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1 Exercise 1: Gcds and lcms together

1.1 Problem

Let a, b, c be three integers.

(a) Prove that gcd (a, lcm (b, c)) = lcm (gcd (a, b) , gcd (a, c)).

(b) Prove that lcm (a, gcd (b, c)) = gcd (lcm (a, b) , lcm (a, c)).

1.2 Solution

See the class notes, where this is Exercise 2.13.11.
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2 Exercise 2: p-adic valuations of rationals

2.1 Problem

Fix a prime p. For each nonzero rational number r, define the extended p-adic valuation
wp (r) as follows: We write r in the form r = a/b for two nonzero integers a and b, and set
wp (r) = vp (a) − vp (b). (It also makes sense to set wp (0) = ∞, but we shall not concern
ourselves with this border case in this exercise.)

(a) Prove that this is well-defined – i.e., that wp (r) does not depend on the precise choice
of a and b satisfying r = a/b.

(b) Prove that wp (n) = vp (n) for each nonzero integer n.

(c) Prove that wp (ab) = wp (a) + wp (b) for any two nonzero rational numbers a and b.

(d) Prove that wp (a+ b) ≥ min {wp (a) , wp (b)} for any two nonzero rational numbers a
and b if a+ b 6= 0.

2.2 Remark

The claim of part (d) has a curious (and, if you are a number theorist, important) conse-
quence: Each prime p can be used to define a “distance function” on Q that is very different
from the usual distance function ((a, b) 7→ |a− b|): Namely, for any two rational numbers a
and b, we define the p-adic distance dp (a, b) between a and b by

dp (a, b) =

{
pwp(a−b), if a− b 6= 0;

0, if a− b = 0.

For instance, d3 (5, 1/2) = 3w3(5−1/2) = 32, since w3 (5− 1/2) = w3 (9/2) = v3 (9)− v3 (2) =
2− 0 = 2.

The p-adic distance deserves the name “distance”, as it does satisfy the triangle inequal-
ity:

dp (a, c) ≤ dp (a, b) + dp (b, c) for any a, b, c ∈ Q.

Actually, the following stronger inequality (called ultrametric triangle inequality) holds:

dp (a, c) ≤ max {dp (a, b) , dp (b, c)} for any a, b, c ∈ Q.

Indeed, this follows easily from part (d) of the exercise (applied to a− b and b− c instead
of a and b).

You might remember that the real numbers were defined as the completion of the rational
numbers with respect to the usual distance (i.e., a real number is actually an equivalence
class of Cauchy sequences defined with respect to the usual distance). Similarly one can
consider the completion of the rational numbers with respect to the p-adic distance (i.e.,
again consider Cauchy sequences, but this time the distances are replaced by the p-adic
distances). This leads to the p-adic numbers. See [Gouvea97] for an elementary introduction
to this subject.

2.3 Solution

See the class notes, where this is Exercise 3.4.1.
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3 Exercise 3: How often does a prime divide a
factorial?

3.1 Problem

In this exercise, we shall use the Iverson bracket notation: If A is any statement, then [A]

stands for the integer

{
1, if A is true;
0, if A is false

(which is also known as the truth value of A). For

instance, [1 + 1 = 2] = 1 and [1 + 1 = 1] = 0.

(a) Prove that n//k =
n∑

i=1

[k | i] for any n ∈ N and any positive integer k.

(b) Prove that vp (n) =
∑
i≥1

[pi | n] for any prime p and any nonzero integer n. Here, the

sum
∑
i≥1

[pi | n] is a sum over all positive integers; but it is well-defined, since it has

only finitely many nonzero addends.

(c) Prove that vp (n!) =
∑
i≥1

n//pi for any prime p and any n ∈ N.

3.2 Solution

See the class notes, where this is the first three parts of Exercise 2.17.2.

4 Exercise 4: Wilson with a twist

4.1 Problem

Let p be a prime. Prove that

(p− 1)! ≡ p− 1 mod 1 + 2 + · · ·+ (p− 1) .

4.2 Solution

See the class notes, where this is Exercise 2.15.4.

5 Exercise 5: gcds in exponents

5.1 Problem

Let a be an integer. Let n,m ∈ N. Prove that

gcd (an − 1, am − 1) =
∣∣agcd(n,m) − 1

∣∣ .
[Hint: Strong induction. First show that an − 1 ≡ am − 1 mod an−m − 1 if n ≥ m.]
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5.2 Solution

See the class notes, where this is Exercise 2.9.3 (with slightly changed notations).

6 Exercise 6: Remainder arithmetic

6.1 Problem

Let u and v be two integers. Let n be a positive integer. Prove that

u%n+ v%n− (u+ v)%n ∈ {0, n} .

6.2 Solution

See the class notes, where this is Exercise 2.6.3 (a).
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