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1 Exercise 1: Equivalence relations always come
from maps

1.1 Problem

Let S be a set.
Recall that if T is a further set, and if f : S → T is a map, then ≡

f
denotes the relation

on S defined by (
a ≡

f
b

)
⇐⇒ (f (a) = f (b)) .

This is an equivalence relation, called “equality upon applying f ” or “equality under f ”.
Now, let ∼ be any equivalence relation on S. Prove that ∼ has the form ≡

f
for a properly

chosen set T and a properly chosen f : S → T .
More precisely, prove that ∼ equals ≡

f
, where T is the quotient set S/ ∼ and where

f : S → T is the projection map π∼ : S → S/ ∼.
[Hint: To prove that two relations R1 and R2 on S are equal, you need to check that

every pair (a, b) of elements of S satisfies the equivalence (aR1b) ⇐⇒ (aR2b).]
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1.2 Solution

See the class notes, where this is Exercise 3.3.3. (The numbering may shift; it is one of the
exercises in the “Equivalence classes” section.)

2 Exercise 2: Totient-related sum

2.1 Problem

Let n > 1 be an integer. Prove that ∑
i∈{1,2,...,n};

i⊥n

i = nφ (n) /2.

2.2 Solution

See the class notes, where this is Exercise 2.14.5. (The numbering may shift; it is one of the
exercises in the “Euler’s totient function (φ-function)” section.)

3 Exercise 3: Dual numbers

3.1 Problem

Recall that complex numbers were defined as pairs (a, b) of real numbers, with entrywise
addition and subtraction and a certain weird-looking multiplication.

Let me define a different kind of “numbers”: the dual numbers. (The word “numbers”
may appear a bit inappropriate for them, but it is not exactly a trademark...)

We define a dual number to be a pair (a, b) of two real numbers a and b.
We let D be the set of all dual numbers.
For each real number r, we denote the dual number (r, 0) by rD.
We let ε denote the dual number (0, 1).
Define three binary operations +, − and · on D by setting

(a, b) + (c, d) = (a+ c, b+ d) , (1)
(a, b)− (c, d) = (a− c, b− d) , (2)
(a, b) · (c, d) = (ac, ad+ bc) (3)

for all (a, b) ∈ D and (c, d) ∈ D.
(Note that the only difference to complex numbers is the definition of ·, which is lacking

a −bd term.)
Again, we are following standard PEMDAS rules1 for the order of operations, and we

abbreviate α · β as αβ.

1https://en.wikipedia.org/wiki/Order_of_operations
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(a) Prove that α · (β · γ) = (α · β) · γ for any α, β, γ ∈ D.

You can use the following properties of dual numbers without proof (they are all essen-
tially obvious):

• We have α + β = β + α for any α, β ∈ D.

• We have α + (β + γ) = (α + β) + γ for any α, β, γ ∈ D.

• We have α + 0D = 0D + α for any α ∈ D.

• We have α · 1D = 1D · α = α for any α ∈ D.

• We have α · β = β · α for any α, β ∈ D.

• We have α · (β + γ) = αβ + αγ and (α + β) · γ = αγ + βγ for any α, β, γ ∈ D.

• We have α · 0D = 0D · α = 0D for any α ∈ D.

• If α, β, γ ∈ D, then we have the equivalence (α− β = γ) ⇐⇒ (α = β + γ).

We shall identify each real number r with the dual number rD = (r, 0).

(b) Prove that a+ bε = (a, b) for any a, b ∈ R.

An inverse of a dual number α ∈ D means a dual number β such that αβ = 1D. This
inverse is unique, and is called α−1.

(c) Prove that a dual number α = a + bε (with a, b ∈ R) has an inverse if and only if
a 6= 0.

(d) If a, b ∈ R satisfy a 6= 0, prove that the inverse of the dual number a+ bε is
1

a
− b

a2
ε.

We define finite sums and products of dual numbers in the usual way (i.e., just as finite
sums and products of real numbers were defined). Here, an empty sum of dual numbers is
always understood to be 0D, whereas an empty product of dual numbers is always understood
to be 1D.

If α is a dual number and k ∈ N, then the k-th power of α is defined to be the dual
number αα · · ·α︸ ︷︷ ︸

k factors

. This k-th power is denoted by αk. Thus, in particular, α0 = αα · · ·α︸ ︷︷ ︸
0 factors

=

(empty product) = 1D.

(e) Let P (x) = akx
k + ak−1x

k−1 + · · · + a0 be a polynomial with real coefficients. Prove
that

P (a+ bε) = P (a) + bP ′ (a) ε for any a, b ∈ R.

Here, P ′ denotes the derivative of P , which is defined by

P ′ (x) = kakx
k−1 + (k − 1) ak−1x

k−2 + · · ·+ 1a1x
0.
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3.2 Remark

The dual number ε is one of the simplest “rigorous infinitesimals” that appear in mathemat-
ics. Part (e) of the exercise shows that we can literally write P (a+ ε) = P (a) + P ′ (a) ε
when P is a polynomial, without having to compute any limits. It is tempting to “solve”

this equation for P ′ (a), thus obtaining something like P ′ (a) =
P (a+ ε)− P (a)

ε
. How-

ever, this needs to be taken with a grain of salt, since ε has no inverse and the fraction
P (a+ ε)− P (a)

ε
is not uniquely determined. There are other, subtler ways to put infinites-

imals on a firm algebraic footing, but dual numbers are already useful in some situations.
Note that dual numbers have zero-divisors : i.e., there exist nonzero dual numbers a and

b such that ab = 0. The simplest example is probably ε2 = 0 (despite ε 6= 0).

3.3 Solution

(a) Let α, β, γ ∈ D. We must prove that α · (β · γ) = (α · β) · γ.
We have α ∈ D; in other words, α is a dual number. Thus, α is a pair (a, b) of two real

numbers a and b. Consider these a and b.
We have β ∈ D; in other words, β is a dual number. Thus, β is a pair (c, d) of two real

numbers c and d. Consider these c and d.
We have γ ∈ D; in other words, γ is a dual number. Thus, γ is a pair (e, f) of two real

numbers e and f . Consider these e and f .
Comparing the equalities

α︸︷︷︸
=(a,b)

·

 β︸︷︷︸
=(c,d)

· γ︸︷︷︸
=(e,f)

 = (a, b) · ((c, d) · (e, f))︸ ︷︷ ︸
=(ce,cf+de)

(by the definition of
the operation · on D)

= (a, b) · (ce, cf + de)

=

a (ce)︸ ︷︷ ︸
=ace

, a (cf + de) + b (ce)︸ ︷︷ ︸
=acf+ade+bce


(by the definition of the operation · on D)

= (ace, acf + ade+ bce)

and  α︸︷︷︸
=(a,b)

· β︸︷︷︸
=(c,d)

 · γ︸︷︷︸
=(e,f)

= ((a, b) · (c, d))︸ ︷︷ ︸
=(ac,ad+bc)

(by the definition of
the operation · on D)

· (e, f) = (ac, ad+ bc) · (e, f)

=

(ac) e︸ ︷︷ ︸
=ace

, (ac) f + (ad+ bc) e︸ ︷︷ ︸
=acf+ade+bce


(by the definition of the operation · on D)

= (ace, acf + ade+ bce) ,

we obtain α · (β · γ) = (α · β) · γ. This solves part (a) of the exercise.
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(b) Let a, b ∈ R. Then, the definition of aD yields aD = (a, 0), whereas the definition of
bD yields bD = (b, 0). The definition of ε yields ε = (0, 1). Thus,

aD︸︷︷︸
=(a,0)

+ bD︸︷︷︸
=(b,0)

ε︸︷︷︸
=(0,1)

= (a, 0) + (b, 0) · (0, 1)︸ ︷︷ ︸
=(b·0,b·1+0·0)

(by the definition of
the operation · on D)

= (a, 0) +

b · 0︸︷︷︸
=0

, b · 1 + 0 · 0︸ ︷︷ ︸
=b



= (a, 0) + (0, b) =

a+ 0︸ ︷︷ ︸
=a

, 0 + b︸ ︷︷ ︸
=b

 (
by the definition of

the operation + on D

)
= (a, b) .

Since we identify the real numbers a and b with the dual numbers aD and bD, we can rewrite
this equality as a+ bε = (a, b). This solves part (b) of the exercise.

(c) Let α = a+bε be a dual number with a, b ∈ R. We must prove that α has an inverse
if and only if a 6= 0.

In other words, we must prove the logical equivalence

(α has an inverse) ⇐⇒ (a 6= 0) . (4)

We shall prove the “⇐=” and “=⇒” parts of this equivalence separately:
[Proof of the “⇐=” direction of (4): Assume that a 6= 0. We must prove that α has an

inverse.
The real numbers

1

a
and

b

a2
are well-defined (since a 6= 0). Hence, the dual number(

1

a
,− b

a2

)
is well-defined.

Part (b) of this exercise yields a+ bε = (a, b). Hence, α = a+ bε = (a, b). Thus,

α︸︷︷︸
=(a,b)

·
(
1

a
,− b

a2

)
= (a, b) ·

(
1

a
,− b

a2

)
=

a · 1a︸︷︷︸
=1

, a ·
(
− b

a2

)
+ b · 1

a︸ ︷︷ ︸
=0


(by the definition of the operation · on D)

= (1, 0) = 1D (since the definition of 1D yields 1D = (1, 0)) .

In other words, the dual number
(
1

a
,− b

a2

)
is an inverse of α (by the definition of “inverse”).

Hence, the dual number α has an inverse (namely,
(
1

a
,− b

a2

)
). This proves the “⇐=”

direction of (4).]
[Proof of the “=⇒” direction of (4): Assume that α has an inverse. We must prove that

a 6= 0.
We have assumed that α has an inverse. Let β be such an inverse. Thus, β is an inverse

of α. In other words, β is a dual number such that αβ = 1D (by the definition of “inverse”).
Part (b) of this exercise yields a+ bε = (a, b). Hence, α = a+ bε = (a, b).
But β is a dual number. Thus, β is a pair (c, d) of two real numbers c and d. Consider

these c and d.
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We have αβ = 1D = (1, 0) (by the definition of 1D). Thus,

(1, 0) = α︸︷︷︸
=(a,b)

β︸︷︷︸
=(c,d)

= (a, b) · (c, d) = (ac, ad+ bc)

(
by the definition of the

operation · on D

)
.

Thus, 1 = ac and 0 = ad+ bc. From 1 = ac, we conclude that ac = 1 6= 0 and therefore
a 6= 0. This proves the “=⇒” direction of (4).]

We thus have proven both directions of the equivalence (4). Thus, (4) is proven, and
part (c) of the exercise is solved.

(d) Let a, b ∈ R satisfy a 6= 0. We must prove that the inverse of the dual number a+bε

is
1

a
− b

a2
ε.

The real numbers
1

a
and

b

a2
are well-defined (since a 6= 0). Hence, the dual number(

1

a
,− b

a2

)
is well-defined. Part (b) of this exercise (applied to

1

a
and − b

a2
instead of a and

b) yields
1

a
+

(
− b

a2

)
ε =

(
1

a
,− b

a2

)
.

Part (b) of this exercise yields a+ bε = (a, b). Hence,

(a+ bε)︸ ︷︷ ︸
=(a,b)

·
(
1

a
− b

a2
ε

)
︸ ︷︷ ︸

=
1

a
+

− b
a2

ε=
1

a
,−
b

a2



= (a, b) ·
(
1

a
,− b

a2

)
=

a · 1a︸︷︷︸
=1

, a ·
(
− b

a2

)
+ b · 1

a︸ ︷︷ ︸
=0


(by the definition of the operation · on D)

= (1, 0) = 1D (since the definition of 1D yields 1D = (1, 0)) .

In other words, the dual number
1

a
− b

a2
ε is an inverse of a+bε (by the definition of “inverse”).

Hence, the dual number a+ bε has a unique inverse (because any dual number that has an

inverse must have a unique inverse), and this inverse is
1

a
− b

a2
ε. This solves part (d) of the

exercise.

(e) We will use two auxiliary claims:

Claim 1: Let J be a finite set. For each j ∈ J , let aj and bj be two real numbers.
Then, ∑

j∈J

(aj, bj) =

(∑
j∈J

aj,
∑
j∈J

bj

)
(as dual numbers). (Here, the “

∑
j∈J

” sign on the left hand side stands for a sum

of finitely many dual numbers; this is defined just as we defined sums of finitely
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many integers or real numbers or complex numbers.2)

[Proof of Claim 1: This claim can be proven by a straightforward induction on |J |, using
the definition of the operation + on D. (We leave the details to the reader.)]

Claim 2: Let a, b ∈ R. Then, in D, we have

(a, b)k =
(
ak, kak−1b

)
for every k ∈ N.

(Here, we agree to understand the expression “kak−1” to mean 0 when k = 0,
even if its sub-expression “ak−1” may be meaningless3.)

[First proof of Claim 2: We shall prove Claim 2 by induction on k:
Induction base: We have (a, b)0 = 1D = (1, 0) (by the definition of 1D). Comparing this

with

(
a0︸︷︷︸
=1

, 0a0−1b︸ ︷︷ ︸
=0

)
= (1, 0), we obtain (a, b)0 = (a0, 0a0−1b). In other words, Claim 2 holds

for k = 0. This completes the induction base.
Induction step: Let m ∈ N. Assume that Claim 2 holds for k = m. We must prove that

Claim 2 holds for k = m+ 1.
We have assumed that Claim 2 holds for k = m. In other words, we have (a, b)m =

(am,mam−1b). Now,

(a, b)m+1 = (a, b) · (a, b)m︸ ︷︷ ︸
=(am,mam−1b)

= (a, b) ·
(
am,mam−1b

)
=
(
aam, amam−1b+ bam

)
(by the definition of the operation · on D). But we have amam−1b = maam−1︸ ︷︷ ︸

=am

b = mamb.

(Strictly speaking, this computation is only justified when m 6= 0, because we agreed to
give the expression “kak−1” special treatment when k = 0. But it is clear that the equality
amam−1b = mamb also holds when m = 0.) Thus,

(a, b)m+1 =

(
aam︸︷︷︸
=am+1

, amam−1b︸ ︷︷ ︸
=mamb

+ bam︸︷︷︸
=amb

)
=

am+1,mamb+ amb︸ ︷︷ ︸
=(m+1)amb



=

am+1, (m+ 1) am︸︷︷︸
=a(m+1)−1

(since m=(m+1)−1)

b

 =
(
am+1, (m+ 1) a(m+1)−1b

)
.

In other words, Claim 2 holds for k = m + 1. This completes the induction step. Thus,
Claim 2 is proven by induction.]

The proof we just gave for Claim 2 was straightforward and completely elementary; for
the sake of instructivity, let us next outline a different proof of Claim 2, which relies on the
binomial formula. First, we recall that the binomial formula (see, e.g., Theorem 2.17.13 in
the class notes) says that any real numbers x and y and any n ∈ N satisfy

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k. (5)

2Recall that empty sums of dual numbers are defined to be 0D = (0, 0).
3The sub-expression “ak−1” is indeed meaningless when a = 0 and k = 0.

Darij Grinberg, 00000000 7 dgrinber@umn.edu

http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf


Solutions to homework set #4 page 8 of 15

We can replace “real numbers” by “dual numbers” in this statement (i.e., we can let x and y
be dual numbers instead of being real numbers) without sacrificing its correctness; indeed,
the very same argument that proves (5) for arbitrary real numbers x and y (by induction on
n) will also prove (5) for dual numbers x and y. This is because the basic rules of addition,
multiplication and taking powers that hold for real numbers all hold for dual numbers as
well4. So we know that (5) holds whenever x and y are dual numbers. In other words, any
dual numbers x and y and any n ∈ N satisfy

(x+ y)n =
n∑
k=0

(
n

k

)
xkyn−k =

n∑
m=0

(
n

m

)
xmyn−m (6)

(here, we have renamed the summation index k as m).
Let us also observe that ε2 = 0. (Indeed,

ε2 = ε︸︷︷︸
=(0,1)

· ε︸︷︷︸
=(0,1)

= (0, 1) · (0, 1) =

(
0 · 0︸︷︷︸
=0

, 0 · 1 + 1 · 0︸ ︷︷ ︸
=0

)
(by the definition of the operation · on D)

= (0, 0) = 0.

)
We are now ready to give our second proof of Claim 2:
[Second proof of Claim 2 (sketched): It is easy to see that Claim 2 holds for k = 0.

Thus, for the rest of this proof, we WLOG assume that k 6= 0. Hence, k ≥ 1 (since k ∈ N).
Part (b) of this exercise yields a+ bε = (a, b). Hence, (a, b) = a+ bε. Thus,

(a, b)k = (a+ bε)k =
k∑

m=0

(
k

m

)
am (bε)k−m

(by (6), applied to x = a and y = bε and n = k)

=
k−2∑
m=0

(
k

m

)
am (bε)k−m︸ ︷︷ ︸

=bk−mεk−m

+

(
k

k − 1

)
︸ ︷︷ ︸

=k
(this is easy
to check)

ak−1 (bε)k−(k−1)︸ ︷︷ ︸
=(bε)1=bε

+

(
k

k

)
︸︷︷︸
=1

(this is easy
to check)

ak (bε)k−k︸ ︷︷ ︸
=(bε)0=1

 here, we have split off the addends for m = k − 1
and for m = k from the sum (which is allowed,

because k ≥ 1 shows that both of these addends exist)


=

k−2∑
m=0

(
k

m

)
ambk−m εk−m︸︷︷︸

=ε2ε(k−m)−2

(since k−m≥2
(because m≤k−2))

+kak−1bε+ ak

=
k−2∑
m=0

(
k

m

)
ambk−m ε2︸︷︷︸

=0

ε(k−m)−2 + kak−1bε+ ak = kak−1bε+ ak

= ak + kak−1bε =
(
ak, kak−1b

)
(by part (b) of the exercise, applied to ak and kak−1b instead of a and b). Thus, Claim 2 is
proven again.]

4For example, part (a) of this exercise shows that the associativity of multiplication holds for dual numbers;
likewise, all the other basic rules can be proven.
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We can now finally solve part (e) of the exercise:

We have P (x) = akx
k + ak−1x

k−1 + · · · + a0 =
k∑
j=0

ajx
j. Substituting a for x in this

equation, we find

P (a) =
k∑
j=0

aja
j. (7)

Moreover, P ′ (x) = kakx
k−1+(k − 1) ak−1x

k−2+ · · ·+1a1x
0 =

k∑
j=1

jajx
j−1 =

k∑
j=1

ajjx
j−1.

Substituting a for x in this equation, we find

P ′ (a) =
k∑
j=1

ajja
j−1. (8)

Substitute the dual number (a, b) for x in the equation P (x) =
k∑
j=0

ajx
j. We thus obtain5

P ((a, b)) =
k∑
j=0

aj︸︷︷︸
=(aj)D=(aj ,0)

(by the definition
of (aj)D)

(a, b)j︸ ︷︷ ︸
=(aj ,jaj−1b)
(by Claim 2,

applied to j instead of k)

=
k∑
j=0

(aj, 0) ·
(
aj, jaj−1b

)︸ ︷︷ ︸
=(ajaj ,ajjaj−1b+0aj)

(by the definition
of the operation · on D)

=
k∑
j=0

ajaj, ajjaj−1b+ 0aj︸ ︷︷ ︸
=ajjaj−1b

 =
k∑
j=0

(
aja

j, jaja
j−1b

)
=

(
k∑
j=0

aja
j,

k∑
j=0

ajja
j−1b

)
 by Claim 1, applied to {0, 1, . . . , k} , ajaj and ajjaj−1b

instead of J , aj and bj (since the “
k∑
j=0

” sign means “
∑

j∈{0,1,...,k}
”)



=


k∑
j=0

aja
j

︸ ︷︷ ︸
=P (a)
(by (7))

,
k∑
j=1

ajja
j−1

︸ ︷︷ ︸
=P ′(a)
(by (8))

b


(
since

k∑
j=0

ajja
j−1b = a0 0a

0−1︸ ︷︷ ︸
=0

b+
k∑
j=1

ajja
j−1b =

k∑
j=1

ajja
j−1b

)

=

P (a) , P ′ (a) b︸ ︷︷ ︸
=bP ′(a)

 = (P (a) , bP ′ (a)) .

But part (b) of this exercise (applied to P (a) and bP ′ (a) instead of a and b) yields

P (a) + bP ′ (a) ε = (P (a) , bP ′ (a)) . (9)

5Here, we agree to understand the expression “jaj−1” to mean 0 when j = 0, even if its sub-expression
“aj−1” may be meaningless. This is the same convention that we followed in Claim 2.
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But part (b) of this exercise yields a+ bε = (a, b). Hence,

P

a+ bε︸ ︷︷ ︸
=(a,b)

 = P ((a, b)) = (P (a) , bP ′ (a)) = P (a) + bP ′ (a) ε

(by (9)). This solves part (e) of the problem.

4 Exercise 4: Z
[√

2
]

4.1 Problem

Let Z
[√

2
]
denote the set of all reals of the form a+ b

√
2 with a, b ∈ Z. We shall call such

reals
√
2-integers.

(a) Prove that any α, β ∈ Z
[√

2
]
satisfy α + β ∈ Z

[√
2
]
and α − β ∈ Z

[√
2
]
and

αβ ∈ Z
[√

2
]
.

(b) Prove that every element of Z
[√

2
]
can be written as a+ b

√
2 for a unique pair (a, b)

of integers. (In other words, if four integers a, b, c, d satisfy a + b
√
2 = c + d

√
2, then

a = c and b = d.)

For any α ∈ Z
[√

2
]
, define the

√
2-norm N2 (α) of α by N2 (α) = a2 − 2b2, where α

is written in the form α = a + b
√
2 with a, b ∈ Z. This is well-defined by part (b) of this

exercise.

(c) Prove that N2 (αβ) = N2 (α)N2 (β) for all α, β ∈ Z
[√

2
]
.

Let (p0, p1, p2, . . .) be the sequence of nonnegative integers defined recursively by

p0 = 0, p1 = 1, and pn = 2pn−1 + pn−2 for all n ≥ 2.

(Thus, p2 = 2 and p3 = 5 and p4 = 12 and so on.)

(d) Prove that pn+1pn−1 − p2n = (−1)n for each n ≥ 1.

(e) Prove that
(
pn−1 + pn + pn

√
2
)
·
(
pn−1 + pn − pn

√
2
)
= (−1)n for each n ≥ 1.

[Hint: For (d), use induction.]

4.2 Remark

The set Z
[√

2
]
of
√
2-integers is rather similar to the set Z [i] of Gaussian integers: the

former has elements of the form a+ b
√
2 with a, b ∈ Z, while the latter has elements of the

form a+b
√
−1 with a, b ∈ Z. The

√
2-norm on Z

[√
2
]
is an analogue of the (usual) norm on

Z [i]. However, visually speaking, the latter set is “spread out” in the Euclidean plane, while
the former is “concentrated” on the real line (and actually everywhere dense on it – i.e.,
every little interval on the real line has a

√
2-integer inside it). The difference has algebraic

consequences; in particular, there are only four units (1,−1, i,−i) in Z [i], whereas Z
[√

2
]

has infinitely many units (namely, part (e) of the exercise shows that pn−1 + pn + pn
√
2 is

a unit for each n ≥ 1).
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4.3 Solution

(a) Let α, β ∈ Z
[√

2
]
. We must prove that α + β ∈ Z

[√
2
]
and α − β ∈ Z

[√
2
]
and

αβ ∈ Z
[√

2
]
.

We have α ∈ Z
[√

2
]
. In other words, α is a real of the form a + b

√
2 with a, b ∈ Z

(by the definition of Z
[√

2
]
). In other words, there exist two integers x1, x2 ∈ Z such that

α = x1 + x2
√
2. Similarly, there exist two integers y1, y2 ∈ Z such that β = y1 + y2

√
2.

Consider these four integers x1, x2, y1, y2.
We have

α︸︷︷︸
=x1+x2

√
2

+ β︸︷︷︸
=y1+y2

√
2

=
(
x1 + x2

√
2
)
+
(
y1 + y2

√
2
)
= (x1 + y1) + (x2 + y2)

√
2.

Hence, α + β is a real of the form a + b
√
2 with a, b ∈ Z (namely, with a = x1 + y1 and

b = x2 + y2). In other words, α + β ∈ Z
[√

2
]
(by the definition of Z

[√
2
]
).

We have

α︸︷︷︸
=x1+x2

√
2

− β︸︷︷︸
=y1+y2

√
2

=
(
x1 + x2

√
2
)
−
(
y1 + y2

√
2
)
= (x1 − y1) + (x2 − y2)

√
2.

Hence, α − β is a real of the form a + b
√
2 with a, b ∈ Z (namely, with a = x1 − y1 and

b = x2 − y2). In other words, α− β ∈ Z
[√

2
]
(by the definition of Z

[√
2
]
).

We have

α︸︷︷︸
=x1+x2

√
2

β︸︷︷︸
=y1+y2

√
2

=
(
x1 + x2

√
2
)(

y1 + y2
√
2
)
= x1y1 + x1y2

√
2 + x2

√
2y1 + x2

√
2y2
√
2

= x1y1 + x1y2
√
2 + x2

√
2y1︸ ︷︷ ︸

=y1
√
2

+x2
√
2y2︸ ︷︷ ︸

=y2
√
2

√
2

= x1y1 + x1y2
√
2 + x2y1

√
2 + x2y2

√
2
√
2︸ ︷︷ ︸

=(
√
2)

2
=2

= x1y1 + x1y2
√
2 + x2y1

√
2 + x2y22

= (x1y1 + 2x2y2) + (x1y2 + x2y1)
√
2. (10)

Hence, αβ is a real of the form a + b
√
2 with a, b ∈ Z (namely, with a = x1y1 + 2x2y2 and

b = x1y2 + x2y1). In other words, αβ ∈ Z
[√

2
]
(by the definition of Z

[√
2
]
).

We have now shown that α + β ∈ Z
[√

2
]
and α − β ∈ Z

[√
2
]
and αβ ∈ Z

[√
2
]
. This

solves part (a) of the exercise.

(b) Let α be an element of Z
[√

2
]
. We must prove that α can be written as a + b

√
2

for a unique pair (a, b) of integers.
Clearly, α can be written as a + b

√
2 for at least one pair (a, b) of integers (because

this is what it means for α to belong to Z
[√

2
]
). Thus, it remains to prove that α can

be written as a + b
√
2 for at most one pair (a, b) of integers. In other words, we must

prove that if (a1, b1) and (a2, b2) are two pairs (a, b) of integers such that α = a+ b
√
2, then

(a1, b1) = (a2, b2).
Let us prove this. Let (a1, b1) and (a2, b2) be two pairs (a, b) of integers such that

α = a+ b
√
2. We must show that (a1, b1) = (a2, b2).
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Assume the contrary. Thus, (a1, b1) 6= (a2, b2).
It is easy to check that 2 is not a perfect square. (We can show something more general:

Any integer that is congruent to 2 or 3 modulo 4 is not a perfect square. Indeed, Exercise
2.7.2 in the class notes shows that each integer u satisfies either u2 ≡ 0mod 4 (if u is even)
or u2 ≡ 1mod 4 (if u is odd). In other words, each perfect square is congruent to either 0 or
1 modulo 4. Thus, any integer that is congruent to 2 or 3 modulo 4 is not a perfect square.)

Exercise 2.10.15 (a) in the class notes shows that if a positive integer u is not a perfect
square, then

√
u is irrational. Applying this to u = 2, we conclude that

√
2 is irrational

(since 2 is not a perfect square).
But (a1, b1) is a pair (a, b) of integers such that α = a + b

√
2. In other words, (a1, b1)

is a pair of integers and satisfies α = a1 + b1
√
2. Similarly, (a2, b2) is a pair of integers and

satisfies α = a2 + b2
√
2. Hence, a2 + b2

√
2 = α = a1 + b1

√
2, so that

a2 − a1 = b1
√
2− b2

√
2 = (b1 − b2)

√
2. (11)

If we had b1 = b2, then this would yield a2 − a1 = (b1 − b2)︸ ︷︷ ︸
=0

(since b1=b2)

√
2 = 0, which would lead to

a1 = a2 and therefore

 a1︸︷︷︸
=a2

, b1︸︷︷︸
=b2

 = (a2, b2); but this would contradict (a1, b1) 6= (a2, b2).

Hence, we cannot have b1 = b2. Thus, we have b1 6= b2. In other words, b1 − b2 6= 0. Hence,
we can divide both sides of the equality (11) by b1 − b2. We thus obtain

a2 − a1
b1 − b2

=
√
2.

Hence, the number
a2 − a1
b1 − b2

is irrational (since
√
2 is irrational). But this contradicts the fact

that
a2 − a1
b1 − b2

is rational (which is clear, since a1, a2, b1, b2 are integers). This contradiction

shows that our assumption was wrong. Hence, (a1, b1) = (a2, b2) is proven. This completes
our solution of part (b) of the exercise.

(c) Let α, β ∈ Z
[√

2
]
. We must prove that N2 (αβ) = N2 (α)N2 (β).

We have α ∈ Z
[√

2
]
. In other words, α is a real of the form a + b

√
2 with a, b ∈ Z

(by the definition of Z
[√

2
]
). In other words, there exist two integers x1, x2 ∈ Z such that

α = x1 + x2
√
2. Similarly, there exist two integers y1, y2 ∈ Z such that β = y1 + y2

√
2.

Consider these four integers x1, x2, y1, y2.
We have α = x1 + x2

√
2 with x1, x2 ∈ Z. Thus, the definition of N2 (α) yields N2 (α) =

x21 − 2x22. Similarly, N2 (β) = y21 − 2y22. But (10) shows that

αβ = (x1y1 + 2x2y2) + (x1y2 + x2y1)
√
2 with x1y1 + 2x2y2, x1y2 + x2y1 ∈ Z.

Hence, the definition of N2 (αβ) yields

N2 (αβ) = (x1y1 + 2x2y2)
2 − 2 (x1y2 + x2y1)

2 = x21y
2
1 − 2x21y

2
2 − 2x22y

2
1 + 4x22y

2
2

(after some straightforward computation). Comparing this with

N2 (α)︸ ︷︷ ︸
=x21−2x22

N2 (β)︸ ︷︷ ︸
=y21−2y22

=
(
x21 − 2x22

) (
y21 − 2y22

)
= x21y

2
1 − 2x21y

2
2 − 2x22y

2
1 + 4x22y

2
2,

we obtain N2 (αβ) = N2 (α)N2 (β). This solves part (c) of the exercise.
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[Remark: An alternative solution to part (c) relies on the concept of a
√
2-conjugate of

an α ∈ Z
[√

2
]
. Namely, the

√
2-conjugate of an α ∈ Z

[√
2
]
is defined to be the number

a − b
√
2, where α is written in the form α = a + b

√
2 with a, b ∈ Z. We denote this

√
2-

conjugate by α, but keep in mind that this notation clashes with the notation α for complex
numbers α. (Fortunately, we will not talk about complex numbers in this solution, so this
clash does not matter.) It is easy to see that N2 (α) = αα for each α ∈ Z

[√
2
]
, and it is

also easy to see that α · β = α · β for any α, β ∈ Z
[√

2
]
. Armed with these two equalities,

we can now observe that any α, β ∈ Z
[√

2
]
satisfy

N2 (αβ) = αβ · αβ︸︷︷︸
=α·β=α·β

= αβ · α · β = αα︸︷︷︸
=N2(α)

ββ︸︷︷︸
=N2(β)

= N2 (α)N2 (β) .

This solves part (c) of the exercise again.]

(d) We shall solve part (d) of the exercise by induction on n:
Induction base: We have p2 p0︸︷︷︸

=0

−p21 = p20 − p21 = −p21 = −12 (since p1 = 1). Thus,

p2p0 − p21 = −12 = −1 = (−1)1. In other words, part (d) of the exercise holds for n = 1.
This completes the induction base.

Induction step: Let m ≥ 1 be an integer. Assume that part (d) of the exercise holds
for n = m. We must prove that part (d) of the exercise holds for n = m+ 1.

We have assumed that part (d) of the exercise holds for n = m. In other words,
pm+1pm−1 − p2m = (−1)m.

The recursive definition of the sequence (p0, p1, p2, . . .) yields pm+2 = 2pm+1 + pm and
pm+1 = 2pm + pm−1. From pm+1 = 2pm + pm−1, we obtain 2pm − pm+1︸︷︷︸

=2pm+pm−1

= 2pm −

(2pm + pm−1) = −pm−1. Now,

pm+2︸︷︷︸
=2pm+1+pm

pm − p2m+1 = (2pm+1 + pm) pm − p2m+1 = 2pm+1pm + p2m − p2m+1

= pm+1 (2pm − pm+1)︸ ︷︷ ︸
=−pm−1

+p2m = pm+1 (−pm−1) + p2m

= −
(
pm+1pm−1 − p2m

)︸ ︷︷ ︸
=(−1)m

= − (−1)m = (−1)m+1 .

In other words, part (d) of the exercise holds for n = m+ 1. This completes the induction
step. Thus, part (d) of the exercise is proven by induction.

(e) Let n ≥ 1. The recursive definition of the sequence (p0, p1, p2, . . .) yields pn+1 =
2pn + pn−1.

Recall the classical identity (a+ b) (a− b) = a2 − b2, which holds for any reals a and b.
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Applying this to a = pn−1 + pn and b = pn
√
2, we obtain(

pn−1 + pn + pn
√
2
)(

pn−1 + pn − pn
√
2
)

= (pn−1 + pn)
2︸ ︷︷ ︸

=p2n−1+2pn−1pn+p2n

−
(
pn
√
2
)2

︸ ︷︷ ︸
=p2n·2=2p2n

= p2n−1 + 2pn−1pn + p2n − 2p2n = 2pn−1pn + p2n−1 − p2n

= pn−1 (2pn + pn−1)︸ ︷︷ ︸
=pn+1

−p2n = pn−1pn+1 − p2n = pn+1pn−1 − p2n = (−1)n

(by part (d) of the exercise). This solves part (e) of the exercise.

4.4 Remark

Let r be any nonnegative real number.
Part (a) of this exercise remains valid if we replace each appearance of “2” by “r”. (We

could even allow r to be negative, if we also replace “reals” by “complex numbers”.)
Parts (b) and (c) of this exercise remain valid if we replace each appearance of “2” by

“r”, provided that r is a positive integer that is not a perfect square. (Of course, the
√
2-norm

N2 (α) needs to be replaced by the
√
r-norm Nr (α), defined by setting Nr (α) = a2 − rb2

for α = a+ b
√
r.)

All three parts (a), (b) and (c) of this exercise remain valid if we replace integers by
rational numbers throughout (i.e., we consider the set of reals of the form a + b

√
2 with

a, b ∈ Q instead of a, b ∈ Z).
Part (d) of this exercise remains valid if we replace each appearance of “2” by “r”.

(Again, we could even allow r to be negative.) Note that if we set r = 1, then the sequence
(p0, p1, p2, . . .) becomes the famous Fibonacci sequence (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .).

Part (e), on the other hand, hinges on the specific properties of
√
2.

5 Exercise 5: Euler’s theorem for non-coprime
integers

5.1 Problem

Let a be an integer, and let n be a positive integer. Prove that an ≡ an−φ(n) mod n.

5.2 Solution

See the class notes, where this is Exercise 2.16.3. (The numbering may shift; it is one of the
exercises in the “The Chinese Remainder Theorem as a bijection” section.)
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6 Exercise 6: Wilson strikes again

6.1 Problem

Let p be an odd prime. Write p in the form p = 2k + 1 for some k ∈ N. Prove that
k!2 ≡ − (−1)k mod p.

[Hint: Each j ∈ Z satisfies j (p− j) ≡ −j2 mod p.]

6.2 Solution

See the class notes, where this is Exercise 2.15.5. (The numbering may shift; it is one of the
exercises in the “Fermat, Euler, Wilson” section.)
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