

2k

∏
j=k+1

j =
p−(k+1)

∏
j=p−2k

(p− j)
(

here, we have substituted p− j
for j in the product

)

=
k

∏
j=1

(p− j)︸ ︷︷ ︸
≡−j mod p


since p︸︷︷︸

=2k+1

−2k = (2k + 1)− 2k = 1

and p︸︷︷︸
=2k+1

− (k + 1) = (2k + 1)− (k + 1) = k


≡

k

∏
j=1

(−j)mod p.
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(Here, the last congruence sign is a consequence of (9)285.) Thus,

2k

∏
j=k+1

j ≡
k

∏
j=1

(−j) = (−1)k
k

∏
j=1

j︸︷︷︸
=k!

= (−1)k · k! mod p.

Hence, (426) becomes

(2k)! =

(
k

∏
j=1

j

)
︸ ︷︷ ︸

=k!

·
(

2k

∏
j=k+1

j

)
︸ ︷︷ ︸
≡(−1)k ·k! mod p

≡ k! · (−1)k · k! = k!2 · (−1)k mod p.

Therefore,
k!2 · (−1)k ≡ (2k)! ≡ −1 mod p.

Multiplying this congruence by the obvious congruence (−1)k ≡ (−1)k mod p, we find

k!2 · (−1)k · (−1)k ≡ (−1) · (−1)k = − (−1)k mod p.

In view of
k!2 · (−1)k · (−1)k︸ ︷︷ ︸

=(−1)k+k=1
(since k+k=2k is even)

= k!2,

this rewrites as k!2 ≡ − (−1)k mod p. This solves Exercise 2.15.5.

10.73. Solution to Exercise 2.16.1
Solution to Exercise 2.16.1. We assumed that the integers n1, n2, . . . , nk are mutually coprime.
In other words, we have

ni ⊥ nj for all i, j ∈ {1, 2, . . . , k} satisfying i 6= j. (427)

We claim that
φ (n1n2 · · · ni) = φ (n1) · φ (n2) · · · · · φ (ni) (428)

for each i ∈ {0, 1, . . . , k}.
[Proof of (428): We shall prove (428) by induction on i:

285In more detail: We have p− s ≡ −s mod p for each s ∈ {1, 2, . . . , k}. Hence, (9) (applied to n = p,
S = {1, 2, . . . , k}, as = p− s and bs = −s) yields ∏

s∈{1,2,...,k}
(p− s) ≡ ∏

s∈{1,2,...,k}
(−s)mod p. If we

rename the index s (of the product sign “ ∏
s∈{1,2,...,k}

”) as j on both sides of this congruence, then

we obtain ∏
j∈{1,2,...,k}

(p− j) ≡ ∏
j∈{1,2,...,k}

(−j)mod p. This rewrites as
k

∏
j=1

(p− j) ≡
k

∏
j=1

(−j)mod p

(since the product sign ∏
j∈{1,2,...,k}

is equivalent to the product sign
k

∏
j=1

).



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 646

Induction base: It is easy to see that φ (1) = 1 286. But applying the map φ to the equality
n1n2 · · · n0 = (empty product) = 1, we obtain

φ (n1n2 · · · n0) = φ (1) = 1.

Comparing this with φ (n1) ·φ (n2) · · · · ·φ (n0) = (empty product) = 1, we obtain φ (n1n2 · · · n0) =
φ (n1) · φ (n2) · · · · · φ (n0). In other words, (428) holds for i = 0. This completes the induc-
tion base.

Induction step: Let j ∈ {0, 1, . . . , k} be positive. Assume that (428) holds for i = j− 1. We
must prove that (428) holds for i = j.

For each i ∈ {1, 2, . . . , j− 1}, we have i ≤ j− 1 < j and thus i 6= j and therefore ni ⊥ nj
(by (427)). Hence, Exercise 2.10.2 (applied to j − 1, nj and

(
n1, n2, . . . , nj−1

)
instead of k,

c and (a1, a2, . . . , ak)) yields n1n2 · · · nj−1 ⊥ nj. In other words, the two positive integers
n1n2 · · · nj−1 and nj are coprime. Therefore, Theorem 2.14.4 yields

φ
((

n1n2 · · · nj−1
)

nj
)
= φ

(
n1n2 · · · nj−1

)
· φ
(
nj
)

.

But we have assumed that (428) holds for i = j− 1. In other words, we have

φ
(
n1n2 · · · nj−1

)
= φ (n1) · φ (n2) · · · · · φ

(
nj−1

)
. (429)

Now,

φ

 n1n2 · · · nj︸ ︷︷ ︸
=(n1n2···nj−1)nj

 = φ
((

n1n2 · · · nj−1
)

nj
)
= φ

(
n1n2 · · · nj−1

)︸ ︷︷ ︸
=φ(n1)·φ(n2)·····φ(nj−1)

·φ
(
nj
)

=
(
φ (n1) · φ (n2) · · · · · φ

(
nj−1

))
· φ
(
nj
)

= φ (n1) · φ (n2) · · · · · φ
(
nj
)

.

In other words, (428) holds for i = j. This completes the induction step. Hence, the
induction proof of (428) is complete.]

Now, (428) (applied to i = k) yields φ (n1n2 · · · nk) = φ (n1) · φ (n2) · · · · · φ (nk). This
solves Exercise 2.16.1.

286Proof. We have 1 | 1. Hence, Proposition 2.9.7 (i) (applied to 1 and 1 instead of a and b) yields
gcd (1, 1) = |1| = 1. Hence, 1 ⊥ 1. Thus, 1 is an i ∈ {1, 2, . . . , 1} satisfying i ⊥ 1. In other words,
1 is an element of the set {i ∈ {1, 2, . . . , 1} | i ⊥ 1}. Since 1 is the only element of this set
(because every element of {i ∈ {1, 2, . . . , 1} | i ⊥ 1} must belong to the set {1, 2, . . . , 1} = {1}
and thus must equal to 1), we can thus conclude that {i ∈ {1, 2, . . . , 1} | i ⊥ 1} = {1}.

But the equality (55) (applied to n = 1) yields

φ (1) =

∣∣∣∣∣∣∣{i ∈ {1, 2, . . . , 1} | i ⊥ 1}︸ ︷︷ ︸
={1}

∣∣∣∣∣∣∣ = |{1}| = 1.
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10.74. Solution to Exercise 2.16.2
Solution to Exercise 2.16.2. Exercise 2.16.1 and Exercise 2.16.2 say the same thing: They say
that applying the function φ to a product of finitely many mutually coprime positive in-
tegers yields the same result as applying φ to each of these integers separately and then
taking the product. The difference between these two exercises is merely how the prod-
uct is indexed. Thus, deriving Exercise 2.16.2 from Exercise 2.16.1 is merely a matter of
bookkeeping (and this is pretty much the same sort of bookkeeping that we used to derive
Exercise 2.10.5 from Exercise 2.10.2 above). Let us do this bookkeeping:

The set I is finite; thus, we can define some k ∈N by k = |I|. Consider this k. There exists
a bijection f : {1, 2, . . . , k} → I (since k = |I|). Pick such an f . Thus, f (1) , f (2) , . . . , f (k)
are the k elements of I; hence, n f (1), n f (2), . . . , n f (k) are k positive integers. Moreover, these
k integers n f (1), n f (2), . . . , n f (k) are mutually coprime287. Hence, Exercise 2.16.1 (applied to

n f (i) instead of ni) yields φ
(

n f (1)n f (2) · · · n f (k)

)
= φ

(
n f (1)

)
· φ
(

n f (2)

)
· · · · · φ

(
n f (k)

)
.

The map f : {1, 2, . . . , k} → I is a bijection. Hence, we can substitute f (j) for i in the
product ∏

i∈I
ni. We thus find

∏
i∈I

ni = ∏
j∈{1,2,...,k}

n f (j) =
k

∏
j=1

n f (j) = n f (1)n f (2) · · · n f (k).

Applying the map φ to both sides of this equality, we obtain

φ

(
∏
i∈I

ni

)
= φ

(
n f (1)n f (2) · · · n f (k)

)
= φ

(
n f (1)

)
· φ
(

n f (2)

)
· · · · · φ

(
n f (k)

)
=

k

∏
j=1

φ
(

n f (j)

)
= ∏

j∈{1,2,...,k}
φ
(

n f (j)

)
= ∏

i∈I
φ (ni)

(here, we have substituted i for f (j) in the product, since the map f : {1, 2, . . . , k} → I is a
bijection). This solves Exercise 2.16.2.

10.75. Solution to Exercise 2.16.3
Solution to Exercise 2.16.3. The integer n is positive and thus nonzero. Hence, vp (n) ∈ N

for each prime p.
We shall next prove that

an ≡ an−φ(n) mod pvp(n) for every prime p. (430)

287Proof. Let x and y be two distinct elements of {1, 2, . . . , k}. We claim that n f (x) ⊥ n f (y).
Indeed, the map f is a bijection, and thus is injective. But x and y are distinct; thus, x 6= y.

Therefore, f (x) 6= f (y) (since f is injective). Hence, f (x) and f (y) are two distinct elements of
I. Thus, (76) (applied to i = f (x) and j = f (y)) yields n f (x) ⊥ n f (y).

Now, forget that we fixed x and y. We thus have proven that every two distinct elements x
and y of {1, 2, . . . , k} satisfy n f (x) ⊥ n f (y). In other words, the k integers n f (1), n f (2), . . . , n f (k) are
mutually coprime.
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Once this congruence is proven, the claim of Exercise 2.16.3 will easily follow using Exercise
2.13.9.

[Proof of (430): Let p be a prime. Then, p > 1. Hence, p 6= 1, and the integer p is positive.
Also, Lemma 2.13.27 (a) shows that there exists a nonzero integer u such that u ⊥ p and
n = upvp(n). Consider this u.

We have vp (n) ∈ N (since n is nonzero). Thus, we can define r ∈ N by r = vp (n).
Consider this r. Note that pr is nonzero (since p is positive and thus nonzero).

We have n = upvp(n) = upr (since vp (n) = r). Solving this equation for u, we obtain
u = n/pr (since pr is nonzero). Thus, u is positive (since both n and p are positive).

Now, we claim that

upi − φ
(

upi
)
≥ i for each i ∈N. (431)

Let us give three proofs of this inequality:

• [First proof of (431): We shall prove (431) by induction on i:

Induction base: Exercise 2.14.2 (b) (applied to u instead of n) yields u − φ (u) ≥ 0.

Now, u p0︸︷︷︸
=1

−φ

u p0︸︷︷︸
=1

 = u − φ (u) ≥ 0. In other words, (431) holds for i = 0.

This completes the induction base.

Induction step: Let j be a positive integer. Assume that (431) holds for i = j− 1. We
must prove that (431) holds for i = j.

We have assumed that (431) holds for i = j − 1. In other words, we have upj−1 −
φ
(
upj−1) ≥ j− 1.

We have j − 1 ∈ N (since j is a positive integer); hence, pj−1 is an integer. Thus,
upj−1 is an integer. Clearly, upj−1 | upj (since upj = upj−1 p); thus, upj−1 is a divisor

of upj. Also, upj−1 is positive288 and satisfies upj−1 6= upj (since
upj

upj−1 = p 6=

1). Hence, Exercise 2.14.2 (d) (applied to upj−1 and upj instead of d and n) yields
upj−1 − φ

(
upj−1) < upj − φ

(
upj). Hence,

upj − φ
(

upj
)
> upj−1 − φ

(
upj−1

)
≥ j− 1.

Since upj − φ
(
upj) and j− 1 are integers, this leads to

upj − φ
(

upj
)
≥ (j− 1) + 1 = j.

In other words, (431) holds for i = j. This completes the induction step. Hence, (431)
is proven by induction.]

• [Second proof of (431) (sketched): Let j ∈N. We shall show that upj − φ
(
upj) ≥ j.

Recall that u is a positive integer. Hence, u ≥ 1 and thus u︸︷︷︸
≥1

pj ≥ pj (since pj is a

positive integer); in other words, pj ≤ upj. Also, from p > 1, we obtain p1 < p2 <
· · · < pj. Hence, the j integers p1, p2, . . . , pj are distinct.

288since u and p are positive
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On the other hand, it is easy to see that{
p1, p2, . . . , pj

}
⊆
{

i ∈
{

1, 2, . . . , upj
}
| we don’t have i ⊥ upj

}
289. Hence,∣∣∣{p1, p2, . . . , pj

}∣∣∣ ≤ ∣∣∣{i ∈
{

1, 2, . . . , upj
}
| we don’t have i ⊥ upj

}∣∣∣ . (432)

But Exercise 2.14.2 (a) (applied to upj instead of n) yields

upj − φ
(

upj
)
=
∣∣∣{i ∈

{
1, 2, . . . , upj

}
| we don’t have i ⊥ upj

}∣∣∣
≥
∣∣∣{p1, p2, . . . , pj

}∣∣∣ (by (432))

= j
(

since the j integers p1, p2, . . . , pj are distinct
)

.

Now, forget that we fixed j. We thus have proven that upj − φ
(
upj) ≥ j for each

j ∈N. Renaming j as i in this statement, we conclude that upi − φ
(
upi) ≥ i for each

i ∈N. Thus, (431) is proven.]

• [Third proof of (431): The following proof is a typical estimation argument (the kind
you see in analysis).

Fix i ∈ N. We must prove that upi − φ
(
upi) ≥ i. This is obvious in the case when

i = 0 (because Exercise 2.14.2 (b) (applied to up0 instead of n) yields up0− φ
(
up0) ≥

0). Hence, for the rest of this proof, we WLOG assume that i 6= 0. Hence, i is a

289Proof. Let s ∈ {1, 2, . . . , j}. Thus, s ≥ 1 and s ≤ j. From s ≥ 1, we conclude that ps is a positive
integer. Moreover, from s ≥ 1, we obtain ps ≥ p1 (since p > 1), thus ps ≥ p1 = p > 1. From
s ≤ j, we obtain ps ≤ pj (since p > 1) and thus ps ≤ pj ≤ upj. Thus, ps ∈

{
1, 2, . . . , upj} (since

ps is a positive integer). Furthermore, from s ≤ j, we obtain ps | pj (by Exercise 2.2.4, applied to
p, s and j instead of n, a and b). Thus, ps | pj | upj (since u is an integer). Hence, Proposition
2.9.7 (i) (applied to ps and upj instead of a and b) yields gcd

(
ps, upj) = |ps| = ps (since ps is

positive). But p > 1, so that ps > 1 and thus ps 6= 1. Hence, gcd
(

ps, upj) = ps 6= 1. In other
words, we don’t have ps ⊥ upj.

So we have shown that ps is an element of
{

1, 2, . . . , upj} (since ps ∈
{

1, 2, . . . , upj}) with the
property that we don’t have ps ⊥ upj. In other words, ps is an i ∈

{
1, 2, . . . , upj} such that we

don’t have i ⊥ upj. In other words,

ps ∈
{

i ∈
{

1, 2, . . . , upj
}
| we don’t have i ⊥ upj

}
.

Now, forget that we fixed s. We thus have proven that

ps ∈
{

i ∈
{

1, 2, . . . , upj
}
| we don’t have i ⊥ upj

}
for each s ∈ {1, 2, . . . , j}. In other words,{

p1, p2, . . . , pj
}
⊆
{

i ∈
{

1, 2, . . . , upj
}
| we don’t have i ⊥ upj

}
,

qed.
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positive integer (since i ∈ N). Therefore, Exercise 2.14.1 (applied to k = i) yields
φ
(

pi) = (p− 1) pi−1. Hence,

pi︸︷︷︸
=ppi−1

− φ
(

pi
)

︸ ︷︷ ︸
=(p−1)pi−1

= ppi−1 − (p− 1) pi−1 = pi−1. (433)

Also, i − 1 ∈ N (since i is a positive integer). Hence, Exercise 2.13.4 (applied to
k = i− 1) yields pi−1 > i− 1. Since pi−1 and i− 1 are integers (because i− 1 ∈ N),
this leads to pi−1 ≥ (i− 1) + 1 = i.

Note that u is a positive integer. Thus, u ≥ 1. Exercise 2.14.2 (b) (applied to u instead
of n) yields u− φ (u) ≥ 0. In other words, φ (u) ≤ u. Furthermore, pi is a positive
integer; thus, φ

(
pi) ≥ 0 (because clearly, φ (m) ≥ 0 for every positive integer m).

But u ⊥ p. Hence, Exercise 2.10.4 (applied to u, p, 1 and i instead of a, b, n and m)
yields u1 ⊥ pi (since i ∈ N). In other words, u ⊥ pi (since u1 = u). In other words,
the integers u and pi are coprime. Thus, Theorem 2.14.4 (applied to u and pi instead
of m and n) yields φ

(
upi) = φ (u) · φ

(
pi) (since u and pi are positive integers). Thus,

φ
(

upi
)
= φ (u)︸ ︷︷ ︸

≤u

·φ
(

pi
)
≤ u · φ

(
pi
) (

since φ
(

pi
)
≥ 0

)
.

Hence,

upi − φ
(

upi
)

︸ ︷︷ ︸
≤u·φ(pi)

≥ upi − u · φ
(

pi
)
= u ·

(
pi − φ

(
pi
))

︸ ︷︷ ︸
=pi−1

(by (433))

= u︸︷︷︸
≥1

pi−1

≥ 1pi−1
(

since pi−1 ≥ 0
)

= pi−1 ≥ i.

Thus, (431) is proven again.]

Now, we can apply (431) to i = r (since r ∈N). We thus obtain upr− φ (upr) ≥ r. Hence,

n︸︷︷︸
=upr

−φ

 n︸︷︷︸
=upr

 = upr − φ (upr) ≥ r. (434)

Now, we are in one of the following two cases:
Case 1: We have p | a.
Case 2: We don’t have p | a.
Let us first consider Case 1. In this case, p | a. Now, (434) yields n − φ (n) ≥ r ≥ 0

(since r ∈ N). Hence, n − φ (n) ∈ N and r ∈ N. From n − φ (n) ≥ r, we also obtain
r ≤ n− φ (n). Hence, Exercise 2.2.4 (applied to p, r and n− φ (n) instead of n, a and b)
yields pr | pn−φ(n). But p | a. Hence, Exercise 2.2.6 (applied to p, a and n− φ (n) instead of
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a, b and k) yields pn−φ(n) | an−φ(n) (since n− φ (n) ∈ N). Hence, pr | pn−φ(n) | an−φ(n); in
other words, an−φ(n) ≡ 0 mod pr. Now,

an = aφ(n)+(n−φ(n)) = aφ(n) an−φ(n)︸ ︷︷ ︸
≡0 mod pr

(since n− φ (n) ∈N)

≡ 0 ≡ an−φ(n) mod pr
(

since an−φ(n) ≡ 0 mod pr
)

.

This rewrites as an ≡ an−φ(n) mod pvp(n) (since r = vp (n)). Hence, (430) is proven in Case 1.
Let us now consider Case 2. In this case, we don’t have p | a. But Proposition 2.13.5

yields that either p | a or p ⊥ a. Hence, p ⊥ a (since we don’t have p | a). Due to
Proposition 2.10.4, this leads to a ⊥ p. Thus, Exercise 2.10.4 (applied to p, 1 and r instead
of b, n and m) yields a1 ⊥ pr (since r ∈ N). In other words, a ⊥ pr (since a1 = a). In
other words, a is coprime to pr. Hence, Theorem 2.15.3 (applied to pr instead of n) yields
aφ(pr) ≡ 1 mod pr.

But u ⊥ p. Hence, Exercise 2.10.4 (applied to u, p, 1 and r instead of a, b, n and m) yields
u1 ⊥ pr (since r ∈ N). In other words, u ⊥ pr (since u1 = u). In other words, the integers
u and pr are coprime. Thus, Theorem 2.14.4 (applied to u and pr instead of m and n) yield
φ (upr) = φ (u) · φ (pr) (since u and pr are positive integers). Now, applying the map φ to
both sides of the equality n = upr, we obtain φ (n) = φ (upr) = φ (u) ·φ (pr) = φ (pr) ·φ (u).
Hence,

aφ(n) = aφ(pr)·φ(u) =

 aφ(pr)︸ ︷︷ ︸
≡1 mod pr

φ(u)

≡ 1φ(u) = 1 mod pr.

Hence,

an = aφ(n)+(n−φ(n)) = aφ(n)︸︷︷︸
≡1 mod pr

an−φ(n) (since n− φ (n) ∈N)

≡ an−φ(n) mod pr.

This rewrites as an ≡ an−φ(n) mod pvp(n) (since r = vp (n)). Therefore, (430) is proven in
Case 2.

We have thus shown (430) in both Cases 1 and 2. These cases cover all possibilities, and
so (430) is always proven.]

Hence, Exercise 2.13.9 (applied to an and an−φ(n) instead of a and b) yields an ≡ an−φ(n) mod n.
This solves Exercise 2.16.3.

10.76. Solution to Exercise 2.17.1
Solution to Exercise 2.17.1. A product of k consecutive integers always has the form
(a + 1) (a + 2) · · · (a + k) for some a ∈ Z. Thus, we must prove that (a + 1) (a + 2) · · · (a + k)
is divisible by k! for each a ∈ Z.

Let a ∈ Z. We must prove that (a + 1) (a + 2) · · · (a + k) is divisible by k!.

Proposition 2.17.12 (applied to n = a + k) yields that
(

a + k
k

)
is an integer. Now, the
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definition of
(

a + k
k

)
yields

(
a + k

k

)
=

(a + k) (a + k− 1) (a + k− 2) · · · (a + k− k + 1)
k!

.

Multiplying both sides of this equality by k!, we find

k!
(

a + k
k

)
= (a + k) (a + k− 1) (a + k− 2) · · · (a + k− k + 1)

= (a + k) (a + k− 1) (a + k− 2) · · · (a + 1)
= (a + 1) (a + 2) · · · (a + k)

(here, we have reversed the order of the factors in the product). Thus, (a + 1) (a + 2) · · · (a + k) =

k!
(

a + k
k

)
. Since

(
a + k

k

)
is an integer, this equality yields that (a + 1) (a + 2) · · · (a + k) is

divisible by k!. This solves Exercise 2.17.1.

10.77. Solution to Exercise 2.17.2
Solution to Exercise 2.17.2. (a) Let n ∈ N. Let k be a positive integer. Theorem 2.6.1
(applied to n and k instead of u and n) shows that there exists a unique pair (q, r) ∈
Z×{0, 1, . . . , k− 1} such that n = qk+ r. Consider this pair. Then, n//k = q (by the defini-
tion of n//k). From (q, r) ∈ Z× {0, 1, . . . , k− 1}, we obtain q ∈ Z and r ∈ {0, 1, . . . , k− 1}.
From r ∈ {0, 1, . . . , k− 1}, we obtain r ≥ 0 and r ≤ k − 1. From n = qk + r, we ob-
tain qk = n︸︷︷︸

≥0

−r ≥ − r︸︷︷︸
≤k−1<k

> −k = (−1) k. If we had q ≤ −1, then we would have

q︸︷︷︸
≤−1

k ≤ (−1) k (since k is positive), which would contradict qk > (−1) k. Thus, we cannot

have q ≤ −1. Hence, q > −1. Therefore, q ≥ 0 (since q ∈ Z). Also, n = qk + r︸︷︷︸
≥0

≥ qk and

n = qk + r︸︷︷︸
≤k−1<k

< qk + k = (q + 1) k.

We have 1 < 2 < · · · < q. Since k is positive, we can multiply this chain of inequalities by
k, and obtain 1k < 2k < · · · < qk. Thus, the q numbers 1k, 2k, . . . , qk are distinct; therefore,

|{1k, 2k, . . . , qk}| = q.

We now shall show the following:

Claim 1: We have

{i ∈ {1, 2, . . . , n} satisfying k | i} = {1k, 2k, . . . , qk} .

(We are writing the word “satisfying” out, since the “|” symbol is already being
used for divisibility here.)

[Proof of Claim 1: Let j ∈ {i ∈ {1, 2, . . . , n} satisfying k | i}. We shall show that j ∈
{1k, 2k, . . . , qk}.
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Indeed, we have j ∈ {i ∈ {1, 2, . . . , n} satisfying k | i}. In other words, j is an element
of {1, 2, . . . , n} satisfying k | j. From k | j, we conclude that there exists an integer c such
that j = kc. Consider this c. From j ∈ {1, 2, . . . , n}, we obtain j ≥ 1 and j ≤ n. Now,
ck = kc = j ≤ n < (q + 1) k. We can divide this inequality by k (since k is positive) and
thus obtain c < q + 1. Hence, c ≤ q (since c and q are integers).

Also, ck = kc = j ≥ 1 > 0. We can divide this inequality by k (since k is positive)
and thus obtain c > 0. Hence, c ≥ 1 (since c is an integer). Combining this with c ≤ q,
we obtain c ∈ {1, 2, . . . , q} (since c is an integer) and thus ck ∈ {1k, 2k, . . . , qk}. Hence,
j = kc = ck ∈ {1k, 2k, . . . , qk}.

Now, forget that we fixed j. We thus have proven that j ∈ {1k, 2k, . . . , qk} for each
j ∈ {i ∈ {1, 2, . . . , n} satisfying k | i}. In other words,

{i ∈ {1, 2, . . . , n} satisfying k | i} ⊆ {1k, 2k, . . . , qk} . (435)

On the other hand, let h ∈ {1k, 2k, . . . , qk}. We shall show that
h ∈ {i ∈ {1, 2, . . . , n} satisfying k | i}.

Indeed, h ∈ {1k, 2k, . . . , qk}. In other words, h = dk for some d ∈ {1, 2, . . . , q}. Consider
this d. From d ∈ {1, 2, . . . , q}, we obtain d ≥ 1 and d ≤ q. We can multiply the inequality
d ≥ 1 by k (since k is positive) and thus obtain dk ≥ 1k = k ≥ 1 (since k is a positive
integer). Also, we can multiply the inequality d ≤ q by k (since k is positive) and thus
obtain dk ≤ qk ≤ n (since n ≥ qk). Combining this with dk ≥ 1, we obtain dk ∈ {1, 2, . . . , n}
(since dk is an integer). In other words, h ∈ {1, 2, . . . , n} (since h = dk). Moreover, k | h
(since h = dk = kd). Hence, h is an i ∈ {1, 2, . . . , n} satisfying k | i (since h ∈ {1, 2, . . . , n}
and k | h). In other words, h ∈ {i ∈ {1, 2, . . . , n} satisfying k | i}.

Now, forget that we fixed h. We thus have proven that h ∈ {i ∈ {1, 2, . . . , n} satisfying k | i}
for each h ∈ {1k, 2k, . . . , qk}. In other words,

{1k, 2k, . . . , qk} ⊆ {i ∈ {1, 2, . . . , n} satisfying k | i} .

Combining this with (435), we obtain {i ∈ {1, 2, . . . , n} satisfying k | i} = {1k, 2k, . . . , qk}.
This proves Claim 1.]

Now,

n

∑
i=1

[k | i] = ∑
i∈{1,2,...,n}

[k | i] = ∑
i∈{1,2,...,n};

k|i

[k | i]︸ ︷︷ ︸
=1

(since k|i)

+ ∑
i∈{1,2,...,n};

we don’t have k|i

[k | i]︸ ︷︷ ︸
=0

(since we don’t have k|i)

(since each i ∈ {1, 2, . . . , n} either satisfies k | i or does not)

= ∑
i∈{1,2,...,n};

k|i

1 + ∑
i∈{1,2,...,n};

we don’t have k|i

0

︸ ︷︷ ︸
=0

= ∑
i∈{1,2,...,n};

k|i

1

= (the number of all i ∈ {1, 2, . . . , n} satisfying k | i) · 1
= (the number of all i ∈ {1, 2, . . . , n} satisfying k | i)
= |{i ∈ {1, 2, . . . , n} satisfying k | i}|
= |{1k, 2k, . . . , qk}| (by Claim 1)
= q = n//k.
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In other words, n//k =
n
∑

i=1
[k | i]. This solves Exercise 2.17.2 (a).

(b) Let p be a prime. Let n be a nonzero integer.
Then, vp (n) is the largest m ∈ N such that pm | n (by Definition 2.13.23 (a)). Hence,

vp (n) ∈ N. Thus,
{

1, 2, . . . , vp (n)
}

is a finite set and has size
∣∣{1, 2, . . . , vp (n)

}∣∣ = vp (n).
Every i ∈

{
1, 2, . . . , vp (n)

}
satisfies [

pi | n
]
= 1 (436)

290. Moreover, every positive integer i satisfying i > vp (n) satisfies[
pi | n

]
= 0 (437)

291. Hence, all but finitely many positive integers i satisfy
[
pi | n

]
= 0 (since all but finitely

many positive integers i satisfy i > vp (n)). In other words, all but finitely many addends
of the sum ∑

i≥1

[
pi | n

]
are zero. In other words, this sum has only finitely many nonzero

addends. Hence, this sum is well-defined.
Now, we can split this sum at i = vp (n) (since vp (n) ≥ 0), and thus obtain

∑
i≥1

[
pi | n

]
=

vp(n)

∑
i=1

[
pi | n

]
︸ ︷︷ ︸

=1
(by (436))

+ ∑
i>vp(n)

[
pi | n

]
︸ ︷︷ ︸

=0
(by (437))

=
vp(n)

∑
i=1

1+ ∑
i>vp(n)

0︸ ︷︷ ︸
=0

=
vp(n)

∑
i=1

1 = vp (n) · 1 = vp (n) .

In other words, vp (n) = ∑
i≥1

[
pi | n

]
. This solves Exercise 2.17.2 (b).

(c) Let p be a prime. Let n ∈N. For every positive integer m, we have

vp (m) = ∑
i≥1

[
pi | m

] (
by Exercise 2.17.2 (b),

applied to m instead of n

)
= ∑

j≥1

[
pj | m

]
(438)

(here, we have renamed the summation index i as j). Note that the sum ∑
j≥1

[
pj | m

]
on

the right hand side of this equality is well-defined, i.e., has only finitely many nonzero
addends.

Corollary 2.13.29 (applied to k = n and ai = i) yields

vp (1 · 2 · · · · · n) = vp (1) + vp (2) + · · ·+ vp (n) =
n

∑
m=1

vp (m) .

290Proof. Let i ∈
{

1, 2, . . . , vp (n)
}

. Thus, i is a positive integer satisfying i ≤ vp (n). Hence, vp (n) ≥
i. But Lemma 2.13.25 shows that pi | n if and only if vp (n) ≥ i. Thus, we have pi | n (since we
have vp (n) ≥ i). Therefore,

[
pi | n

]
= 1, qed.

291Proof. Let i be a positive integer satisfying i > vp (n). We must prove that
[
pi | n

]
= 0.

We have i > vp (n). Thus, we don’t have vp (n) ≥ i. But Lemma 2.13.25 shows that pi | n
if and only if vp (n) ≥ i. Hence, we don’t have pi | n (since we don’t have vp (n) ≥ i). Thus,[

pi | n
]
= 0. Qed.
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In view of 1 · 2 · · · · · n = n!, this rewrites as

vp (n!) =
n

∑
m=1

vp (m)︸ ︷︷ ︸
= ∑

j≥1
[pj|m]

(by (438))

=
n

∑
m=1

∑
j≥1

[
pj | m

]
= ∑

j≥1

n

∑
m=1

[
pj | m

]
. (439)

(Here, we have interchanged the two summation signs “
n
∑

m=1
” and “ ∑

j≥1
”. This is legitimate,

since the first summation is finite whereas the second summation has already been proven
to be well-defined.) But each positive integer j satisfies

n//pj =
n

∑
i=1

[
pj | i

] (
by Exercise 2.17.2 (a), applied to k = pj

)
=

n

∑
m=1

[
pj | m

]
(440)

(here, we have renamed the summation index i as m). Thus, (439) becomes

vp (n!) = ∑
j≥1

n

∑
m=1

[
pj | m

]
︸ ︷︷ ︸

=n//pj

(by (440))

= ∑
j≥1

n//pj = ∑
i≥1

n//pi

(here, we have renamed the summation index j as i). This solves Exercise 2.17.2 (c).

(d) Second proof of Corollary 2.17.11. We must prove that
(

n
k

)
is a nonnegative integer. If

k /∈ N, then this holds (because if k /∈ N, then Definition 2.17.1 (b) yields
(

n
k

)
= 0). Thus,

for the rest of this proof, we WLOG assume that k ∈N.

If k > n, then we have
(

n
k

)
= 0 (by Theorem 2.17.4). Hence, if k > n, then

(
n
k

)
is

clearly a nonnegative integer. Thus, for the rest of this proof, we WLOG assume that we
don’t have k > n. Hence, k ≤ n. Therefore, n ≥ k and thus n− k ∈ N. Hence, Theorem
2.17.3 yields (

n
k

)
=

n!
k! (n− k)!

. (441)

This yields that the number
(

n
k

)
is positive (since the numbers n!, k! and (n− k)! are all

positive) and therefore nonnegative. It remains to prove that
(

n
k

)
is an integer.

Fix a prime p. We shall show that vp (k! (n− k)!) ≤ vp (n!). (This will then yield

k! (n− k)! | n!, and this will in turn yield the integrality of
(

n
k

)
by way of (441).)

Fix a positive integer i. Exercise 2.6.3 (b) (applied to k, n − k and pi instead of u, v
and n) yields (k + (n− k)) //pi − k//pi − (n− k) //pi ∈ {0, 1} ⊆ N. This rewrites as
n//pi − k//pi − (n− k) //pi ∈N (since k + (n− k) = n). Hence,

n//pi − k//pi − (n− k) //pi ≥ 0. (442)
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Now, forget that we fixed i. We thus have proven the inequality (442) for each positive
integer i.

Theorem 2.13.28 (a) (applied to a = k! and b = (n− k)!) yields

vp (k! (n− k)!) = vp (k!) + vp ((n− k)!) .

Hence,

vp (n!)− vp (k! (n− k)!)︸ ︷︷ ︸
=vp(k!)+vp((n−k)!)

= vp (n!)−
(
vp (k!) + vp ((n− k)!)

)
= vp (n!)︸ ︷︷ ︸

= ∑
i≥1

n//pi

(by Exercise 2.17.2 (c))

− vp (k!)︸ ︷︷ ︸
= ∑

i≥1
k//pi

(by Exercise 2.17.2 (c),
applied to k instead of n)

− vp ((n− k)!)︸ ︷︷ ︸
= ∑

i≥1
(n−k)//pi

(by Exercise 2.17.2 (c),
applied to n−k instead of n)

= ∑
i≥1

n//pi −∑
i≥1

k//pi −∑
i≥1

(n− k) //pi = ∑
i≥1

(
n//pi − k//pi − (n− k) //pi

)
︸ ︷︷ ︸

≥0
(by (442))

≥ ∑
i≥1

0 = 0.

In other words,
vp (k! (n− k)!) ≤ vp (n!) .

Now, forget that we fixed p. We thus have proven that each prime p satisfies vp (k! (n− k)!) ≤
vp (n!). But Proposition 2.13.35 (applied to k! (n− k)! and n! instead of n and m), we have
k! (n− k)! | n! if and only if each prime p satisfies vp (k! (n− k)!) ≤ vp (n!). Thus, we
have k! (n− k)! | n! (since each prime p satisfies vp (k! (n− k)!) ≤ vp (n!)). In other words,

n!
k! (n− k)!

is an integer (since k! (n− k)! 6= 0). In view of (441), this rewrites as follows:(
n
k

)
is an integer. Hence,

(
n
k

)
is a nonnegative integer (since we already know that

(
n
k

)
is nonnegative). Hence, Corollary 2.17.11 is proven again.

Thus, Exercise 2.17.2 (d) is solved.

10.78. Solution to Exercise 2.17.3
Solution to Exercise 2.17.3. Let me first informally present the idea of the solution, and af-
terwards make it into a rigorous proof.

The idea is the following: If we want to choose an m-element subset S of A satisfying
B ⊆ S, we cannot just arbitrarily pick m elements of A; this would fail to ensure that B ⊆ S.
Thus, a better method is to start by picking all the b elements of B, and then supplement
them with m− b further elements from A \ B (which can be picked at random). The only
choice we have in this procedure is which m− b elements of A \ B we pick in the second

step; this can be done in
(

a− b
m− b

)
many ways (because it is tantamount to choosing an

(m− b)-element subset of the (a− b)-element set A \ B; but Theorem 2.17.10 tells us that
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(
a− b
m− b

)
is the number of such subsets). Hence, the number of m-element subsets S of A

satisfying B ⊆ S is
(

a− b
m− b

)
.

Here is a formal version of this argument: We have |A| = a (since A is an a-element set)
and |B| = b (since B is a b-element set). But B is a subset of A; thus, |A \ B| = |A|︸︷︷︸

=a

− |B|︸︷︷︸
=b

=

a− b. In other words, A \ B is an (a− b)-element set. Thus, Theorem 2.17.10 (applied to

n = a− b, k = m− b and N = A \ B) yields that
(

a− b
m− b

)
is the number of (m− b)-element

subsets of A \ B. In other words,(
a− b
m− b

)
= (the number of (m− b) -element subsets of A \ B) . (443)

Now, let L be the set of all m-element subsets S of A satisfying B ⊆ S. Hence,

|L| = (the number of m-element subsets S of A satisfying B ⊆ S) . (444)

Furthermore, let K be the set of all (m− b)-element subsets of A \ B. Hence,

|K| = (the number of (m− b) -element subsets of A \ B)

=

(
a− b
m− b

)
(by (443)) . (445)

Now, we shall construct a bijection between K and L.
For each P ∈ L, we have P \ B ∈ K 292. Thus, we can define a map

f : L→ K,
P 7→ P \ B.

Consider this map f .
We intend to show that f is a bijection; for that purpose, let us construct its inverse.

292Proof. Let P ∈ L. Thus, P is an m-element subset S of A satisfying B ⊆ S (by the definition of L).
In other words, P is an m-element subset of A and satisfies B ⊆ P.

Now, P is a subset of A; thus, P \ B is a subset of A \ B. Moreover, |P| = m (since P is
an m-element set). From B ⊆ P, we obtain |P \ B| = |P|︸︷︷︸

=m

− |B|︸︷︷︸
=b

= m− b. Hence, P \ B is an

(m− b)-element set. Thus, P \ B is an (m− b)-element subset of A \ B. In other words, P \ B ∈ K
(by the definition of K). Qed.
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For each Q ∈ K, we have Q ∪ B ∈ L 293. Thus, we can define a map

g : K→ L,
Q 7→ Q ∪ B.

Consider this map g.
We have f ◦ g = id 294 and g ◦ f = id 295. These two equalities show that the maps f

and g are mutually inverse. Hence, the map f is invertible, i.e., bijective. Thus, there exists
a bijective map from L to K (namely, f ). Hence, |L| = |K|. Comparing this with (444), we
obtain

(the number of m-element subsets S of A satisfying B ⊆ S) = |K| =
(

a− b
m− b

)
(by (445)). Thus, Exercise 2.17.3 is rigorously solved.

10.79. Solution to Exercise 2.17.4
We shall give two solutions to Exercise 2.17.4: one using Lucas’s congruence (Theorem
2.17.20), and one using just basic properties of binomial coefficients. We start with the
former:

First solution to Exercise 2.17.4. We have p > 1 (since p is a prime). Thus, 0 ∈ {0, 1, . . . , p− 1}.

293Proof. Let Q ∈ K. Thus, Q is an (m− b)-element subset of A \ B (by the definition of K). Now, Q
is a subset of A \ B; hence, Q is a subset of A and is disjoint from B. (This follows from basic set
theory.)

Now we know that both sets Q and B are subsets of A. Hence, their union Q∪ B is a subset of
A as well. Furthermore, |Q| = m− b (since Q is an (m− b)-element set). Since Q is disjoint from
B, we have |Q ∪ B| = |Q|︸︷︷︸

=m−b

+ |B|︸︷︷︸
=b

= (m− b) + b = m. Thus, Q ∪ B is an m-element set. Hence,

Q ∪ B is an m-element subset of A and satisfies B ⊆ Q ∪ B (obviously). In other words, Q ∪ B is
an m-element subset S of A satisfying B ⊆ S. In other words, Q ∪ B ∈ L (by the definition of L).
Qed.

294Proof. Let Q ∈ K. Then, Q is an (m− b)-element subset of A \ B (by the definition of K). Now, Q
is a subset of A \ B; hence, Q is a subset of A and is disjoint from B. (This follows from basic set
theory.)

The definition of g yields g (Q) = Q∪ B. But the definition of f yields f (g (Q)) = g (Q)︸ ︷︷ ︸
=Q∪B

\B =

(Q ∪ B) \ B = Q \ B = Q (since Q is disjoint from B). Hence, ( f ◦ g) (Q) = f (g (Q)) = Q =
id (Q).

Now, forget that we fixed Q. We thus have shown that each Q ∈ K satisfies ( f ◦ g) (Q) =
id (Q). In other words, f ◦ g = id.

295Proof. Let P ∈ L. Thus, P is an m-element subset S of A satisfying B ⊆ S (by the definition of L).
In other words, P is an m-element subset of A and satisfies B ⊆ P.

The definition of f yields f (P) = P \ B. But the definition of g yields g ( f (P)) = f (P)︸ ︷︷ ︸
=P\B

∪B =

(P \ B) ∪ B = P (since B ⊆ P). Hence, (g ◦ f ) (P) = g ( f (P)) = P = id (P).
Now, forget that we fixed P. We thus have shown that (g ◦ f ) (P) = id (P) for each P ∈ L. In

other words, g ◦ f = id.
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(a) Theorem 2.17.20 (applied to a = 2, b = 1, c = 0 and d = 0) yields(
p · 2 + 0
p · 1 + 0

)
≡
(

2
1

)
︸︷︷︸
=2

(
0
0

)
︸︷︷︸
=1

= 2 · 1 = 2 mod p.

In view of p · 2 + 0 = 2p and p · 1 + 0 = p, this rewrites as
(

2p
p

)
≡ 2 mod p. This solves

Exercise 2.17.4 (a).
(b) Theorem 2.17.20 (applied to a = 1, b = 1, c = p− 1 and d = 0) yields(

p · 1 + (p− 1)
p · 1 + 0

)
≡
(

1
1

)
︸︷︷︸
=1

(
p− 1

0

)
︸ ︷︷ ︸

=1

= 1 · 1 = 1 mod p.

In view of p · 1 + (p− 1) = 2p− 1 and p · 1 + 0 = p, this rewrites as
(

2p− 1
p

)
≡ 1 mod p.

This solves Exercise 2.17.4 (b).
(c) Let k ∈ {1, 2, . . . , p− 1}. Thus, k − 1 ∈ {0, 1, . . . , p− 2} ⊆ {0, 1, . . . , p− 1} and k ∈

{1, 2, . . . , p− 1} ⊆ {0, 1, . . . , p− 1}. Hence, Theorem 2.17.20 (applied to a = 1, b = 0,
c = k− 1 and d = k) yields(

p · 1 + (k− 1)
p · 0 + k

)
≡
(

1
0

)
︸︷︷︸
=1

(
k− 1

k

)
=

(
k− 1

k

)
mod p.

In view of p · 1 + (k− 1) = p− 1 + k and p · 0 + k = k, this rewrites as(
p− 1 + k

k

)
≡
(

k− 1
k

)
mod p. (446)

But Theorem 2.17.4 (applied to n = k− 1) yields
(

k− 1
k

)
= 0 (since k− 1 ∈ {0, 1, . . . , p− 1} ⊆

N and k > k− 1). Hence, (446) becomes(
p− 1 + k

k

)
≡
(

k− 1
k

)
= 0 mod p.

This solves Exercise 2.17.4 (c).

Second solution to Exercise 2.17.4. We have p > 1 (since p is a prime). Thus, 0 ∈ {0, 1, . . . , p− 1}.
Furthermore, we have (p− 1)! ⊥ p 296.

296Proof. It is easy to derive this from Wilson’s theorem (Theorem 2.15.7), but let us give a more
elementary proof:

Each i ∈ {1, 2, . . . , p− 1} is coprime to p (by Proposition 2.13.4). In other words, each i ∈
{1, 2, . . . , p− 1} satisfies i ⊥ p. Hence, Exercise 2.10.2 (applied to c = p, k = p− 1 and ai = i)
shows that 1 · 2 · · · · · (p− 1) ⊥ p. This rewrites as (p− 1)! ⊥ p (since (p− 1)! = 1 · 2 · · · · ·
(p− 1)).
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(a) Theorem 2.17.9 (applied to n = 2p and k = p) yields

p
(

2p
p

)
= 2p

(
2p− 1
p− 1

)
.

We can cancel p from this equality (since p is nonzero); thus, we obtain(
2p
p

)
= 2

(
2p− 1
p− 1

)
. (447)

Now, p− 1 ∈N (since p > 1). Thus, the definition of
(

2p− 1
p− 1

)
yields

(
2p− 1
p− 1

)
=

(2p− 1) ((2p− 1)− 1) ((2p− 1)− 2) · · · ((2p− 1)− (p− 1) + 1)
(p− 1)!

.

Hence,

(p− 1)! ·
(

2p− 1
p− 1

)
= (2p− 1) ((2p− 1)− 1) ((2p− 1)− 2) · · · ((2p− 1)− (p− 1) + 1)

=
(p−1)−1

∏
i=0

((2p− 1)− i) =
p−1

∏
s=1

((2p− 1)− (p− 1− s))︸ ︷︷ ︸
=p+s

(here, we have substituted p− 1− s for i in the product)

=
p−1

∏
s=1

(p + s)︸ ︷︷ ︸
≡s mod p

≡
p−1

∏
s=1

s mod p

297. Thus,

(p− 1)! ·
(

2p− 1
p− 1

)
≡

p−1

∏
s=1

s = 1 · 2 · · · · · (p− 1) = (p− 1)! = (p− 1)! · 1 mod p.

Hence, Lemma 2.10.10 (applied to n = p, a = (p− 1)!, b =

(
2p− 1
p− 1

)
and c = 1) shows

that (
2p− 1
p− 1

)
≡ 1 mod p (448)

297Here is a detailed justification of the last “≡” sign in this computation: We have p + s ≡ s mod p
for each s ∈ {1, 2, . . . , p− 1}. Hence, (9) (applied to n = p, S = {1, 2, . . . , p− 1}, as = p + s and
bs = s) yields

∏
s∈{1,2,...,p−1}

(p + s) ≡ ∏
s∈{1,2,...,p−1}

s mod p.

This congruence rewrites as
p−1
∏

s=1
(p + s) ≡

p−1
∏

s=1
s mod p (since the “ ∏

s∈{1,2,...,p−1}
” sign is equivalent

to “
p−1
∏

s=1
”). Qed.
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(since (p− 1)! ⊥ p). Thus, (447) becomes(
2p
p

)
= 2

(
2p− 1
p− 1

)
︸ ︷︷ ︸
≡1 mod p

≡ 2 · 1 = 2 mod p.

This solves Exercise 2.17.4 (a).
(b) We have 2p− 1 ∈ N (since p > 1). Thus, Theorem 2.17.6 (applied to n = 2p− 1 and

k = p) yields(
2p− 1

p

)
=

(
2p− 1

(2p− 1)− p

)
=

(
2p− 1
p− 1

)
(since (2p− 1)− p = p− 1)

≡ 1 mod p (by (448)) .

This solves Exercise 2.17.4 (b).
(c) Let k ∈ {1, 2, . . . , p− 1}. Thus, k − 1 ∈ {0, 1, . . . , p− 2} ⊆ N, so that k − 1 ∈

{0, 1, . . . , k− 1}.
We have k ∈ {1, 2, . . . , p− 1}, so that k ≤ p− 1. Hence, k! ⊥ p 298. Thus, p ⊥ k! (by

Proposition 2.10.4).

The definition of
(

p− 1 + k
k

)
yields

(
p− 1 + k

k

)
=

(p− 1 + k) ((p− 1 + k)− 1) ((p− 1 + k)− 2) · · · ((p− 1 + k)− k + 1)
k!

.

Hence,

k! ·
(

p− 1 + k
k

)
= (p− 1 + k) ((p− 1 + k)− 1) ((p− 1 + k)− 2) · · · ((p− 1 + k)− k + 1)

=
k−1

∏
i=0

((p− 1 + k)− i) = ((p− 1 + k)− (k− 1))︸ ︷︷ ︸
=p

·
k−2

∏
i=0

((p− 1 + k)− i)

(
here, we have split off the factor for i = k− 1

from the product, since k− 1 ∈ {0, 1, . . . , k− 1}

)
= p ·

k−2

∏
i=0

((p− 1 + k)− i) .

This shows that p | k! ·
(

p− 1 + k
k

)
(since

k−2
∏
i=0

((p− 1 + k)− i) is an integer). Thus, Theo-

rem 2.10.6 (applied to a = p, b = k! and c =

(
p− 1 + k

k

)
) yields p |

(
p− 1 + k

k

)
(since

p ⊥ k!). In other words,
(

p− 1 + k
k

)
≡ 0 mod p. This solves Exercise 2.17.4 (c).

298Proof. Each i ∈ {1, 2, . . . , k} satisfies i ∈ {1, 2, . . . , p− 1} (since k ≤ p− 1) and therefore is coprime
to p (by Proposition 2.13.4). In other words, each i ∈ {1, 2, . . . , k} satisfies i ⊥ p. Hence, Exercise
2.10.2 (applied to c = p and ai = i) shows that 1 · 2 · · · · · k ⊥ p. This rewrites as k! ⊥ p (since
k! = 1 · 2 · · · · · k).
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10.80. Solution to Exercise 2.18.1
Solution to Exercise 2.18.1. (a) For every prime p > |n|, we have vp (n) = 0 (by Lemma
2.13.32 (a)) and thus

p0k + p1k + · · ·+ pvp(n)·k = p0k + p1k + · · ·+ p0k = p0k = p0 = 1.

Thus, all but finitely many primes p satisfy p0k + p1k + · · · + pvp(n)·k = 1 (since all but
finitely many primes p satisfy p > |n|). Therefore, all but finitely many factors of the
product ∏

p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
are 1. In other words, the product

∏
p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
has only finitely many factors different from 1. Hence,

this product is well-defined. This solves Exercise 2.18.1 (a).
(b) Forget that we fixed k. Instead, fix w ∈ Z. (The only reason we are doing this is that

we will have to use the letter “k” for a different purpose.)
For every prime p > |n|, we have vp (n) = 0 (by Lemma 2.13.32 (a)). Thus, all but finitely

many primes p satisfy vp (n) = 0 (since all but finitely many primes p satisfy p > |n|). In
other words, the set of all primes p satisfying vp (n) 6= 0 is finite. Let P be this set. Thus, P
is finite.

Let (p1, p2, . . . , pu) be a list of elements of P, with no repetitions.299 Thus, {p1, p2, . . . , pu} =
P. Now, the elements p1, p2, . . . , pu belong to {p1, p2, . . . , pu} = P, and thus are primes
(since P is a set of primes). Furthermore, the elements p1, p2, . . . , pu are distinct (since
(p1, p2, . . . , pu) was defined to be a list with no repetitions).

For each i ∈ {1, 2, . . . , u}, define a nonnegative integer ai by

ai = vpi (n) . (449)

This is well-defined, since pi is a prime (because p1, p2, . . . , pu are primes) and since n is
nonzero.

The following facts have been proven in the proof of Proposition 2.18.1:

• The map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection.

• If p is a prime such that p /∈ {p1, p2, . . . , pu}, then

vp (n) = 0. (450)

• We have n = pa1
1 pa2

2 · · · p
au
u .

If p is a prime such that p /∈ {p1, p2, . . . , pu}, then

p0w + p1w + · · ·+ pvp(n)·w = p0w + p1w + · · ·+ p0w (
since (450) yields vp (n) = 0

)
= p0w = p0 = 1. (451)

Define a set T as in Lemma 2.18.3. Then, Lemma 2.18.3 says that the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

299Such a list exists, since P is finite.
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is well-defined and bijective. Thus, this map Λ is a bijection.
Now, the summation sign “ ∑

d|n
” stands for a sum over all positive divisors of n, and thus

is equivalent to the summation sign “ ∑
d∈{positive divisors of n}

”. Hence,

∑
d|n

dw = ∑
d∈{positive divisors of n}

dw = ∑
(b1,b2,...,bu)∈T

Λ (b1, b2, . . . , bu)︸ ︷︷ ︸
=pb1

1 pb2
2 ···p

bu
u

(by the definition of Λ)


w

 here, we have substituted Λ (b1, b2, . . . , bu) for d in the
sum, since the map Λ : T → {positive divisors of n}

is a bijection


= ∑

(b1,b2,...,bu)∈T

(
pb1

1 pb2
2 · · · p

bu
u

)w

︸ ︷︷ ︸
=pb1w

1 pb2w
2 ···pbuw

u =
u
∏
i=1

p
biw
i

= ∑
(b1,b2,...,bu)∈T

u

∏
i=1

pbiw
i . (452)

Now, Lemma 2.18.6 (applied to u, {0, 1, . . . , ai} and pkw
i instead of n, Zi and pi,k) yields

u

∏
i=1

∑
k∈{0,1,...,ai}

pkw
i = ∑

(k1,k2,...,ku)∈{0,1,...,a1}×{0,1,...,a2}×···×{0,1,...,au}

u

∏
i=1

pkiw
i

= ∑
(b1,b2,...,bu)∈{0,1,...,a1}×{0,1,...,a2}×···×{0,1,...,au}

u

∏
i=1

pbiw
i(

here, we have renamed the summation
index (k1, k2, . . . , ku) as (b1, b2, . . . , bu)

)
= ∑

(b1,b2,...,bu)∈T

u

∏
i=1

pbiw
i

(since {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au} = T). Comparing this with (452),
we find

∑
d|n

dw =
u

∏
i=1

∑
k∈{0,1,...,ai}

pkw
i︸ ︷︷ ︸

=p0w
i +p1w

i +···+p
aiw
i

=
u

∏
i=1

(
p0w

i + p1w
i + · · ·+ paiw

i

)
.
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Comparing this with

∏
p prime

(
p0w + p1w + · · ·+ pvp(n)·w

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

(
p0w + p1w + · · ·+ pvp(n)·w

)
 ∏

p prime;
p/∈{p1,p2,...,pu}

(
p0w + p1w + · · ·+ pvp(n)·w

)
︸ ︷︷ ︸

=1
(by (451))


(

since each prime p satisfies either p ∈ {p1, p2, . . . , pu}
or p /∈ {p1, p2, . . . , pu} (but not both simultaneously)

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

(
p0w + p1w + · · ·+ pvp(n)·w

)
 ∏

p prime;
p/∈{p1,p2,...,pu}

1


︸ ︷︷ ︸

=1

= ∏
p prime;

p∈{p1,p2,...,pu}︸ ︷︷ ︸
= ∏

p∈{p1,p2,...,pu}
(since each p∈{p1,p2,...,pu}

is a prime)

(
p0w + p1w + · · ·+ pvp(n)·w

)

= ∏
p∈{p1,p2,...,pu}

(
p0w + p1w + · · ·+ pvp(n)·w

)
=

u

∏
i=1

(
p0w

i + p1w
i + · · ·+ p

vpi (n)·w
i

)
︸ ︷︷ ︸

=p0w
i +p1w

i +···+p
aiw
i

(since (449) yields vpi (n)=ai)(
here, we have substituted pi for p in the product,

since the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection

)
=

u

∏
i=1

(
p0w

i + p1w
i + · · ·+ paiw

i

)
,

we obtain
∑
d|n

dw = ∏
p prime

(
p0w + p1w + · · ·+ pvp(n)·w

)
.

Now, forget that we fixed w. We thus have proven that every w ∈ Z satisfies

∑
d|n

dw = ∏
p prime

(
p0w + p1w + · · ·+ pvp(n)·w

)
.

Renaming the index w as k in this statement, we conclude that every k ∈ Z satisfies

∑
d|n

dk = ∏
p prime

(
p0k + p1k + · · ·+ pvp(n)·k

)
.

This solves Exercise 2.18.1 (b).
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10.81. Solution to Exercise 2.18.2
We shall prepare for the solution to Exercise 2.18.2 by defining a function L on Z and
proving a bunch of its properties.

Definition 10.81.1. Throughout this section, we shall use the following notation:
For each u ∈ Z, we set

L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise.

We notice the following properties of this definition:

Lemma 10.81.2. Let u ∈ Z.
(a) If gcd (u, 4) 6= 1, then L (u) = 0.
(b) If gcd (u, 4) = 1, then L (u) ≡ u mod 4.

Proof of Lemma 10.81.2. Corollary 2.6.9 (a) (applied to n = 4) yields u%4 ∈ {0, 1, . . . , 4− 1}
and u%4 ≡ u mod 4. Hence, u ≡ u%4 mod 4 and u%4 ∈ {0, 1, . . . , 4− 1} = {0, 1, 2, 3}.

Proposition 2.9.7 (e) (applied to a = 4 and b = u) yields gcd (4, u) = gcd (4, u%4). But
Proposition 2.9.7 (b) yields

gcd (u, 4) = gcd (4, u) = gcd (4, u%4) . (453)

We have u%4 ∈ {0, 1, 2, 3}. In other words, we have u%4 = 0 or u%4 = 1 or u%4 = 2 or
u%4 = 3. Hence, we are in one of the following four cases:

Case 1: We have u%4 = 0.
Case 2: We have u%4 = 1.
Case 3: We have u%4 = 2.
Case 4: We have u%4 = 3.
Let us first consider Case 1. In this case, we have u%4 = 0. Hence, we have neither

u%4 = 1 nor u%4 = 3.
Also, from u%4 = 0, we obtain gcd (u, 4) 6= 1 300. Hence, gcd (u, 4) = 1 is false. Thus,

the claim of Lemma 10.81.2 (b) is vacuously true (in Case 1). Furthermore, the definition of

L (u) yields L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise

= 0 (since we have neither u%4 = 1 nor u%4 = 3).

Thus, the claim of Lemma 10.81.2 (a) is true (in Case 1). Hence, we have proven that both
Lemma 10.81.2 (a) and Lemma 10.81.2 (b) are true (in Case 1). In other words, Lemma
10.81.2 is proven in Case 1.

Let us next consider Case 2. In this case, we have u%4 = 1.

300Proof. Proposition 2.9.7 (a) (applied to a = 4) yields gcd (4, 0) = gcd (4) = |4|.

Now, (453) becomes gcd (u, 4) = gcd

4, u%4︸︷︷︸
=0

 = gcd (4, 0) = |4| = 4 6= 1.
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Thus, gcd (u, 4) = 1 301. Hence, gcd (u, 4) 6= 1 is false. Thus, the claim of Lemma
10.81.2 (a) is vacuously true (in Case 2). Furthermore, the definition of L (u) yields L (u) =

1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise

= 1 (since u%4 = 1), so that L (u) = 1 = u%4 ≡ u mod 4. Thus, the

claim of Lemma 10.81.2 (b) is true (in Case 2). Hence, we have proven that both Lemma
10.81.2 (a) and Lemma 10.81.2 (b) are true (in Case 2). In other words, Lemma 10.81.2 is
proven in Case 2.

Let us next consider Case 3. In this case, we have u%4 = 2. Hence, we have neither
u%4 = 1 nor u%4 = 3.

Also, from u%4 = 2, we obtain gcd (u, 4) 6= 1 302. Hence, gcd (u, 4) = 1 is false. Thus,
the claim of Lemma 10.81.2 (b) is vacuously true (in Case 3). Furthermore, the definition of

L (u) yields L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise

= 0 (since we have neither u%4 = 1 nor u%4 = 3).

Thus, the claim of Lemma 10.81.2 (a) is true (in Case 3). Hence, we have proven that both
Lemma 10.81.2 (a) and Lemma 10.81.2 (b) are true (in Case 3). In other words, Lemma
10.81.2 is proven in Case 3.

Finally, let us consider Case 4. In this case, we have u%4 = 3. Thus, gcd (u, 4) = 1
303. Hence, gcd (u, 4) 6= 1 is false. Thus, the claim of Lemma 10.81.2 (a) is vacuously true
(in Case 4). Furthermore, −1 ≡ 3 mod 4 (since (−1) − 3 = −4 is divisible by 4). But

the definition of L (u) yields L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise

= −1 (since u%4 = 3), so that

301Proof. The equality (453) becomes gcd (u, 4) = gcd

4, u%4︸︷︷︸
=1

 = gcd (4, 1) = gcd (1, 4) (by Propo-

sition 2.9.7 (b)). But 1 | 4; hence, Proposition 2.9.7 (i) (applied to a = 1 and b = 4) yields
gcd (1, 4) = |1| = 1. Hence, gcd (u, 4) = gcd (1, 4) = 1.

302Proof. We have 2 | 4; thus, Proposition 2.9.7 (i) (applied to a = 2 and b = 4) yields gcd (2, 4) =
|2| = 2. On the other hand, Proposition 2.9.7 (b) yields gcd (4, 2) = gcd (2, 4) = 2.

Now, (453) becomes gcd (u, 4) = gcd

4, u%4︸︷︷︸
=2

 = gcd (4, 2) = 2 6= 1.

303Proof. From (453), we obtain

gcd (u, 4) = gcd

4, u%4︸︷︷︸
=3

 = gcd (4, 3) = gcd (3, 4) (by Proposition 2.9.7 (b))

= gcd

3, 4%3︸︷︷︸
=1

 (by Proposition 2.9.7 (e), applied to a = 3 and b = 4)

= gcd (3, 1) = gcd (1, 3) (by Proposition 2.9.7 (b)) .

But 1 | 3; thus, Proposition 2.9.7 (i) (applied to a = 1 and b = 3) yields gcd (1, 3) = |1| = 1.
Hence, gcd (u, 4) = gcd (1, 3) = 1.
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L (u) = −1 ≡ 3 = u%4 ≡ u mod 4. Thus, the claim of Lemma 10.81.2 (b) is true (in Case
4). Hence, we have proven that both Lemma 10.81.2 (a) and Lemma 10.81.2 (b) are true (in
Case 4). In other words, Lemma 10.81.2 is proven in Case 4.

We have now proven Lemma 10.81.2 in all four Cases 1, 2, 3 and 4. Thus, Lemma 10.81.2
always holds.

Lemma 10.81.3. Let x, y, z be three elements of the set {−1, 0, 1}. If xy ≡ z mod 4, then
xy = z.

Proof of Lemma 10.81.3. It is easy to prove this lemma by mechanically verifying that it holds
for all 33 possible choices of (x, y, z); but here is a “smarter” proof:

We have x ∈ {−1, 0, 1} = {−1, 0, . . . , 1}. In other words, −1 ≤ x ≤ 1. In other words,
|x| ≤ 1. Similarly, |y| ≤ 1. We can multiply the two inequalities |x| ≤ 1 and |y| ≤ 1 together
(this is legitimate, since all of their sides |x|, 1, |y| and 1 are nonnegative reals); thus we
obtain |x| · |y| ≤ 1 · 1 = 1. Now, (3) yields |xy| = |x| · |y| ≤ 1. In other words, −1 ≤ xy ≤ 1.
Furthermore, x and y are two elements of {−1, 0, 1} and thus are integers; hence, xy is
an integer as well. Thus, from −1 ≤ xy ≤ 1, we obtain xy ∈ {−1, 0, . . . , 1} = {−1, 0, 1}.
Therefore, xy + 1 ∈ {0, 1, 2} ⊆ {0, 1, 2, 3} = {0, 1, . . . , 4− 1}.

Also, from z ∈ {−1, 0, 1}, we obtain z + 1 ∈ {0, 1, 2} ⊆ {0, 1, 2, 3} = {0, 1, . . . , 4− 1}.
Adding the congruence xy ≡ z mod 4 to the trivial congruence 1 ≡ 1 mod 4, we obtain

xy+ 1 ≡ z+ 1 mod 4. Hence, Corollary 2.6.9 (c) (applied to n = 4, u = z+ 1 and c = xy+ 1)
shows that

xy + 1 = (z + 1)%4 (454)

(since xy + 1 ∈ {0, 1, . . . , 4− 1}).
On the other hand, z + 1 ∈ {0, 1, . . . , 4− 1} and z + 1 ≡ z + 1 mod 4 (obviously). Hence,

Corollary 2.6.9 (c) (applied to n = 4, u = z+ 1 and c = z+ 1) shows that z+ 1 = (z + 1)%4.
Comparing this equality with (454), we find xy + 1 = z + 1. Cancelling 1 from this equality,
we find xy = z. This proves Lemma 10.81.3.

Lemma 10.81.4. Let u ∈ Z and v ∈ Z. Then, L (uv) = L (u) · L (v).

Proof of Lemma 10.81.4. Corollary 2.6.9 (a) (applied to n = 4) yields u%4 ∈ {0, 1, . . . , 4− 1}
and u%4 ≡ u mod 4. Thus, in particular, u%4 ≡ u mod 4, so that u ≡ u%4 mod 4. The same
argument (applied to v instead of u) yields v ≡ v%4 mod 4.

We next observe the following:

Claim 1: If gcd (u, 4) 6= 1, then L (uv) = L (u) · L (v).

[Proof of Claim 1: Assume that gcd (u, 4) 6= 1. We must prove that L (uv) = L (u) · L (v).
Note that gcd (u, 4) is a nonnegative integer (by the definition of a gcd). Hence, if

we had gcd (u, 4) | 1, then we would have gcd (u, 4) = 1 (by Exercise 2.2.5, applied to
g = gcd (u, 4)), which would contradict gcd (u, 4) 6= 1. Thus, we cannot have gcd (u, 4) | 1.

Lemma 10.81.2 (a) yields L (u) = 0 (since gcd (u, 4) 6= 1).
Also, u | uv and 4 | 4. Hence, Exercise 2.9.4 (applied to a1 = u, a2 = 4, b1 = uv

and b2 = 4) yields gcd (u, 4) | gcd (uv, 4). If we had gcd (uv, 4) = 1, then this would
entail gcd (u, 4) | gcd (uv, 4) = 1; but this would contradict the fact that we cannot have
gcd (u, 4) | 1. Hence, we cannot have gcd (uv, 4) = 1. In other words, we must have
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gcd (uv, 4) 6= 1. Hence, Lemma 10.81.2 (a) (applied to uv instead of u) yields L (uv) = 0.
Comparing this with L (u)︸ ︷︷ ︸

=0

·L (v) = 0, we obtain L (uv) = L (u) · L (v). This proves Claim

1.]

Claim 2: If gcd (v, 4) 6= 1, then L (uv) = L (u) · L (v).

[Proof of Claim 2: Claim 2 is obtained from Claim 1 by interchanging u and v (since u and
v clearly play symmetric roles in the statement “L (uv) = L (u) · L (v)”). Thus, the proof of
Claim 2 is analogous to the proof of Claim 1.]

Now, we must prove that L (uv) = L (u) · L (v). If gcd (u, 4) 6= 1, then this follows
from Claim 1. Hence, for the rest of this proof, we can WLOG assume that gcd (u, 4) = 1.
Assume this.

Now, we must prove that L (uv) = L (u) · L (v). If gcd (v, 4) 6= 1, then this follows
from Claim 2. Hence, for the rest of this proof, we can WLOG assume that gcd (v, 4) = 1.
Assume this.

From gcd (u, 4) = 1, we obtain u ⊥ 4 (by the definition of “coprime”). From gcd (v, 4) =
1, we obtain v ⊥ 4 (by the definition of “coprime”). Hence, Theorem 2.10.9 (applied
to a = u, b = v and c = 4) yields uv ⊥ 4. In other words, gcd (uv, 4) = 1 (by the
definition of “coprime”). Hence, Lemma 10.81.2 (b) (applied to uv instead of u) yields
L (uv) ≡ uv mod 4. Furthermore, recall that gcd (u, 4) = 1; hence, Lemma 10.81.2 (b) yields
L (u) ≡ u mod 4. Moreover, gcd (v, 4) = 1; thus, Lemma 10.81.2 (b) (applied to v instead of
u) yields L (v) ≡ v mod 4. Thus,

L (u)︸ ︷︷ ︸
≡u mod 4

· L (v)︸ ︷︷ ︸
≡v mod 4

≡ uv ≡ L (uv)mod 4 (455)

(since L (uv) ≡ uv mod 4).

The definition of L (u) yields L (u) =


1, if u%4 = 1;
−1, if u%4 = 3;
0, otherwise

∈ {−1, 0, 1} (since all three

values 1,−1, 0 belong to the set {−1, 0, 1}). The same argument (applied to v instead of u)
shows that L (v) ∈ {−1, 0, 1}. Furthermore, the argument that we used to prove L (u) ∈
{−1, 0, 1} can also be applied to uv instead of u; thus we obtain L (uv) ∈ {−1, 0, 1}. Thus,
altogether, we know that L (u), L (v) and L (uv) are three elements of the set {−1, 0, 1}.
These elements satisfy L (u) · L (v) ≡ L (uv)mod 4 (by (455)). Hence, Lemma 10.81.3 (ap-
plied to x = L (u), y = L (v) and z = L (uv)) yields L (u) · L (v) = L (uv). In other words,
L (uv) = L (u) · L (v). This proves Lemma 10.81.4.

Lemma 10.81.5. Let a1, a2, . . . , ak be finitely many integers. Then,

L (a1a2 · · · ak) = L (a1) · L (a2) · · · · · L (ak) .

Proof of Lemma 10.81.5. We claim that

L (a1a2 · · · ai) = L (a1) · L (a2) · · · · · L (ai) (456)

for each i ∈ {0, 1, . . . , k}.
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[Proof of (456): We shall prove (456) by induction on i:
Induction base: We have a1a2 · · · a0 = (empty product) = 1; thus,

L (a1a2 · · · a0) = L (1) =


1, if 1%4 = 1;
−1, if 1%4 = 3;
0, otherwise

(by the definition of L (1))

= 1 (since 1%4 = 1) .

Comparing this with L (a1) · L (a2) · · · · · L (a0) = (empty product) = 1, we obtain

L (a1a2 · · · a0) = L (a1) · L (a2) · · · · · L (a0) .

In other words, (456) holds for i = 0. This completes the induction base.
Induction step: Let j ∈ {1, 2, . . . , k}. Assume that (456) holds for i = j− 1. We must prove

that (456) holds for i = j.
We have assumed that (456) holds for i = j− 1. In other words, we have

L
(
a1a2 · · · aj−1

)
= L (a1) · L (a2) · · · · · L

(
aj−1

)
.

Now,

L

 a1a2 · · · aj︸ ︷︷ ︸
=(a1a2···aj−1)aj

 = L
((

a1a2 · · · aj−1
)

aj
)
= L

(
a1a2 · · · aj−1

)︸ ︷︷ ︸
=L(a1)·L(a2)·····L(aj−1)

·L
(
aj
)

(
by Lemma 10.81.4, applied to u = a1a2 · · · aj−1 and v = aj

)
=
(

L (a1) · L (a2) · · · · · L
(
aj−1

))
· L
(
aj
)

= L (a1) · L (a2) · · · · · L
(
aj
)

.

In other words, (456) holds for i = j. This completes the induction step. Thus, (456) is
proven by induction.]

Now, (456) (applied to i = k) yields L (a1a2 · · · ak) = L (a1) · L (a2) · · · · · L (ak). This
proves Lemma 10.81.5.

Lemma 10.81.6. Let a ∈ Z and k ∈N. Then, L
(
ak) = (L (a))k.

Proof of Lemma 10.81.6. Lemma 10.81.5 (applied to ai = a) yields

L

aa · · · a︸ ︷︷ ︸
k times

 = L (a) · L (a) · · · · · L (a)︸ ︷︷ ︸
k times

= (L (a))k .

In view of aa · · · a︸ ︷︷ ︸
k times

= ak, this rewrites as L
(
ak) = (L (a))k. Thus, Lemma 10.81.6 is proven.
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Lemma 10.81.7. Let u ∈ N. Let p1, p2, . . . , pu be u integers. Let b1, b2, . . . , bu be u non-
negative integers. Then,

L
(

pb1
1 pb2

2 · · · p
bu
u

)
=

u

∏
i=1

(L (pi))
bi .

Proof of Lemma 10.81.7. Lemma 10.81.5 (applied to k = u and ai = pbi
i ) yields

L
(

pb1
1 pb2

2 · · · p
bu
u

)
= L

(
pb1

1

)
· L
(

pb2
2

)
· · · · · L

(
pbu

u

)
=

u

∏
i=1

L
(

pbi
i

)
︸ ︷︷ ︸
=(L(pi))

bi

(by Lemma 10.81.6,
applied to a=pi

and k=bi)

=
u

∏
i=1

(L (pi))
bi .

This proves Lemma 10.81.7.

Lemma 10.81.8. Let n be a positive integer. Define z as in Exercise 2.18.2. Then,

z = ∑
d|n

L (d) .

Proof of Lemma 10.81.8. For each integer d, we have the logical equivalence

(d ≡ 1 mod 4)⇐⇒ (d%4 = 1) . (457)

[Proof of (457): Let d be an integer. Exercise 2.6.1 (applied to 4, d and 1 instead of n, u and
v) shows that we have d ≡ 1 mod 4 if and only if d%4 = 1%4. Thus, we have the following
chain of equivalences:

(d ≡ 1 mod 4) ⇐⇒

d%4 = 1%4︸︷︷︸
=1

 ⇐⇒ (d%4 = 1) .

This proves (457).]
Now, for each positive divisor d of n, the condition “d ≡ 1 mod 4” is equivalent to

“d%4 = 1” (by (457)). Hence, the positive divisors d of n such that d ≡ 1 mod 4 are
exactly the positive divisors d of n such that d%4 = 1. Thus,

(the number of positive divisors d of n such that d ≡ 1 mod 4)
= (the number of positive divisors d of n such that d%4 = 1) . (458)

The same argument (but with every appearance of “1” replaced by “3”) yields

(the number of positive divisors d of n such that d ≡ 3 mod 4)
= (the number of positive divisors d of n such that d%4 = 3) . (459)
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Furthermore, if d is an integer satisfying d%4 = 1, then

L (d) =


1, if d%4 = 1;
−1, if d%4 = 3;
0, otherwise

(by the definition of L (d))

= 1 (since d%4 = 1) .

Summing up this equality over all positive divisors d of n satisfying d%4 = 1, we obtain

∑
d|n;

d%4=1

L (d) = ∑
d|n;

d%4=1

1 = (the number of positive divisors d of n such that d%4 = 1) · 1

= (the number of positive divisors d of n such that d%4 = 1)
= (the number of positive divisors d of n such that d ≡ 1 mod 4)

(by (458)).
Also, if d is an integer satisfying d%4 = 3, then

L (d) =


1, if d%4 = 1;
−1, if d%4 = 3;
0, otherwise

(by the definition of L (d))

= −1 (since d%4 = 3) .

Summing up this equality over all positive divisors d of n satisfying d%4 = 3, we obtain

∑
d|n;

d%4=3

L (d) = ∑
d|n;

d%4=3

(−1)

= (the number of positive divisors d of n such that d%4 = 3) · (−1)
= − (the number of positive divisors d of n such that d%4 = 3)
= − (the number of positive divisors d of n such that d ≡ 3 mod 4)

(by (459)).
Furthermore, if d is an integer satisfying (neither d%4 = 1 nor d%4 = 3), then

L (d) =


1, if d%4 = 1;
−1, if d%4 = 3;
0, otherwise

(by the definition of L (d))

= 0 (since we have neither d%4 = 1 nor d%4 = 3) .

Summing up this equality over all positive divisors d of n satisfying
(neither d%4 = 1 nor d%4 = 3), we obtain

∑
d|n;

neither d%4=1 nor d%4=3

L (d) = ∑
d|n;

neither d%4=1 nor d%4=3

0 = 0.

Recall that the summation sign “ ∑
d|n

” stands for a sum over all positive divisors of n. Each

positive divisor d of n satisfies either d%4 = 1 or d%4 = 3 or (neither d%4 = 1 nor d%4 = 3)



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 672

(and these three options are mutually exclusive). Hence, we can split the sum ∑
d|n

L (d) as

follows:

∑
d|n

L (d)

= ∑
d|n;

d%4=1

L (d)

︸ ︷︷ ︸
=(the number of positive divisors d of n such that d ≡ 1 mod 4)

+ ∑
d|n;

d%4=3

L (d)

︸ ︷︷ ︸
=−(the number of positive divisors d of n such that d ≡ 3 mod 4)

+ ∑
d|n;

neither d%4=1 nor d%4=3

L (d)

︸ ︷︷ ︸
=0

= (the number of positive divisors d of n such that d ≡ 1 mod 4)
+ (− (the number of positive divisors d of n such that d ≡ 3 mod 4))

= (the number of positive divisors d of n such that d ≡ 1 mod 4)
− (the number of positive divisors d of n such that d ≡ 3 mod 4)

= z

(by the definition of z). This proves Lemma 10.81.8.

Next, we define a further notation:

Definition 10.81.9. Throughout this section, we shall use the following notation:
For each p ∈ Z and m ∈N, we set

S (p, m) =
m

∑
k=0

(L (p))k .

Lemma 10.81.10. Let p be an integer. Let m ∈N.
(a) If p%4 = 1, then S (p, m) = m + 1.
(b) If m is even and p%4 = 3, then S (p, m) = 1.
(c) If m is odd and p%4 = 3, then S (p, m) = 0.
(d) If we have neither p%4 = 1 nor p%4 = 3, then S (p, m) = 1.

Proof of Lemma 10.81.10. (a) Assume that p%4 = 1. The definition of L (p) yields

L (p) =


1, if p%4 = 1;
−1, if p%4 = 3;
0, otherwise

= 1 (since p%4 = 1) .
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Hence, the definition of S (p, m) yields

S (p, m) =
m

∑
k=0

L (p)︸ ︷︷ ︸
=1

k

=
m

∑
k=0

1k︸︷︷︸
=1

=
m

∑
k=0

1 = (m + 1) · 1 = m + 1.

This proves Lemma 10.81.10 (a).
(b) Assume that m is even and p%4 = 3. Note that m + 1 is odd (since m is even). The

definition of L (p) yields

L (p) =


1, if p%4 = 1;
−1, if p%4 = 3;
0, otherwise

= −1 (since p%4 = 3) .

Hence, the definition of S (p, m) yields

S (p, m) =
m

∑
k=0

L (p)︸ ︷︷ ︸
=−1


k

=
m

∑
k=0

(−1)k

= (−1)0 + (−1)1 + · · ·+ (−1)m

= 1 + (−1) + 1 + (−1) + · · ·+ 1 + (−1) + 1︸ ︷︷ ︸
m+1 many addends, alternating between 1 and −1

(since m + 1 is odd)

= 1

(since m + 1 is odd). This proves Lemma 10.81.10 (b).
(c) Assume that m is odd and p%4 = 3. Note that m + 1 is even (since m is odd). Just

as in the proof of Lemma 10.81.10 (b) above, we can see that L (p) = −1 and S (p, m) =

(−1)0 + (−1)1 + · · ·+ (−1)m. Hence,

S (p, m) = (−1)0 + (−1)1 + · · ·+ (−1)m

= 1 + (−1) + 1 + (−1) + · · ·+ 1 + (−1)︸ ︷︷ ︸
m+1 many addends, alternating between 1 and −1

(since m + 1 is even)

= 0

(since m + 1 is even). This proves Lemma 10.81.10 (c).
(d) Assume that we have neither p%4 = 1 nor p%4 = 3. The definition of L (p) yields

L (p) =


1, if p%4 = 1;
−1, if p%4 = 3;
0, otherwise

= 0 (since we have neither p%4 = 1 nor p%4 = 3) .
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Hence, the definition of S (p, m) yields

S (p, m) =
m

∑
k=0

L (p)︸ ︷︷ ︸
=0

k

=
m

∑
k=0

0k = 00︸︷︷︸
=1

+
m

∑
k=1

0k︸︷︷︸
=0

(since k≥1)

(here, we have split off the addend for k = 0 from the sum)

= 1 +
m

∑
k=1

0︸︷︷︸
=0

= 1.

This proves Lemma 10.81.10 (d).

Solution to Exercise 2.18.2. For every prime p > |n|, we have vp (n) = 0 (by Lemma 2.13.32
(a)). Thus, all but finitely many primes p satisfy vp (n) = 0 (since all but finitely many
primes p satisfy p > |n|). In other words, the set of all primes p satisfying vp (n) 6= 0 is
finite. Let P be this set. Thus, P is finite.

Let (p1, p2, . . . , pu) be a list of elements of P, with no repetitions.304 Thus, {p1, p2, . . . , pu} =
P. Now, the elements p1, p2, . . . , pu belong to {p1, p2, . . . , pu} = P, and thus are primes
(since P is a set of primes). Furthermore, the elements p1, p2, . . . , pu are distinct (since
(p1, p2, . . . , pu) was defined to be a list with no repetitions).

For each i ∈ {1, 2, . . . , u}, define a nonnegative integer ai by

ai = vpi (n) . (460)

This is well-defined, since pi is a prime (because p1, p2, . . . , pu are primes) and since n is
nonzero.

The following facts have been proven in the proof of Proposition 2.18.1:

• The map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection.

• If p is a prime such that p /∈ {p1, p2, . . . , pu}, then

vp (n) = 0. (461)

• We have n = pa1
1 pa2

2 · · · p
au
u .

Define a set T as in Lemma 2.18.3. Then, Lemma 2.18.3 says that the map

Λ : T → {positive divisors of n} ,

(b1, b2, . . . , bu) 7→ pb1
1 pb2

2 · · · p
bu
u

is well-defined and bijective. Thus, this map Λ is a bijection.

304Such a list exists, since P is finite.
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Now, the summation sign “ ∑
d|n

” stands for a sum over all positive divisors of n, and thus

is equivalent to the summation sign “ ∑
d∈{positive divisors of n}

”. Hence,

∑
d|n

L (d) = ∑
d∈{positive divisors of n}

L (d) = ∑
(b1,b2,...,bu)∈T

L

Λ (b1, b2, . . . , bu)︸ ︷︷ ︸
=pb1

1 pb2
2 ···p

bu
u

(by the definition of Λ)


 here, we have substituted Λ (b1, b2, . . . , bu) for d in the

sum, since the map Λ : T → {positive divisors of n}
is a bijection


= ∑

(b1,b2,...,bu)∈T
L
(

pb1
1 pb2

2 · · · p
bu
u

)
︸ ︷︷ ︸

=
u
∏
i=1

(L(pi))
bi

(by Lemma 10.81.7)

= ∑
(b1,b2,...,bu)∈T

u

∏
i=1

(L (pi))
bi . (462)

Now, Lemma 2.18.6 (applied to u, {0, 1, . . . , ai} and (L (pi))
k instead of n, Zi and pi,k)

yields

u

∏
i=1

∑
k∈{0,1,...,ai}

(L (pi))
k = ∑

(k1,k2,...,ku)∈{0,1,...,a1}×{0,1,...,a2}×···×{0,1,...,au}

u

∏
i=1

(L (pi))
ki

= ∑
(b1,b2,...,bu)∈{0,1,...,a1}×{0,1,...,a2}×···×{0,1,...,au}

u

∏
i=1

(L (pi))
bi

(
here, we have renamed the summation
index (k1, k2, . . . , ku) as (b1, b2, . . . , bu)

)
= ∑

(b1,b2,...,bu)∈T

u

∏
i=1

(L (pi))
bi

(since {0, 1, . . . , a1} × {0, 1, . . . , a2} × · · · × {0, 1, . . . , au} = T). Comparing this with (462),
we find

∑
d|n

L (d) =
u

∏
i=1

∑
k∈{0,1,...,ai}︸ ︷︷ ︸

=
ai
∑

k=0

(L (pi))
k =

u

∏
i=1

ai

∑
k=0

(L (pi))
k . (463)

But Lemma 10.81.8 yields

z = ∑
d|n

L (d) =
u

∏
i=1

ai

∑
k=0

(L (pi))
k (464)

(by (463)).
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On the other hand, if p is a prime such that p /∈ {p1, p2, . . . , pu}, then

S

p, vp (n)︸ ︷︷ ︸
=0

(by (461))

 = S (p, 0) =
0

∑
k=0

(L (p))k (by the definition of S (p, 0))

= (L (p))0 = 1. (465)

Thus, all but finitely many primes p satisfy S
(

p, vp (n)
)
= 1 (since all but finitely many

primes p satisfy p /∈ {p1, p2, . . . , pu}). In other words, all but finitely many factors of the
product ∏

p prime
S
(

p, vp (n)
)

are 1. Thus, this product is well-defined. Moreover, we can split

this product as follows:

∏
p prime

S
(

p, vp (n)
)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

S
(

p, vp (n)
)
 ∏

p prime;
p/∈{p1,p2,...,pu}

S
(

p, vp (n)
)︸ ︷︷ ︸

=1
(by (465))


(

since each prime p satisfies either p ∈ {p1, p2, . . . , pu}
or p /∈ {p1, p2, . . . , pu} (but not both simultaneously)

)

=

 ∏
p prime;

p∈{p1,p2,...,pu}

S
(

p, vp (n)
)
 ∏

p prime;
p/∈{p1,p2,...,pu}

1


︸ ︷︷ ︸

=1

= ∏
p prime;

p∈{p1,p2,...,pu}︸ ︷︷ ︸
= ∏

p∈{p1,p2,...,pu}
(since each p∈{p1,p2,...,pu}

is a prime)

S
(

p, vp (n)
)

= ∏
p∈{p1,p2,...,pu}

S
(

p, vp (n)
)
=

u

∏
i=1

S

pi, vpi (n)︸ ︷︷ ︸
=ai

(by (460))


(

here, we have substituted pi for p in the product,
since the map {1, 2, . . . , u} → {p1, p2, . . . , pu} , i 7→ pi is a bijection

)
=

u

∏
i=1

S (pi, ai)︸ ︷︷ ︸
=

ai
∑

k=0
(L(pi))

k

(by the definition of S(pi ,ai))

=
u

∏
i=1

ai

∑
k=0

(L (pi))
k .
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Comparing this with (464), we obtain

z = ∏
p prime

S
(

p, vp (n)
)

. (466)

(a) Assume that there exists a prime p satisfying p ≡ 3 mod 4 and vp (n) ≡ 1 mod 2.
Consider this p, and denote it by q. Thus, q is a prime satisfying q ≡ 3 mod 4 and vq (n) ≡
1 mod 2.

Exercise 2.6.1 (applied to 4, q and 3 instead of n, u and v) shows that we have q ≡ 3 mod 4
if and only if q%4 = 3%4. Hence, from q ≡ 3 mod 4, we conclude that q%4 = 3%4 = 3.
From vq (n) ≡ 1 mod 2, we conclude that vq (n) is odd. Hence, Lemma 10.81.10 (c) (applied
to q and vq (n) instead of p and m) yields S

(
q, vq (n)

)
= 0.

But q is a prime. Thus, S
(
q, vq (n)

)
is a factor in the product ∏

p prime
S
(

p, vp (n)
)
. Splitting

this factor off, we find

∏
p prime

S
(

p, vp (n)
)
= S

(
q, vq (n)

)︸ ︷︷ ︸
=0

· ∏
p prime;

p 6=q

S
(

p, vp (n)
)
= 0.

Now, (466) becomes z = ∏
p prime

S
(

p, vp (n)
)
= 0. This solves Exercise 2.18.2 (a).

(b) Assume that there exists no prime p satisfying p ≡ 3 mod 4 and vp (n) ≡ 1 mod 2.
Renaming p as q in this statement, we obtain the following:

There exists no prime q satisfying q ≡ 3 mod 4 and vq (n) ≡ 1 mod 2. (467)

We can now easily see the following two auxiliary claims:

Claim 1: Let p be a prime such that p%4 6= 1. Then, S
(

p, vp (n)
)
= 1.

[Proof of Claim 1: We are in one of the following two cases:
Case 1: We have p%4 = 3.
Case 2: We have p%4 6= 3.
Let us first consider Case 1. In this case, we have p%4 = 3. Comparing this with

3%4 = 3, we obtain p%4 = 3%4. But Exercise 2.6.1 (applied to 4, p and 3 instead of n, u
and v) shows that we have p ≡ 3 mod 4 if and only if p%4 = 3%4. Hence, from p%4 = 3%4,
we conclude that p ≡ 3 mod 4. If we had vp (n) ≡ 1 mod 2, then there would be a prime
q satisfying q ≡ 3 mod 4 and vq (n) ≡ 1 mod 2 (namely, q = p); but this would contradict
(467). Hence, we cannot have vp (n) ≡ 1 mod 2. In other words, the integer vp (n) cannot be
odd. Hence, the integer vp (n) is even. Thus, Lemma 10.81.10 (b) (applied to m = vp (n))
yields S

(
p, vp (n)

)
= 1. Hence, Claim 1 is proven in Case 1.

Let us now consider Case 2. In this case, we have p%4 6= 3. Now, we have neither
p%4 = 1 nor p%4 = 3 (since we have p%4 6= 1 and p%4 6= 3). Hence, Lemma 10.81.10 (d)
(applied to m = vp (n)) yields S

(
p, vp (n)

)
= 1. Hence, Claim 1 is proven in Case 2.

We have now proven Claim 1 in each of the Cases 1 and 2. Hence, Claim 1 always holds.]

Claim 2: For each integer p, we have the logical equivalence

(p ≡ 1 mod 4)⇐⇒ (p%4 = 1) .
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[Proof of Claim 2: Claim 2 is precisely the equivalence (457) (with d renamed as p).]
Claim 2 shows that for each prime p, the condition “p ≡ 1 mod 4” is equivalent to the

condition “p%4 = 1”. Hence, the product sign “ ∏
p prime;

p≡1 mod 4

” is equivalent to “ ∏
p prime;
p%4=1

”. Thus,

∏
p prime;

p≡1 mod 4

(
vp (n) + 1

)
= ∏

p prime;
p%4=1

(
vp (n) + 1

)
. (468)

Now, (466) becomes

z = ∏
p prime

S
(

p, vp (n)
)
=

 ∏
p prime;
p%4=1

S
(

p, vp (n)
)︸ ︷︷ ︸

=vp(n)+1
(by Lemma 10.81.10 (a)
(applied to m=vp(n)))


·

 ∏
p prime;
p%4 6=1

S
(

p, vp (n)
)︸ ︷︷ ︸

=1
(by Claim 1)


(since each prime p satisfies either p%4 = 1 or p%4 6= 1 (but not both))

=

 ∏
p prime;
p%4=1

(
vp (n) + 1

) ·
 ∏

p prime;
p%4 6=1

1


︸ ︷︷ ︸

=1

= ∏
p prime;
p%4=1

(
vp (n) + 1

)
= ∏

p prime;
p≡1 mod 4

(
vp (n) + 1

)

(by (468)). This solves Exercise 2.18.2 (b).

Remark 10.81.11. Exercise 2.18.2 can be slightly generalized: Let N ∈ {3, 4, 6}. Let n be
a positive integer. Let

z = (the number of positive divisors d of n such that d ≡ 1 mod N)

− (the number of positive divisors d of n such that d ≡ N − 1 mod N) .

Then:
(a) If there exists a prime p satisfying p ≡ N − 1 mod N and vp (n) ≡ 1 mod 2, then

z = 0.
(b) If there exists no prime p satisfying p ≡ N − 1 mod N and vp (n) ≡ 1 mod 2, then

z = ∏
p prime;

p≡1 mod N

(
vp (n) + 1

)
.

The solution of Exercise 2.18.2 that we gave above can still be used to prove these two
more general claims, once the obvious changes are made (which consist mostly in re-
placing “3” and “4” by “N− 1” and “N”, respectively, and adding a few straightforward
cases in the proof of Lemma 10.81.2).

Note that the numbers 3, 4, 6 are precisely the positive integers m satisfying φ (m) = 2.
This is directly connected to the fact that they are the integers N for which these two
statements hold. Indeed, Lemma 10.81.2 (modified to use N instead of 4) quickly boils
down to the observation that the only elements i ∈ {0, 1, . . . , N − 1} coprime to N are
the two elements 1 and N − 1 and these two elements are distinct; but this is equivalent
to φ (N) = 2.
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10.82. Solution to Exercise 2.19.1
Exercise 2.19.1 demands that we prove Lemma 2.19.3; let us do this:

Proof of Lemma 2.19.3. Lemma 2.18.6 (applied to Zi = S and pi,k = ak) yields

n

∏
i=1

∑
k∈S

ak = ∑
(k1,k2,...,kn)∈S×S×···×S

n

∏
i=1

aki ,

where the Cartesian product S × S × · · · × S has n factors. Since this Cartesian product
S× S× · · · × S is simply Sn, we can rewrite this equality as follows:

n

∏
i=1

∑
k∈S

ak = ∑
(k1,k2,...,kn)∈Sn

n

∏
i=1

aki .

Comparing this with
n

∏
i=1

∑
k∈S

ak︸ ︷︷ ︸
= ∑

s∈S
as

=
n

∏
i=1

∑
s∈S

as =

(
∑
s∈S

as

)n

,

we obtain (
∑
s∈S

as

)n

= ∑
(k1,k2,...,kn)∈Sn

n

∏
i=1

aki .

This proves Lemma 2.19.3.

10.83. Solution to Exercise 2.19.2
Exercise 2.19.2 asks us to prove Lemma 2.19.5 formally. Before we do so, let us restate
Lemma 2.19.4 in a more flexible form:

Lemma 10.83.1. Let p be a prime. Let U be a set such that |U| ≥ 2p− 1. For each s ∈ U,
let as be an integer. Then, there exists a p-element subset T of U such that p | ∑

s∈T
as.

Proof of Lemma 10.83.1. There exist 2p − 1 distinct elements u1, u2, . . . , u2p−1 of U (since
|U| ≥ 2p − 1). Choose such 2p − 1 elements. For each s ∈ {1, 2, . . . , 2p− 1}, we define
an integer bs by bs = aus . Thus, b1, b2, . . . , b2p−1 are 2p− 1 integers. Hence, Lemma 2.19.4
(applied to bi instead of ai) shows that there exists a p-element subset S of {1, 2, . . . , 2p− 1}
such that p | ∑

s∈S
bs. Consider this S.

Let Z be the subset {us | s ∈ S} of U. Thus, us ∈ Z for each s ∈ S. Hence, we can define
a map

f : S→ Z,
s 7→ us.
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This map f is injective305 and surjective306. Hence, the map f is bijective, i.e., is a bijection
from S to Z. Thus, we can substitute f (s) for s in the sum ∑

s∈Z
as. We thus obtain

∑
s∈Z

as = ∑
s∈S

a f (s)︸︷︷︸
=aus

(since f (s)=us
(by the definition of f ))

= ∑
s∈S

aus︸︷︷︸
=bs

(by the definition of bs)

= ∑
s∈S

bs.

Hence, p | ∑
s∈Z

as (since p | ∑
s∈S

bs). Moreover, there is a bijection from S to Z (namely, f ).

Hence, |Z| = |S| = p (since S is a p-element set). Thus, Z is a p-element set.
This p-element set Z is a subset of U and satisfies p | ∑

s∈Z
as (as we have seen). Thus,

there exists a p-element subset T of U such that p | ∑
s∈T

as (namely, T = Z). This proves

Lemma 10.83.1.

Now we can prove Lemma 2.19.5:

Proof of Lemma 2.19.5. We shall prove Lemma 2.19.5 by induction on u:
Induction base: Lemma 2.19.5 holds for u = 1 307. This completes the induction base.
Induction step: Let k be a positive integer. Assume that Lemma 2.19.5 holds for u = k.

We must prove that Lemma 2.19.5 holds for u = k + 1.
We have assumed that Lemma 2.19.5 holds for u = k. In other words, the following

claim holds:

Claim 1: Let p be a prime. Let a1, a2, . . . , akp−1 be any kp− 1 integers (not neces-
sarily distinct). Then, there exist k− 1 disjoint p-element subsets S1, S2, . . . , Sk−1
of {1, 2, . . . , kp− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , k− 1} .

305Proof. Let i and j be two elements of S such that f (i) = f (j). We shall show that i = j.
We have f (i) = ui (by the definition of f ) and f (j) = uj (likewise). Hence, ui = f (i) =

f (j) = uj. Therefore, i = j (since the elements u1, u2, . . . , u2p−1 are distinct).
Now, forget that we fixed i and j. We thus have shown that if i and j are two elements of S

such that f (i) = f (j), then i = j. In other words, the map f is injective.
306Proof. Let z ∈ Z. Hence, z ∈ Z = {us | s ∈ S}. In other words, z = us for some s ∈ S. Consider

this s. The definition of f yields f (s) = us = z. Hence, z = f (s) ∈ f (S) (since s ∈ S).
Now, forget that we fixed z. We thus have shown that z ∈ f (S) for each z ∈ Z. In other words,

Z ⊆ f (S). In other words, the map f is surjective.
307Proof. Assume that u = 1. Thus, u− 1 = 0, so that {1, 2, . . . , u− 1} = ∅. But Lemma 2.19.5 claims

the existence of u− 1 disjoint p-element subsets S1, S2, . . . , Su−1 of {1, 2, . . . , up− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , u− 1} . (469)

Obviously, we can find u− 1 disjoint p-element subsets S1, S2, . . . , Su−1 of {1, 2, . . . , up− 1} (be-
cause u− 1 = 0, so that we don’t have to find anything at all), and they will automatically satisfy
(469) (indeed, {1, 2, . . . , u− 1} = ∅, so that (469) is vacuously true). Thus, the claim of Lemma
2.19.5 holds.

Thus, we have proven Lemma 2.19.5 for u = 1.
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We must prove that Lemma 2.19.5 holds for u = k + 1. In other words, we must prove
the following claim:

Claim 2: Let p be a prime. Let a1, a2, . . . , a(k+1)p−1 be any (k + 1) p − 1 inte-
gers (not necessarily distinct). Then, there exist k disjoint p-element subsets
S1, S2, . . . , Sk of {1, 2, . . . , (k + 1) p− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , k} .

[Proof of Claim 2: We have k︸︷︷︸
≤k+1

p − 1 ≤ (k + 1) p − 1 and thus {1, 2, . . . , kp− 1} ⊆

{1, 2, . . . , (k + 1) p− 1}.
Consider the first kp− 1 of our (k + 1) p− 1 integers a1, a2, . . . , a(k+1)p−1. Thus, Claim 1

shows that there exist k− 1 disjoint p-element subsets S1, S2, . . . , Sk−1 of {1, 2, . . . , kp− 1}
such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , k− 1} . (470)

Consider these S1, S2, . . . , Sk−1. These k− 1 sets S1, S2, . . . , Sk−1 are subsets of {1, 2, . . . , kp− 1}
and thus also subsets of {1, 2, . . . , (k + 1) p− 1} 308. Moreover, these k− 1 sets are disjoint;
thus, the size of their union is the sum of their sizes. In other words,

|S1 ∪ S2 ∪ · · · ∪ Sk−1| = |S1|+ |S2|+ · · ·+ |Sk−1| =
k−1

∑
i=1

|Si|︸︷︷︸
=p

(since Si is
a p-element set)

=
k−1

∑
i=1

p = (k− 1) p.

Define a subset U of {1, 2, . . . , (k + 1) p− 1} by

U = {1, 2, . . . , (k + 1) p− 1} \ (S1 ∪ S2 ∪ · · · ∪ Sk−1) .

Then,

|U| = |{1, 2, . . . , (k + 1) p− 1} \ (S1 ∪ S2 ∪ · · · ∪ Sk−1)|
= |{1, 2, . . . , (k + 1) p− 1}|︸ ︷︷ ︸

=(k+1)p−1

− |S1 ∪ S2 ∪ · · · ∪ Sk−1|︸ ︷︷ ︸
=(k−1)p(

since S1 ∪ S2 ∪ · · · ∪ Sk−1 is a subset of {1, 2, . . . , (k + 1) p− 1}
(because S1, S2, . . . , Sk−1 are subsets of {1, 2, . . . , (k + 1) p− 1} )

)
= (k + 1) p− 1− (k− 1) p = 2p− 1.

Hence, Lemma 10.83.1 shows that there exists a p-element subset T of U such that p | ∑
s∈T

as.

Consider this T.

308since {1, 2, . . . , kp− 1} ⊆ {1, 2, . . . , (k + 1) p− 1}
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Extend our (k− 1)-tuple (S1, S2, . . . , Sk−1) of sets to a k-tuple (S1, S2, . . . , Sk) by setting
Sk = T. Thus, S1, S2, . . . , Sk are p-element subsets of {1, 2, . . . , (k + 1) p− 1} 309. They are
furthermore disjoint310, and satisfy

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , k} (471)

311. Hence, we have constructed k disjoint p-element subsets S1, S2, . . . , Sk of
{1, 2, . . . , (k + 1) p− 1} such that

p | ∑
s∈Si

as for all i ∈ {1, 2, . . . , k} .

Therefore, such k subsets exist. This proves Claim 2.]
We have now proven Claim 2. In other words, we have shown that Lemma 2.19.5 holds

for u = k + 1. This completes the induction step. Thus, Lemma 2.19.5 is proven by induc-
tion.

309Proof. We only need to prove that Sk is a p-element subset of {1, 2, . . . , (k + 1) p− 1} (since we
already know that S1, S2, . . . , Sk−1 are p-element subsets of {1, 2, . . . , (k + 1) p− 1}). But this is
easy: We know that T is a p-element subset of U. In other words, Sk is a p-element subset of U
(since Sk = T). Hence,

Sk ⊆ U = {1, 2, . . . , (k + 1) p− 1} \ (S1 ∪ S2 ∪ · · · ∪ Sk−1) ⊆ {1, 2, . . . , (k + 1) p− 1} .

Thus, Sk is a subset of {1, 2, . . . , (k + 1) p− 1}. Hence, Sk is a p-element subset of
{1, 2, . . . , (k + 1) p− 1}, qed.

310Proof. We must prove that the k sets S1, S2, . . . , Sk are disjoint. Since we already know that the
first k− 1 of them are disjoint (because S1, S2, . . . , Sk−1 are disjoint), we only need to check that
Sk is disjoint from each of the sets S1, S2, . . . , Sk−1. In other words, we only need to check that Sk
is disjoint from Si for each i ∈ {1, 2, . . . , k− 1}.

So let i ∈ {1, 2, . . . , k− 1} be arbitrary. Then,

Sk = T ⊆ U (since T is a subset of U)

= {1, 2, . . . , (k + 1) p− 1} \ (S1 ∪ S2 ∪ · · · ∪ Sk−1)︸ ︷︷ ︸
⊇Si

(since i∈{1,2,...,k−1})

⊆ {1, 2, . . . , (k + 1) p− 1} \ Si.

In other words, Sk is a subset of {1, 2, . . . , (k + 1) p− 1} that is disjoint from Si. In particular, Sk
is disjoint from Si.

Forget that we fixed i. We thus have shown that Sk is disjoint from Si for each i ∈
{1, 2, . . . , k− 1}. As we have explained, this completes our proof.

311Proof of (471): Let i ∈ {1, 2, . . . , k}. We must prove that p | ∑
s∈Si

as. If i ∈ {1, 2, . . . , k− 1}, then this

follows from (470); thus, for the rest of this proof, we WLOG assume that i /∈ {1, 2, . . . , k− 1}.
Hence, i ∈ {1, 2, . . . , k} but i /∈ {1, 2, . . . , k− 1}. Therefore, i ∈ {1, 2, . . . , k} \ {1, 2, . . . , k− 1} =
{k}, so that i = k. Thus, Si = Sk = T, so that ∑

s∈Si

as = ∑
s∈T

as. Hence, from p | ∑
s∈T

as, we obtain

p | ∑
s∈Si

as. This proves (471).
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10.84. Solution to Exercise 3.3.1
Solution to Exercise 3.3.1. Let α and β be two equivalence classes of ∼. Thus, α = [x]∼ and
β = [y]∼ for two elements x and y of S (by the definition of “equivalence classes of ∼”).
Consider these x and y.

If x ∼ y, then the classes [x]∼ and [y]∼ are identical (by Theorem 3.3.5 (a)). Otherwise,
they are disjoint (by Theorem 3.3.5 (b)). Thus, in either case, the classes [x]∼ and [y]∼ are
either identical or disjoint. In view of α = [x]∼ and β = [y]∼, this rewrites as follows: The
classes α and β are either identical or disjoint.

Now, forget that we fixed α and β. We thus have shown that if α and β are two equiv-
alence classes of ∼, then α and β are either identical or disjoint. This solves Exercise
3.3.1.

10.85. Solution to Exercise 3.3.2
Solution to Exercise 3.3.2. Indeed:

• The relation ∼
perm

is reflexive.

[Proof: Informally, this is obvious, because each k-tuple is a permutation of itself (just
permute it by leaving all its entries in place). The formal version of this argument
proceeds as follows:

Let a ∈ Ak. Write the k-tuple a in the form a = (a1, a2, . . . , ak) for some a1, a2, . . . , ak ∈
A. Then, a = (a1, a2, . . . , ak) =

(
aid(1), aid(2), . . . , aid(k)

)
. Hence, the k-tuple a has the

form
(

aσ(1), aσ(2), . . . , aσ(k)

)
for some permutation σ of the set {1, 2, . . . , k} (namely,

for σ = id). In other words, a is a permutation of the k-tuple (a1, a2, . . . , ak) (by
Definition 2.13.16). In other words, a is a permutation of the k-tuple a (since a =
(a1, a2, . . . , ak)). In other words, a ∼

perm
a (by the definition of the relation ∼

perm
).

Now, forget that we fixed a. We thus have proven that every a ∈ Ak satisfies a ∼
perm

a.

In other words, the relation ∼
perm

is reflexive.]

• The relation ∼
perm

is symmetric.

[Proof: Let a, b ∈ Ak be such that a ∼
perm

b. We shall prove that b ∼
perm

a.

Write the k-tuple a in the form a = (a1, a2, . . . , ak) for some a1, a2, . . . , ak ∈ A. Write
the k-tuple b in the form b = (b1, b2, . . . , bk) for some b1, b2, . . . , bk ∈ A. We have
a ∼

perm
b. In other words, a is a permutation of b (by the definition of the relation

∼
perm

). In other words, (a1, a2, . . . , ak) is a permutation of (b1, b2, . . . , bk) (since a =

(a1, a2, . . . , ak) and b = (b1, b2, . . . , bk)). Hence, Proposition 2.13.18 (applied to pi = bi
and qi = ai) shows that (b1, b2, . . . , bk) is a permutation of (a1, a2, . . . , ak). In other
words, b is a permutation of a (since a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk)). In
other words, b ∼

perm
a.
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Forget that we fixed a and b. We thus have shown that every a, b ∈ Ak satisfying
a ∼

perm
b satisfy b ∼

perm
a. In other words, the relation ∼

perm
is symmetric.]

• The relation ∼
perm

is transitive.

[Proof: Let a, b, c ∈ Ak be such that a ∼
perm

b and b ∼
perm

c. We shall prove that a ∼
perm

c.

Write the k-tuple a in the form a = (a1, a2, . . . , ak) for some a1, a2, . . . , ak ∈ A. Write
the k-tuple b in the form b = (b1, b2, . . . , bk) for some b1, b2, . . . , bk ∈ A. Write the
k-tuple c in the form c = (c1, c2, . . . , ck) for some c1, c2, . . . , ck ∈ A.

We have a ∼
perm

b. In other words, a is a permutation of b (by the definition of the

relation ∼
perm

). In other words, (a1, a2, . . . , ak) is a permutation of (b1, b2, . . . , bk) (since

a = (a1, a2, . . . , ak) and b = (b1, b2, . . . , bk)). In other words, the k-tuple (a1, a2, . . . , ak)

has the form
(

bσ(1), bσ(2), . . . , bσ(k)

)
for some permutation σ of the set {1, 2, . . . , k} (by

Definition 2.13.16). Consider this σ, and denote it by λ. Thus, λ is a permutation of

{1, 2, . . . , k} and has the property that (a1, a2, . . . , ak) =
(

bλ(1), bλ(2), . . . , bλ(k)

)
. Like-

wise, we can find a permutation µ of {1, 2, . . . , k}with the property that (b1, b2, . . . , bk) =(
cµ(1), cµ(2), . . . , cµ(k)

)
(because of our assumption that b ∼

perm
c). Consider this µ as

well.

Now µ and λ are permutations of the set {1, 2, . . . , k}, that is, bijective maps {1, 2, . . . , k} →
{1, 2, . . . , k}. Hence, their composition µ ◦λ is a bijective map {1, 2, . . . , k} → {1, 2, . . . , k}
as well, i.e., is a permutation of the set {1, 2, . . . , k}.

Recall that (b1, b2, . . . , bk) =
(

cµ(1), cµ(2), . . . , cµ(k)

)
. In other words, each j ∈ {1, 2, . . . , k}

satisfies
bj = cµ(j). (472)

Also, (a1, a2, . . . , ak) =
(

bλ(1), bλ(2), . . . , bλ(k)

)
. Hence, each i ∈ {1, 2, . . . , k} satisfies

ai = bλ(i) = cµ(λ(i)) (by (472), applied to j = λ (i))

= c(µ◦λ)(i).

In other words, we have (a1, a2, . . . , ak) =
(

c(µ◦λ)(1), c(µ◦λ)(2), . . . , c(µ◦λ)(k)
)

. Hence, the

k-tuple (a1, a2, . . . , ak) has the form
(

cσ(1), cσ(2), . . . , cσ(k)

)
for some permutation σ of

the set {1, 2, . . . , k} (namely, for σ = µ ◦ λ). In other words, the k-tuple (a1, a2, . . . , ak)
is a permutation of (c1, c2, . . . , ck) (by Definition 2.13.16). In other words, a is a per-
mutation of c (since a = (a1, a2, . . . , ak) and c = (c1, c2, . . . , ck)). In other words,
a ∼

perm
c.

Forget that we fixed a, b, c. We thus have shown that every a, b, c ∈ Ak satisfying
a ∼

perm
b and b ∼

perm
c satisfy a ∼

perm
c. In other words, the relation ∼

perm
is transitive.]

We now know that the relation ∼
perm

is reflexive, symmetric and transitive. In other words,

∼
perm

is an equivalence relation. This solves Exercise 3.3.2.
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10.86. Solution to Exercise 3.3.3
Solution to Exercise 3.3.3. Let T be the quotient set S/ ∼, and let f : S→ T be the canonical
projection π∼ : S→ S/ ∼. We shall prove that the relation ∼ equals the relation ≡

f
.

Let a ∈ S and b ∈ S. Recall that f is the map π∼. Thus, f = π∼, so that f (a) =
π∼ (a) = [a]∼ (by the definition of π∼). The same argument (applied to b instead of a)
yields f (b) = [b]∼.

Theorem 3.3.5 (e) (applied to x = a and y = b) shows that we have a ∼ b if and only if
[a]∼ = [b]∼. In other words, we have the logical equivalence

(a ∼ b) ⇐⇒ ([a]∼ = [b]∼) . (473)

We have the following chain of logical equivalences:

(
a ≡

f
b
)
⇐⇒

 f (a)︸︷︷︸
=[a]∼

= f (b)︸︷︷︸
=[b]∼

 (
by the definition of the relation ≡

f

)
⇐⇒ ([a]∼ = [b]∼) ⇐⇒ (a ∼ b) (by (473)) . (474)

Now, forget that we fixed a and b. We thus have proven the equivalence (474) for all
a ∈ S and b ∈ S. Now, recall that we have defined a relation on the set S to be a subset
of S× S (namely, the subset of all pairs (a, b) ∈ S× S satisfying this relation). Hence, the
relation ∼ is actually the subset

{(a, b) ∈ S× S | a ∼ b}

of S× S, whereas the relation ≡
f

is actually the subset

{
(a, b) ∈ S× S | a ≡

f
b
}

of S× S. But these two subsets are clearly identical, because we have shown the equivalence
(474) for all a ∈ S and b ∈ S. In other words, the two relations ∼ and ≡

f
are identical. In

other words, the relation ∼ equals the relation ≡
f

. This solves Exercise 3.3.3.

10.87. Solution to Exercise 3.4.1
Solution to Exercise 3.4.1. (a) Let r be a nonzero rational number. We must prove that the
integer wp (r) is well-defined. Recall that we have defined wp (r) by setting wp (r) =
vp (a) − vp (b), where we write r in the form r = a/b for two nonzero integers a and
b. In order to prove that wp (r) is well-defined, we must thus verify the following three
claims:

Claim 1: It is possible to write r in the form r = a/b for two nonzero integers a
and b.
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Claim 2: If we write r in the form r = a/b for two nonzero integers a and b,
then vp (a)− vp (b) is a well-defined integer.312

Claim 3: If we write r in the form r = a/b for two nonzero integers a and b,
then the integer vp (a)− vp (b) depends only on p and r (but not on a and b).

Claim 1 and Claim 2 are easy to verify:
[Proof of Claim 1: We know that r is a rational number. Hence, we can write r in the form

r = c/d for some integer c and some nonzero integer d. Consider these c and d. If we had
c = 0, then we would have r = c︸︷︷︸

=0

/d = 0; but this would contradict the fact that r is

nonzero. Hence, we cannot have c = 0. Thus, c is nonzero. Thus, there exist two nonzero
integers a and b such that r = a/b (namely, a = c and b = d). In other words, it is possible
to write r in the form r = a/b for two nonzero integers a and b. This proves Claim 1.]

[Proof of Claim 2: Assume that r is written in the form r = a/b for two nonzero integers
a and b. Definition 2.13.23 (a) shows that vp (n) ∈ N for each nonzero integer n. Thus,
vp (a) ∈N (since a is nonzero) and vp (b) ∈N (since b is nonzero). Hence, vp (a)︸ ︷︷ ︸

∈N

− vp (b)︸ ︷︷ ︸
∈N

∈

Z. In other words, vp (a)− vp (b) is a well-defined integer. This proves Claim 2.]
It remains to prove Claim 3. Clearly, Claim 3 can be restated as follows:

Claim 4: Let (a1, b1) and (a2, b2) be two pairs (a, b) of nonzero integers a and b
satisfying r = a/b. Then, vp (a1)− vp (b1) = vp (a2)− vp (b2).

[Proof of Claim 4: We have assumed that (a1, b1) is a pair (a, b) of nonzero integers a and b
satisfying r = a/b. In other words, (a1, b1) is a pair of nonzero integers satisfying r = a1/b1.
Similarly, (a2, b2) is a pair of nonzero integers satisfying r = a2/b2.

We have r = a1/b1, thus a1/b1 = r = a2/b2. Multiplying this equality by b1b2, we
find a1b2 = a2b1. Theorem 2.13.28 (a) (applied to a = a1 and b = b2) yields vp (a1b2) =
vp (a1) + vp (b2). Theorem 2.13.28 (a) (applied to a = a2 and b = b1) yields vp (a2b1) =
vp (a2) + vp (b1). Now, from vp (a1b2) = vp (a1) + vp (b2), we obtain

vp (a1) + vp (b2) = vp

a1b2︸︷︷︸
=a2b1

 = vp (a2b1) = vp (a2) + vp (b1) . (475)

But b1 is a nonzero integer (since (a1, b1) is a pair of nonzero integers); thus, vp (b1) ∈ N

(since Definition 2.13.23 (a) shows that vp (n) ∈ N for each nonzero integer n). Similarly,
vp (b2) ∈ N. Hence, vp (b1)︸ ︷︷ ︸

∈N

+ vp (b2)︸ ︷︷ ︸
∈N

∈ N. Thus, we can subtract vp (b1) + vp (b2) from

both sides of the equality (475)313. We thus obtain vp (a1)− vp (b1) = vp (a2)− vp (b2). This
proves Claim 4.]

312This needs saying, because p-valuations can be ∞ and thus their differences may fail to be well-
defined integers (for example, ∞−∞ is not even well-defined).

313The reason why we are so circumspect about this is that p-valuations can be ∞, and ∞ cannot be
subtracted. So when subtracting a p-valuation, it is important to ensure that this p-valuation is
an element of N (that is, it is not ∞).



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 687

As we recall, Claim 4 is just a restatement of Claim 3. Hence, Claim 3 is proven (since
Claim 4 is proven). From Claims 1, 2 and 3, we conclude that wp (r) is well-defined. Thus,
Exercise 3.4.1 (a) is solved.

Let us state a consequence of the definition of wp (r): If r is a nonzero rational number,
and if a and b are two nonzero integers satisfying r = a/b, then

wp (r) = vp (a)− vp (b) . (476)

(b) Let n be a nonzero integer. We must prove that wp (n) = vp (n).
We know that n and 1 are two nonzero integers satisfying n = n/1. Hence, (476) (applied

to r = n, a = n and b = 1) yields

wp (n) = vp (n)− vp (1)︸ ︷︷ ︸
=0

(by Theorem 2.13.28 (c))

= vp (n) .

This solves Exercise 3.4.1 (b).
(c) Let a and b be two nonzero rational numbers. We must show that wp (ab) = wp (a) +

wp (b).
We know that a is a rational number. Thus, we can write a in the form a = n1/d1 for

some integer n1 and some nonzero integer d1. Consider these n1 and d1. If we had n1 = 0,
then we would have a = n1︸︷︷︸

=0

/d1 = 0, which would contradict the assumption that a is

nonzero. Hence, we do not have n1 = 0. In other words, n1 is nonzero. Thus, (476) (applied
to a, n1 and d1 instead of r, a and b) yields

wp (a) = vp (n1)− vp (d1) . (477)

We know that b is a rational number. Thus, we can write b in the form b = n2/d2 for
some integer n2 and some nonzero integer d2. Consider these n2 and d2. If we had n2 = 0,
then we would have b = n2︸︷︷︸

=0

/d2 = 0, which would contradict the assumption that b is

nonzero. Hence, we do not have n2 = 0. In other words, n2 is nonzero. Thus, (476) (applied
to b, n2 and d2 instead of r, a and b) yields

wp (b) = vp (n2)− vp (d2) . (478)

From a = n1/d1 and b = n2/d2, we obtain

ab = (n1/d1) (n2/d2) = (n1n2) / (d1d2) .

Moreover, the integer n1n2 is nonzero (since n1 and n2 are nonzero), and the integer d1d2 is
nonzero (since d1 and d2 are nonzero). Hence, (476) (applied to ab, n1n2 and d1d2 instead
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of r, a and b) yields

wp (ab) = vp (n1n2)︸ ︷︷ ︸
=vp(n1)+vp(n2)

(by Theorem 2.13.28 (a),
applied to n1 and n2 instead of a and b)

− vp (d1d2)︸ ︷︷ ︸
=vp(d1)+vp(d2)

(by Theorem 2.13.28 (a),
applied to d1 and d2 instead of a and b)

=
(
vp (n1) + vp (n2)

)
−
(
vp (d1) + vp (d2)

)
=
(
vp (n1)− vp (d1)

)︸ ︷︷ ︸
=wp(a)

(by (477))

+
(
vp (n2)− vp (d2)

)︸ ︷︷ ︸
=wp(b)

(by (478))

= wp (a) + wp (b) .

This solves Exercise 3.4.1 (c).
(d) Let a and b be two nonzero rational numbers such that a + b 6= 0. We must show that

wp (a + b) ≥ min
{

wp (a) , wp (b)
}

.
Note that a + b is a nonzero rational number (since a + b 6= 0); thus, wp (a + b) is well-

defined.
We know that a is a rational number. Thus, we can write a in the form a = n1/d1

for some integer n1 and some nonzero integer d1. Consider these n1 and d1. Then, n1 is
nonzero (this is proven in the same way as in our solution to Exercise 3.4.1 (c)). Thus, (476)
(applied to a, n1 and d1 instead of r, a and b) yields

wp (a) = vp (n1)− vp (d1) . (479)

We know that b is a rational number. Thus, we can write b in the form b = n2/d2
for some integer n2 and some nonzero integer d2. Consider these n2 and d2. Then, n2 is
nonzero (this is proven in the same way as in our solution to Exercise 3.4.1 (c)). Thus, (476)
(applied to b, n2 and d2 instead of r, a and b) yields

wp (b) = vp (n2)− vp (d2) . (480)

From a = n1/d1 and b = n2/d2, we obtain

a + b = (n1/d1) + (n2/d2) = (n1d2 + n2d1) / (d1d2) .

Moreover, the integer n1d2 + n2d1 is nonzero (because otherwise, we would have n1d2 +
n2d1 = 0 and therefore a + b = (n1d2 + n2d1)︸ ︷︷ ︸

=0

/ (d1d2) = 0, which would contradict a + b 6=

0), and the integer d1d2 is nonzero (since d1 and d2 are nonzero). Hence, (476) (applied to
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a + b, n1d2 + n2d1 and d1d2 instead of r, a and b) yields

wp (a + b) = vp (n1d2 + n2d1)︸ ︷︷ ︸
≥min{vp(n1d2),vp(n2d1)}

(by Theorem 2.13.28 (b),
applied to n1d2 and n2d1 instead of a and b)

− vp (d1d2)︸ ︷︷ ︸
=vp(d1)+vp(d2)

(by Theorem 2.13.28 (a),
applied to d1 and d2 instead of a and b)

≥ min


vp (n1d2)︸ ︷︷ ︸

=vp(n1)+vp(d2)
(by Theorem 2.13.28 (a),

applied to n1 and d2
instead of a and b)

, vp (n2d1)︸ ︷︷ ︸
=vp(n2)+vp(d1)

(by Theorem 2.13.28 (a),
applied to n2 and d1
instead of a and b)


−
(
vp (d1) + vp (d2)

)

= min
{

vp (n1) + vp (d2) , vp (n2) + vp (d1)
}
−
(
vp (d1) + vp (d2)

)
. (481)

But it is easy to see that any three numbers i, j, k ∈N satisfy

min {i, j} − k = min {i− k, j− k} (482)

314. Also, it is easy to see that the three numbers vp (n1)+ vp (d2) , vp (n2)+ vp (d1) , vp (d1)+
vp (d2) belong to N (since n1, n2, d1, d2 are all nonzero). Hence, (482) (applied to i =
vp (n1) + vp (d2), j = vp (n2) + vp (d1) and k = vp (d1) + vp (d2)) yields

min
{

vp (n1) + vp (d2) , vp (n2) + vp (d1)
}
−
(
vp (d1) + vp (d2)

)

= min

vp (n1) + vp (d2)−
(
vp (d1) + vp (d2)

)︸ ︷︷ ︸
=vp(n1)−vp(d1)=wp(a)

(by (479))

, vp (n2) + vp (d1)−
(
vp (d1) + vp (d2)

)︸ ︷︷ ︸
=vp(n2)−vp(d2)=wp(b)

(by (480))


= min

{
wp (a) , wp (b)

}
.

Thus, (481) becomes

wp (a + b) ≥ min
{

vp (n1) + vp (d2) , vp (n2) + vp (d1)
}
−
(
vp (d1) + vp (v2)

)
= min

{
wp (a) , wp (b)

}
.

This solves Exercise 3.4.1 (d).

314Proof of (482): Let i, j, k ∈ N be three numbers. We must prove the equality (482). We can WLOG
assume that i ≤ j (since i and j play symmetric roles in our claim, and thus swapping i with j
will not change anything). Assume this. Hence, i︸︷︷︸

≤j

−k ≤ j− k, thus min {i− k, j− k} = i− k.

Comparing this with min {i, j}︸ ︷︷ ︸
=i

(since i≤j)

−k = i − k, we obtain min {i, j} − k = min {i− k, j− k}. This

proves (482).
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10.88. Solution to Exercise 3.4.2
Solution to Exercise 3.4.2. It is possible to write r in the form r = a/b for two nonzero
integers a and b. 315 Consider these a and b.

We have r = a/b. Thus, for each prime p, we have

wp (r) = vp (a)− vp (b) (483)

(by (476)). Also, rb = a (since r = a/b).
(a) Let p be a prime such that p > max {|a| , |b|}. Then, p > max {|a| , |b|} ≥ |a|. Hence,

Lemma 2.13.32 (a) (applied to n = a) yields vp (a) = 0. The same argument (applied to
b instead of a) leads to vp (b) = 0 (since p > max {|a| , |b|} ≥ |b|). Now, (483) yields
wp (r) = vp (a)︸ ︷︷ ︸

=0

− vp (b)︸ ︷︷ ︸
=0

= 0− 0 = 0.

Now, forget that we fixed p. We thus have proven that every prime p satisfying p >
max {|a| , |b|} satisfies wp (r) = 0. Hence, all but finitely many primes p satisfy wp (r) = 0
(since all but finitely many primes p satisfy p > max {|a| , |b|}). This solves Exercise 3.4.2
(a).

(b) Exercise 3.4.2 (a) shows that all but finitely many primes p satisfy wp (r) = 0. Hence,
all but finitely many primes p satisfy pwp(r) = p0 = 1. In other words, only finitely many
primes p satisfy pwp(r) 6= 1. In other words, the product ∏

p prime
pwp(r) has only finitely many

factors different from 1. Hence, this product ∏
p prime

pwp(r) is well-defined.

It remains to prove that |r| = ∏
p prime

pwp(r).

Corollary 2.13.34 (applied to n = a) yields that

|a| = ∏
p prime

pvp(a) (484)

(and, in particular, the infinite product ∏
p prime

pvp(a) is well-defined). Corollary 2.13.34 (ap-

plied to n = b) yields that
|b| = ∏

p prime
pvp(b) (485)

(and, in particular, the infinite product ∏
p prime

pvp(b) is well-defined). But |b| is nonzero

(since b is nonzero). Hence, we can divide the equality (484) by the equality (485). We thus
obtain

|a|
|b| =

∏
p prime

pvp(a)

∏
p prime

pvp(b)
= ∏

p prime

pvp(a)

pvp(b)︸ ︷︷ ︸
=pvp(a)−vp(b)

= ∏
p prime

pvp(a)−vp(b).

But (3) (applied to x = r and y = b) yields |rb| = |r| · |b|. We can divide this equality by
|b| (since |b| is nonzero), and thus obtain |rb| / |b| = |r|. Hence,

|r| =
∣∣∣∣∣ rb︸︷︷︸

=a

∣∣∣∣∣ / |b| = |a| / |b| = |a||b| = ∏
p prime

pvp(a)−vp(b).

315Indeed, this is precisely Claim 1 in our above solution of Exercise 3.4.1 (a).
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Comparing this with

∏
p prime

pwp(r)︸ ︷︷ ︸
=pvp(a)−vp(b)

(by (483))

= ∏
p prime

pvp(a)−vp(b),

we obtain |r| = ∏
p prime

pwp(r). This completes the solution to Exercise 3.4.2 (b).

(c) We have b 6= 0 (since b is nonzero). Thus, Proposition 2.2.3 (c) (applied to b and a
instead of a and b) shows that b | a if and only if

a
b
∈ Z. In other words, b | a if and only if

r ∈ Z (since r = a/b =
a
b

). In other words, we have the following logical equivalence:

(b | a) ⇐⇒ (r ∈ Z) . (486)

But Proposition 2.13.35 (applied to m = a and n = b) shows that we have b | a if and
only if each prime p satisfies vp (b) ≤ vp (a). In other words, we have the following logical
equivalence:

(b | a) ⇐⇒
(
each prime p satisfies vp (b) ≤ vp (a)

)
. (487)

Now, we have the following chain of equivalences:

(r ∈ Z) ⇐⇒ (b | a) (by (486))
⇐⇒

(
each prime p satisfies vp (b) ≤ vp (a)

)
(by (487))

⇐⇒

each prime p satisfies vp (a)− vp (b)︸ ︷︷ ︸
=wp(r)

(by (483))

≥ 0


(

because for each prime p, the inequality vp (b) ≤ vp (a)
is equivalent to the inequality vp (a)− vp (b) ≥ 0

)
⇐⇒

(
each prime p satisfies wp (r) ≥ 0

)
.

In other words, r ∈ Z if and only if each prime p satisfies wp (r) ≥ 0. This solves Exercise
3.4.2 (c).

(d) We must prove the equivalence(
there exists a k ∈N satisfying mkr ∈ Z

)
⇐⇒

(
every prime p satisfying wp (r) < 0 satisfies p | m

)
.

We shall prove its “=⇒” and “⇐=” directions separately:
=⇒: Assume that there exists a k ∈ N satisfying mkr ∈ Z. We must prove that every

prime p satisfying wp (r) < 0 satisfies p | m.
Let p be a prime satisfying wp (r) < 0. We must then prove that p | m.
If m = 0, then this is obvious316. Hence, for the rest of this proof, we WLOG assume that

m 6= 0. Hence, m is nonzero.
We have assumed that there exists a k ∈N satisfying mkr ∈ Z. Consider this k.

316because in this case, we have m = 0 = p · 0 and thus p | m
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Note that mk is a nonzero integer (since m is a nonzero integer and k ∈ N). Hence,
Exercise 3.4.1 (b) (applied to n = mk) yields wp

(
mk) = vp

(
mk) = kvp (m) (by Exer-

cise 2.13.6, applied to m instead of a). Also, mkr is an integer (since mkr ∈ Z) and is
nonzero (since mk and r are nonzero). Thus, Exercise 3.4.1 (b) (applied to n = mkr) yields
wp
(
mkr

)
= vp

(
mkr

)
∈ N (since the p-valuation of any nonzero integer belongs to N).

Hence, wp
(
mkr

)
≥ 0.

But Exercise 3.4.1 (c) (applied to mk and r instead of a and b) yields

wp

(
mkr

)
= wp

(
mk
)

︸ ︷︷ ︸
=kvp(m)

+wp (r)︸ ︷︷ ︸
<0

< kvp (m) ,

so that kvp (m) > wp
(
mkr

)
≥ 0. Thus, kvp (m) 6= 0, so that vp (m) 6= 0. In other words, we

don’t have vp (m) = 0.
But Corollary 2.13.26 (applied to n = m) shows that vp (m) = 0 if and only if p - m.

Hence, we don’t have p - m (since we don’t have vp (m) = 0). In other words, we have
p | m.

Now, forget that we fixed p. We thus have proven that every prime p satisfying wp (r) < 0
satisfies p | m. This completes the proof of the “=⇒” direction of Exercise 3.4.2 (d).
⇐=: Assume that every prime p satisfying wp (r) < 0 satisfies p | m. We must prove that

there exists a k ∈N satisfying mkr ∈ Z.
If m = 0, then this is obvious317. Hence, for the rest of this proof, we WLOG assume that

m 6= 0. Hence, m is nonzero.
We have assumed that

every prime p satisfying wp (r) < 0 satisfies p | m. (488)

Exercise 3.4.2 (a) shows that all but finitely many primes p satisfy wp (r) = 0. In other
words, there is a finite set P of primes such that

every prime p /∈ P must satisfy wp (r) = 0 (489)

(where “prime p /∈ P” means “prime p satisfying p /∈ P”). Consider this P. Clearly, the set{
wp (r) | p ∈ P

}
is finite (since P is finite).

Define a subset W of Z by

W =
{

wp (r) | p ∈ P
}
∪ {0}

318. This set W is finite319. Moreover, 0 ∈ {0} ⊆
{

wp (r) | p ∈ P
}
∪ {0} = W. In other

words, the set W contains 0, and thus is nonempty.
We have

{
wp (r) | p ∈ P

}
⊆
{

wp (r) | p ∈ P
}
∪ {0} = W. In other words,

wp (r) ∈W for each p ∈ P. (490)

317because in this case, we can take k = 1 and obtain mk︸︷︷︸
=m1=m=0

r = 0 ∈ Z

318This is well-defined, since wp (r) ∈ Z for each p ∈ P.
319since it is the union of the two finite sets

{
wp (r) | p ∈ P

}
and {0}
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But every nonempty finite subset of Z has a smallest element. Hence, W has a smallest
element (since W is a nonempty finite subset of Z). Let g be this smallest element. Thus,
g ∈W ⊆ Z and

g ≤ i for each i ∈W (491)

(since g is the smallest element of W). Applying (491) to i = 0, we obtain g ≤ 0 (since
0 ∈W). Hence, −g ≥ 0, so that −g ∈N (since −g is an integer).

Set h = −g. Then, h = −g ∈N, so that h ≥ 0.
Now, we shall show that mhr ∈ Z. We shall achieve this by applying Exercise 3.4.2 (c) to

mhr instead of r.
Indeed, mh is a nonzero integer (since m is a nonzero integer, and h ∈N), thus a nonzero

rational number. Hence, mhr is a nonzero rational number (since mh and r are nonzero
rational numbers). Now, let p be any prime. We shall show that wp

(
mhr

)
≥ 0.

Indeed, assume the contrary. Thus, wp
(
mhr

)
< 0. But mh is a nonzero integer; hence,

Exercise 3.4.1 (b) (applied to n = mh) yields wp
(
mh) = vp

(
mh) = hvp (m) (by Exercise

2.13.6, applied to m and h instead of a and k). Also, m is a nonzero integer; thus, vp (m) ∈N

(since the p-valuation of any nonzero integer belongs to N). Thus, h︸︷︷︸
∈N

vp (m)︸ ︷︷ ︸
∈N

∈N, so that

hvp (m) ≥ 0.
But Exercise 3.4.1 (c) (applied to mh and r instead of a and b) yields

wp

(
mhr

)
= wp

(
mh
)

︸ ︷︷ ︸
=hvp(m)

+wp (r) = hvp (m)︸ ︷︷ ︸
≥0

+wp (r) (492)

≥ wp (r) ,

and thus wp (r) ≤ wp
(
mhr

)
< 0. Thus, (488) shows that p | m. In other words, we don’t

have p - m.
But Corollary 2.13.26 (applied to n = m) shows that vp (m) = 0 if and only if p - m.

Hence, we don’t have vp (m) = 0 (since we don’t have p - m). Thus, vp (m) 6= 0, so that
vp (m) ≥ 1 (since vp (m) ∈N). Thus, h vp (m)︸ ︷︷ ︸

≥1

≥ h (since h ≥ 0).

If we had p /∈ P, then we would have wp (r) = 0 (by (489)), which would contradict
wp (r) < 0. Thus, we cannot have p /∈ P. Hence, we have p ∈ P. Thus, (490) yields
wp (r) ∈W. Hence, (491) (applied to i = wp (r)) yields g ≤ wp (r), so that wp (r) ≥ g.

Now, (492) becomes

wp

(
mhr

)
= hvp (m)︸ ︷︷ ︸

≥h

+wp (r)︸ ︷︷ ︸
≥g

≥ h + g = 0 (since h = −g) .

This contradicts wp
(
mhr

)
< 0. This contradiction shows that our assumption was false.

Hence, wp
(
mhr

)
≥ 0 is proven.

Now, forget that we fixed p. We thus have shown that each prime p satisfies wp
(
mhr

)
≥

0.
But Exercise 3.4.2 (c) (applied to mhr instead of r) shows that we have mhr ∈ Z if and

only if each prime p satisfies wp
(
mhr

)
≥ 0. Hence, we have mhr ∈ Z (since each prime p

satisfies wp
(
mhr

)
≥ 0). Thus, there exists a k ∈N satisfying mkr ∈ Z (namely, k = h). This

proves the “⇐=” direction of Exercise 3.4.2 (d).
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10.89. Solution to Exercise 3.5.1
Solution to Exercise 3.5.1. (a) The inverse α−1 of α exists (since α has an inverse). We have
α · α−1 = [1]n (since α−1 is an inverse of α). But Theorem 3.4.23 (e) (applied to α−1 and
α instead of α and β) yields α−1 · α = α · α−1 = [1]n. In other words, α is an inverse of
α−1. Thus, α−1 has an inverse (namely, α). Therefore, we can speak of “the inverse of α−1”.
Moreover,

(
α−1)−1

=
(
the inverse of α−1) = α (since α is an inverse of α−1). This solves

Exercise 3.5.1 (a).
(b) The inverse α−1 of α exists (since α has an inverse). We have α · α−1 = [1]n (since

α−1 is an inverse of α). The inverse β−1 of β exists (since β has an inverse). We have
β · β−1 = [1]n (since β−1 is an inverse of β). Theorem 3.4.23 (e) yields α · β = β · α. In other
words, αβ = βα.

Theorem 3.4.23 (f) (applied to β, α and α−1) yields β ·
(
α · α−1) = (β · α) · α−1 = (βα) · α−1,

so that
(βα) · α−1 = β ·

(
α · α−1

)
︸ ︷︷ ︸

=[1]n

= β · [1]n = β

(by Theorem 3.4.23 (d)).
Now, Theorem 3.4.23 (f) (applied to αβ, α−1 and β−1 instead of α, β and γ) yields

(αβ) ·
(

α−1β−1
)
=

(αβ)︸︷︷︸
=βα

·α−1

 · β−1 =
(
(βα) · α−1

)
︸ ︷︷ ︸

=β

·β−1 = β · β−1 = [1]n .

In other words, α−1β−1 is an inverse of αβ. Thus, αβ has an inverse (namely, α−1β−1).
Therefore, we can speak of “the inverse of αβ”. Moreover, (αβ)−1 = (the inverse of αβ) =
α−1β−1 (since α−1β−1 is an inverse of αβ). This solves Exercise 3.5.1 (b).

[Remark: In the above solution, we have avoided writing products of the form α1α2 · · · αk
with more than 2 factors without explicitly placing parentheses. This was done for the pur-
pose of making each single use of associativity explicit. Had we instead written such prod-
ucts without parenthesization, our solution would have become much simpler; namely, we
could simply argue that

(αβ) ·
(

α−1β−1
)
= αβ︸︷︷︸

=βα

α−1β−1 = β αα−1︸ ︷︷ ︸
=[1]n

β−1 = β [1]n︸ ︷︷ ︸
=β

(by Theorem 3.4.23 (d))

β−1 = ββ−1 = [1]n .

Computations of this kind are perfectly legitimate, because Proposition 3.4.25 shows that
products of the form α1α2 · · · αk are well-defined and satisfy the standard rules (which in-
clude the one saying that α1α2 · · · αk = (α1α2 · · · αi) (αi+1αi+2 · · · αk) for each i ∈ {0, 1, . . . , k}).]
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10.90. Solution to Exercise 4.1.1
Proof of Proposition 4.1.20. (a) Let α ∈ C and n ∈ N. The definition of αn yields αn =
αα · · · α︸ ︷︷ ︸

n times

. The definition of αn+1 yields

αn+1 = αα · · · α︸ ︷︷ ︸
n+1 times

= α · αα · · · α︸ ︷︷ ︸
n times

.

Comparing this with
α αn︸︷︷︸
=αα · · · α︸ ︷︷ ︸

n times

= α · αα · · · α︸ ︷︷ ︸
n times

,

we obtain αn+1 = ααn. This proves Proposition 4.1.20 (a).
(b) First proof of Proposition 4.1.20 (b): Let α ∈ C and n, m ∈N. Definition 4.1.18 (a) yields

αn = αα · · · α︸ ︷︷ ︸
n times

and αm = αα · · · α︸ ︷︷ ︸
m times

. Multiplying these two equalities, we obtain

αnαm = αα · · · α︸ ︷︷ ︸
n times

· αα · · · α︸ ︷︷ ︸
m times

= αα · · · α︸ ︷︷ ︸
n+m times

.

Comparing this with

αn+m = αα · · · α︸ ︷︷ ︸
n+m times

(by Definition 4.1.18 (a)) ,

we obtain αn+m = αnαm. This proves Proposition 4.1.20 (b).
Second proof of Proposition 4.1.20 (b): We shall prove Proposition 4.1.20 (b) by induction

on n:
Induction base: If α ∈ C and m ∈N, then α0︸︷︷︸

=1

αm = 1 · αm = αm = α0+m (since m = 0+m).

In other words, we have α0+m = α0αm for all α ∈ C and m ∈N. In other words, Proposition
4.1.20 (b) holds for n = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that Proposition 4.1.20 (b) holds for n = k. We must
prove that Proposition 4.1.20 (b) holds for n = k + 1.

Let α ∈ C and m ∈ N. We have assumed that Proposition 4.1.20 (b) holds for n = k.
Hence, we can apply Proposition 4.1.20 (b) to n = k. We thus obtain αk+m = αkαm.

Proposition 4.1.20 (a) (applied to n = k) yields αk+1 = ααk. Also, Proposition 4.1.20 (a)
(applied to n = k + m) yields α(k+m)+1 = ααk+m.

But (k + 1) + m = (k + m) + 1 and hence

α(k+1)+m = α(k+m)+1 = α αk+m︸ ︷︷ ︸
=αkαm

= α
(

αkαm
)
=
(

ααk
)

︸ ︷︷ ︸
=αk+1

αm (by Theorem 4.1.2 (f))

= αk+1αm.

Now, forget that we fixed α and m. We thus have shown that α(k+1)+m = αk+1αm for
all α ∈ C and m ∈ N. In other words, Proposition 4.1.20 (b) holds for n = k + 1. This
completes the induction step. Thus, Proposition 4.1.20 (b) is proven by induction.
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(c) We shall prove Proposition 4.1.20 (c) by induction on n:
Induction base: Let α, β ∈ C. Then, (αβ)0 = 1 = α0β0 (since α0︸︷︷︸

=1

β0︸︷︷︸
=1

= 1 · 1 = 1).

Forget that we fixed α, β. We thus have shown that (αβ)0 = α0β0 for all α, β ∈ C. In other
words, Proposition 4.1.20 (c) holds for n = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that Proposition 4.1.20 (c) holds for n = k. We must
prove that Proposition 4.1.20 (c) holds for n = k + 1.

Let α, β ∈ C. We have assumed that Proposition 4.1.20 (c) holds for n = k. Hence,
(αβ)k = αkβk. But Proposition 4.1.20 (a) (applied to n = k) yields αk+1 = ααk. Similarly,
βk+1 = ββk. Multiplying these two equalities together, we obtain

αk+1βk+1 =
(

ααk
) (

ββk
)
=
((

ααk
)

β
)

βk (493)

(by Theorem 4.1.2 (f)). But Proposition 4.1.20 (a) (applied to αβ and k instead of α and n)
yields320

(αβ)k+1 = (αβ) (αβ)k︸ ︷︷ ︸
=αk βk

= (αβ)
(

αkβk
)
= α

(
β
(

αkβk
))

︸ ︷︷ ︸
=(βαk)βk

(by Theorem 4.1.2 (f))(
since Theorem 4.1.2 (f) yields α

(
β
(

αkβk
))

= (αβ)
(

αkβk
))

= α
((

βαk
)

βk
)
=

α
(

βαk
)

︸ ︷︷ ︸
=αk β

(by Theorem 4.1.2 (e))

 βk (by Theorem 4.1.2 (f))

=
(

α
(

αkβ
))

︸ ︷︷ ︸
=(ααk)β

(by Theorem 4.1.2 (f))

βk =
((

ααk
)

β
)

βk.

Comparing this with (493), we obtain (αβ)k+1 = αk+1βk+1.
Now, forget that we fixed α, β. We thus have shown that (αβ)k+1 = αk+1βk+1 for all

α, β ∈ C. In other words, Proposition 4.1.20 (c) holds for n = k + 1. Thus, Proposition
4.1.20 (c) is proven by induction.

(d) We shall prove Proposition 4.1.20 (d) by induction on m:
Induction base: For all α ∈ C and n ∈ N, we have (αn)0 = 1 = α0 = αn·0 (since 0 = n · 0).

In other words, Proposition 4.1.20 (d) holds for m = 0. This completes the induction base.
Induction step: Let k ∈ N. Assume that Proposition 4.1.20 (d) holds for m = k. We must

prove that Proposition 4.1.20 (d) holds for m = k + 1.

320The following computation could be much shorter if I used unparenthesized products (i.e., if I
wrote “αβαkβk” instead of explicitly invoking the associativity of multiplication to move between
various ways of parenthesizing this product). I am avoiding unparenthesized products here for
the purpose of illustrating how to live without them; in the future I will simply use them
wherever they can help.
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Let α ∈ C and n ∈ N. Then, (αn)k = αnk (since Proposition 4.1.20 (d) holds for m = k).
Now, Proposition 4.1.20 (a) (applied to αn and k instead of α and n) yields

(αn)k+1 = αn (αn)k︸ ︷︷ ︸
=αnk

= αnαnk.

Comparing this with

αn(k+1) = αn+nk (since n (k + 1) = n + nk)

= αnαnk (by Proposition 4.1.20 (b), applied to m = nk) ,

we obtain (αn)k+1 = αn(k+1).
Now, forget that we fixed α and n. We thus have shown that (αn)k+1 = αn(k+1) for all

α ∈ C and n ∈ N. In other words, Proposition 4.1.20 (d) holds for m = k + 1. Hence,
Proposition 4.1.20 (d) is proven by induction.

(e) We shall prove Proposition 4.1.20 (e) by induction on n:
Induction base: Proposition 4.1.20 (e) holds for n = 0 (since 10 = 1). This completes the

induction base.
Induction step: Let k ∈ N. Assume that Proposition 4.1.20 (e) holds for n = k. We must

prove that Proposition 4.1.20 (e) holds for n = k + 1.
We have assumed that Proposition 4.1.20 (e) holds for n = k. In other words, 1k = 1.

Now, Proposition 4.1.20 (a) (applied to α = 1 and n = k) yields 1k+1 = 1 · 1k︸︷︷︸
=1

= 1 · 1 = 1.

In other words, Proposition 4.1.20 (e) holds for n = k + 1. This completes the induction
step. Hence, Proposition 4.1.20 (e) is proven by induction.

(f) Let α ∈ C be nonzero. Let n ∈ Z. We must prove that αn+1 = ααn.
Recall that α−1 is the inverse of α; hence, αα−1 = 1 (by the definition of “inverse”).
We are in one of the following three cases:
Case 1: We have n > −1.
Case 2: We have n = −1.
Case 3: We have n < −1.
Let us first consider Case 1. In this case, we have n > −1. Thus, n ≥ 0 (since n is an

integer), so that n ∈ N. Hence, Proposition 4.1.20 (a) yields αn+1 = ααn. Thus, αn+1 = ααn

is proven in Case 1.
Let us next consider Case 2. In this case, we have n = −1. Thus, n + 1 = 0, so that

αn+1 = α0 = 1. On the other hand, from n = −1, we obtain ααn = αα−1 = 1. Comparing
this with αn+1 = 1, we find αn+1 = ααn. Hence, αn+1 = ααn is proven in Case 2.

Let us finally consider Case 3. In this case, we have n < −1. Hence, n+ 1 < 0. Therefore,
Definition 4.1.19 (applied to n + 1 instead of n) yields

αn+1 =
(

α−1
)−(n+1)

. (494)

On the other hand, n + 1 < 0, hence − (n + 1) > 0 and thus − (n + 1) ∈ N. Hence,
Proposition 4.1.20 (a) (applied to α−1 and− (n + 1) instead of α and n) yields

(
α−1)−(n+1)+1

=
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α−1 (α−1)−(n+1). On the other hand, n < −1 < 0. Hence, Definition 4.1.19 yields

αn =
(

α−1
)−n

=
(

α−1
)−(n+1)+1

(since − n = − (n + 1) + 1)

= α−1
(

α−1
)−(n+1)

︸ ︷︷ ︸
=αn+1

(by (494))

= α−1αn+1.

Thus,
α αn︸︷︷︸
=α−1αn+1

= αα−1︸ ︷︷ ︸
=1

αn+1 = αn+1.

In other words, αn+1 = ααn. Hence, αn+1 = ααn is proven in Case 3.
We have now proven αn+1 = ααn in all three Cases 1, 2 and 3. Thus, αn+1 = ααn always

holds. This proves Proposition 4.1.20 (f).
(g) Let α ∈ C be nonzero. Let n ∈ Z. We must prove that α−n =

(
α−1)n.

We are in one of the following three Cases:
Case 1: We have n > 0.
Case 2: We have n = 0.
Case 3: We have n < 0.
Let us first consider Case 1. In this case, we have n > 0. Hence, −n < 0. In other

words, −n is negative. Hence, Definition 4.1.19 (applied to −n instead of n) yields α−n =(
α−1)−(−n)

=
(
α−1)n (since − (−n) = n). Hence, α−n =

(
α−1)n is proven in Case 1.

Let us next consider Case 2. In this case, we have n = 0. Hence, α−n = α−0 = α0 = 1 and(
α−1)n

=
(
α−1)0

= 1. Comparing these two equalities, we obtain α−n =
(
α−1)n. Hence,

α−n =
(
α−1)n is proven in Case 2.

Let us next consider Case 3. In this case, we have n < 0. In other words, n is negative.
Recall that α−1 is the inverse of α; hence, αα−1 = 1 (by the definition of “inverse”).

Hence, α−1 6= 0 (since otherwise, we would have α−1 = 0 and thus 1 = α α−1︸︷︷︸
=0

= 0,

which would be absurd). Hence, Definition 4.1.19 (applied to α−1 instead of α) yields(
α−1)n

=
((

α−1)−1
)−n

(since n is negative).

But Proposition 4.1.16 (a) yields
(
α−1)−1

= α. Thus,
(
α−1)n

=

(α−1
)−1

︸ ︷︷ ︸
=α


−n

= α−n, so

that α−n =
(
α−1)n. Hence, α−n =

(
α−1)n is proven in Case 3.

We have now proven that α−n =
(
α−1)n in all three Cases 1, 2 and 3. Thus, α−n =

(
α−1)n

always holds. This completes the proof of Proposition 4.1.20 (g).
(h) We must prove that αn+m = αnαm for all nonzero α ∈ C and all n, m ∈ Z. We shall

first prove the following less general result:

Claim 1: We have αn+m = αnαm for all nonzero α ∈ C and all n ∈N and m ∈ Z.

[Proof of Claim 1: The following proof is very similar to our Second proof of Proposition
4.1.20 (b) above.

We shall prove Claim 1 by induction on n:
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Induction base: If α ∈ C is nonzero, and if m ∈ Z, then α0︸︷︷︸
=1

αm = 1 · αm = αm = α0+m

(since m = 0 + m). In other words, we have α0+m = α0αm for all nonzero α ∈ C and all
m ∈ Z. In other words, Claim 1 holds for n = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that Claim 1 holds for n = k. We must prove that
Claim 1 holds for n = k + 1.

Let α ∈ C be nonzero, and let m ∈ Z. We have assumed that Claim 1 holds for n = k.
Hence, we can apply Claim 1 to n = k. We thus obtain αk+m = αkαm.

Proposition 4.1.20 (f) (applied to n = k) yields αk+1 = ααk. Also, Proposition 4.1.20 (f)
(applied to n = k + m) yields α(k+m)+1 = ααk+m.

But (k + 1) + m = (k + m) + 1 and hence

α(k+1)+m = α(k+m)+1 = α αk+m︸ ︷︷ ︸
=αkαm

= ααk︸︷︷︸
=αk+1

αm = αk+1αm.

Now, forget that we fixed m. We thus have shown that α(k+1)+m = αk+1αm for all nonzero
α ∈ C and all m ∈ Z. In other words, Claim 1 holds for n = k + 1. This completes the
induction step. Thus, Claim 1 is proven by induction.]

Now, let us prove Proposition 4.1.20 (h) in full generality: Fix a nonzero α ∈ C. Fix
n, m ∈ Z. We must prove that αn+m = αnαm. If n ∈ N, then this follows from Claim 1.
Hence, for the rest of this proof, we WLOG assume that we don’t have n ∈ N. Combining
this with n ∈ Z, we obtain n ∈ Z \N = {−1,−2,−3, . . .}. In other words, n is negative.
Hence, −n is positive. Thus, −n ∈N.

Recall that α−1 is the inverse of α; hence, αα−1 = 1 (by the definition of “inverse”).
Hence, α−1 6= 0 (since otherwise, we would have α−1 = 0 and thus 1 = α α−1︸︷︷︸

=0

= 0, which

would be absurd). So we have α−1 6= 0 and −n ∈ N. Hence, Claim 1 (applied to α−1, −n
and −m instead of α, n and m) yields(

α−1
)(−n)+(−m)

=
(

α−1
)−n (

α−1
)−m

. (495)

Definition 4.1.19 yields αn =
(
α−1)−n (since n is negative). Proposition 4.1.20 (g) (applied

to−m instead of n) yields α−(−m) =
(
α−1)−m. In view of− (−m) = m, this rewrites as αm =(

α−1)−m. The same argument (applied to n + m instead of m) yields αn+m =
(
α−1)−(n+m).

Hence,

αn+m =
(

α−1
)−(n+m)

=
(

α−1
)(−n)+(−m)

(since − (n + m) = (−n) + (−m))

=
(

α−1
)−n (

α−1
)−m

(by (495)) .

Comparing this with

αn︸︷︷︸
=(α−1)

−n

αm︸︷︷︸
=(α−1)

−m

=
(

α−1
)−n (

α−1
)−m

,

we obtain αn+m = αnαm. This completes our proof of Proposition 4.1.20 (h).
(i) Let α, β ∈ C be nonzero. Let n ∈ Z. We must prove that (αβ)n = αnβn.
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If n ∈ N, then this follows from Proposition 4.1.20 (c). Hence, for the rest of this proof,
we WLOG assume that we don’t have n ∈ N. Combining this with n ∈ Z, we obtain
n ∈ Z \N = {−1,−2,−3, . . .}. In other words, n is negative. Hence, −n is positive. Thus,
−n ∈ N. Hence, Proposition 4.1.20 (c) (applied to −n, α−1 and β−1 instead of n, α and β)
yields

(
α−1β−1)−n

=
(
α−1)−n (

β−1)−n.
Proposition 4.1.16 (b) yields that (αβ)−1 = α−1β−1. Also, Corollary 4.1.17 shows that αβ

is nonzero. Recall also that n is negative. Thus, Definition 4.1.19 (applied to αβ instead of
α) yields

(αβ)n =

(αβ)−1︸ ︷︷ ︸
=α−1β−1


−n

=
(

α−1β−1
)−n

=
(

α−1
)−n (

β−1
)−n

. (496)

On the other hand, Definition 4.1.19 yields αn =
(
α−1)−n (since n is negative). Simi-

larly, βn =
(

β−1)−n. Multiplying these two equalities, we obtain αnβn =
(
α−1)−n (

β−1)−n.
Comparing this with (496), we find (αβ)n = αnβn. This completes our proof of Proposition
4.1.20 (i).

(j) Let n ∈ Z. We must prove that 1n = 1. If n ∈ N, then this follows from Proposition
4.1.20 (e). Hence, for the rest of this proof, we WLOG assume that we don’t have n ∈ N.
Combining this with n ∈ Z, we obtain n ∈ Z \N = {−1,−2,−3, . . .}. In other words, n is
negative. Hence, −n is positive. Thus, −n ∈ N. Hence, Proposition 4.1.20 (e) (applied to
−n instead of n) yields 1−n = 1.

Also, 1 · 1 = 1. Hence, 1 is an inverse of 1 (by the definition of “inverse”). Thus, the
inverse of 1 is 1. In other words, 1−1 = 1.

But n is negative. Thus, Definition 4.1.19 (applied to α = 1) yields 1n =

 1−1︸︷︷︸
=1

−n

=

1−n = 1. Hence, Proposition 4.1.20 (j) is proven.
(k) Let α ∈ C be nonzero. Let n ∈ Z.
Proposition 4.1.20 (h) (applied to m = −n) yields αn+(−n) = αnα−n. Hence, αnα−n =

αn+(−n) = α0 (since n + (−n) = 0). Thus, αnα−n = α0 = 1.
Proposition 4.1.20 (h) (applied to −n and n instead of n and m) yields α(−n)+n = α−nαn.

Hence, α−nαn = α(−n)+n = α0 (since (−n) + n = 0). Thus, α−nαn = α0 = 1.
If we had αn = 0, then we would have αn︸︷︷︸

=0

α−n = 0, which would contradict αnα−n =

1 6= 0. Hence, we cannot have αn = 0. In other words, αn 6= 0. Thus, αn is nonzero. Hence,
the inverse (αn)−1 of αn is well-defined.

We have αnα−n = 1. This equality shows that α−n is an inverse of αn (by the definition
of “inverse”). In other words, the inverse of αn is α−n. In other words, (αn)−1 = α−n. Thus,
Proposition 4.1.20 (k) is proven.

(l) We must prove that (αn)m = αnm for all nonzero α ∈ C and all n, m ∈ Z.
We shall first prove this in lesser generality:

Claim 2: We have (αn)m = αnm for all nonzero α ∈ C and all n ∈ Z and m ∈N.

[Proof of Claim 2: The following proof is very similar to our proof of Proposition 4.1.20
(d) above.

We shall prove Claim 2 by induction on m:
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Induction base: For all α ∈ C and n ∈ Z, we have (αn)0 = 1 = α0 = αn·0 (since 0 = n · 0).
In other words, Claim 2 holds for m = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that Claim 2 holds for m = k. We must prove that
Claim 2 holds for m = k + 1.

Let α ∈ C and n ∈ Z. Then, (αn)k = αnk (since Claim 2 holds for m = k). Now,
Proposition 4.1.20 (a) (applied to αn and k instead of α and n) yields

(αn)k+1 = αn (αn)k︸ ︷︷ ︸
=αnk

= αnαnk.

Comparing this with

αn(k+1) = αn+nk (since n (k + 1) = n + nk)

= αnαnk (by Proposition 4.1.20 (h), applied to m = nk) ,

we obtain (αn)k+1 = αn(k+1).
Now, forget that we fixed α and n. We thus have shown that (αn)k+1 = αn(k+1) for all

α ∈ C and n ∈ Z. In other words, Claim 2 holds for m = k + 1. Hence, Claim 2 is proven
by induction.]

Now, let us prove Proposition 4.1.20 (l) in full generality: Fix a nonzero α ∈ C. Fix
n, m ∈ Z. We must prove that (αn)m = αnm. If m ∈ N, then this follows from Claim 2.
Hence, for the rest of this proof, we WLOG assume that we don’t have m ∈N. Combining
this with m ∈ Z, we obtain m ∈ Z \N = {−1,−2,−3, . . .}. In other words, m is negative.
Hence, −m is positive. Thus, −m ∈N. Hence, Claim 2 (applied to −m instead of m) yields

(αn)−m = αn(−m) = α−nm (since n (−m) = −nm) .

But Proposition 4.1.20 (k) yields that (αn)−1 = α−n. In particular, (αn)−1 is well-defined, so
that αn is invertible, and thus αn is nonzero. Hence, Proposition 4.1.20 (k) (applied to αn

and −m instead of α and n) yields(
(αn)−m

)−1
= (αn)−(−m) = (αn)m (since − (−m) = m) .

Thus,

(αn)m =

(αn)−m︸ ︷︷ ︸
=α−nm


−1

=
(
α−nm)−1 .

But Proposition 4.1.20 (k) (applied to −nm instead of n) yields(
α−nm)−1

= α−(−nm) = αnm (since − (−nm) = nm) .

Hence, (αn)m = (α−nm)
−1

= αnm. This completes the proof of Proposition 4.1.20 (l).
(m) This is proven in the same way as the usual binomial formula (i.e., Theorem 2.17.13)

is proven. (The only difference is that we are now calling our two numbers α and β rather
than x and y, and that we now need to use Theorem 4.1.2 and Proposition 4.1.20 (a) instead
of the analogous rules for real numbers.)
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10.91. Solution to Exercise 4.2.1
Solution to Exercise 4.2.1. Write the complex number α in the form α = (x, y) for some
x, y ∈ R. Then, x, y ∈ Z (since α is a Gaussian integer). Moreover, from α = (x, y), we
obtain α = (x,−y) (by the definition of α). Also, α is a Gaussian integer (by Proposition
4.2.5).

From α = (x,−y), we obtain

−α = − (x,−y) =

−x,− (−y)︸ ︷︷ ︸
=y

 = (−x, y)

and

i︸︷︷︸
=(0,1)

α︸︷︷︸
=(x,−y)

= (0, 1) (x,−y) =

0 · x− 1 · (−y)︸ ︷︷ ︸
=y

, 0 · (−y) + 1 · x︸ ︷︷ ︸
=x


(by the definition of the operation · on C)

= (y, x)

and
− iα︸︷︷︸

=(y,x)

= − (y, x) = (−y,−x) .

(a) Proposition 4.2.11 (applied to β = α) shows that we have α ∼ α if and only if

(α = α or α = −α or α = iα or α = −iα) .

Hence, we have (α = α or α = −α or α = iα or α = −iα) (since we have α ∼ α). Thus, we
are in one of the following four cases:

Case 1: We have α = α.
Case 2: We have α = −α.
Case 3: We have α = iα.
Case 4: We have α = −iα.
Let us first consider Case 1. In this case, we have α = α. Thus, (x, y) = α = α = (x,−y).

In other words, x = x and y = −y. From y = −y, we obtain 2y = 0, thus y = 0.

Hence, α =

x, y︸︷︷︸
=0

 = (x, 0) = x · (1, 0)︸ ︷︷ ︸
=1

= x · 1. Thus, there exist some g ∈ Z and

τ ∈ {1, i, 1 + i, 1− i} such that α = gτ (namely, g = x and τ = 1). Thus, Exercise 4.2.1 (a) is
solved in Case 1.

Let us next consider Case 2. In this case, we have α = −α. Thus, (x, y) = α = −α =
(−x, y). In other words, x = −x and y = y. From x = −x, we obtain 2x = 0, thus

x = 0. Hence, α =

 x︸︷︷︸
=0

, y

 = (0, y) = y · (0, 1)︸ ︷︷ ︸
=i

= yi. Thus, there exist some g ∈ Z and

τ ∈ {1, i, 1 + i, 1− i} such that α = gτ (namely, g = y and τ = i). Thus, Exercise 4.2.1 (a) is
solved in Case 2.
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Let us now consider Case 3. In this case, we have α = iα. Thus, (x, y) = α = iα = (y, x).

In other words, x = y and y = x. Hence, α =

x, y︸︷︷︸
=x

 = (x, x) = x · (1, 1)︸ ︷︷ ︸
=1+i

= x (1 + i).

Thus, there exist some g ∈ Z and τ ∈ {1, i, 1 + i, 1− i} such that α = gτ (namely, g = x
and τ = 1 + i). Thus, Exercise 4.2.1 (a) is solved in Case 3.

Let us finally consider Case 4. In this case, we have α = −iα. Thus, (x, y) = α = −iα =

(−y,−x). In other words, x = −y and y = −x. Hence, α =

x, y︸︷︷︸
=−x

 = (x,−x) =

x · (1,−1)︸ ︷︷ ︸
=1−i

= x (1− i). Thus, there exist some g ∈ Z and τ ∈ {1, i, 1 + i, 1− i} such that

α = gτ (namely, g = x and τ = 1− i). Thus, Exercise 4.2.1 (a) is solved in Case 4.
We have now solved Exercise 4.2.1 (a) in all four Cases 1, 2, 3 and 4. Hence, Exercise

4.2.1 (a) is solved (since these four Cases cover all possibilities).
(b) Let g ∈ Z and τ ∈ {1, i, 1 + i, 1− i} be such that α = gτ. We must prove that

N (α) ∈
{

g2, 2g2}.
We have 1 + i = (1, 1). Thus, the definition of N (1 + i) yields N (1 + i) = 12 + 12 = 2.
We have 1− i = (1,−1). Thus, the definition of N (1− i) yields N (1− i) = 12 + (−1)2 =

2.
We have i = (0, 1). Thus, the definition of N (i) yields N (i) = 02 + 12 = 1.
Proposition 4.1.23 (applied to a = 1) yields N (1C) = 12 = 1. In other words, N (1) = 1

(since we identify 1C with 1).
Now, from τ ∈ {1, i, 1 + i, 1− i}, we obtain

N (τ) ∈

N (1)︸ ︷︷ ︸
=1

, N (i)︸ ︷︷ ︸
=1

, N (1 + i)︸ ︷︷ ︸
=2

, N (1− i)︸ ︷︷ ︸
=2

 = {1, 1, 2, 2} = {1, 2} .

Proposition 4.1.23 (applied to a = g) yields N (gC) = g2. In other words, N (g) = g2

(since we identify gC with g).
Now, Proposition 4.1.27 (d) (applied to g and τ instead of α and β) yields

N (gτ) = N (g)︸ ︷︷ ︸
=g2

·N (τ) = g2 ·N (τ) = N (τ) · g2 ∈

 1g2︸︷︷︸
=g2

, 2g2

 (since N (τ) ∈ {1, 2})

=
{

g2, 2g2} .

In view of α = gτ, this rewrites as N (α) ∈
{

g2, 2g2}. This solves Exercise 4.2.1 (b).
(c) Assume the contrary. Thus, N (α) is an odd prime.
Exercise 4.2.1 (b) yields N (α) ∈

{
g2, 2g2}. In other words, we have N (α) = g2 or

N (α) = 2g2. But if we had N (α) = 2g2, then N (α) would be even (since g2 ∈ Z), which
would contradict the fact that N (α) is odd. Hence, we cannot have N (α) = 2g2. Thus, we
must have N (α) = g2 (because we know that N (α) = g2 or N (α) = 2g2). Hence, N (α) is
the square of an integer (since g is an integer), i.e., a perfect square.
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But a prime can never be a perfect square321. Thus, N (α) cannot be a perfect square
(since N (α) is prime). This contradicts the fact that N (α) is a perfect square. This contra-
diction shows that our assumption was wrong; hence, Exercise 4.2.1 (c) is solved.

10.92. Solution to Exercise 4.2.2
Solution to Exercise 4.2.2. We are in one of the following two cases:

Case 1: We have β 6= 0.
Case 2: We have β = 0.
Let us first consider Case 1. In this case, we have β 6= 0. Thus, the complex number β has

an inverse β−1 (by Definition 4.1.13). (This β−1 may and may not be a Gaussian integer.)
We have α | β. In other words, there exists a Gaussian integer γ such that β = αγ (by

Definition 4.2.17). Consider this γ.
We have β | α. In other words, there exists a Gaussian integer δ such that α = βδ (by

Definition 4.2.17). Consider this δ.
Now, β = α︸︷︷︸

=βδ

γ = βδγ. But β−1β = 1. Comparing this with

β−1 β︸︷︷︸
=βδγ

= β−1β︸ ︷︷ ︸
=1

δγ = δγ,

we obtain δγ = 1. In other words, γ is an inverse of δ (by Definition 4.1.11). Thus, the
Gaussian integer δ has an inverse in Z [i] (namely, γ). In other words, the Gaussian integer
δ is invertible in Z [i] (by the definition of “invertible in Z [i]”). In other words, δ is a unit
(by the definition of “unit”). Hence, from α = βδ = δβ, we conclude that α ∼ β (by the
definition of unit-equivalence). Thus, Exercise 4.2.2 is solved in Case 1.

Let us now consider Case 2. In this case, we have β = 0. But we have β | α. In other
words, there exists a Gaussian integer γ such that α = βγ (by Definition 4.2.17). Consider
this γ. Hence, α = β︸︷︷︸

=0

γ = 0γ = 0 = β (since β = 0). Thus, α = β = 1β, so that α ∼ β (by

the definition of unit-equivalence, since 1 is a unit). Hence, Exercise 4.2.2 is solved in Case
2.

Now, we have solved Exercise 4.2.2 in both Cases 1 and 2. Hence, Exercise 4.2.2 always
holds.

321Proof. Let p be a prime. We must prove that p cannot be a perfect square.
Indeed, assume the contrary. Thus, p is a perfect square. In other words, p = m2 for some

integer m. Consider this m. Let n = |m|. Then, n is a nonnegative integer (since m is an integer)
and satisfies n2 = |m|2 = m2 = p.

But p is a prime. Thus, p > 1. Hence, n2 = p > 1 = 12. We can take square roots on both sides
of this inequality, and obtain n > 1 (since n and 1 are nonnegative). Hence, n is positive. Thus,
we can multiply the inequality n > 1 by n, and obtain nn > n. Hence, n < nn = n2 = p, so that
n 6= p. Also, n 6= 1 (since n > 1). But n is positive and is a divisor of p (since n | nn = p). Thus,
n is a positive divisor of p. But the only positive divisors of p are 1 and p (since p is prime).
Hence, n is either 1 or p (since n is a positive divisor of p). This contradicts the fact that n 6= 1
and n 6= p. This contradiction shows that our assumption was false.

Hence, we have proven that p cannot be a perfect square. Qed.
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10.93. Solution to Exercise 4.2.3
Solution to Exercise 4.2.3. =⇒: Assume that α ∼ β. We must prove that (α | β and β | α).

The relation ∼ is an equivalence relation (by Proposition 4.2.8), and thus is symmetric
(since every equivalence relation is symmetric). Hence, from α ∼ β, we obtain β ∼ α.

We have α ∼ β. In other words, α = γβ for some unit γ ∈ Z [i] (by the definition of
unit-equivalence). Consider this γ. From α = γβ, we obtain β | α (since γ is a Gaussian
integer). The same argument (with the roles of α and β swapped) yields α | β (since β ∼ α).
Hence, (α | β and β | α). This proves the “=⇒” direction of Exercise 4.2.3.
⇐=: We have the logical implication (α ∼ β) ⇐= (α | β and β | α) (due to Exercise

4.2.2). Thus, the “⇐=” direction of Exercise 4.2.3 is proven.

10.94. Solution to Exercise 4.2.4
Solution to Exercise 4.2.4. The solution to Exercise 4.2.4 is completely analogous to the above
solution to Exercise 2.2.3. (As usual, you need to make the obvious changes: Replace all
Roman letters a, b, c, a1, b1, a2, b2 by Greek letters α, β, γ, α1, β1, α2, β2; replace integers by
Gaussian integers; replace the reference to Proposition 2.2.4 by a reference to its analogue
for Gaussian integers (which is Proposition 4.2.20). The resulting argument will make use
of the fact that we can divide any complex number by any nonzero complex number; but
we know this fact from Definition 4.1.14 (a).)

10.95. Solution to Exercise 4.2.5
Solution to Exercise 4.2.5. The solution to Exercise 4.2.5 is completely analogous to the above
solution to Exercise 2.2.4. (Of course, you will have to replace the letter n by ν, and replace
integers by Gaussian integers.)

10.96. Solution to Exercise 4.2.6
Solution to Exercise 4.2.6. The following argument is an analogue of the Second solution to
Exercise 2.2.5 we gave above:

We have γ = 1γ. Hence, there exists a Gaussian integer δ such that γ = 1δ (namely,
δ = γ). In other words, 1 | γ (by the definition of divisibility). But we also have γ | 1 (by
assumption). Hence, Exercise 4.2.2 (applied to α = γ and β = 1) yields γ ∼ 1.

But Proposition 4.2.14 (applied to α = γ) shows that γ ∼ 1 if and only if γ is a unit.
Hence, γ is a unit (since γ ∼ 1).

Proposition 4.2.10 shows that the units are 1,−1, i,−i. Hence, γ is either 1 or −1 or i or
−i (since γ is a unit). This solves Exercise 4.2.6.

10.97. Solution to Exercise 4.2.7
Solution to Exercise 4.2.7. We have α | β. In other words, there exists a Gaussian integer γ
such that β = αγ (by Definition 4.2.17). Consider this γ, and denote it by δ. Thus, δ is a
Gaussian integer and satisfies β = αδ.
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From β = αδ, we obtain β = αδ = α · δ (by Proposition 4.1.27 (c), applied to δ instead of
β). Also, δ is a Gaussian integer (by Proposition 4.2.5, applied to δ instead of α). Hence,
there exists a Gaussian integer γ such that β = αγ (namely, γ = δ). In other words, α | β
(by Definition 4.2.17). This solves Exercise 4.2.7.

10.98. Solution to Exercise 4.2.8
Solution to Exercise 4.2.8. The relation ∼ on Z [i] is an equivalence relation (by Proposition
4.2.8), and thus is symmetric.

(a) Assume that β ∼ γ. But Exercise 4.2.3 (applied to β and γ instead of α and β) shows
that we have the logical equivalence (β ∼ γ) ⇐⇒ (β | γ and γ | β). Hence, we have
(β | γ and γ | β) (since β ∼ γ). Thus, β | γ and γ | β.

Thus, in particular, β | γ. Hence, if α | β, then α | γ (by Proposition 4.2.20 (b)). In
other words, we have proven the implication (α | β) =⇒ (α | γ). The same argument (with
the roles of β and γ switched) proves the implication (α | γ) =⇒ (α | β) (since γ | β).
Combining these two implications, we obtain the equivalence (α | β) ⇐⇒ (α | γ). This
solves Exercise 4.2.8 (a).

(b) Assume that α ∼ β. But Exercise 4.2.3 shows that we have the logical equivalence
(α ∼ β) ⇐⇒ (α | β and β | α). Hence, we have (α | β and β | α) (since α ∼ β). Thus, α | β
and β | α.

Thus, in particular, α | β. Hence, if β | γ, then α | γ (by Proposition 4.2.20 (b)). In
other words, we have proven the implication (β | γ) =⇒ (α | γ). The same argument (with
the roles of α and β switched) proves the implication (α | γ) =⇒ (β | γ) (since β | α).
Combining these two implications, we obtain the equivalence (α | γ) ⇐⇒ (β | γ). This
solves Exercise 4.2.8 (b).

(c) Exercise 4.2.8 (a) (applied to γ and δ instead of β and γ) yields the logical equivalence
(α | γ) ⇐⇒ (α | δ) (since γ ∼ δ). Exercise 4.2.8 (b) (applied to δ instead of γ) yields the
logical equivalence (α | δ) ⇐⇒ (β | δ) (since α ∼ β). Hence, we obtain the following chain
of equivalences:

(α | γ)⇐⇒ (α | δ)⇐⇒ (β | δ) .

This solves Exercise 4.2.8 (c).

10.99. Solution to Exercise 4.2.9
Solution to Exercise 4.2.9. Proposition 4.2.8 shows that the relation ∼ on Z [i] is an equiva-
lence relation. Thus, this relation is reflexive and symmetric.

We have α | β. In other words, there exists a Gaussian integer γ such that β = αγ (by
Definition 4.2.17). Consider this γ, and denote it by δ. Thus, δ is a Gaussian integer and
satisfies β = αδ.

We must prove that α ∼ β. If N (α) = 0, then this is easy to see322. Thus, for the rest of
this proof, we WLOG assume that we don’t have N (α) = 0. Hence, N (α) 6= 0.

322Proof. Assume that N (α) = 0. Thus, Proposition 4.1.22 (b) yields α = 0. Hence, β = α︸︷︷︸
=0

δ =

0δ = 0 = α. But the relation ∼ on Z [i] is reflexive. Hence, α ∼ α. This rewrites as α ∼ β (since
β = α). Thus, we have proven that α ∼ β under the assumption that N (α) = 0.
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Proposition 4.1.27 (d) (applied to δ instead of β) yields N (αδ) = N (α) ·N (δ). In view of
β = αδ, this rewrites as N (β) = N (α) ·N (δ). Thus, N (α) ·N (δ) = N (β) = N (α). We can
divide both sides of this equality by N (α) (since N (α) 6= 0). Thus, we find N (δ) = 1.

But Proposition 4.2.9 (b) (applied to δ instead of α) shows that we have N (δ) = 1 if and
only if δ is a unit. Hence, δ is a unit (since N (δ) = 1). This unit δ satisfies β = αδ = δα.
Thus, we have β = γα for some unit γ ∈ Z [i] (namely, for γ = δ). In other words, we have
β ∼ α (by the definition of the relation ∼ on Z [i]). Hence, α ∼ β (since the relation ∼ on
Z [i] is symmetric). This solves Exercise 4.2.9.

10.100. Solution to Exercise 4.2.10
Solution to Exercise 4.2.10. We have a, b ∈ Z (since (a, b) is a Gaussian integer) and c, d ∈ Z

(since (c, d) is a Gaussian integer). Thus, all of a, b, c, d are integers. Hence, the state-
ments “a ≡ c mod n” and “b ≡ d mod n” make sense. Moreover, a − c, b − d ∈ Z (since
a, b, c, d ∈ Z); thus, (a− c, b− d) is a Gaussian integer. Proposition 4.2.18 (applied to n
and (a− c, b− d) instead of a and β) yields that we have n | (a− c, b− d) if and only if n
divides both a− c and b− d. In other words, we have the following logical equivalence:

(n | (a− c, b− d)) ⇐⇒ (n divides both a− c and b− d) .

Now, we have the following chain of logical equivalences:

((a, b) ≡ (c, d)mod n)

⇐⇒

n | (a, b)− (c, d)︸ ︷︷ ︸
=(a−c,b−d)

 (by Definition 4.2.21)

⇐⇒ (n | (a− c, b− d)) ⇐⇒ (n divides both a− c and b− d)

⇐⇒

 n | a− c︸ ︷︷ ︸
⇐⇒ (a≡c mod n)

(by Definition 2.3.1)

and n | b− d︸ ︷︷ ︸
⇐⇒ (b≡d mod n)

(by Definition 2.3.1)


⇐⇒ (a ≡ c mod n and b ≡ d mod n) .

This solves Exercise 4.2.10.

10.101. Solution to Exercise 4.2.11
Solution to Exercise 4.2.11. (a) The solution to Exercise 4.2.11 (a) is analogous to the proof
of Example 3.2.5 (with the only difference that we have to replace Roman letters by Greek
letters, replace integers by Gaussian integers, and use Proposition 4.2.23 instead of Propo-
sition 2.3.4).

(b) We must prove the following two claims:

Claim 1: The equivalence classes of the relation ≡
n

(on Z [i]) are the classes

[a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2.
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Claim 2: The n2 classes [a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2 are distinct.

Let us start with the proof of Claim 2:
[Proof of Claim 2: Let (a, b) , (c, d) ∈ {0, 1, . . . , n− 1}2 be two pairs such that [a + bi]≡

n
=

[c + di]≡
n

. We shall prove that (a, b) = (c, d).

From (a, b) , (c, d) ∈ {0, 1, . . . , n− 1}2, we conclude that a, b, c, d ∈ {0, 1, . . . , n− 1} ⊆ Z.
Proposition 4.1.8 yields (a, b) = a+ bi (since a and b are reals). Thus, [(a, b)]≡

n
= [a + bi]≡

n
.

Similarly, [(c, d)]≡
n
= [c + di]≡

n
. Hence,

[(a, b)]≡
n
= [a + bi]≡

n
= [c + di]≡

n
= [(c, d)]≡

n
.

But Theorem 3.3.5 (e) (applied to Z [i], ≡
n

, (a, b) and (c, d) instead of S, ∼, x and y) shows

that we have (a, b) ≡
n
(c, d) if and only if [(a, b)]≡

n
= [(c, d)]≡

n
. Hence, (a, b) ≡

n
(c, d) (since

we have [(a, b)]≡
n
= [(c, d)]≡

n
). In other words, (a, b) ≡ (c, d)mod n (by the definition of the

relation ≡
n

on Z [i]).

But (a, b) and (c, d) are two Gaussian integers (since a, b, c, d ∈ Z). Hence, Exercise 4.2.10
shows that we have the following logical equivalence:

((a, b) ≡ (c, d)mod n) ⇐⇒ (a ≡ c mod n and b ≡ d mod n) .

Thus, we have (a ≡ c mod n and b ≡ d mod n) (since we have (a, b) ≡ (c, d)mod n).
Now, a ∈ {0, 1, . . . , n− 1} and a ≡ c mod n. Hence, Corollary 2.6.9 (c) (applied to c

and a instead of u and c) yields a = c%n. On the other hand, c ∈ {0, 1, . . . , n− 1} and
c ≡ c mod n. Hence, Corollary 2.6.9 (c) (applied to c and c instead of u and c) yields
c = c%n. Comparing this with a = c%n, we obtain a = c. The same argument (but with a

and c replaced by b and d) yields b = d. Hence,

 a︸︷︷︸
=c

, b︸︷︷︸
=d

 = (c, d).

Now, forget that we fixed (a, b) , (c, d). We thus have shown that if (a, b) , (c, d) ∈
{0, 1, . . . , n− 1}2 are two pairs such that [a + bi]≡

n
= [c + di]≡

n
, then (a, b) = (c, d). In

other words, the n2 classes [a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2 are distinct. This proves

Claim 2.]
[Proof of Claim 1: Let ξ be an equivalence class of the relation ≡

n
(on Z [i]). Thus, ξ = [α]≡

n

for some α ∈ Z [i] (by the definition of an equivalence class). Consider this α. Write the
complex number α as α = (x, y) for some x, y ∈ R. Then, x, y ∈ Z (since α is a Gaussian
integer).

Corollary 2.6.9 (a) (applied to u = x) shows that x%n ∈ {0, 1, . . . , n− 1} and x%n ≡
x mod n. Corollary 2.6.9 (a) (applied to u = y) shows that y%n ∈ {0, 1, . . . , n− 1} and
y%n ≡ y mod n. From x%n ∈ {0, 1, . . . , n− 1} and y%n ∈ {0, 1, . . . , n− 1}, we obtain
(x%n, y%n) ∈ {0, 1, . . . , n− 1}2.

Also, of course, x%n, y%n ∈ Z; thus, the complex number (x%n, y%n) is a Gaussian
integer. Denote this Gaussian integer by β. Thus, β = (x%n, y%n) = x%n + (y%n) i (by
Proposition 4.1.8, applied to (a, b) = (x%n, y%n)). Hence, β is a Gaussian integer of the



Math 4281 notes as of Tuesday 6th April, 2021 at 14:36 page 709

form a + bi for (a, b) ∈ {0, 1, . . . , n− 1}2 (namely, for (a, b) = (x%n, y%n)). Thus, the
equivalence class [β]≡

n
is one of the classes [a + bi]≡

n
for (a, b) ∈ {0, 1, . . . , n− 1}2.

Recall that (x%n, y%n) is a Gaussian integer. Hence, Exercise 4.2.10 (applied to (a, b) =
(x%n, y%n) and (c, d) = (x, y)) shows that we have the following logical equivalence:

((x%n, y%n) ≡ (x, y)mod n) ⇐⇒ (x%n ≡ x mod n and y%n ≡ y mod n) .

Hence, we have (x%n, y%n) ≡ (x, y)mod n (since we have x%n ≡ x mod n and y%n ≡
y mod n). In view of (x, y) = α and (x%n, y%n) = β, this rewrites as β ≡ α mod n. In other
words, β ≡

n
α (by the definition of the relation ≡

n
on Z [i]).

But Theorem 3.3.5 (e) (applied to Z [i], ≡
n

, β and α instead of S, ∼, x and y) shows that

we have β ≡
n

α if and only if [β]≡
n
= [α]≡

n
. Hence, we have [β]≡

n
= [α]≡

n
(since we have

β ≡
n

α). Comparing this with ξ = [α]≡
n

, we obtain ξ = [β]≡
n

.

But recall that [β]≡
n

is one of the classes [a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2. In

view of ξ = [β]≡
n

, this rewrites as follows: ξ is one of the classes [a + bi]≡
n

for (a, b) ∈

{0, 1, . . . , n− 1}2.
Forget that we fixed ξ. We thus have proven that if ξ is any equivalence class of the

relation ≡
n

(on Z [i]), then ξ is one of the classes [a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2.

In other words, each equivalence class of the relation ≡
n

(on Z [i]) is one of the classes

[a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2. Conversely, of course, each of the latter classes

is an equivalence class of the relation ≡
n

(on Z [i]). Combining these two statements, we

conclude that the equivalence classes of the relation ≡
n

(on Z [i]) are the classes [a + bi]≡
n

for

(a, b) ∈ {0, 1, . . . , n− 1}2. This proves Claim 1.]
Having proven both Claim 1 and Claim 2, we now conclude that the equivalence classes

of the relation ≡
n

(on Z [i]) are the n2 classes [a + bi]≡
n

for (a, b) ∈ {0, 1, . . . , n− 1}2, and that

these n2 classes are all distinct. This solves Exercise 4.2.11.

10.102. Solution to Exercise 5.4.1
In order to solve Exercise 5.4.1, we need to prove Proposition 5.4.9.

Proof of Proposition 5.4.9. The proofs of these rules are analogous to the proofs of the corre-
sponding rules for rationals – at least if you know the right proofs of the latter.

Here are the proofs in detail:
First of all, let us prove (173). Indeed, each a ∈ K satisfies

0a = a + a + · · ·+ a︸ ︷︷ ︸
0 times

(by the definition of 0a, since 0 ≥ 0)

= (empty sum) = 0K (since empty sums of elements of K are defined to be 0K) .

Thus, (173) is proven.
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Next, let us prove (172). Indeed, each a ∈ K satisfies

1a = a + a + · · ·+ a︸ ︷︷ ︸
1 times

(by the definition of 1a, since 1 ≥ 0)

= a.

Thus, (172) is proven.
Next, let us prove (174). Indeed, each a ∈ K satisfies

(−1) a = −

a + a + · · ·+ a︸ ︷︷ ︸
−(−1) times

 (by the definition of (−1) a, since − 1 < 0)

= −

a + a + · · ·+ a︸ ︷︷ ︸
1 times


︸ ︷︷ ︸

=a

(since − (−1) = 1)

= −a.

Thus, (174) is proven.
Next, recall that Proposition 5.4.5 (c) yields −0 = 0; in other words, −0K = 0K.
We organize the rest of the proof of Proposition 5.4.9 as a sequence of claims, each

bringing us one step further to the goals:

Claim 1: We have na = − ((−n) a) for all a ∈ K and all negative n ∈ Z.

[Proof of Claim 1: Let a ∈ K. Let n ∈ Z be negative. Thus, n < 0; hence, the definition of
na yields

na = −

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 . (497)

But −n > 0 (since n < 0) and thus −n ∈N. Hence, the definition of (−n) a yields

(−n) a = a + a + · · ·+ a︸ ︷︷ ︸
−n times

.

Thus,

− ((−n) a) = −

a + a + · · ·+ a︸ ︷︷ ︸
−n times

 = na (by (497)) .

This proves Claim 1.]

Claim 2: We have (−n) a = − (na) for all a ∈ K and n ∈ Z.

[Proof of Claim 2: Let a ∈ K and n ∈ Z. We are in one of the following three cases:
Case 1: We have n > 0.
Case 2: We have n = 0.
Case 3: We have n < 0.
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Let us first consider Case 1. In this case, we have n > 0. Hence, −n < 0. In other
words, −n is negative. Thus, Claim 1 (applied to −n instead of n) yields (−n) a =

−

(− (−n))︸ ︷︷ ︸
=n

a

 = − (na). Thus, Claim 2 is proven in Case 1.

Let us next consider Case 2. In this case, we have n = 0. Thus, na = 0a = 0K (by (173)).

Hence, − (na) = −0K = 0K. Comparing this with

− n︸︷︷︸
=0

 a = (−0)︸ ︷︷ ︸
=0

a = 0a = 0K, we

obtain (−n) a = − (na). Thus, Claim 2 is proven in Case 2.
Let us finally consider Case 3. In this case, we have n < 0. Thus, n is negative. Hence,

Claim 1 yields na = − ((−n) a). Thus, − (na) = − (− ((−n) a)) = (−n) a (by Proposition
5.4.5 (e), applied to (−n) a, 0 and 0 instead of a, b and c). Thus, (−n) a = − (na). Hence,
Claim 2 is proven in Case 3.

Thus, we have proven Claim 2 in all three Cases 1, 2 and 3. Hence, Claim 2 is proven.]

Claim 3: We have (n + m) a = na + ma for all a ∈ K and n, m ∈N.

[Proof of Claim 3: Let a ∈ K and n, m ∈ N. We have n ∈ N and thus n ≥ 0; thus, the
definition of na yields

na = a + a + · · ·+ a︸ ︷︷ ︸
n times

.

The same argument (applied to m instead of n) yields

ma = a + a + · · ·+ a︸ ︷︷ ︸
m times

.

Adding these two equalities together, we find

na + ma = a + a + · · ·+ a︸ ︷︷ ︸
n times

+ a + a + · · ·+ a︸ ︷︷ ︸
m times

= a + a + · · ·+ a︸ ︷︷ ︸
n+m times

. (498)

On the other hand, n+m ∈N (since n ∈N and m ∈N); thus, the definition of (n + m) a
yields

(n + m) a = a + a + · · ·+ a︸ ︷︷ ︸
n+m times

.

Comparing this with (498), we obtain (n + m) a = na + ma. This proves Claim 3.]

Claim 4: We have (n−m) a = na−ma for all a ∈ K and n, m ∈N.

[Proof of Claim 4: Let a ∈ K and n, m ∈N. We are in one of the following two cases:
Case 1: We have n ≥ m.
Case 2: We have n < m.
Let us first consider Case 1. In this case, we have n ≥ m. Thus, n − m ≥ 0. Hence,

n−m ∈N. Thus, Claim 3 (applied to m and n−m instead of n and m) yields

(m + (n−m)) a = ma + (n−m) a.
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In view of m + (n−m) = n, this rewrites as na = ma + (n−m) a. But Proposition 5.4.5
(a) (applied to na, ma and (n−m) a instead of a, b and c) yields that we have na− ma =
(n−m) a if and only if na = ma + (n−m) a. Hence, we have na− ma = (n−m) a (since
na = ma + (n−m) a). In other words, (n−m) a = na − ma. Thus, Claim 4 is proven in
Case 1.

Let us now consider Case 2. In this case, we have n < m. Thus, m − n > 0. Hence,
m − n ∈ N. Thus, Claim 3 (applied to m − n instead of m) yields (n + (m− n)) a =
na + (m− n) a. In view of n + (m− n) = m, this rewrites as ma = na + (m− n) a. But
Proposition 5.4.5 (a) (applied to ma, na and (m− n) a instead of a, b and c) yields that we
have ma− na = (m− n) a if and only if ma = na + (m− n) a. Hence, we have

ma− na = (m− n) a (499)

(since ma = na + (m− n) a).
But Claim 2 (applied to m− n instead of n) yields

(− (m− n)) a = − ((m− n) a)︸ ︷︷ ︸
=ma−na
(by (499))

= − (ma− na) = na−ma

(by Proposition 5.4.5 (i), applied to ma, na and 0 instead of a, b and c). In view of
− (m− n) = n − m, this rewrites as (n−m) a = na − ma. Hence, Claim 4 is proven in
Case 2.

We have now proven Claim 4 in both Cases 1 and 2. Hence, Claim 4 is proven.]
Next let us generalize Claim 3 by allowing m to be negative:

Claim 5: We have (n + m) a = na + ma for all a ∈ K and n ∈N and m ∈ Z.

[Proof of Claim 5: Let a ∈ K and n ∈ N and m ∈ Z. We must prove that (n + m) a =
na + ma. If m ∈ N, then this follows from Claim 3. Hence, for the rest of this proof, we
WLOG assume that we don’t have m ∈ N. Thus, we have m ∈ Z but not m ∈ N. Hence,
m ∈ Z \N = {−1,−2,−3, . . .}. In other words, m < 0. Hence, −m > 0, so that −m ∈ N.
Hence, Claim 4 (applied to −m instead of m) yields (n− (−m)) a = na− (−m) a. In view
of n− (−m) = n + m, this rewrites as (n + m) a = na− (−m) a. But Claim 2 (applied to m
instead of n) yields (−m) a = − (ma). Hence,

(n + m) a = na− (−m) a︸ ︷︷ ︸
=−(−ma)

= na− (− (ma)) = na + ma

(by Proposition 5.4.5 (j), applied to na, ma and 0 instead of a, b and c). This proves Claim
5.]

Finally, we can generalize this further by allowing n to be negative as well:

Claim 6: We have (n + m) a = na + ma for all a ∈ K and n, m ∈ Z.

[Proof of Claim 6: Let a ∈ K and n, m ∈ Z. We must prove that (n + m) a = na + ma. If
n ∈N, then this follows from Claim 5. Hence, for the rest of this proof, we WLOG assume
that we don’t have n ∈ N. Thus, we have n ∈ Z but not n ∈ N. Hence, n ∈ Z \N =
{−1,−2,−3, . . .}. In other words, n < 0. Hence, −n > 0, so that −n ∈ N. Hence, Claim 5
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(applied to −n and −m instead of n and m) yields ((−n) + (−m)) a = (−n) a + (−m) a. In
view of (−n) + (−m) = − (n + m), this rewrites as

(− (n + m)) a = (−n) a + (−m) a. (500)

But Claim 2 yields (−n) a = − (na). Also, Claim 2 (applied to m instead of n) yields
(−m) a = − (ma). Hence, (500) becomes

(− (n + m)) a = (−n) a︸ ︷︷ ︸
=−(na)

+ (−m) a︸ ︷︷ ︸
=−(ma)

= (− (na)) + (− (ma)) . (501)

Also, Claim 2 (applied to n + m instead of n) yields (− (n + m)) a = − ((n + m) a). Com-
paring this with (501), we obtain

− ((n + m) a) = (− (na)) + (− (ma)) . (502)

But Proposition 5.4.5 (b) (applied to na, ma and 0 instead of a, b and c) yields

− (na + ma) = (− (na)) + (− (ma)) .

Comparing this with (502), we find − ((n + m) a) = − (na + ma). Hence, Proposition 5.4.5
(l) (applied to (n + m) a, na + ma and 0 instead of a, b and c) yields (n + m) a = na + ma.
This proves Claim 6.]

Claim 6 is precisely the statement of (166). Thus, (166) is now proven.

Claim 7: We have (nm) a = n (ma) for all a ∈ K and n ∈N and m ∈ Z.

[Proof of Claim 7: We shall prove Claim 7 by induction on n:
Induction base: We have (0m) a = 0 (ma) for all a ∈ K and m ∈ Z (because if a ∈ K and

m ∈ Z, then
(0m)︸ ︷︷ ︸
=0

a = 0a = 0K (by (173))

and
0 (ma) = 0K (by (173), applied to ma instead of a)

and thus (0m) a = 0K = 0 (ma)). In other words, Claim 7 holds for n = 0. This completes
the induction base.

Induction step: Let k ∈ N. Assume that Claim 7 holds for n = k. We must prove that
Claim 7 holds for n = k + 1.

We have assumed that Claim 7 holds for n = k. In other words, we have

(km) a = k (ma) for all a ∈ K and m ∈ Z. (503)

Now, let a ∈ K and m ∈ Z. Then,

((k + 1)m)︸ ︷︷ ︸
=km+m

a = (km + m) a = (km) a︸ ︷︷ ︸
=k(ma)

(by (503))

+ma (by Claim 6, applied to n = km)

= k (ma) + ma.
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Comparing this with

(k + 1) (ma) = k (ma) + 1 (ma)︸ ︷︷ ︸
=ma

(by (172), applied
to ma instead of a)

(by Claim 6, applied to k, 1 and ma instead of n, m and a)
= k (ma) + ma,

we find ((k + 1)m) a = (k + 1) (ma).
Now, forget that we fixed a and m. We thus have shown that ((k + 1)m) a = (k + 1) (ma)

for all a ∈ K and m ∈ Z. In other words, Claim 7 holds for n = k + 1. This completes the
induction step. Thus, Claim 7 is proven.]

Claim 8: We have (nm) a = n (ma) for all a ∈ K and n, m ∈ Z.

[Proof of Claim 8: Let a ∈ K and n, m ∈ Z. We must prove that (nm) a = n (ma). If
n ∈N, then this follows from Claim 7. Hence, for the rest of this proof, we WLOG assume
that we don’t have n ∈ N. Thus, we have n ∈ Z but not n ∈ N. Hence, n ∈ Z \N =
{−1,−2,−3, . . .}. In other words, n < 0. Hence, −n > 0, so that −n ∈ N. Hence, Claim 7
(applied to −n instead of n) yields ((−n)m) a = (−n) (ma). Thus,

(−nm)︸ ︷︷ ︸
=(−n)m

a = ((−n)m) a = (−n) (ma) = − (n (ma)) (504)

(by Claim 2, applied to ma instead of a). On the other hand, Claim 2 (applied to nm instead
of n) yields (−nm) a = − ((nm) a). Comparing this with (504), we obtain − ((nm) a) =
− (n (ma)). Thus, Proposition 5.4.5 (l) (applied to (nm) a, n (ma) and 0 instead of a, b and
c) yields (nm) a = n (ma). Thus, Claim 8 is proven.]

Claim 8 is precisely (169). Thus, we have now proven (169).

Claim 9: We have n (a + b) = na + nb for all a, b ∈ K and n ∈N.

[Proof of Claim 9: We shall prove Claim 9 by induction on n:
Induction base: If a, b ∈ K, then

0a︸︷︷︸
=0K

(by (173))

+ 0b︸︷︷︸
=0K

(by (173), applied
to b instead of a)

= 0K + 0K = 0K = 0 (a + b)

(since (173) (applied to a+ b instead of a) yields 0 (a + b) = 0K). Hence, we have 0 (a + b) =
0a + 0b for all a, b ∈ K. In other words, Claim 9 holds for n = 0. This completes the
induction base.

Induction step: Let k ∈ N. Assume that Claim 9 holds for n = k. We must prove that
Claim 9 holds for n = k + 1.

We have assumed that Claim 9 holds for n = k. In other words, we have

k (a + b) = ka + kb for all a, b ∈ K. (505)
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Now, let a, b ∈ K. Then,

(k + 1) (a + b) = k (a + b)︸ ︷︷ ︸
=ka+kb

(by (505))

+ 1 (a + b)︸ ︷︷ ︸
=a+b

(by (172)
(applied to a+b instead of a))

(by Claim 3, applied to k, 1 and a + b instead of n, m and a)
= ka + kb + a + b = ka + a + kb + b. (506)

On the other hand, Claim 3 (applied to n = k and m = 1) yields (k + 1) a = ka + 1a︸︷︷︸
=a

(by (172))

=

ka + a. The same argument (applied to b instead of a) yields (k + 1) b = kb + b. Adding
these two equalities together, we obtain

(k + 1) a + (k + 1) b = (ka + a) + (kb + b) = ka + a + kb + b.

Comparing this with (506), we find (k + 1) (a + b) = (k + 1) a + (k + 1) b.
Now, forget that we fixed a, b. We thus have proven that

(k + 1) (a + b) = (k + 1) a + (k + 1) b for all a, b ∈ K.

In other words, Claim 9 holds for n = k + 1. This completes the induction step. Thus,
Claim 9 is proven.]

Claim 10: We have n (a + b) = na + nb for all a, b ∈ K and n ∈ Z.

[Proof of Claim 10: Let a, b ∈ K and n ∈ Z. We must prove that n (a + b) = na + nb. If
n ∈N, then this follows from Claim 9. Hence, for the rest of this proof, we WLOG assume
that we don’t have n ∈ N. Thus, we have n ∈ Z but not n ∈ N. Hence, n ∈ Z \N =
{−1,−2,−3, . . .}. In other words, n < 0. Hence, −n > 0, so that −n ∈ N. Hence, Claim 9
(applied to −n instead of n) yields

(−n) (a + b) = (−n) a︸ ︷︷ ︸
=−(na)

(by Claim 2)

+ (−n) b︸ ︷︷ ︸
=−(nb)

(by Claim 2,
applied to b instead of a)

= (− (na)) + (− (nb)) .

Comparing this with

(−n) (a + b) = − (n (a + b)) (by Claim 2, applied to a + b instead of a) ,

we find
− (n (a + b)) = (− (na)) + (− (nb)) .

On the other hand, Proposition 5.4.5 (b) (applied to na and nb instead of a and b) yields

− (na + nb) = (− (na)) + (− (nb)) .

Comparing these two equalities, we obtain − (n (a + b)) = − (na + nb). Thus, Proposition
5.4.5 (l) (applied to n (a + b), na + nb and 0 instead of a, b and c) yields n (a + b) = na + nb.
Thus, Claim 10 is proven.]

Claim 10 is precisely (167). Thus, we have proven (167).
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Claim 11: We have n0K = 0K for all n ∈N.

[Proof of Claim 11: We shall prove Claim 11 by induction on n:
Induction base: The equality (173) (applied to a = 0K) yields 0 · 0K = 0K. In other words,

Claim 11 holds for n = 0. This completes the induction base.
Induction step: Let k ∈ N. Assume that Claim 11 holds for n = k. We must prove that

Claim 11 holds for n = k + 1.
We have assumed that Claim 11 holds for n = k. In other words, we have k0K = 0K.

Now, Claim 3 (applied to n = k, m = 1 and a = 0K) yields (k + 1) 0K = k0K + 1 · 0K︸ ︷︷ ︸
=0K

(by (172))

=

k0K = 0K. In other words, Claim 11 holds for n = k + 1. This completes the induction step.
Thus, Claim 11 is proven.]

Claim 12: We have n0K = 0K for all n ∈ Z.

[Proof of Claim 12: Let n ∈ Z. We must prove that n0K = 0K. If n ∈ N, then this follows
from Claim 12. Hence, for the rest of this proof, we WLOG assume that we don’t have n ∈
N. Thus, we have n ∈ Z but not n ∈ N. Hence, n ∈ Z \N = {−1,−2,−3, . . .}. In other
words, n < 0. Hence, −n > 0, so that −n ∈ N. Hence, Claim 12 (applied to −n instead of
n) yields (−n) 0K = 0K. But Claim 2 (applied to a = 0K) yields (−n) 0K = − (n0K). Hence,
− (n0K) = (−n) 0K = 0K = −0K (since −0K = 0K). Thus, Proposition 5.4.5 (l) (applied to
n0K, 0K and 0K instead of a, b and c) yields n0K = 0K. This proves Claim 12.]

Claim 12 is precisely (171). Thus, (171) is now proven.

Claim 13: We have (−n) a = n (−a) for all a ∈ K and n ∈ Z.

[Proof of Claim 13: Let a ∈ K and n ∈ Z. Then, Claim 10 (applied to b = −a) yields
n (a + (−a)) = na + n (−a). Comparing this with

n (a + (−a))︸ ︷︷ ︸
=0K

= n0K = 0K (by Claim 12) ,

we obtain na + n (−a) = 0K. Subtracting na from both sides of this equality, we find
n (−a) = 0K − na = 0− na = − (na) (by Proposition 5.4.5 (d), applied to na instead of a).
But Claim 2 yields (−n) a = − (na) = n (−a) (since n (−a) = − (na)). This proves Claim
13.]

Now, any a ∈ K and n ∈ Z satisfy

− (na) = (−n) a (by Claim 2)
= n (−a) (by Claim 13) .

This proves (168).

Claim 14: We have n (ab) = (na) b = a (nb) for all a, b ∈ K and n ∈N.

[Proof of Claim 14: We shall prove Claim 14 by induction on n:
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Induction base: It is easy to see that 0 (ab) = (0a) b = a (0b) for all a, b ∈ K 323. In other
words, Claim 14 holds for n = 0.

Induction step: Let k ∈ N. Assume that Claim 14 holds for n = k. We must prove that
Claim 14 holds for n = k + 1.

We have assumed that Claim 14 holds for n = k. In other words, we have

k (ab) = (ka) b = a (kb) for all a, b ∈ K. (507)

Now, let a, b ∈ K. Then, (507) yields k (ab) = (ka) b = a (kb).
Claim 3 (applied to n = k and m = 1) yields (k + 1) a = ka + 1a︸︷︷︸

=a
(by (172))

= ka + a. The same

argument (applied to b instead of a) yields (k + 1) b = kb + b. Also, the same argument
that we used to prove (k + 1) a = ka + a can be applied to ab instead of a; it then shows
that (k + 1) (ab) = k (ab) + ab.

Now,

((k + 1) a)︸ ︷︷ ︸
=ka+a

b = (ka + a) b = (ka) b + ab (by the distributivity axiom) .

Comparing this with
(k + 1) (ab) = k (ab)︸ ︷︷ ︸

=(ka)b

+ab = (ka) b + ab,

we obtain
(k + 1) (ab) = ((k + 1) a) b. (508)

Furthermore,

a ((k + 1) b)︸ ︷︷ ︸
=kb+b

= a (kb + b) = a (kb) + ab (by the distributivity axiom) .

Comparing this with
(k + 1) (ab) = k (ab)︸ ︷︷ ︸

=a(kb)

+ab = a (kb) + ab,

we obtain
(k + 1) (ab) = a ((k + 1) b) .

Combining this equality with (508), we obtain

(k + 1) (ab) = ((k + 1) a) b = a ((k + 1) b) .

Now, forget that we fixed a, b. We thus have proven that (k + 1) (ab) = ((k + 1) a) b =
a ((k + 1) b) for all a, b ∈ K. In other words, Claim 14 holds for n = k + 1. This completes
the induction step. Thus, Claim 14 is proven.]

323Proof. Let a, b ∈ K. Then, 0a = 0K (by (173)). Thus, (0a) b = 0Kb = 0K (by the “Annihilation”
axiom for the ring K). Furthermore, 0b = 0K (by (173), applied to b instead of a). Thus,
a (0b) = a0K = 0K (by the “Annihilation” axiom for the ring K). Finally, 0 (a + b) = 0K (by
(173), applied to a + b instead of a). Thus, 0 (ab) = 0K (by the “Annihilation” axiom for the
ring K). Comparing this equality with the equalities (0a) b = 0K and a (0b) = 0K, we obtain
0 (ab) = (0a) b = a (0b). Qed.
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Claim 15: We have n (ab) = (na) b = a (nb) for all a, b ∈ K and n ∈ Z.

[Proof of Claim 15: Let a, b ∈ K and n ∈ Z. We must prove that n (ab) = (na) b = a (nb).
If n ∈ N, then this follows from Claim 14. Hence, for the rest of this proof, we WLOG
assume that we don’t have n ∈ N. Thus, we have n ∈ Z but not n ∈ N. Hence, n ∈
Z \N = {−1,−2,−3, . . .}. In other words, n < 0. Hence, −n > 0, so that −n ∈N. Hence,
Claim 14 (applied to −n instead of n) yields (−n) (ab) = ((−n) a) b = a ((−n) b).

Proposition 5.4.5 (f) (applied to na and 0 instead of a and c) yields− ((na) b) = (− (na)) b =
(na) (−b). Proposition 5.4.5 (f) (applied to nb and 0 instead of b and c) yields − (a (nb)) =
(−a) (nb) = a (− (nb)).

But Claim 2 (applied to ab instead of a) yields (−n) (ab) = − (n (ab)). Thus,

− (n (ab)) = (−n) (ab) = ((−n) a)︸ ︷︷ ︸
=−(na)

(by Claim 2)

b = (− (na)) b = − ((na) b)

(since − ((na) b) = (− (na)) b). Hence, Proposition 5.4.5 (l) (applied to n (ab), (na) b and 0
instead of a, b and c) yields n (ab) = (na) b.

Also,

− (n (ab)) = (−n) (ab) = a ((−n) b)︸ ︷︷ ︸
=−(nb)

(by Claim 2, applied
to b instead of a)

= a (− (nb)) = − (a (nb))

(since − (a (nb)) = a (− (nb))). Hence, Proposition 5.4.5 (l) (applied to n (ab), a (nb) and 0
instead of a, b and c) yields n (ab) = a (nb).

Combining the equalities n (ab) = (na) b and n (ab) = a (nb), we obtain n (ab) = (na) b =
a (nb). This proves Claim 15.]

But Claim 15 is precisely (170). Hence, (170) is proven. Thus, our proof of Proposition
5.4.9 is complete.
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