
University of Minnesota, School of Mathematics

Math 4281: Introduction to Modern Algebra,
Spring 2019: Homework 6

Tom Winckelman (edited by Darij Grinberg)

May 15, 2019

Exercise 3: Entangled inverses

Let K be a ring.
A left inverse of an element x ∈ K is defined to be a y ∈ K such that yx = 1.
A right inverse of an element x ∈ K is defined to be a y ∈ K such that xy = 1.
Let a and b be two elements of K. Prove the following:

(a) If c is a left inverse of 1− ab, then 1 + bca is a left inverse of 1− ba.

(b) If c is a right inverse of 1− ab, then 1 + bca is a right inverse of 1− ba.

(c) If c is an inverse of 1− ab, then 1 + bca is an inverse of 1− ba.

Here and in the following, the word “inverse” (unless qualified with an adjective) means
“multiplicative inverse”.
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Solution

(a) Assume that c is a left inverse of 1− ab. That is, c(1− ab) = 1. It follows that:1

(1 + bca)(1− ba)

= (1− ba) + bca(1− ba) (by distributivity, since K is a ring)
= 1− ba+ bca− bcaba (by distributivity)
= 1 + (−b)(a− ca+ caba) (by distributivity)
= 1 + (−b)(1− c+ cab)a (by distributivity)
= 1 + (−b)(1− c(1− ab))a (by distributivity)
= 1 + (−b)(1− 1)a (since c(1− ab) = 1)
= 1 + (−b)(0)a (since −1 is the additive inverse of 1)
= 1 + 0 (since zero annihilates)
= 1. (since zero is the neutral element of addition)

In other words, 1 + bca is a left inverse of 1− ba. This solves part (a).

(b) Assume that c is a right inverse of 1− ab. That is, (1− ab)c = 1. It follows that:

(1− ba)(1 + bca)

= (1 + bca)− ba(1 + bca) (by distributivity)
= 1 + bca− ba− babca (by distributivity)
= 1 + b(ca− a− abca) (by distributivity)
= 1 + b(c− 1− abc)a (by distributivity)
= 1 + b(c− abc− 1)a (by commutativity of addition, since K is a ring)
= 1 + b((1− ab)c− 1)a (by distributivity)
= 1 + b(1− 1)a (since (1− ab)c = 1)
= 1 + b(0)a (since −1 is the additive inverse of 1)
= 1 + 0 (since zero annihilates)
= 1. (since zero is the neutral element of addition)

In other words, 1 + bca is a right inverse of 1− ba. This solves part (b).

(c) Assume that c is an inverse of 1−ab. In other words, c (1− ab) = 1 and (1− ab) c =
1. Hence, c is a left inverse of 1− ab and c is a right inverse of 1− ab. Therefore, parts (a)
and (b) imply that 1 + bca is a left inverse of 1− ba and 1 + bca is a right inverse of 1− ba.
In other words,

(1 + bca)(1− ba) = 1 = (1− ba)(1 + bca).

Therefore, by the definition of an inverse, 1 + bca is an inverse of 1 − ba. This solves part
(c).

1Here and in the following, when we refer to “distributivity”, we mean distributivity laws in the wide sense
of this word. This includes identities like u (x+ y + z) = ux+uy+uz and u (x− y + z) = ux−uy+uz.
All of these identities can easily be proven from the ring axioms and the definition of subtraction.
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Exercise 4: Composition of ring homomorphisms

Problem

Let K, L and M be three rings. Prove the following:

(a) If f : K → L and g : L → M are two ring homomorphisms, then g ◦ f : K → M is a
ring homomorphism.

(b) If f : K→ L and g : L→M are two ring isomorphisms, then g ◦ f : K→M is a ring
isomorphism.

Solution

(a) Let f : K→ L and g : L→M be two ring homomorphisms.
In order to prove that g ◦ f : K→M is a ring homomorphism, we must prove four things:

(i) (g ◦ f) (a+ b) = (g ◦ f) (a) + (g ◦ f) (b) for all a, b ∈ K.

(ii) (g ◦ f) (0K) = 0M.

(iii) (g ◦ f) (ab) = (g ◦ f) (a) · (g ◦ f) (b) for all a, b ∈ K.

(iv) (g ◦ f) (1K) = 1M.

We begin by proving (i). Fix arbitrary a ∈ K and b ∈ K. Thus, we have

f(a+ b) = f(a) + f(b),

since f is a ring homomorphism. Now, let us apply g to both sides, yielding:

g (f(a+ b)) = g (f(a) + f(b)) . (1)

The left hand side of (1) is clearly equal to (g ◦ f) (a+ b) by the definition of g ◦ f . Since g
is a ring homomorphism, we obtain:

g (f(a) + f(b)) = g (f(a)) + g (f(b)) = (g ◦ f) (a) + (g ◦ f) (b)

(by the definition of g ◦ f). Hence, (1) rewrites as (g ◦ f) (a + b) = (g ◦ f) (a) + (g ◦ f) (b).
Thus, (i) is proven. The proof of (iii) is similar.

To see that (ii) is true, observe that f(0K) = 0L (since f is a ring homomorphism) and

g(0L) = 0M (likewise). Hence, (g ◦ f) (0K) = g

f(0K)︸ ︷︷ ︸
=0L

 = g(0L) = 0M. This proves (ii).

The proof of (iv) is similar.
Together, (i), (ii), (iii), and (iv) imply that g ◦ f : K → M is a ring homomorphism.

This solves part (a).

(b) Let f : K→ L and g : L→M be two ring isomorphisms.
Thus, f and g are invertible, and f , g, f−1, and g−1 are ring homomorphisms.

From the fact that f and g are ring homomorphisms, we conclude using part (a) of this
exercise that g ◦ f : K→M is a ring homomorphism.

As well, from the fact that f and g are invertible, we obtain that g ◦ f is invertible by
well known properties of functions.
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From the fact that g−1 and f−1 are ring homomorphisms, we conclude using part (a)
of the exercise (applied to M, K, g−1 and f−1 instead of K, M, f and g) that f−1 ◦ g−1 :
M→ K is a ring homomorphism. In other words, (g ◦ f)−1 is a ring homomorphism (since
(g ◦ f)−1 = f−1 ◦ g−1). Thus, g ◦ f is an invertible ring homomorphism whose inverse
(g ◦ f)−1 is a ring homomorphism as well. In other words, g ◦ f is a ring isomorphism. This
proves part (b).

Exercise 6: The characteristic of a field

Problem

Let F be a field. Recall that we have defined na to mean a+ a+ · · ·+ a︸ ︷︷ ︸
n times

whenever n ∈ N

and a ∈ F.
Assume that there exists a positive integer n such that n ·1F = 0. Let p be the smallest

such n.
Prove that p is prime.
[Hint: (a · 1F) · (b · 1F) = ab · 1F for all a, b ∈ N.]

Remark

The p we just defined is called the characteristic of the field F when it exists. (Otherwise,
the characteristic of the field F is defined to be 0.)

Thus, for each prime p, the finite field Z/p, as well as the finite field of size p2 that we
constructed in class, have characteristic p.

Solution

In our definition of fields, we have required a field K to satisfy 0K 6= 1K. Thus, 0F 6= 1F
(since F is a field).

We have assumed that there exists a positive integer n such that n · 1F = 0. Hence, by
the well ordering property, the minimum

min
{
n ∈ Z+ : n · 1F = 0

}
exists

(where Z+ denotes the set {1, 2, 3, . . .}). Let m be this minimum. In other words, m :=
min {n ∈ Z+ : n · 1F = 0}. Then, m · 1F = 0 = 0F 6= 1F = 1 · 1F, so that m 6= 1. Therefore,
m > 1 (since m ∈ Z+).

Of course, our m is exactly the number that was denoted by p in the exercise. Hence,
we need to prove that m is prime.

Suppose that m = ab for some a, b ∈ {1, 2, . . . ,m− 1}. We shall derive a contradiction.
We have

(a · 1F) · (b · 1F) = a (1F · (b · 1F))︸ ︷︷ ︸
=b·1F

= a (b · 1F) = ab︸︷︷︸
=m

·1F = m · 1F = 0.
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This implies that either a · 1F = 0 or b · 1F = 0. 2 Assume WLOG that a · 1F = 0. Thus,
a ∈ {n ∈ Z+ : n · 1F = 0}. However, a < m (since a ∈ {1, 2, . . . ,m− 1}), so this contradicts
the fact that m = min {n ∈ Z+ : n · 1F = 0}. This contradiction shows that there do not
exist a, b ∈ {1, 2, . . . ,m − 1} such that m = ab. Hence, the only positive divisors of m
are 1 and m (since any other positive divisor of m would be some a ∈ {1, 2, . . . ,m− 1},
and the corresponding “complementary” divisor b := m/a would also belong to the set
{1, 2, . . . ,m− 1}, which would yield that a and b are two elemnets of {1, 2, . . . ,m− 1}
satisfying m = ab). Hence, m is prime (since m > 1). This is precisely what we wanted to
prove, only that we called it m rather than p. This solves the exercise.

2Why? Recall that F is a field. Thus, every nonzero element of F is invertible. Having (a · 1F) · (b · 1F) = 0,
let us suppose that a · 1F and b · 1F are both nonzero. Hence, they are both invertible, since F is a field.
Hence, the following computation is valid:

(b · 1F)−1 · (a · 1F)−1 · (a · 1F) · (b · 1F)︸ ︷︷ ︸
=0

= (b · 1F)−1 · (a · 1F)−1 · 0,

which clearly simplifies to 1F = 0F, which contradicts 0F 6= 1F. This contradiction shows that our
assumption was false. In other words, (a · 1F) and (b · 1F) are not both not equal to zero. In other
words, either (a · 1F) = 0 or (b · 1F) = 0.
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