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1. Finite fields exist: the theorem

Fix a prime p. We are going to prove the following classical fact from abstract
algebra:

Theorem 1.0.1. Let n be a positive integer. Then, there exists a finite field of size
pn.
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Here, we are using standard notations from abstract algebra (see, e.g., [Grinbe19a]).
In particular, fields are always commutative.

Theorem 1.0.1 is well-known; various proofs can be found in [LidNie97, Theorem
2.5], [Knapp16a, Theorem 9.14], [Loehr11, Exercise 12.126], [ConradF, Theorem 2.2],
[Hunger14, Corollary 11.26], [Hunger03, Chapter V, Proposition 5.6], [Stewar15,
Theorem 19.3], [Escofi01, 14.5.1], [ChaLoi21, Corollary (4.5.3)], [DumFoo04, §13.5,
Example after Proposition 37], [HucNeu13, Theorem 6.5], [MonAno14], [Lange18,
Theorem 32], [Murphy12, Chapter 10, Theorem 9] and [Walker87, Theorem 6.2.11].
Most of these proofs use either Galois theory or the Möbius function from number
theory. In this note, we will give a proof that uses only relatively basic properties
of rings and fields.

We first strengthen Theorem 1.0.1 a little bit, for the convenience of our proof.
We let Fp denote the ring of all residue classes of integers modulo p. This is also

known as Z/pZ (in most of the literature) or as Z/ (p) or as Z/p (in [Grinbe19a])
or as Zp (sometimes). It is well-known that Fp is a field1 of size p.

Definition 1.0.2. An Fp-field will mean an Fp-algebra that is a field (with the
same addition, multiplication, zero and unity).

It is not hard to see that an Fp-field is the same as a field of characteristic p; but
we will not need this in what follows.

Now, we can strengthen Theorem 1.0.1 as follows:

Theorem 1.0.3. Let n be a positive integer. Then, there exists a finite Fp-field of
size pn.

Of course, Theorem 1.0.3 is not that much stronger than Theorem 1.0.1. In fact,
any finite field of size pn (for n a positive integer) is an Fp-field; this can easily be
seen using some linear algebra or group theory. But since Theorem 1.0.3 will fall
into our hands in this exact form, we will have no need for such arguments.

2. Ingredients of the proof

Next we shall prepare for the proof of Theorem 1.0.3 by stating several results that
will end up useful.

All polynomials that appear in this note are polynomials in a single variable x.

If K is a commutative ring, and if a =
n
∑

k=0
akxk ∈ K [x] is a nonzero polynomial of

degree n ≥ 0 (with ak ∈ K), then:

• the leading term of a is defined to be the polynomial anxn ∈ K [x];

• the leading coefficient of a is defined to be the element an ∈ K;

1since p is a prime
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• the polynomial a is said to be monic if an = 1 (that is, its leading coefficient is
1).

Note that the leading coefficient of a is therefore nonzero (since deg a = n and thus
an 6= 0).

We use the convention that the degree of the zero polynomial 0 is deg 0 = −∞.

2.1. Adjoining a root of a polynomial

We shall use quotients of commutative rings, but we will only need the simplest
case of such quotients (namely, the case when we are quotienting by a principal
ideal). Let us quickly introduce shorthand notations for this kind of quotients:

Convention 2.1.1. Let K be a commutative ring, and a ∈ K be any element.
For each u ∈ K, we let [u]a denote the residue class of u modulo a. (This is

commonly denoted by u + aK.)
We let K/a denote the set of all residue classes of elements of K modulo a.

(This is commonly denoted by K/aK or by K/ (a).) The set K/a is known to be
a commutative K-algebra (with addition defined by [u]a + [v]a = [u + v]a, and
all other operations defined similarly).

Thus, for example, Z/p is the field Fp, and its elements are [0]p , [1]p , . . . , [p− 1]p.
The following theorem is the only way by which we are going to extend our

fields in this note:2

Theorem 2.1.2. Let F be a field. Let n ∈ N. Let a ∈ F [x] be a polynomial of
degree n.

Consider the F-algebra F [x] /a.
(a) Each element of F [x] /a can be uniquely written in the form

λ0

[
x0
]

a
+ λ1

[
x1
]

a
+ · · ·+ λn−1

[
xn−1

]
a

with λ0, λ1, . . . , λn−1 ∈ F.

(b) If F is finite, then |F [x] /a| = |F|n.
(c) If the polynomial a is irreducible, then F [x] /a is a field.

Proof of Theorem 2.1.2. (a) The polynomial a has degree n. Thus, the coefficient of
xn in a is nonzero, and therefore invertible (since every nonzero element of F is
invertible3). Thus, the claim of Theorem 2.1.2 (a) follows from [Grinbe19a, Theorem
8.1.9 (a)] (applied to F, n and a instead of K, m and b).

Alternatively, it is easy to derive Theorem 2.1.2 (a) from the familiar fact that
division with remainder works for polynomials in F [x].

2We shall tend to denote polynomials with boldface letters, for the sake of readability.
3since F is a field
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(b) Assume that F is finite. Then, Theorem 2.1.2 (a) shows that each element of
F [x] /a can be uniquely written in the form

λ0

[
x0
]

a
+ λ1

[
x1
]

a
+ · · ·+ λn−1

[
xn−1

]
a

with λ0, λ1, . . . , λn−1 ∈ F.

In other words, the map

Fn → F [x] /a,

(λ0, λ1, . . . , λn−1) 7→ λ0

[
x0
]

a
+ λ1

[
x1
]

a
+ · · ·+ λn−1

[
xn−1

]
a

is a bijection. Hence, there exists a bijection from Fn to F [x] /a (namely, this map).
Thus, |F [x] /a| = |Fn| = |F|n. This proves Theorem 2.1.2 (b).

(c) Theorem 2.1.2 (c) follows from [Grinbe19a, Theorem 8.1.17] or from [Escofi01,
4.7.2] (applied to K = F and P = a).

Alternatively, it can be found in the literature under some fairly transparent
guises. For instance, several sources (e.g., [Stewar15, Theorem 17.2] or [Knapp16a,
proof of Theorem 9.10] or [Milne18, 1.25]) prove Theorem 2.1.2 (c) in the case when
the polynomial a is monic. But the general case can easily be reduced to this case
(because we can always make a nonzero polynomial a ∈ F [x] monic by scaling it
with the multiplicative inverse of its leading coefficient).

2.2. Factoring polynomials into irreducibles

How do we find irreducible polynomials to apply Theorem 2.1.2 (c) to? The fol-
lowing lemma shows a simple way:

Lemma 2.2.1. Let F be a field. Let a ∈ F [x] be a non-constant polynomial. Then,
there exists a monic irreducible polynomial u such that u | a.

Proof of Lemma 2.2.1. Clearly, there exists a non-constant polynomial v ∈ F [x] that
satisfies v | a (for example, a itself is such a polynomial). Choose such a v of the
smallest possible degree, and denote it by b. Thus, b is a non-constant polynomial
and satisfies b | a.

Let κ be the leading coefficient of b (that is, the coefficient of xdeg b in b). Then, κ
is a nonzero element of F, and thus is invertible (since every nonzero element of F

is invertible4). Therefore, κ−1 ∈ F is well-defined and nonzero. Thus, if we regard
κ−1 as a polynomial in F [x], then κ−1 is a nonzero constant; hence, deg

(
κ−1) = 0.

Now,
deg

(
κ−1b

)
= deg

(
κ−1
)

︸ ︷︷ ︸
=0

+deg b = deg b > 0

(since b is non-constant); thus, the polynomial κ−1b is non-constant. Moreover, the
polynomial κ−1b satisfies κ−1b | b (since b = 1︸︷︷︸

=κκ−1

b = κκ−1b =
(
κ−1b

)
· κ).

4because F is a field
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It is easy to see that the polynomial κ−1b is irreducible.
[Proof: Assume the contrary. Then, we can write κ−1b as κ−1b = cd with two

polynomials c, d ∈ F [x] satisfying deg c > 0 and deg d > 0 (since κ−1b is non-
constant but not irreducible). Consider these c and d. The polynomial c is a
non-constant polynomial5 and satisfies c | a (since c | cd = κ−1b | b | a). In
other words, c is a non-constant polynomial v ∈ F [x] that satisfies v | a. There-
fore, deg c ≥ deg b (because we defined b to be such a v of the smallest possible
degree). However, deg

(
κ−1b

)
︸ ︷︷ ︸

=cd

= deg (cd) = deg c + deg d︸ ︷︷ ︸
>0

> deg c and thus

deg c < deg
(
κ−1b

)
= deg b. This contradicts deg c ≥ deg b. This contradiction

shows that our assumption was false. Hence, we have shown that κ−1b is irre-
ducible.]

The leading coefficient of the polynomial b is κ. Hence, the leading coefficient of
the polynomial κ−1b is κ−1κ = 1. In other words, the polynomial κ−1b is monic. It
further satisfies κ−1b | a (since κ−1b | b | a). Hence, there exists a monic irreducible
polynomial u such that u | a (namely, u = κ−1b). This proves Lemma 2.2.1.

Corollary 2.2.2. Let F be a field. Let a ∈ F [x] be a nonzero polynomial. Then, a
can be written in the form a = λu1u2 · · · uk, where λ ∈ F is a nonzero constant,
and where u1, u2, . . . , uk ∈ F [x] are monic irreducible polynomials.

Proof of Corollary 2.2.2 (sketched). This is an analogue of the fact that every nonzero
integer is a product of finitely many primes (up to sign). The proof is analogous,
too: Proceed by strong induction on deg a, using Lemma 2.2.1 in the induction
step.

Corollary 2.2.3. Let F be a field. Let a ∈ F [x] be a monic polynomial. Then, a
can be written in the form a = u1u2 · · · uk, where u1, u2, . . . , uk ∈ F [x] are monic
irreducible polynomials.

Proof of Corollary 2.2.3. The polynomial a is monic and thus nonzero. Hence, Corol-
lary 2.2.2 shows that a can be written in the form a = λu1u2 · · · uk, where λ ∈ F is
a nonzero constant, and where u1, u2, . . . , uk ∈ F [x] are monic irreducible polyno-
mials. Consider this λ and these u1, u2, . . . , uk.

The polynomial a is monic, and thus has leading coefficient 1. The polynomial
u1u2 · · · uk is monic (since it is the product of the monic polynomials u1, u2, . . . , uk),
and thus has leading coefficient 1. Hence, the polynomial λu1u2 · · · uk has leading
coefficient λ (since λ is nonzero). Now, recall the equality a = λu1u2 · · · uk. Com-
paring the leading coefficients on both sides of this equality, we obtain 1 = λ (be-
cause the polynomial a has leading coefficient 1, while the polynomial λu1u2 · · · uk
has leading coefficient λ). Hence, λ = 1. Thus,

a = λ︸︷︷︸
=1

u1u2 · · · uk = u1u2 · · · uk.

5since deg c > 0
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We thus have found monic irreducible polynomials u1, u2, . . . , uk ∈ F [x] such
that a = u1u2 · · · uk. In other words, we have written a in the form a = u1u2 · · · uk,
where u1, u2, . . . , uk ∈ F [x] are monic irreducible polynomials. Thus, a can be
written in this form. This proves Corollary 2.2.3.

2.3. A lemma on maps

We shall furthermore use the following simple lemma about maps on a set:

Lemma 2.3.1. Let S be a set. Let f : S→ S be a map. Let a and b be two positive
integers such that f a = id and f b = id. Then, f gcd(a,b) = id.

Here, of course, f n (where n ∈N) stands for the map f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
n times

.

Lemma 2.3.1 is almost obvious if you know a bit of group theory (specifically,
the notion of the order of an element in a group). But in order to keep this note
self-contained, I shall give an elementary proof:

Proof of Lemma 2.3.1. We have f a = f ◦ f a−1, so that f ◦ f a−1 = f a = id. Also,
f a = f a−1 ◦ f , so that f a−1 ◦ f = f a = id. The equalities f ◦ f a−1 = id and
f a−1 ◦ f = id show that the maps f and f a−1 are mutually inverse. Hence, the
map f is invertible (with inverse f a−1). Thus, the powers f n of this map f are
well-defined not only for n ∈N, but also for n ∈ Z. Furthermore, it is well-known
that these powers satisfy the following “laws of exponents”:

• We have
f n+m = f n ◦ f m for all n, m ∈ Z. (1)

(This can be proven similarly to the proof of [Grinbe19a, Proposition 4.1.20
(h)].)

• We have
f nm = ( f n)m for all n, m ∈ Z. (2)

(This can be proven similarly to the proof of [Grinbe19a, Proposition 4.1.20
(l)].)

But Bezout’s theorem (see, e.g., [Grinbe19a, Theorem 2.9.12]) shows that there
exist integers x ∈ Z and y ∈ Z such that gcd (a, b) = xa + yb. Consider these x
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and y. From gcd (a, b) = xa + yb = ax + by, we obtain

f gcd(a,b) = f ax+by = f ax︸︷︷︸
=( f a)x

(by (2),
applied to n=a and m=x)

◦ f by︸︷︷︸
=( f b)

y

(by (2),
applied to n=b and m=y)

(by (1), applied to n = ax and m = by)

=

 f a︸︷︷︸
=id

x

◦

 f b︸︷︷︸
=id

y

= idx︸︷︷︸
=id

◦ idy︸︷︷︸
=id

= id ◦ id = id .

This proves Lemma 2.3.1.

2.4. Restriction of modules and algebras

In linear algebra, you may have learned that each C-vector space V is (or, more
precisely, becomes in a natural way) an R-vector space: Just restrict its scaling map
· : C×V → V to R×V, and you obtain a scaling map · : R×V → V that makes it
into an R-vector space. (However, the dimension of this R-vector space V will be
double the dimension of the original C-vector space V.)

The simple reason why this works is that R is a subring of C. More generally, if
K is a subring of a commutative ring L, then any L-module V becomes a K-module
in the same way (i.e., by restricting the scaling map to K×V).

With a little tweak, the same construction works even more generally: We don’t
need K to be a subring of L; we only need L to be a commutative K-algebra6. The
thing we need to do in order to turn an L-module V into a K-module is no longer
literally restricting the scaling map · : L× V → V to K× V, but rather a simple
tweak:

Proposition 2.4.1. Let K be a commutative ring. Let L be a commutative K-
algebra. Let V be an L-module. Consider its addition +, its scaling · : L×V →
V and its zero vector 0V .

Define a scaling · : K×V → V by setting

λ · v = (λ · 1L) · v for all λ ∈ K and v ∈ V. (3)

Here:

• the “·” on the left hand side means the scaling · : K× V → V that we are
defining (written infix);

• the first “·” on the right hand side means the scaling · : K×L→ L of the
K-algebra L (since L is a K-algebra and thus is a K-module, which means
that it has a scaling);

6This case is indeed more general, because if K is a subring of a commutative ring L, then L is
clearly a commutative K-algebra.
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• the second “·” on the right hand side means the scaling · : L× V → V of
the L-module V.

Then, the set V (equipped with its addition +, its zero vector 0V and the
scaling · : K×V → V we just defined) is a K-module.

Roughly speaking, the definition of the scaling · : K× V → V in Proposition
2.4.1 can be restated as follows: In order to scale an element v ∈ V by an element
λ ∈ K, we first scale 1L by λ, thus obtaining some sort of “proxy element” for λ
in L, and then we scale v by this “proxy element” (which we know how to do,
because V is an L-module).

We shall prove Proposition 2.4.1 in the Appendix (Section 4.1).
Next, let us state an analogue of Proposition 2.4.1 for algebras instead of mod-

ules:

Proposition 2.4.2. Let K be a commutative ring. Let L be a commutative K-
algebra. Let V be an L-algebra. Thus, V is a ring and an L-module at the same
time. Consider its addition +, its multiplication ·, its scaling ·, its zero 0V and its
unity 1V .

Define a scaling · : K×V → V as in Proposition 2.4.1.
Then, the set V (equipped with its addition +, its multiplication ·, its zero 0V ,

its unity 1V , and the scaling · : K×V → V we just defined) is a K-algebra.

Again, we refer to the Appendix (Section 4.1) for a proof of Proposition 2.4.2.
We can shorten Proposition 2.4.2 significantly if we omit the precise definition of

the scaling · : K×V → V and simply claim that such a scaling can be defined:

Proposition 2.4.3. Let K be a commutative ring. Let L be a commutative K-
algebra. Let V be an L-algebra. Then, V becomes a K-algebra in a natural way.

Here, “in a natural way” means “by equipping it with a scaling map · : K×V →
V that is defined uniquely in terms of the existing structures” (specifically, in terms
of the unity 1L of L and the scaling maps of the K-algebra L and of the L-algebra
V).

Proof of Proposition 2.4.3. Define a scaling · : K× V → V as in Proposition 2.4.2.
Then, Proposition 2.4.2 shows that the set V (equipped with its addition +, its
multiplication ·, its zero 0V , its unity 1V , and the scaling · : K× V → V we just
defined) is a K-algebra. Thus, V becomes a K-algebra in a natural way. This proves
Proposition 2.4.3.

2.5. Fermat’s little theorem for finite fields

Fermat’s little theorem, in one of its forms (e.g., [Grinbe19a, Theorem 2.15.2 (b)]),
says that ap ≡ a mod p for every integer a. We can transform this congruence into
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an equality in Fp; then, it becomes the statement that αp = α for each α ∈ Fp. This
can be generalized to finite fields other than Fp; namely, we have the following:

Theorem 2.5.1. Let F be a finite field. Then, α|F| = α for each α ∈ F.

The following proof of Theorem 2.5.1 uses the same idea as [Grinbe19a, proof of
Theorem 2.15.3] (one of the standard proofs of Euler’s theorem):

Proof of Theorem 2.5.1. We know that F is a field. In other words, F is a commutative
skew field.

The field F contains at least 1 element (since it contains 0F). Thus, |F| ≥ 1, so
that 0|F| = 0. (Here and throughout this proof, “0” means the zero of F.)

We know that F is a skew field. Thus, every nonzero element of F is invertible,
and we have 1 6= 0 in F.

It is well-known that the product of any two invertible elements of F is invert-
ible7. Thus, by induction, it is easy to see that any product of finitely many invert-
ible elements of F is invertible8.

Each β ∈ F \ {0} is nonzero9 and thus invertible (since every nonzero element of
F is invertible). Hence, ∏

β∈F\{0}
β is a product of finitely many invertible elements

of F, and thus is invertible (since any product of finitely many invertible elements
of F is invertible).

Fix α ∈ F. We must prove that α|F| = α. If α = 0, then this is true (since
0|F| = 0). Hence, we WLOG assume that α 6= 0 for the rest of this proof. Thus,
the element α of F is nonzero, and thus is invertible (since every nonzero element
of F is invertible). Hence, its multiplicative inverse α−1 is well-defined. Moreover,
α−1 6= 0 10.

Now, each β ∈ F \ {0} satisfies αβ ∈ F \ {0} 11. The same argument (applied

7Proof. Let α and β be two invertible elements of F. We must prove that αβ is invertible.
The multiplicative inverses α−1 and β−1 of α and β are well-defined (since α and β are invert-

ible). Now, the two elements β−1α−1 and αβ of F satisfy(
β−1α−1

)
· (αβ) = β−1 α−1α︸ ︷︷ ︸

=1

β = β−11β = β−1β = 1 and

(αβ) ·
(

β−1α−1
)
= α ββ−1︸ ︷︷ ︸

=1

α−1 = α1α−1 = αα−1 = 1.

In other words, β−1α−1 is a multiplicative inverse of αβ. Thus, αβ has a multiplicative inverse.
In other words, αβ is invertible, qed.

8The induction base hinges on the fact that 1 ∈ F is invertible (since the empty product equals 1).
9since β ∈ F \ {0} and thus β 6= 0

10because otherwise, we would have α−1 = 0, and thus 1 = α α−1︸︷︷︸
=0

= α0 = 0, which would

contradict the fact that 1 6= 0 in F
11Proof. Let β ∈ F \ {0}. We must prove that αβ ∈ F \ {0}. In other words, we must prove that

αβ 6= 0 (since αβ is clearly an element of F).
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to α−1 instead of α) shows that each β ∈ F \ {0} satisfies α−1β ∈ F \ {0} (since
α−1 6= 0).

Consider the map

X : F \ {0} → F \ {0} ,
β 7→ αβ

(this is well-defined, because each β ∈ F \ {0} satisfies αβ ∈ F \ {0}) and the map

Y : F \ {0} → F \ {0} ,

β 7→ α−1β

(this is well-defined, because each β ∈ F \ {0} satisfies α−1β ∈ F \ {0}).
It is easy to see that these maps X and Y are mutually inverse12. Thus, the map

X : F \ {0} → F \ {0} is invertible, i.e., is bijection. Hence, we can substitute X (β)
for β in the product ∏

β∈F\{0}
β. We thus find

∏
β∈F\{0}

β = ∏
β∈F\{0}

X (β)︸ ︷︷ ︸
=αβ

(by the definition
of X)

= ∏
β∈F\{0}

(αβ) = α|F\{0}| ∏
β∈F\{0}

β

(since F is commutative). We can divide both sides of this equality by ∏
β∈F\{0}

β

(since ∏
β∈F\{0}

β is invertible). Thus we obtain

1 = α|F\{0}| = α|F|−1 (since |F \ {0}| = |F| − 1) .

Multiplying both sides of this equality by α, we find α = α|F|−1α = α|F|. In other
words, α|F| = α. This proves Theorem 2.5.1.

Assume the contrary. Thus, αβ = 0. Hence, α−1 αβ︸︷︷︸
=0

= α−10 = 0, so that 0 = α−1α︸ ︷︷ ︸
=1

β = β ∈

F \ {0}. But this entails 0 /∈ {0}, which is absurd. Hence, we have obtained a contradiction. This
contradiction shows that our assumption was wrong. Thus, we have shown that αβ 6= 0. Hence,
αβ ∈ F \ {0}, qed.

12For example, X ◦Y = id follows from the following computation: For each β ∈ F \ {0}, we have

(X ◦Y) (β) = X (Y (β)) = α · Y (β)︸ ︷︷ ︸
=α−1β

(by the definition
of Y)

(by the definition of X)

= α · α−1︸ ︷︷ ︸
=1

β = 1β = β = id (β) .
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2.6. Frobenius endomorphisms

We now introduce a very special map defined on any commutative Fp-algebra:

Definition 2.6.1. Let K be a commutative Fp-algebra. The map

K→ K, a 7→ ap

will be called the Frobenius endomorphism of K and will be denoted by FK.

For example, the Frobenius endomorphism of Fp is the identity map (since every
a ∈ Fp satisfies ap = a; this is a consequence of Fermat’s Little Theorem). But Fp-
algebras can be larger than Fp, and usually their Frobenius endomorphisms will
not be the identity map.

The word “endomorphism” means “homomorphism from an object (in this case,
an Fp-algebra) to itself”. Thus, the name “Frobenius endomorphism” suggests that
FK is an Fp-algebra homomorphism from K to K. And this is indeed the case:

Theorem 2.6.2. Let K be a commutative Fp-algebra. Then, its Frobenius endo-
morphism FK is an Fp-algebra homomorphism.

Before we prove this, let us show a simple proposition that will come useful here
and later on as well:

Proposition 2.6.3. Let K be an Fp-algebra.
(a) We have pa = 0 for each a ∈ K.
(b) Assume that K is commutative. Then, pa = 0 for each a ∈ K [x].

Proof of Proposition 2.6.3. (a) Let a ∈ K. Recall that K is an Fp-algebra and thus
satisfies the module axioms; hence, 1Fp a = a and 0Fp a = 0.

The definition of Fp readily yields p · 1Fp = 0Fp
13. Now, using 1Fp a = a, we

find
p a︸︷︷︸
=1Fp a

= p · 1Fp︸ ︷︷ ︸
=0Fp

a = 0Fp a = 0.

This proves Proposition 2.6.3 (a).
(b) There are two ways of proving this. One is the “right” way (in a philosophical

sense), while another is the short way.

13Proof. Recall that Fp = Z/p (where we are using the notations from Convention 2.1.1). Thus, the
elements of Fp are residue classes [u]p of integers u modulo p. In particular, 1Fp = [1]p. Thus,

p · 1Fp︸︷︷︸
=[1]p

= p · [1]p = [p · 1]p = [0]p (since p · 1 = p ≡ 0 mod p)

= 0Fp ,

qed.
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Here is the “right” way: We know that K is a commutative Fp-algebra, and we
know that K [x] is a K-algebra. Hence, Proposition 2.4.3 (applied to Fp, K and
K [x] instead of K, L and V) shows that K [x] becomes an Fp-algebra in a natural
way. Thus, Proposition 2.6.3 (a) (applied to K [x] and a instead of K and a) shows
that pa = 0 for each a ∈ K [x]. This proves Proposition 2.6.3 (b).

Here is the short way: Let a ∈ K [x]. Write the polynomial a in the form a =
n
∑

i=0
aixi with n ∈N and a0, a1, . . . , an ∈ K. Then,

p a︸︷︷︸
=

n
∑

i=0
aixi

= p
n

∑
i=0

aixi =
n

∑
i=0

pai︸︷︷︸
=0

(by Proposition 2.6.3 (a),
applied to a=ai)

xi =
n

∑
i=0

0xi = 0.

This proves Proposition 2.6.3 (b) again.

Proof of Theorem 2.6.2. Proposition 2.6.3 (a) (applied to a = 1K) yields p · 1K = 0.
Hence, K is a commutative ring such that p · 1K = 0. Also, FK is the map

K→ K, a 7→ ap.

Hence, [Grinbe19a, Corollary 5.11.3] (applied to F = FK) shows that FK is a ring
homomorphism.14 Hence, FK sends 0 to 0 and respects addition. Furthermore,
we have FK (λa) = λFK (a) for each λ ∈ Fp and a ∈ K 15. Thus, FK respects
scaling (where we consider K as an Fp-module). Hence, the map FK is an Fp-
module homomorphism (since it sends 0 to 0 and respects addition and respects
scaling). Thus, this map FK is an Fp-algebra homomorphism (since it is a ring
homomorphism and an Fp-module homomorphism). This proves Theorem 2.6.2.

14Don’t be fooled by the reference to [Grinbe19a]; this is not a difficult result. Here is an outline
of the proof: It clearly suffices to show that FK (0) = 0 and FK (1) = 1 and FK (a + b) =
FK (a) + FK (b) and FK (ab) = FK (a) · FK (b) for all a, b ∈ K. In other words, it suffices to show
that 0p = 0 and 1p = 1 and (a + b)p = ap + bp and (ab)p = apbp for all a, b ∈ K (because
FK (u) = up for each u ∈ K). But the first two of these four equalities are obvious, whereas the
fourth one follows from the commutativity of K. It thus remains to prove the third equality, i.e.,
to prove that (a + b)p = ap + bp for all a, b ∈ K. But this is the famous “Freshman’s Dream”, and
can be shown by expanding (a + b)p using the binomial theorem and recalling that all binomial

coefficients
(

p
k

)
for k ∈ {1, 2, . . . , p− 1} are divisible by p (which means that they vanish when

they are used to scale elements of K, by Proposition 2.6.3 (a)). Thus, all four equalities are
proven, so that FK is a ring homomorphism.

15Proof. Let λ ∈ Fp and a ∈ K. Then, Theorem 2.5.1 (applied to F = Fp and α = λ) yields λ|Fp| = λ.
In view of

∣∣Fp
∣∣ = p, this rewrites as λp = λ. But the definition of FK yields FK (a) = ap and

FK (λa) = (λa)p = λpap (by [Grinbe19a, Proposition 6.9.7 (b)], applied to Fp, K and p instead
of K, A and k). Hence, FK (λa) = λp︸︷︷︸

=λ

ap︸︷︷︸
=FK(a)

= λFK (a), qed.
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Professional algebraists occasionally get really lazy and shorten “the Frobenius
endomorphism” to “the Frobenius”.

The following property of the Frobenius endomorphism is an easy induction
exercise:

Proposition 2.6.4. Let K be a commutative Fp-algebra. Let a ∈ K. Let F be the
map FK : K→ K. Then,

Fi (a) = api
for all i ∈N. (4)

Proof of Proposition 2.6.4. We know that F is the map FK. Thus, for each u ∈ K, we
have

F (u) = FK (u) = up (5)

(by the definition of FK).
We shall prove (4) by induction on i:
Induction base: Comparing F0︸︷︷︸

=id

(a) = id (a) = a with ap0
= a1 = a, we obtain

F0 (a) = ap0
. In other words, (4) holds for i = 0. This completes the induction base.

Induction step: Fix j ∈N. Assume that (4) holds for i = j. We must prove that (4)
holds for i = j + 1.

We have assumed that (4) holds for i = j. In other words, we have Fj (a) = apj
.

Now,

Fj+1︸︷︷︸
=F◦Fj

(a) =
(

F ◦ Fj
)
(a) = F

Fj (a)︸ ︷︷ ︸
=apj

 = F
(

apj
)

=
(

apj
)p (

by (5), applied to u = apj
)

= apj p = apj+1
(

since pj p = pj+1
)

.

In other words, (4) holds for i = j + 1. This completes the induction step. Hence,
(4) is proven.

Thus, the proof of Proposition 2.6.4 is done.

Combining Proposition 2.6.4 with Theorem 2.5.1, we obtain the following:

Corollary 2.6.5. Let n ∈N. Let F be a finite Fp-field of size pn. Let F be the map
FF : F→ F. Then, Fn = id.

Proof of Corollary 2.6.5. We have |F| = pn (since F has size pn). Moreover, F is an
Fp-field; in other words, F is an Fp-algebra that is a field. Hence, F is commutative
(since F is a field).
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Let a ∈ F. Then, Theorem 2.5.1 (applied to α = a) yields a|F| = a. In view of
|F| = pn, this rewrites as apn

= a. But Proposition 2.6.4 (applied to K = F and
i = n) yields Fn (a) = apn

= a = id (a).
Forget that we fixed a. We thus have shown that Fn (a) = id (a) for each a ∈ F.

In other words, Fn = id. This proves Corollary 2.6.5.

Corollary 2.6.6. Let n be a positive integer. Let F be a finite Fp-field of size pn.
Let a ∈ F and r ∈N. Then, apnr

= a.

Proof of Corollary 2.6.6. We know that F is an Fp-field; in other words, F is an Fp-
algebra that is a field. Hence, F is commutative (since F is a field).

Let F be the map FF : F → F. Then, Corollary 2.6.5 yields Fn = id. Now,

Fnr =

 Fn︸︷︷︸
=id

r

= idr = id. But Proposition 2.6.4 (applied to K = F and i = nr)

yields Fnr (a) = apnr
. Hence, apnr

= Fnr︸︷︷︸
=id

(a) = id (a) = a. This proves Corollary

2.6.6.

2.7. Polynomials over fields have only so many roots

Our next ingredient is a basic property of polynomials over fields. First we define
a slightly nonstandard notation:

Convention 2.7.1. Let K be a commutative ring. Let f ∈ K [x] be a polynomial.
Let U be a K-algebra. Let u ∈ U. Then, f [u] will denote the value of the
polynomial f at u. (See [Grinbe19a, Definition 7.6.1] for the definition of this
value. Roughly speaking, this value is obtained by substituting u for x in f.)

I am using this notation f [u] in lieu of the more usual notation f (u), since the
latter can too easily be mistaken for a product.

Theorem 2.7.2. Let K be a field. Let n ∈ N. Then, any nonzero polynomial
a ∈ K [x] of degree ≤ n has at most n roots in K. (We are not counting the roots
with multiplicity here.)

Proof of Theorem 2.7.2. This is [Grinbe19a, Theorem 7.6.11].

For us, the use of Theorem 2.7.2 is through the following corollary:

Corollary 2.7.3. Let u be an integer such that u > 1. Let F be a field. Assume
that all a ∈ F satisfy au = a. Then, |F| ≤ u. (This means, in particular, that the
field F is finite.)
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Proof of Corollary 2.7.3. Define a polynomial a ∈ F [x] by a = xu − x. Then, the
leading term of a is xu (since u > 1). Thus, the polynomial a is monic of degree u;
hence, a is nonzero. Hence, Theorem 2.7.2 (applied to K = F and n = u) shows
that the polynomial a has at most u roots in F (since a has degree u and thus has
degree ≤ u). In other words, the number of roots of a in F is ≤ u. In other words,
|{roots of a in F}| ≤ u.

But F ⊆ {roots of a in F} 16. Hence, |F| ≤ |{roots of a in F}| ≤ u. This proves
Corollary 2.7.3.

2.8. Factorization into distinct factors and derivatives

Another piece of our puzzle is the notion of the derivative of a polynomial. We
recall its definition:

Definition 2.8.1. Let K be a commutative ring.
(a) For each polynomial

f = ∑
k∈N

akxk = a0x0 + a1x1 + a2x2 + · · · ∈ K [x] (where ai ∈ K),

we define the derivative f′ of f to be the polynomial

∑
k>0

kakxk−1 = 1a1x0 + 2a2x1 + 3a3x2 + · · · ∈ K [x] .

(b) Let D : K [x] → K [x] be the map sending each polynomial f to its deriva-
tive f′.

Definition 2.8.1 (a) is a particular case of the definition of f′ in [Grinbe19b, Ex-
ercise 5]17; more precisely, the latter definition defines f′ for every formal power
series f, whereas here we restrict ourselves to the case when f is a polynomial.
It is almost obvious that Definition 2.8.1 (a) is well-defined (i.e., the infinite sum
∑

k>0
kakxk−1 in this definition actually is a polynomial); see [Grinbe19b, Exercise 5

(a)] for the detailed proof of this fact.
The map D in Definition 2.8.1 (b) is a restriction of the map D in [Grinbe19b,

Exercise 5]. (Indeed, the latter map is defined on formal power series, while the
former map is defined on polynomials; but the two maps are defined by the same
rule.) Thus, any formulas for values of D proven in [Grinbe19b] are still valid for
our map D, as long as they are being applied to polynomials.

We shall need the following basic properties of derivatives:
16Proof. Let v ∈ F. Then, a [v] = vu − v (since a = xu − x). But we assumed that all a ∈ F satisfy

au = a. Applying this to a = v, we find vu = v. Hence, a [v] = vu − v = 0 (since vu = v). In
other words, v is a root of a in F. In other words, v ∈ {roots of a in F}.

Now, forget that we fixed v. We have thus shown that v ∈ {roots of a in F} for each v ∈ F. In
other words, F ⊆ {roots of a in F}.

17Note that [Grinbe19b, Exercise 5] uses the letter " f " instead of our "f".
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Proposition 2.8.2. Let K be a commutative ring. Let f and g be two polynomials
in K [x].

(a) We have (f + g)′ = f′ + g′.
(b) We have (f− g)′ = f′ − g′.
(c) We have (fg)′ = f′g + fg′.

Proof of Proposition 2.8.2. In [Grinbe19b, Exercise 5 (b)], it is shown that the map D
is K-linear18. This quickly yields parts (a) and (b) of Proposition 2.8.219. Proposi-
tion 2.8.2 (c) follows from [Grinbe19b, Exercise 5 (c)] (applied to f = f and g = g)
or from [Grinbe18, Proposition 0.2 (c)]20 (applied to f = f and g = g).

Proposition 2.8.2 (c) is known as the Leibniz law (or Leibniz identity) for derivatives
of polynomials. We will need the following consequence of Proposition 2.8.2:

Corollary 2.8.3. Let K be a commutative ring. Let f and g be two polynomials
in K [x]. Then, (

f2g
)′

= f ·
(
2f′g + fg′

)
.

Proof of Corollary 2.8.3. Proposition 2.8.2 (c) (applied to f instead of g) shows that

(ff)′ = f′f︸︷︷︸
=ff′

+ff′ = ff′ + ff′ = 2ff′.

In view of ff = f2, this rewrites as
(
f2)′ = 2ff′. Now, Proposition 2.8.2 (c) (applied

to f2 instead of f) shows that(
f2g
)′

=
(

f2
)′

︸ ︷︷ ︸
=2ff′

g + f2g′ = 2ff′g + f2g′ = f ·
(
2f′g + fg′

)
.

This proves Corollary 2.8.3.
18More precisely: In [Grinbe19b, Exercise 5 (b)], it is shown that the map D from [Grinbe19b,

Exercise 5] is K-linear. This is not exactly our map D, but our map D is a restriction of this map;
thus, it follows that our map D is K-linear as well.

19In more details: The map D is K-linear. Thus,

D (f + g) = D (f)︸ ︷︷ ︸
=f′

(by the definition of D)

+ D (g)︸ ︷︷ ︸
=g′

(by the definition of D)

= f′ + g′.

Comparing this with

D (f + g) = (f + g)′ (by the definition of D) ,

we obtain (f + g)′ = f′ + g′. This proves Proposition 2.8.2 (a). A similar argument proves
Proposition 2.8.2 (b).

20In [Grinbe18], I denote the indeterminate by t rather than x, and I use the notation
d
dt

h for the

derivative h′ of a polynomial h.
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Corollary 2.8.4. Let K be a field. Let a ∈ K [x] be a monic polynomial such that
deg (a′) = 0 (that is, the polynomial a′ is constant and nonzero). Then, a can
be written in the form a = u1u2 · · · uk, where u1, u2, . . . , uk ∈ K [x] are distinct
monic irreducible polynomials.

Proof of Corollary 2.8.4. Corollary 2.2.3 (applied to F = K) shows that a can be writ-
ten in the form a = u1u2 · · · uk, where u1, u2, . . . , uk ∈ K [x] are monic irreducible
polynomials. Consider these u1, u2, . . . , uk.

Next, we shall show that the polynomials u1, u2, . . . , uk are distinct.
Indeed, assume the contrary. Thus, there exist two elements i and j of {1, 2, . . . , k}

such that i < j and ui = uj. Consider these i and j. Let g denote the polynomial
∏

h∈{1,2,...,k};
h 6=i and h 6=j

uh ∈ K [x]. (This may be an empty product, i.e., the constant polynomial

1.) Let f ∈ K [x] be the polynomial uj. Then, f = uj, and thus f is irreducible (since
uj is irreducible). Hence, deg f > 0.

Now, ui and uj are two distinct factors of the product u1u2 · · · uk (since i < j).
Splitting off these two factors, we obtain

u1u2 · · · uk = ui︸︷︷︸
=uj=f

uj︸︷︷︸
=f

∏
h∈{1,2,...,k};
h 6=i and h 6=j

uh

︸ ︷︷ ︸
=g

(by the definition of g)

= ffg = f2g.

Therefore,
a = u1u2 · · · uk = f2g.

Taking derivatives on both sides of this equality, we find

a′ =
(

f2g
)′

= f ·
(
2f′g + fg′

)
(by Corollary 2.8.3). Thus, f ·

(
2f′g + fg′

)
= a′ 6= 0 (since deg (a′) = 0 6= −∞).

Hence, both polynomials f and 2f′g + fg′ are nonzero. Thus,

deg
(
f ·
(
2f′g + fg′

))
= deg f︸ ︷︷ ︸

>0

+ deg
(
2f′g + fg′

)︸ ︷︷ ︸
≥0

(since 2f′g+fg′ is nonzero)

> 0.

This contradicts deg
(
f ·
(
2f′g + fg′

))︸ ︷︷ ︸
=a′

= deg (a′) = 0. This contradiction shows

that our assumption was false. Hence, we have proven that the polynomials
u1, u2, . . . , uk are distinct.

We thus have found distinct monic irreducible polynomials u1, u2, . . . , uk ∈ K [x]
such that a = u1u2 · · · uk. In other words, we have written a in the form a =
u1u2 · · · uk, where u1, u2, . . . , uk ∈ K [x] are distinct monic irreducible polynomials.
Thus, a can be written in this form. This proves Corollary 2.8.4.
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We furthermore need a formula for derivatives of monomials:

Proposition 2.8.5. Let K be a commutative ring. Let m ∈ N. Then, in K [x], we
have D (xm) = mxm−1. (Here, the expression “mxm−1” is to be understood as 0
when m = 0.)

Proof of Proposition 2.8.5. This is proven in [Grinbe19b, Statement 8 in the solution
to Exercise 5].

We can restate Proposition 2.8.5 as follows:

Proposition 2.8.6. Let K be a commutative ring. Let m ∈ N. Then, in K [x], we
have (xm)′ = mxm−1. (Here, the expression “mxm−1” is to be understood as 0
when m = 0.)

Proof of Proposition 2.8.6. Proposition 2.8.5 yields D (xm) = mxm−1. But the def-
inition of D yields D (xm) = (xm)′. Comparing these two equalities, we find
(xm)′ = mxm−1. This proves Proposition 2.8.6.

Corollary 2.8.7. Let K be a commutative Fp-algebra. Let m be a positive integer
satisfying p | m. Then, in K [x], we have (xm)′ = 0.

Proof of Corollary 2.8.7. We have p | m. Thus, there exists some integer c such that
m = pc. Consider this c.

Proposition 2.6.3 (b) (applied to a = cxm−1) shows that pcxm−1 = 0. But Propo-
sition 2.8.6 yields

(xm)′ = m︸︷︷︸
=pc

xm−1 = pcxm−1 = 0.

This proves Corollary 2.8.7.

2.9. Factoring xpg − x, part I

Lemma 2.9.1. Let g be a positive integer. Let K be an Fp-field. Then, the poly-
nomial xpg − x ∈ K [x] can be written in the form xpg − x = u1u2 · · · uk, where
u1, u2, . . . , uk ∈ K [x] are distinct monic irreducible polynomials.

Proof of Lemma 2.9.1. We know that K is an Fp-field. In other words, K is an Fp-
algebra that is a field. Hence, K is commutative (since K is a field).

We have g > 0 (since g is a positive integer), hence pg > p0 = 1. Thus, the
leading term of the polynomial xpg − x is xpg

. This shows that the polynomial
xpg − x is monic of degree pg.

Proposition 2.8.6 (applied to m = 1) yields
(
x1)′ = 1 x1−1︸︷︷︸

=x0=1

= 1. In view of x1 = x,

this rewrites as x′ = 1.
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Also, g is a positive integer; hence, g ≥ 1, so that g − 1 ∈ N. Hence, pg−1 is
an integer. Thus, p | pg (since pg = p · pg−1). Hence, Corollary 2.8.7 (applied to

m = pg) yields
(

xpg
)′

= 0.

Now, Proposition 2.8.2 (b) (applied to xpg
and x instead of f and g) shows that(

xpg − x
)′

=
(

xpg
)′

︸ ︷︷ ︸
=0

− x′︸︷︷︸
=1

= 0− 1 = −1.

Thus, deg

(xpg − x
)′

︸ ︷︷ ︸
=−1

 = deg (−1) = 0. So we know that xpg − x is a monic

polynomial such that deg
((

xpg − x
)′)

= 0 (that is, the polynomial
(

xpg − x
)′

is

constant and nonzero). Hence, Corollary 2.8.4 (applied to a = xpg − x) shows that
xpg − x can be written in the form xpg − x = u1u2 · · · uk, where u1, u2, . . . , uk ∈ K [x]
are distinct monic irreducible polynomials. This proves Lemma 2.9.1.

Lemma 2.9.2. Let r and m be positive integers. Let K be a finite Fp-field of size
pm. Let a ∈ K [x] be an irreducible polynomial such that a | xpmr − x in K [x].
Then, deg a | r in Z.

Proof of Lemma 2.9.2. The integers m and r are positive. Hence, their product mr is
positive as well.

Let n = deg a. Thus, a is a polynomial of degree n. Note that a is irreducible;
thus, deg a > 0. Hence, n = deg a > 0. Thus, n is a positive integer. Hence, mn is a
positive integer (since m is a positive integer).

We know that K is an Fp-field. In other words, K is an Fp-algebra that is a
field. Thus, K is a field, so that K is commutative. Moreover, K has size pm; thus,
|K| = pm. Now, Theorem 2.1.2 (b) (applied to F = K) yields that

|K [x] /a| = |K|n = (pm)n (since |K| = pm)

= pmn.

Furthermore, Theorem 2.1.2 (c) (applied to F = K) yields that K [x] /a is a field.
Let F denote this field. Thus,

F = K [x] /a, so that |F| = |K [x] /a| = pmn.

We know that K is a commutative Fp-algebra. We also know that K [x] is a K-
algebra. Thus, Proposition 2.4.3 (applied to Fp, K and K [x] instead of K, L and
V) shows that K [x] becomes an Fp-algebra in a natural way.

We thus know that K [x] is a commutative Fp-algebra21. We also know that F is
a K [x]-algebra (since F = K [x] /a). Thus, Proposition 2.4.3 (applied to Fp, K [x]

21since K [x] is commutative
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and F instead of K, L and V) shows that F becomes an Fp-algebra in a natural
way. Thus, F is a commutative Fp-algebra (since F is commutative). Also, F is an
Fp-field (since F is an Fp-algebra that is also a field). Recall that F has size pmn

(since |F| = pmn).
Let F be the Frobenius endomorphism FF : F→ F of F. (See Definition 2.6.1 for

the definition of a Frobenius endomorphism.)
Recall Convention 2.1.1. We have

([ f ]a)
k =

[
f k
]

a
for each f ∈ K [x] and each k ∈N. (6)

(Indeed, this can be proven by a straightforward induction on k, using the definition
of the multiplication on K [x] /a.)

The elements x and xpmr
of K [x] satisfy a | xpmr − x. In other words, xpmr ≡

x mod a. In other words, [
xpmr

]
a
= [x]a . (7)

(Again, recall that we are using Convention 2.1.1.)
Proposition 2.6.4 (applied to F, [x]a and mr instead of K, a and i) yields that

Fmr ([x]a) = ([x]a)
pmr

=
[

xpmr
]

a
(by (6), applied to f = x and k = pmr)

= [x]a (by (7)) . (8)

Also, the Frobenius endomorphism FF is an Fp-algebra homomorphism (by The-
orem 2.6.2, applied to F instead of K). In other words, F is an Fp-algebra homo-
morphism (since F = FF). Hence, Fmr is an Fp-algebra homomorphism as well
(since any composition of Fp-algebra homomorphisms is an Fp-algebra homomor-
phism). In other words, the map Fmr is an Fp-module homomorphism and a ring
homomorphism at the same time.

Next, we shall show that

Fmr (u) = u for each u ∈ F. (9)

[Proof of (9): Let u ∈ F. Thus, u ∈ F = K [x] /a. But Theorem 2.1.2 (a) (applied
to K instead of F) yields that each element of K [x] /a can be uniquely written in
the form

λ0

[
x0
]

a
+ λ1

[
x1
]

a
+ · · ·+ λn−1

[
xn−1

]
a

with λ0, λ1, . . . , λn−1 ∈ K.

Thus, in particular, u can be written uniquely in this form (since u ∈ K [x] /a).
In other words, there exists a unique n-tuple (λ0, λ1, . . . , λn−1) ∈ Kn such that
u = λ0

[
x0]

a + λ1
[
x1]

a + · · ·+ λn−1
[
xn−1]

a. Consider this n-tuple. For each i ∈
{0, 1, . . . , n− 1}, we have λi ∈ K and therefore

(λi)
pmr

= λi (10)
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(by Corollary 2.6.6, applied to K and m instead of F and n), since K is a finite
Fp-field of size pm.

But we have

u = λ0

[
x0
]

a
+ λ1

[
x1
]

a
+ · · ·+ λn−1

[
xn−1

]
a
=

n−1

∑
i=0

λi

[
xi
]

a
. (11)

Applying the map Fmr to both sides of this equality, we obtain

Fmr (u) = Fmr

(
n−1

∑
i=0

λi

[
xi
]

a

)
=

n−1

∑
i=0

Fmr
(

λi

[
xi
]

a

)
︸ ︷︷ ︸
=(λi[xi]a)

pmr

(by Proposition 2.6.4,
applied to F, λi[xi]a and mr

instead of K, a and i)(
since Fmr is an Fp-module homomorphism

)
=

n−1

∑
i=0

(
λi

[
xi
]

a

)pmr

︸ ︷︷ ︸
=(λi)

pmr
([xi]a)

pmr

(since F is a K-algebra)

=
n−1

∑
i=0

(λi)
pmr︸ ︷︷ ︸

=λi
(by (10))

([
xi
]

a

)pmr

=
n−1

∑
i=0

λi

([
xi
]

a

)pmr

. (12)

But for each i ∈ {0, 1, . . . , n− 1}, we have([
xi
]

a

)pmr

=

[(
xi
)pmr]

a

(
by (6), applied to f = xi and k = pmr

)
=

[(
xpmr

)i
]

a

(
since

(
xi
)pmr

= xipmr
= xpmri =

(
xpmr

)i
)

=
([

xpmr
]

a

)i

 since (6) (applied to f = xpmr
and k = i)

yields
([

xpmr
]

a

)i
=

[(
xpmr

)i
]

a


= ([x]a)

i
(

since
[

xpmr
]

a
= [x]a

)
=
[

xi
]

a
(by (6), applied to f = x and k = i) . (13)

Hence, (12) becomes

Fmr (u) =
n−1

∑
i=0

λi

([
xi
]

a

)pmr

︸ ︷︷ ︸
=[xi]a

(by (13))

=
n−1

∑
i=0

λi

[
xi
]

a
= u
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(by (11)). This proves (9).]
Thus, we have shown that all u ∈ F satisfy Fmr (u) = u. Hence, all u ∈ F satisfy

Fmr (u) = u = id (u). In other words, Fmr = id.
On the other hand, F is a finite Fp-field of size pmn (since |F| = pmn). Thus,

Corollary 2.6.5 (applied to mn instead of n) yields Fmn = id.
Now we know that Fmr = id and Fmn = id. Hence, Lemma 2.3.1 (applied to F,

F, mr and mn instead of S, f , a and b) yields that Fgcd(mr,mn) = id.
Let i = gcd (mr, mn). Thus, i is a positive integer (since mr and mn are positive

integers), so that pi > 1. Furthermore, from i = gcd (mr, mn), we obtain

Fi = Fgcd(mr,mn) = id .

Now, for each a ∈ F, we have

Fi (a) = api
(by Proposition 2.6.4, applied to F instead of K)

and thus
api

= Fi︸︷︷︸
=id

(a) = id (a) = a.

So we have shown that all a ∈ F satisfy api
= a. Hence, Corollary 2.7.3 (applied

to u = pi) shows that |F| ≤ pi (since pi > 1). In view of |F| = pmn, this rewrites
as pmn ≤ pi. Hence, mn ≤ i (since p > 1). But22 i = gcd (mr, mn) | mn and thus
i ≤ mn (since i and mn both are positive integers). Combining this with mn ≤ i,
we find mn = i. Thus, mn = i = gcd (mr, mn) | mr. We can cancel m from this
divisibility (since m is a nonzero integer), and thus find n | r. In view of n = deg a,
this rewrites as deg a | r. This proves Lemma 2.9.2.

We will say more about the factorization of the polynomial xpg − x (that is, about
the factors a1, a2, . . . , ak in Lemma 2.9.1) in Theorem 4.2.2 further below, but for
now let us draw the one consequence of Lemma 2.9.2 that we will actually need for
our proof of Theorem 1.0.3:

Corollary 2.9.3. Let r and m be positive integers such that r is prime. Let K be
a finite Fp-field of size pm. Then, there exists a monic irreducible polynomial
a ∈ K [x] of degree r.

Proof of Corollary 2.9.3. Clearly, mr is a positive integer (since m and r are positive
integers). Thus, pmr > 1. Hence, the polynomial xpmr − x is a monic polynomial of
degree pmr. Thus, deg

(
xpmr − x

)
= pmr.

Also, r is prime. Hence, r > 1. We can multiply this inequality by m (since m is
positive), and thus mr > m · 1 = m. Hence, pmr > pm.

Lemma 2.9.1 (applied to g = mr) shows that the polynomial xpmr − x ∈ K [x]
can be written in the form xpmr − x = u1u2 · · · uk, where u1, u2, . . . , uk ∈ K [x] are
distinct monic irreducible polynomials. Consider these u1, u2, . . . , uk.

22From this place on, all divisibilities are understood to mean divisibilities in Z.
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Assume (for the sake of contradiction) that

deg (ui) = 1 for each i ∈ {1, 2, . . . , k} . (14)

Thus, the polynomials u1, u2, . . . , uk all have degree 1. Hence, u1, u2, . . . , uk are
monic polynomials of degree 1 (since we know that u1, u2, . . . , uk are monic poly-
nomials). Furthermore, these k monic polynomials of degree 1 are distinct (as we
know). Thus, we have found k distinct monic polynomials of degree 1 (namely,
u1, u2, . . . , uk). Hence,

(the number of all monic polynomials of degree 1 in K [x]) ≥ k.

On the other hand, each monic polynomial of degree 1 (in K [x]) has the form
x + c for some unique c ∈ K. Hence,

(the number of all monic polynomials of degree 1 in K [x])
= (the number of all c ∈ K) = |K| = pm (since K has size pm) .

Thus,

pm = (the number of all monic polynomials of degree 1 in K [x]) ≥ k.

Recall that the degree of a product of nonzero polynomials over a field always
equals the sum of their degrees. We can apply this to the polynomials u1, u2, . . . , uk
(which are nonzero because they are irreducible) and thus obtain

deg (u1u2 · · · uk) = deg (u1) + deg (u2) + · · ·+ deg (uk) =
k

∑
i=1

deg (ui)︸ ︷︷ ︸
=1

(by (14))

=
k

∑
i=1

1 = k · 1 = k.

Hence,

k = deg (u1u2 · · · uk)︸ ︷︷ ︸
=xpmr−x

(since xpmr−x=u1u2···uk)

= deg
(

xpmr − x
)
= pmr > pm ≥ k.

This is clearly absurd. This contradiction shows that our assumption (that is, (14))
is false. In other words, not every i ∈ {1, 2, . . . , k} satisfies deg (ui) = 1. In other
words, there exists some i ∈ {1, 2, . . . , k} such that deg (ui) 6= 1. Consider this i.
The polynomial ui ∈ K [x] is irreducible (since u1, u2, . . . , uk are all irreducible).
Thus, its degree deg (ui) is a positive integer.

We have ui | u1u2 · · · uk (since ui is a factor of the product u1u2 · · · uk). Hence,
ui | u1u2 · · · uk = xpmr − x. Thus, Lemma 2.9.2 (applied to g = mr and a = ui)
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shows that deg (ui) | r in Z. Hence, deg (ui) is a divisor of r, and thus is a positive
divisor of r (since deg (ui) is positive). But the only positive divisors of r are 1
and r (since r is prime). Hence, deg (ui) equals either 1 or r (since deg (ui) is a
positive divisor of r). Therefore, deg (ui) = r (since deg (ui) 6= 1). In other words,
the polynomial ui has degree r. Thus, there exists a monic irreducible polynomial
a ∈ K [x] of degree r (namely, a = ui). This proves Corollary 2.9.3.

3. The proof

3.1. The case of a prime exponent

We are getting close to proving Theorem 1.0.3. The following is one of our last
steps:

Lemma 3.1.1. Let r be a prime. Let m be a positive integer. Let F be a finite
Fp-field of size pm. Then, there exists a finite Fp-field of size pmr.

Proof of Lemma 3.1.1. We know that F is an Fp-field. In other words, F is an Fp-
algebra that is a field. Thus, F is commutative (since F is a field). Also, |F| = pm

(because F has size pm).
Corollary 2.9.3 (applied to K = F) shows that there exists a monic irreducible

polynomial a ∈ F [x] of degree r. Consider this a. Theorem 2.1.2 (c) (applied to
n = r) yields that F [x] /a is a field. Furthermore, Theorem 2.1.2 (b) (applied to
n = r) yields that

|F [x] /a| = |F|r = (pm)r (since |F| = pm)

= pmr.

Thus, the field F [x] /a is finite.
We know that F is a commutative Fp-algebra. We also know that F [x] is an

F-algebra. Thus, Proposition 2.4.3 (applied to Fp, F and F [x] instead of K, L and
V) shows that F [x] becomes an Fp-algebra in a natural way. Clearly, this F [x] is
commutative (since F is commutative).

We thus know that F [x] is a commutative Fp-algebra. We also know that F [x] /a
is an F [x]-algebra. Thus, Proposition 2.4.3 (applied to Fp, F [x] and F [x] /a instead
of K, L and V) shows that F [x] /a becomes an Fp-algebra in a natural way. Thus,
F [x] /a is an Fp-field (since F [x] /a is an Fp-algebra that is also a field).

Thus we have shown that F [x] /a is a finite Fp-field of size pmr (since |F [x] /a| =
pmr). Hence, there exists a finite Fp-field of size pmr (namely, F [x] /a). This proves
Lemma 3.1.1.

3.2. Proof of Theorem 1.0.3

Recall the following basic fact from number theory:
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Lemma 3.2.1. Let N > 1 be an integer. Then, there exists at least one prime r
such that r | N.

Lemma 3.2.1 is, for example, [Grinbe19a, Proposition 2.13.8] (with n and p re-
named as N and r).

At last, we can prove Theorem 1.0.3:

Proof of Theorem 1.0.3. We shall prove Theorem 1.0.3 by strong induction on n.
Induction step: Let N be a positive integer. Assume (as the induction hypothesis)

that Theorem 1.0.3 holds for all n < N. We must now prove that Theorem 1.0.3
holds for n = N. In other words, we must prove that there exists a finite Fp-field
of size pN.

If N = 1, then this is obvious23. Thus, for the rest of this proof, we WLOG
assume that N 6= 1. Hence, N > 1 (since N is a positive integer). Thus, Lemma
3.2.1 shows that there exists at least one prime r such that r | N. Consider this r. We
have r > 1 (since r is prime), so that r > 1 > 0. Also, there exists an integer m such
that N = rm (since r | N). Consider this m. We have N = rm, thus m = N/r > 0
(since N > 0 and r > 0). Hence, we can multiply the inequality r > 1 by m. We
thus find rm > 1m = m, so that m < rm = N. Also, m is a positive integer (since m
is an integer and since m > 0).

Recall that Theorem 1.0.3 holds for all n < N (by our induction hypothesis).
Hence, Theorem 1.0.3 holds for n = m (since m is a positive integer satisfying
m < N). In other words, there exists a finite Fp-field of size pm. Consider such an
Fp-field, and denote it by F. Thus, F is a finite Fp-field of size pm. Hence, Lemma
3.1.1 shows that there exists a finite Fp-field of size pmr. In other words, there exists
a finite Fp-field of size pN (since mr = rm = N). In other words, Theorem 1.0.3
holds for n = N. This completes the induction step. Thus, Theorem 1.0.3 is proven
by strong induction.

4. Appendices

4.1. Appendix 1: Proofs of Proposition 2.4.1 and Proposition
2.4.2

We still have to prove two propositions that we used: Proposition 2.4.1 and Propo-
sition 2.4.2. Both proofs are straightforward, but require us to recall precisely how
modules and algebras were defined.

First, let us recall the definition of a K-module. Several equivalent definitions
exist; we shall use the one from [Grinbe19a, Definition 6.3.1]:

23Proof. The finite field Fp is clearly an Fp-algebra, and thus is an Fp-field (by the definition of an
Fp-field). Moreover, it has size p1 (since

∣∣Fp
∣∣ = p = p1). Thus, Fp is a finite Fp-field of size p1.

Hence, there exists a finite Fp-field of size p1 (namely, Fp). Hence, there exists a finite Fp-field
of size pN when N = 1. Qed.
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Definition 4.1.1. Let K be a commutative ring.
A K-module means a set M equipped with

• a binary operation + on M (called “addition”, and not to be confused with
the addition +K of K),

• a map · : K×M → M (called “scaling”, and not to be confused with the
multiplication ·K of K), and

• an element 0M ∈ M (called “zero vector” or “zero”, and not to be confused
with the zero of K)

satisfying the following axioms:

• (a) We have a + b = b + a for all a, b ∈ M.

• (b) We have a + (b + c) = (a + b) + c for all a, b, c ∈ M.

• (c) We have a + 0M = 0M + a = a for all a ∈ M.

• (d) Each a ∈ M has an additive inverse (i.e., there is an a′ ∈ M such that
a + a′ = a′ + a = 0M).

• (e) We have λ (a + b) = λa+ λb for all λ ∈ K and a, b ∈ M. Here and in the
following, we use the notation “λc” (or, equivalently, “λ · c”) for the image
of a pair (λ, c) ∈ K× M under the “scaling” map · (similarly to how we
write ab for the image of a pair (a, b) ∈ K×K under the “multiplication”
map ·).

• (f) We have (λ + µ) a = λa + µa for all λ, µ ∈ K and a ∈ M.

• (g) We have 0a = 0M for all a ∈ M.

• (h) We have (λµ) a = λ (µa) for all λ, µ ∈ K and a ∈ M.

• (i) We have 1a = a for all a ∈ M.

• (j) We have λ · 0M = 0M for all λ ∈ K.

These ten axioms are called the module axioms.

Let us also recall the definition of a K-algebra ([Grinbe19a, Definition 6.9.1]):

Definition 4.1.2. Let K be a commutative ring. A K-algebra is a set M endowed
with two binary operations + and · as well as a scaling map · : K×M→ M (not
to be confused with the multiplication map, which is also denoted by ·) and two
elements 0, 1 ∈ M that satisfy all the ring axioms (with K replaced by M) as well
as all the module axioms (where the zero vector 0M is taken to be the element
0 ∈ M) and also the following axiom:
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• Scale-invariance of multiplication: We have λ (ab) = (λa) · b = a · (λb) for
all λ ∈ K and a, b ∈ M.

We can now prove Proposition 2.4.1 by a fairly straightforward verification of the
module axioms:

Proof of Proposition 2.4.1. We have assumed that V is an L-module. Thus, it satisfies the
module axioms. In other words, the following ten statements hold:24

• (a1) We have a + b = b + a for all a, b ∈ V.

• (b1) We have a + (b + c) = (a + b) + c for all a, b, c ∈ V.

• (c1) We have a + 0V = 0V + a = a for all a ∈ V.

• (d1) Each a ∈ V has an additive inverse (i.e., there is an a′ ∈ V such that a + a′ =
a′ + a = 0V).

• (e1) We have λ (a + b) = λa + λb for all λ ∈ L and a, b ∈ V.

• (f1) We have (λ + µ) a = λa + µa for all λ, µ ∈ L and a ∈ V.

• (g1) We have 0La = 0V for all a ∈ V.

• (h1) We have (λµ) a = λ (µa) for all λ, µ ∈ L and a ∈ V.

• (i1) We have 1La = a for all a ∈ V.

• (j1) We have λ · 0V = 0V for all λ ∈ L.

We have also assumed that L is a K-algebra. Thus, L satisfies the ring axioms, the
module axioms and the “Scale-invariance of multiplication” axiom. In other words, the
following 15 statements hold:

• (a2) We have a + b = b + a for all a, b ∈ L.

• (b2) We have a + (b + c) = (a + b) + c for all a, b, c ∈ L.

• (c2) We have a + 0L = 0L + a = a for all a ∈ L.

• (d2) Each a ∈ L has an additive inverse (i.e., there is an a′ ∈ L such that a + a′ =
a′ + a = 0L).

• (e2) We have λ (a + b) = λa + λb for all λ ∈ K and a, b ∈ L.

• (f2) We have (λ + µ) a = λa + µa for all λ, µ ∈ K and a ∈ L.

• (g2) We have 0Ka = 0L for all a ∈ L.

• (h2) We have (λµ) a = λ (µa) for all λ, µ ∈ K and a ∈ L.

24As usual, we let 0V denote the zero vector of the L-module V.
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• (i2) We have 1Ka = a for all a ∈ L.

• (j2) We have λ · 0L = 0L for all λ ∈ K.

• (k2) We have a (bc) = (ab) c for all a, b, c ∈ L.

• (l2) We have a1L = 1La = a for all a ∈ L.

• (m2) We have a0L = 0La = 0L for all a ∈ L.

• (n2) We have a (b + c) = ab + ac and (a + b) c = ac + bc for all a, b, c ∈ L.

• (o2) We have λ (ab) = (λa) · b = a · (λb) for all λ ∈ K and a, b ∈ L.

Now, our set V is endowed with an addition +, a scaling map · : K×V → V (defined by
(3)) and a zero vector 0V . Our goal is to show that V is a K-module (when equipped with
this addition, this scaling map and this zero vector). In other words, our goal is to show
that it satisfies the module axioms. In other words, our goal is to show that the following
ten statements hold:

• (a3) We have a + b = b + a for all a, b ∈ V.

• (b3) We have a + (b + c) = (a + b) + c for all a, b, c ∈ V.

• (c3) We have a + 0V = 0V + a = a for all a ∈ V.

• (d3) Each a ∈ V has an additive inverse (i.e., there is an a′ ∈ V such that a + a′ =
a′ + a = 0V).

• (e3) We have λ (a + b) = λa + λb for all λ ∈ K and a, b ∈ V.

• (f3) We have (λ + µ) a = λa + µa for all λ, µ ∈ K and a ∈ V.

• (g3) We have 0Ka = 0V for all a ∈ V.

• (h3) We have (λµ) a = λ (µa) for all λ, µ ∈ K and a ∈ V.

• (i3) We have 1Ka = a for all a ∈ V.

• (j3) We have λ · 0V = 0V for all λ ∈ K.

So it remains to prove these ten statements (a3), (b3), . . ., (j3). Let us do so now.
The four statements (a3), (b3), (c3) and (d3) are literally identical with the four statements

(a1), (b1), (c1) and (d1), and therefore hold (since we know that the latter four statements
hold). Hence, it remains to prove the other six statements.

[Proof of statement (e3): Let λ ∈ K and a, b ∈ V. We must prove that λ (a + b) = λa + λb.
Applying (3) to v = a, we obtain λ · a = (λ · 1L) · a. Applying (3) to v = b, we obtain

λ · b = (λ · 1L) · b. Applying (3) to v = a + b, we obtain

λ · (a + b) = (λ · 1L) · (a + b) = (λ · 1L) · a + (λ · 1L) · b

(by statement (e1), applied to λ · 1L instead of λ). Comparing this with

λa︸︷︷︸
=λ·a

=(λ·1L)·a

+ λb︸︷︷︸
=λ·b

=(λ·1L)·b

= (λ · 1L) · a + (λ · 1L) · b,
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we obtain λ · (a + b) = λa + λb. Thus, λ (a + b) = λ · (a + b) = λa + λb. This proves
statement (e3).]

[Proof of statement (f 3): Let λ, µ ∈ K and a ∈ V. We must prove that (λ + µ) a = λa + µa.
Applying (3) to v = a, we obtain λ · a = (λ · 1L) · a. Applying (3) to µ and a instead of

λ and v, we obtain µ · a = (µ · 1L) · a. Applying (3) to λ + µ and a instead of λ and v, we
obtain (λ + µ) · a = ((λ + µ) · 1L) · a. But statement (f2) (applied to 1L instead of a) yields
(λ + µ) · 1L = λ · 1L + µ · 1L. Hence,

(λ + µ) a = (λ + µ) · a = ((λ + µ) · 1L)︸ ︷︷ ︸
=λ·1L+µ·1L

·a = (λ · 1L + µ · 1L) · a

= (λ · 1L) · a + (µ · 1L) · a

(by statement (f1), applied to λ · 1L and µ · 1L instead of λ and µ). Comparing this with

λa︸︷︷︸
=λ·a

=(λ·1L)·a

+ µa︸︷︷︸
=µ·a

=(µ·1L)·a

= (λ · 1L) · a + (µ · 1L) · a,

we obtain (λ + µ) a = λa + µa. This proves statement (f3).]
[Proof of statement (g3): Let a ∈ V. We must prove that 0Ka = 0V .
Statement (g2) (applied to 1L instead of a) yields 0K · 1L = 0L. But (3) (applied to λ = 0K

and v = a) yields 0K · a = (0K · 1L)︸ ︷︷ ︸
=0L

·a = 0L · a = 0V (by statement (g1)). This proves

statement (g3).]
[Proof of statement (h3): Let λ, µ ∈ K and a ∈ V. We must prove that (λµ) a = λ (µa).
First, we shall show that

(λµ) · 1L = (λ · 1L) · (µ · 1L) . (15)

Indeed, statement (o2) (applied to µ, λ · 1L and 1L instead of λ, a and b) yields µ ((λ · 1L) 1L) =
(µ (λ · 1L)) · 1L = (λ · 1L) · (µ · 1L). But statement (l2) (applied to λ · 1L instead of a) yields
(λ · 1L) 1L = 1L (λ · 1L) = λ · 1L. Hence, µ ((λ · 1L) 1L)︸ ︷︷ ︸

=λ·1L

= µ (λ · 1L). Thus,

µ (λ · 1L) = µ ((λ · 1L) 1L) = (λ · 1L) · (µ · 1L) .

But statement (h2) (applied to µ, λ and 1L instead of λ, µ and a) yields (µλ) · 1L =
µ (λ · 1L) = (λ · 1L) · (µ · 1L). However, λµ = µλ (since L is commutative). Thus,

(λµ)︸︷︷︸
=µλ

·1L = (µλ) · 1L = (λ · 1L) · (µ · 1L) .

Thus, (15) is proven.
Now, (3) (applied to λµ and a instead of λ and v) yields

(λµ) · a = ((λµ) · 1L)︸ ︷︷ ︸
=(λ·1L)·(µ·1L)

(by (15))

·a = ((λ · 1L) · (µ · 1L)) · a

= (λ · 1L) · ((µ · 1L) · a) (16)
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(by statement (h1), applied to λ · 1L and µ · 1L instead of λ and µ).
But (3) (applied to v = µa) yields

λ · (µa) = (λ · 1L) · (µa)︸︷︷︸
=µ·a

=(µ·1L)·a
(by (3), applied to µ

instead of λ)

= (λ · 1L) · ((µ · 1L) · a) .

Comparing this with (16), we obtain (λµ) · a = λ · (µa) = λ (µa). Thus, (λµ) a = (λµ) · a =
λ (µa). This proves statement (h3).]

[Proof of statement (i3): Let a ∈ V. We must prove that 1Ka = a.
Statement (i2) (applied to 1L instead of a) yields 1K · 1L = 1L. But (3) (applied to λ = 1K)

yields 1K · a = (1K · 1L)︸ ︷︷ ︸
=1L

·a = 1L · a = a (by statement (i1)). This proves statement (i3).]

[Proof of statement (j3): Let λ ∈ K. We must prove that λ · 0V = 0V .
But (3) (applied to v = 0V) yields λ · 0V = (λ · 1L) · 0V = 0V (by statement (j1), applied

to λ · 1L instead of λ). This proves statement (j3).]
We thus have proven the ten statements (a3), (b3), . . ., (j3). These ten statements show

that V satisfies the module axioms that are required to ensure that V is a K-module. Hence,
V is a K-module. This proves Proposition 2.4.1.

Proof of Proposition 2.4.2. Proposition 2.4.1 shows that the set V (equipped with its addition
+, its zero vector 0V and the scaling · : K×V → V defined by (3)) is a K-module. Further-
more, the set V (equipped with its addition +, its multiplication ·, its zero 0V and its unity
1V) is a ring.

Now, our set V is endowed with an addition +, a multiplication ·, a scaling map · :
K× V → V (defined by (3)), a zero 0V and a unity 1V . Our goal is to show that V is a
K-algebra (when equipped with this addition, this multiplication, this scaling map, this
zero and this unity). In other words, our goal is to show that it satisfies the ring axioms,
the module axioms and the “Scale-invariance of multiplication” axiom (because this is
precisely what is needed to ensure that V is a K-algebra, according to Definition 4.1.2). But
it clearly satisfies the ring axioms (since V is a ring) and the module axioms (since V is a K-
module). Hence, it suffices to prove that it satisfies the “Scale-invariance of multiplication”
axiom. In other words, we must prove the following statement:

• (k3) We have λ (ab) = (λa) · b = a · (λb) for all λ ∈ K and a, b ∈ V.

Before we prove this statement, let us recall something: We know that V is an L-algebra,
and therefore satisfies the “Scale-invariance of multiplication” axiom. In other words, the
following statement holds:

• (k1) We have λ (ab) = (λa) · b = a · (λb) for all λ ∈ L and a, b ∈ V.

Now, we can prove the statement (k3):
[Proof of statement (k3): Let λ ∈ K and a, b ∈ V. We must prove that λ (ab) = (λa) · b =

a · (λb).
We have λ · 1L ∈ L. Thus, statement (k1) (applied to λ · 1L instead of λ) yields (λ · 1L) (ab) =

((λ · 1L) a) · b = a · ((λ · 1L) b).
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Applying (3) to v = a, we obtain λ · a = (λ · 1L) · a = (λ · 1L) a. Applying (3) to v = b,
we obtain λ · b = (λ · 1L) · b = (λ · 1L) b. Applying (3) to v = ab, we obtain

λ · (ab) = (λ · 1L) · (ab) = ((λ · 1L) a)︸ ︷︷ ︸
=λa

(since λa=λ·a=(λ·1L)a)

·b = (λa) · b.

Also,
λ · (ab) = (λ · 1L) · (ab) = a · ((λ · 1L) b)︸ ︷︷ ︸

=λb
(since λb=λ·b=(λ·1L)b)

= a · (λb) .

Combining these two equalities, we find λ · (ab) = (λa) · b = a · (λb). In other words,
λ (ab) = (λa) · b = a · (λb). This proves statement (k3).]

So we have proven that statement (k3) holds. In other words, V satisfies the “Scale-
invariance of multiplication” axiom. Thus, altogether, we have shown that V satisfies all
the ring axioms as well as all the module axioms and also the “Scale-invariance of mul-
tiplication” axiom. Thus, V is a K-algebra (by Definition 4.1.2). This proves Proposition
2.4.2.

4.2. Appendix 2: Factoring xpg − x, part II

If r, m and K are as in Lemma 2.9.2, then every irreducible divisor a of the poly-
nomial in xpmr − x in K [x] satisfies deg a | r in Z; this is what Lemma 2.9.2 stated.
But a converse also holds:

Lemma 4.2.1. Let r and m be positive integers. Let K be a finite Fp-field of size
pm. Let a ∈ K [x] be an irreducible polynomial such that deg a | r in Z. Then,
a | xpmr − x in K [x].

Proof of Lemma 4.2.1. Let n = deg a. Thus, a is a polynomial of degree n. Theorem
2.1.2 (c) (applied to F = K) yields that K [x] /a is a field. Let F denote this field.

We have n = deg a | r in Z. Hence, there exists an integer u such that r = nu.
Consider this u. Thus, nu = r. Also, it is easy to see that u ∈N 25.

The following observations can be proven exactly as they were proven in our
proof of Lemma 2.9.2 above:

• The number mn is a positive integer.

• The ring K is a field and is commutative.

• We have

([ f ]a)
k =

[
f k
]

a
for each f ∈ K [x] and each k ∈N. (17)

(Recall Convention 2.1.1 in order to make sense of this.)
25Proof. We have n = deg a > 0 (since a is irreducible). But we have nu = r > 0 (since r is positive).

We can divide this inequality by n (since n > 0), and thus find u > 0. Hence, u ∈ N (since u is
an integer).
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• The ring F is an Fp-field and has size pmn.

Thus, F is finite. Now, [x]a ∈ K [x] /a = F. Hence, Corollary 2.6.6 (applied to
mn, [x]a and u instead of n, a and r) yields ([x]a)

pmnu
= [x]a. In view of m nu︸︷︷︸

=r

= mr,

this rewrites as ([x]a)
pmr

= [x]a. Comparing this with

([x]a)
pmr

=
[

xpmr
]

a
(by (17), applied to f = x and k = pmr) ,

we obtain
[

xpmr
]

a
= [x]a. In other words, xpmr ≡ x mod a in K [x]. In other words,

a | xpmr − x in K [x]. This proves Lemma 4.2.1.

Lemma 2.9.2 and Lemma 4.2.1 can be merged into a single theorem, which gives
an “explicit” factorization of xpmr − x into irreducible polynomials26:

Theorem 4.2.2. Let r and m be positive integers. Let K be a finite Fp-field of size
pm. Then,

xpmr − x = ∏
a∈K[x] is

irreducible
and monic;

deg a|r

a.

Our proof of Theorem 4.2.2 relies on the following fact about irreducible polyno-
mials:

Proposition 4.2.3. Let K be a field. Let p ∈ K [x] be an irreducible polynomial.
Let a1, a2, . . . , ak ∈ K [x] be polynomials such that p | a1a2· · · ak. Then, p | ai for
some i ∈ {1, 2, . . . , k}.

Proof of Proposition 4.2.3. Proposition 4.2.3 is the analogue of [Grinbe19a, Proposi-
tion 2.13.7] for polynomials (in K [x]) instead of integers. It can be proven in the
same way as the latter result was proven (but with the usual changes that are
required to turn an argument about integers into the analogous argument about
polynomials).

Alternatively, we can prove Proposition 4.2.3 using Theorem 2.1.2 as follows: Assume
the contrary. Thus, we don’t have (p | ai for some i ∈ {1, 2, . . . , k}). In other words, we
have

p - ai for each i ∈ {1, 2, . . . , k} . (18)

The polynomial p is irreducible and thus non-constant. Hence, deg p > 0.
Let n = deg p. Thus, p is a polynomial of degree n. Theorem 2.1.2 (c) (applied to F = K

and a = p) shows that K [x] /p is a field. Recall Convention 2.1.1. The definition of the

26“Explicit” only in the sense that the irreducible polynomials of any given degree over K can be
found.
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multiplication on K [x] /p shows that [u]p [v]p = [uv]p for any u, v ∈ K [x]. Hence, a
straightforward induction on j shows that

[u1]p [u2]p · · ·
[
uj
]

p =
[
u1u2 · · · uj

]
p

for every j ∈ N and every u1, u2, . . . , uj ∈ K [x]. Applying this to j = k and ui = ai, we
conclude that

[a1]p [a2]p · · · [ak]p = [a1a2 · · · ak]p = [0]p

(since a1a2 · · · ak ≡ 0 mod p (because p | a1a2 · · · ak)).
But K [x] /p is a field, and thus is a commutative skew field. Hence, every nonzero

element of K [x] /p is invertible (since K [x] /p is a skew field).
Now, let i ∈ {1, 2, . . . , k}. Then, p - ai (by (18)). In other words, ai 6≡ 0 mod p. In other

words, [ai]p 6= [0]p. The element [ai]p of K [x] /p is nonzero (since [ai]p 6= [0]p = 0K[x]/p)
and thus invertible (since every nonzero element of K [x] /p is invertible). In other words,
there exists a multiplicative inverse of [ai]p in K [x] /p. In other words, there exists some
βi ∈ K [x] /p such that [ai]p βi = βi [ai]p = 1K[x]/p. Consider this βi.

Forget that we fixed i. Thus, for each i ∈ {1, 2, . . . , k}, we have constructed some βi ∈
K [x] /p such that

[ai]p βi = βi [ai]p = 1K[x]/p. (19)

But the ring K [x] /p is commutative (since K [x] is commutative). Thus,

k

∏
i=1

(
[ai]p βi

)
=

(
k

∏
i=1

[ai]p

)
︸ ︷︷ ︸

=[a1]p[a2]p···[ak ]p
=[0]p=0K[x]/p

(
k

∏
i=1

βi

)
= 0K[x]/p

(
k

∏
i=1

βi

)
= 0K[x]/p = [0]p .

Hence,

[0]p =
k

∏
i=1

(
[ai]p βi

)
︸ ︷︷ ︸
=1K[x]/p
(by (19))

=
k

∏
i=1

1K[x]/p = 1K[x]/p = [1]p .

Thus, [1]p = [0]p. In other words, 1 ≡ 0 mod p. In other words, p | 1 in K [x]. Hence, there
exists some c ∈ K [x] such that 1 = pc. Consider this c. We have c 6= 0 (since pc = 1 6= 0)
and thus deg c ≥ 0. But deg 1 = 0, so that 0 = deg 1︸︷︷︸

=pc

= deg (pc) = deg p︸ ︷︷ ︸
>0

+deg c︸ ︷︷ ︸
≥0

> 0.

This is absurd. This contradiction shows that our assumption was false. Hence, Proposition
4.2.3 is proven.

Corollary 4.2.4. Let K be a field. Let p ∈ K [x] be a monic irreducible poly-
nomial. Let a1, a2, . . . , ak ∈ K [x] be monic irreducible polynomials such that
p | a1a2· · · ak. Then, p = ai for some i ∈ {1, 2, . . . , k}.

Proof of Corollary 4.2.4. Proposition 4.2.3 shows that p | ai for some i ∈ {1, 2, . . . , k}.
Consider this i, and denote it by j. Thus, j is an element of {1, 2, . . . , k} and satisfies
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p | aj. From p | aj, we conclude that there exists a polynomial u ∈ K [x] such that
aj = pu. Consider this u.

The polynomial p is irreducible and thus non-constant. In other words, deg p >
0.

The polynomial aj is monic (since all k polynomials a1, a2, . . . , ak are monic).
The polynomial aj is irreducible (since all k polynomials a1, a2, . . . , ak are ir-

reducible). In other words, deg
(
aj
)

> 0 and there exist no two polynomials
b, c ∈ K [x] with aj = bc and deg b > 0 and deg c > 0 (because this is how
“irreducible” is defined).

Assume (for the sake of contradiction) that deg u > 0. Then, the polynomials
p, u ∈ K [x] satisfy aj = pu and deg p > 0 and deg u > 0. Hence, there exist
two polynomials b, c ∈ K [x] with aj = bc and deg b > 0 and deg c > 0 (namely,
b = p and c = u). This contradicts the fact that there exist no two polynomials
b, c ∈ K [x] with aj = bc and deg b > 0 and deg c > 0.

This contradiction shows that our assumption (that deg u > 0) was false. Hence,
deg u ≤ 0. Thus, the polynomial u is constant. In other words, u = λ for some
λ ∈ K. Consider this λ. Now, aj = p u︸︷︷︸

=λ

= pλ = λp, so that λp = aj 6= 0 (because

aj is irreducible) and thus λ 6= 0.
The leading coefficient of the polynomial p is 1 (since p is monic). Hence, the

leading coefficient of the polynomial λp is λ · 1 = λ. In other words, the leading
coefficient of the polynomial aj is λ (since aj = λp). Thus,

λ =
(
the leading term of the polynomial aj

)
= 1

(since the polynomial aj is monic). Hence, aj = λ︸︷︷︸
=1

p = p, so that p = aj. Thus,

p = ai for some i ∈ {1, 2, . . . , k} (namely, for i = j). This proves Corollary 4.2.4.

Proof of Theorem 4.2.2. Recall that m and r are positive integers. Hence, their prod-
uct mr is a positive integer. Thus, Lemma 2.9.1 (applied to g = mr) shows that
the polynomial xpmr − x ∈ K [x] can be written in the form xpmr − x = u1u2 · · · uk,
where u1, u2, . . . , uk ∈ K [x] are distinct monic irreducible polynomials. Consider
these u1, u2, . . . , uk.

Let D be the set of all monic irreducible polynomials a ∈ K [x] that satisfy deg a |
r. For each i ∈ {1, 2, . . . , k}, we have

ui ∈ D. (20)

[Proof of (20): Let i ∈ {1, 2, . . . , k}. Then, ui is a monic irreducible polynomial
(since u1, u2, . . . , uk are monic irreducible polynomials). Moreover, ui | u1u2 · · · uk
(since ui is a factor in the product u1u2 · · · uk). This rewrites as ui | xpmr − x
(since xpmr − x = u1u2 · · · uk). Hence, Lemma 2.9.2 (applied to a = ui) shows that
deg (ui) | r in Z. Thus, ui is a monic irreducible polynomial in K [x] that satisfies
deg (ui) | r in Z. In other words, ui is a monic irreducible polynomial a ∈ K [x]
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that satisfies deg a | r. In other words, ui ∈ D (since D is the set of all monic
irreducible polynomials a ∈ K [x] that satisfy deg a | r). This proves (20).]

Thus, we have shown that we have ui ∈ D for each i ∈ {1, 2, . . . , k}. Hence, the
map

{1, 2, . . . , k} → D,
i 7→ ui

is well-defined. Denote this map by α. This map α is injective27 and surjective28.
Hence, this map α is bijective. Thus, α is a bijection from {1, 2, . . . , k} to D.

Now,

xpmr − x = u1u2 · · · uk = ∏
i∈{1,2,...,k}

ui︸︷︷︸
=α(i)

(since α(i)=ui
(by the definition of α))

= ∏
i∈{1,2,...,k}

α (i) = ∏
a∈D

a

(
here, we have substituted a for α (i) in the product,

since the map α : {1, 2, . . . , k} → D is a bijection

)
= ∏

a is a monic
irreducible polynomial in K[x]

that satisfies deg a|r

a

(
since D is the set of all monic irreducible

polynomials a ∈ K [x] that satisfy deg a | r

)
= ∏

a∈K[x] is
irreducible
and monic;

deg a|r

a.

This proves Theorem 4.2.2.

27Proof. Let i and j be two elements of {1, 2, . . . , k} such that α (i) = α (j). We shall prove that i = j.
We have α (j) = uj (by the definition of α) and α (i) = ui (similarly). Thus, ui = α (i) = α (j) =

uj. Hence, i = j (since the polynomials u1, u2, . . . , uk are distinct).
Now, forget that we fixed i and j. We thus have shown that if i and j are two elements of
{1, 2, . . . , k} such that α (i) = α (j), then i = j. In other words, the map α is injective.

28Proof. Let d ∈ D. Thus, d is a monic irreducible polynomial a ∈ K [x] that satisfies deg a | r
(since D is the set of all monic irreducible polynomials a ∈ K [x] that satisfy deg a | r). In other
words, d is a monic irreducible polynomial in K [x] and satisfies deg d | r. Hence, Lemma 4.2.1
(applied to a = d) shows that d | xpmr − x in K [x]. Thus, d | xpmr − x = u1u2 · · · uk. Hence,
Corollary 4.2.4 (applied to p = d and ai = ui) shows that d = ui for some i ∈ {1, 2, . . . , k}.
Consider this i. The definition of α yields α (i) = ui. Comparing this with d = ui, we find

d = α

 i︸︷︷︸
∈{1,2,...,k}

 ∈ α ({1, 2, . . . , k}).

Now, forget that we fixed d. We thus have shown that d ∈ α ({1, 2, . . . , k}) for each d ∈ D. In
other words, D ⊆ α ({1, 2, . . . , k}). In other words, the map α is surjective.
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