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1 EXERCISE 1: THE OPPOSITE RING

Let K be a ring. We define a new binary operation - on K by setting
a-b=ba for all a,b € K.
(Thus, ~ is the multiplication of K, but with the arguments switched.)

(a) Prove that the set K, equipped with the addition +, the multiplication ~, the zero Ok
and the unity 1k, is a ring.

This new ring is called the opposite ring of K, and is denoted by K°P.

Note that the sets K and K° are identical (so a map from K to K is the same as
a map from K to K°P); but the rings K and K° are generally not the same (so a ring
homomorphism from K to K is not the same as a ring homomorphism from K to KP).

(b) Prove that the identity map id : K — K is a ring isomorphism from K to K° if and
only if K is commutative.

(c) Now, assume that K is the matrix ring L"*"™ for some commutative ring I and some
n € N. Prove that the map

K — K°P, A AT

(where AT as usual, denotes the transpose of a matrix A) is a ring isomorphism.
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[Hint: In (a), you only have to check the ring axioms that have to do with multiplica-
tion. Similarly, in (b), you are free to check the one axiom relating to multiplication only.
In (c), you can use |Grinbel9, Exercise 6.5 without proof.|

1.1 REMARK

This exercise gives some examples of rings K that are isomorphic to their opposite rings K°P.
See https://mathoverflow.net/questions/64370/| for examples of rings that are not.

1.2 SOLUTION

We shall follow the PEMDAS convention for the order of operations, treating the new
multiplication - operation as a multiplicative operation. Thus, the expression “a™~ b+ c - d”
will mean “(a~b) + (¢~ d)” rather than “a™~ (b+¢)~ d".

We are in the slightly confusing situation of having two different “multiplications” on one
and the same set K: the original multiplication - of the ring K, and the new multiplication ~
of the ring K (although we still have not shown that K° is actually a ring). Let us agree
that if a,b € K, then the notation “ab” shall always mean “a - ” (that is, the image of the
pair (a,b) under the original multiplication -, not under the new multiplication ~).

The original ring K satisfies all eight ring axioms (since it is a ring).

(a) Clearly, the addition + and the multiplication = are binary operations on K, and
the elements Og and 1k indeed belong to K. It remains to prove that these two operations
and these two elements make K into a ring. In order to do so, we need to verify the ring
axioms. These axioms are the following:

e Commutativity of addition: We have a +b = b+ a for all a,b € K.
e Associativity of addition: We have a + (b+¢) = (a+b) + ¢ for all a,b,c € K.
e Neutrality of zero: We have a + 0x = Og + a = a for all a € K.

e Existence of additive inverses: For any a € K, there exists an element a’ € K such
that a +d = d + a = Ox.

e Associativity of multiplication: We have a~ (b~ ¢) = (a~b)~ ¢ for all a,b,c € K.
(Of course, we cannot use “ab” as an abbreviation for “a ™~ b”, since “ab” already stands
for the different product a - b.)

e Neutrality of one: We have a - 1x = 1x -~ a = a for all a € K.
e Annihilation: We have ¢~ 0x = Ox - a = Ok for all a € K.
e Distributivity: We have
a~(b+c)=a~b+a~c and (a+b)~c=a-"c+b-c
for all a, b, c € K.

The first four of these eight axioms do not involve the new multiplication ~. Thus, they
say exactly the same thing as the corresponding axioms for the original ring K (with the
original operations + and -). Hence, they are satisfied (since the corresponding axioms for
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the original ring K are satisfied). It thus remains to prove that the remaining four axioms
are satisfied. Let us check this:

[Proof of the “Associativity of multiplication” axiom: Let a,b,c € K. We must prove
that a~ (b~ ¢c) = (a~b) " c.

The definition of the operation ~ yields b~ ¢ = ¢b and a™~ b = ba and

a~ (b c)=(b"c)a=(cb)a (1)
=cb
and
(a“b)~c=c(a“b)=c(ba). (2)
~——

=ba
But the original ring K satisfies the “Associativity of multiplication” axiom (since it is a ring);
thus, (¢b) a = ¢ (ba). In other words, the right hand sides of the two equalities and
are equal. Thus, their left hand sides are also equal. In other words, a~ (b~ ¢) = (a~b) ~ c.
Thus, the “Associativity of multiplication” axiom is proven.|

[Proof of the “Neutrality of one” axiom: Let a € K. We must prove that a~ 1x =
1K’7a = a.

But the original ring K satisfies the “Neutrality of one” axiom (since it is a ring); thus,
alg = 1ga = a.

The definition of the operation - yields a~1x = lga = a and 1lx - a = alg = a.
Combining these two equalities, we find a~ 1x = 1x - @ = a. Thus, the “Neutrality of one”
axiom is proven.|

[ Proof of the “Annihilation” aziom: Let a € K. We must prove that a~ 0g = Ox - a = Ok.

But the original ring K satisfies the “Annihilation” axiom (since it is a ring); thus,
CLOK = OKCL = OK.

The definition of the operation - yields a~ 0x = Oga = Og and Og - a = alg = Ok.
Combining these two equalities, we find a~ 0g = Ox - a = Og. Thus, the “Annihilation”
axiom is proven.|

[Proof of the “Distributivity” aziom: Let a,b,c¢ € K. We must prove that

a“(b+c)=a"b+a-c and (a+b)"c=a~"c+b"ec
But the original ring K satisfies the “Distributivity” axiom (since it is a ring); thus,
cla+b) =ca+cb and (b+¢)a = ba + ca.

The definition of the operation ~ yields ¢~ (b+c¢) = (b+c¢)a and a~b=ba and a~ c =
ca. Thus,
a~(b+c)=(b+c)a=ba+ ca.

Comparing this with ¢~ b+ga~ ¢ = ba + ca, we obtain a~ (b+c¢) =a-b+a"c.

=ba =ca

The definition of the operation ~ yields (a +b) c=c(a+b) and a~c=ca and b~ c =
cb. Thus,
(a+b)~c=c(a+b)=ca+ ch.
Comparing this with ¢~ ¢+ b~ ¢ = ca + ¢b, we obtain (a +b)"c=a~c+ b~ c.

=ca =cb
Thus, we have proven the equalities

a~(b+c)=a"b+a~c and (a+b)“c=a"c+b"c
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Hence, the “Associativity of multiplication” axiom is proven.|

We have now shown that the set K, equipped with the addition +, the multiplication
-, the zero Ok and the unity 1k, satisfies all the eight ring axioms. Hence, it is a ring. This
solves part (a) of the problem.

(b) =: Assume that id : K — K is a ring isomorphism from K to K°. We must prove
that K is commutative.

We have assumed that id is a ring isomorphism from K to K°. Thus, in particular,
id is a ring homomorphism from K to K° (since any ring isomorphism must be a ring
homomorphism).

Recall that if U and V are two rings, and if f is a ring homomorphism from U to V,
then

fla-b)=f(a)-f(b) for all a,b € U. (3)

(Indeed, this is one of the four axioms in our definition of a ring homomorphism.) But keep
in mind that the two signs in the equality have different meanings: The “-” sign on
the left hand side stands for the multiplication of the ring U, whereas the “-” sign on the
right hand side stands for the multiplication of the ring V. Thus, (applied to U = K,
V=K and f =id) yields

id (a-b) =id (a) ~id (b) for all a,b € K (4)

W

(since id is a ring homomorphism from K to K° and since the multiplication of the ring K
is denoted by “-” whereas the multiplication of the ring K° is denoted by “-”).
Now, if a,b € K, then
ab=a-b=1id(a-b) =id(a)~id (b) (by @)
——

=a =b

“w»

=a-b=ba (by the definition of the operation ~).

In other words, the ring K satisfies the “Commutativity of multiplication” axiom. In other
words, the ring K is commutative. This proves the “=" direction of part (b).

<=: Assume that K is commutative. We must prove that id : K — K is a ring isomor-
phism from K to K°P.

If a,b € K, then

a~b=ba (by the definition of the operation ~)
=ab (since the ring K is commutative)
=a-b.

Thus, the binary operation - is identical with the binary operation -.

But the only difference between the rings K and K°P is that K° has the multiplication
~ while K has the multiplication -. (All the remaining structure of K and K° is the same.)
But since we have shown that - is identical with -, we see that this difference is not actually
a difference either; the multiplications of K and K°P are also the same. Hence, the ring K°P
is completely identical to the ring K (not just as sets, but as rings with all their structure).

But recall that id : K — K is a ring isomorphism from K to K. Since the ring K is
completely identical to the ring K, we can replace the last “K” in this sentence by “K°P”
without changing its meaning. Thus, we obtain that id : K — K is a ring isomorphism from
K to K. This proves the “<=" direction of part (b).

(c) Let us quote the following fact from [Grinbel9, Exercise 6.5] (except that we are
replacing K by LL):
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Proposition 1.1. Let I be a commutative ring. In this proposition, all matrices are over
L.
(a) If u, v and w are three nonnegative integers, if P is a u X v-matrix, and if Q) is a
v X w-matrix, then
(PQ)" =Q"P".
(b) Every u € N satisfies
(I)" = 1,.

(c) If u and v are two nonnegative integers, if P is a u X v-matrix, and if A € 1L, then
(AP)" = AP

(d) If u and v are two nonnegative integers, and if P and () are two u X v-matrices,
then

(P+Q)" =P"+Q".

(e) If u and v are two nonnegative integers, and if P is a u X v-matrix, then
(P")' =P,

Now, let T be the map
K — K°P, A AT

We must prove that T is a ring isomorphism.

In Classﬂ we have proven that any invertible ring homomorphism is a ring isomorphism.
Hence, it suffices to prove that T is an invertible ring homomorphism.

Let us first prove that T is a ring homomorphism. In order to do so, we need to verify
the following four claims:

Claim 1: We have T (a +b) = T (a) + T (b) for all a,b € K.
Claim 2: We have T (0x) = Ogos.

Claim 3: We have T (ab) = T (a)~ T (b) for all a,b € K.
Claim 4: We have T (1g) = lgor.

(Note the “~” sign on the right hand side of Claim 3; this is because T (a) and T (b) are
being considered as elements of K°P, and the multiplication of the ring K° is ~.)

Let us now prove these claims:

[Proof of Claim 3: Let a,b € K. Then, a € K=L"*" and b € K = L"*". Hence, a and
b are two n X n-matrices over L. The definition of T yields T (ab) = (ab)” and T (a) = o7
and T (b) = b”. The definition of the operation ~ yields T (a)~ T (b) = T (b) T (a) = bTa’.

Ry
But T (ab) = (ab)" = bTa” (by Proposition (a), applied tou=n,v=n,w=mn, P=a
and Q = b). Comparing these two equalities, we obtain T (ab) = T (a)~ T (b). This proves
Claim 3.

[Proof of Claim 1: Let a,b € K. Then, a € K = L™ and b € K = L™". Hence, a
and b are two n x n-matrices over L. The definition of T yields T (a +b) = (a +b)" and
T (a) = a” and T (b) = b”. But T (a)+ T (b) = a”b”. But T(a+b) = (a+b)" =a” + 7

—— ——

=aT =bT

Lspecifically, Proposition 5.10.5 in the class notes; but the numbering may change
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(by Proposition (d), applied to u = n, v =n, P =a and Q = b). Comparing these two
equalities, we obtain T (a + b) = T (a) + T (b). This proves Claim 1.

[Proof of Claim 2: We have Og = 0,,x,, (by the definition of the ring K = L."*"). Applying
the map T to both sides of this equality, we obtain T (0g) = T (Opxn) = (Onxn)" (by the
definition of T'). But the definition of the transpose of a matrix easily yields (Oan)T = Opxen-
Hence, T (0x) = (Onxn)T = 0,xn. But the definition of the ring K yields Ogor = Oxg = 0,,1,.
Comparing the latter two equalities, we obtain T (Og) = Oger. This proves Claim 2.|

[Proof of Claim 4: We have 1x = I,, (by the definition of the ring K = L"*"). Applying
the map T to both sides of this equality, we obtain T (1x) = T (I,) = (I,)" (by the
definition of T). But Proposition (b) (applied to u = n) yields (I,)" = I,. Hence,
T (1x) = (I,)" = I,. But the definition of the ring K yields 1ger = 1x = I,. Comparing
the latter two equalities, we obtain T (1k) = lger. This proves Claim 4.]

We have now proven all four Claims 1, 2, 3 and 4. Hence, T is a ring homomorphism
from K to K (by the definition of a ring homomorphism).

Let us next prove that the map T is invertible. In proving this, we do not need to
concern ourselves with the ring structures (i.e., the additions, multiplications, zeroes and
unities) of K and K, but can simply consider K and K as sets (because the invertibility
of a map has nothing to do with any ring structures).

Recall that K°® = K as sets. Thus, the map T is a map from K to K (since T is a map
from K to K°P). Hence, the map T o T : K — K is well-defined. Moreover, each P € K
satisfies

(ToT)(P)=T T (P) — T (PT) = (P")"  (by the definition of T)
——

=pT
(by the definition of T')

=P (by Proposition [1.1] (e) (applied to u = n and v = n))
—id(P).

In other words, T o T = id. Hence, the maps T : K — K and T : K — K are mutually
inverse. Thus, the map T : K — K is invertible. In other words, the map T : K — K is
invertible (since K = K°P as sets).

So we have proven that the map T : K — K° is an invertible ring homomorphism from
K to K°P. Thus, this map T is a ring isomorphism from K to K° (since any invertible ring
homomorphism is a ring isomorphism). This solves part (c) of the exercise.

2 EXERCISE 2: MORE RING ISOMORPHISMS

2.1 PROBLEM
(a) Let L be a ring. Let w € L be an invertible element. Prove that the map

L—L, a— waw !

is a ring isomorphism.
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(b) Let K be a ring. Let W be the n x n-matrix

0 0 0 1

0 010
(i+j=n+ 1])1§7;§n, 1<j<n = 0 1 0 e ko

1 --- 000

(where we are using the Iverson bracket notation/ again).
Prove that W = W1

(c) Let A= (aij)icicp 1<j<n € K" be any n X n-matrix. Prove that

WAW ™! = (Ant1—int1—4)

I<ign, 1<j<n *

(In other words, W AW ™! is the n x n-matrix obtained from A by reversing the order
of the rows and also reversing the order of the columns.)

2.2 REMARK

The map

L—L, a — waw !

in part (a) of this exercise is called conjugation by w. It is best known in the case of a
matrix ring, where it corresponds to a change of basis for an endomorphism of a vector
space. When K is a field, the only ring isomorphisms K"*" — K"*™ are conjugations by
invertible matrices; this is the Noether—Skolem theorem (in one of its less general variants).

2.3 SOLUTION

(a) Let f be the map

L—L, a— waw L.

We must prove that f is a ring isomorphism.

In class, we have proven that any invertible ring homomorphism is a ring isomorphism.
Hence, it suffices to prove that f is an invertible ring homomorphism.

Let us first prove that f is a ring homomorphism. In order to do so, we need to verify
the following four claims:

Claim 1: We have f (a+b) = f (a) + f (b) for all a,b € L.
Claim 2: We have f (0) = 0.
Claim 3: We have f (ab) = f (a) f (b) for all a,b € L.
Claim 4: We have f (1) = 1.

Let us now prove these claims:
[Proof of Claim 1: Let a,b € L. The definition of f yields f (a) = waw™" and f (b) =
wbw™! and f (a +b) = w (a+ b)w™'. Hence,

_ -1 _ —1 —1\ _ -1 -1 ST
flatb)=w (a+bd)w" =w(aw™ +bw™") =waw” ! +wbw (by distributivity)
—aqw 1+bw™1? :f(a) :f(b)
(by distributivity)
= f(a)+ f(b).
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This proves Claim 1.]
[Proof of Claim 2: The definition of f yields f(0) = wQw™ = w0 = 0. This proves
=0
Claim 2.|
[Proof of Claim 3: Let a,b € L. The definition of f yields f (a) = waw™ and f (b) =
wbw™! and f (ab) = w (ab) w™'. Hence,
fa) f(b) =waw 'wbw ' =wabw™' =w(ab)w ™ = f (ab).
w <~

——

=waw~—1 =wbw—1 =1

In other words, f (ab) = f (a) f (b). This proves Claim 3.]

[Proof of Claim 4: The definition of f yields f (1) = w&j = ww~! = 1. This proves

—w—1

Claim 4.]

We have now proven all four Claims 1, 2, 3 and 4. Hence, f is a ring homomorphism
from L to L (by the definition of a ring homomorphism).

Let us next prove that the map f is invertible.

Indeed, let g be the map

L—L, a— w taw.

Then, each a € L satisfies

(gof)(a)=g(f(a)=w" f(a) w (by the definition of g)
-1
(by thefizggrqﬁtion of f)
—w lwaw 'w=a=1d(a).
=1 =1

In other words, go f =id.
Also, each a € L satisfies

(fog)(a)=f(g9(a))=w g (a) w! (by the definition of f)
~

=w law

(by the definition of g)
=ww laww ! =a=1id(a).
—— N——

In other words, f og =id.

Now, the two maps f and g are mutually inverse (since fog =id and go f = id). Thus,
the map f is invertible.

So we have proven that the map f is an invertible ring homomorphism. Thus, this map
f is a ring isomorphism (since any invertible ring homomorphism is a ring isomorphism).
This solves part (a) of the exercise.

(b) We first show two auxiliary claims about how multiplication by W changes a matrix:

Claim 5: Let A = (a; ;) € K™ be any n x n-matrix. Then,

1<i<n, 1<j<n

WA= (an+1—i,j)1gign, 1<j<n

Claim 6: Let A = (a;;) € K™ be any n x n-matrix. Then,

1<ign, 1<j<n

AW = (aint1-5)1<i<n, 1<j<n

Darij Grinberg, 00000000 8 dgrinber@umn.edu



Solutions to homework set #6

page 9 of

| Proof of Claim 5: Wehave W = ([i + j =n + 1]) i, 1<j<, a0d A = (a; ;)

1<i<n, 1<j<n’
Hence, the definition of the multiplication of matrices yields
WA= (Z[i+k:n+1]ak,j> . (5)
k=1 1<i<n, 1<j<n

Now, let (i,7) € {1,2,...,71}2. Thus, i, € {1,2,...,n}. From i € {1,2,...,n}, we
obtain n+1—i€{1,2,...,n}. Now,

n

Z[z’%—k:njtl]ak,j

k=1
= Y litk=n+1ay
ke{1,2,...,n}
=li+(n+tl—i)=n+1aiy+ > [i+tk=n+1]ay,
] ke{1,2,...,n}; -0
(since i+(n+1—i)=n+1) k#n+1—i (since i+k#n+1
(because k#n+1—1))
here, we have split off the addend for £k = n + 1 — ¢ from the sum
(sincen+1—ie{1,2,...,n})
= lpy1-i5 + Z Oag; = ant1—ij- (6)
ke{l1,2,...,n};
k#n+1—1
=0

Now, forget that we fixed (7, j). We thus have proven () for each (7, j) € {1,2,... n}’.
Thus, we have

k=1

n
(§ [i+k=mn+1] ak,j) = (an+1—i7j)1§i§n, 1<j<n "
1<i<n, 1<j<n

Hence, (6] becomes

WA= <Z [Z +k=n+ 1] ak,j) = (an+1_i7j)1§ign’ 1<j<n
1<i<n, 1<j<n

k=1

This proves Claim 5.]

[Proof of Claim 6: We have A = (ai»j)lgign, I<j<n and W= ([i+j=n+ 1])195”7 L<j<n
Hence, the definition of the multiplication of matrices yields

AW = (Zai,k [k‘+j:n+1]> : (7)
1<i<n, 1<j<n

k=1

Now, let (i,7) € {1,2,...,71}2. Thus, i,7 € {1,2,...,n}. From j € {1,2,...,n}, we
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obtainn+1—j € {1,2,...,n}. Now,

n

D aiglk+j=n+1]

k=1
= > aplk+ji=n+1]
ke{1,2,...,n}
:1 ke{1,2,...,n}; ;ro
(since (n+1—j)+j=n+1) k#n+1—j (since k+j#n+1
(because k#n+1—j3))
here, we have split off the addend for £k =n + 1 — j from the sum
(sincen+1—j€{1,2,...,n})
= Qjnt+1—j + Z ai’ko = Qjnt+1—j- (8)
ke{1,2,....,n};
k#n+1—j

=0

Now, forget that we fixed (i, 7). We thus have proven (8) for each (4, j) € {1,2,...,n}".
Thus, we have

n
(E :ai,k [k tJ)=n+ 1]) = (ai,n+1—j)1gign7 1<j<n*
k=1 1<i<n, 1<j<n

Hence, becomes

AW = (Zai7k[/f+j:n+1]

) - (ai’"“’j)lﬁzén, 1<j<n
k=1 1<i<n, 1<j<n

This proves Claim 6.

Let us now come back to part (b) of this exercise. Recall the definition of the identity
matrix [,, € K™*". Namely, [,, is defined by

1, ifi=j;
0, ifi#j
(Note that §; ; can also be written as [i = j] using the Iverson bracket notation.)

Now, W = ([i +j =n+1]),c;cp. 1<j<n- Hence, Claim 6 (applied to A =W and a;; =
[i + 7 =n+1]) yields B

[n = (5izj)1§i§n, 1<j<n > where 52,] = {

WW=((n+1-d)+j=n+1]) ., 1<j<n - (9)

Now, let (i,7) € {1,2,...,n}>. Thus, i,j € {1,2,...,n}. Now, the statement “(n + 1 — )+
Jj =n+1"is equivalent to “i = j” (since (n+1—14)+j) — (n+ 1) =j —i). Thus,
1, if ¢ =7 is true;

+l-i)+j=n+1]=[i=j]=
[(n i) +j=n+1]=[i=j] {07 if § = j is false

(by the definition of the Iverson bracket notation)

1 ifi— i
D S (10)
0, ifi#j ’
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Forget that we fixed (i,7). We thus have proven for each (i,7) € {1,2,...,n}>
Thus, we have

([(n +1- Z) +Jj=n+ 1])1991, 1<j<n — (5i,j)1§i§n, 1<j<n "

Hence, @ becomes

WW=(([n+1-i)+j=n+ 1])19’91, 1<j<n — (5i,j)1§ign, 1<j<n Iy

Now, the matrix W is an inverse of W (since WW = I,, and WW = [,,). Thus, the
matrix W is invertible, and its inverse is W' = W. This solves part (b) of the exercise.

c) We have A = (a; ; Thus, Claim 5 yields
(c) J

1<i<n, 1<j<n’
WA= (an+1*i,j)1§i§n, 1<j<n

Hence, Claim 6 (applied to WA and a,,41_, ; instead of A and «a; ;) yields

WAW = (CLnJrl,i’nJrl,j)lgiSn, 1<j<n -

But part (b) of this exercise yields W = W~!. Hence, WA W = WAW ™! so that
w1

WAW ' = WAW = (@nt1—int1—j)

1<i<n, 1<j<n "

This solves part (c) of the exercise.

3 EXERCISE 3: ENTANGLED INVERSES

Let K be a ring.
A left inverse of an element x € K is defined to be a y € K such that yz = 1.
A right inverse of an element x € K is defined to be a y € K such that xy = 1.
Let a and b be two elements of K. Prove the following:

(a) If cis a left inverse of 1 — ab, then 1+ bca is a left inverse of 1 — ba.
(b) If ¢ is a right inverse of 1 — ab, then 1+ bca is a right inverse of 1 — ba.

(c) If ¢ is an inverse of 1 — ab, then 1 + bca is an inverse of 1 — ba.

Here and in the following, the word “inverse” (unless qualified with an adjective) means
“multiplicative inverse”.

3.1 SOLUTION

(a) Assume that c is a left inverse of 1 — ab. Thus, ¢ (1 — ab) = 1 (by the definition of a left
inverse).
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Now, the laws of distributivityP] yield
a(l—ba)=a—aba=(1-ab)a,

thus
ca(l—ba)=c(l—ab)a=1la=a.

~
=1

:(1:rab)a

Hence, using the distributivity axiom, we obtain

(14 bca) (1 —ba) = (1 —ba) +bca(l —ba) = (1—ba)+ ba = 1.
-
In other words, 1+ bca is a left inverse of 1 — ba (by the definition of a left inverse). This
solves part (a) of the exercise.

(b) Assume that c is a right inverse of 1 —ab. Thus, (1 — ab) ¢ = 1 (by the definition of
a right inverse).
Now, the laws of distributivity yield

(1—ba)b=>b—>bab=">b(1—ab),

thus

(1—=ba)bc=">b(1—ab)c=>bl=0.
(1—ab) 1
=b(1—a =

Hence, using the distributivity axiom, we obtain

(1 —=ba)(1+4beca) = (1—0ba)+ (1 —ba)bca = (1—ba)+ba=1.
=b
In other words, 1+ bea is a right inverse of 1 — ba (by the definition of a right inverse). This
solves part (b) of the exercise.

(c) Assume that c is an inverse of 1 — ab. In other words, ¢ is a multiplicative inverse
of 1 —ab. Thus, (1 —ab)c = c¢(1 —ab) =1 (by the definition of a multiplicative inverse).
From ¢ (1 — ab) = 1, we conclude that ¢ is a left inverse of 1 —ab. Hence, part (a) of this
exercise shows that 1+ bca is a left inverse of 1 — ba. In other words, (1 + bca) (1 — ba) = 1.
From (1 — ab) ¢ = 1, we conclude that ¢ is a right inverse of 1 —ab. Hence, part (b) of this
exercise shows that 1+ bca is a right inverse of 1 —ba. In other words, (1 — ba) (1 + bca) = 1.
Combining (1 + bea) (1 — ba) = 1 with (1 — ba) (1 + bca) = 1, we obtain

(1 —ba) (1+bca) = (1 + bea) (1 —ba) = 1.

In other words, 14bca is a multiplicative inverse of 1—ba (by the definition of a multiplicative
inverse). In other words, 1+ bca is an inverse of 1 — ba. This solves part (c) of the exercise.

2When we say “the laws of distributivity” here, we mean not just the axiom of distributivity (which says
that u (v +w) = w + vw and (v +v)w = ww + vw for all u,v,w € K), but also its analogue for
subtraction (which says that u (v — w) = uv — uw and (u —v)w = vw — vw for all u,v,w € K). The
latter analogue is not one of the ring axioms, but follows easily from them.
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4 EXERCISE 4: COMPOSITION OF RING HOMOMORPHISMS

4.1 PROBLEM
Let K, I and M be three rings. Prove the following:

(a) If f: K—Landg:L — M are two ring homomorphisms, then go f : K — M is a
ring homomorphism.

(b) If f: K— L and g : L. — M are two ring isomorphisms, then go f : K — M is a ring
isomorphism.

4.2 SOLUTION

(a) Let f : K — L and g : L — M be two ring homomorphisms. We must prove that
go f: K — M is a ring homomorphism.

We have assumed that f : K — L is a ring homomorphism. In other words, f satisfies
the four axioms in our definition of a ring homomorphism. In other words, the following
four claims hold:

Claim 1: We have f (a+b) = f (a) + f (b) for all a,b € K.
Claim 2: We have f (0) = 0.

Claim 3: We have f (ab) = f (a) f (b) for all a,b € K.
Claim 4: We have f (1) = 1.

Similarly, from the assumption that ¢ : . — M is a ring homomorphism, we conclude
that the following four claims hold:

Claim 5: We have g (a+b) = g (a) + g (b) for all a,b € L.
Claim 6: We have g (0) = 0.
Claim 7: We have g (ab) = g (a) g (b) for all a,b € L.
Claim 8: We have g (1) = 1.
Now, we must prove that go f : K — M is a ring homomorphism. In other words, we

must prove that go f satisfies the four axioms in our definition of a ring homomorphism. In
other words, we must prove that the following four claims hold:

Claim 9: We have (go f)(a+b) = (go f)(a)+ (go f)(b) for all a,b € K.
Claim 10: We have (go f) (0) =0.
Claim 11: We have (go f) (ab) = (go f) (a) (go f) (b) for all a,b € K.

Claim 12: We have (go f) (1) = 1.
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But this is straightforward:
[Proof of Claim 9: For all a,b € K, we have

(gof)latb)=g | flatd) [ =g(f(a)+[()=g(f(a)+g(f()
—— —_—— -

=f(a)+f(b) =(gof)(a)  =(gof)(b)
(by Claim 1)
(by Claim 5, applied to f (a) and f (b) instead of a and b)
= (90 f)(a)+(gof)(b).
Thus, Claim 9 is proven.|
[Proof of Claim 10: We have (go f)(0) = g f(0) = ¢(0) = 0 (by Claim 6).
~~
(by Clatm 2)

Thus, Claim 10 is proven.]

[Proof of Claim 11: The proof of Claim 11 is analogous to the proof of Claim 9, except
that we need to use Claims 3 and 7 instead of Claims 1 and 5.]

[Proof of Claim 12: The proof of Claim 12 is analogous to the proof of Claim 10, except
that we need to use Claims 4 and 8 instead of Claims 2 and 6.]

Thus, all four Claims 9, 10, 11 and 12 are proven. As we explained, this shows that go f
is a ring homomorphism. Hence, part (a) of the exercise is solved.

(b) Let f : K — L and g : L - M be two ring isomorphisms. We must show that
go f: K — M is a ring isomorphism.

The map f is a ring isomorphism. In other words, f is invertible and both f and f~!
are ring homomorphisms (by the definition of a ring isomorphism).

The map ¢ is a ring isomorphism. In other words, g is invertible and both g and g~
are ring homomorphisms (by the definition of a ring isomorphism).

Now we know that f : K — L and g : . — M are two ring homomorphisms. Hence,
part (a) of this exercise shows that go f : K — M is a ring homomorphism.

Also, we know that ¢g7! : Ml — L and f~! : L. — K are two ring homomorphisms. Hence,
part (a) of this exercise (applied to M, K, g~! and f~! instead of K, M, f and g) shows
that f~*og™! : M — K is a ring homomorphism.

But the maps f and g are invertible. Hence, it is well-known that their composition
g o f is invertible as well, and its inverse is (g o f)_1 = f~log™!. Hence, (go f)_1 is a ring
homomorphism (since f~! o ¢! is a ring homomorphism).

Now, we know that the map g o f is invertible and both g o f and (go f)~" are ring
homomorphisms. In other words, g o f is a ring isomorphism (by the definition of a ring
isomorphism). This solves part (b) of the exercise.

1

5 EXERCISE 5: SQUARES IN FINITE FIELDS I

5.1 PROBLEM
Let F be a field.
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(a) Prove that if a,b € F satisfy ab =0, then a =0 or b = 0.

(b) Prove that if a,b € F satisfy a® = b%, then a = b or a = —b.

Recall that an element n € I is called a square if there exists some o € [F such that
2
n=a’.
From now on, assume that 2 - 1 # Op (that is, 1p + 1p # Op). Note that this is satisfied
whenever F = Z/p for a prime p > 2 (but also for various other finite fields), but fails when
F=127)2.

(c) Prove that a # —a for every nonzero a € F.

From now on, assume that F is finite.

1
(d) Prove that the number of squares in F is 5 (|F| +1).
(e) Conclude that |F| is odd.

[Hint: For part (d), argue that each nonzero square in F can be written as a? for
exactly two a € IF.|

5.2 SOLUTION

We have assumed that F is a field. Hence, F is a commutative skew field (by the definition
of a field). Every nonzero element of I is invertible (since F is a skew field).

(a) Let a,b € F be such that ab = 0. We must prove that a = 0 or b = 0.

Assume the contrary. Thus, neither a = 0 nor b = 0 holds. In other words, we have
a # 0 and b # 0. Thus, the elements a and b of F are nonzero, and therefore invertible (since
every nonzero element of I is invertible). Hence, their inverses a=! and b~! are well-defined.

. o, _1 _ 71 _ 71 _ . _ .

Comparing the equalities g 1ab = b and a al; = a0 = 0, we obtain b = 0. This
contradicts b # 0. This contradiction shows that our assumption was false. This completes
the solution to part (a) of the exercise.

(b) Let a,b € F satisfy a* = b*. We must prove that a = b or a = —b.
Since F is commutative, we have ab = ba. Now, multiplying out (a —b) (a +b) (by
applying the distributivity laws several times), we obtain

— — —ba — — }2 _ _p2 =
(a—0b)(a+b)= _aa,6 + _ab,—ba— bb =b"+ba —ba—b°=0.

:a2 :b2 :ba :b2

Thus, part (a) of this exercise (applied to a — b and a + b instead of a and b) shows that
a—b=0ora+b=0. In other words, a = b or a = —b. Thus, part (b) of the exercise is
solved.

(c) Let @ € F be nonzero. We must prove that a # —a.
Assume the contrary. Thus, a = —a, so that a + a = 0. Now,
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The element 2 - 1y of F is nonzero (since 2 - 1p # Op), and thus invertible (since every
nonzero element of F is invertible). Hence, it has a well-defined inverse (2 - 1) .
Now,
2-1p)" - (2-1p)a=(2-1g) " -0=0.

——
=0

Comparing this with (2-15)"" - (2- 1) a = la = a, we obtain a = 0. This contradicts the
~
fact that a is nonzero. This contradiction shows that our assumption was false. Hence,

a # —a. Thus, part (c) of the exercise is solved.

(d) We have the following:

Claim 1: Let ¢ € F. Then:

(i) If ¢ is a nonzero square, then

{deF | c=d?}| =2

(ii) If ¢ is not a square, then

{deF | c=d*}|=0.

(iii) If ¢ = 0, then
{deF | c=d*}| =1

[Proof of Claim 1: (i) Assume that c is a nonzero square. Thus, there exists a g € F
such that ¢ = ¢g* (since c is a square). Consider this g. Moreover,

(=9’ =(-9)(—9)=—((-9)9) =—(—g99) =g9=9g*=¢
——

=—499

(since ¢ = ¢%). Hence, ¢ = (—g)°.

If we had g = 0, then we would have ¢ = £ 2 = 0?2 = 0, which would contradict our
assumption that ¢ is nonzero. Hence, we cannot (l)lave g = 0. Thus, g is nonzero. Therefore,
g # —g (by part (c) of this exercise, applied to a = g). Hence, the elements g and —g of F
are distinct. Thus, |[{g, —g}| = 2.

But g€ {d€F | ¢c=d*} (since g € Fand c = ¢g?) and —g € {d €F | ¢ = d*} (since
—g € F and ¢ = (—g)*®). Combining these two facts, we obtain

{g,—g}g{deF | c:d2}. (11)

On the other hand, let us prove that {d € F | ¢=d?} C {g,—g}. Indeed, let a €
{de€F | c=d*}. Thus, ais ad € F such that ¢ = d*. In other words, a is an element
of F and satisfies ¢ = a®. Hence, a*> = ¢ = g*>. Thus, part (b) of this exercise (applied to
b = g) yields that a = g or a = —g. In other words, a € {g, —¢g}. Now, forget that we fixed
a. We thus have shown that a € {g,—g} for each a € {d € F | ¢ = d?}. In other words,
{deF | ¢=d*} C{g,—g}. Combining this with (11]), we obtain

{deF | c=d*} ={g,—g}.

Hence,

{deF | c=d}|={g,—g}l =2
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This proves Claim 1 ().

(ii) Assume that c¢ is not a square. Then, there exists no a € F such that ¢ = o?
(by the definition of a square). In other words, there exists no d € F such that ¢ = d?
(here, we have renamed the index « as d). In other words, {d € F | ¢ = d?} = @. Hence,
{d €F | ¢=d*}| =|2|=0. This proves Claim 1 (ii).

(iii) Assume that ¢ =0. Then, 0 € {d € F | ¢ = d?} (since 0 € F and ¢ = 0 = (0?) and
thus {0} C{d€F | c=d*}.

On the other hand, let us show that {d € F | ¢ = d*} C {0}.

Indeed, let a € {d € F | ¢ = d?}. Then, a is a d € F such that ¢ = d*. In other words,
a is an element of F and satisfies ¢ = a?. Hence, aa = a*> = ¢ = 0. Thus, part (a) of
this exercise (applied to b = a) yields that a = 0 or @ = 0. In other words, @ = 0. In
other words, a € {0}. Now, forget that we fixed a. We thus have shown that a € {0} for
eacha € {d €F | ¢=d?}. In other words, {d € F | ¢=d*} C {0}. Combining this with
{0} C{d€TF | ¢c=d?}, weobtain {d€F | ¢c=d?} ={0}. Hence, {d€F | c=d*}| =
|{0}| = 1. This proves Claim 1 (iii).]

Now, let us count all pairs (¢, d) € F x T satisfying ¢ = d?. We shall count these pairs
in two ways:

e The first way is to split this count according to the value of ¢ (that is, first count all
such pairs (¢, d) with a given ¢, and then sum the result up over all ¢ € F). Thus, we
find

(the number of all (c,d) € F x F such that ¢ = d°)
= (the number of all d € F such that ¢ = d*)

cer —|{deF | =d?}|
=> |{deF | c=d*}]
ceF
=> [{deF | c=d’}|+ > |{deF | c=d*}|
cEF; ~ 7 ceF; ~7 g
=0 (by Claim 1 (iii)) €152 NONICIO (by Claim 1 (i)
+ > |{deF | c=d}

cel;

5 t T '
csl(blll?igrea (by Claim 1 (ii))

because each c € T satisfies exactly one of the three statements
“c =107, “cis a nonzero square” and “c is not a square”

= 1o+ d>ooo2 + > 0

cel; cel; cel;
c=0 c is a nonzero c is not a
square square
-1 ~———— N——
(since this sum has =2-(the number of nonzero squares in F) =0

exactly one addend)
= 1+ 2 (the number of nonzero squares in F) 4 0

= 1+ 2 (the number of nonzero squares in F) .

e The second way is to split this count according to the value of d (that is, first count
all such pairs (¢, d) with a given d, and then sum the result up over all d € F). Thus,
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we find

(the number of all (c,d) € F x F such that ¢ = d°)
= Z (the number of all ¢ € [F such that ¢ = dg)

deF :’1
(since there is exactly one c€F such that c=d? (namely, c=d?))

=> 1=[F|-1=IF.

deF

Comparing these two equalities, we obtain
|F| = 1+ 2 - (the number of nonzero squares in ).

Solving this for (the number of nonzero squares in IF), we find

Fl—-1
(the number of nonzero squares in F) = | |2 :

Now, there are two kinds of squares in F: namely, the nonzero squares (of which there
[Fl -1
2

namely 02 = 0). Thus, the total number of squares in F is

many, as we just proved) and the zero squares (of which there is only 1,
|F|—1 |F| +1
1 p— =
2 * 2

are exactly

5 (I + 1),

This solves part (d) of the exercise.

1
(e) Part (d) of this exercise shows that the number of squares in F is 5 (|F| +1). Thus,

(IF| 4+ 1) = (the number of squares in F) € N

DN | —

1
(since a number that counts something is always € N). Therefore, 5 (|F|+1) e N C Z,

so that the integer |F| + 1 is even. This shows that |F| is odd. This solves part (e) of the
exercise.

6 EXERCISE 6: THE CHARACTERISTIC OF A FIELD

6.1 PROBLEM

Let IF be a field. Recall that we have defined na to mean @+ a + --- +a whenever n € N

n times

and a € F.

Assume that there exists a positive integer n such that n-1p = 0. Let p be the smallest
such n.

Prove that p is prime.

[Hint: (a- 1) - (b-1p) = ab- 1f for all a,b € N.|
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6.2 REMARK

The p we just defined is called the characteristic of the field F when it exists. (Otherwise,
the characteristic of the field F is defined to be 0.)

Thus, for each prime p, the finite field Z/p, as well as the finite field of size p? that we
constructed in class, have characteristic p.

6.3 SOLUTION SKETCH

We have assumed that F is a field. Hence, F is a commutative skew field (by the definition
of a field). We have Op # 1f (since F is a skew field).

We have defined p to be the smallest positive integer n such that n - 1 = 0. Thus, p
is a positive integer which itself satisfies p - 1z = 0. Furthermore, if n is a positive integer
such that n - 1p = 0, then

n>p (12)

(since p is the smallest positive integer n such that n - 1y = 0).

If we had p = 1, then we would have p-1p = 1- 1y = 1p # O (since Op # 1p), which
would contradict p - 1g = 0 = Op. Thus, we cannot have p = 1. Therefore, we have p > 1
(since p is a positive integer).

We shall now show that the only positive divisors of p are 1 and p. Indeed, assume the
contrary. Thus, p has a positive divisor other than 1 and p. Consider such a divisor, and
denote it by d. Thus, d is a positive divisor of p that is distinct from 1 and p. In other
words, d is a positive divisor of p and satisfies d # 1 and d # p. We have d < p (since d is
a positive divisor of the positive integer p). Combining this with d # p, we obtain d < p.

Also, d € Z (since d is an integer) and g € Z (since d is a divisor of p).

Now, for all a,b € Z, we have

=b-1p

Applying this to a = d and b = ]—), we obtain

d
p —g. Py =1 =
(d-lF)-<a-1F>__d Clr=p-lr =0,
——
=p

Thus, Exercise 5 (a) (applied to a = d-1p and b = g -1r) shows that d- 1y = 0 or g 1r = 0.
If we had d- 1 = 0, then we would have d > p (by (12), applied to n = d), which would

contradict d < p. Hence, we cannot have d- 1y = 0. Thus, we have 7 1p =0 (since d-1p = 0
or g -1p = 0). But CBZ is an integer (since g € Z) and is positive (since p and d are positive);

thus, g is a positive integer. Hence, (applied to n = g) yields g > p (since i—; -1p = 0).
Since d is positive, we can multiply this inequality by d, and thus obtain p > pd. Since p is
positive, we can divide this inequality by p, and thus obtain 1 > d. Hence, d = 1 (since d is
a positive integer). This contradicts d # 1.

This contradiction shows that our assumption was false. Hence, the only positive divisors
of p are 1 and p. Thus, p is a prime (since p is an integer satisfying p > 1). Qed.
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6.4 REMARK

We have never used the commutativity of multiplication (in ) in the above proof. Thus,
we can replace “field” by “skew field” in this exercise.
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