
University of Minnesota, School of Mathematics

Math 4281: Introduction to Modern Algebra,
Spring 2019: Homework 4

Darij Grinberg

May 15, 2019

due date: Wednesday, 13 March 2019 at the beginning of class,
or before that by email or canvas.

Please solve at most 3 of the 6 exercises!

1 Exercise 1: Equivalence relations always come
from maps

1.1 Problem

Let S be a set.
Recall that if T is a further set, and if f : S → T is a map, then ≡

f
denotes the relation

on S defined by (
a ≡

f
b

)
⇐⇒ (f (a) = f (b)) .

This is an equivalence relation, called “equality upon applying f ” or “equality under f ”.
Now, let ∼ be any equivalence relation on S. Prove that ∼ has the form ≡

f
for a properly

chosen set T and a properly chosen f : S → T .
More precisely, prove that ∼ equals ≡

f
, where T is the quotient set S/ ∼ and where

f : S → T is the projection map π∼ : S → S/ ∼.
[Hint: To prove that two relations R1 and R2 on S are equal, you need to check that

every pair (a, b) of elements of S satisfies the equivalence (aR1b) ⇐⇒ (aR2b).]
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1.2 Solution

[...]

2 Exercise 2: Totient-related sum

2.1 Problem

Let n > 1 be an integer. Prove that ∑
i∈{1,2,...,n};

i⊥n

i = nφ (n) /2.

2.2 Solution

[...]

3 Exercise 3: Dual numbers

3.1 Problem

Recall that complex numbers were defined as pairs (a, b) of real numbers, with entrywise
addition and subtraction and a certain weird-looking multiplication.

Let me define a different kind of “numbers”: the dual numbers. (The word “numbers”
may appear a bit inappropriate for them, but it is not exactly a trademark...)

We define a dual number to be a pair (a, b) of two real numbers a and b.
We let D be the set of all dual numbers.
For each real number r, we denote the dual number (r, 0) by rD.
We let ε denote the dual number (0, 1).
Define three binary operations +, − and · on D by setting

(a, b) + (c, d) = (a+ c, b+ d) , (1)
(a, b)− (c, d) = (a− c, b− d) , (2)
(a, b) · (c, d) = (ac, ad+ bc) (3)

for all (a, b) ∈ D and (c, d) ∈ D.
(Note that the only difference to complex numbers is the definition of ·, which is lacking

a −bd term.)
Again, we are following standard PEMDAS rules1 for the order of operations, and we

abbreviate α · β as αβ.

(a) Prove that α · (β · γ) = (α · β) · γ for any α, β, γ ∈ D.

1 https://en.wikipedia.org/wiki/Order_of_operations
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You can use the following properties of dual numbers without proof (they are all essen-
tially obvious):

• We have α + β = β + α for any α, β ∈ D.

• We have α + (β + γ) = (α + β) + γ for any α, β, γ ∈ D.

• We have α + 0D = 0D + α == α for any α ∈ D.

• We have α · 1D = 1D · α = α for any α ∈ D.

• We have α · β = β · α for any α, β ∈ D.

• We have α · (β + γ) = αβ + αγ and (α + β) · γ = αγ + βγ for any α, β, γ ∈ D.

• We have α · 0D = 0D · α = 0D for any α ∈ D.

• If α, β, γ ∈ D, then we have the equivalence (α− β = γ) ⇐⇒ (α = β + γ).

We shall identify each real number r with the dual number rD = (r, 0).

(b) Prove that a+ bε = (a, b) for any a, b ∈ R.

An inverse of a dual number α ∈ D means a dual number β such that αβ = 1D. This
inverse is unique, and is called α−1.

(c) Prove that a dual number α = a + bε (with a, b ∈ R) has an inverse if and only if
a 6= 0.

(d) If a, b ∈ R satisfy a 6= 0, prove that the inverse of the dual number a+ bε is
1

a
− b

a2
ε.

We define finite sums and products of dual numbers in the usual way (i.e., just as finite
sums and products of real numbers were defined). Here, an empty sum of dual numbers is
always understood to be 0D, whereas an empty product of dual numbers is always understood
to be 1D.

If α is a dual number and k ∈ N, then the k-th power of α is defined to be the dual
number αα · · ·α︸ ︷︷ ︸

k factors

. This k-th power is denoted by αk. Thus, in particular, α0 = αα · · ·α︸ ︷︷ ︸
0 factors

=

(empty product) = 1D.

(e) Let P (x) = akx
k + ak−1x

k−1 + · · · + a0 be a polynomial with real coefficients. Prove
that

P (a+ bε) = P (a) + bP ′ (a) ε for any a, b ∈ R.

Here, P ′ denotes the derivative of P , which is defined by

P ′ (x) = kakx
k−1 + (k − 1) ak−1x

k−2 + · · ·+ 1a1x
0.
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3.2 Remark

The dual number ε is one of the simplest “rigorous infinitesimals” that appear in mathemat-
ics. Part (e) of the exercise shows that we can literally write P (a+ ε) = P (a) + P ′ (a) ε
when P is a polynomial, without having to compute any limits. It is tempting to “solve”

this equation for P ′ (a), thus obtaining something like P ′ (a) =
P (a+ ε)− P (a)

ε
. How-

ever, this needs to be taken with a grain of salt, since ε has no inverse and the fraction
P (a+ ε)− P (a)

ε
is not uniquely determined. There are other, subtler ways to put infinites-

imals on a firm algebraic footing, but dual numbers are already useful in some situations.
Note that dual numbers have zero-divisors : i.e., there exist nonzero dual numbers a and

b such that ab = 0. The simplest example is probably ε2 = 0 (despite ε 6= 0).

3.3 Solution

[...]

4 Exercise 4: Z
[√

2
]

4.1 Problem

Let Z
[√

2
]
denote the set of all reals of the form a+ b

√
2 with a, b ∈ Z. We shall call such

reals
√
2-integers.

(a) Prove that any α, β ∈ Z
[√

2
]
satisfy α + β ∈ Z

[√
2
]
and α − β ∈ Z

[√
2
]
and

αβ ∈ Z
[√

2
]
.

(b) Prove that every element of Z
[√

2
]
can be written as a+ b

√
2 for a unique pair (a, b)

of integers. (In other words, if four integers a, b, c, d satisfy a + b
√
2 = c + d

√
2, then

a = c and b = d.)

For any α ∈ Z
[√

2
]
, define the

√
2-norm N2 (α) of α by N2 (α) = a2 − 2b2, where α

is written in the form α = a + b
√
2 with a, b ∈ Z. This is well-defined by part (b) of this

exercise.

(c) Prove that N2 (αβ) = N2 (α)N2 (β) for all α, β ∈ Z
[√

2
]
.

Let (p0, p1, p2, . . .) be the sequence of nonnegative integers defined recursively by

p0 = 0, p1 = 1, and pn = 2pn−1 + pn−2 for all n ≥ 2.

(Thus, p2 = 2 and p3 = 5 and p4 = 12 and so on.)

(d) Prove that pn+1pn−1 − p2n = (−1)n for each n ≥ 1.

(e) Prove that
(
pn−1 + pn + pn

√
2
)
·
(
pn−1 + pn − pn

√
2
)
= (−1)n for each n ≥ 1.

[Hint: For (d), use induction.]
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4.2 Remark

The set Z
[√

2
]
of
√
2-integers is rather similar to the set Z [i] of Gaussian integers: the

former has elements of the form a+ b
√
2 with a, b ∈ Z, while the latter has elements of the

form a+b
√
−1 with a, b ∈ Z. The

√
2-norm on Z

[√
2
]
is an analogue of the (usual) norm on

Z [i]. However, visually speaking, the latter set is “spread out” in the Euclidean plane, while
the former is “concentrated” on the real line (and actually everywhere dense on it – i.e.,
every little interval on the real line has a

√
2-integer inside it). The difference has algebraic

consequences; in particular, there are only four units (1,−1, i,−i) in Z [i], whereas Z
[√

2
]

has infinitely many units (namely, part (e) of the exercise shows that pn−1 + pn + pn
√
2 is

a unit for each n ≥ 1).

4.3 Solution

[...]

5 Exercise 5: Euler’s theorem for non-coprime
integers

5.1 Problem

Let a be an integer, and let n be a positive integer. Prove that an ≡ an−φ(n) mod n.

5.2 Solution

[...]

6 Exercise 6: Wilson strikes again

6.1 Problem

Let p be an odd prime. Write p in the form p = 2k + 1 for some k ∈ N. Prove that
k!2 ≡ − (−1)k mod p.

[Hint: Each j ∈ Z satisfies j (p− j) ≡ −j2 mod p.]

6.2 Solution

[...]
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http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf
The numbering of theorems and formulas in this link might shift when the
project gets updated; for a “frozen” version whose numbering is guaranteed
to match that in the citations above, see https://github.com/darijgr/
detnotes/releases/tag/2019-01-10 .
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