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1 Exercise 1: The opposite ring

Let K be a ring. We define a new binary operation ·̃ on K by setting

a ·̃ b = ba for all a, b ∈ K.

(Thus, ·̃ is the multiplication of K, but with the arguments switched.)

(a) Prove that the set K, equipped with the addition +, the multiplication ·̃ , the zero 0K
and the unity 1K, is a ring.

This new ring is called the opposite ring of K, and is denoted by Kop.
Note that the sets K and Kop are identical (so a map from K to K is the same as

a map from K to Kop); but the rings K and Kop are generally not the same (so a ring
homomorphism from K to K is not the same as a ring homomorphism from K to Kop).

(b) Prove that the identity map id : K → K is a ring isomorphism from K to Kop if and
only if K is commutative.

(c) Now, assume that K is the matrix ring Ln×n for some commutative ring L and some
n ∈ N. Prove that the map

K→ Kop, A 7→ AT

(where AT , as usual, denotes the transpose of a matrix A) is a ring isomorphism.
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[Hint: In (a), you only have to check the ring axioms that have to do with multiplica-
tion. Similarly, in (b), you are free to check the one axiom relating to multiplication only.
In (c), you can use [Grinbe19, Exercise 6.5] without proof.]

1.1 Remark

This exercise gives some examples of rings K that are isomorphic to their opposite rings Kop.
See https://mathoverflow.net/questions/64370/ for examples of rings that are not.

1.2 Solution

We shall follow the PEMDAS convention for the order of operations, treating the new
multiplication ·̃ operation as a multiplicative operation. Thus, the expression “a ·̃ b+ c ·̃ d”
will mean “(a ·̃ b) + (c ·̃ d)” rather than “a ·̃ (b+ c) ·̃ d”.

We are in the slightly confusing situation of having two different “multiplications” on one
and the same set K: the original multiplication · of the ring K, and the new multiplication ·̃
of the ring Kop (although we still have not shown that Kop is actually a ring). Let us agree
that if a, b ∈ K, then the notation “ab” shall always mean “a · b” (that is, the image of the
pair (a, b) under the original multiplication ·, not under the new multiplication ·̃).

The original ring K satisfies all eight ring axioms (since it is a ring).

(a) Clearly, the addition + and the multiplication ·̃ are binary operations on K, and
the elements 0K and 1K indeed belong to K. It remains to prove that these two operations
and these two elements make K into a ring. In order to do so, we need to verify the ring
axioms. These axioms are the following:

• Commutativity of addition: We have a+ b = b+ a for all a, b ∈ K.

• Associativity of addition: We have a+ (b+ c) = (a+ b) + c for all a, b, c ∈ K.

• Neutrality of zero: We have a+ 0K = 0K + a = a for all a ∈ K.

• Existence of additive inverses: For any a ∈ K, there exists an element a′ ∈ K such
that a+ a′ = a′ + a = 0K.

• Associativity of multiplication: We have a ·̃ (b ·̃ c) = (a ·̃ b) ·̃ c for all a, b, c ∈ K.
(Of course, we cannot use “ab” as an abbreviation for “a ·̃ b”, since “ab” already stands
for the different product a · b.)

• Neutrality of one: We have a ·̃ 1K = 1K ·̃ a = a for all a ∈ K.

• Annihilation: We have a ·̃ 0K = 0K ·̃ a = 0K for all a ∈ K.

• Distributivity: We have

a ·̃ (b+ c) = a ·̃ b+ a ·̃ c and (a+ b) ·̃ c = a ·̃ c+ b ·̃ c

for all a, b, c ∈ K.

The first four of these eight axioms do not involve the new multiplication ·̃ . Thus, they
say exactly the same thing as the corresponding axioms for the original ring K (with the
original operations + and ·). Hence, they are satisfied (since the corresponding axioms for
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the original ring K are satisfied). It thus remains to prove that the remaining four axioms
are satisfied. Let us check this:

[Proof of the “Associativity of multiplication” axiom: Let a, b, c ∈ K. We must prove
that a ·̃ (b ·̃ c) = (a ·̃ b) ·̃ c.

The definition of the operation ·̃ yields b ·̃ c = cb and a ·̃ b = ba and

a ·̃ (b ·̃ c) = (b ·̃ c)︸ ︷︷ ︸
=cb

a = (cb) a (1)

and
(a ·̃ b) ·̃ c = c (a ·̃ b)︸ ︷︷ ︸

=ba

= c (ba) . (2)

But the original ringK satisfies the “Associativity of multiplication” axiom (since it is a ring);
thus, (cb) a = c (ba). In other words, the right hand sides of the two equalities (1) and (2)
are equal. Thus, their left hand sides are also equal. In other words, a ·̃ (b ·̃ c) = (a ·̃ b) ·̃ c.
Thus, the “Associativity of multiplication” axiom is proven.]

[Proof of the “Neutrality of one” axiom: Let a ∈ K. We must prove that a ·̃ 1K =
1K ·̃ a = a.

But the original ring K satisfies the “Neutrality of one” axiom (since it is a ring); thus,
a1K = 1Ka = a.

The definition of the operation ·̃ yields a ·̃ 1K = 1Ka = a and 1K ·̃ a = a1K = a.
Combining these two equalities, we find a ·̃ 1K = 1K ·̃ a = a. Thus, the “Neutrality of one”
axiom is proven.]

[Proof of the “Annihilation” axiom: Let a ∈ K. We must prove that a ·̃ 0K = 0K ·̃ a = 0K.
But the original ring K satisfies the “Annihilation” axiom (since it is a ring); thus,

a0K = 0Ka = 0K.
The definition of the operation ·̃ yields a ·̃ 0K = 0Ka = 0K and 0K ·̃ a = a0K = 0K.

Combining these two equalities, we find a ·̃ 0K = 0K ·̃ a = 0K. Thus, the “Annihilation”
axiom is proven.]

[Proof of the “Distributivity” axiom: Let a, b, c ∈ K. We must prove that

a ·̃ (b+ c) = a ·̃ b+ a ·̃ c and (a+ b) ·̃ c = a ·̃ c+ b ·̃ c.

But the original ring K satisfies the “Distributivity” axiom (since it is a ring); thus,

c (a+ b) = ca+ cb and (b+ c) a = ba+ ca.

The definition of the operation ·̃ yields a ·̃ (b+ c) = (b+ c) a and a ·̃ b = ba and a ·̃ c =
ca. Thus,

a ·̃ (b+ c) = (b+ c) a = ba+ ca.

Comparing this with a ·̃ b︸︷︷︸
=ba

+ a ·̃ c︸︷︷︸
=ca

= ba+ ca, we obtain a ·̃ (b+ c) = a ·̃ b+ a ·̃ c.

The definition of the operation ·̃ yields (a+ b) ·̃ c = c (a+ b) and a ·̃ c = ca and b ·̃ c =
cb. Thus,

(a+ b) ·̃ c = c (a+ b) = ca+ cb.

Comparing this with a ·̃ c︸︷︷︸
=ca

+ b ·̃ c︸︷︷︸
=cb

= ca+ cb, we obtain (a+ b) ·̃ c = a ·̃ c+ b ·̃ c.

Thus, we have proven the equalities

a ·̃ (b+ c) = a ·̃ b+ a ·̃ c and (a+ b) ·̃ c = a ·̃ c+ b ·̃ c.
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Hence, the “Associativity of multiplication” axiom is proven.]
We have now shown that the set K, equipped with the addition +, the multiplication

·̃ , the zero 0K and the unity 1K, satisfies all the eight ring axioms. Hence, it is a ring. This
solves part (a) of the problem.

(b) =⇒: Assume that id : K→ K is a ring isomorphism from K to Kop. We must prove
that K is commutative.

We have assumed that id is a ring isomorphism from K to Kop. Thus, in particular,
id is a ring homomorphism from K to Kop (since any ring isomorphism must be a ring
homomorphism).

Recall that if U and V are two rings, and if f is a ring homomorphism from U to V,
then

f (a · b) = f (a) · f (b) for all a, b ∈ U. (3)

(Indeed, this is one of the four axioms in our definition of a ring homomorphism.) But keep
in mind that the two “·” signs in the equality (3) have different meanings: The “·” sign on
the left hand side stands for the multiplication of the ring U, whereas the “·” sign on the
right hand side stands for the multiplication of the ring V. Thus, (3) (applied to U = K,
V = Kop and f = id) yields

id (a · b) = id (a) ·̃ id (b) for all a, b ∈ K (4)

(since id is a ring homomorphism from K to Kop, and since the multiplication of the ring K
is denoted by “·” whereas the multiplication of the ring Kop is denoted by “ ·̃ ”).

Now, if a, b ∈ K, then

ab = a · b = id (a · b) = id (a)︸ ︷︷ ︸
=a

·̃ id (b)︸ ︷︷ ︸
=b

(by (4))

= a ·̃ b = ba (by the definition of the operation ·̃) .

In other words, the ring K satisfies the “Commutativity of multiplication” axiom. In other
words, the ring K is commutative. This proves the “=⇒” direction of part (b).
⇐=: Assume that K is commutative. We must prove that id : K→ K is a ring isomor-

phism from K to Kop.
If a, b ∈ K, then

a ·̃ b = ba (by the definition of the operation ·̃)
= ab (since the ring K is commutative)
= a · b.

Thus, the binary operation ·̃ is identical with the binary operation ·.
But the only difference between the rings K and Kop is that Kop has the multiplication

·̃ while K has the multiplication ·. (All the remaining structure of K and Kop is the same.)
But since we have shown that ·̃ is identical with ·, we see that this difference is not actually
a difference either; the multiplications of K and Kop are also the same. Hence, the ring Kop

is completely identical to the ring K (not just as sets, but as rings with all their structure).
But recall that id : K → K is a ring isomorphism from K to K. Since the ring Kop is

completely identical to the ring K, we can replace the last “K” in this sentence by “Kop”
without changing its meaning. Thus, we obtain that id : K→ K is a ring isomorphism from
K to Kop. This proves the “⇐=” direction of part (b).

(c) Let us quote the following fact from [Grinbe19, Exercise 6.5] (except that we are
replacing K by L):
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Proposition 1.1. Let L be a commutative ring. In this proposition, all matrices are over
L.

(a) If u, v and w are three nonnegative integers, if P is a u × v-matrix, and if Q is a
v × w-matrix, then

(PQ)T = QTP T .

(b) Every u ∈ N satisfies
(Iu)

T = Iu.

(c) If u and v are two nonnegative integers, if P is a u× v-matrix, and if λ ∈ L, then

(λP )T = λP T .

(d) If u and v are two nonnegative integers, and if P and Q are two u × v-matrices,
then

(P +Q)T = P T +QT .

(e) If u and v are two nonnegative integers, and if P is a u× v-matrix, then(
P T
)T

= P.

Now, let T be the map
K→ Kop, A 7→ AT .

We must prove that T is a ring isomorphism.
In class1, we have proven that any invertible ring homomorphism is a ring isomorphism.

Hence, it suffices to prove that T is an invertible ring homomorphism.
Let us first prove that T is a ring homomorphism. In order to do so, we need to verify

the following four claims:

Claim 1: We have T (a+ b) = T (a) +T (b) for all a, b ∈ K.

Claim 2: We have T (0K) = 0Kop .

Claim 3: We have T (ab) = T (a) ·̃ T (b) for all a, b ∈ K.

Claim 4: We have T (1K) = 1Kop .

(Note the “ ·̃ ” sign on the right hand side of Claim 3; this is because T (a) and T (b) are
being considered as elements of Kop, and the multiplication of the ring Kop is ·̃ .)

Let us now prove these claims:
[Proof of Claim 3: Let a, b ∈ K. Then, a ∈ K = Ln×n and b ∈ K = Ln×n. Hence, a and

b are two n× n-matrices over L. The definition of T yields T (ab) = (ab)T and T (a) = aT

and T (b) = bT . The definition of the operation ·̃ yields T (a) ·̃ T (b) = T (b)︸ ︷︷ ︸
=bT

T (a)︸ ︷︷ ︸
=aT

= bTaT .

But T (ab) = (ab)T = bTaT (by Proposition 1.1 (a), applied to u = n, v = n, w = n, P = a
and Q = b). Comparing these two equalities, we obtain T (ab) = T (a) ·̃ T (b). This proves
Claim 3.]

[Proof of Claim 1: Let a, b ∈ K. Then, a ∈ K = Ln×n and b ∈ K = Ln×n. Hence, a
and b are two n × n-matrices over L. The definition of T yields T (a+ b) = (a+ b)T and
T (a) = aT and T (b) = bT . But T (a)︸ ︷︷ ︸

=aT

+T (b)︸ ︷︷ ︸
=bT

= aT bT . But T (a+ b) = (a+ b)T = aT + bT

1specifically, Proposition 5.10.5 in the class notes; but the numbering may change
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(by Proposition 1.1 (d), applied to u = n, v = n, P = a and Q = b). Comparing these two
equalities, we obtain T (a+ b) = T (a) +T (b). This proves Claim 1.]

[Proof of Claim 2: We have 0K = 0n×n (by the definition of the ringK = Ln×n). Applying
the map T to both sides of this equality, we obtain T (0K) = T (0n×n) = (0n×n)

T (by the
definition of T). But the definition of the transpose of a matrix easily yields (0n×n)

T = 0n×n.
Hence, T (0K) = (0n×n)

T = 0n×n. But the definition of the ring Kop yields 0Kop = 0K = 0n×n.
Comparing the latter two equalities, we obtain T (0K) = 0Kop . This proves Claim 2.]

[Proof of Claim 4: We have 1K = In (by the definition of the ring K = Ln×n). Applying
the map T to both sides of this equality, we obtain T (1K) = T (In) = (In)

T (by the
definition of T). But Proposition 1.1 (b) (applied to u = n) yields (In)

T = In. Hence,
T (1K) = (In)

T = In. But the definition of the ring Kop yields 1Kop = 1K = In. Comparing
the latter two equalities, we obtain T (1K) = 1Kop . This proves Claim 4.]

We have now proven all four Claims 1, 2, 3 and 4. Hence, T is a ring homomorphism
from K to Kop (by the definition of a ring homomorphism).

Let us next prove that the map T is invertible. In proving this, we do not need to
concern ourselves with the ring structures (i.e., the additions, multiplications, zeroes and
unities) of K and Kop, but can simply consider K and Kop as sets (because the invertibility
of a map has nothing to do with any ring structures).

Recall that Kop = K as sets. Thus, the map T is a map from K to K (since T is a map
from K to Kop). Hence, the map T ◦ T : K → K is well-defined. Moreover, each P ∈ K
satisfies

(T ◦T) (P ) = T

 T (P )︸ ︷︷ ︸
=PT

(by the definition of T)

 = T
(
P T
)
=
(
P T
)T

(by the definition of T)

= P (by Proposition 1.1 (e) (applied to u = n and v = n))
= id (P ) .

In other words, T ◦ T = id. Hence, the maps T : K → K and T : K → K are mutually
inverse. Thus, the map T : K → K is invertible. In other words, the map T : K → Kop is
invertible (since K = Kop as sets).

So we have proven that the map T : K→ Kop is an invertible ring homomorphism from
K to Kop. Thus, this map T is a ring isomorphism from K to Kop (since any invertible ring
homomorphism is a ring isomorphism). This solves part (c) of the exercise.

2 Exercise 2: More ring isomorphisms

2.1 Problem

(a) Let L be a ring. Let w ∈ L be an invertible element. Prove that the map

L→ L, a 7→ waw−1

is a ring isomorphism.
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(b) Let K be a ring. Let W be the n× n-matrix

([i+ j = n+ 1])1≤i≤n, 1≤j≤n =


0 · · · 0 0 1
0 · · · 0 1 0
0 · · · 1 0 0
... . .

. ...
...

...
1 · · · 0 0 0

 ∈ Kn×n

(where we are using the Iverson bracket notation again).
Prove that W = W−1.

(c) Let A = (ai,j)1≤i≤n, 1≤j≤n ∈ Kn×n be any n× n-matrix. Prove that

WAW−1 = (an+1−i,n+1−j)1≤i≤n, 1≤j≤n .

(In other words, WAW−1 is the n× n-matrix obtained from A by reversing the order
of the rows and also reversing the order of the columns.)

2.2 Remark

The map
L→ L, a 7→ waw−1

in part (a) of this exercise is called conjugation by w. It is best known in the case of a
matrix ring, where it corresponds to a change of basis for an endomorphism of a vector
space. When K is a field, the only ring isomorphisms Kn×n → Kn×n are conjugations by
invertible matrices; this is the Noether–Skolem theorem (in one of its less general variants).

2.3 Solution

(a) Let f be the map
L→ L, a 7→ waw−1.

We must prove that f is a ring isomorphism.
In class, we have proven that any invertible ring homomorphism is a ring isomorphism.

Hence, it suffices to prove that f is an invertible ring homomorphism.
Let us first prove that f is a ring homomorphism. In order to do so, we need to verify

the following four claims:

Claim 1: We have f (a+ b) = f (a) + f (b) for all a, b ∈ L.

Claim 2: We have f (0) = 0.

Claim 3: We have f (ab) = f (a) f (b) for all a, b ∈ L.

Claim 4: We have f (1) = 1.

Let us now prove these claims:
[Proof of Claim 1: Let a, b ∈ L. The definition of f yields f (a) = waw−1 and f (b) =

wbw−1 and f (a+ b) = w (a+ b)w−1. Hence,

f (a+ b) = w (a+ b)w−1︸ ︷︷ ︸
=aw−1+bw−1

(by distributivity)

= w
(
aw−1 + bw−1

)
= waw−1︸ ︷︷ ︸

=f(a)

+wbw−1︸ ︷︷ ︸
=f(b)

(by distributivity)

= f (a) + f (b) .
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This proves Claim 1.]
[Proof of Claim 2: The definition of f yields f (0) = w 0w−1︸ ︷︷ ︸

=0

= w0 = 0. This proves

Claim 2.]
[Proof of Claim 3: Let a, b ∈ L. The definition of f yields f (a) = waw−1 and f (b) =

wbw−1 and f (ab) = w (ab)w−1. Hence,

f (a)︸︷︷︸
=waw−1

f (b)︸︷︷︸
=wbw−1

= waw−1w︸ ︷︷ ︸
=1

bw−1 = wabw−1 = w (ab)w−1 = f (ab) .

In other words, f (ab) = f (a) f (b). This proves Claim 3.]
[Proof of Claim 4: The definition of f yields f (1) = w 1w−1︸ ︷︷ ︸

=w−1

= ww−1 = 1. This proves

Claim 4.]
We have now proven all four Claims 1, 2, 3 and 4. Hence, f is a ring homomorphism

from L to L (by the definition of a ring homomorphism).
Let us next prove that the map f is invertible.
Indeed, let g be the map

L→ L, a 7→ w−1aw.

Then, each a ∈ L satisfies

(g ◦ f) (a) = g (f (a)) = w−1 f (a)︸︷︷︸
=waw−1

(by the definition of f)

w (by the definition of g)

= w−1w︸ ︷︷ ︸
=1

aw−1w︸ ︷︷ ︸
=1

= a = id (a) .

In other words, g ◦ f = id.
Also, each a ∈ L satisfies

(f ◦ g) (a) = f (g (a)) = w g (a)︸︷︷︸
=w−1aw

(by the definition of g)

w−1 (by the definition of f)

= ww−1︸ ︷︷ ︸
=1

aww−1︸ ︷︷ ︸
=1

= a = id (a) .

In other words, f ◦ g = id.
Now, the two maps f and g are mutually inverse (since f ◦ g = id and g ◦f = id). Thus,

the map f is invertible.
So we have proven that the map f is an invertible ring homomorphism. Thus, this map

f is a ring isomorphism (since any invertible ring homomorphism is a ring isomorphism).
This solves part (a) of the exercise.

(b) We first show two auxiliary claims about how multiplication byW changes a matrix:

Claim 5: Let A = (ai,j)1≤i≤n, 1≤j≤n ∈ Kn×n be any n× n-matrix. Then,

WA = (an+1−i,j)1≤i≤n, 1≤j≤n .

Claim 6: Let A = (ai,j)1≤i≤n, 1≤j≤n ∈ Kn×n be any n× n-matrix. Then,

AW = (ai,n+1−j)1≤i≤n, 1≤j≤n .
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[Proof of Claim 5: We haveW = ([i+ j = n+ 1])1≤i≤n, 1≤j≤n and A = (ai,j)1≤i≤n, 1≤j≤n.
Hence, the definition of the multiplication of matrices yields

WA =

(
n∑

k=1

[i+ k = n+ 1] ak,j

)
1≤i≤n, 1≤j≤n

. (5)

Now, let (i, j) ∈ {1, 2, . . . , n}2. Thus, i, j ∈ {1, 2, . . . , n}. From i ∈ {1, 2, . . . , n}, we
obtain n+ 1− i ∈ {1, 2, . . . , n}. Now,

n∑
k=1

[i+ k = n+ 1] ak,j

=
∑

k∈{1,2,...,n}

[i+ k = n+ 1] ak,j

= [i+ (n+ 1− i) = n+ 1]︸ ︷︷ ︸
=1

(since i+(n+1−i)=n+1)

an+1−i,j +
∑

k∈{1,2,...,n};
k 6=n+1−i

[i+ k = n+ 1]︸ ︷︷ ︸
=0

(since i+k 6=n+1
(because k 6=n+1−i))

ak,j

(
here, we have split off the addend for k = n+ 1− i from the sum

(since n+ 1− i ∈ {1, 2, . . . , n} )

)
= an+1−i,j +

∑
k∈{1,2,...,n};
k 6=n+1−i

0ak,j

︸ ︷︷ ︸
=0

= an+1−i,j. (6)

Now, forget that we fixed (i, j). We thus have proven (6) for each (i, j) ∈ {1, 2, . . . , n}2.
Thus, we have(

n∑
k=1

[i+ k = n+ 1] ak,j

)
1≤i≤n, 1≤j≤n

= (an+1−i,j)1≤i≤n, 1≤j≤n .

Hence, (6) becomes

WA =

(
n∑

k=1

[i+ k = n+ 1] ak,j

)
1≤i≤n, 1≤j≤n

= (an+1−i,j)1≤i≤n, 1≤j≤n .

This proves Claim 5.]
[Proof of Claim 6: We have A = (ai,j)1≤i≤n, 1≤j≤n andW = ([i+ j = n+ 1])1≤i≤n, 1≤j≤n.

Hence, the definition of the multiplication of matrices yields

AW =

(
n∑

k=1

ai,k [k + j = n+ 1]

)
1≤i≤n, 1≤j≤n

. (7)

Now, let (i, j) ∈ {1, 2, . . . , n}2. Thus, i, j ∈ {1, 2, . . . , n}. From j ∈ {1, 2, . . . , n}, we
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obtain n+ 1− j ∈ {1, 2, . . . , n}. Now,
n∑

k=1

ai,k [k + j = n+ 1]

=
∑

k∈{1,2,...,n}

ai,k [k + j = n+ 1]

= ai,n+1−j [(n+ 1− j) + j = n+ 1]︸ ︷︷ ︸
=1

(since (n+1−j)+j=n+1)

+
∑

k∈{1,2,...,n};
k 6=n+1−j

ai,k [k + j = n+ 1]︸ ︷︷ ︸
=0

(since k+j 6=n+1
(because k 6=n+1−j))(

here, we have split off the addend for k = n+ 1− j from the sum
(since n+ 1− j ∈ {1, 2, . . . , n} )

)
= ai,n+1−j +

∑
k∈{1,2,...,n};
k 6=n+1−j

ai,k0

︸ ︷︷ ︸
=0

= ai,n+1−j. (8)

Now, forget that we fixed (i, j). We thus have proven (8) for each (i, j) ∈ {1, 2, . . . , n}2.
Thus, we have(

n∑
k=1

ai,k [k + j = n+ 1]

)
1≤i≤n, 1≤j≤n

= (ai,n+1−j)1≤i≤n, 1≤j≤n .

Hence, (8) becomes

AW =

(
n∑

k=1

ai,k [k + j = n+ 1]

)
1≤i≤n, 1≤j≤n

= (ai,n+1−j)1≤i≤n, 1≤j≤n .

This proves Claim 6.]
Let us now come back to part (b) of this exercise. Recall the definition of the identity

matrix In ∈ Kn×n. Namely, In is defined by

In = (δi,j)1≤i≤n, 1≤j≤n , where δi,j =

{
1, if i = j;

0, if i 6= j
.

(Note that δi,j can also be written as [i = j] using the Iverson bracket notation.)
Now, W = ([i+ j = n+ 1])1≤i≤n, 1≤j≤n. Hence, Claim 6 (applied to A = W and ai,j =

[i+ j = n+ 1]) yields

WW = ([(n+ 1− i) + j = n+ 1])1≤i≤n, 1≤j≤n . (9)

Now, let (i, j) ∈ {1, 2, . . . , n}2. Thus, i, j ∈ {1, 2, . . . , n}. Now, the statement “(n+ 1− i)+
j = n+ 1” is equivalent to “i = j” (since ((n+ 1− i) + j)− (n+ 1) = j − i). Thus,

[(n+ 1− i) + j = n+ 1] = [i = j] =

{
1, if i = j is true;
0, if i = j is false

(by the definition of the Iverson bracket notation)

=

{
1, if i = j;

0, if i 6= j
= δi,j. (10)
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Forget that we fixed (i, j). We thus have proven (10) for each (i, j) ∈ {1, 2, . . . , n}2.
Thus, we have

([(n+ 1− i) + j = n+ 1])1≤i≤n, 1≤j≤n = (δi,j)1≤i≤n, 1≤j≤n .

Hence, (9) becomes

WW = ([(n+ 1− i) + j = n+ 1])1≤i≤n, 1≤j≤n = (δi,j)1≤i≤n, 1≤j≤n = In.

Now, the matrix W is an inverse of W (since WW = In and WW = In). Thus, the
matrix W is invertible, and its inverse is W−1 = W . This solves part (b) of the exercise.

(c) We have A = (ai,j)1≤i≤n, 1≤j≤n. Thus, Claim 5 yields

WA = (an+1−i,j)1≤i≤n, 1≤j≤n .

Hence, Claim 6 (applied to WA and an+1−i,j instead of A and ai,j) yields

WAW = (an+1−i,n+1−j)1≤i≤n, 1≤j≤n .

But part (b) of this exercise yields W = W−1. Hence, WA W︸︷︷︸
=W−1

= WAW−1, so that

WAW−1 = WAW = (an+1−i,n+1−j)1≤i≤n, 1≤j≤n .

This solves part (c) of the exercise.

3 Exercise 3: Entangled inverses

Let K be a ring.
A left inverse of an element x ∈ K is defined to be a y ∈ K such that yx = 1.
A right inverse of an element x ∈ K is defined to be a y ∈ K such that xy = 1.
Let a and b be two elements of K. Prove the following:

(a) If c is a left inverse of 1− ab, then 1 + bca is a left inverse of 1− ba.

(b) If c is a right inverse of 1− ab, then 1 + bca is a right inverse of 1− ba.

(c) If c is an inverse of 1− ab, then 1 + bca is an inverse of 1− ba.

Here and in the following, the word “inverse” (unless qualified with an adjective) means
“multiplicative inverse”.

3.1 Solution

(a) Assume that c is a left inverse of 1− ab. Thus, c (1− ab) = 1 (by the definition of a left
inverse).
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Now, the laws of distributivity2 yield

a (1− ba) = a− aba = (1− ab) a,

thus
c a (1− ba)︸ ︷︷ ︸

=(1−ab)a

= c (1− ab)︸ ︷︷ ︸
=1

a = 1a = a.

Hence, using the distributivity axiom, we obtain

(1 + bca) (1− ba) = (1− ba) + b ca (1− ba)︸ ︷︷ ︸
=a

= (1− ba) + ba = 1.

In other words, 1 + bca is a left inverse of 1 − ba (by the definition of a left inverse). This
solves part (a) of the exercise.

(b) Assume that c is a right inverse of 1− ab. Thus, (1− ab) c = 1 (by the definition of
a right inverse).

Now, the laws of distributivity yield

(1− ba) b = b− bab = b (1− ab) ,

thus
(1− ba) b︸ ︷︷ ︸
=b(1−ab)

c = b (1− ab) c︸ ︷︷ ︸
=1

= b1 = b.

Hence, using the distributivity axiom, we obtain

(1− ba) (1 + bca) = (1− ba) + (1− ba) bc︸ ︷︷ ︸
=b

a = (1− ba) + ba = 1.

In other words, 1+ bca is a right inverse of 1− ba (by the definition of a right inverse). This
solves part (b) of the exercise.

(c) Assume that c is an inverse of 1 − ab. In other words, c is a multiplicative inverse
of 1− ab. Thus, (1− ab) c = c (1− ab) = 1 (by the definition of a multiplicative inverse).

From c (1− ab) = 1, we conclude that c is a left inverse of 1−ab. Hence, part (a) of this
exercise shows that 1+ bca is a left inverse of 1− ba. In other words, (1 + bca) (1− ba) = 1.

From (1− ab) c = 1, we conclude that c is a right inverse of 1−ab. Hence, part (b) of this
exercise shows that 1+bca is a right inverse of 1−ba. In other words, (1− ba) (1 + bca) = 1.

Combining (1 + bca) (1− ba) = 1 with (1− ba) (1 + bca) = 1, we obtain

(1− ba) (1 + bca) = (1 + bca) (1− ba) = 1.

In other words, 1+bca is a multiplicative inverse of 1−ba (by the definition of a multiplicative
inverse). In other words, 1+ bca is an inverse of 1− ba. This solves part (c) of the exercise.

2When we say “the laws of distributivity” here, we mean not just the axiom of distributivity (which says
that u (v + w) = uv + uw and (u+ v)w = uw + vw for all u, v, w ∈ K), but also its analogue for
subtraction (which says that u (v − w) = uv − uw and (u− v)w = uw − vw for all u, v, w ∈ K). The
latter analogue is not one of the ring axioms, but follows easily from them.
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4 Exercise 4: Composition of ring homomorphisms

4.1 Problem

Let K, L and M be three rings. Prove the following:

(a) If f : K → L and g : L → M are two ring homomorphisms, then g ◦ f : K → M is a
ring homomorphism.

(b) If f : K→ L and g : L→M are two ring isomorphisms, then g ◦ f : K→M is a ring
isomorphism.

4.2 Solution

(a) Let f : K → L and g : L → M be two ring homomorphisms. We must prove that
g ◦ f : K→M is a ring homomorphism.

We have assumed that f : K → L is a ring homomorphism. In other words, f satisfies
the four axioms in our definition of a ring homomorphism. In other words, the following
four claims hold:

Claim 1: We have f (a+ b) = f (a) + f (b) for all a, b ∈ K.

Claim 2: We have f (0) = 0.

Claim 3: We have f (ab) = f (a) f (b) for all a, b ∈ K.

Claim 4: We have f (1) = 1.

Similarly, from the assumption that g : L → M is a ring homomorphism, we conclude
that the following four claims hold:

Claim 5: We have g (a+ b) = g (a) + g (b) for all a, b ∈ L.

Claim 6: We have g (0) = 0.

Claim 7: We have g (ab) = g (a) g (b) for all a, b ∈ L.

Claim 8: We have g (1) = 1.

Now, we must prove that g ◦ f : K → M is a ring homomorphism. In other words, we
must prove that g ◦ f satisfies the four axioms in our definition of a ring homomorphism. In
other words, we must prove that the following four claims hold:

Claim 9: We have (g ◦ f) (a+ b) = (g ◦ f) (a) + (g ◦ f) (b) for all a, b ∈ K.

Claim 10: We have (g ◦ f) (0) = 0.

Claim 11: We have (g ◦ f) (ab) = (g ◦ f) (a) (g ◦ f) (b) for all a, b ∈ K.

Claim 12: We have (g ◦ f) (1) = 1.
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But this is straightforward:
[Proof of Claim 9: For all a, b ∈ K, we have

(g ◦ f) (a+ b) = g

 f (a+ b)︸ ︷︷ ︸
=f(a)+f(b)
(by Claim 1)

 = g (f (a) + f (b)) = g (f (a))︸ ︷︷ ︸
=(g◦f)(a)

+ g (f (b))︸ ︷︷ ︸
=(g◦f)(b)

(by Claim 5, applied to f (a) and f (b) instead of a and b)
= (g ◦ f) (a) + (g ◦ f) (b) .

Thus, Claim 9 is proven.]

[Proof of Claim 10: We have (g ◦ f) (0) = g

 f (0)︸︷︷︸
=0

(by Claim 2)

 = g (0) = 0 (by Claim 6).

Thus, Claim 10 is proven.]
[Proof of Claim 11: The proof of Claim 11 is analogous to the proof of Claim 9, except

that we need to use Claims 3 and 7 instead of Claims 1 and 5.]
[Proof of Claim 12: The proof of Claim 12 is analogous to the proof of Claim 10, except

that we need to use Claims 4 and 8 instead of Claims 2 and 6.]
Thus, all four Claims 9, 10, 11 and 12 are proven. As we explained, this shows that g ◦f

is a ring homomorphism. Hence, part (a) of the exercise is solved.

(b) Let f : K → L and g : L → M be two ring isomorphisms. We must show that
g ◦ f : K→M is a ring isomorphism.

The map f is a ring isomorphism. In other words, f is invertible and both f and f−1
are ring homomorphisms (by the definition of a ring isomorphism).

The map g is a ring isomorphism. In other words, g is invertible and both g and g−1

are ring homomorphisms (by the definition of a ring isomorphism).
Now we know that f : K → L and g : L → M are two ring homomorphisms. Hence,

part (a) of this exercise shows that g ◦ f : K→M is a ring homomorphism.
Also, we know that g−1 : M→ L and f−1 : L→ K are two ring homomorphisms. Hence,

part (a) of this exercise (applied to M, K, g−1 and f−1 instead of K, M, f and g) shows
that f−1 ◦ g−1 : M→ K is a ring homomorphism.

But the maps f and g are invertible. Hence, it is well-known that their composition
g ◦ f is invertible as well, and its inverse is (g ◦ f)−1 = f−1 ◦ g−1. Hence, (g ◦ f)−1 is a ring
homomorphism (since f−1 ◦ g−1 is a ring homomorphism).

Now, we know that the map g ◦ f is invertible and both g ◦ f and (g ◦ f)−1 are ring
homomorphisms. In other words, g ◦ f is a ring isomorphism (by the definition of a ring
isomorphism). This solves part (b) of the exercise.

5 Exercise 5: Squares in finite fields I

5.1 Problem

Let F be a field.
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(a) Prove that if a, b ∈ F satisfy ab = 0, then a = 0 or b = 0.

(b) Prove that if a, b ∈ F satisfy a2 = b2, then a = b or a = −b.

Recall that an element η ∈ F is called a square if there exists some α ∈ F such that
η = α2.

From now on, assume that 2 · 1F 6= 0F (that is, 1F + 1F 6= 0F). Note that this is satisfied
whenever F = Z/p for a prime p > 2 (but also for various other finite fields), but fails when
F = Z/2.

(c) Prove that a 6= −a for every nonzero a ∈ F.

From now on, assume that F is finite.

(d) Prove that the number of squares in F is
1

2
(|F|+ 1).

(e) Conclude that |F| is odd.

[Hint: For part (d), argue that each nonzero square in F can be written as α2 for
exactly two α ∈ F.]

5.2 Solution

We have assumed that F is a field. Hence, F is a commutative skew field (by the definition
of a field). Every nonzero element of F is invertible (since F is a skew field).

(a) Let a, b ∈ F be such that ab = 0. We must prove that a = 0 or b = 0.
Assume the contrary. Thus, neither a = 0 nor b = 0 holds. In other words, we have

a 6= 0 and b 6= 0. Thus, the elements a and b of F are nonzero, and therefore invertible (since
every nonzero element of F is invertible). Hence, their inverses a−1 and b−1 are well-defined.
Comparing the equalities a−1a︸︷︷︸

=1

b = b and a−1 ab︸︷︷︸
=0

= a−10 = 0, we obtain b = 0. This

contradicts b 6= 0. This contradiction shows that our assumption was false. This completes
the solution to part (a) of the exercise.

(b) Let a, b ∈ F satisfy a2 = b2. We must prove that a = b or a = −b.
Since F is commutative, we have ab = ba. Now, multiplying out (a− b) (a+ b) (by

applying the distributivity laws several times), we obtain

(a− b) (a+ b) = aa︸︷︷︸
=a2=b2

+ ab︸︷︷︸
=ba

−ba− bb︸︷︷︸
=b2

= b2 + ba− ba− b2 = 0.

Thus, part (a) of this exercise (applied to a − b and a + b instead of a and b) shows that
a − b = 0 or a + b = 0. In other words, a = b or a = −b. Thus, part (b) of the exercise is
solved.

(c) Let a ∈ F be nonzero. We must prove that a 6= −a.
Assume the contrary. Thus, a = −a, so that a+ a = 0. Now,

(2 · 1F)︸ ︷︷ ︸
=1F+1F

a = (1F + 1F) a = 1Fa︸︷︷︸
=a

+ 1Fa︸︷︷︸
=a

= a+ a = 0.
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The element 2 · 1F of F is nonzero (since 2 · 1F 6= 0F), and thus invertible (since every
nonzero element of F is invertible). Hence, it has a well-defined inverse (2 · 1F)−1.

Now,
(2 · 1F)−1 · (2 · 1F) a︸ ︷︷ ︸

=0

= (2 · 1F)−1 · 0 = 0.

Comparing this with (2 · 1F)−1 · (2 · 1F)︸ ︷︷ ︸
=1

a = 1a = a, we obtain a = 0. This contradicts the

fact that a is nonzero. This contradiction shows that our assumption was false. Hence,
a 6= −a. Thus, part (c) of the exercise is solved.

(d) We have the following:

Claim 1: Let c ∈ F. Then:
(i) If c is a nonzero square, then∣∣{d ∈ F | c = d2

}∣∣ = 2.

(ii) If c is not a square, then∣∣{d ∈ F | c = d2
}∣∣ = 0.

(iii) If c = 0, then ∣∣{d ∈ F | c = d2
}∣∣ = 1.

[Proof of Claim 1: (i) Assume that c is a nonzero square. Thus, there exists a g ∈ F
such that c = g2 (since c is a square). Consider this g. Moreover,

(−g)2 = (−g) (−g) = − ((−g) g)︸ ︷︷ ︸
=−gg

= − (−gg) = gg = g2 = c

(since c = g2). Hence, c = (−g)2.
If we had g = 0, then we would have c = g︸︷︷︸

=0

2 = 02 = 0, which would contradict our

assumption that c is nonzero. Hence, we cannot have g = 0. Thus, g is nonzero. Therefore,
g 6= −g (by part (c) of this exercise, applied to a = g). Hence, the elements g and −g of F
are distinct. Thus, |{g,−g}| = 2.

But g ∈ {d ∈ F | c = d2} (since g ∈ F and c = g2) and −g ∈ {d ∈ F | c = d2} (since
−g ∈ F and c = (−g)2). Combining these two facts, we obtain

{g,−g} ⊆
{
d ∈ F | c = d2

}
. (11)

On the other hand, let us prove that {d ∈ F | c = d2} ⊆ {g,−g}. Indeed, let a ∈
{d ∈ F | c = d2}. Thus, a is a d ∈ F such that c = d2. In other words, a is an element
of F and satisfies c = a2. Hence, a2 = c = g2. Thus, part (b) of this exercise (applied to
b = g) yields that a = g or a = −g. In other words, a ∈ {g,−g}. Now, forget that we fixed
a. We thus have shown that a ∈ {g,−g} for each a ∈ {d ∈ F | c = d2}. In other words,
{d ∈ F | c = d2} ⊆ {g,−g}. Combining this with (11), we obtain{

d ∈ F | c = d2
}
= {g,−g} .

Hence, ∣∣{d ∈ F | c = d2
}∣∣ = |{g,−g}| = 2.
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This proves Claim 1 (i).
(ii) Assume that c is not a square. Then, there exists no α ∈ F such that c = α2

(by the definition of a square). In other words, there exists no d ∈ F such that c = d2

(here, we have renamed the index α as d). In other words, {d ∈ F | c = d2} = ∅. Hence,
|{d ∈ F | c = d2}| = |∅| = 0. This proves Claim 1 (ii).

(iii) Assume that c = 0. Then, 0 ∈ {d ∈ F | c = d2} (since 0 ∈ F and c = 0 = 02) and
thus {0} ⊆ {d ∈ F | c = d2}.

On the other hand, let us show that {d ∈ F | c = d2} ⊆ {0}.
Indeed, let a ∈ {d ∈ F | c = d2}. Then, a is a d ∈ F such that c = d2. In other words,

a is an element of F and satisfies c = a2. Hence, aa = a2 = c = 0. Thus, part (a) of
this exercise (applied to b = a) yields that a = 0 or a = 0. In other words, a = 0. In
other words, a ∈ {0}. Now, forget that we fixed a. We thus have shown that a ∈ {0} for
each a ∈ {d ∈ F | c = d2}. In other words, {d ∈ F | c = d2} ⊆ {0}. Combining this with
{0} ⊆ {d ∈ F | c = d2}, we obtain {d ∈ F | c = d2} = {0}. Hence, |{d ∈ F | c = d2}| =
|{0}| = 1. This proves Claim 1 (iii).]

Now, let us count all pairs (c, d) ∈ F × F satisfying c = d2. We shall count these pairs
in two ways:

• The first way is to split this count according to the value of c (that is, first count all
such pairs (c, d) with a given c, and then sum the result up over all c ∈ F). Thus, we
find (

the number of all (c, d) ∈ F× F such that c = d2
)

=
∑
c∈F

(
the number of all d ∈ F such that c = d2

)︸ ︷︷ ︸
=|{d∈F | c=d2}|

=
∑
c∈F

∣∣{d ∈ F | c = d2
}∣∣

=
∑
c∈F;
c=0

∣∣{d ∈ F | c = d2
}∣∣︸ ︷︷ ︸

=1
(by Claim 1 (iii))

+
∑
c∈F;

c is a nonzero
square

∣∣{d ∈ F | c = d2
}∣∣︸ ︷︷ ︸

=2
(by Claim 1 (i))

+
∑
c∈F;

c is not a
square

∣∣{d ∈ F | c = d2
}∣∣︸ ︷︷ ︸

=0
(by Claim 1 (ii))(

because each c ∈ F satisfies exactly one of the three statements
“c = 0”, “c is a nonzero square” and “c is not a square”

)
=

∑
c∈F;
c=0

1

︸ ︷︷ ︸
=1

(since this sum has
exactly one addend)

+
∑
c∈F;

c is a nonzero
square

2

︸ ︷︷ ︸
=2·(the number of nonzero squares in F)

+
∑
c∈F;

c is not a
square

0

︸ ︷︷ ︸
=0

= 1 + 2 · (the number of nonzero squares in F) + 0

= 1 + 2 · (the number of nonzero squares in F) .

• The second way is to split this count according to the value of d (that is, first count
all such pairs (c, d) with a given d, and then sum the result up over all d ∈ F). Thus,
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we find (
the number of all (c, d) ∈ F× F such that c = d2

)
=
∑
d∈F

(
the number of all c ∈ F such that c = d2

)︸ ︷︷ ︸
=1

(since there is exactly one c∈F such that c=d2 (namely, c=d2))

=
∑
d∈F

1 = |F| · 1 = |F| .

Comparing these two equalities, we obtain

|F| = 1 + 2 · (the number of nonzero squares in F) .

Solving this for (the number of nonzero squares in F), we find

(the number of nonzero squares in F) =
|F| − 1

2
.

Now, there are two kinds of squares in F: namely, the nonzero squares (of which there

are exactly
|F| − 1

2
many, as we just proved) and the zero squares (of which there is only 1,

namely 02 = 0). Thus, the total number of squares in F is
|F| − 1

2
+1 =

|F|+ 1

2
=

1

2
(|F|+ 1).

This solves part (d) of the exercise.

(e) Part (d) of this exercise shows that the number of squares in F is
1

2
(|F|+ 1). Thus,

1

2
(|F|+ 1) = (the number of squares in F) ∈ N

(since a number that counts something is always ∈ N). Therefore,
1

2
(|F|+ 1) ∈ N ⊆ Z,

so that the integer |F| + 1 is even. This shows that |F| is odd. This solves part (e) of the
exercise.

6 Exercise 6: The characteristic of a field

6.1 Problem

Let F be a field. Recall that we have defined na to mean a+ a+ · · ·+ a︸ ︷︷ ︸
n times

whenever n ∈ N

and a ∈ F.
Assume that there exists a positive integer n such that n ·1F = 0. Let p be the smallest

such n.
Prove that p is prime.
[Hint: (a · 1F) · (b · 1F) = ab · 1F for all a, b ∈ N.]
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6.2 Remark

The p we just defined is called the characteristic of the field F when it exists. (Otherwise,
the characteristic of the field F is defined to be 0.)

Thus, for each prime p, the finite field Z/p, as well as the finite field of size p2 that we
constructed in class, have characteristic p.

6.3 Solution sketch

We have assumed that F is a field. Hence, F is a commutative skew field (by the definition
of a field). We have 0F 6= 1F (since F is a skew field).

We have defined p to be the smallest positive integer n such that n · 1F = 0. Thus, p
is a positive integer which itself satisfies p · 1F = 0. Furthermore, if n is a positive integer
such that n · 1F = 0, then

n ≥ p (12)

(since p is the smallest positive integer n such that n · 1F = 0).
If we had p = 1, then we would have p · 1F = 1 · 1F = 1F 6= 0F (since 0F 6= 1F), which

would contradict p · 1F = 0 = 0F. Thus, we cannot have p = 1. Therefore, we have p > 1
(since p is a positive integer).

We shall now show that the only positive divisors of p are 1 and p. Indeed, assume the
contrary. Thus, p has a positive divisor other than 1 and p. Consider such a divisor, and
denote it by d. Thus, d is a positive divisor of p that is distinct from 1 and p. In other
words, d is a positive divisor of p and satisfies d 6= 1 and d 6= p. We have d ≤ p (since d is
a positive divisor of the positive integer p). Combining this with d 6= p, we obtain d < p.
Also, d ∈ Z (since d is an integer) and

p

d
∈ Z (since d is a divisor of p).

Now, for all a, b ∈ Z, we have

(a · 1F) · (b · 1F) = a · (1F · (b · 1F))︸ ︷︷ ︸
=b·1F

= a · (b · 1F) = ab · 1F.

Applying this to a = d and b =
p

d
, we obtain

(d · 1F) ·
(p
d
· 1F
)
= d · p

d︸︷︷︸
=p

·1F = p · 1F = 0.

Thus, Exercise 5 (a) (applied to a = d ·1F and b =
p

d
·1F) shows that d ·1F = 0 or

p

d
·1F = 0.

If we had d · 1F = 0, then we would have d ≥ p (by (12), applied to n = d), which would
contradict d < p. Hence, we cannot have d ·1F = 0. Thus, we have

p

d
·1F = 0 (since d ·1F = 0

or
p

d
· 1F = 0). But

p

d
is an integer (since

p

d
∈ Z) and is positive (since p and d are positive);

thus,
p

d
is a positive integer. Hence, (12) (applied to n =

p

d
) yields

p

d
≥ p (since

p

d
· 1F = 0).

Since d is positive, we can multiply this inequality by d, and thus obtain p ≥ pd. Since p is
positive, we can divide this inequality by p, and thus obtain 1 ≥ d. Hence, d = 1 (since d is
a positive integer). This contradicts d 6= 1.

This contradiction shows that our assumption was false. Hence, the only positive divisors
of p are 1 and p. Thus, p is a prime (since p is an integer satisfying p > 1). Qed.
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6.4 Remark

We have never used the commutativity of multiplication (in F) in the above proof. Thus,
we can replace “field” by “skew field” in this exercise.

References

[Grinbe19] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January
2019.
http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift when the
project gets updated; for a “frozen” version whose numbering is guaranteed
to match that in the citations above, see https://github.com/darijgr/
detnotes/releases/tag/2019-01-10 .

Darij Grinberg, 00000000 20 dgrinber@umn.edu

http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
https://github.com/darijgr/detnotes/releases/tag/2019-01-10
https://github.com/darijgr/detnotes/releases/tag/2019-01-10

	Exercise 1: The opposite ring
	Remark
	Solution

	Exercise 2: More ring isomorphisms
	Problem
	Remark
	Solution

	Exercise 3: Entangled inverses
	Solution

	Exercise 4: Composition of ring homomorphisms
	Problem
	Solution

	Exercise 5: Squares in finite fields I
	Problem
	Solution

	Exercise 6: The characteristic of a field
	Problem
	Remark
	Solution sketch
	Remark


