UNIVERSITY OF MINNESOTA, SCHOOL OF MATHEMATICS

Math 4281: Introduction to Modern Algebra,
Spring 2019: Homework 5

Darij Grinberg
May 15, 2019

due date: Monday, 1 April 2019 at the beginning of class,

or before that by email or canvas.
Please solve at most 3 of the 6 exercises!

1 EXERCISE 1: SUMS OF POWERS OF DIVISORS

1.1 PROBLEM

Let n be a positive integer. Let k € N. Prove that

de _ H (pOk +p1k 4. +pvp(n)-k) .

dn p prime

Here, the summation sign “> 7 means a sum over all positive divisors d of n.
din

1.2 SOLUTION

]
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2 EXERCISE 2: ANOTHER VERSION OF JACOBI’S
TWO-SQUARES THEOREM

2.1 PROBLEM
Let n be a positive integer. Prove that

(the number of pairs (z,y) € Z* such that n = 2 + yQ)
= 4 (the number of positive divisors d of n such that d =1 mod 4)
— 4 (the number of positive divisors d of n such that d =3 mod 4).

[Hint: The formula for the left hand side that we proved in class can be freely used.|

2.2 SOLUTION
[.]

3 EXERCISE 3: CHARACTERIZING GAUSSIAN PRIMES

3.1 PROBLEM

Let m be a Gaussian prime.
Prove the following:

(a) If 7 is unit-equivalent to an integer, then 7 is unit-equivalent to a primeﬂ of Type 3.

(Recall that a prime p is said to be of Type 3 if it is congruent to 3 modulo 4.)
Assume, from now on, that 7 is not unit-equivalent to any integer. Let (p1,p2,...,pk)
be a prime factorization of the positive integer N (7). (Thus, pi, pe,. .., px are primes such

that N () = pipe - - pk.)
(b) Prove that 7 | p; for some i € {1,2,...,k}.
Fix an i € {1,2,...,k} such that 7 | p;.
(c) Prove that p; = #7.
(d) Prove that p; is a prime of Type 1 or of Type 2.

(Recall that a prime p is said to be of Type 1 if it is congruent to 1 modulo 4, and is said
to be of Type 2 if it equals 2.)

3.2 REMARK

This exercise yields that the Gaussian primes are the primes of Type 3 and the Gaussian
prime divisors of the primes of Types 1 and 2 (up to unit-equivalence). Conversely, any of
the latter are indeed Gaussian primes (as we proved in class). This completes the charac-
terization of Gaussian primes.

!The unqualified word “prime” always means a prime in the original sense, i.e., an integer p > 1 whose
only positive divisors are 1 and p.
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3.3 SOLUTION
]

4 EXERCISE 4: GAUSSIAN INTEGERS MODULO A (GAUSSIAN
INTEGER

4.1 PROBLEM

For any Gaussian integer 7, we let = be the binary relation on Z [i] defined by

<a55> <— (a=pf modrT).

T

It is straightforward to see (just as in the case of integers) that this relation = is an equiv-

alence relation. (You don’t need to prove this.) We shall refer to the equivalence classes of
this relation = as the Gaussian residue classes modulo T; let Z [i] /T be the set of all these

T

classes.
Let n be a nonzero integer.
Prove that the equivalence classes of the relation = (on Z [i]) are the n? classes [a + bi]
n

sl

for a,b € {0,1,...,|n| — 1}, and that these n? classes are all distinct.

4.2 REMARK

This exercise yields |Z[i] /n| = n*> = N (n) for any nonzero integer n. This is [ConradG,
Lemma 7.15]. (Conrad proves this “by example”; you can follow the argument but you
should write it up in full generality.)

More generally, |Z[i] /7| = N (7) for any nonzero Gaussian integer 7. This is proven in
[ConradGl, Theorem 7.14| (using the above exercise as a stepping stone).

4.3 SOLUTION

]

5 EXERCISE 5: A FIBONACCI DIVISIBILITY

5.1 PROBLEM

1 1-—
Let ¢ = _|_2\/3 and ¢ = 2\/3

number ¢ is known as the golden ratio.) It is easy to see that ¢ +¢ =1 and ¢ - ¢p = —1.
Let Z [¢] be the set of all reals of the form a + bp with a,b € Z.

be the two (real) roots of the polynomial z? —x — 1. (The

(a) Prove that any «, 5 € Z [¢] satisfy a+ 5 € Z[¢p] and a — § € Z[¢] and off € Z ).
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(In the terminology of abstract algebra, this is saying that Z [¢] is a subring of R.)

(b) Prove that every element of Z [¢] can be written as a + b¢ for a unique pair (a,b) of
integers. (In other words, if four integers a, b, ¢, d satisfy a + b = ¢ + d¢, then a = ¢
and b = d.)

Given two elements o and 3 of Z[¢], we say that a | § in Z[¢] if and only if there
exists some 7y € Z [¢] such that § = ay. Thus, we have defined divisibility in Z [¢]. Basic
properties of divisibility of integers (such as Proposition 2.2.4) still apply to divisibility in
Z || (with the same proofs).

(c) If a and b are two elements of Z such that a | b in Z [¢], then prove that a | b in Z.

Let (fo, f1, f2,- - .) be the sequence of nonnegative integers defined recursively by
fo = 0, f1 = ]., and fn = fn—l + fn—2 for all n Z 2.

This is the so-called Fibonacci sequence (and continues with fo =1, fs =2, f4 =3, fs =5
etc.).
It is well-known (Binet’s formula) that
fn:u for all n > 0.

V5

(You don’t need to prove this; there is a completely straightforward proof by induction on

(d) Prove that fy | fan for any nonnegative integers d and n.

[Hint: Lemma 2.10.11 (a) holds not just for integers.|

5.2 REMARK

This exercise (specifically its part (d)) is an example of how a property of integers (here,
fa | fan) can often be proved by working in a larger domain (in our case, Z [¢]). Another
example is our study of sums of two perfect squares using Gaussian integers (done in class).
There are various others. While part (d) of this exercise has fairly simple solutions using
integer arithmetic alone, some other properties of Fibonacci numbers are best understood
by means of working in Z [¢]. For example, if p # 5 is a prime, then one of the two Fibonacci
numbers f,_; and f,4; is divisible by p, while the other is =1 mod p.

5.3 SOLUTION
]
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6 EXERCISE 6: NON-UNIQUE FACTORIZATION IN Z |/—3]

6.1 PROBLEM

We let v/—3 denote the complex number V3i.
Let Z [\/—3] be the set of all complex numbers of the form a + by/—3 with a,b € Z.

These complex numbers are called the 3-Gaussian integers.
It is easy to see that the set Z [\/—3] is closed under addition, subtraction and multi-

plication (i.e., that any o, € Z [\/—_3] satisfy a+ (8 € Z [\/—_3] and a — [ € Z [\/—_3] and
aff € Z [v/=3]). (In the terminology of abstract algebra, this is saying that Z [v/=3] is a
subring of C.)

It is also easy to see that each element of Z [\/—_3] can be written as a + by/—3 for a
unique pair (a, b) of integers.

(a) Prove that each 3-Gaussian integer « satisfies N («) € N and N () Z 2 mod 3.

(Recall that N («) is defined for every complex number «, and thus for every 3-Gaussian
integer a, since 3-Gaussian integers are complex numbers.)

Given two elements o and [ of Z [\/—_3}, we say that o | 5 in Z [\/—_3} if and only if
there exists some v € Z [\/—_3] such that 8 = a7. Thus, we have defined divisibility in
Z [\/—_3] Basic properties of divisibility of integers (such as Proposition 2.2.4) still apply
to divisibility in Z [v/=3] (with the same proofs).

faelZ [\/—_3], then a 3-Gaussian divisor of o shall mean a 3 € Z [\/—_3} such that

BlainZ[v=3].

We define the notions of “inverse”; “unit” and “unit-equivalent” for 3-Gaussian integers
as we did for Gaussian integers.

A nonzero 3-Gaussian integer 7 that is not a unit is called a 3-Gaussian prime if each
3-Gaussian divisor of 7 is either a unit or unit-equivalent to .

(b) List all the 3-Gaussian integers having norms < 4.

(c) List all units in Z [v/=3].

(d) Prove that 2, 1+ /=3 and 1 — /=3 are 3-Gaussian primes.
(e) Prove that 2-2 = (14 +/-3) - (1 —/=3).

(f) Define two 3-Gaussian integers o and 5§ by a = 2 and § = 1+ y/—3. Prove that there
exist no 3-Gaussian integers v and p such that a = yf + p and N (p) < N (p).

[Hint: Your list in part (b) should contain 5 entries. Your list in part (c) should contain
2 entries: Unlike the ring Z [i] with its 4 units, the ring Z [v/—3] has only 2 units.
For (d), discuss the norm of any possible 3-Gaussian divisor.|

6.2 REMARK

Parts (d) and (e) of this exercise show that unique factorization into primes is not auto-
matically preserved when we extend a number system. Neither is division with remainder,
as part (f) illustrates (though we already have seen the geometric reason for this in class).
(Neither is the existence of a well-behaved greatest common divisor.)
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6.3 SOLUTION
]

REFERENCES

[ConradG| Keith Conrad, The Gaussian integers.
http://www.math.uconn.edu/ kconrad/blurbs/ugradnumthy/Zinotes.pdf
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