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1 Exercise 1: Mutual divisibility is rare

1.1 Problem

Let a and b be two integers such that a | b and b | a. Prove that |a| = |b|.

1.2 Solution

See the class notes, where this is Exercise 2.2.2. (The numbering may shift; it is one of the
exercises in the “Divisibility” section.)

2 Exercise 2: Congruence means equal remainders

2.1 Problem

Let n be a positive integer. Let u and v be two integers. Prove that u ≡ v mod n if and
only if u%n = v%n.
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2.2 Solution

See the class notes, where this is Exercise 2.6.1. (The numbering may shift; it is one of the
exercises in the “Division with remainder” section.)

3 Exercise 3: Even and odd

3.1 Problem

Let u be an integer.

(a) Prove that u is even if and only if u%2 = 0.

(b) Prove that u is odd if and only if u%2 = 1.

(c) Prove that u is even if and only if u ≡ 0 mod 2.

(d) Prove that u is odd if and only if u ≡ 1 mod 2.

(e) Prove that u is odd if and only if u+ 1 is even.

(f) Prove that exactly one of the two numbers u and u+ 1 is even.

(g) Prove that u (u+ 1) ≡ 0 mod 2.

(h) Prove that u2 ≡ −u ≡ u mod 2.

3.2 Solution

See the class notes, where this is Exercise 2.7.1 parts (a) to (h). (The numbering may shift;
it is one of the exercises in the “Even and odd numbers” section.)

4 Exercise 4: Factorials 102

4.1 Problem

(a) Prove that

1! · 2! · · · · · (2n)!
n!

= 2n ·
n∏

i=1

((2i− 1)!)2 for each n ∈ N.

(b) Prove that
n∑

k=0

1

k! · (k + 2)
= 1− 1

(n+ 2)!
for each n ∈ N.

Darij Grinberg, 00000000 2 dgrinber@umn.edu

http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/19s/notes.pdf


Solutions to homework set #1 page 3 of 10

4.2 Solution

We first recall that

n! = n · (n− 1)! for each positive integer n. (1)

(This was the claim of Exercise 2 (a) on homework set #0.)

(a) This is precisely [Grinbe19, Exercise 3.5 (c)], with only a superficial difference

(namely, I write “
(

n∏
i=1

((2i− 1)!)

)2

” instead of “
n∏

i=1

((2i− 1)!)2” in [Grinbe19, Exercise 3.5

(c)], but these two expressions are clearly equivalent). I give two solutions in [Grinbe19,
solution to Exercise 3.5 (c)]: one by manipulation and one by induction. Here I will only
show the solution by manipulation:

Let n ∈ N. Then, we can group the factors of the product 1! · 2! · · · · · (2n)! into pairs of
successive factors. We thus obtain1

1! · 2! · · · · · (2n)!

= (1! · 2!) · (3! · 4!) · · · · · ((2n− 1)! · (2n)!) =
n∏

i=1

(2i− 1)! · (2i)!︸︷︷︸
=(2i)·(2i−1)!

(by (1))


=

n∏
i=1

((2i− 1)! · (2i) · (2i− 1)!)︸ ︷︷ ︸
=(2i)·((2i−1)!)2

=
n∏

i=1

(
(2i) · ((2i− 1)!)2

)

=

(
n∏

i=1

(2i)

)
︸ ︷︷ ︸

=2n
n∏

i=1
i

·
n∏

i=1

((2i− 1)!)2 = 2n

(
n∏

i=1

i

)
︸ ︷︷ ︸

=1·2·····n=n!

·
n∏

i=1

((2i− 1)!)2 = 2nn! ·
n∏

i=1

((2i− 1)!)2 .

Dividing both sides of this equality by n!, we find

1! · 2! · · · · · (2n)!
n!

= 2n ·
n∏

i=1

((2i− 1)!)2 .

This solves part (a) of the exercise.

(b) Again, the exercise can be proven by induction or by the telescope principle. Let
me show the latter solution. First, I quote the telescope principle:

Proposition 4.1. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers. Then,

m∑
i=1

(ai − ai−1) = am − a0.

Now, let me solve the exercise. Let n ∈ N. For each i ∈ {0, 1, . . . , n}, we set ai =
−1

(i+ 2)!
.

Thus, a0, a1, . . . , an are n+ 1 real numbers. We state the following:
1Strictly speaking, we are tacitly using the fact that each integer between 1 and 2n (inclusive) can be

written either in the form 2i or in the form 2i − 1 for some i ∈ {1, 2, . . . , n}, and that this i is unique.
The proof of this fact relies on division with remainder.
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Claim 1: For each i ∈ {0, 1, . . . , n}, we have

ai − ai−1 =
1

i! · (i+ 2)
.

[Proof of Claim 1: Let i ∈ {0, 1, . . . , n}. Then, (1) (applied to i+ 1 instead of n) yields
(i+ 1)! = (i+ 1) ·i!. Also, (1) (applied to i+2 instead of n) yields (i+ 2)! = (i+ 2) ·(i+ 1)!.

The definition of ai yields

ai =
−1

(i+ 2)!
=

−1
(i+ 2) · (i+ 1)!

(since (i+ 2)! = (i+ 2) · (i+ 1)!) .

The definition of ai−1 yields

ai−1 =
−1

((i− 1) + 2)!
=

−1
(i+ 1)!

(since (i− 1) + 2 = i+ 1) .

Subtracting this equality from the previous one, we obtain

ai − ai−1 =
−1

(i+ 2) · (i+ 1)!
− −1

(i+ 1)!
=

1

(i+ 1)!
− 1

(i+ 2) · (i+ 1)!
=

(i+ 2)− 1

(i+ 2) · (i+ 1)!

=
i+ 1

(i+ 2) · (i+ 1)!
=

i+ 1

(i+ 2) · (i+ 1) · i!
(since (i+ 1)! = (i+ 1) · i!)

=
1

(i+ 2) · i!
=

1

i! · (i+ 2)
.

This proves Claim 1.]
Now, Proposition 4.1 (applied to m = n) yields

n∑
i=1

(ai − ai−1) = an︸︷︷︸
=
−1

(n+ 2)!
(by the definition of an)

− a0︸︷︷︸
=
−1

(0 + 2)!
(by the definition of a0)

=
−1

(n+ 2)!
− −1

(0 + 2)!
=

1

(0 + 2)!︸ ︷︷ ︸
=
1

2!
=
1

2

− 1

(n+ 2)!
=

1

2
− 1

(n+ 2)!
.

Comparing this with
n∑

i=1

(ai − ai−1)︸ ︷︷ ︸
=

1

i! · (i+ 2)
(by Claim 1)

=
n∑

i=1

1

i! · (i+ 2)
,

we obtain
n∑

i=1

1

i! · (i+ 2)
=

1

2
− 1

(n+ 2)!
. (2)
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But
n∑

k=0

1

k! · (k + 2)
=

n∑
i=0

1

i! · (i+ 2)
(here, we have renamed the summation index k as i)

=
1

0! · (0 + 2)︸ ︷︷ ︸
=

1

1 · 2
=
1

2

+
n∑

i=1

1

i! · (i+ 2)︸ ︷︷ ︸
=
1

2
−

1

(n+ 2)!
(by (2))

=
1

2
+

1

2︸ ︷︷ ︸
=1

− 1

(n+ 2)!
= 1− 1

(n+ 2)!
.

This solves part (b) of the exercise.

5 Exercise 5: Binomial coefficients 102

5.1 Problem

Prove that
(ab)!

a! (b!)a
=

a∏
k=1

(
kb− 1

b− 1

)
for all a ∈ N and all positive integers b.

5.2 Solution

First, let us state an analogue of the telescope principle (Proposition 4.1) for products
instead of sums:

Proposition 5.1. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 nonzero real numbers. Then,

m∏
i=1

ai
ai−1

=
am
a0

.

Proof of Proposition 5.1. Take your favorite proof of Proposition 4.1, and replace addition
by multiplication, subtraction by division and sums by products. This will yield a proof of
Proposition 5.1.

Furthermore, recall the following facts:

Proposition 5.2. If n ∈ N and k ∈ N are such that n ≥ k, then(
n

k

)
=

n!

k! (n− k)!
.

Proposition 5.2 is Exercise 3 (a) on homework set #0.

Proposition 5.3. Any n ∈ Q and k ∈ Q satisfy

k

(
n

k

)
= n

(
n− 1

k − 1

)
.

Darij Grinberg, 00000000 5 dgrinber@umn.edu

http://www.cip.ifi.lmu.de/~grinberg/t/19s/hw0s.pdf


Solutions to homework set #1 page 6 of 10

Proposition 5.3 is Exercise 3 (f) on homework set #0.
Now, let a ∈ N, and let b be a positive integer. Thus, b 6= 0 (since b is positive).

Claim 1: We have (
kb− 1

b− 1

)
=

1

k
· 1
b!
· (kb)!

((k − 1) b)!

for each positive integer k.

[Proof of Claim 1: Let k be a positive integer. Then, Proposition 5.3 (applied to kb and
b instead of n and k) yields

b

(
kb

b

)
= kb

(
kb− 1

k − 1

)
.

We can cancel b from this equality (since b is nonzero), and thus obtain(
kb

b

)
= k

(
kb− 1

k − 1

)
.

On the other hand, k ≥ 1 (since k is a positive integer). We can multiply this inequality by b
(since b is positive) and thus obtain kb ≥ 1b = b. Hence, Proposition 5.2 (applied to kb and

b instead of n and k) yields
(
kb

b

)
=

(kb)!

b! (kb− b)!
=

(kb)!

b! ((k − 1) b)!
(since kb− b = (k − 1) b).

Comparing this equality with
(
kb

b

)
= k

(
kb− 1

k − 1

)
, we obtain

k

(
kb− 1

k − 1

)
=

(kb)!

b! ((k − 1) b)!
.

We can divide both sides of this equality by k (since k is positive and thus nonzero); thus
we obtain (

kb− 1

b− 1

)
=

1

k
· (kb)!

b! ((k − 1) b)!
=

1

k
· 1
b!
· (kb)!

((k − 1) b)!
.

This proves Claim 1.]
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Now,
a∏

k=1

(
kb− 1

b− 1

)
︸ ︷︷ ︸

=
1

k
·
1

b!
·

(kb)!

((k − 1) b)!
(by Claim 1)

=
a∏

k=1

(
1

k
· 1
b!
· (kb)!

((k − 1) b)!

)
=

(
a∏

k=1

1

k

)
︸ ︷︷ ︸
=

1
a∏

k=1

k
=
1

a!

(since
a∏

k=1
k=a!)

·

(
a∏

k=1

1

b!

)
︸ ︷︷ ︸

=

 1

b!

a

=
1

(b!)a

·

(
a∏

k=1

(kb)!

((k − 1) b)!

)
︸ ︷︷ ︸

=
a∏

i=1

(ib)!

((i− 1) b)!
(here, we have renamed the
index k as i in the product)

=
1

a!
· 1

(b!)a
·

a∏
i=1

(ib)!

((i− 1) b)!︸ ︷︷ ︸
=
(ab)!

(0b)!
(by Proposition 5.1,

applied to m=a and ai=(ib)!)

=
1

a!
· 1

(b!)a
· (ab)!

(0b)!︸ ︷︷ ︸
=
(ab)!

1
(since (0b)!=0!=1)

=
1

a!
· 1

(b!)a
· (ab)!

1
=

1

a!
· 1

(b!)a
· (ab)! = (ab)!

a! (b!)a
.

This solves the exercise.

5.3 Remark

Proposition 2.17.12 in the class notes says that
(
n

k

)
is an integer for all n ∈ Z and k ∈ Q.

In other words, (
n

k

)
∈ Z for all n ∈ Z and k ∈ Q. (3)

Using this fact and the above exercise, we can show the following:

Corollary 5.4. Let a ∈ N. Let b be a positive integer. Then, a! (b!)a | (ab)!.

Proof of Corollary 5.4. The exercise yields

(ab)!

a! (b!)a
=

a∏
k=1

(
kb− 1

b− 1

)
︸ ︷︷ ︸

∈Z
(by (3), applied to kb− 1 and b− 1

instead of n and k)

∈ Z.

In other words, a! (b!)a | (ab)!. This proves Corollary 5.4.

We refer to [GrKnPa94, Chapter 5] for further properties of binomial coefficients.
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6 Exercise 6: Binomial coefficients and coprimality

6.1 Problem

It is well-known (see, e.g., [Grinbe19, Proposition 3.20]) that(
n

k

)
∈ Z for all n ∈ Z and k ∈ N. (4)

(This is not at all clear from the definition of
(
n

k

)
; it is saying that the product of any k

consecutive integers is divisible by k!. The case of k = 2 is the statement of Exercise 3 (g).)
Thus, we can study the divisibility of binomial coefficients by various integers. There are
hundreds of theorems about this; this exercise is about one of them.

Let a and b be two coprime positive integers.

(a) Prove that
a

a+ b

(
a+ b

a

)
=

(
a+ b− 1

a− 1

)
and

b

a+ b

(
a+ b

a

)
=

(
a+ b− 1

b− 1

)
.

(b) Prove that if h ∈ Q satisfies ah ∈ Z and bh ∈ Z, then h ∈ Z. (This is where the
coprimality of a and b comes into play.)

(c) Prove that a+ b |
(
a+ b

a

)
.

(d) Find a counterexample to the claim of part (c) if a and b are allowed to not be coprime.

6.2 Solution

We recall Bezout’s theorem (proven in the class notes):

Theorem 6.1. Let a and b be two integers. Then, there exist integers x ∈ Z and y ∈ Z
such that

gcd (a, b) = xa+ yb.

Both a and b are positive integers. Hence, the sum a + b is a positive integer as well.
Thus, in particular, a+ b is nonzero.

(a) We have a + b ≥ a (since b is positive and thus nonnegative). Hence, Proposition
5.2 (applied to n = a+ b and k = a) yields(

a+ b

a

)
=

(a+ b)!

a! ((a+ b)− a)!
=

(a+ b)!

a!b!
(since (a+ b)− a = b) .

The same argument (but with the roles of a and b interchanged) yields(
b+ a

b

)
=

(b+ a)!

b!a!
=

(b+ a)!

a!b!
=

(a+ b)!

a!b!
(since b+ a = a+ b) .

Comparing these two equalities, we obtain(
b+ a

b

)
=

(
a+ b

a

)
. (5)
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Proposition 5.3 (applied to n = a+b and k = a) yields a
(
a+ b

a

)
= (a+ b)

(
a+ b− 1

a− 1

)
.

We can divide both sides of this equality by a+ b (since a+ b is nonzero). We thus obtain

a

a+ b

(
a+ b

a

)
=

(
a+ b− 1

a− 1

)
. (6)

The same argument (but with the roles of a and b interchanged) yields

b

b+ a

(
b+ a

b

)
=

(
b+ a− 1

b− 1

)
.

In view of (5), this rewrites as

b

b+ a

(
a+ b

a

)
=

(
b+ a− 1

b− 1

)
.

In view of b+ a = a+ b, this rewrites as

b

a+ b

(
a+ b

b

)
=

(
a+ b− 1

b− 1

)
. (7)

Having proven both (6) and (7), we have thus solved part (a) of the exercise.

(b) Let h ∈ Q satisfy ah ∈ Z and bh ∈ Z. We must prove that h ∈ Z.
Theorem 6.1 shows that there exist integers x ∈ Z and y ∈ Z such that gcd (a, b) =

xa+ yb. Consider these x and y.
But we know that a and b are coprime. In other words, gcd (a, b) = 1. Hence, 1 =

gcd (a, b) = xa+ yb. Multiplying both sides of this equality by h, we find

h · 1 = h (xa+ yb) = x · (ah) + y · (bh) .

All four numbers x, ah, y and bh on the right hand side of this equality are integers (since
x ∈ Z, ah ∈ Z, y ∈ Z and bh ∈ Z). Thus, the right hand side of this equality is an integer.
Therefore, so is the left hand side. In other words, h · 1 ∈ Z. In other words, h ∈ Z. This
solves part (b) of the exercise.

(c) Recall that a is a positive integer; hence, a ∈ N and a − 1 ∈ N. Also, b − 1 ∈ N

(since b is a positive integer). Now, (4) yields
(
a+ b

a

)
∈ Z (since a + b ∈ Z and a ∈ N)

and
(
a+ b− 1

a− 1

)
∈ Z (since a + b − 1 ∈ Z and a − 1 ∈ N) and

(
a+ b− 1

b− 1

)
∈ Z (since

a+ b− 1 ∈ Z and b− 1 ∈ N).

Define h ∈ Q by h =
1

a+ b

(
a+ b

a

)
. (This is well-defined, since a + b is nonzero and(

a+ b

a

)
belongs to Z.)

From h =
1

a+ b

(
a+ b

a

)
, we obtain

ah = a · 1

a+ b

(
a+ b

a

)
=

a

a+ b

(
a+ b

a

)
=

(
a+ b− 1

a− 1

)
(by part (a) of this exercise)

∈ Z.
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From h =
1

a+ b

(
a+ b

a

)
, we also obtain

bh = b · 1

a+ b

(
a+ b

a

)
=

b

a+ b

(
a+ b

a

)
=

(
a+ b− 1

b− 1

)
(by part (a) of this exercise)

∈ Z.

Thus, part (b) of this exercise yields h ∈ Z. In view of h =
1

a+ b

(
a+ b

a

)
=

(
a+ b

a

)
a+ b

, this

rewrites as

(
a+ b

a

)
a+ b

∈ Z. In other words, a + b |
(
a+ b

a

)
(since a + b is nonzero). This

solves part (c) of the exercise.

(d) For example, setting a = 2 and b = 2 yields a counterexample, since 2+2 -
(
2 + 2

2

)
.

(In fact, 2 + 2 = 4 - 6 =

(
4

2

)
=

(
2 + 2

2

)
.)
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