
University of Minnesota, School of Mathematics
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due date: Monday, 6 May 2019 at 20:00 on Canvas or by email.
No collaboration allowed – this is a midterm.
Please solve at most 3 of the 6 exercises!

1 Exercise 1: Nonunital rings and local unities

1.1 Problem

A nonunital ring is defined in the same way as we defined a ring, except that we don’t
require it to be endowed with an element 1 (and, correspondingly, we omit the “Neutrality
of one” axiom). This does not mean that a nonunital ring must not contain an element 1
that would satisfy the “Neutrality of one” axiom; it simply means that such an element is not
required (and not considered part of the ring structure). So, formally speaking, a nonunital
ring is a 4-tuple (K,+, ·, 0) (while a ring in the usual sense is a 5-tuple (K,+, ·, 0, 1)) that
satisfies all the ring axioms except for “Neutrality of one”.

Thus, every ring becomes a nonunital ring if we forget its unity (i.e., if (K,+, ·, 0, 1)
is a ring, then (K,+, ·, 0) is a nonunital ring). But there are other examples as well: For
instance, if n ∈ Z is arbitrary, then nZ := {nz | z ∈ Z} = {all multiples of n} is a nonunital
ring (when endowed with the usual +, · and 0).

An element z of a nonunital ring K is said to be a unity of K if every a ∈ K satisfies
az = za = a. In other words, an element z of a nonunital ring K is said to be a unity of K
if equipping K with the unity z results in a ring (in the usual sense of this word).

Prove the following:
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(a) If n ∈ Z, then the nonunital ring nZ has a unity if and only if n ∈ {1, 0,−1}.

(b) Any nonunital ring has at most one unity.

Now, let K be a nonunital ring. As usual, we write + and · for its two operations, and
0 for its zero.

Let z ∈ K. Define a subset Uz of K by

Uz = {r ∈ K | rz = zr = r} .

(c) Prove that 0 ∈ Uz, and that every a, b ∈ Uz satisfy a+ b ∈ Uz and ab ∈ Uz.

Thus, we can turn Uz into a nonunital ring by endowing Uz with the binary operations
+ and · (inherited from K) and the element 0. Consider this nonunital ring Uz.

(d) Assume that z2 = z. Prove that z is a unity of the nonunital ring Uz.

[Hint: In (b), what would the product of two unities be?]

1.2 Solution

[...]

2 Exercise 2: Rings from nonunital rings

2.1 Problem

Let K be a nonunital ring. (See Exercise 1 for the definition of this notion.) Let L be the
Cartesian product Z×K (so far, just a set). Define a binary operation + on L by setting

(n, a) + (m, b) = (n+m, a+ b) for all (n, a) , (m, b) ∈ L.

(This is an entrywise addition.) Define a binary operation · on L by

(n, a) (m, b) = (nm, nb+ma+ ab) for all (n, a) , (m, b) ∈ L.

(Here, nb and ma are defined in the usual way: If n ∈ Z and a ∈ K, then na ∈ K is defined
by

na =


a+ a+ · · ·+ a︸ ︷︷ ︸

n times

, if n ≥ 0;

−

a+ a+ · · ·+ a︸ ︷︷ ︸
−n times

 , if n < 0
.

This does not require K to have a unity.)
Prove that L, endowed with these two operations + and · and the zero (0, 0) and the

unity (1, 0), is a ring (in the usual sense of this word).
[Hint: You can use rules like n (a+ b) = na + nb and (n+m) a = na + ma and

(nm) a = n (ma) (for n,m ∈ Z and a, b ∈ K) without proof; they can be proven just as for
usual rings. You can also use the fact that finite sums of elements of K are well-defined and
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behave as we would expect them to (we already tacitly used that in writing “a+ a+ · · ·+ a︸ ︷︷ ︸
n times

”

without parentheses).
You don’t need to check the “additive” axioms (associativity of addition, commutativity

of addition, neutrality of zero, and existence of additive inverses); as far as addition and
zero are concerned, L is just a Cartesian product.]

2.2 Remark

This exercise gives a way to “embed” any nonunital ring K into a ring L. This helps proving
properties of nonunital rings, assuming that you can prove them for rings.

There is also a much simpler notion of a Cartesian product of two nonunital rings
(in which both addition and multiplication are defined entrywise). This lets us define a
nonunital ring Z×K. But this is not the ring L; it does not generally have a unity.

2.3 Solution

[...]

3 Exercise 3: More sums from number theory

3.1 Problem

(a) Let n be a positive integer. Prove that
n∑

j=1

gcd (j, n) =
∑
d|n

dφ
(n
d

)
.

More generally, if (a1, a2, a3, . . .) is a sequence of reals, then prove that
n∑

j=1

agcd(j,n) =
∑
d|n

adφ
(n
d

)
.

(b) Let n ∈ N. Prove that(
the number of (x, y) ∈ Z2 satisfying x2 + y2 ≤ n

)
= 1 + 4

∑
k∈N

(−1)k
⌊

n

2k + 1

⌋
= 1 + 4

(⌊n
1

⌋
−
⌊n

3

⌋
+
⌊n

5

⌋
−
⌊n

7

⌋
+
⌊n

9

⌋
−
⌊ n

11

⌋
± · · ·

)
.

(The infinite sums in this equality have only finitely many nonzero addends, and thus
are well-defined.)

[Hint: Parts (a) and (b) have nothing to do with each other.
This is a good place for a reminder that results proven in the notes, as well as problems

from previous homework sets and midterms, can be freely used. Both parts have rather
short solutions if you remember the right results to use!]
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3.2 Remark

Part (b) of this exercise is a “discrete” version of the famous Madhava–Gregory–Leibniz
series

π

4
=

1

1
− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
± · · ·

(where π, at last, does denote the area of the unit circle). Indeed, if we divide the number
of (x, y) ∈ Z2 satisfying x2 + y2 ≤ n by n, then we obtain an approximation to the area of
the unit circle that gets better as n grows1. On the other hand, it appears reasonable that
dividing

1 + 4
(⌊n

1

⌋
−
⌊n

3

⌋
+
⌊n

5

⌋
−
⌊n

7

⌋
+
⌊n

9

⌋
−
⌊ n

11

⌋
± · · ·

)
by n, we obtain an approximation to 4

(
1

1
− 1

3
+

1

5
− 1

7
+

1

9
− 1

11
± · · ·

)
. I am not sure

whether this can be rigorously proven, however.2

3.3 Solution

[...]

4 Exercise 4: Squares in finite fields II

4.1 Problem

Let F be a finite field such that 2 · 1F 6= 0F. In Exercise 5 of homework set #6, we have seen

that |F| is odd, and that the number of squares in F is
1

2
(|F|+ 1).

In the following, the word “square” shall always mean “square in F”.
A nonsquare shall mean an element of F that is not a square.
Prove the following:

(a) The product of two squares is always a square.

(b) The product of a nonzero square with a nonsquare is always a nonsquare.

(c) The product of two nonsquares is always a square.

[Hint: It is easiest to solve the three parts in this exact order. For (c), recall that if a
subset Y of a finite set X satisfies |Y | ≥ |X|, then Y = X.]

1Just observe that the pairs (x, y) ∈ Z2 satisfying x2 + y2 ≤ n, regarded as points in the Euclidean plane,
are precisely the lattice points inside the circle with center 0 and radius

√
n. Thus, by counting these

pairs, we are approximating the area of this circle. See [Clark18, Theorem 12.1] for a rigorous proof.
2Of course, for any given k ∈ N, the number

1

n

(⌊
n

2k + 1

⌋
− n

2k + 1

)
does converge to 0 when n → ∞.

But here we are taking an alternating sum of infinitely many such numbers; we can ignore all but the
first n, but even the first n may no longer converge to 0 when summed together.
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4.2 Solution

[...]

5 Exercise 5: Formal differential calculus

5.1 Problem

Let K be a commutative ring. For each FPS3

f =
∑
k∈N

akx
k = a0x

0 + a1x
1 + a2x

2 + · · · ∈ K [[x]] (where ai ∈ K),

we define the derivative f ′ of f to be the FPS∑
k>0

kakx
k−1 = 1a1x

0 + 2a2x
1 + 3a3x

2 + · · · ∈ K [[x]] .

(This definition imitates the standard procedure for differentiating power series in analy-
sis, but it does not require any analysis or topology itself. In particular, K may be any
commutative ring – e.g., a finite field.)

Let D : K [[x]] → K [[x]] be the map sending each FPS f to its derivative f ′. We refer
to D as (formal) differentiation. As usual, for any n ∈ N, we let Dn denote D ◦D ◦ · · · ◦D︸ ︷︷ ︸

n times
(which means id if n = 0).

Prove the following:

(a) If f ∈ K [x], then f ′ ∈ K [x] and deg (f ′) ≤ deg f − 1. (In other words, the derivative
of a polynomial is again a polynomial of degree at least 1 less.)

(b) The map D : K [[x]]→ K [[x]] is K-linear (with respect to the K-module structure on
K [[x]] defined in class – i.e., both addition and scaling of FPSs are defined entrywise).

(c) We have (fg)′ = f ′g+ fg′ for any two FPSs f and g. (This is called the Leibniz rule.)

(d) We have Dn
(
xk
)

= n!

(
k

n

)
xk−n for all n ∈ N and k ∈ N. Here, the expression

“
(
k

n

)
xk−n” is to be understood as 0 when k < n.

(e) If Q is a subring of K, then every polynomial f ∈ K [x] satisfies4

f [x+ a] =
∑
n∈N

1

n!
(Dn (f)) [a] · xn for all a ∈ K.

(The infinite sum on the right hand side has only finitely many nonzero addends.)
3Just as in class, the abbreviation “FPS” stands for “formal power series”. All FPSs and polynomials in
this exercise are in 1 indeterminate over K; the indeterminate is called x.

4Just as in class, I am using the notation “f [u]” for the evaluation of f at u. The more common notation
for this is f (u), but is too easily mistaken for a product.
Note also that we need to require f to be a polynomial here, since f [x+ a] would not be defined if f
was merely an FPS.
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(f) If p is a prime such that p · 1K = 0 (for example, this happens if K = Z/p), then
Dp (f) = 0 for each f ∈ K [[x]].

Now, assume that Q is a subring of K. For each FPS

f =
∑
k∈N

akx
k = a0x

0 + a1x
1 + a2x

2 + · · · ∈ K [[x]] (where ai ∈ K),

we define the integral
∫
f of f to be the FPS∑

k≥0

1

k + 1
akx

k+1 =
1

1
a0x

1 +
1

2
a1x

2 +
1

3
a2x

3 + · · · ∈ K [[x]] .

(This definition imitates the standard procedure for integrating power series in analysis, but
again works for any commutative ring K that contains Q as subring.)

Let J : K [[x]] → K [[x]] be the map sending each FPS f to its integral
∫
f . Prove the

following:

(g) The map J : K [[x]]→ K [[x]] is K-linear.

(h) We have D ◦ J = id.

(i) We have J ◦D 6= id.

[Hint: Don’t give too much detail; workable outlines are sufficient. Feel free to inter-
change summation signs without justification. For part (c), it is easiest to first prove it in
the particular case when f = xa and g = xb for some f and g, and then obtain the general
case by interchanging summations.]

5.2 Remark

This exercise is just the beginning of “algebraic calculus”. A lot more can be done: Differenti-
ation can be extended to rational functions; partial derivatives can be defined for multivariate
polynomials and FPSs; differential equations can be solved formally in FPSs (rather than

functions); even a purely algebraic analogue of the classical f ′ (x) = lim
ε→0

f (x+ ε)− f (x)

ε
definition exists5. These algebraic derivatives play crucial roles in the study of fields (in-
cluding finite fields!), in algebraic geometry (where they help define what a “singularity”
of an algebraic variety is) and in enumerative combinatorics (where they aid in computing
generating functions).

Part (e) is perhaps the easiest instance of the well-known Taylor formula (no error
terms, no smoothness requirements, no convergence issues).

The “integral”
∫
f we defined above is, of course, only one possible choice of an FPS g

satisfying g′ = f . Just as in calculus, you can add any constant to it, and you get another.
Part (h) is an algebraic version of one half of the Fundamental Theorem of Calculus. You
can easily prove the other half: For each FPS f , the FPS (J ◦D) (f) differs from f only in
its constant term.

If K contains Q as a subring, then both J and D are elements of the K-algebra
End (K [[x]]) (by parts (b) and (g) of this exercise). Part (h) of this exercise shows that
J is a right inverse of D; but part (i) shows that J is not a left inverse (and thus not an
inverse) of D. This yields an example of a left inverse that is not a right inverse.

5See Theorem 5 in https://math.stackexchange.com/a/2974977/ .
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5.3 Solution

[...]

6 Exercise 6: Formal difference calculus and
integer-valued polynomials

6.1 Problem

Let K be a commutative ring.
For any polynomial f ∈ K [x], we define the first finite difference f∆ of f to be the

polynomial
f [x+ 1]− f [x] ∈ K [x] .

(This is a “discrete analogue” of the derivative, in case the analysis-free derivative from
Exercise 5 was not discrete enough for you. It cannot be extended to FPSs, however, since
you cannot substitute x+ 1 for x in an FPS.)

Let ∆ : K [x] → K [x] be the map sending each polynomial f to f∆. As usual, for any
n ∈ N, we let ∆n denote ∆ ◦∆ ◦ · · · ◦∆︸ ︷︷ ︸

n times

(which means id if n = 0).

Prove the following:

(a) The map ∆ : K [x]→ K [x] is K-linear (with respect to the K-module structure on K [x]
defined in class – i.e., both addition and scaling of polynomials are defined entrywise).

(b) We have (fg)∆ = f∆g + f [x+ 1] g∆ for any two polynomials f and g.

Now, assume that Q is a subring of K.
For any n ∈ N, we define a polynomial6(

x

n

)
:=

x (x− 1) (x− 2) · · · (x− n+ 1)

n!
∈ K [x] .

We also set
(
x

n

)
:= 0 for every negative n.

Prove the following:

(c) We have ∆n

((
x

k

))
=

(
x

k − n

)
for all n ∈ N and k ∈ Z.

(d) If m ∈ N, and if f ∈ K [x] is a polynomial of degree ≤ m, then there exist elements

a0, a1, . . . , am ∈ K such that f =
m∑
i=0

ai

(
x

i

)
.

(e) Every polynomial f ∈ K [x] satisfies

f [x+ a] =
∑
n∈N

(∆n (f)) [a] ·
(
x

n

)
for all a ∈ K.

(The infinite sum on the right hand side has only finitely many nonzero addends.)
6Note that we are within our rights to divide by n! here, since Q is a subring of K.
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(f) Let m ∈ N, and let f ∈ K [x] be a polynomial of degree ≤ m. Assume that f [k] ∈ Z
for each k ∈ {0, 1, . . . ,m}. Then, there exist integers a0, a1, . . . , am such that f =
m∑
i=0

ai

(
x

i

)
.

[Hint: Part (d) is easiest to prove by induction on m. You can then prove part (e) for

f =

(
x

i

)
first (where i ∈ N), and then extend it to arbitrary f by means of part (d). Part

(f), in turn, can be derived from part (e) through a strategic choice of a.]

6.2 Remark

Just as ∆ is an analogue of the differentiation operator D from Exercise 5, we can define
an analogue of the integration operator J from Exercise 5. This will be a K-linear map

Σ : K [x] → K [x] that sends each polynomial
m∑
i=0

ai

(
x

i

)
to

m∑
i=0

ai

(
x

i+ 1

)
(this definition

makes sense, because part (d) of this exercise shows that each polynomial can be written

in the form
m∑
i=0

ai

(
x

i

)
, uniquely except for “leading zeroes”). Again, we have ∆ ◦Σ = id but

Σ ◦∆ 6= id.
Moreover, if f ∈ K [x] is a polynomial, then (Σ (f)) [0] = 0 and (Σ (f)) [n] = (Σ (f)) [n− 1]+

f [n− 1] for each n ∈ Z (indeed, the former equality follows easily from the definition of Σ,
while the latter follows from ∆ ◦ Σ = id). Hence, by induction, we can see that

(Σ (f)) [n] = f [0]+f [1]+ · · ·+f [n− 1] for each polynomial f ∈ K [x] and each n ∈ N.

In other words, the value of Σ (f) at an n ∈ N is the sum of the first n values of f on
nonnegative integers! (Whence the notation Σ.) For example, if we set f = x2, then it is

easy to see that Σ (f) = 2

(
x

3

)
+

(
x

2

)
(to see this, just expand f in the form

m∑
i=0

ai

(
x

i

)
–

namely, f = x2 = 2

(
x

2

)
+

(
x

1

)
–, and then apply the definition of Σ); thus we obtain

2

(
n

3

)
+

(
n

2

)
= 02 + 12 + · · ·+ (n− 1)2 .

Similarly you can find a formula for 0k + 1k + · · ·+ (n− 1)k whenever k ∈ N.
Part (e) of this exercise is a result of Newton.

6.3 Solution

[...]

References

[Clark18] Pete L. Clark, Number Theory: A Contemporary Introduction, 8 January 2018.
http://math.uga.edu/~pete/4400FULL.pdf

Darij Grinberg, 00000000 8 dgrinber@umn.edu

http://math.uga.edu/~pete/4400FULL.pdf

	Exercise 1: Nonunital rings and local unities
	Problem
	Solution

	Exercise 2: Rings from nonunital rings
	Problem
	Remark
	Solution

	Exercise 3: More sums from number theory
	Problem
	Remark
	Solution

	Exercise 4: Squares in finite fields II
	Problem
	Solution

	Exercise 5: Formal differential calculus
	Problem
	Remark
	Solution

	Exercise 6: Formal difference calculus and integer-valued polynomials
	Problem
	Remark
	Solution


