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1 EXERCISE 1: MUTUAL DIVISIBILITY IS RARE

1.1 PROBLEM
Let a and b be two integers such that a | b and b | a. Prove that |a| = |b|.

1.2 SOLUTION

See the class notes, where this is Exercise 2.2.2. (The numbering may shift; it is one of the
exercises in the “Divisibility” section.)

2 EXERCISE 2: CONGRUENCE MEANS EQUAL REMAINDERS

2.1 PROBLEM

Let n be a positive integer. Let v and v be two integers. Prove that u = v mod n if and
only if u%n = v%n.
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2.2 SOLUTION

See the class notes, where this is Exercise 2.6.1. (The numbering may shift; it is one of the
exercises in the “Division with remainder” section.)

3 EXERCISE 3: EVEN AND ODD

3.1 PROBLEM
Let u be an integer.
(a) Prove that u is even if and only if u%2 = 0.
(b) Prove that u is odd if and only if u%2 = 1.
(c) Prove that u is even if and only if u =0 mod 2.
(d) Prove that u is odd if and only if u =1 mod 2.
(e) Prove that u is odd if and only if u + 1 is even.
(f) Prove that exactly one of the two numbers v and u + 1 is even.
(g) Prove that u(u+1) =0 mod 2.

(h) Prove that u?> = —u =wu mod 2.

3.2 SOLUTION

See the class notes, where this is Exercise 2.7.1 parts (a) to (h). (The numbering may shift;
it is one of the exercises in the “Even and odd numbers” section.)

4 EXERCISE 4: FACTORIALS 102

4.1 PROBLEM
(a) Prove that

=2". H ((2i — 1)? for each n € N.

(b) Prove that

- - 1= for each n € N.
;k!-(k+2) (n+2)!
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4.2 SOLUTION
We first recall that

nl=n-(n—1) for each positive integer n. (1)
(This was the claim of Exercise 2 (a) on homework set #0.)

(a) This is precisely [Grinbel9, Exercise 3.5 (c)|, with only a superficial difference
n 2 n
(namely, T write “( J] ((2¢ — 1)!)) ” instead of “J ((2i —1)!)*” in [Grinbeld, Exercise 3.5
i=1 i=1
(c)], but these two expressions are clearly equivalent). I give two solutions in [Grinbel9,
solution to Exercise 3.5 (c)|: one by manipulation and one by induction. Here I will only
show the solution by manipulation:
Let n € N. Then, we can group the factors of the product 1!-2!...-- (2n)! into pairs of

successive factors. We thus obtainll

= (11-2) - (3L-4) - (@2n -1 2o)) = [ | @i -1 @i

=1 —(24)-(2i—1)!
(by (@)
= [J(@i-1)- (gj) (20 =) =[] (20) - ((2i = 1))?)
= =(20)-((2i-1)1)? =
- (H (m)) ((2i — 1)) =27 (H@) JJ @i -0 =2l T (i - 1))
=1 - i=1 A i=1 | =1 i=1
—on ‘1;111, =1.2:---:n=n

This solves part (a) of the exercise.

(b) Again, the exercise can be proven by induction or by the telescope principle. Let
me show the latter solution. First, I quote the telescope principle:

Proposition 4.1. Let m € N. Let ag,a4,...,a, be m + 1 real numbers. Then,

m
(a; — a;i—1) = am — ag.

i=1
. . -1
Now, let me solve the exercise. Let n € N. For eachi € {0,1,...,n}, weset a; = D
i !
Thus, ag,aq,...,a, are n + 1 real numbers. We state the following:

IStrictly speaking, we are tacitly using the fact that each integer between 1 and 2n (inclusive) can be
written either in the form 2¢ or in the form 2¢ — 1 for some ¢ € {1,2,...,n}, and that this 4 is unique.
The proof of this fact relies on division with remainder.
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Claim 1: For each 7 € {0,1,...,n}, we have

1
T )
[Proof of Claim 1: Let i € {0,1,...,n}. Then, (applied to i + 1 instead of n) yields
(t+1)! = (i +1)-3il. Also, (1) (applied to i+ 2 instead of n) yields (i +2)! = (i +2)-(i + 1)L
The definition of a; yields
—1 —1

“= (14 2)! - (i+2)-(i+1)! (since (1 +2)!=(i+2)-(i+1)).

The definition of a;_; yields

~1 -1
((G—1)+2)!  (G+1)

a1 = (since (i—1)+2=1i+1).

Subtracting this equality from the previous one, we obtain

- 1 11 1 (i+2) -1
TR TG G+ Gl () (42 G+ D! (i+2) i+ 1)
= it = il (since (i+ 1) =(+1)-14!)
(i+2)-G+1)! (i+2)-(i+1)-4! ' '

1 1

(i+2)-d! (i +2)

This proves Claim 1.]
Now, Proposition (applied to m = n) yields

n

Z (ai - ai—l) = Qp - Qo
i=1
! —1 —1
(n+2)! (0+2)!
(by the definition of an)  (by the definition of ag)
- -1 1 IR 1
(n+2)! (042! (0+2)! n+2)! 2 (n+2)
——
1 1
212

Comparing this with

3

n

1
(ai - ai71) = Z m,

—- i=1
1= 1 1=
il (i +2)
(by Claim 1)
we obtain
z”: 11 1 @)
— il-(i+2) 2 (n+2)
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But
z”: ! = Zn: ! (here, we have renamed the summation index k as 1)
—kl-(k+2) Zil-(1+2) ’
1 - 1 11 1 1
SR S o R N VU N H P S
0-(0+2) <—il-(i+2) 2 2 (n+2)! (n+2)!
11 T 1 -
1272 5 )
(by (@)

This solves part (b) of the exercise.

5 EXERCISE 5: BINOMIAL COEFFICIENTS 102

5.1 PROBLEM

S 100

k=1

Prove that

for all a« € N and all positive integers b.

5.2 SOLUTION

First, let us state an analogue of the telescope principle (Proposition for products
instead of sums:

Proposition 5.1. Let m € N. Let ag, a4, ...,a, be m + 1 nonzero real numbers. Then,
Q; o Qm
Qj—1 ap

=1

Proof of Proposition[5.1. Take your favorite proof of Proposition .1} and replace addition
by multiplication, subtraction by division and sums by products. This will yield a proof of
Proposition [5.1] O

Furthermore, recall the following facts:

Proposition 5.2. If n € N and k € N are such that n > k, then

(1) =

Proposition [5.2]is Exercise 3 (a) on homework set #0.
Proposition 5.3. Anyn € Q and k € Q satisfy

()= (2
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Proposition [5.3|is Exercise 3 (f) on homework set #0.
Now, let a € N, and let b be a positive integer. Thus, b # 0 (since b is positive).

Claim 1: We have

(k;)b_—ll) 11 (kD)

for each positive integer k.

[Proof of Claim 1: Let k be a positive integer. Then, Proposition (applied to kb and

b instead of n and k) yields
kb kb—1
b = kb :
() =)

We can cancel b from this equality (since b is nonzero), and thus obtain

kb kb—1
() =+(:20)
On the other hand, k£ > 1 (since k is a positive integer). We can multiply this inequality by b

(since b is positive) and thus obtain kb > 1b = b. Hence, Proposition (applied to kb and

f 1 — — — — — 1 .
b instead of n and k) yields (b) = (b — D) — BL((k— 1)b)l (since kb — b = (k )b)

-1
Comparing this equality with <k;)b) =k (lzb ] ), we obtain

kb—1\  (kb)!
k(k—l) b ((k—1)b)

We can divide both sides of this equality by % (since k is positive and thus nonzero); thus
we obtain

kb—1Y\ 1 (kb)! 11 (kb)!

b—1
This proves Claim 1.]

Tk (k-0 ko ((h—1)b)
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Now,
& (kb——1>
b—1
k=1 R
I GOl
kD ((k—1)b)!
(by Claim 1)
B a 1 1 (k;b)l B “ 4 a )
- (k‘b!'((k—l)b)!> (Hk:> ( b!>
k=1 et L
\_v_/ N — -,
1 1 1\° 1
Tk (b!) @)
k=1
(since [] k=a!)
k=1
11 f[ (ib)! 1 (ab)
al (01)* LLG=Dor —al @) (0b)
1=
(ab)! (ab)!
~(0b)! T
(by Progosigiml (since (0b)!=0!

This solves the exercise.

Proposition 2.17.12 in the class notes says that (Z) is an integer for all n € Z and k € Q.

In other words,

b (kD)

—1)b)!>

J/
-~

applied to m=a and a;=(ib)!)
(ab)) 1 1
1 a ()

- (ab)! =

5.3 REMARK

(Z)EZ foralln € Z and k € Q.

Using this fact and the above exercise, we can show the following;:

a

(ib)!

=1 ((i—1)0b)!
(here, we have renamed the
index k as ¢ in the product)

(3)

Corollary 5.4. Let a € N. Let b be a positive integer. Then, a! (b1)* | (ab)!.

Proof of Corollary[5.4).

In other words, a! (b!)” |

We refer to [GrKnPa94, Chapter 5| for further properties of binomial coefficients.

The exercise yields

kb—1
€.
(1)
VA
(by (3), applied teo kb—1and b—1

instead of n and k)

(ab)!. This proves Corollary [5.4]
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6 EXERCISE 6: BINOMIAL COEFFICIENTS AND COPRIMALITY

6.1 PROBLEM
It is well-known (see, e.g., [Grinbel9, Proposition 3.20]) that

(Z)EZforallnEZandk‘EN. (4)

(This is not at all clear from the definition of (Z), it is saying that the product of any k

consecutive integers is divisible by kl. The case of k = 2 is the statement of Exercise 3 (g).)
Thus, we can study the divisibility of binomial coefficients by various integers. There are
hundreds of theorems about this; this exercise is about one of them.

Let a and b be two coprime positive integers.

b b—1 b b b—1
(a) Prove that R N and erhy (e :
a+b\ a a—1 a+b\ a b—1
(b) Prove that if h € Q satisfies ah € Z and bh € Z, then h € Z. (This is where the
coprimality of a and b comes into play.)

(c) Prove that a+ | (a * b).
a

(d) Find a counterexample to the claim of part (c) if a and b are allowed to not be coprime.

6.2 SOLUTION
We recall Bezout’s theorem (proven in the class notes):

Theorem 6.1. Let a and b be two integers. Then, there exist integers x € Z and y € Z
such that
ged (a,b) = za + yb.

Both a and b are positive integers. Hence, the sum a + b is a positive integer as well.
Thus, in particular, a + b is nonzero.

(a) We have a + b > a (since b is positive and thus nonnegative). Hence, Proposition
[5.2| (applied to n = a+ b and k = a) yields

a+b) _ (a+bd)!  (a+D) . B
( a )a!((a+b)—a)! alb! (since (a+b)—a=0b).

The same argument (but with the roles of a and b interchanged) yields

(b+a) _(b+a)  (b+a)!  (a+D)!

b blal altl  albl (since b+a =a+b).

Comparing these two equalities, we obtain

()= (0) ©
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b b—1
Proposition |5.3| (applied to n = a+b and k = a) yields a (a + ) = (a+Db) <a + ) )
a a—
We can divide both sides of this equality by a + b (since a + b is nonzero). We thus obtain

-0 ®

The same argument (but with the roles of @ and b interchanged) yields
b (b —|— a b+a—1
b+ b—1 )

b a+b b+a—1
b+a\ a b—1 )

In view of b+ a = a + b, this rewrites as

() (10

Having proven both () and (7)), we have thus solved part (a) of the exercise.

In view of 7 this rewrites as

(b) Let h € Q satisfy ah € Z and bh € Z. We must prove that h € Z.

Theorem shows that there exist integers x € Z and y € Z such that ged (a,b) =
xa 4+ yb. Consider these x and y.

But we know that a and b are coprime. In other words, ged (a,b) = 1. Hence, 1 =
ged (a,b) = za + yb. Multiplying both sides of this equality by h, we find

h-1=h(xa+yb) =xz-(ah)+y- (bh).

All four numbers z, ah, y and bh on the right hand side of this equality are integers (since
x €Z,ah € Z,y € Z and bh € Z). Thus, the right hand side of this equality is an integer.
Therefore, so is the left hand side. In other words, h -1 € Z. In other words, h € Z. This
solves part (b) of the exercise.

(c) Recall that a is a positive integer; hence, a € N and a — 1 € N. Also, b—1 € N
b
(since b is a positive integer). Now, yields (a * ) € Z (since a +b € Z and a € N)
a

b—1
and<a+ 1 )GZ(sincea—i-b—lGZanda—leN)and<
a_

a+b—1€Zand b—1€N).

1 b
Define h € Q by h = I (a + ) (This is well-defined, since a + b is nonzero and
a a

a+b—1

b1 ) € Z (since

(a * b) belongs to Z.)
a

From h = L (a * b), we obtain

a+b\ a
I fa+b a f(a+b a+b—1
- = = f thi i
ah=a a+b( a ) a—l—b( a ) ( a1 > (by part (a) of this exercise)

€ Z.
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1 b
From h = (a + ), we also obtain

a+b\ a
1 -1
bh =10- a—{—b(ajz—b) = af—b(a:b) = (a—gﬁl ) (by part (a) of this exercise)

€ Z.

(a + b)
1
Thus, part (b) of this exercise yields h € Z. In view of h = at by _ L, this
a+b\ a a+b
a+b
AN

a+b
solves part (c) of the exercise.

b
rewrites as € Z. In other words, a + b | (a N ) (since a + b is nonzero). This
a

2+2
(d) For example, setting a = 2 and b = 2 yields a counterexample, since 2+ 2 ¢ ( i ) )

o2 st (1) - (212) 2
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