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1 Exercise 1: Not-quite-all-rationals

1.1 Problem

Fix an integer m. An m-integer shall mean a rational number r such that there exists a
k ∈ N satisfying mkr ∈ Z.

For example1:

• Each integer r is an m-integer (since mkr ∈ Z for k = 0).

• The rational number
5

12
is a 6-integer (since 6k · 5

12
∈ Z for k = 2), but neither a

2-integer nor a 3-integer (since multiplying it by a power of 2 will not “get rid of” the
prime factor 3 in the denominator, and vice versa2).

• The 1-integers are the integers (since 1kr = r for all r).

• Every rational number r is a 0-integer (since 0kr ∈ Z for k = 1).

Let Rm denote the set of all m-integers. Prove the following:

1You don’t need to prove these.
2You would have to be more rigorous than this in your solution, if you were to make an argument like this.
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(a) The set Rm (endowed with the usual addition, the usual multiplication, the usual
integer 0 as zero, and the usual integer 1 as unity) is a commutative ring.
(You don’t need to prove axioms like commutativity of multiplication, since these
follow from the corresponding facts about rational numbers, which are well-known.
You only need to check that Rm is closed under addition and multiplication3, and
contains additive inverses of all its elements.)

(b) Let x ∈ Q be nonzero. Then, x ∈ Rm if and only if every prime p satisfying wp (x) < 0
satisfies p | m. Here, we are using the notation wp (r) defined in Exercise 3.4.1 of the
class notes.

1.2 Remark

Roughly speaking, an m-integer is a rational number that can be turned into an integer by
multiplying it with m several times. So a rational number, written as a reduced fraction, is
an m-integer if and only if a sufficiently large power of m can cancel all the primes in its
denominator.

The ring Rm is an example of a ring “between Z and Q”. It is commonly denoted by

Z
[
1

m

]
and pronounced “Z adjoined 1 over m”.

Note that R1 = Z and R0 = Q, whereas R2 = R4 = R8 = · · · is the ring of all rational
numbers that can be written in the form a/2k with a ∈ Z and k ∈ N.

The ring R10 is the ring of all decimal fractions – i.e., of all rational numbers that can
be written in decimal notation with only finitely many digits after the comma.

1.3 Solution

For each rational number r, we have the following chain of logical equivalences:

(r ∈ Rm) ⇐⇒ (r is an m-integer) (since Rm is the set of all m-integers)
⇐⇒

(
there exists a k ∈ N satisfying mkr ∈ Z

)
(1)

(by the definition of an m-integer).

(a) We begin by proving the following claims:

Claim 1: We have r ∈ Rm for each integer r.

Claim 2: If a ∈ Rm and b ∈ Rm, then a+ b ∈ Rm and a · b ∈ Rm.

Claim 3: If a ∈ Rm, then −a ∈ Rm.

[Proof of Claim 1: Let r be an integer. Then, m0︸︷︷︸
=1

r = r ∈ Z. Hence, there exists a

k ∈ N satisfying mkr ∈ Z (namely, k = 0). But (1) yields the equivalence

(r ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mkr ∈ Z

)
.

Hence, r ∈ Rm (since there exists a k ∈ N satisfying mkr ∈ Z). This proves Claim 1.]
[Proof of Claim 2: Let a ∈ Rm and b ∈ Rm. We must show that a + b ∈ Rm and

a · b ∈ Rm.
3This means that every a, b ∈ Rm satisfy a+ b ∈ Rm and ab ∈ Rm.
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But (1) (applied to r = a) yields the equivalence

(a ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mka ∈ Z

)
.

Hence, there exists a k ∈ N satisfying mka ∈ Z (since a ∈ Rm). Consider this k, and denote
it by x. Thus, x ∈ N and mxa ∈ Z.

Furthermore, (1) (applied to r = b) yields the equivalence

(b ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mkb ∈ Z

)
.

Hence, there exists a k ∈ N satisfying mkb ∈ Z (since b ∈ Rm). Consider this k, and denote
it by y. Thus, y ∈ N and myb ∈ Z.

Note that mx is an integer (since m is an integer and x ∈ N). In other words, mx ∈ Z.
Similarly, my ∈ Z.

Now,

mx+y︸ ︷︷ ︸
=mxmy

(a+ b) = mxmy (a+ b) = mxmya+mxmyb = my︸︷︷︸
∈Z

mxa︸︷︷︸
∈Z

+ mx︸︷︷︸
∈Z

myb︸︷︷︸
∈Z

∈ Z.

Thus, there exists a k ∈ N satisfying mk (a+ b) ∈ Z (namely, k = x+ y). (Note that with a
little bit more work, we could have also shown this for k = max {x, y} instead of k = x+ y;
we were just being lazy.)

But (1) (applied to r = a+ b) yields the equivalence

(a+ b ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mk (a+ b) ∈ Z

)
.

Hence, a+ b ∈ Rm (since there exists a k ∈ N satisfying mk (a+ b) ∈ Z).
Furthermore,

mx+y︸ ︷︷ ︸
=mxmy

(a · b) = mxmy (a · b) = mxa︸︷︷︸
∈Z

myb︸︷︷︸
∈Z

∈ Z.

Thus, there exists a k ∈ N satisfying mk (a · b) ∈ Z (namely, k = x+ y).
But (1) (applied to r = a · b) yields the equivalence

(a · b ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mk (a · b) ∈ Z

)
.

Hence, a · b ∈ Rm (since there exists a k ∈ N satisfying mk (a · b) ∈ Z).
We have now proven that a+ b ∈ Rm and a · b ∈ Rm. This proves Claim 2.]
[Proof of Claim 3: Let a ∈ Rm. We shall show that −a ∈ Rm.
We could do this similarly to our proof of Claim 2, but let us take a shortcut instead:

We have −1 ∈ Rm (by Claim 1, applied to r = −1). Hence, Claim 2 (applied to b = −1)
yields a+ (−1) ∈ Rm and a · (−1) ∈ Rm. Now, −a = a · (−1) ∈ Rm. This proves Claim 3.]

Now, consider the set Rm. We have 0 ∈ Rm (by Claim 1, applied to r = 0) and 1 ∈ Rm

(by Claim 1, applied to r = 1). Thus, the set Rm contains the elements 0 and 1.
Furthermore, every a ∈ Rm and b ∈ Rm satisfy a+ b ∈ Rm (by Claim 2). Thus, we can

define a binary operation + on the set Rm by restricting the usual addition + on Q to the
subset Rm.

Moreover, every a ∈ Rm and b ∈ Rm satisfy a · b ∈ Rm (by Claim 2). Thus, we can
define a binary operation · on the set Rm by restricting the usual multiplication · on Q to
the subset Rm.

Now, the exercise demands us to prove that the set Rm equipped with these two binary
operations + and · and the two elements 0 and 1 is a commutative ring. In order to do so,
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we must verify that the ring axioms and the “Commutativity of multiplication” axiom are
satisfied.

But all of these axioms, except for the “Existence of additive inverses” axiom, are clearly
satisfied because they are satisfied for Q (and because our Rm is a subset of Q, and because
we endowed Rm with operations + and · that are restrictions of the corresponding operations
of Q). It thus remains to prove that the “Existence of additive inverses” axiom is satisfied.

But this is easy: If a ∈ Rm, then −a ∈ Rm (by Claim 3), and thus there exists an
element a′ ∈ Rm satisfying a+ a′ = a′ + a = 0 (namely, a′ = −a).

Thus, we have proven that Rm is a commutative ring. This solves part (a) of the
exercise.

(b) From (1) (applied to r = x), we obtain the logical equivalence

(x ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mkx ∈ Z

)
.

But Exercise 3.4.2 (d) in the class notes (applied to r = x) yields the logical equivalence(
there exists a k ∈ N satisfying mkx ∈ Z

)
⇐⇒ (every prime p satisfying wp (x) < 0 satisfies p | m) .

Hence, we have the following chain of equivalences:

(x ∈ Rm) ⇐⇒
(
there exists a k ∈ N satisfying mkx ∈ Z

)
⇐⇒ (every prime p satisfying wp (x) < 0 satisfies p | m) .

This solves part (b) of the exercise.

2 Exercise 2: Rings with x2 = x

2.1 Problem

Let K be a ring with the property that

u2 = u for all u ∈ K. (2)

(Examples of such rings are Z/2 as well as the “power set” ring (P (S) ,4,∩,∅, S)
constructed from any given set S.)

Prove the following:

(a) We have 2x = 0 for each x ∈ K.

(b) We have −x = x for each x ∈ K.

(c) We have xy = yx for all x, y ∈ K. (In other words, the ring K is commutative.)

(As usual, “0” stands for the zero of the ring K.)
[Hint: For part (a), apply (2) to u = x but also to u = 2x = x+x, and see what comes

out. For part (c), apply (2) to u = x+ y.]
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2.2 Remark

RingsK satisfying (2) are known as Boolean rings (although some people do not require them
to have a unity). Thus, the exercise proves various properties of Boolean rings, including
the fact that they are always commutative.

You might wonder what happens if we replace (2) by the requirement that

u3 = u for all u ∈ K. (3)

This no longer leads to 2x = 0 (nor to 3x = 0 as you might perhaps expect). Instead, it can
be shown that 6x = 0 for all x ∈ K. It can also be shown that it leads to xy = yx. See, for
example, https://math.stackexchange.com/questions/67148 .

More generally, fix an integer n ≥ 2, and replace (2) by the requirement that

un = u for all u ∈ K. (4)

Then, it still can be proven that K is commutative! See https://mathoverflow.net/
questions/29590/ for this result.

Even more generally, we don’t need to fix n in advance! In other words, instead of
requiring (2) or (3) or (4), we merely require that for each u ∈ K, there exists an integer
n ≥ 2 (which may depend on u) such that un = u. This is a more general setting; nevertheless
it still follows that K is commutative! This is a result of Jacobson; see [Rogers71] for a proof.

2.3 Solution

(a) First solution to part (a): Let x ∈ K. Then, (2) (applied to u = x) yields x2 = x. But
(2) (applied to u = x+ x) yields (x+ x)2 = x+ x = 2x. Thus,

2x = x+ x = (x+ x)2 = (x+ x) (x+ x)

= x (x+ x)︸ ︷︷ ︸
=xx+xx

(by distributivity)

+ x (x+ x)︸ ︷︷ ︸
=xx+xx

(by distributivity)

(by distributivity)

= xx+ xx+ xx+ xx = 4 xx︸︷︷︸
=x2=x

= 4x.

Subtracting 2x from both sides of this equality, we obtain 0 = 4x−2x = 2x. Hence, 2x = 0.
This solves part (a) of the exercise.

Second solution to part (a): Let x ∈ K. Then, (2) (applied to u = x) yields x2 = x.
But (2) (applied to u = −x) yields (−x)2 = −x. Hence,

−x = (−x)2 = (−x) (−x) = − (x · (−x))︸ ︷︷ ︸
=−(xx)

= − (− (xx)) = xx = x2 = x.

Adding x to both sides of this equality, we find (−x) + x = x + x = 2x. Thus, 2x =
(−x) + x = 0. This solves part (a) of the exercise.

(b) First solution to part (b): Let x ∈ K. Part (a) of this exercise yields 2x = 0.
Subtracting x from both sides of this equality, we obtain 2x − x = 0 − x = −x. Hence,
−x = 2x︸︷︷︸

=x+x

−x = (x+ x)− x = x. This solves part (b) of this exercise.

Second solution to part (b): Let x ∈ K. We have already shown the equality −x = x in
our Second solution to part (a). Thus, part (b) of the exercise is solved.
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(c) Let x, y ∈ K. Then, (2) (applied to u = x) yields x2 = x. Also, (2) (applied to
u = y) yields y2 = y. But (2) (applied to u = x+ y) yields (x+ y)2 = x+ y. Hence,

x+ y = (x+ y)2 = (x+ y) (x+ y)

= x (x+ y)︸ ︷︷ ︸
=xx+xy

(by distributivity)

+ y (x+ y)︸ ︷︷ ︸
=yx+yy

(by distributivity)

(by distributivity)

= xx︸︷︷︸
=x2=x

+xy + yx+ yy︸︷︷︸
=y2=y

= x+ xy + yx+ y.

Subtracting x+ y from both sides of this equality, we obtain

0 = (x+ xy + yx+ y)− (x+ y) = xy + yx.

Thus, xy = −yx. But part (b) of this exercise (applied to yx instead of x) yields −yx = yx.
Hence, xy = −yx = yx. This solves part (c) of the exercise.

3 Exercise 3: A matrix of gcds

3.1 Problem

In this exercise, we shall again use the Iverson bracket notation:
Let n ∈ N. Let G be the n× n-matrix

(gcd (i, j))1≤i≤n, 1≤j≤n =


gcd (1, 1) gcd (1, 2) · · · gcd (1, n)
gcd (2, 1) gcd (2, 2) · · · gcd (2, n)

...
... . . . ...

gcd (n, 1) gcd (n, 2) · · · gcd (n, n)

 .

Let L be the n× n-matrix

([j | i])1≤i≤n, 1≤j≤n =


[1 | 1] [2 | 1] · · · [n | 1]
[1 | 2] [2 | 2] · · · [n | 2]

...
... . . . ...

[1 | n] [2 | n] · · · [n | n]

 .

Let D be the n× n-matrix

([i = j]φ (i))1≤i≤n, 1≤j≤n =


φ (1) 0 0 · · · 0
0 φ (2) 0 · · · 0
0 0 φ (3) · · · 0
...

...
... . . . ...

0 0 0 · · · φ (n)

 .

Prove that4 G = LDLT .

4We are using the standard notation AT for the transpose of a matrix A. This transpose is defined as
follows: If A = (ai,j)1≤i≤n, 1≤j≤m, then AT = (aj,i)1≤i≤m, 1≤j≤n.

Darij Grinberg, 00000000 6 dgrinber@umn.edu

https://en.wikipedia.org/wiki/Iverson_bracket


Solutions to midterm #2 page 7 of 23

3.2 Remark

As the names suggest, the matrix L is lower-triangular5 (so that the matrix LT is upper-
triangular), and the matrix D is diagonal. Thus, G = LDLT is an instance of an LDU
decomposition.

The matrix G is an example of what is called a gcd-matrix (duh); see, e.g., https:
//math.stackexchange.com/questions/1278871 for some references on it.

3.3 Solution

We recall the following fundamental property of matrices in general:

Lemma 3.1. Let n,m ∈ N. Let K be a ring. Let D = ([i = j] di)1≤i≤n, 1≤j≤n be a diagonal
matrix over K (where d1, d2, . . . , dn are n elements of K). Let A = (ai,j)1≤i≤n, 1≤j≤m be an
arbitrary n×m-matrix over K. Then, the product DA is simply given by

DA = (diai,j)1≤i≤n, 1≤j≤m . (5)

(That is, multiplying a matrix A by a diagonal matrix D on the left is tantamount to
rescaling each row of A by the corresponding diagonal entry of D.)

Proof of Lemma 3.1. We haveD = ([i = j] di)1≤i≤n, 1≤j≤n andA = (ai,j)1≤i≤n, 1≤j≤m. Hence,
the definition of the product of two matrices yields

DA =

(
n∑
k=1

[i = k] diak,j

)
1≤i≤n, 1≤j≤m

. (6)

Now, fix some i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Then,

n∑
k=1

[i = k] diak,j =
∑

k∈{1,2,...,n}

[i = k] diak,j = [i = i]︸ ︷︷ ︸
=1

(since i=i)

diai,j +
∑

k∈{1,2,...,n};
k 6=i

[i = k]︸ ︷︷ ︸
=0

(since i 6=k
(because k 6=i))

diak,j

(here, we have split off the addend for k = i from the sum)

= diai,j +
∑

k∈{1,2,...,n};
k 6=i

0diak,j

︸ ︷︷ ︸
=0

= diai,j.

Now, forget that we fixed i and j. We thus have shown that
n∑
k=1

[i = k] diak,j = diai,j

for all i ∈ {1, 2, . . . , n} and j ∈ {1, 2, . . . ,m}. Therefore, the equality (6) rewrites as
DA = (diai,j)1≤i≤n, 1≤j≤m. This proves Lemma 3.1.

Now, let us return to solving the exercise.
Recall that L = ([j | i])1≤i≤n, 1≤j≤n; thus, the definition of the transpose of a matrix

yields LT = ([i | j])1≤i≤n, 1≤j≤n. Also, recall that D = ([i = j]φ (i))1≤i≤n, 1≤j≤n. Hence, (5)
(applied to K = Z, m = n, di = φ (i), D = D, ai,j = [i | j] and A = LT ) yields

DLT = (φ (i) · [i | j])1≤i≤n, 1≤j≤n . (7)

5because two positive integers i and j satisfying i < j always satisfy [j | i] = 0
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Now, we have L = ([j | i])1≤i≤n, 1≤j≤n and DLT = (φ (i) · [i | j])1≤i≤n, 1≤j≤n. Thus, the
definition of the product of two matrices yields

L
(
DLT

)
=

(
n∑
k=1

[k | i] · φ (k) · [k | j]

)
1≤i≤n, 1≤j≤n

. (8)

Let us now recall a basic property of the Iverson bracket: If A and B are two logical
statements, then

[A ∧ B] = [A] · [B] . (9)

Furthermore, if A and B are two equivalent logical statements, then

[A] = [B] . (10)

Now, fix i, j ∈ {1, 2, . . . , n}. Hence, i and j are positive integers; thus, gcd (i, j) is a
positive integer as well. Also, gcd (i, j) | i, so that gcd (i, j) ≤ i (since gcd (i, j) and i are
positive integers) and therefore gcd (i, j) ≤ i ≤ n (since i ∈ {1, 2, . . . , n}).

Theorem 2.14.6 in the class notes (applied to gcd (i, j) instead of n) yields∑
d|gcd(i,j)

φ (d) = gcd (i, j) . (11)

Here, the summation sign “
∑

d|gcd(i,j)
” means a sum over all positive divisors d of gcd (i, j).

Also, fix k ∈ {1, 2, . . . , n}. Then, Theorem 2.9.15 (a) in the class notes (applied to k, i
and j instead of a, b and m) shows that we have the following logical equivalence:

(k | i and k | j)⇐⇒ (k | gcd (i, j)) .

Thus, the logical statements (k | gcd (i, j)) and (k | i and k | j) are equivalent. Hence, (10)
(applied to A = (k | gcd (i, j)) and B = (k | i and k | j)) yields

[k | gcd (i, j)] = [k | i and k | j] = [(k | i) ∧ (k | j)]
= [k | i] · [k | j] (12)

(by (9), applied to A = (k | i) and B = (k | j)).
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Now, forget that we fixed k. We thus have proven (12) for each k ∈ {1, 2, . . . , n}. Now,

n∑
k=1

[k | i] · φ (k) · [k | j]

=
n∑
k=1︸︷︷︸

=
∑

k∈{1,2,...,n}

[k | i] · [k | j]︸ ︷︷ ︸
=[k|gcd(i,j)]

(by (12))

·φ (k) =
∑

k∈{1,2,...,n}

[k | gcd (i, j)] · φ (k)

=
∑

k∈{1,2,...,n};
k|gcd(i,j)

[k | gcd (i, j)]︸ ︷︷ ︸
=1

(since k|gcd(i,j))

·φ (k) +
∑

k∈{1,2,...,n};
k-gcd(i,j)

[k | gcd (i, j)]︸ ︷︷ ︸
=0

(since k-gcd(i,j))

·φ (k)

(
since each k ∈ {1, 2, . . . , n} satisfies either k | gcd (i, j)

or k - gcd (i, j) (but not both)

)
=

∑
k∈{1,2,...,n};
k|gcd(i,j)

φ (k) +
∑

k∈{1,2,...,n};
k-gcd(i,j)

0 · φ (k)

︸ ︷︷ ︸
=0

=
∑

k∈{1,2,...,n};
k|gcd(i,j)

φ (k)

=
∑

d∈{1,2,...,n};
d|gcd(i,j)

φ (d) (13)

(here, we have renamed the summation index k as d).
But each positive divisor of gcd (i, j) is ≤ gcd (i, j) and therefore ≤ n (since gcd (i, j) ≤

n). Thus, each positive divisor of gcd (i, j) belongs to the set {1, 2, . . . , n}. Hence, each
positive divisor of gcd (i, j) is a d ∈ {1, 2, . . . , n} satisfying d | gcd (i, j). In other words,

{positive divisors of gcd (i, j)} ⊆ {d ∈ {1, 2, . . . , n} such that d | gcd (i, j)} .

Combining this with the relation

{d ∈ {1, 2, . . . , n} such that d | gcd (i, j)} ⊆ {positive divisors of gcd (i, j)}

(which is obvious), we obtain

{d ∈ {1, 2, . . . , n} such that d | gcd (i, j)} = {positive divisors of gcd (i, j)} .

Thus, the summation sign “
∑

d∈{1,2,...,n};
d|gcd(i,j)

” is equivalent to “
∑

d|gcd(i,j)
” (since the latter summation

sign means a sum over all positive divisors of gcd (i, j)). Hence, (13) becomes

n∑
k=1

[k | i] · φ (k) · [k | j] =
∑

d∈{1,2,...,n};
d|gcd(i,j)︸ ︷︷ ︸
=

∑
d|gcd(i,j)

φ (d) =
∑

d|gcd(i,j)

φ (d) = gcd (i, j) (by (11)) .

Now, forget that we fixed i, j. We thus have proven that

n∑
k=1

[k | i] · φ (k) · [k | j] = gcd (i, j) for all i, j ∈ {1, 2, . . . , n} .
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In other words,(
n∑
k=1

[k | i] · φ (k) · [k | j]

)
1≤i≤n, 1≤j≤n

= (gcd (i, j))1≤i≤n, 1≤j≤n .

Hence, (8) becomes

L
(
DLT

)
=

(
n∑
k=1

[k | i] · φ (k) · [k | j]

)
1≤i≤n, 1≤j≤n

= (gcd (i, j))1≤i≤n, 1≤j≤n = G

(by the definition of G). Consequently, G = L
(
DLT

)
= LDLT . The exercise is now solved.

3.4 Remark

If you know about determinants, you will easily see how to compute detG using the claim
of the exercise. (Hint: Use the formula det (AB) = detA · detB that holds for any two
n× n-matrices A and B over any commutative ring K.)

4 Exercise 4: Idempotent and involutive elements

4.1 Problem

Let K be a ring.
An element a of K is said to be idempotent if it satisfies a2 = a.
An element a of K is said to be involutive if it satisfies a2 = 1.

(a) Let a ∈ K. Prove that if a is idempotent, then 1− 2a is involutive.

(b) Now, assume that 2 is cancellable in K; this means that if u and v are two elements
of K satisfying 2u = 2v, then u = v. Prove that the converse of the claim of part (a)
holds: If a ∈ K is such that 1− 2a is involutive, then a is idempotent.

(c) Now, let K = Z/4. Find an element a ∈ K such that 1− 2a is involutive, but a is not
idempotent.

4.2 Remark

The idempotent elements of R are 0 and 1. The involutive elements of R are 1 and −1. A
matrix ring like Rn×n usually has infinitely many idempotent elements (viz., all projection
matrices on subspaces of Rn) and infinitely many involutive elements (viz., all matrices A
satisfying A2 = In; for instance, all reflections across hyperplanes are represented by such
matrices).

Part (a) of this exercise assigns an involutive element to each idempotent element of K.
If 2 is invertible in K (that is, if the element 2 · 1K has a multiplicative inverse), then this
assignment is a bijection (as can be easily derived from part (b)). Part (c) shows that we
cannot drop the “2 is cancellable” condition in part (b).
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4.3 Solution

Using the ring axioms and the basic rules for rings, it is easy to see that every a ∈ K satisfies

(1− 2a)2 = 1− 4a+ 4a2. (14)

[Here is a more pedantic proof of this fact: Let a ∈ K. For any b ∈ K, we have

(1 + b)2 = (1 + b) (1 + b) = 1 (1 + b)︸ ︷︷ ︸
=1+b

+ b (1 + b)︸ ︷︷ ︸
=b·1+b·b

(by distributivity)

(by distributivity)

= 1 + b+ b · 1︸︷︷︸
=b

+ b · b︸︷︷︸
=b2

= 1 + b+ b+ b2 = 1 + 2b+ b2.

Applying this to b = −2a, we obtain

(1 + (−2a))2 = 1 + 2 (−2a)︸ ︷︷ ︸
=2·(−2)a

+ (−2a)2︸ ︷︷ ︸
=(−2a)·(−2a)
=(−2)·(−2a)·a

= 1 + 2 · (−2)︸ ︷︷ ︸
=−4

a+ (−2) · (−2a)︸ ︷︷ ︸
=(−2)a

·a

= 1 + (−4) a︸ ︷︷ ︸
=−4a

+(−2) · ((−2) a)︸ ︷︷ ︸
=((−2)·(−2))·a

·a = 1 + (−4a)︸ ︷︷ ︸
=1−4a

+((−2) · (−2))︸ ︷︷ ︸
=4

· a · a︸︷︷︸
=a2

= 1− 4a+ 4a2.

In view of 1 + (−2a) = 1 − 2a, this rewrites as (1− 2a)2 = 1 − 4a + 4a2. Thus, (14) is
proven.]

(a) Assume that a is idempotent. We must prove that 1− 2a is involutive.
We have assumed that a is idempotent. In other words, a2 = a (by the definition of

“idempotent”). Thus, (14) becomes (1− 2a)2 = 1− 4a+ 4 a2︸︷︷︸
=a

= 1− 4a+ 4a = 1. In other

words, 1 − 2a is involutive (by the definition of “involutive”). This solves part (a) of the
exercise.

(b) Let a ∈ K be such that 1− 2a is involutive. We must prove that a is idempotent.
We know that 2 is cancellable in K. In other words, if u and v are two elements of K

satisfying 2u = 2v, then
u = v. (15)

We have assumed that 1 − 2a is involutive. In other words, (1− 2a)2 = 1. Comparing
this with (14), we obtain 1− 4a+ 4a2 = 1. Hence, 4a2 = 1− 1 + 4a = 4a. This rewrites as
2 · 2a2 = 2 · 2a (since 2 · 2︸︷︷︸

=4

a2 = 4a2 and 2 · 2︸︷︷︸
=4

a = 4a). Hence, (15) (applied to u = 2a2 and

v = 2a) yields 2a2 = 2a. Thus, (15) (applied to u = a2 and v = a) yields a2 = a. In other
words, a is idempotent. This solves part (b) of the exercise.

(c) We claim that a = [2]4 is such an element. Indeed, 1 − 2 · [2]4 is involutive6 (since
1︸︷︷︸

=[1]4

− 2 · [2]4︸ ︷︷ ︸
=[2·2]4=[4]4=[0]4

= [1]4 − [0]4 = [1]4 and thus (1− 2 · [2]4)
2 = ([1]4)

2 = [12]4 = [1]4 = 1),

but [2]4 is not idempotent (since ([2]4)
2 = [22]4 = [4]4 6= [2]4).

6Keep in mind that the “1” here stands for the unity of the ring K = Z/4; this is the residue class [1]4.
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5 Exercise 5: The matrix approach to Fibonacci
numbers

5.1 Problem

Let A be the 2× 2-matrix
(
0 1
1 1

)
over Z. Consider also the identity matrix I2 ∈ Z2×2.

Let F be the subset

{aA+ bI2 | a, b ∈ Z} =
{(

b a
a a+ b

)
| a, b ∈ Z

}
of the matrix ring Z2×2.

(a) Prove that A2 = A+ I2.

(b) Prove that the set F (equipped with the addition of matrices, the multiplication of
matrices, the zero 02×2 and the unity I2) is a commutative ring.
(Again, you don’t need to check the ring axioms, as we already know that they hold for
arbitrary matrices and thus all the more for matrices in F . But you do need to check
commutativity of multiplication in F , since it does not hold for arbitrary matrices.
You also need to check that F is closed under addition and multiplication and has
additive inverses.)

Let (f0, f1, f2, . . .) be the Fibonacci sequence (which we have already encountered on
homework set #5). Recall that it is defined recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

(c) Prove that An = fnA+ fn−1I2 for all positive integers n.

(d) Prove that fn+m = fnfm+1 + fn−1fm for all positive integers n and all m ∈ N.

Now, define a further matrix B ∈ F by B = (−1)A+ 1I2 = I2 − A.

(e) Prove that B2 = B + I2 and Bn = fnB + fn−1I2 for all positive integers n.

(f) Prove that An −Bn = fn (A−B) for all n ∈ N.

(g) Prove (again!) that fd | fdn for any nonnegative integers d and n.

[Hint: One way to prove (d) is by comparing the (1, 1)-th entries of the two (equal)
matrices AnAm+1 and An+m+1, after first using part (c) to expand these matrices.

For part (g), compare the (1, 1)-th entries of the matrices Ad−Bd and Adn−Bdn, after
first proving that Ad −Bd | Adn −Bdn in the commutative ring F . Note that divisibility is
a tricky concept in general rings, but F is a commutative ring, which lets many arguments
from the integer setting go through unchanged.]
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5.2 Remark

Contrast the ring F with the ring Z [φ] from Exercise 5 on homework set #5. Both of these
rings, as we see, can be used to prove that fd | fdn for any nonnegative integers d and n. It
turns out that these rings have more in common: they are isomorphic! More precisely, the
map

Z [φ]→ F ,
a+ bφ 7→ bA+ aI2 (for a, b ∈ Z)

is a ring isomorphism. This makes it less surprising that these rings can substitute for one
another in proving fd | fdn.

5.3 Solution sketch

We first recall that F = {aA+ bI2 | a, b ∈ Z} (by the definition of F). Hence,

aA+ bI2 ∈ F for all a, b ∈ Z. (16)

(a) This is an easy exercise in multiplying matrices: From A =

(
0 1
1 1

)
, we obtain

A2 =

(
0 1
1 1

)2

=

(
0 1
1 1

)(
0 1
1 1

)
=

(
1 1
1 2

)
.

Comparing this with

A︸︷︷︸
=

0 1
1 1


+ I2︸︷︷︸

=

1 0
0 1


=

(
0 1
1 1

)
+

(
1 0
0 1

)
=

(
1 1
1 2

)
,

we obtain A2 = A+ I2. This solves part (a) of the exercise.

(b) Let us show the following claims:

Claim 1: We have 02×2 ∈ F .

Claim 2: We have I2 ∈ F .

Claim 3: For any U, V ∈ F , we have U + V ∈ F and UV ∈ F and UV = V U .

Claim 4: For any U ∈ F , we have −U ∈ F .

[Proof of Claim 1: We have 0A︸︷︷︸
=02×2

+ 0I2︸︷︷︸
=02×2

= 02×2, so that 02×2 = 0A+ 0I2 ∈ F (by (16),

applied to a = 0 and b = 0). This proves Claim 1.]
[Proof of Claim 2: We have 0A︸︷︷︸

=02×2

+ 1I2︸︷︷︸
=I2

= I2, so that I2 = 0A + 1I2 ∈ F (by (16),

applied to a = 0 and b = 1). This proves Claim 2.]
[Proof of Claim 3: Let U, V ∈ F . We must prove that U + V ∈ F and UV ∈ F and

UV = V U .
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We have V ∈ F = {aA+ bI2 | a, b ∈ Z} = {cA+ dI2 | c, d ∈ Z} (here, we have renamed
the indices a and b as c and d). In other words, there exist some c, d ∈ Z such that
V = cA+ dI2. Consider these c, d.

We have U ∈ F = {aA+ bI2 | a, b ∈ Z}. In other words, there exist some a, b ∈ Z such
that U = aA+ bI2. Consider these a, b.

From a, b, c, d ∈ Z, we obtain a + c ∈ Z and b + d ∈ Z and ad + bc + ac ∈ Z and
ac+ bd ∈ Z.

We have a, b, c, d ∈ Z. Adding the equalities U = aA+ bI2 and V = cA+ dI2 together,
we obtain

U + V = (aA+ bI2) + (cA+ dI2) = (a+ c)A+ (b+ d) I2 ∈ F

(by (16), applied to a+ c and b+ d instead of a and b).
We have AA = A2 = A+ I2 (by part (a) of the exercise).
Multiplying the equalities U = aA+ bI2 and V = cA+ dI2 together, we obtain

UV = (aA+ bI2) (cA+ dI2) = ac AA︸︷︷︸
=A+I2

+ad AI2︸︷︷︸
=A

+bc I2A︸︷︷︸
=A

+bd I2I2︸︷︷︸
=I2

= ac (A+ I2) + adA+ bcA+ bdI2 = (ad+ bc+ ac)A+ (ac+ bd) I2 ∈ F

(by (16), applied to ad+ bc+ ac and ac+ bd instead of a and b).
Multiplying the equalities V = cA+ dI2 and U = aA+ bI2 together, we obtain

V U = (cA+ dI2) (aA+ bI2) = ca︸︷︷︸
=ac

AA︸︷︷︸
=A+I2

+ cb︸︷︷︸
=bc

AI2︸︷︷︸
=A

+ da︸︷︷︸
=ad

I2A︸︷︷︸
=A

+ db︸︷︷︸
=bd

I2I2︸︷︷︸
=I2

= ac (A+ I2) + bcA+ adA+ bdI2 = (ad+ bc+ ac)A+ (ac+ bd) I2.

Comparing this equality with UV = (ad+ bc+ ac)A+ (ac+ bd) I2, we obtain UV = V U .
Thus, we have proven that U + V ∈ F and UV ∈ F and UV = V U . This proves Claim

3.]
[Proof of Claim 4: Let U ∈ F . We have U ∈ F = {aA+ bI2 | a, b ∈ Z}. In other words,

there exist some a, b ∈ Z such that U = aA+ bI2. Consider these a, b. Hence,

− U︸︷︷︸
=aA+bI2

= − (aA+ bI2) = (−a)A+ (−b) I2 ∈ F

(by (16), applied to −a and −b instead of a and b). This proves Claim 4.]
Let us now resume solving part (b) of the exercise. Claim 3 shows that for every

U, V ∈ F , we have U + V ∈ F . Thus, addition of matrices defines a binary operation +
on F . Furthermore, Claim 3 shows that for every U, V ∈ F , we have UV ∈ F . Thus,
multiplication of matrices defines a binary operation · on F . Furthermore, 02×2 ∈ F (by
Claim 1) and I2 ∈ F (by Claim 2). Hence, we can endow the set F with the binary operation
+ (as addition), the binary operation · (as multiplication), the element 02×2 (as zero) and
the element I2 (as unity). Now, we must prove that the result is a commutative ring.

Indeed, let us first prove that F is a ring. To that end, we shall check all the ring axioms:

• The “Existence of additive inverses” axiom is satisfied, because for every U ∈ F , there
exists an U ′ ∈ F such that U + U ′ = U ′ + U = 02×2. (Namely, we can set U ′ = −U ,
which is an element of F because of Claim 4.)

• All the remaining ring axioms are satisfied, since they are particular cases of the rules
for addition and multiplication of matrices. (For example, associativity of multiplica-
tion holds in F because it holds for arbitrary matrices.)

Darij Grinberg, 00000000 14 dgrinber@umn.edu



Solutions to midterm #2 page 15 of 23

Thus, F is a ring. Furthermore, every U, V ∈ F satisfy UV = V U (by Claim 3). Hence,
the ring F is commutative. This solves part (b) of the exercise.

(c) We shall solve part (c) of the exercise by induction on n:
Induction base: We have A1 = f1A+ f1−1I2 (since f1︸︷︷︸

=1

A+ f1−1︸︷︷︸
=f0=0

I2 = 1A+ 0I2 = 1A =

A = A1). In other words, part (c) of the exercise holds for n = 1. This completes the
induction base.

Induction step: Let k be a positive integer. Assume that part (c) of the exercise holds
for n = k. We must now prove that part (c) of the exercise holds for n = k + 1.

We have assumed that part (c) of the exercise holds for n = k. In other words, Ak =
fkA+fk−1I2. But the recursive definition of the Fibonacci sequence yields fk+1 = fk+fk−1.
Now,

Ak+1 = A Ak︸︷︷︸
=fkA+fk−1I2

= A (fkA+ fk−1I2) = fk AA︸︷︷︸
=A2=A+I2
(by part (a)

of the exercise)

+fk−1 AI2︸︷︷︸
=A

= fk (A+ I2) + fk−1A

= (fk + fk−1)︸ ︷︷ ︸
=fk+1

A+ fk︸︷︷︸
=f(k+1)−1

I2 = fk+1A+ f(k+1)−1I2.

In other words, part (c) of the exercise holds for n = k + 1. This completes the induction
step. Hence, part (c) of the exercise is proven by induction.

(d) Let n be a positive integer. Let m ∈ N. Part (c) of the exercise (applied to n+m+1
instead of n) yields

An+m+1 = fn+m+1A+ f(n+m+1)−1︸ ︷︷ ︸
=fn+m

I2 = fn+m+1A+ fn+mI2. (17)

But part (c) of the exercise (applied to m+ 1 instead of n) yields

Am+1 = fm+1A+ f(m+1)−1︸ ︷︷ ︸
=fm

I2 = fm+1A+ fmI2.

Furthermore, part (c) of the exercise yields

An = fnA+ fn−1I2.

Multiplying the last two equalities, we obtain

Am+1An = (fm+1A+ fmI2) (fnA+ fn−1I2)

= fm+1fn︸ ︷︷ ︸
=fnfm+1

AA︸︷︷︸
=A2=A+I2
(by part (a)

of the exercise)

+fm+1fn−1 AI2︸︷︷︸
=A

+fmfn I2A︸︷︷︸
=A

+ fmfn−1︸ ︷︷ ︸
=fn−1fm

I2I2︸︷︷︸
=I2

= fnfm+1 (A+ I2) + fm+1fn−1A+ fmfnA+ fn−1fmI2

= (fnfm+1 + fm+1fn−1 + fmfn)A+ (fnfm+1 + fn−1fm) I2.

Comparing this with

Am+1An = A(m+1)+n
(
by the rules for exponents in the ring Z2×2)

= An+m+1 (since (m+ 1) + n = n+m+ 1)

= fn+m+1A+ fn+mI2 (by (17)) ,
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we obtain

fn+m+1A+ fn+mI2 = (fnfm+1 + fm+1fn−1 + fmfn)A+ (fnfm+1 + fn−1fm) I2. (18)

We now would certainly want to “compare the coefficients of I2” in this equality, thus
concluding that fn+m = fnfm+1 + fn−1fm. But why can we do this?

The simplest way to justify this is by comparing the (1, 1)-th entries of both matrices.
Indeed, for any u, v ∈ Z, we have

u A︸︷︷︸
=

0 1
1 1


+v I2︸︷︷︸

=

1 0
0 1


= u

(
0 1
1 1

)
+ v

(
1 0
0 1

)
=

(
v u
u u+ v

)

and thus
(the (1, 1) -th entry of the matrix uA+ vI2) = v. (19)

Applying this equality to u = fn+m+1 and v = fn+m, we obtain

(the (1, 1) -th entry of the matrix fn+m+1A+ fn+mI2) = fn+m. (20)

But applying (19) to u = fnfm+1 + fm+1fn−1 + fmfn and v = fnfm+1 + fn−1fm, we obtain

(the (1, 1) -th entry of the matrix (fnfm+1 + fm+1fn−1 + fmfn)A+ (fnfm+1 + fn−1fm) I2)

= fnfm+1 + fn−1fm. (21)

But the left hand sides of the equalities (20) and (21) are equal (because of (18)). Thus,
their right hand sides must also be equal. In other words, we have

fn+m = fnfm+1 + fn−1fm.

This solves part (d) of the exercise.
[Remark: There are many other ways to solve this part of the exercise. For example, if

we rename n as n + 1, then it takes the more symmetric form fn+m+1 = fn+1fm+1 + fnfm;
but this is a well-known identity (see, e.g., Exercise 3 (e) in UMN Spring 2018 Math 4707
midterm #1) and a particular case of [Grinbe19, Theorem 2.26 (a)]. It can be easily proven
by induction on n (or on m). Binet’s formula for the Fibonacci numbers also leads to a
straightforward solution to part (d) of the exercise.]

(e) First, we shall show that B2 = B + I2. Indeed, B = I2 − A and thus

B2 = (I2 − A)2 = (I2 − A) (I2 − A) = I2 (I2 − A)︸ ︷︷ ︸
=I2−A

−A (I2 − A)︸ ︷︷ ︸
=AI2−AA

= I2 − A− (AI2 − AA) = I2 − A− AI2︸︷︷︸
=A

+ AA︸︷︷︸
=A2=A+I2
(by part (a)

of the exercise)

= I2 − A− A+ (A+ I2) = 2I2 − A = (I2 − A)︸ ︷︷ ︸
=B

+I2 = B + I2.

It remains to prove that Bn = fnB + fn−1I2 for all positive integers n.
Here is the laziest (but perfectly legitimate) way of doing this: In our solution to part

(c) of this exercise, we have proven that An = fnA+ fn−1I2 for all positive integers n. Our
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proof of this fact did not use anything specific about the matrix A, other than the fact that
A satisfies A2 = A + I2. Therefore, we can replace each appearance of “A” by “B” in this
proof, and thus obtain a proof of the fact that Bn = fnB+ fn−1I2 for all positive integers n
(because B satisfies B2 = B + I2). This completes the solution of part (e) of the exercise.

(f) Let n ∈ N. We must prove that An −Bn = fn (A−B).
If n = 0, then this is easy7. Hence, for the rest of this proof, we WLOG assume that

n 6= 0. Thus, n is a positive integer (since n ∈ N). Hence, part (c) of this exercise yields
An = fnA + fn−1I2. But part (e) of this exercise yields Bn = fnB + fn−1I2. Subtracting
the last two equalities, we obtain

An −Bn = (fnA+ fn−1I2)− (fnB + fn−1I2) = fn (A−B) .

This solves part (f) of the exercise.

(g) Given two elements α and β of F , we say that α | β in F if and only if there exists
some γ ∈ F such that β = αγ. Thus, we have defined divisibility in F . Basic properties of
divisibility of integers (such as Proposition 2.2.4 in the class notes) still apply to divisibility
in F (with the same proofs), since F is a commutative ring.

We recall the following fact (Lemma 2.10.11 (a) in the class notes):

Claim 5: Let d ∈ N. Let x and y be integers. Then, x− y | xd − yd.

This fact has an analogue for elements of F instead of integers:

Claim 6: Let d ∈ N. Let x and y be elements of F . Then, x− y | xd − yd in F .

[Proof of Claim 6: Both proofs we gave for Claim 5 in the class notes can be modified
in an obvious way to yield proofs of Claim 6, because F is a commutative ring.]

Now, let d and n be nonnegative integers. We must prove that fd | fdn.
Part (f) of this exercise (applied to d instead of n) yields Ad −Bd = fd (A−B).
Part (f) of this exercise (applied to dn instead of n) yields Adn −Bdn = fdn (A−B).
But A and B are elements of F . Thus, their powers Ad, Bd, Adn and Bdn are elements

of F as well (since F is a ring). Hence, Claim 2 (applied to n, Ad and Bd instead of d, x
and y) yields Ad −Bd |

(
Ad
)n − (Bd

)n in F . In view of

Ad −Bd = fd (A−B) and
(
Ad
)n − (Bd

)n
= Adn −Bdn = fdn (A−B) ,

this rewrites as follows:
fd (A−B) | fdn (A−B) in F .

Now, it is tempting to “cancel” A − B from this divisibility, and conclude that fd | fdn
in Z. To justify this rigorously, we proceed as follows:

We have fd (A−B) | fdn (A−B) in F . In other words, there exists a matrix γ ∈ F
such that

fdn (A−B) = fd (A−B) γ (22)

(by the definition of divisibility in F). Consider this γ.
7Proof. Assume that n = 0. Thus, An − Bn = A0︸︷︷︸

=I2

− B0︸︷︷︸
=I2

= I2 − I2 = 02×2. On the other hand,

from n = 0, we obtain fn = f0 = 0 and thus fn (A−B) = 0 (A−B) = 02×2. Comparing this with
An −Bn = 02×2, we obtain An −Bn = fn (A−B). Hence, we have proven that An −Bn = fn (A−B)
under the assumption that n = 0.
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We have B = I2 − A and thus

A−B = A− (I2 − A) = 2 A︸︷︷︸
=

0 1
1 1


− I2︸︷︷︸

=

1 0
0 1


= 2

(
0 1
1 1

)
−
(
1 0
0 1

)
=

(
−1 2
2 1

)
.

Hence,
(the (2, 2) -th entry of the matrix A−B) = 1. (23)

Since matrices are scaled entrywise, we now have

(the (2, 2) -th entry of the matrix fdn (A−B))

= fdn · (the (2, 2) -th entry of the matrix A−B)︸ ︷︷ ︸
=1

= fdn. (24)

On the other hand, the matrices A − B and γ belong to F ; thus, their product (A−B) γ
belongs to F as well, and therefore belongs to Z2×2 (since F ⊆ Z2×2). In other words,
(A−B) γ is a 2 × 2-matrix with integer entries. Hence, each entry of (A−B) γ is an
integer, i.e., belongs to Z. Thus, in particular,

(the (2, 2) -th entry of the matrix (A−B) γ) ∈ Z.

Now, (24) yields

fdn =

the (2, 2) -th entry of the matrix fdn (A−B)︸ ︷︷ ︸
=fd(A−B)γ


= (the (2, 2) -th entry of the matrix fd (A−B) γ)

= fd · (the (2, 2) -th entry of the matrix (A−B) γ)

(since matrices are scaled entrywise). This yields that fd | fdn (in the classical sense of divisi-
bility of integers), because we know that (the (2, 2) -th entry of the matrix (A−B) γ) ∈ Z.
This solves part (g) of the exercise.

[Remark: Once again, there are other ways to solve this part of the exercise. For
example, it can be restated as “Prove that fu | fv whenever u and v are nonnegative integers
satisfying u | v”; but in this form, it is clearly a particular case of [Grinbe19, Theorem 2.26
(c)].]

6 Exercise 6: ISBNs vs. fat fingers

6.1 Problem

An ISBN shall mean a 10-tuple (a1, a2, . . . , a10) ∈ {0, 1, . . . , 10}10 such that

1a1 + 2a2 + · · ·+ 10a10 ≡ 0mod 11.

(For example, the 10-tuple (1, 1, . . . , 1) is an ISBN.)
Prove the following:
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(a) If a = (a1, a2, . . . , a10) and b = (b1, b2, . . . , b10) are two ISBNs that are equal in all but
one entry (i.e., there exists some k ∈ {1, 2, . . . , 10} such that ai = bi for all i 6= k),
then a = b.

(b) If an ISBN a = (a1, a2, . . . , a10) is obtained from an ISBN b = (b1, b2, . . . , b10) by
swapping two entries (i.e., there exist k, ` ∈ {1, 2, . . . , 10} such that ak = b` and
a` = bk and ai = bi for all i /∈ {k, `}), then a = b.

6.2 Remark

What we called ISBN here is essentially the definition of an ISBN-10 – an international
standard for book identifiers used from the 1970s until 2007. For example, the ISBN-10
of the Graham/Knuth/Patashnik book “Concrete Mathematics” is “0-201-55802-5”, which
corresponds to (0, 2, 0, 1, 5, 5, 8, 0, 2, 5); you can check that this is indeed an ISBN according
to our definition.

(An “X” in a real-life ISBN stands for an entry that is 10.)
As this exercise shows, ISBNs have an error-detection property: If you make a typo in

a single digit or accidentally swap two digits, the result will not be an ISBN, so you will
know that something has gone wrong. This helps you avoid ordering the wrong book from
a bookstore or library. Credit card numbers have a similar error-detection feature.

This is one of the simplest examples of an error correction code. We may or may not
see more of them in class. For now, you can think about how to define “ISBNs”

• in {0, 1, . . . , 4}4;

• in {0, 1, . . . , 6}6;

• in {0, 1, . . . , 8}8 (this is harder!).

6.3 Solution sketch

Before we solve the exercise, let us prove a simple claim which our solution will rest upon:

Claim 1: Let u and v be two elements of {−10,−9, . . . , 10} such that uv ≡
0mod 11 and u 6= 0. Then, v = 0.

[Proof of Claim 1: Assume the contrary. Thus, v 6= 0.
We have u ∈ {−10,−9, . . . , 10}, thus −10 ≤ u ≤ 10 and therefore |u| ≤ 10. In other

words, 10 ≥ |u|.
If we had 11 | u, then Proposition 2.2.3 (b) in the class notes (applied to a = 11 and

b = u) would yield |11| ≤ |u| (since u 6= 0); but this would contradict |11| = 11 > 10 ≥ |u|.
Hence, we cannot have 11 | u. The same argument (applied to v instead of u) shows that
we cannot have 11 | v (since v 6= 0). Thus, neither 11 | u nor 11 | v holds.

But 11 is a prime, and we have 11 | uv (since uv ≡ 0mod 11). Thus, Theorem 2.13.6
in the class notes (applied to p = 11, a = u and b = v) shows that 11 | u or 11 | v. This
contradicts the fact that neither 11 | u nor 11 | v holds. This contradiction shows that our
assumption was false. Hence, Claim 1 is proven.]

(a) Let a = (a1, a2, . . . , a10) and b = (b1, b2, . . . , b10) be two ISBNs that are equal in all
but one entry. We must prove that a = b.
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We have assumed that a and b are equal in all but one entry. In other words, there
exists some k ∈ {1, 2, . . . , 10} such that

ai = bi for all i 6= k. (25)

Consider this k.
We have assumed that a is an ISBN. In other words, (a1, a2, . . . , a10) ∈ {0, 1, . . . , 10}10

and 1a1 + 2a2 + · · ·+ 10a10 ≡ 0mod 11.
Thus, ∑

i∈{1,2,...,10}

iai = 1a1 + 2a2 + · · ·+ 10a10 ≡ 0mod 11. (26)

Similarly, ∑
i∈{1,2,...,10}

ibi ≡ 0mod 11. (27)

But ∑
i∈{1,2,...,10}

iai = kak +
∑

i∈{1,2,...,10};
i 6=k

i ai︸︷︷︸
=bi

(by (25))

(here, we have split off the addend for i = k from the sum)

= kak +
∑

i∈{1,2,...,10};
i 6=k

ibi,

so that (26) rewrites as
kak +

∑
i∈{1,2,...,10};

i 6=k

ibi ≡ 0mod 11. (28)

Furthermore,∑
i∈{1,2,...,10}

ibi = kbk +
∑

i∈{1,2,...,10};
i 6=k

ibi

(here, we have split off the addend for i = k from the sum) ,

so that (27) rewrites as
kbk +

∑
i∈{1,2,...,10};

i 6=k

ibi ≡ 0mod 11.

Subtracting this congruence from the congruence (28), we obtainkak + ∑
i∈{1,2,...,10};

i 6=k

ibi

−
kbk + ∑

i∈{1,2,...,10};
i 6=k

ibi

 ≡ 0− 0 = 0mod 11.

In view ofkak + ∑
i∈{1,2,...,10};

i 6=k

ibi

−
kbk + ∑

i∈{1,2,...,10};
i 6=k

ibi

 = kak − kbk = k (ak − bk) ,
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this rewrites as k (ak − bk) ≡ 0mod 11.
We have ak ∈ {0, 1, . . . , 10} (since (a1, a2, . . . , a10) ∈ {0, 1, . . . , 10}10) and bk ∈ {0, 1, . . . , 10}

(similarly). Hence, ak − bk ∈ {−10,−9, . . . , 10}. Furthermore, k ∈ {1, 2, . . . , 10} ⊆
{−10,−9, . . . , 10} and k 6= 0. Thus, Claim 1 (applied to u = k and v = ak − bk) yields
ak − bk = 0. In other words, ak = bk.

Now, (25) shows that any entry of the 10-tuple a is equal to the corresponding entry of
the 10-tuple b, except perhaps the k-th entry. But the equality ak = bk shows that the k-th
entries of these two 10-tuples a and b are also equal to each other. Thus, each entry of a is
equal to the corresponding entry of b. In other words, a = b. This solves part (a) of the
exercise.

(b) Let a = (a1, a2, . . . , a10) and b = (b1, b2, . . . , b10) be two ISBNs such that a is
obtained from b by swapping two entries. We must prove that a = b.

We have assumed that a is obtained from b by swapping two entries. In other words,
there exist k, ` ∈ {1, 2, . . . , 10} such that ak = b` and a` = bk and

ai = bi for all i /∈ {k, `} . (29)

Consider these k, `.
We must prove that a = b. If ak = a`, then this is true8. Hence, for the rest of this

solution, we WLOG assume that ak 6= a`. Thus, k 6= `, so that k − ` 6= 0.
Also, we have ak 6= a`. In view of ak = b` and a` = bk, this rewrites as b` 6= bk.
We have assumed that a is an ISBN. In other words, (a1, a2, . . . , a10) ∈ {0, 1, . . . , 10}10

and 1a1 + 2a2 + · · ·+ 10a10 ≡ 0mod 11.
Thus, ∑

i∈{1,2,...,10}

iai = 1a1 + 2a2 + · · ·+ 10a10 ≡ 0mod 11. (30)

Similarly, ∑
i∈{1,2,...,10}

ibi ≡ 0mod 11. (31)

But∑
i∈{1,2,...,10}

iai = k ak︸︷︷︸
=b`

+` a`︸︷︷︸
=bk

+
∑

i∈{1,2,...,10};
i/∈{k,`}

i ai︸︷︷︸
=bi

(by (29))(
here, we have split off the addends for i = k and for i = ` from the
sum (and these were indeed two different addends, since k 6= `)

)
= kb` + `bk +

∑
i∈{1,2,...,10};

i/∈{k,`}

ibi,

so that (30) rewrites as

kb` + `bk +
∑

i∈{1,2,...,10};
i/∈{k,`}

ibi ≡ 0mod 11. (32)

8Proof. Assume that ak = a`. Thus, ak = a` = bk and a` = ak = b`. Now, from (29), we know that the
equality ai = bi holds for all i /∈ {k, `}. But this equality also holds for i = k (since ak = bk) and for
i = ` (since a` = b`). Thus, this equality holds for all i ∈ {1, 2, . . . , 10}. In other words, a = b, qed.
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Furthermore,∑
i∈{1,2,...,10}

iai = kbk + `b` +
∑

i∈{1,2,...,10};
i/∈{k,`}

ibi

(
here, we have split off the addends for i = k and for i = ` from the
sum (and these were indeed two different addends, since k 6= `)

)
,

so that (31) rewrites as

kbk + `b` +
∑

i∈{1,2,...,10};
i/∈{k,`}

ibi ≡ 0mod 11.

Subtracting this congruence from the congruence (32), we obtainkb` + `bk +
∑

i∈{1,2,...,10};
i/∈{k,`}

ibi

−
kbk + `b` +

∑
i∈{1,2,...,10};

i/∈{k,`}

ibi

 ≡ 0− 0 = 0mod 11.

In view ofkb` + `bk +
∑

i∈{1,2,...,10};
i/∈{k,`}

ibi

−
kbk + `b` +

∑
i∈{1,2,...,10};

i/∈{k,`}

ibi

 = kb` + `bk − kbk − `b`

= (k − `) (b` − bk) ,

this rewrites as (k − `) (b` − bk) ≡ 0mod 11.
But b is an ISBN; thus, (b1, b2, . . . , b10) ∈ {0, 1, . . . , 10}10. Hence, bk ∈ {0, 1, . . . , 10}

and b` ∈ {0, 1, . . . , 10}. Therefore, b` − bk ∈ {−10,−9, . . . , 10}. Furthermore, k − ` ∈
{−10,−9, . . . , 10} (since both k and ` belong to the set {1, 2, . . . , 10}) and k − ` 6= 0 (since
k 6= `). Thus, Claim 1 (applied to u = k − ` and v = b` − bk) yields b` − bk = 0. In other
words, b` = bk. This contradicts b` 6= bk. Thus, a = b (because ex falso quodlibet)9. This
solves part (b) of the exercise.
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