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1 Exercise 1: Geometric series and a bit more

1.1 Problem

Let a ∈ Q and b ∈ Q. Prove that the equalities

(a− b)
(
an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1

)
= an − bn (1)

and

(a− b)2
(
1an−1 + 2an−2b+ 3an−3b2 + · · ·+ (n− 1) abn−2 + nbn−1

)
= an+1 − (n+ 1) abn + nbn+1 (2)

hold for each n ∈ N.
(Here and in the following, N stands for the set {0, 1, 2, . . .}. We also recall that empty

sums – i.e., sums that have no addends at all – evaluate to 0 by definition. This applies,
in particular, to the sums an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1 and 1an−1 + 2an−2b+
3an−3b2 + · · ·+ (n− 1) abn−2 + nbn−1 in the case when n = 0.)
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1.2 Remark

A consequence of the formulas (1) and (2) is that every rational number x 6= 1 satisfies

1 + x+ x2 + · · ·+ xn−1 =
1− xn

1− x
and

1 + 2x+ 3x2 + · · ·+ nxn−1 =
1− (n+ 1)xn + nxn+1

(1− x)2
.

Indeed, these equalities follow by setting a = 1 and b = x in the equalities (1) and (2) and
dividing by 1− x or 1− x2, respectively.

More generally, the formulas (1) and (2) remain true when a and b are two commuting
elements of an arbitrary ring (we will later learn what this means; for now, let us just say
that, e.g., we could let a and b be two commuting matrices instead of rational numbers).

1.3 Solution

We will use the summation sign when we solve this exercise. This will make our formu-
las both shorter and clearer. For example, instead of “1an−1 + 2an−2b + 3an−3b2 + · · · +
(n− 1) abn−2 + nbn−1”, it will let us just write “

n∑
k=1

kan−kbk−1”.

Let us give a crash course on the use of the summation sign. We refer to [Grinbe19,
Section 1.4] for details and further information1.

• Assume that S is a finite set, and that as is a number (e.g., a real number) for each
s ∈ S. Thus you have |S| many numbers as in total. Then,

∑
s∈S

as shall denote the

sum of all of these |S| many numbers. For example,∑
s∈{2,5,6}

s3 = 23 + 53 + 63

(here, S = {2, 5, 6} and as = s3 for each s ∈ S) and∑
s∈{5,7,9,11}

1

s
=

1

5
+

1

7
+

1

9
+

1

11

(here, S = {5, 7, 9, 11} and as =
1

s
for each s ∈ S).

The letter s here plays the same role as the letter s in “{s2 | s ∈ {2, 3, 4}}” or in “the
function that sends each integer s to s2 − 1”; it designates the “moving part” in a
definition (it is what is called a “bound variable” or a “running index”). You don’t
have to use the specific letter s for it; you can use any other letter instead (as long as
it does not already have a different meaning) and get the same result. For example,
the sum

∑
s∈{2,5,6}

s3 can be rewritten as
∑

i∈{2,5,6}
i3 or as

∑
G∈{2,5,6}

G3. When the set S is

empty (so you have no numbers as at all), the sum
∑
s∈S

as is defined to be 0; this is

called an empty sum.

1and to [Grinbe19, Section 2.14] for proofs of well-definedness and basic properties
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• Assume that u and v are two integers, and that as is a number (e.g., a real number) for
each s ∈ {u, u+ 1, . . . , v}. (When u > v, we understand the set {u, u+ 1, . . . , v} to be

empty – it does not contain any “anti-integers” either.) Then,
v∑

s=u

as is just a shorthand

for the sum
∑

s∈{u,u+1,...,v}
as. This sum can also be written as au + au+1 + · · ·+ av, but

this notation presumes the reader to guess what the “general term” as looks like. For
example,

10∑
s=5

ss = 55 + 66 + 77 + 88 + 99 + 1010 = 55 + 66 + · · ·+ 1010

(arguably, guessing the general term is easy here, but look at the sum in (2)). For
another example,

2∑
s=−2

s2 = (−2)2 + (−1)2 + 02 + 12 + 22.

• Expressions of the form
∑
s∈S

as and
∑

s∈{u,u+1,...,v}
as are called “finite sums”, and the

∑
symbol is called the “summation sign”.

• Finite sums satisfy the rules that you would expect. For example, assume that a finite
set S is written as a union of two disjoint subsets A and B (so each element of S
belongs to one of A and B, but not to both). Assume that as is a number for each
s ∈ S. Then, ∑

s∈S

as =
∑
s∈A

as +
∑
s∈B

as.

For example, if S = {1, 2, . . . , 2n} for some n ∈ N, and if

A = {the even elements of S} = {2, 4, 6, . . . , 2n} and
B = {the odd elements of S} = {1, 3, 5, . . . , 2n− 1} ,

then this formula becomes

a1 + a2 + · · ·+ a2n = (a2 + a4 + a6 + · · ·+ a2n) + (a1 + a3 + a5 + · · ·+ a2n−1) .

This is exactly what you would expect: To sum the 2n numbers a1, a2, . . . , a2n, you
can first split them into the “even” and the “odd” ones (to be pedantic: rather, the
ones with the even subscripts and the ones with the odd subscripts), and separately
sum the former and the latter, and subsequently add the two small sums together. See
[Grinbe19, Section 1.4.2] for this and several other rules (and for their rigorous proofs,
if you are that skeptical). You can use all these rules without saying, except for the
“telescoping sums” rule (which you should cite by name when you apply it). For lots
of practice with sums, see [GrKnPa94, Chapter 2 and further].

• The “product sign”
∏

is analogous to the summation sign
∑

, but stands for products
instead of sums. For example,

10∏
s=5

ss = 55 · 66 · 77 · 88 · 99 · 1010 = 55 · 66 · · · · · 1010.

An empty product (i.e., a product of the form
∏
s∈S

as when S is empty) is defined to

be 1. See [Grinbe19, Section 1.4.4] for the properties of products.
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The summation sign lets us rewrite the sum an−1+an−2b+an−3b2+ · · ·+abn−2+ bn−1 in

(1) as
n∑

k=1

an−kbk−1, and lets us rewrite the sum 1an−1+2an−2b+3an−3b2+· · ·+(n− 1) abn−2+

nbn−1 in (2) as
n∑

k=1

kan−kbk−1. So the two equalities (1) and (2) rewrite as

(a− b)
n∑

k=1

an−kbk−1 = an − bn (3)

and

(a− b)2
n∑

k=1

kan−kbk−1 = an+1 − (n+ 1) abn + nbn+1, (4)

respectively. It is in these forms that we will prove these equalities.

• Proof of (3):

We shall prove (3) by induction on n:

Induction base: Comparing the equalities a0 − b0 = 1− 1 = 0 and

(a− b)
0∑

k=1

a0−kbk−1︸ ︷︷ ︸
=(empty sum)=0

= (a− b) 0 = 0,

we obtain

(a− b)
0∑

k=1

a0−kbk−1 = a0 − b0.

In other words, (3) holds for n = 0. Thus the induction base is complete.

Induction step: Let m ∈ N. Assume that (3) holds for n = m. We must prove that
(3) holds for n = m+ 1.

We have assumed that (3) holds for n = m. In other words, we have

(a− b)
m∑
k=1

am−kbk−1 = am − bm. (5)

Now, splitting off the last addend of the sum
m+1∑
k=1

a(m+1)−kbk−1, we obtain

m+1∑
k=1

a(m+1)−kbk−1 =
m∑
k=1

a(m+1)−k︸ ︷︷ ︸
=am−k+1

=aam−k

bk−1 + a(m+1)−(m+1)︸ ︷︷ ︸
=a0=1

b(m+1)−1︸ ︷︷ ︸
=bm

=
m∑
k=1

aam−kbk−1 + bm = a

m∑
k=1

am−kbk−1 + bm,
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so that

(a− b)
m+1∑
k=1

am+1−kbk−1

= (a− b)

(
a

m∑
k=1

am−kbk−1 + bm

)

= a (a− b)
m∑
k=1

am−kbk−1︸ ︷︷ ︸
=am−bm
(by (5))

+(a− b) bm = a (am − bm) + (a− b) bm

= aam − abm + abm − bbm = aam︸︷︷︸
=am+1

− bbm︸︷︷︸
=bm+1

= am+1 − bm+1.

In other words, (3) holds for n = m+1. This completes the induction step. Thus, (3)
is proven.

• Proof of (4):

We shall prove (4) by induction on n:

Induction base: Comparing the equalities a0+1−(0 + 1) ab0+0b0+1 = a1−a = a−a = 0
and

(a− b)2
0∑

k=1

ka0−kbk−1︸ ︷︷ ︸
=(empty sum)=0

= (a− b)2 0 = 0,

we obtain

(a− b)2
0∑

k=1

ka0−kbk−1 = a0+1 − (0 + 1) ab0 + 0b0+1.

In other words, (4) holds for n = 0. Thus the induction base is complete.

Induction step: Let m ∈ N. Assume that (4) holds for n = m. We must prove that
(4) holds for n = m+ 1.

We have assumed that (4) holds for n = m. In other words, we have

(a− b)2
m∑
k=1

kam−kbk−1 = am+1 − (m+ 1) abm +mbm+1. (6)

Now, splitting off the last addend of the sum
m+1∑
k=1

ka(m+1)−kbk−1, we obtain

m+1∑
k=1

ka(m+1)−kbk−1 =
m∑
k=1

k a(m+1)−k︸ ︷︷ ︸
=am−k+1

=aam−k

bk−1 + (m+ 1) a(m+1)−(m+1)︸ ︷︷ ︸
=a0=1

b(m+1)−1︸ ︷︷ ︸
=bm

=
m∑
k=1

kaam−kbk−1 + (m+ 1) bm = a

m∑
k=1

kam−kbk−1 + (m+ 1) bm,
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so that

(a− b)2
m+1∑
k=1

kam+1−kbk−1

= (a− b)2
(
a

m∑
k=1

kam−kbk−1 + (m+ 1) bm

)

= a (a− b)2
m∑
k=1

kam−kbk−1︸ ︷︷ ︸
=am+1−(m+1)abm+mbm+1

(by (6))

+(a− b)2 (m+ 1) bm

= a
(
am+1 − (m+ 1) abm +mbm+1

)
+ (a− b)2 (m+ 1) bm

= aam+1︸ ︷︷ ︸
=am+2

− (m+ 1) aa︸︷︷︸
=a2

bm +mabm+1 + (a− b)2︸ ︷︷ ︸
=a2−2ab+b2

(m+ 1) bm

= am+2 − (m+ 1) a2bm +mabm+1 +
(
a2 − 2ab+ b2

)
(m+ 1) bm

= am+2 − (m+ 1) a2bm +mabm+1 + (m+ 1) a2bm − 2 (m+ 1) abbm + (m+ 1) b2bm

= am+2 +mabm+1 − 2 (m+ 1) a bbm︸︷︷︸
=bm+1

+(m+ 1) b2bm︸︷︷︸
=bm+2

= am+2 +mabm+1 − 2 (m+ 1) abm+1︸ ︷︷ ︸
=(m−2(m+1))abm+1

=−(m+2)abm+1

+(m+ 1) bm+2

= am+2 − (m+ 2) abm+1 + (m+ 1) bm+2

= a(m+1)+1 − ((m+ 1) + 1) abm+1 + (m+ 1) b(m+1)+1.

In other words, (4) holds for n = m+1. This completes the induction step. Thus, (4)
is proven.

So the exercise is solved.

1.4 Remark

The equality (3) can also be proved using the telescope principle; see [Grinbe19, (18)] for
this argument.

2 Exercise 2: Factorials 101

2.1 Problem

Recall that the factorial of a nonnegative integer n is defined by

n! =
n∏

i=1

i = 1 · 2 · 3 · · · · · n.

Thus, in particular, 0! = 1 (since we defined empty products to be 1); it is easy to see that

1! = 1, 2! = 2, 3! = 6, 4! = 24, 5! = 120, 6! = 720, 7! = 5040.
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This sequence grows very fast (see Stirling’s approximation).
Prove the following properties of factorials:

(a) We have n! = n · (n− 1)! for each positive integer n.

(b) For each n ∈ N, we have

1 · 1! + 2 · 2! + · · ·+ n · n! = (n+ 1)!− 1.

(c) For each n ∈ N, we have

1 · 3 · 5 · · · · · (2n− 1) =
(2n)!

2nn!
.

(Here, the left hand side is understood to be the product of the first n odd positive

integers, i.e., the product
n∏

i=1

(2i− 1).)

2.2 Solution

(a) Let n be a positive integer. Thus, n ∈ {1, 2, . . . , n}. The definition of (n− 1)! yields

(n− 1)! =
n−1∏
i=1

i. (7)

But the definition of n! yields

n! =
n∏

i=1

i =

(
n−1∏
i=1

i

)
· n

(here, we have split off the factor for i = n from the product, since n ∈ {1, 2, . . . , n}). Hence,

n! =

(
n−1∏
i=1

i

)
︸ ︷︷ ︸
=(n−1)!
(by (7))

·n = (n− 1)! · n = n (n− 1)!.

This solves part (a) of the exercise.

(b) Claims like this can often be proven in two ways: by (fairly straightforward) in-
duction, and by (usually tricky) transformations. In this particular case, the two proofs are
actually very similar, and can easily be transformed into one another; nevertheless, let us
show both of them.

Proof by induction: We shall prove the claim of part (b) by induction on n:
Induction base: We have

1 · 1! + 2 · 2! + · · ·+ 0 · 0! = (empty sum) = 0.

Comparing this with (0 + 1)!︸ ︷︷ ︸
=1!=1

−1 = 1−1 = 0, we obtain 1 ·1!+2 ·2!+ · · ·+0 ·0! = (0 + 1)!−1.

Thus, the claim of part (b) holds for n = 0. This completes the induction base.
Induction step: Let m ∈ N. Assume that the claim of part (b) holds for n = m. We

must prove that the claim of part (b) holds for n = m+ 1.

Darij Grinberg, 00000000 7 dgrinber@umn.edu
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We have assumed that the claim of part (b) holds for n = m. In other words, we have

1 · 1! + 2 · 2! + · · ·+m ·m! = (m+ 1)!− 1.

Now,

1 · 1! + 2 · 2! + · · ·+ (m+ 1) · (m+ 1)!

= (1 · 1! + 2 · 2! + · · ·+m ·m!)︸ ︷︷ ︸
=(m+1)!−1

+(m+ 1) · (m+ 1)!

= (m+ 1)!− 1 + (m+ 1) · (m+ 1)!

= (1 + (m+ 1))︸ ︷︷ ︸
=m+2

· (m+ 1)!− 1

= (m+ 2) · (m+ 1)!− 1. (8)

But part (a) of this exercise (applied to n = m+ 2) yields

(m+ 2)! = (m+ 2) ·

(m+ 2)− 1︸ ︷︷ ︸
=m+1

! = (m+ 2) · (m+ 1)!.

Hence, (8) becomes

1 · 1! + 2 · 2! + · · ·+ (m+ 1) · (m+ 1)! = (m+ 2) · (m+ 1)!︸ ︷︷ ︸
=(m+2)!

=((m+1)+1)!

−1 = ((m+ 1) + 1)!− 1.

In other words, the claim of part (b) holds for n = m + 1. This completes the induction
step. Thus, the claim of part (b) is proven by induction.

Proof by tricky transformations: This proof shall rely on the following fact:

Proposition 2.1. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers2. Then,

m∑
i=1

(ai − ai−1) = am − a0.

Proposition 2.1 is known as the “telescope principle” since it contracts the sum
m∑
i=1

(ai − ai−1)

to the single difference am − a0, like folding a telescope.
The simplest way to convince yourself that Proposition 2.1 is true is by expanding the

left hand side:
m∑
i=1

(ai − ai−1) = (a1 − a0) + (a2 − a1) + (a3 − a2) + · · ·+ (am − am−1)

and watching all the terms cancel each other out except for the −a0 and the am. More
formally, this argument can be emulated by an induction on m. See [18f-hw0s, proof of
Proposition 2.2] or [Grinbe19, proof of (16)] for formal proofs of Proposition 2.1.

2I am saying “real numbers” just for the sake of saying something definite. You could just as well state this
principle for “complex numbers” or “rational numbers” or (once we have learnt what an abelian group is)
“elements of an abelian group (where the operation of the group is written as addition)”; the proof will
be the same in each case.
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Now, how can we apply Proposition 2.1 to part (b) of the exercise? We have 1 · 1! + 2 ·
2! + · · ·+ n · n! =

n∑
i=1

i · i!. If we could write each addend i · i! in the form ai − ai−1 for some

n+ 1 real numbers a0, a1, . . . , an, then we could use Proposition 2.1.
The tricky part is finding these ai. Namely, set ai = (i+ 1)! for each i ∈ {0, 1, . . . , n}.

Then, I claim that

i · i! = ai − ai−1 for each i ∈ {1, 2, . . . , n} . (9)

The proof of (9) is not tricky at all: Let i ∈ {1, 2, . . . , n}. Then, part (a) of the exercise
(applied to i+ 1 instead of n) yields

(i+ 1)! = (i+ 1) ·

(i+ 1)− 1︸ ︷︷ ︸
=i

! = (i+ 1) · i! = i · i! + i!.

Solving this for i · i!, we find
i · i! = (i+ 1)!− i!.

Comparing this with

ai︸︷︷︸
=(i+1)!

(by the definition of ai)

− ai−1︸︷︷︸
=((i−1)+1)!

(by the definition of ai−1)

= (i+ 1)!−

(i− 1) + 1︸ ︷︷ ︸
=i

! = (i+ 1)!− i!,

we obtain i · i! = ai − ai−1. This proves (9).
Now,

1 · 1! + 2 · 2! + · · ·+ n · n!

=
n∑

i=1

i · i!︸︷︷︸
=ai−ai−1

(by (9))

=
n∑

i=1

(ai − ai−1)

= an︸︷︷︸
=(n+1)!

(by the definition of an)

− a0︸︷︷︸
=(0+1)!

(by the definition of a0)

(by Proposition 2.1, applied to m = n)

= (n+ 1)!− (0 + 1)!︸ ︷︷ ︸
=1!=1

= (n+ 1)!− 1.

This solves part (b) of the exercise again.

(c) Again, we give two proofs:
Proof by induction: We shall prove the claim of part (c) by induction on n:
Induction base: We have

1 · 3 · 5 · · · · · (2 · 0− 1) = (empty product) = 1.

Comparing this with
(2 · 0)!
200!

=
0!

1 · 0!
= 1, we obtain 1 · 3 · 5 · · · · · (2 · 0− 1) =

(2 · 0)!
200!

. Thus,
the claim of part (c) holds for n = 0. This completes the induction base.

Induction step: Let m ∈ N. Assume that the claim of part (c) holds for n = m. We
must prove that the claim of part (c) holds for n = m+ 1.
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We have assumed that the claim of part (c) holds for n = m. In other words, we have

1 · 3 · 5 · · · · · (2m− 1) =
(2m)!

2mm!
. (10)

Our goal is to show that

1 · 3 · 5 · · · · · (2 (m+ 1)− 1) =
(2 (m+ 1))!

2m+1 (m+ 1)!
. (11)

We start by rewriting the factorials on the right hand side of this alleged equality in terms of
the factorials in (10). Clearly, 2 (m+ 1) is a positive integer. Hence, part (a) of the exercise
(applied to n = 2 (m+ 1)) yields

(2 (m+ 1))! = 2 (m+ 1) ·

2 (m+ 1)− 1︸ ︷︷ ︸
=2m+1

! = 2 (m+ 1) · (2m+ 1)!︸ ︷︷ ︸
=(2m+1)·((2m+1)−1)!

(by part (a) of the exercise,
applied to n = 2m+ 1)

= 2 (m+ 1) · (2m+ 1) ·

(2m+ 1)− 1︸ ︷︷ ︸
=2m

!

= 2 (m+ 1) · (2m+ 1) · (2m)!. (12)

Also, part (a) of the exercise (applied to n = m+ 1) yields

(m+ 1)! = (m+ 1) ·

(m+ 1)− 1︸ ︷︷ ︸
=m

! = (m+ 1) ·m!. (13)

Plugging the two equalities (12) and (13) as well as the obvious equality 2m+1 = 2 · 2m into

the expression
(2 (m+ 1))!

2m+1 (m+ 1)!
, we obtain

(2 (m+ 1))!

2m+1 (m+ 1)!
=

2 (m+ 1) · (2m+ 1) · (2m)!

(2 · 2m) (m+ 1) ·m!
=

(2m)!

2mm!
· (2m+ 1) .

Comparing this with

1 · 3 · 5 · · · · · (2 (m+ 1)− 1) = (1 · 3 · 5 · · · · · (2m− 1))︸ ︷︷ ︸
=
(2m)!

2mm!
(by (10))

·

2 (m+ 1)− 1︸ ︷︷ ︸
=2m+1



=
(2m)!

2mm!
· (2m+ 1) ,

we obtain precisely the equality (11) that we were trying to prove. In other words, the claim
of part (c) holds for n = m+1. This completes the induction step. Thus, the claim of part
(c) is proven by induction.

Proof by tricky transformations: Let n ∈ N. This time, the trick is to split the product
(2n)! = 1 · 2 · · · · · (2n) into two smaller products – one containing all its even factors and

Darij Grinberg, 00000000 10 dgrinber@umn.edu
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one containing its odd factors. This yields

(2n)! = 1 · 2 · · · · · (2n)
= (2 · 4 · 6 · · · · · (2n))︸ ︷︷ ︸

=2n·(1·2·3·····n)
(here, we have factored out a 2

from each factor)

· (1 · 3 · 5 · · · · · (2n− 1))

= 2n · (1 · 2 · 3 · · · · · n)︸ ︷︷ ︸
=1·2·····n=n!

(since n! = 1 · 2 · · · · · n)

· (1 · 3 · 5 · · · · · (2n− 1))

= 2nn! · (1 · 3 · 5 · · · · · (2n− 1)) .

Solving this equation for 1 · 3 · 5 · · · · · (2n− 1), we obtain

1 · 3 · 5 · · · · · (2n− 1) =
(2n)!

2nn!
.

Thus, part (c) is solved again.

3 Exercise 3: Binomial coefficients 101

3.1 Problem

For any n ∈ Q and k ∈ N, we define the binomial coefficient
(
n

k

)
by

(
n

k

)
=

n (n− 1) (n− 2) · · · (n− k + 1)

k!
=

k−1∏
i=0

(n− i)

k!
.

We furthermore set
(
n

k

)
= 0 for all rational k /∈ N.

For example, (
5

3

)
=

5 · 4 · 3
3!

=
60

6
= 10;(

1

3

)
=

1 · 0 · (−1)
3!

=
0

6
= 0;(

−2
3

)
=

(−2) · (−3) · (−4)
3!

=
−24
6

= −4;(
1/2

3

)
=

(1/2) · (−1/2) · (−3/2)
3!

=
3/8

6
=

1

16
;(

4

1/2

)
= 0 (since 1/2 /∈ N) .

Prove the following properties of binomial coefficients:
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(a) If n ∈ N and k ∈ N are such that n ≥ k, then(
n

k

)
=

n!

k! (n− k)!
.

(This is often used as a definition of the binomial coefficients, but it is a lousy definition,
as it only covers the case when n, k ∈ N and n ≥ k.)

(b) If n ∈ N and k ∈ Q are such that k > n, then(
n

k

)
= 0.

(c) If n ∈ N and k ∈ Q, then (
n

k

)
=

(
n

n− k

)
. (14)

(This is known as the symmetry of binomial coefficients. Note that it fails if n /∈ N.)

(d) Any n ∈ Q and k ∈ Z satisfy(
−n
k

)
= (−1)k

(
k + n− 1

k

)
. (15)

(This is one of the versions of the upper negation formula.)

(e) Any n ∈ Q and k ∈ Q satisfy(
n

k

)
=

(
n− 1

k

)
+

(
n− 1

k − 1

)
. (16)

(This is the recurrence of the binomial coefficients, and is the reason why each entry
of Pascal’s triangle is the sum of the two entries above it.)

(f) Any n ∈ Q and k ∈ Q satisfy

k

(
n

k

)
= n

(
n− 1

k − 1

)
. (17)

3.2 Solution

(a) Let n ∈ N and k ∈ N be such that n ≥ k. From k ∈ N, we obtain k ≥ 0, thus n−k ≤ n.
Combining this with n− k ≥ 0 (since n ≥ k), we obtain 0 ≤ n− k ≤ n. Therefore, we can
split the product 1 · 2 · · · · ·n into two smaller products by putting its first n− k factors into
the first block and its last k factors into the second:

1 · 2 · · · · · n = (1 · 2 · · · · · (n− k)) · ((n− k + 1) · (n− k + 2) · · · · · n) .

Now, the definition of n! yields

n! = 1 · 2 · · · · · n
= (1 · 2 · · · · · (n− k))︸ ︷︷ ︸

=(n−k)!
(since (n− k)! was defined as 1 · 2 · · · · · (n− k))

· ((n− k + 1) · (n− k + 2) · · · · · n)︸ ︷︷ ︸
=n(n−1)(n−2)···(n−k+1)

(here, we have reversed the order of multiplication)

= (n− k)! · (n (n− 1) (n− 2) · · · (n− k + 1)) .
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Solving this for n (n− 1) (n− 2) · · · (n− k + 1), we obtain

n (n− 1) (n− 2) · · · (n− k + 1) = n!/ (n− k)!. (18)

Now, k ∈ N; thus, the definition of
(
n

k

)
yields

(
n

k

)
=

n (n− 1) (n− 2) · · · (n− k + 1)

k!
=

n!/ (n− k)!

k!
(by (18))

=
n!

k! (n− k)!
.

This solves part (a) of the exercise.

(b) Let n ∈ N and k ∈ Q be such that k > n. We must prove that
(
n

k

)
= 0.

If k /∈ N, then this follows immediately from the definition of
(
n

k

)
(since

(
n

k

)
is simply

defined to be 0 in this case). Thus, we WLOG assume that k ∈ N for the rest of this proof.
From k > n, we obtain n < k, thus n ≤ k − 1 (since both n and k are integers3). Thus,

n ∈ {0, 1, . . . , k − 1} (since n ∈ N). Hence, one of the k factors of the product
k−1∏
i=0

(n− i) is

n − n = 0. Therefore, this product
k−1∏
i=0

(n− i) has at least one factor equal to 0; thus, the

whole product is 0. In other words,
k−1∏
i=0

(n− i) = 0. Now, the definition of
(
n

k

)
yields

(
n

k

)
=

k−1∏
i=0

(n− i)

k!
=

0

k!

(since
k−1∏
i=0

(n− i) = 0). Thus,
(
n

k

)
=

0

k!
= 0. This solves part (b) of the exercise.

(c) Let n ∈ N and k ∈ Q. We must prove the equality (14). If k is not an integer, then
this equality trivially holds4. Hence, for the rest of this proof, we WLOG assume that k is
an integer.

We are in one of the following three cases:
Case 1: We have k < 0.
Case 2: We have k > n.
Case 3: We have neither k < 0 nor k > n.

3thanks to the k ∈ N assumption that we just made
4Proof. Assume that k is not an integer. If n− k was an integer, then k = n− (n− k) would be an integer
as well (being the difference of the two integers n and n − k), which would contradict the fact that k

is not an integer. Hence, n − k cannot be an integer. Thus, n − k /∈ N. Hence,
(

n

n− k

)
= 0 (by the

definition of
(

n

n− k

)
). Also, k /∈ N (since k is not an integer); thus,

(
n

k

)
= 0 (by the definition of(

n

k

)
). Comparing these two equalities, we obtain

(
n

k

)
=

(
n

n− k

)
. In other words, (14) holds. Thus,

we have proven (14) in the case when k is not an integer.
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Let us first consider Case 1. In this case, we have k < 0. Thus, k /∈ N, so that
(
n

k

)
= 0

(by the definition of
(
n

k

)
). On the other hand, from k < 0, we obtain n − k > n. Hence,

part (b) of this exercise (applied to n − k instead of k) yields
(

n

n− k

)
= 0. Comparing

this with
(
n

k

)
= 0, we obtain

(
n

k

)
=

(
n

n− k

)
. Hence, (14) is proven in Case 1.

Let us next consider Case 2. In this case, we have k > n. Thus, n − k < 0, so that

n − k /∈ N, and thus
(

n

n− k

)
= 0 (by the definition of

(
n

n− k

)
). On the other hand,

part (b) of this exercise yields
(
n

k

)
= 0. Comparing this with

(
n

n− k

)
= 0, we obtain(

n

k

)
=

(
n

n− k

)
. Hence, (14) is proven in Case 2.

Let us finally consider Case 3. In this case, we have neither k < 0 nor k > n. Hence,
we have k ≥ 0 and k ≤ n. Thus, n ≥ k and k ∈ N (since k ≥ 0). Hence, part (a) of this

exercise yields
(
n

k

)
=

n!

k! (n− k)!
. Also, n− k ≥ 0 (since n ≥ k), so that n− k ∈ N. Also,

from k ≥ 0, we get n ≥ n − k. Thus, part (a) of this exercise (applied to n − k instead of
k) yields (

n

n− k

)
=

n!

(n− k)! (n− (n− k))!
=

n!

(n− k)!k!
=

n!

k! (n− k)!
.

Comparing this with
(
n

k

)
=

n!

k! (n− k)!
, we obtain

(
n

k

)
=

(
n

n− k

)
. Hence, (14) is proven

in Case 3.
We have now proven (14) in all three Cases 1, 2 and 3. Thus, (14) always holds. This

solves part (c) of the exercise.

(d) Let n ∈ Q and k ∈ Z. We must prove the equality (15). If k /∈ N, then this equality
trivially holds5. Hence, for the rest of this proof, we WLOG assume that k ∈ N.

Thus, the definition of
(
−n
k

)
yields

(
−n
k

)
=

(−n) ((−n)− 1) ((−n)− 2) · · · ((−n)− k + 1)

k!

=
1

k!
((−n) ((−n)− 1) ((−n)− 2) · · · ((−n)− k + 1))︸ ︷︷ ︸

=(−n)(−(n+1))(−(n+2))···(−(n+k−1))
=(−1)k(n(n+1)(n+2)···(n+k−1))

(here, we have factored a minus sign out of each factor)

=
1

k!
(−1)k (n (n+ 1) (n+ 2) · · · (n+ k − 1)) . (19)

5Proof. Assume that k /∈ N. Then,
(
−n
k

)
= 0 (by the definition of

(
−n
k

)
) and

(
k + n− 1

k

)
= 0 (by the

definition of
(
k + n− 1

k

)
). In view of these two equations, the equality (15) rewrites as 0 = (−1)k 0,

which is obviously true. Thus, we have proven (15) in the case when k /∈ N.
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On the other hand, the definition of
(
k + n− 1

k

)
yields(

k + n− 1

k

)
=

(k + n− 1) ((k + n− 1)− 1) ((k + n− 1)− 2) · · · ((k + n− 1)− k + 1)

k!

=
1

k!
(k + n− 1) ((k + n− 1)− 1) ((k + n− 1)− 2) · · · ((k + n− 1)− k + 1)︸ ︷︷ ︸

=(k+n−1)(k+n−2)(k+n−3)···n
=n(n+1)(n+2)···(n+k−1)

(here, we have reversed the order of multiplication)

=
1

k!
(n (n+ 1) (n+ 2) · · · (n+ k − 1)) ,

so that

(−1)k
(
k + n− 1

k

)
= (−1)k 1

k!
(n (n+ 1) (n+ 2) · · · (n+ k − 1))

=
1

k!
(−1)k (n (n+ 1) (n+ 2) · · · (n+ k − 1)) .

Comparing this with (19), we obtain
(
−n
k

)
= (−1)k

(
k + n− 1

k

)
. Thus, (15) is proven.

This solves part (d) of the exercise.

(e) Let n ∈ Q and k ∈ Q. We must prove the equality (16). If k /∈ N, then this equality
trivially holds6. Hence, for the rest of this proof, we WLOG assume that k ∈ N.

We are in one of the following two cases:
Case 1: We have k = 0.
Case 2: We have k 6= 0.
Let us first consider Case 1. In this case, we have k = 0. Thus, k− 1 = −1 /∈ N, so that(

n− 1

k − 1

)
= 0 (by the definition of

(
n− 1

k − 1

)
). But 0 ∈ N; thus, the definition of

(
n

0

)
yields(

n

0

)
=

n (n− 1) (n− 2) · · · (n− 0 + 1)

0!
.

Since n (n− 1) (n− 2) · · · (n− 0 + 1) = (empty product) = 1 and 0! = 1, this rewrites as(
n

0

)
=

1

1
= 1.

This rewrites as
(
n

k

)
= 1 (since k = 0). The same argument (applied to n − 1 instead of

n) yields
(
n− 1

k

)
= 1. Now, the equality (16) boils down to 1 = 1+ 0 (since

(
n

k

)
= 1 and(

n− 1

k

)
= 1 and

(
n− 1

k − 1

)
= 0), which is true. Hence, (16) is proven in Case 1.

6Proof. Assume that k /∈ N. If we had k − 1 ∈ N, then we would have k = k − 1︸ ︷︷ ︸
∈N

+ 1︸︷︷︸
∈N

∈ N as well, which

would contradict the fact that k /∈ N. Hence, we must have k − 1 /∈ N. Hence,
(
n− 1

k − 1

)
= 0 (by the

definition of
(
n− 1

k − 1

)
). Also, k /∈ N; thus,

(
n

k

)
= 0 (by the definition of

(
n

k

)
) and

(
n− 1

k

)
= 0 (by the

definition of
(
n− 1

k

)
). Now, the equality (16) boils down to 0 = 0+0 (since

(
n

k

)
= 0 and

(
n− 1

k

)
= 0

and
(
n− 1

k − 1

)
= 0), which is clearly true. Thus, we have proven (16) in the case when k /∈ N.
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Let us next consider Case 2. In this case, we have k 6= 0. Thus, k is a positive integer
(since k ∈ N), so that k − 1 ∈ N.

Exercise 2 (a) (applied to k instead of n) yields k! = k · (k − 1)!, so that (k − 1)! = k!/k

and thus
1

(k − 1)!
=

1

k!/k
=

1

k!
· k.

Recall that k − 1 ∈ N. Hence, the definition of
(

n

k − 1

)
yields(

n

k − 1

)
=

n (n− 1) (n− 2) · · · (n− (k − 1) + 1)

(k − 1)!

=
1

(k − 1)!
· (n (n− 1) (n− 2) · · · (n− (k − 1) + 1)) .

The same argument (applied to n− 1 instead of n) yields(
n− 1

k − 1

)
=

1

(k − 1)!︸ ︷︷ ︸
=
1

k!
·k

· ((n− 1) ((n− 1)− 1) ((n− 1)− 2) · · · ((n− 1)− (k − 1) + 1))︸ ︷︷ ︸
=(n−1)(n−2)···(n−k+1)

=
1

k!
· k · ((n− 1) (n− 2) · · · (n− k + 1)) . (20)

On the other hand, the definition of
(
n

k

)
yields(

n

k

)
=

n (n− 1) (n− 2) · · · (n− k + 1)

k!

=
1

k!
(n (n− 1) (n− 2) · · · (n− k + 1)) . (21)

The same argument (applied to n− 1 instead of n) yields(
n− 1

k

)
=

1

k!
((n− 1) ((n− 1)− 1) ((n− 1)− 2) · · · ((n− 1)− k + 1))︸ ︷︷ ︸

=(n−1)(n−2)···(n−k)
=((n−1)(n−2)···(n−k+1))·(n−k)

=
1

k!
· ((n− 1) (n− 2) · · · (n− k + 1)) · (n− k)

=
1

k!
(n− k) · ((n− 1) (n− 2) · · · (n− k + 1)) .

Adding (20) to this equality, we obtain(
n− 1

k

)
+

(
n− 1

k − 1

)
=

1

k!
(n− k) · ((n− 1) (n− 2) · · · (n− k + 1))

+
1

k!
· k · ((n− 1) (n− 2) · · · (n− k + 1))

=
1

k!
· ((n− k) + k)︸ ︷︷ ︸

=n

· ((n− 1) (n− 2) · · · (n− k + 1))

=
1

k!
· n · ((n− 1) (n− 2) · · · (n− k + 1))︸ ︷︷ ︸

=n(n−1)(n−2)···(n−k+1)

=
1

k!
(n (n− 1) (n− 2) · · · (n− k + 1)) =

(
n

k

)
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(by (21)). Hence, (16) is proven in Case 2.
We have now proven (16) in both Cases 1 and 2. Thus, (16) always holds. This solves

part (e) of the exercise.

(f) Let n ∈ Q and k ∈ Q. We must prove the equality (17). If k /∈ N, then this equality
trivially holds7. Hence, for the rest of this proof, we WLOG assume that k ∈ N.

We are in one of the following two cases:
Case 1: We have k = 0.
Case 2: We have k 6= 0.
Let us first consider Case 1. In this case, we have k = 0. Thus, k− 1 = −1 /∈ N, so that(

n− 1

k − 1

)
= 0 (by the definition of

(
n− 1

k − 1

)
). Hence, n

(
n− 1

k − 1

)
= n · 0 = 0. Comparing

this with k︸︷︷︸
=0

(
n

k

)
= 0, we obtain k

(
n

k

)
= n

(
n− 1

k − 1

)
. Hence, (17) is proven in Case 1.

Let us next consider Case 2. In this case, we have k 6= 0. Thus, k is a positive integer
(since k ∈ N), so that k − 1 ∈ N.

As in the solution to part (e) above, we can prove the equality (20). Multiplying both
sides of this equality by n, we obtain

n

(
n− 1

k − 1

)
= n · 1

k!
· k · ((n− 1) (n− 2) · · · (n− k + 1))

= k · 1
k!
· n · ((n− 1) (n− 2) · · · (n− k + 1))︸ ︷︷ ︸

=n(n−1)(n−2)···(n−k+1)

= k · 1
k!
· (n (n− 1) (n− 2) · · · (n− k + 1)) . (22)

On the other hand, the definition of
(
n

k

)
yields

(
n

k

)
=

n (n− 1) (n− 2) · · · (n− k + 1)

k!

=
1

k!
(n (n− 1) (n− 2) · · · (n− k + 1)) . (23)

Multiplying both sides of this equality by k, we find

k

(
n

k

)
= k · 1

k!
(n (n− 1) (n− 2) · · · (n− k + 1)) .

Comparing this with (22), we obtain k

(
n

k

)
= n

(
n− 1

k − 1

)
. Hence, (17) is proven in Case 2.

We have now proven (17) in both Cases 1 and 2. Thus, (17) always holds. This solves
part (f) of the exercise.

7Proof. Assume that k /∈ N. If we had k − 1 ∈ N, then we would have k = k − 1︸ ︷︷ ︸
∈N

+ 1︸︷︷︸
∈N

∈ N as well, which

would contradict the fact that k /∈ N. Hence, we must have k − 1 /∈ N. Hence,
(
n− 1

k − 1

)
= 0 (by the

definition of
(
n− 1

k − 1

)
). Also, k /∈ N; thus,

(
n

k

)
= 0 (by the definition of

(
n

k

)
). Now, the equality (17)

boils down to k · 0 = n · 0 (since
(
n

k

)
= 0 and

(
n− 1

k − 1

)
= 0), which is clearly true (since both sides

equal 0). Thus, we have proven (17) in the case when k /∈ N.
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4 Exercise 4: General associativity for binary
operations

4.1 Problem

Let S be a set. A binary operation on S means a map from S × S to S. (In other words, a
binary operation on S means a function that takes two elements of S and outputs an element
of S. For example, subtraction of integers is a binary operation on Z, sending each pair
(a, b) ∈ Z× Z to a− b ∈ Z. Other binary operations on Z are addition and multiplication,
but not division8.)

Fix a binary operation ∗ on S. In the following, we will write this operation ∗ in infix
notation. This means that if a, b ∈ S, then we write a ∗ b (rather than ∗ (a, b)) for the
image of (a, b) under ∗. (This is how binary operations are commonly written: For example,
addition, subtraction and multiplication are all written this way. For instance, you write
a+ b for the sum of two numbers a and b, not +(a, b).)

Now, assume that we have

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ S . (24)

(This is often called the associativity law for ∗; a binary operation ∗ satisfying this law is
called associative.9)

8Division is not a binary operation on Z, because 1/2 /∈ Z (and also because 1/0 is not defined).
9For example, the operation + on integers is associative, since every three integers a, b, c satisfy a+(b+ c) =
(a+ b) + c. Similarly, the operation · (multiplication) on integers is associative. But the operation − on
integers is not associative, since not every three integers a, b, c satisfy a− (b− c) = (a− b)− c (in fact,
a specific counterexample is a = 0, b = 0 and c = 1).

Here are five more examples of associative operations:

• The binary operation gcd on positive integers (sending each (a, b) ∈ {1, 2, 3, . . .}2 to the greatest
common divisor gcd (a, b) of a and b) is associative. (This will be proven later in class.) Note that
this operation is usually not written infix: We write gcd (a, b), not a gcd b.

• The binary operation min on integers (sending each (a, b) ∈ Z2 to min {a, b}, which is the smaller
of the two numbers a and b) is associative. (This is easy to check: If a, b, c ∈ Z, then both
min {a,min {b, c}} and min {min {a, b} , c} equal the smallest of the three numbers a, b, c.)

• If n ∈ N, then multiplication of n × n-matrices (say, with real entries) is associative. (We will
elaborate on this later in class.)

• The binary operation # on the open interval (−1, 1) ⊆ R defined by

a#b =
a+ b

1 + ab

is associative (check this!). This operation # is sometimes known as relativistic addition of
velocities (renormalized so that the speed of light is 1); see Keith Conrad, Relativistic addition
and group theory for more about it.

• If A is any set, and AA is the set of all maps from A to A, then the composition of maps (i.e., the
binary operation that sends each (f, g) ∈

(
AA
)2 to f ◦ g) is associative.
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The equality (24) entails that if a, b, c ∈ S are three elements, then the “triple product”10
expression a ∗ b ∗ c makes sense; indeed, the two reasonable ways to interpret this expression
are a∗(b ∗ c) and (a ∗ b)∗c (corresponding to the two possible orders in which the ∗ operations
can be performed), and the associativity law (24) says precisely that these two ways lead to
the same result. This result can therefore be called a ∗ b ∗ c without risking ambiguity.

Less obvious is the case of a “quadruple product” expression a∗b∗c∗d when a, b, c, d ∈ S
are four elements. There are not 2 but 5 different ways of interpreting this expression:

a ∗ (b ∗ (c ∗ d)) , a ∗ ((b ∗ c) ∗ d) , (a ∗ b) ∗ (c ∗ d) ,
(a ∗ (b ∗ c)) ∗ d, ((a ∗ b) ∗ c) ∗ d.

It can again be shown using (24) that these 5 ways produce one and the same result. (For
example, the second and the fourth of these 5 ways produce the same result, because applying
(24) to a, b∗ c and d instead of a, b and c yields a∗ ((b ∗ c) ∗ d) = (a ∗ (b ∗ c))∗d.) Thus, the
“quadruple product” a ∗ b ∗ c ∗ d can, too, be given a non-ambiguous meaning: Just evaluate
any of its 5 possible interpretations; the result doesn’t depend on which one you chose.

In this exercise, we will generalize this to arbitrary “k-tuple product” expressions a1 ∗
a2 ∗ · · ·∗ak (with a1, a2, . . . , ak ∈ S). The main claim is that all possible ways of interpreting
such an expression yield the same result. Even formulating this claim rigorously is not easy!

We will circumnavigate this difficulty as follows: Rather than try to explain what “inter-
preting this expression” means, we will first define the value of a1 ∗ a2 ∗ · · · ∗ ak in a specific
way – namely, by performing the ∗ operations “from left to right” (i.e., we will define it to
be (· · · ((a1 ∗ a2) ∗ a3) ∗ · · ·) ∗ ak); we will actually denote this value by P (a1, a2, . . . , ak) (in
order to avoid being tempted by the overly suggestive notation a1 ∗a2 ∗ · · ·∗ak into believing
something that needs to proven first!), and we will define it recursively (in order to avoid
having “· · · ” in our definition). Once this P (a1, a2, . . . , ak) is defined, we will prove11 that
every positive integer k, every a1, a2, . . . , ak ∈ S and every i ∈ {1, 2, . . . , k − 1} satisfy

P (a1, a2, . . . , ak) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , ak)) ,

and this will show that the value P (a1, a2, . . . , ak) is also obtained if we interpret the ex-
pression a1 ∗ a2 ∗ · · · ∗ ak starting with any of the ∗ signs. (By induction, this freedom to
start with any of the ∗ signs means that we can also continue with any of the remaining ∗
signs, and so on.)

Here is the definition we promised:

Definition.

For every positive integer k and any k elements a1, a2, . . . , ak ∈ S, we define an
element P (a1, a2, . . . , ak) ∈ S by recursion on k, as follows:

• For k = 1, we simply set

P (a1) = a1. (25)

• If k > 1, then we set

P (a1, a2, . . . , ak) = (P (a1, a2, . . . , ak−1)) ∗ ak. (26)

10The word “product” is meant in the wider sense. Of course, ∗ does not have to be multiplication of
numbers. When it is, our “products” are products in the usual sense.

11This is part (a) of the exercise.
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By unrolling this recursive definition, you can see what it means for each specific value
of k: Namely,

P (a1) = a1;

P (a1, a2) = a1 ∗ a2;
P (a1, a2, a3) = (a1 ∗ a2) ∗ a3;

P (a1, a2, a3, a4) = ((a1 ∗ a2) ∗ a3) ∗ a4;
· · ·

P (a1, a2, . . . , ak) = (· · · ((a1 ∗ a2) ∗ a3) ∗ · · ·) ∗ ak.

So, as you see, P (a1, a2, . . . , ak) is just (a formal way to say) “the expression a1 ∗a2 ∗ · · · ∗ak
interpreted by performing the ∗ operations from left to right”.

Now comes the actual exercise:

(a) Prove that every positive integer k, every elements a1, a2, . . . , ak ∈ S and every i ∈
{1, 2, . . . , k − 1} satisfy

P (a1, a2, . . . , ak) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , ak)) . (27)

Now, we define the value of the “k-tuple product” expression a1 ∗a2 ∗ · · · ∗ak (where k is
a positive integer and a1, a2, . . . , ak ∈ S are k elements) to be P (a1, a2, . . . , ak). Then, the
equality (27) rewrites as

a1 ∗ a2 ∗ · · · ∗ ak = (a1 ∗ a2 ∗ · · · ∗ ai) ∗ (ai+1 ∗ ai+2 ∗ · · · ∗ ak) ,

which means precisely that you can start evaluating the expression a1 ∗a2 ∗ · · · ∗ak with any
of the ∗ signs and you still get the same result. (Of course, the two smaller sub-expressions
a1 ∗ a2 ∗ · · · ∗ ai and ai+1 ∗ ai+2 ∗ · · · ∗ ak can also be evaluated by starting with any of the
∗ signs, and so on. Thus, by induction, you can perform the ∗ operations in any order and
still get the same result.)

Note that this notation a1 ∗ a2 ∗ · · · ∗ ak generalizes the sum a1 + a2 + · · ·+ ak and the
product a1 · a2 · · · · · ak of k numbers.

So far we have only defined the value of “k-tuple products” a1 ∗ a2 ∗ · · · ∗ ak when k > 0;
our next goal is to also give them a meaning in the case when k = 0. While this is a
degenerate border case (we are defining a “product” with no factors!), it tends to be rather
useful.

Let e be an element of S such that

a ∗ e = e ∗ a = a for all a ∈ S. (28)

(Such an element e is called neutral for the operation ∗. For example, 0 ∈ Z is neutral for
the operation +, while 1 ∈ Z is neutral for the operation ·. Not every binary operation has
a neutral element.12)

Now, using e, let us extend our definition of P (a1, a2, . . . , ak) (which, so far, only covered
the case k > 0) to the case when k = 0. This is a very degenerate case: In this case,
(a1, a2, . . . , ak) is the empty list (), so we just need to define P (). We define it by setting

P () = e.

Now we can extend the result of part (a) of the exercise somewhat, by allowing k to be
0 and allowing i to be 0 or k:
12However, it is easy to show that any binary operation has at most one neutral element. In other words,

if e1 and e2 are two elements of S that are both neutral for ∗, then e1 = e2.
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(b) Prove that every nonnegative integer k, every elements a1, a2, . . . , ak ∈ S and every
i ∈ {0, 1, . . . , k} satisfy

P (a1, a2, . . . , ak) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , ak)) .

4.2 Remark

Part (a) of this exercise (and, occasionally, part (b) as well) is known as the general asso-
ciativity law. Notice the power of this law: Once you check the associativity law (24) for
“∗-products” of 3 elements, it allows you to define “k-tuple products” a1 ∗ a2 ∗ · · · ∗ ak and
gives you an associativity law for them for free.

This is used tacitly in many places. For example, in linear algebra, one commonly
defines the product AB of two matrices A and B, and then shows that this product satisfies
the associativity law (that is, A (BC) = (AB)C). The general associativity law then shows
that a product A1A2 · · ·Ak of k matrices is well-defined (i.e., its value does not depend on
the order in which you perform the multiplications).13 Chances are, you have been using
this fact long before you realized it needs to be proven.

4.3 Solution

(a) We will solve part (a) of the exercise by induction on k.
Induction base: Part (a) of the exercise holds for k = 1, for fairly stupid reasons14. This

concludes the induction base.
Induction step: Fix a positive integer n > 1. Assume that part (a) of the exercise holds

for k = n− 1. We must now prove that part (a) of the exercise holds for k = n.
We have assumed that part (a) of the exercise holds for k = n− 1. In other words, the

following claim holds:

Claim 1: Every elements a1, a2, . . . , an−1 ∈ S and every i ∈ {1, 2, . . . , n− 2}
satisfy

P (a1, a2, . . . , an−1) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an−1)) .

We must prove that part (a) of the exercise holds for k = n. In other words, we must
prove the following claim:

Claim 2: Every elements a1, a2, . . . , an ∈ S and every i ∈ {1, 2, . . . , n− 1} satisfy

P (a1, a2, . . . , an) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an)) . (29)

[Proof of Claim 2: Let a1, a2, . . . , an ∈ S and i ∈ {1, 2, . . . , n− 1}. We must prove the
equality (29).

From i ∈ {1, 2, . . . , n− 1}, we obtain 1 ≤ i ≤ n− 1. Hence, n− 1 ≥ 1, so that n ≥ 2.
We are in one of the following two cases:

13Strictly speaking, this argument works only for square matrices, because multiplication of non-square
matrices is not a binary operation. But a straightforward generalization of the general associativity law
can be used to adapt this argument to the case of arbitrary rectangular matrices.

14Proof. If k = 1, then {1, 2, . . . , k − 1} = {1, 2, . . . , 1− 1} = {1, 2, . . . , 0} = ∅. Hence, if k = 1, then there
exists no i ∈ {1, 2, . . . , k − 1}. Thus, if k = 1, then part (a) of the exercise is vacuously true (because
it makes a statement about “every i ∈ {1, 2, . . . , k − 1}”, but no such i exists). And a vacuously true
statement is true.
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Case 1: We have i = n− 1.
Case 2: We have i 6= n− 1.
Let us first consider Case 1. In this case, we have i = n − 1. Thus, n − i = 1; hence,

the (n− i)-tuple (ai+1, ai+2, . . . , an) is simply the 1-tuple (an). Thus,

P (ai+1, ai+2, . . . , an) = P (an) = an (30)

(by (25), applied to an instead of a1).
But n ≥ 2 > 1. Thus, (26) (applied to k = n) yields

P (a1, a2, . . . , an) = (P (a1, a2, . . . , an−1)) ∗ an
= (P (a1, a2, . . . , ai)) ∗ an︸︷︷︸

=P (ai+1,ai+2,...,an)
(by (30))

(since n− 1 = i)

= (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an)) .

Thus, (29) is proven in Case 1.
Let us now consider Case 2. In this case, we have i 6= n − 1. Thus, i < n − 1 (since

i ≤ n− 1). Hence, n− i > 1. Thus, (26) (applied to n− i and ai+1, ai+2, . . . , an instead of
k and a1, a2, . . . , ak) yields

P (ai+1, ai+2, . . . , an) = (P (ai+1, ai+2, . . . , an−1)) ∗ an.

Hence,

(P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an))︸ ︷︷ ︸
=(P (ai+1,ai+2,...,an−1))∗an

= (P (a1, a2, . . . , ai)) ∗ ((P (ai+1, ai+2, . . . , an−1)) ∗ an)
= ((P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an−1))) ∗ an (31)

(by (24), applied to a = P (a1, a2, . . . , ai), b = P (ai+1, ai+2, . . . , an−1) and c = an).
Furthermore, i < n−1. Since i and n−1 are integers, this entails i ≤ (n− 1)−1 = n−2.

Thus, i ∈ {1, 2, . . . , n− 2} (since i ≥ 1). Hence, Claim 1 yields

P (a1, a2, . . . , an−1) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an−1)) . (32)

On the other hand, n ≥ 2 > 1. Thus, (26) (applied to k = n) yields

P (a1, a2, . . . , an) = (P (a1, a2, . . . , an−1)) ∗ an
= ((P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an−1))) ∗ an (by (32))
= (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , an)) (by (31)) .

Thus, (29) is proven in Case 2.
We have now proven (29) in both Cases 1 and 2. Since these two Cases cover all

possibilities, we thus conclude that (29) always holds. Thus, Claim 2 is proven.]
By proving Claim 2, we have shown that part (a) of the exercise holds for k = n. This

completes the induction step. Thus, part (a) of the exercise is proven by induction.

(b) Let k be a nonnegative integer. Let a1, a2, . . . , ak ∈ S and i ∈ {0, 1, . . . , k}. We
must prove the equality

P (a1, a2, . . . , ak) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , ak)) . (33)
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We are in one of the following three cases:
Case 1: We have i = 0.
Case 2: We have i = k.
Case 3: We have i 6= 0 and i 6= k.
Let us first consider Case 1. In this case, we have i = 0. Hence, the i-tuple (a1, a2, . . . , ai)

is actually the 0-tuple (). Therefore, P (a1, a2, . . . , ai) = P () = e (by our definition of
P ()). But the equality (28) yields that e ∗ a = a for each a ∈ S. Applying this to
a = P (ai+1, ai+2, . . . , ak), we obtain

e ∗ P (ai+1, ai+2, . . . , ak) = P (ai+1, ai+2, . . . , ak) = P (a1, a2, . . . , ak)

(since i = 0). Hence,

(P (a1, a2, . . . , ai))︸ ︷︷ ︸
=e

∗ (P (ai+1, ai+2, . . . , ak)) = e ∗ P (ai+1, ai+2, . . . , ak) = P (a1, a2, . . . , ak) .

Thus, (33) is proven in Case 1.
Let us next consider Case 2. In this case, we have i = k. Hence, the (k − i)-tuple

(ai+1, ai+2, . . . , ak) is actually the 0-tuple (). Therefore, P (ai+1, ai+2, . . . , ak) = P () = e (by
our definition of P ()). But the equality (28) yields that a ∗ e = a for each a ∈ S. Applying
this to a = P (a1, a2, . . . , ai), we obtain

P (a1, a2, . . . , ai) ∗ e = P (a1, a2, . . . , ai) = P (a1, a2, . . . , ak)

(since i = k). Hence,

(P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , ak))︸ ︷︷ ︸
=e

= P (a1, a2, . . . , ai) ∗ e = P (a1, a2, . . . , ak) .

Thus, (33) is proven in Case 2.
Finally, let us consider Case 3. In this case, we have i 6= 0 and i 6= k. Hence, i /∈

{0, k}. Combining i ∈ {0, 1, . . . , k} with i /∈ {0, k}, we obtain i ∈ {0, 1, . . . , k} \ {0, k} =
{1, 2, . . . , k − 1}. Thus, 1 ≤ i ≤ k − 1, so that k ≥ 2, and therefore k is a positive integer.
Hence, part (a) of this exercise yields

P (a1, a2, . . . , ak) = (P (a1, a2, . . . , ai)) ∗ (P (ai+1, ai+2, . . . , ak)) .

Thus, (33) is proven in Case 3.
We have now proven (33) in each of the three Cases 1, 2 and 3. Since these three Cases

cover all possibilities, we thus conclude that (33) always holds. This solves part (b) of the
exercise.

4.4 Remark

1. Assume that there exists an element e ∈ S that is neutral for the operation ∗ (that is,
satisfies (28)). Our definition of P (a1, a2, . . . , ak) in the exercise treats the cases k > 0 and
k = 0 separately: Namely, in the case k > 0, it proceeds recursively (starting with k = 1 as
a base of the recursion), whereas in the case k = 0, it simply defines P () to be e. There is
an alternative definition of P (a1, a2, . . . , ak), which handles all nonnegative integers k at the
same time. Namely, we can define P (a1, a2, . . . , ak) recursively by starting with k = 0 as a
base (which is handled by setting P () = e, as before), and then using (26) as a recursion for
all k > 0 (not only for k > 1). It is easy to see that this alternative definition is equivalent
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to the definition that we gave in the exercise15. This definition has the advantage of needing
fewer cases; but it has the disadvantage that it relies on the existence of a neutral element
e more heavily than the definition given in the exercise16. This is why we started with the
definition given in the exercise.

2. The claim of this exercise is a cornerstone of abstract algebra, often used without
mention (and, most likely, without awareness). Here is one obvious-sounding fact that
actually relies on this claim: Consider a set A, and n arbitrary maps f1, f2, . . . , fn from A
to A. Then, the composition f1 ◦ f2 ◦ · · · ◦ fn of all these n maps is well-defined (i.e., it does
not matter in which order you perform the ◦ operations; the result will always be the same
map). This may look completely evident (isn’t f1 ◦ f2 ◦ · · · ◦ fn simply the map that applies
fn first, then fn−1, then fn−2, and so on, until all the n maps have been applied?17), but
the rigorous proof proceeds by applying the exercise to S = {all maps from A to A} and
to the binary operation ◦ on S. More generally, the same holds if f1, f2, . . . , fn are maps
between different sets (not just maps from A to A), as long as they can be composed (i.e.,
the codomain of fi+1 is the domain of fi). The proof proceeds in the exact same way as the
solution to the exercise above, with the only difference that there is no single S any more
in which all our maps lie (but rather different sets, depending on which of our maps we are
composing). See also [Grinbe19, §2.13] for this proof, done in greater detail.
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