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EXERCISE 3: ENTANGLED INVERSES

Let K be a ring.
A left inverse of an element x € K is defined to be a y € K such that yz = 1.
A right inverse of an element x € K is defined to be a y € K such that xy = 1.
Let a and b be two elements of K. Prove the following:

(a) If ¢ is a left inverse of 1 — ab, then 1+ bea is a left inverse of 1 — ba.
(b) If ¢ is a right inverse of 1 — ab, then 1 + bca is a right inverse of 1 — ba.

(c) If ¢ is an inverse of 1 — ab, then 1 + bca is an inverse of 1 — ba.

Here and in the following, the word “inverse” (unless qualified with an adjective) means
“multiplicative inverse”.
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SOLUTION

(a) Assume that c is a left inverse of 1 — ab. That is, ¢(1 — ab) = 1. It follows that{]

(14 bea)(1 — ba)

= (1 —ba) + bca(l — ba) (by distributivity, since K is a ring

=1 — ba + bca — bcaba
=1+ (=b)(a — ca + caba)

by distributivity

(
(by distributivity
(

=14 (=b)(1 —c+ cab)a by distributivity
=14 (=b)(1 —c¢(1 —ab))a

=14+ (-b)(1—-1)a (since ¢(1 — ab) =
=1+ (-b)(0)a (since —1 is the additive inverse of 1

=1+0 (since zero annihilates

)
)
)
)
(by distributivity)
1)
)
)
)

=1 (since zero is the neutral element of addition

In other words, 1 + bca is a left inverse of 1 — ba. This solves part (a).

(b) Assume that c is a right inverse of 1 — ab. That is, (1 — ab)c = 1. It follows that:

(1 —ba)(1 + bea)

= (1 + bea) — ba(1 + bea)
= 1+ beca — ba — babca
=1+ b(ca — a — abca)
=1+b(c—1—abc)a

(by distributivity
(by distributivity
(by distributivity
(by distributivity

(
=14 b(c —abc —1)a (by commutativity of addition, since K is a ring
=14+0b((1 —ab)e—1)a
=14+06(1—-1)a (since (1 —ab)e =1
=1+b(0)a (since —1 is the additive inverse of 1
=140 (since zero annihilates
= 1. (since zero is the neutral element of addition

)
)
)
)
)
(by distributivity)
)
)
)
)

In other words, 1 + bca is a right inverse of 1 — ba. This solves part (b).

(c) Assume that ¢ is an inverse of 1 —ab. In other words, ¢ (1 — ab) = 1 and (1 — ab) c =
1. Hence, ¢ is a left inverse of 1 — ab and c is a right inverse of 1 — ab. Therefore, parts (a)
and (b) imply that 1+ bca is a left inverse of 1 — ba and 1+ bca is a right inverse of 1 — ba.

In other words,

(14 bca)(1 —ba) =1=(1—ba)(l+ bca).

Therefore, by the definition of an inverse, 1 + bca is an inverse of 1 — ba. This solves part

(c).

'Here and in the following, when we refer to “distributivity”, we mean distributivity laws in the wide sense
of this word. This includes identities like u (z + y + 2) = uz + uy + uz and u (x —y + z) = ux — uy + uz.
All of these identities can easily be proven from the ring axioms and the definition of subtraction.
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EXERCISE 4: COMPOSITION OF RING HOMOMORPHISMS

PROBLEM
Let K, I and M be three rings. Prove the following:

(a) If f: K— L andg:L — M are two ring homomorphisms, then go f : K — M is a
ring homomorphism.

(b) If f: K— L and g : L. — M are two ring isomorphisms, then go f : K — M is a ring

isomorphism.

SOLUTION

(a) Let f: K — L and g : L - M be two ring homomorphisms.
In order to prove that go f : K — M is a ring homomorphism, we must prove four things:

(i) (gof)(a+b)=(gof)(a)+(gof)(b) foralabek
(i) (go f)(0k) = Om.
(iii)) (go f)(ab)=(go f)(a)-(go f)(b) foralla,beK.
(iv) (9o f)(lx) = 1lm

We begin by proving (i). Fix arbitrary a € K and b € K. Thus, we have
fla+b) = fla)+ f(b),

since f is a ring homomorphism. Now, let us apply g to both sides, yielding:

g9 (fla+0b)) =g (f(a)+ f(b)). (1)

The left hand side of (1)) is clearly equal to (g o f) (a + b) by the definition of g o f. Since g
is a ring homomorphism, we obtain:

g (fla)+ f(b) = g(f(a)) +g(f(b)) =(gof)(a)+(gof) ()
(by the definition of g o f). Hence, rewrites as (go f)(a+b) = (go f)(a)+ (go f)(b).

Thus, (i) is proven. The proof of (iii) is similar.
To see that (ii) is true, observe that f(0x) = Op (since f is a ring homomorphism) and

g(0L) = Oy (likewise). Hence, (go f) (0x) = g | f(Ox) | = g(0) = Op. This proves (ii).
0
=0,
The proof of (iv) is similar.
Together, (i), (ii), (iii), and (iv) imply that g o f : K — M is a ring homomorphism.
This solves part (a).

(b) Let f: K — L and g : L — M be two ring isomorphisms.
Thus, f and g are invertible, and f, g, f~!, and ¢! are ring homomorphisms.

From the fact that f and g are ring homomorphisms, we conclude using part (a) of this
exercise that go f : K — M is a ring homomorphism.

As well, from the fact that f and ¢ are invertible, we obtain that g o f is invertible by
well known properties of functions.
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From the fact that g~! and f~! are ring homomorphisms, we conclude using part (a)
of the exercise (applied to M, K, ¢g7' and f~! instead of K, M, f and g) that f~'og™!:
M — K is a ring homomorphism. In other words, (g o f )_1 is a ring homomorphism (since
(go f)_1 = f7tog™). Thus, go f is an invertible ring homomorphism whose inverse
(go f)_1 is a ring homomorphism as well. In other words, go f is a ring isomorphism. This
proves part (b).

EXERCISE 6: THE CHARACTERISTIC OF A FIELD

PROBLEM

Let F be a field. Recall that we have defined na to mean ata+---+a whenever n € N

n times

and a € F.

Assume that there exists a positive integer n such that n-1p = 0. Let p be the smallest
such n.

Prove that p is prime.

[Hint: (a-1p) - (b- 1g) = ab- 1y for all a,b € N/]

REMARK

The p we just defined is called the characteristic of the field F when it exists. (Otherwise,
the characteristic of the field F is defined to be 0.)

Thus, for each prime p, the finite field Z/p, as well as the finite field of size p* that we
constructed in class, have characteristic p.

SOLUTION

In our definition of fields, we have required a field K to satisfy Ox # 1x. Thus, Op # 1g
(since F is a field).

We have assumed that there exists a positive integer n such that n - 1p = 0. Hence, by
the well ordering property, the minimum

min {n eZ:in 1y = 0} exists

(where Z* denotes the set {1,2,3,...}). Let m be this minimum. In other words, m :=
min{n € Z* :n-1p = 0}. Then, m-1p =0 = 0p # 1p = 1 - 1y, so that m # 1. Therefore,
m > 1 (since m € Z7T).

Of course, our m is exactly the number that was denoted by p in the exercise. Hence,
we need to prove that m is prime.

Suppose that m = ab for some a,b € {1,2,...,m — 1}. We shall derive a contradiction.
We have

~

=b-1p =m
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This implies that either a - 1g = 0 or b- 1p = 0. E| Assume WLOG that a - 1y = 0. Thus,
a€{ne€Z":n-1p =0}. However, a < m (since a € {1,2,...,m — 1}), so this contradicts
the fact that m = min{n € Z* : n- 1y = 0}. This contradiction shows that there do not
exist a,b € {1,2,...,m — 1} such that m = ab. Hence, the only positive divisors of m
are 1 and m (since any other positive divisor of m would be some a € {1,2,...,m — 1},
and the corresponding “complementary” divisor b := m/a would also belong to the set
{1,2,...,m — 1}, which would yield that a and b are two elemnets of {1,2,...,m — 1}
satisfying m = ab). Hence, m is prime (since m > 1). This is precisely what we wanted to
prove, only that we called it m rather than p. This solves the exercise.

2Why? Recall that F is a field. Thus, every nonzero element of F is invertible. Having (a - 1) - (b 1r) = 0,
let us suppose that a - 1Ip and b - 1y are both nonzero. Hence, they are both invertible, since F is a field.
Hence, the following computation is valid:

(b-1)"" - (a-1p) " (a-1p) - (b-18) = (b-1g) " - (a-1p)"" -0,
[ —
=0
which clearly simplifies to 1p = Op, which contradicts Op # 1p. This contradiction shows that our
assumption was false. In other words, (a-1p) and (b-1p) are not both not equal to zero. In other
words, either (a-1p) =0or (b- 1) = 0.
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