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Notations

Here is a list of notations that are used in this homework:

• We shall use the notation [n] for the set {1, 2, . . . , n} (when n ∈ Z).

• If n ∈ N, then Sn denotes the set of all permutations of [n].

• If n ∈ N and σ ∈ Sn, then:

– the one-line notation OLNσ of σ is defined as the n-tuple (σ (1) , σ (2) , . . . , σ (n)).

– the inversions of σ are defined to be the pairs (i, j) of integers satisfying 1 ≤ i <
j ≤ n and σ (i) > σ (j).

– the length ` (σ) of σ is defined to be the # of inversions of σ.

– the sign (−1)σ of σ is defined to be (−1)`(σ).
– we say that σ is even if (−1)σ = 1 (that is, if ` (σ) is even).

– we say that σ is odd if (−1)σ = −1 (that is, if ` (σ) is odd).

– we let Fixσ denote the set of all fixed points of σ; in other words,

Fixσ = {i ∈ [n] | σ (i) = i} .

1



Solutions to midterm #3 page 2 of 18

1 Exercise 1

1.1 Problem

Let n be an integer such that n ≥ 2. If w ∈ Sn is a permutation, then the peaks of w are
defined to be the elements i ∈ {2, 3, . . . , n− 1} satisfying w (i− 1) < w (i) > w (i+ 1). (For
example, if n = 7 and if OLNw = (4, 1, 2, 5, 3, 7, 6), then the peaks of w are 4 and 6. The
name “peak” is explained by a look at the plot of w.)

An n-peak set shall mean a subset P of {2, 3, . . . , n− 1} such that there exists a w ∈ Sn
satisfying {peaks of w} = P . (For example, the example we just gave shows that {4, 6} is a
7-peak set.)

Find the # of all n-peak sets (for our given n).

1.2 Solution sketch (outline)

Let (f0, f1, f2, . . .) denote the Fibonacci sequence (defined in [Math222, Definition 1.1.10]).
Our goal is to prove that

(# of n-peak sets) = fn−1.

Recall the notion of a lacunar set ([Math222, Definition 1.4.2]). We claim:

Observation 1: The n-peak sets are precisely the lacunar subsets of {2, 3, . . . , n− 1}.

[Proof of Observation 1: We must prove two facts:

• that every n-peak set is a lacunar subset of {2, 3, . . . , n− 1}, and

• that every lacunar subset of {2, 3, . . . , n− 1} is an n-peak set.

The first of these two facts is just saying that no two consecutive integers can be peaks
of the same permutation w ∈ Sn; but this is obvious (indeed, if i and i + 1 are both peaks
of a permutation w ∈ Sn, then the definition of “peak” yields w (i− 1) < w (i) > w (i+ 1)
and w (i) < w (i+ 1) > w (i+ 2); but these inequalities clearly contradict one another).

Thus, it remains to prove the second fact. So let L be a lacunar subset of {2, 3, . . . , n− 1}.
We must prove that L is an n-peak set. In other words, we must prove that there exists a
permutation w ∈ Sn satisfying {peaks of w} = L.

We construct such a permutation w ∈ Sn as follows:

• Set g = |L|.

• Let the values of w at the g elements of L be n− g+ 1, n− g+ 2, . . . , n (in increasing
order).

• Let the values of w at the n−g remaining elements of [n] (that is, at the n−g elements
of [n] \ L) be 1, 2, . . . , n− g (in increasing order).

We notice the following consequence of this construction: If i ∈ [n] satisfies i /∈ L, then

w (i) < w (i+ 1) . (1)

[Proof of (1): Let i ∈ [n] satisfy i /∈ L. If i+ 1 /∈ L, then (1) follows from the fact that
the values of w at the n − g elements of [n] \ L have been chosen to be 1, 2, . . . , n − g in
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increasing order. But if i+1 ∈ L, then (1) follows from w (i) ≤ n−g < n−g+1 ≤ w (i+ 1).
In either case, (1) is proved.]

For every i ∈ L, we have w (i) ≥ n − g + 1, while both w (i− 1) and w (i+ 1) are
≤ n−g (since the lacunarity of L yields i−1 /∈ L and i+1 /∈ L). Hence, each i ∈ L satisfies
w (i− 1) < w (i) > w (i+ 1). In other words, each i ∈ L is a peak of w. In other words,
L ⊆ {peaks of w}.

Conversely, if i is a peak of w, then we must have w (i− 1) < w (i) > w (i+ 1), thus in
particular w (i) > w (i+ 1), which entails that i ∈ L (because if we had i /∈ L, then (1) would
yield w (i) < w (i+ 1)). Hence, {peaks of w} ⊆ L. Combining this with L ⊆ {peaks of w},
we obtain {peaks of w} = L.

Thus, we have found a permutation w ∈ Sn satisfying {peaks of w} = L. This shows
that L is an n-peak set. This concludes the proof of the second fact above. Hence, the proof
of Observation 1 is complete.]

Now, recall the notation [a, b] for the integer interval {a, a+ 1, . . . , b} whenever a and b
are two integers. Thus, {2, 3, . . . , n− 1} = [2, n− 1] = [1 + 1, 1 + (n− 2)].

But [Math222, Proposition 1.4.18] (with n renamed as m) says that for any m ∈
{−1, 0, 1, . . .} and a ∈ Z, we have

(# of lacunar subsets of [a+ 1, a+m]) = fm+1. (2)

But Observation 1 yields

(# of n-peak sets) = (# of lacunar subsets of {2, 3, . . . , n− 1})
= (# of lacunar subsets of [1 + 1, 1 + (n− 2)])

(since {2, 3, . . . , n− 1} = [1 + 1, 1 + (n− 2)])

= f(n−2)+1 (by (2), applied to m = n− 2 and a = 1)

= fn−1.

This proves our goal.

2 Exercise 2

2.1 Problem

Let n be an integer such that n ≥ 3. For each k ∈ Z, set

mk = (# of permutations σ ∈ Sn such that ` (σ) ≡ k mod 3) .

(Example: If n = 3, then m0 counts the two permutations with one-line notations
(1, 2, 3) and (3, 2, 1), while m1 counts the two permutations with one-line notations (1, 3, 2)
and (2, 1, 3), and while m2 counts the two permutations with one-line notations (2, 3, 1) and
(3, 1, 2).)

Prove that m0 = m1 = m2 = n!/3.
[Hint: The Lehmer code (see [Grinbe15, §5.8] or [17f-hw8s, §0.4]) may be of use.]
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2.2 Solution sketch (outline)

We shall first state a general rule for counting:

Proposition 2.1. Let A and B be two sets. Let f : A→ B be a bijection. Let X (b) be a
statement for each b ∈ B. Then,

(# of a ∈ A satisfying X (f (a))) = (# of b ∈ B satisfying X (b)) .

Proof of Proposition 2.1. The map f : A→ B is a bijection. Thus, it is easy to see that the
map

{a ∈ A | X (f (a))} → {b ∈ B | X (b)} ,
a 7→ f (a)

is a bijection. Hence, the bijection principle yields

|{a ∈ A | X (f (a))}| = |{b ∈ B | X (b)}| .

In other words, (# of a ∈ A satisfying X (f (a))) = (# of b ∈ B satisfying X (b)). This
proves Proposition 2.1.

We shall next recall the basic facts about the Lehmer code:

• Whenever m is an integer, we shall use the notation [m]0 for the set {0, 1, . . . ,m}.

• Let H denote the set [n− 1]0× [n− 2]0× · · · × [n− n]0. More explicitly, this set H is

H = {(i1, i2, . . . , in) ∈ Nn | ij ≤ n− j for each j} .

(For example, if n = 3, thenH = {(2, 1, 0) , (2, 0, 0) , (1, 1, 0) , (1, 0, 0) , (0, 1, 0) , (0, 0, 0)}.)

• If σ ∈ Sn and i ∈ [n], then `i (σ) shall denote the number of all j ∈ {i+ 1, i+ 2, . . . , n}
such that σ (i) > σ (j).

• For each σ ∈ Sn, we have

` (σ) = `1 (σ) + `2 (σ) + · · ·+ `n (σ) . (3)

(This is [Grinbe15, Proposition 5.46] or [17f-hw8s, Exercise 5 (d)]. The proof is almost
trivial.)

• Define the map L : Sn → H by

(L (σ) = (`1 (σ) , `2 (σ) , . . . , `n (σ)) for each σ ∈ Sn) .

This map L : Sn → H is well-defined and is a bijection. (This is [Grinbe15, Theorem
5.52] or [17f-hw8s, Exercise 5 (c)].)

If σ ∈ Sn, then the n-tuple L (σ) = (`1 (σ) , `2 (σ) , . . . , `n (σ)) is called the Lehmer
code of σ.
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Thus, for each σ ∈ Sn, we have

` (σ) = `1 (σ) + `2 (σ) + · · ·+ `n (σ) (by (3))
= (the sum of the entries of L (σ)) (4)

(since L (σ) = (`1 (σ) , `2 (σ) , . . . , `n (σ))).
Now, we must prove that m0 = m1 = m2 = n!/3. It clearly suffices to show that

mk = n!/3 for each k ∈ Z.
So let us fix k ∈ Z. We must show that mk = n!/3.
The definition of mk yields

mk = (# of permutations σ ∈ Sn such that ` (σ) ≡ k mod 3)

= (# of σ ∈ Sn such that ` (σ) ≡ k mod 3)

= (# of σ ∈ Sn such that (the sum of the entries of L (σ)) ≡ k mod 3)

(by (4)) .

But Proposition 2.1 (applied to A = Sn, B = H, f = L and
X (b) = ((the sum of the entries of b) ≡ k mod 3)) yields

(# of σ ∈ Sn such that (the sum of the entries of L (σ)) ≡ k mod 3)

= (# of b ∈ H such that (the sum of the entries of b) ≡ k mod 3)

(since the map L : Sn → H is a bijection). Hence,

mk = (# of σ ∈ Sn such that (the sum of the entries of L (σ)) ≡ k mod 3)

= (# of b ∈ H such that (the sum of the entries of b) ≡ k mod 3)

= (# of (i1, i2, . . . , in) ∈ H such that i1 + i2 + · · ·+ in ≡ k mod 3) (5)

(here, we have renamed the index b as (i1, i2, . . . , in)).
Recall that

H = [n− 1]0 × [n− 2]0 × · · · × [n− n]0 = [n− 1]0 × [n− 2]0 × · · · × [0]0 .

Hence, the n-tuples (i1, i2, . . . , in) ∈ H are precisely the n-tuples (i1, i2, . . . , in) with

i1 ∈ [n− 1]0 , i2 ∈ [n− 2]0 , . . . , in ∈ [0]0 .

Thus, we can construct an n-tuple (i1, i2, . . . , in) ∈ H by independently choosing its n entries
i1, i2, . . . , in from the sets [n− 1]0 , [n− 2]0 , . . . , [0]0, respectively. The total # of options for
this construction is

|[n− 1]0|︸ ︷︷ ︸
=n

· |[n− 2]0|︸ ︷︷ ︸
=n−1

· · · · · |[0]0|︸︷︷︸
=1

= n · (n− 1) · · · · · 1 = n!.

Hence, the total # of n-tuples (i1, i2, . . . , in) ∈ H is n!.
Let us now use a slight variation of this idea to count the n-tuples (i1, i2, . . . , in) ∈ H

such that i1 + i2 + · · · + in ≡ k mod 3. Indeed, we can construct any such n-tuple by the
following method:

• First, we (independently) choose the n − 1 entries i1, i2, . . . , in−3, in−1, in (that is, all
entries except for in−2) from the sets [n− 1]0 , [n− 2]0 , . . . , [3]0 , [1]0 , [0]0, respectively.
The total # of options at this step is

|[n− 1]0|︸ ︷︷ ︸
=n

· |[n− 2]0|︸ ︷︷ ︸
=n−1

· · · · · |[3]0|︸︷︷︸
=4

· |[1]0|︸︷︷︸
=2

· |[0]0|︸︷︷︸
=1

= n · (n− 1) · · · · · 4 · 2 · 1

=
1

3
· n · (n− 1) · · · · · 1︸ ︷︷ ︸

=n!

=
1

3
n! = n!/3.

Darij Grinberg 5 darij.grinberg@drexel.edu



Solutions to midterm #3 page 6 of 18

• Finally, we choose the remaining entry in−2 ∈ [2]0 of our n-tuple. This remaining
entry in−2 must be chosen to belong to [2]0 = {0, 1, 2} and to satisfy the congruence
i1+ i2+ · · ·+ in ≡ k mod 3. This determines it uniquely (because the congruence i1+
i2+· · ·+in ≡ k mod 3 rewrites as in−2 ≡ k−(i1 + i2 + · · ·+ in−3 + in−1 + in) mod 3,
which uniquely determines the equivalence class of in−2 with respect to congruence
modulo 3; and because the requirement that in−2 ∈ {0, 1, 2} leaves exactly one value
for in−2 for each possible equivalence class). Thus, we have only 1 choice at this step.

Thus, the total of # options to perform this construction is n!/3 · 1 = n!/3. Hence,

(# of (i1, i2, . . . , in) ∈ H such that i1 + i2 + · · ·+ in ≡ k mod 3) = n!/3.

Thus, (5) becomes

mk = (# of (i1, i2, . . . , in) ∈ H such that i1 + i2 + · · ·+ in ≡ k mod 3) = n!/3.

This completes our solution.

3 Exercise 3

3.1 Problem

Let n be an integer such that n ≥ 3. Find∑
w∈Sn is even

|Fixw| .

[Hint: For each i ∈ [n], compare

(# of even w ∈ Sn such that w (i) = i) with (# of odd w ∈ Sn such that w (i) = i) .

]

3.2 Solution

Recall the following two properties of signs of permutations:

• If i and j are two distinct elements of [n], then the transposition ti,j ∈ Sn is the
permutation of [n] that swaps i with j while leaving all other elements of [n] unchanged.
The sign of this transposition is

(−1)ti,j = −1. (6)

(This is, e.g., [Grinbe15, Exercise 5.10 (b)].)

• If σ and τ are two permutations in Sn, then

(−1)σ◦τ = (−1)σ · (−1)τ . (7)

(This is, e.g., [Grinbe15, Proposition 5.15 (c)].)
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We also recall the following fact ([Math222, Proposition 1.6.3 (a)]):

Lemma 3.1. Let S be a finite set. Let T be a subset of S. Then,

|T | =
∑
s∈S

[s ∈ T ] .

Now, the key to our solution is the following fact:

Statement 1: Let i ∈ [n]. Then,

(# of even permutations w ∈ Sn such that w (i) = i) = (n− 1)!/2.

[Proof of Statement 1: We have i ∈ [n], thus |[n] \ {i}| = |[n]|︸︷︷︸
=n≥3

−1 ≥ 3 − 1 = 2. Hence,

the set [n]\{i} contains two distinct elements u and v. Consider these u and v. (We usually
have many choices for u and v, but it suffices to pick one such choice and stick with it.)

Note that u, v ∈ [n]\{i}; thus, both u and v are distinct from i. In other words, i equals
neither u nor v.

Consider the transposition tu,v ∈ Sn. This is the permutation of [n] that swaps u with
v while leaving all other elements of [n] unchanged. Thus, tu,v leaves i unchanged (since i
equals neither u nor v). In other words, tu,v (i) = i.

Hence, if w ∈ Sn is a permutation such that w (i) = i, then

(w ◦ tu,v) (i) = w

tu,v (i)︸ ︷︷ ︸
=i

 = w (i) = i. (8)

Furthermore, (−1)tu,v = −1 (by (6), applied to u and v instead of i and j). Thus, for
any permutation w ∈ Sn, we have

(−1)w◦tu,v = (−1)w · (−1)tu,v︸ ︷︷ ︸
=−1

(by (7), applied to σ = w and τ = tu,v)

= − (−1)w .

Hence, if a permutation w ∈ Sn is even, then the permutation w◦tu,v is odd. This observation
(and (8)) shows that the map

{even permutations w ∈ Sn | w (i) = i} → {odd permutations w ∈ Sn | w (i) = i} ,
w 7→ w ◦ tu,v

is well-defined. Similarly, the map

{odd permutations w ∈ Sn | w (i) = i} → {even permutations w ∈ Sn | w (i) = i} ,
w 7→ w ◦ tu,v

is well-defined. These two maps are easily seen to be mutually inverse (since tu,v ◦ tu,v = id),
and thus are bijections. Hence, the bijection principle yields

|{even permutations w ∈ Sn | w (i) = i}| = |{odd permutations w ∈ Sn | w (i) = i}| .

In other words,

(# of even permutations w ∈ Sn such that w (i) = i)

= (# of odd permutations w ∈ Sn such that w (i) = i) .
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But the sum of the two sides of this equality is

(# of permutations w ∈ Sn such that w (i) = i) = (n− 1)!

(by [17f-hw7s, Lemma 0.6]). Thus, each of these two sides equals (n− 1)!/2. Hence, in
particular,

(# of even permutations w ∈ Sn such that w (i) = i) = (n− 1)!/2.

This proves Statement 1.]

Now, we proceed as in [17f-hw7s, solution to Exercise 2]: If w ∈ Sn and i ∈ [n], then

[i ∈ Fixw] = [w (i) = i] (9)
1.

If w ∈ Sn, then Fixw is a subset of [n], and therefore Lemma 3.1 (applied to S = [n]
and T = Fixw) yields

|Fixw| =
∑
s∈[n]

[s ∈ Fixw] =
∑
i∈[n]

[i ∈ Fixw]︸ ︷︷ ︸
=[w(i)=i]
(by (9))

(
here, we have renamed the
summation index s as i

)

=
∑
i∈[n]

[w (i) = i] . (10)

But if i ∈ [n], then {w ∈ Sn | w is even and w (i) = i} is a subset of {w ∈ Sn | w is even},
and therefore Lemma 3.1 (applied to S = {w ∈ Sn | w is even} and
T = {w ∈ Sn | w is even and w (i) = i}) yields

|{w ∈ Sn | w is even and w (i) = i}|

=
∑

s∈{w∈Sn | w is even}︸ ︷︷ ︸
=

∑
s∈Sn is even

s ∈ {w ∈ Sn | w is even and w (i) = i}︸ ︷︷ ︸
⇐⇒ (s(i)=i)

(since s∈{w∈Sn | w is even})


=

∑
s∈Sn is even

[s (i) = i] =
∑

w∈Sn is even

[w (i) = i] (11)

(here, we have renamed the summation index s as w).
Now,∑
w∈Sn is even

|Fixw|︸ ︷︷ ︸
=

∑
i∈[n]

[w(i)=i]

(by (10))

=
∑

w∈Sn is even

∑
i∈[n]︸ ︷︷ ︸

=
∑

i∈[n]

∑
w∈Sn is even

[w (i) = i] =
∑
i∈[n]

∑
w∈Sn is even

[w (i) = i]︸ ︷︷ ︸
=|{w∈Sn | w is even and w(i)=i}|

(by (11))

=
∑
i∈[n]

|{w ∈ Sn | w is even and w (i) = i}|︸ ︷︷ ︸
=(# of even permutations w ∈ Sn such that w (i) = i)

=(n−1)!/2
(by Statement 1)

=
∑
i∈[n]

(n− 1)!/2 = |[n]|︸︷︷︸
=n

· (n− 1)!/2 = n · (n− 1)!︸ ︷︷ ︸
=n!

/2 = n!/2.

1because of the equivalence (i ∈ Fixw) ⇐⇒ (i is a fixed point of w) ⇐⇒ (w (i) = i)
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4 Exercise 4

4.1 Problem

An n-tuple (i1, i2, . . . , in) ∈ {0, 1}n (where n ∈ N) will be called upsided if it satisfies
i1 + i2 + · · ·+ ip ≥ p/2 for each p ∈ [n].

(Example: The 3-tuple (1, 0, 1) is upsided (since 1 ≥ 1/2 and 1+0 ≥ 2/2 and 1+0+1 ≥
3/2), and so is the 3-tuple (1, 1, 0) (for similar reasons), but the 3-tuples (1, 0, 0) and (0, 1, 1)
are not (indeed, (1, 0, 0) is not upsided because 1+0+0 < 3/2, whereas (0, 1, 1) is not upsided
because 0 < 1/2). The 0-tuple () is upsided (for vacuous reasons).)

For given n ∈ N and k ∈ Z, let U (n, k) denote the # of upsided n-tuples (i1, i2, . . . , in) ∈
{0, 1}n satisfying i1 + i2 + · · ·+ in = k.

(a) Prove that if n ∈ N and k ∈ Z satisfy k < n/2, then U (n, k) = 0.

(b) Prove that if n ∈ N and k ∈ Z satisfy k ≥ (n− 1) /2, then

U (n, k) =

(
n

k

)
−
(

n

k + 1

)
.

(c) Prove that
(
n

0

)
<

(
n

1

)
< · · · <

(
n

bn/2c

)
for each n ∈ N.

[Hint: Induction can be helpful. There are many ways to solve part (c), but the one
using part (b) is perhaps the nicest.]

4.2 Solution sketch (outline)

(a) Let n ∈ N and k ∈ Z satisfy k < n/2. Then, every upsided n-tuple (i1, i2, . . . , in) ∈
{0, 1}n satisfies i1 + i2 + · · · + in 6= k 2. In other words, there exists no upsided n-tuple
(i1, i2, . . . , in) ∈ {0, 1}n satisfying i1 + i2 + · · · + in = k. Thus, U (n, k) = 0 (since U (n, k)
was defined to be the # of such n-tuples). This solves part (a) of the problem.

(b) We shall prove part (b) of the problem by induction on n.
Induction base: It is easy to see that part (b) of the problem holds for n = 0 3. This

completes the induction base.
2Proof. Let (i1, i2, . . . , in) ∈ {0, 1}n be an upsided n-tuple. Thus, we have the inequality i1+ i2+ · · ·+ ip ≥
p/2 for each p ∈ [n] (by the definition of “upsided”). Since this inequality also holds for p = 0 (because
i1 + i2 + · · · + i0 = (empty sum) = 0 ≥ 0/2), we thus conclude that it holds for each p ∈ {0, 1, . . . , n}.
Hence, we can apply it to p = n. We thus obtain i1 + i2 + · · · + in ≥ n/2 > k (since k < n/2). Thus,
i1 + i2 + · · ·+ in 6= k. Qed.

3Proof. The proof is straightforward if you take the following into account:

• There is exactly one 0-tuple (i1, i2, . . . , i0) ∈ {0, 1}0, namely the empty list (). This 0-tuple is
upsided (since the condition in the definition of “upsided” is satisfied for vacuous reasons) and
satisfies i1 + i2 + · · ·+ i0 = (empty sum) = 0.

• We have
(
0

k

)
−
(

0

k + 1

)
=


1, if k = 0;

−1, if k = −1;
0, otherwise

for each k ∈ Z. If we restrict ourselves to the k ∈ Z

that satisfy k ≥ (0− 1) /2, then we can simplify this to
(
0

k

)
−
(

0

k + 1

)
=

{
1, if k = 0;

0, otherwise
(since

k = −1 would not satisfy k ≥ (0− 1) /2).
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Induction step: Fix some positive integer m. Assume (as the induction hypothesis) that
part (b) of the problem holds for n = m− 1. We must prove that part (b) of the problem
holds for n = m.

We have assumed (as the induction hypothesis) that part (b) of the problem holds for
n = m− 1. In other words, for each k ∈ Z satisfying k ≥ (m− 2) /2, we have

U (m− 1, k) =

(
m− 1

k

)
−
(
m− 1

k + 1

)
. (12)

Let k ∈ Z satisfy k ≥ (m− 1) /2. We shall prove that

U (m, k) =

(
m

k

)
−
(

m

k + 1

)
. (13)

[Proof of (13): If 2k = m− 1, then this is easy to see4. Hence, for the rest of this proof
of (13), we WLOG assume that 2k 6= m − 1. But k ≥ (m− 1) /2 and thus 2k ≥ m − 1.
Combined with 2k 6= m − 1, this yields 2k > m − 1. Thus, 2k ≥ m (since 2k and m
are integers). In other words, k ≥ m/2. Thus, k︸︷︷︸

≥m/2

−1 ≥ m/2 − 1 = (m− 2) /2. Also,

k ≥ k − 1 ≥ (m− 2) /2.
Recall that k ≥ m/2. Hence, anm-tuple (i1, i2, . . . , im) ∈ {0, 1}m satisfying i1+i2+· · ·+

im = k is upsided if and only if the (m− 1)-tuple (i1, i2, . . . , im−1) ∈ {0, 1}m−1 is upsided5.
Thus, the map

{upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m | i1 + i2 + · · ·+ im = k and im = 0}
→
{
upsided (m− 1) -tuples (i1, i2, . . . , im−1) ∈ {0, 1}m−1 | i1 + i2 + · · ·+ im−1 = k

}
that sends each (i1, i2, . . . , im) to (i1, i2, . . . , im−1) is well-defined and bijective6. Hence, the
bijection principle yields

(# of upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m

satisfying i1 + i2 + · · ·+ im = k and im = 0)

=
(
# of upsided (m− 1) -tuples (i1, i2, . . . , im−1) ∈ {0, 1}m−1

satisfying i1 + i2 + · · ·+ im−1 = k)

= U (m− 1, k) (by the definition of U (m− 1, k))

=

(
m− 1

k

)
−
(
m− 1

k + 1

)
(14)

4Proof. Assume that 2k = m − 1. Thus, 2k = m − 1 < m, so that k < m/2. Hence, part (a) of this
exercise (applied to n = m) yields U (m, k) = 0. But from 2k = m − 1, we also obtain k = m − 1 − k

and thus m− k = k+1. The symmetry of the binomial coefficients yields
(
m

k

)
=

(
m

m− k

)
=

(
m

k + 1

)
(since m − k = k + 1). Hence,

(
m

k

)
−
(

m

k + 1

)
= 0. Comparing this with U (m, k) = 0, we obtain

U (m, k) =

(
m

k

)
−
(

m

k + 1

)
. Thus, (13) is proved for k = (m− 1) /2.

5Indeed, the definition of “upsided” shows the following recursive criterion for upsidedness: An m-tuple
(i1, i2, . . . , im) ∈ {0, 1}m is upsided if and only if the (m− 1)-tuple (i1, i2, . . . , im−1) ∈ {0, 1}m−1 is
upsided and we have i1 + i2 + · · · + im ≥ m/2. But if our m-tuple (i1, i2, . . . , im) ∈ {0, 1}m satisfies
i1+i2+· · ·+im = k, then i1+i2+· · ·+im ≥ m/2 automatically holds (since i1+i2+· · ·+im = k ≥ m/2).
Hence, our recursive criterion simplifies to “(i1, i2, . . . , im) is upsided if and only if (i1, i2, . . . , im−1) is
upsided” in this case. Qed.

6The inverse map sends each (i1, i2, . . . , im−1) to (i1, i2, . . . , im−1, 0).
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(by (12) (since k ≥ (m− 2) /2)).
Recall again that an m-tuple (i1, i2, . . . , im) ∈ {0, 1}m satisfying i1 + i2 + · · ·+ im = k is

upsided if and only if the (m− 1)-tuple (i1, i2, . . . , im−1) ∈ {0, 1}m−1 is upsided. Thus, the
map

{upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m | i1 + i2 + · · ·+ im = k and im = 1}
→
{
upsided (m− 1) -tuples (i1, i2, . . . , im−1) ∈ {0, 1}m−1 | i1 + i2 + · · ·+ im−1 = k − 1

}
that sends each (i1, i2, . . . , im) to (i1, i2, . . . , im−1) is well-defined and bijective7. Hence, the
bijection principle yields

(# of upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m

satisfying i1 + i2 + · · ·+ im = k and im = 1)

=
(
# of upsided (m− 1) -tuples (i1, i2, . . . , im−1) ∈ {0, 1}m−1

satisfying i1 + i2 + · · ·+ im−1 = k − 1)

= U (m− 1, k − 1) (by the definition of U (m− 1, k − 1))

=

(
m− 1

k − 1

)
−
(

m− 1

(k − 1) + 1

)
(15)

(by (12), applied to k − 1 instead of k (since k − 1 ≥ (m− 2) /2)).
But each upsided m-tuple (i1, i2, . . . , im) ∈ {0, 1}m satisfying i1+ i2+ · · ·+ im = k must

satisfy either im = 0 or im = 1 (but not both at the same time). Hence, the sum rule yields

(# of upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m satisfying i1 + i2 + · · ·+ im = k)

= (# of upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m

satisfying i1 + i2 + · · ·+ im = k and im = 0)

+ (# of upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m

satisfying i1 + i2 + · · ·+ im = k and im = 1)

=

((
m− 1

k

)
−
(
m− 1

k + 1

))
+

((
m− 1

k − 1

)
−
(

m− 1

(k − 1) + 1

))
(by adding together the equalities (14) and (15))

=

(
m− 1

k

)
+

(
m− 1

k − 1

)
︸ ︷︷ ︸

=

(
m

k

)
(by the recurrence relation
of the binomial coefficients)

−
((

m− 1

k + 1

)
+

(
m− 1

(k − 1) + 1

))
︸ ︷︷ ︸

=

(
m− 1

k + 1

)
+

(
m− 1

k

)
=

(
m

k + 1

)
(by the recurrence relation
of the binomial coefficients)

=

(
m

k

)
−
(

m

k + 1

)
.

Now, the definition of U (m, k) yields

U (m, k)

= (# of upsided m-tuples (i1, i2, . . . , im) ∈ {0, 1}m satisfying i1 + i2 + · · ·+ im = k)

=

(
m

k

)
−
(

m

k + 1

)
.

7The inverse map sends each (i1, i2, . . . , im−1) to (i1, i2, . . . , im−1, 1).
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This proves (13).]
Forget that we fixed k. We thus have proved that (13) holds for each k ∈ Z satisfying

k ≥ (m− 1) /2. In other words, part (b) of the problem holds for n = m. This completes
the induction step. Thus, part (b) is proved by induction.

(c) Let n ∈ N. We must prove that
(
n

0

)
<

(
n

1

)
< · · · <

(
n

bn/2c

)
.

Let us instead prove the slightly longer chain of inequalities(
n

−1

)
<

(
n

0

)
<

(
n

1

)
< · · · <

(
n

bn/2c

)
.

In view of the symmetry of the binomial coefficients, this rewrites as(
n

n+ 1

)
<

(
n

n

)
<

(
n

n− 1

)
< · · · <

(
n

n− bn/2c

)
.

This further rewrites as(
n

n− bn/2c

)
>

(
n

n− bn/2c+ 1

)
> · · · >

(
n

n+ 1

)
.

So we must prove this latter chain of inequalities.

In other words, we must prove that
(
n

k

)
>

(
n

k + 1

)
for each

k ∈ {n− bn/2c , n− bn/2c+ 1, . . . , n}.

So let k ∈ {n− bn/2c , n− bn/2c+ 1, . . . , n}. We must prove that
(
n

k

)
>

(
n

k + 1

)
.

From k ∈ {n− bn/2c , n− bn/2c+ 1, . . . , n}, we obtain k ≤ n and k ≥ n − bn/2c︸ ︷︷ ︸
≤n/2

≥

n− n/2 = n︸︷︷︸
≥n−1

/2 ≥ (n− 1) /2. Hence, part (b) of this exercise yields

U (n, k) =

(
n

k

)
−
(

n

k + 1

)
.

But U (n, k) is defined as the # of upsided n-tuples (i1, i2, . . . , in) ∈ {0, 1}n satisfying i1+i2+

· · · + in = k. Since there exists at least one such n-tuple (namely,

1, 1, . . . , 1︸ ︷︷ ︸
k times

, 0, 0, . . . , 0︸ ︷︷ ︸
n−k times


8), we thus have U (n, k) ≥ 1 > 0. In view of U (n, k) =

(
n

k

)
−
(

n

k + 1

)
, this rewrites as(

n

k

)
−
(

n

k + 1

)
> 0. In other words,

(
n

k

)
>

(
n

k + 1

)
. This completes our solution to part

(c).

8This n-tuple is indeed upsided, since k ≥ n/2. (Fill in the details of this argument!)
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5 Exercise 5

5.1 Problem

Let n ∈ N. Recall that a composition of n means a tuple (a1, a2, . . . , ak) of positive integers
satisfying a1 + a2 + · · · + ak = n. Such a composition (a1, a2, . . . , ak) is called odd if all of
a1, a2, . . . , ak are odd.

Let us also say that a composition (a1, a2, . . . , ak) is odd-but-one if ai is even for exactly
one i ∈ [k]. (For example, the composition (3, 5, 5) of 13 is odd; the composition (3, 4, 1, 5)
of 13 is odd-but-one; the composition (6, 6, 1) of 13 is neither.)

Prove that ∑
(a1,a2,...,ak) is an

odd composition of n

k

= (# of odd-but-one compositions of n+ 1)

=
(n+ 4) fn + 2nfn−1

5
,

where (f0, f1, f2, . . .) is the Fibonacci sequence (defined in [Math222, Definition 1.1.10]).

5.2 Solution sketch (outline)

Forget that we fixed n. For each n ∈ N, we define three rational numbers pn, qn and rn by

pn =
∑

(a1,a2,...,ak) is an
odd composition of n

k and

qn = (# of odd-but-one compositions of n+ 1) and

rn =
(n+ 4) fn + 2nfn−1

5
.

Thus, the exercise demands that we prove that pn = qn = rn for each n ∈ N. We shall
achieve this by proving the following statements:

Statement 1: We have pn = qn for each n ∈ N.

Statement 2: We have qn = rn for each n ∈ N.

In the following, we shall abbreviate the word “odd-but-one” as “obo”.

Let us first prove Statement 1:
[Proof of Statement 1: Let n ∈ N. Let k ∈ N. Let p ∈ [k]. If (i1, i2, . . . , ik) is an obo

composition of n+1 into k parts such that ip is even, then all entries of (i1, i2, . . . , ik) other
than ip are odd positive integers (by the definition of “obo”), and so is the number ip − 1
(because if we subtract 1 from an even positive integer, then we obtain an odd positive
integer). Hence, there is a bijection

{obo compositions (i1, i2, . . . , ik) of n+ 1 into k parts such that ip is even}
→ {odd compositions of n into k parts} ,
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which subtracts 1 from the p-th entry of each composition (i.e., it sends each composition
(i1, i2, . . . , ik) to (i1, i2, . . . , ip−1, ip − 1, ip+1, . . . , ik)). Hence, the bijection principle yields

(# of obo compositions (i1, i2, . . . , ik) of n+ 1 into k parts such that ip is even)
= (# of odd compositions of n into k parts) . (16)

Forget that we fixed p. Thus, we have proved (16) for each p ∈ [k].
Now, if (i1, i2, . . . , ik) is an obo composition of n+ 1 into k parts, then there is exactly

one p ∈ [k] such that ip is even (by the definition of “obo”). Hence, the sum rule yields

(# of obo compositions (i1, i2, . . . , ik) of n+ 1 into k parts)

=
∑
p∈[k]

(# of obo compositions (i1, i2, . . . , ik) of n+ 1 into k parts such that ip is even)︸ ︷︷ ︸
=(# of odd compositions of n into k parts)

(by (16))

=
∑
p∈[k]

(# of odd compositions of n into k parts)

= |[k]|︸︷︷︸
=k

· (# of odd compositions of n into k parts)

= k · (# of odd compositions of n into k parts) . (17)

Forget that we fixed k. We thus have proved (17) for each k ∈ N.
Now, the definition of qn yields

qn = (# of odd-but-one compositions of n+ 1)

= (# of obo compositions of n+ 1) (since we abbreviate “odd-but-one” as “obo”)

=
∑
k∈N

(# of obo compositions (i1, i2, . . . , ik) of n+ 1 into k parts)︸ ︷︷ ︸
=k·(# of odd compositions of n into k parts)

(by (17))

(by the sum rule)

=
∑
k∈N

k · (# of odd compositions of n into k parts) .

On the other hand, the definition of pn yields

pn =
∑

(a1,a2,...,ak) is an
odd composition of n

k =
∑
k∈N

∑
(a1,a2,...,ak) is an

odd composition of n
into k parts

k

︸ ︷︷ ︸
=(# of odd compositions of n into k parts)·k

(here, we have split the sum according to the number of entries of the composition)

=
∑
k∈N

(# of odd compositions of n into k parts) · k

=
∑
k∈N

k · (# of odd compositions of n into k parts) .

Comparing these two equalities, we find pn = qn. This proves Statement 1.]

We won’t prove Statement 2 directly. Instead, we shall first derive a recursion for the
qn:
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Statement 3: Let n ≥ 2 be an integer. Then, qn = qn−1 + qn−2 + fn−1.

[Proof of Statement 3: In [19f-mt2s, solution to Exercise 6 (b)], we have shown that

(# of odd compositions of n) =

{
fn, if n > 0;

1, if n = 0.

The same argument (applied to n− 1 instead of n) yields

(# of odd compositions of n− 1) =

{
fn−1, if n− 1 > 0;

1, if n− 1 = 0

= fn−1 (18)

(since n− 1 > 0 (because n ≥ 2)).
Each composition of n + 1 has at least one entry (since n + 1 ≥ n ≥ 2 > 0), and thus

has a well-defined last entry.
Any obo composition of n+1 whose last entry is 1 must have the form (i1, i2, . . . , ik, 1),

where (i1, i2, . . . , ik) is an obo composition of n. Hence, the map

{obo compositions of n+ 1 whose last entry is 1} → {obo compositions of n} ,
(i1, i2, . . . , ik, 1) 7→ (i1, i2, . . . , ik)

is a bijection. Hence, the bijection principle yields

(# of obo compositions of n+ 1 whose last entry is 1)
= (# of obo compositions of n) = qn−1 (19)

(since the definition of qn−1 yields qn−1 = (# of obo compositions of n)).
Any obo composition of n+1 whose last entry is 2 must have the form (i1, i2, . . . , ik, 2),

where (i1, i2, . . . , ik) is an odd composition of n− 1. Hence, the map

{obo compositions of n+ 1 whose last entry is 2} → {odd compositions of n− 1} ,
(i1, i2, . . . , ik, 2) 7→ (i1, i2, . . . , ik)

is a bijection. Hence, the bijection principle yields

(# of obo compositions of n+ 1 whose last entry is 2)
= (# of odd compositions of n− 1) = fn−1 (20)

(by (18)).
Finally, if (i1, i2, . . . , ik) is an obo composition of n + 1 whose last entry (that is, ik)

is larger than 2, then (i1, i2, . . . , ik−1, ik − 2) is an obo composition of (n+ 1) − 2 = n − 1
(indeed, ik − 2 is a positive integer because ik > 2, and furthermore this integer ik − 2 has
the same parity as ik, whence the composition (i1, i2, . . . , ik−1, ik − 2) is obo). Thus, the
map

{obo compositions of n+ 1 whose last entry is larger than 2}
→ {obo compositions of n− 1} ,

(i1, i2, . . . , ik) 7→ (i1, i2, . . . , ik−1, ik − 2)
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(this is the map that subtracts 2 from the last entry of each composition) is a bijection.
Hence, the bijection principle yields

(# of obo compositions of n+ 1 whose last entry is larger than 2)

= (# of obo compositions of n− 1) = qn−2 (21)

(since the definition of qn−2 yields qn−2 = (# of obo compositions of n− 1)).
Now, the last entry of any obo composition of n+1 must be either 1 or 2 or larger than

2. Hence, the sum rule yields

(# of obo compositions of n+ 1)

= (# of obo compositions of n+ 1 whose last entry is 1)︸ ︷︷ ︸
=qn−1

(by (19))

+ (# of obo compositions of n+ 1 whose last entry is 2)︸ ︷︷ ︸
=fn−1

(by (20))

+ (# of obo compositions of n+ 1 whose last entry is larger than 2)︸ ︷︷ ︸
=qn−2

(by (21))

= qn−1 + fn−1 + qn−2 = qn−1 + qn−2 + fn−1.

Hence, the definition of qn yields

qn = (# of obo compositions of n+ 1) = qn−1 + qn−2 + fn−1.

This proves Statement 3.]

Using Statement 3, we can now easily prove Statement 2 by induction:
[Proof of Statement 2: We proceed by strong induction on n. This is a straightforward

and mostly computational argument, so we only briefly outline it.
Fix m ∈ N. We assume (as induction hypothesis) that Statement 2 holds for all n < m.

We must prove that Statement 2 holds for n = m. In other words, we must prove that
qm = rm. This is easily verified for m ≤ 1, so let us WLOG assume that m > 1. Thus,
m ≥ 2. Hence, the induction hypothesis yields that Statement 2 holds for n = m − 1 and
for n = m− 2. In other words, we have qm−1 = rm−1 and qm−2 = rm−2. Hence,

qm−1 = rm−1 =
(m+ 3) fm−1 + 2 (m− 1) fm−2

5
(by the definition of rm−1)

and

qm−2 = rm−2 =
(m+ 2) fm−2 + 2 (m− 2) fm−3

5
(by the definition of rm−2) .
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Now, Statement 3 (applied to m instead of n) yields

qm = qm−1︸︷︷︸
=
(m+ 3) fm−1 + 2 (m− 1) fm−2

5

+ qm−2︸︷︷︸
=
(m+ 2) fm−2 + 2 (m− 2) fm−3

5

+fm−1

=
(m+ 3) fm−1 + 2 (m− 1) fm−2

5
+

(m+ 2) fm−2 + 2 (m− 2) fm−3
5

+ fm−1

=

(
m+ 3

5
+ 1

)
︸ ︷︷ ︸

=
m+ 8

5

fm−1 +

(
2 (m− 1)

5
+
m+ 2

5

)
︸ ︷︷ ︸

=
3m

5

fm−2 +
2 (m− 2)

5
fm−3

=
m+ 8

5
fm−1 +

3m

5
fm−2 +

2 (m− 2)

5
fm−3.

Our goal is to prove that this equals

rm =
(m+ 4) fm + 2mfm−1

5
=
m+ 4

5
fm +

2m

5
fm−1.

Thus, it suffices to show that

m+ 8

5
fm−1 +

3m

5
fm−2 +

2 (m− 2)

5
fm−3 =

m+ 4

5
fm +

2m

5
fm−1. (22)

The easiest way to do so is to rewrite all four Fibonacci numbers appearing in this equality
in terms of fm−1 and fm−2. In fact, the recurrence equation of the Fibonacci sequence yields
fm−1 = fm−2 + fm−3; thus, fm−3 = fm−1 − fm−2. Also, the recurrence equation of the
Fibonacci sequence yields fm = fm−1+fm−2. In light of these two equalities, we can rewrite
(22) as

m+ 8

5
fm−1 +

3m

5
fm−2 +

2 (m− 2)

5
(fm−1 − fm−2) =

m+ 4

5
(fm−1 + fm−2) +

2m

5
fm−1.

But this is easily verified by direct simplification of both sides (treating fm−1 and fm−2
as two independent variables). This completes the induction step. Thus, Statement 2 is
proved.]

Combining Statement 1 with Statement 2, we conclude that pn = qn = rn for each
n ∈ N. This solves the exercise.

5.3 Remark

The sequence (p0, p1, p2, . . .) = (q0, q1, q2, . . .) = (r0, r1, r2, . . .) (where the notations are as
in the solution above) is sequence A029907 in the OEIS. All claims of the exercise appear
on the OEIS page of this sequence. In particular, part of the exercise is an observation by
Joerg Arndt (May 21, 2013). A generalization of our Statement 1 is given by Jia Huang in
[Huang18, Proposition 6.1].
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