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1 Exercise 1

1.1 Problem

Let us define a slight variation on domino tilings. We shall use the notations of [Math222,
§1.1].

A 2× 2-rectangle will mean a set of the form {(i, j) , (i, j + 1) , (i+ 1, j) , (i+ 1, j + 1)}
for some i, j ∈ Z. (Visually, this is just a set of 4 mutually adjacent squares forming a
2× 2-rectangle.)

A pseudomino will mean a set of squares that is either a domino or a 2× 2-rectangle.
If S is a set of squares, then a pseudomino tiling of S will mean a set of disjoint

pseudominos whose union is S.
For example, here are all five pseudomino tilings of the rectangle R3,2:

, , ,

, .

For any n ∈ N, we let pn denote the number of all pseudomino tilings of the rectangle
Rn,2.

[Example: We have p0 = 1, p1 = 1, p2 = 3, p3 = 5.]
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(a) Find a recursive formula that expresses pn in terms of pn−1 and pn−2 when n ≥ 2.

(b) Prove that pn =
(−1)n + 2n+1

3
for each n ∈ N.

[Hint: You don’t need to be more detailed than in the proof of [Math222, Proposition
1.1.9].]

1.2 Solution sketch

(a) We claim that

pn = pn−1 + 2pn−2 for each integer n ≥ 2. (1)

[Proof of (1): The following proof follows closely1 the similar proof of [Math222, Propo-
sition 1.1.9].

Let n ≥ 2 be an integer. Consider the last2 column ofRn,2 (that is, the set {(n, 1) , (n, 2)}).
In any pseudomino tiling T of Rn,2, this last column is either covered by 1 vertical

domino, or covered by (parts of) 2 horizontal dominos, or covered by (half of) a 2 × 2-
rectangle.

In the first of these three cases, we shall call T a type-1 tiling ; in the second case, we
shall call T a type-2 tiling ; in the third case, we shall call T a type-3 tiling. Visually, these
look as follows:

???????????????

???????????????︸ ︷︷ ︸
type-1 tiling

,
???????????????

???????????????︸ ︷︷ ︸
type-2 tiling

,
???????????????

???????????????︸ ︷︷ ︸
type-3 tiling

(where the question marks mean an unknown arrangement of pseudominos).
Let us now analyze type-1 tilings. A type-1 tiling consists of the single vertical domino

{(n, 1) , (n, 2)} that covers its last column, and a bunch of pseudominos that cover all
the remaining n − 1 columns. This latter bunch must thus be a pseudomino tiling of
Rn−1,2. Thus, a type-1 tiling consists of the single vertical domino {(n, 1) , (n, 2)} and
an arbitrary pseudomino tiling of Rn−1,2. (Visually, this means that it looks as follows:
some pseudomino

tiling of Rn−1,2
.) Hence,3

(# of type-1 tilings) = (# of pseudomino tilings of Rn−1,2) (2)
= pn−1 (3)

(since pn−1 was defined as the # of pseudomino tilings of Rn−1,2).
Let us next analyze type-2 tilings. In a type-2 tiling, the last column is covered by

(parts of) 2 horizontal dominos. These 2 dominos must extend to the left (because there is
no space for them to extend to the right), and thus also cover the second-to-last column.
Explicitly speaking, these 2 dominos must be {(n− 1, 1) , (n, 1)} and {(n− 1, 2) , (n, 2)}.
All the other pseudominos in the tiling must then cover the remaining n − 2 columns, i.e.,

1euphemism for “is an almost verbatim copy of”
2i.e., easternmost
3When we say “type-1 tiling”, we mean “type-1 tiling of Rn,2”, of course. (The same will apply to “type-2
tiling” and to “type-3 tiling” later on.)
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must form a pseudomino tiling of Rn−2,2. Thus, a type-2 tiling consists of the two horizontal
dominos {(n− 1, 1) , (n, 1)} and {(n− 1, 2) , (n, 2)} and an arbitrary pseudomino tiling of

Rn−2,2. (Visually, this means that it looks as follows:
some pseudomino

tiling of Rn−2,2
.) Hence,

(# of type-2 tilings) = (# of pseudomino tilings of Rn−2,2) (4)
= pn−2 (5)

(since pn−2 was defined as the # of pseudomino tilings of Rn−2,2).
Let us finally analyze type-3 tilings. In a type-3 tiling, the last column is covered by

(half of) a 2 × 2-rectangle. This 2 × 2-rectangle must extend to the left (because there
is no space for it to extend to the right), and thus also cover the second-to-last column.
Explicitly speaking, this 2 × 2-rectangle must be {(n− 1, 1) , (n− 1, 2) , (n, 1) , (n, 2)}. All
the other pseudominos in the tiling must then cover the remaining n− 2 columns, i.e., must
form a pseudomino tiling of Rn−2,2. Thus, a type-3 tiling consists of the 2 × 2-rectangle
{(n− 1, 1) , (n− 1, 2) , (n, 1) , (n, 2)} and an arbitrary pseudomino tiling of Rn−2,2. (Visually,

this means that it looks as follows:
some pseudomino

tiling of Rn−2,2
.) Hence,

(# of type-3 tilings) = (# of pseudomino tilings of Rn−2,2) (6)
= pn−2 (7)

(since pn−2 was defined as the # of pseudomino tilings of Rn−2,2).
Now, recall that each pseudomino tiling of Rn,2 is either a type-1 tiling or a type-2 tiling

or a type-3 tiling (but can never be of more than one of these types simultaneously). Hence,

(# of pseudomino tilings of Rn,2)

= (# of type-1 tilings) + (# of type-2 tilings) + (# of type-3 tilings)
= pn−1 + pn−2 + pn−2 (8)

(by adding the equalities (3) and (5) and (7) together). Now, the definition of pn yields

pn = (# of pseudomino tilings of Rn,2) = pn−1 + pn−2 + pn−2 = pn−1 + 2pn−2

(by (8)). This proves (1).]

(b) We shall prove the claim of part (b) of the exercise by strong induction on n:
Induction step: Let m ∈ N. Assume (as the induction hypothesis) that part (b) of the

exercise holds for all n < m. We must prove that part (b) of the exercise holds for n = m.
We have assumed that part (b) of the exercise holds for all n < m. In other words, we

have

pn =
(−1)n + 2n+1

3
for each n ∈ N satisfying n < m. (9)

It is easy to see that p0 = 1 (since the empty rectangle R0,2 has exactly 1 pseudomino
tiling – namely, the empty set) and that p1 = 1 (since the rectangle R1,2 has exactly 1
pseudomino tiling – namely, the one consisting of a single vertical domino). Comparing

p0 = 1 with
(−1)0 + 20+1

3
=

1 + 2

3
= 1, we obtain p0 =

(−1)0 + 20+1

3
. Comparing p1 = 1

with
(−1)1 + 21+1

3
=
−1 + 4

3
= 1, we obtain p1 =

(−1)1 + 21+1

3
.
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We must prove that part (b) of the exercise holds for n = m. In other words, we

must prove that pm =
(−1)m + 2m+1

3
. We already know that this is true for m = 0 (since

p0 =
(−1)0 + 20+1

3
) and for m = 1 (since p1 =

(−1)1 + 21+1

3
). Hence, for the rest of this

proof, we WLOG assume that m ≥ 2. Thus, m−2 ∈ N and m−2 < m. Hence, (9) (applied
to n = m− 2) yields

pm−2 =
(−1)m−2 + 2(m−2)+1

3
=

(−1)m−2 + 2m−1

3
. (10)

Also, m ≥ 2 ≥ 1. Thus, m − 1 ∈ N and m − 1 < m. Hence, (9) (applied to n = m − 1)
yields

pm−1 =
(−1)m−1 + 2(m−1)+1

3
=

(−1)m−1 + 2m

3
. (11)

Now, (1) (applied to n = m) yields

pm = pm−1 + 2pm−2 =
(−1)m−1 + 2m

3
+ 2 · (−1)

m−2 + 2m−1

3

(
by (11) and (10)

)
=

1

3

(−1)m−1 + 2 (−1)m−2︸ ︷︷ ︸
=((−1)+2)(−1)m−2

+ 2m + 2 · 2m−1︸ ︷︷ ︸
=2m+2m=2·2m=2m+1

 =
1

3

((−1) + 2)︸ ︷︷ ︸
=1

(−1)m−2︸ ︷︷ ︸
=(−1)m

+2m+1


=

1

3

(
(−1)m + 2m+1

)
=

(−1)m + 2m+1

3
.

In other words, part (b) of the exercise holds for n = m. This completes the induction step.
Thus, part (b) of the exercise is proven by induction.

2 Exercise 2

2.1 Problem

Again, we shall use the notations of [Math222, §1.1].
An L-tromino will mean a set of squares that has one of the four forms

, , , .

(Formally speaking, it is a set of the form {(i, j) , (i′, j) , (i, j′)}, where i, j ∈ Z and i′ ∈
{i− 1, i+ 1} and j′ ∈ {j − 1, j + 1}.)

If S is a set of squares, then an L-tromino tiling of S will mean a set of disjoint L-trominos
whose union is S.

For any n ∈ N, we let Ln denote the number of L-tromino tilings of the rectangle Rn,2.
We shall use the Iverson bracket notation4.
Prove that

Ln = [3 | n] · 2n/3 for each n ∈ N. (12)

[Hint: Feel free to take inspiration from the solution to [18f-hw1s, Exercise 5].]
4This means the following:
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2.2 Solution sketch

We shall first show that

Ln = 2Ln−3 for every integer n ≥ 3. (13)

[Proof of (13): The definition of L-trominos shows that there are four kinds of L-
trominos:

, , , .

We shall refer to these four kinds as NW-trominos, SW-trominos, NE-trominos and SE-
trominos, respectively. (The names are a reference to the position in which the trominos
have their “bends”.)

Now, let n ≥ 3 be an integer. We want to show that Ln = 2Ln−3.
This will be somewhat similar to [Math222, proof of Proposition 1.1.9] and to [18f-hw1s,

solution to Exercise 5].
Consider the last5 column of Rn,2 (that is, the set {(n, 1) , (n, 2)}).
Consider any L-tromino tiling T of Rn,2. Clearly, the square (n, 1) must be contained

in some L-tromino in T . This L-tromino cannot be a NW-tromino6, and cannot be a SW-
tromino either7. Hence, this L-tromino must be either a NE-tromino or a SE-tromino. In
either case, this L-tromino must cover the whole last column of Rn,2 (since this is the only
way to place it so that it contains (n, 1) but is contained in Rn,2). Of course, it is the only
L-tromino in T that covers the whole last column (since the L-trominos in T are disjoint).

Now, forget that we fixed T . We thus have shown that each L-tromino tiling T of Rn,2

contains a unique L-tromino that covers the whole last column of Rn,2, and this L-tromino is
either a NE-tromino or an SE-tromino. If this L-tromino is a NE-tromino, then we shall call
T a type-1 tiling ; if it instead is a SE-tromino, then we shall call T a type-2 tiling. Visually,

If A is any statement (such as “1+ 1 = 2” or “1+ 1 = 1” or “there exist infinitely many primes”), then
[A] stands for the number {

1, if A is true;
0, if A is false.

This number belongs to {0, 1}, and is called the truth value of A. For example,

[1 + 1 = 2] = 1, [1 + 1 = 1] = 0, [there exist infinitely many primes] = 1.

5i.e., easternmost
6since a NW-tromino that contains (n, 1) would also contain (n+ 1, 2), which means it would fail to be
contained in Rn,2

7Proof. Assume the contrary. Thus, the square (n, 1) is contained in some SW-tromino S ∈ T . This
SW-tromino S must be {(n− 1, 1) , (n− 1, 2) , (n, 1)} (since any other SW-tromino that contains (n, 1)
would fail to be contained in Rn,2). But the square (n, 2) also belongs to Rn,2, and thus must be
contained in some L-tromino X ∈ T . This latter L-tromino X must be distinct from S (since (n, 2) /∈
{(n− 1, 1) , (n− 1, 2) , (n, 1)} = S), and thus disjoint from S. On the other hand, it must contain at
least one square adjacent to (n, 2) (since it contains (n, 2), and since any L-tromino is a connected
shape). But any square adjacent to (n, 2) either belongs to S or falls outside of Rn,2 (since S =
{(n− 1, 1) , (n− 1, 2) , (n, 1)} contains the western and southern neighbors of (n, 2), whereas the eastern
and northern neighbors of (n, 2) fall outside of Rn,2). Hence, the L-tromino X must contain at least one
square that either belongs to S or falls outside of Rn,2. This contradicts the fact that X is disjoint from
S and contained inside Rn,2. This contradiction shows that our assumption was false, qed.
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these two types of tilings look as follows:

???????????????

??????????????????︸ ︷︷ ︸
type-1 tiling

,
??????????????????

???????????????︸ ︷︷ ︸
type-2 tiling

(where the question marks mean an unknown arrangement of L-trominos).
Let us now consider an arbitrary type-1 tiling T . This tiling T consists of the sin-

gle NE-tromino {(n, 1) , (n, 2) , (n− 1, 2)} that covers its last column, and a bunch of L-
trominos that cover all the remaining n − 1 columns except for the square (n− 1, 2).
In particular, one L-tromino of the latter bunch must contain the square (n− 1, 1). Let
us denote this L-tromino by X. Since this L-tromino X is disjoint from the L-tromino
{(n, 1) , (n, 2) , (n− 1, 2)} (since both of these L-trominos belong to our tiling), we thus con-
clude that X must be the SW-tromino {(n− 1, 1) , (n− 2, 1) , (n− 2, 2)} (since any other
L-tromino containing (n− 1, 1) would either overlap with {(n, 1) , (n, 2) , (n− 1, 2)} or fail
to be contained in Rn,2). Hence, our type-1 tiling T must look as follows:

????????????

????????????

(where the question marks mean an unknown arrangement of L-trominos); in particular it
contains the two L-trominos {(n, 1) , (n, 2) , (n− 1, 2)} and {(n− 1, 1) , (n− 2, 1) , (n− 2, 2)},
which (in combination) cover the last 3 columns of Rn,2. The remaining L-trominos in T
must cover the leftmost n−3 columns of Rn,2; in other words, they must form an L-tromino
tiling of Rn−3,2.

Thus, we have shown that a type-1 tiling consists of the two L-trominos
{(n, 1) , (n, 2) , (n− 1, 2)} and {(n− 1, 1) , (n− 2, 1) , (n− 2, 2)} and an arbitrary L-tromino

tiling ofRn−3,2. (Visually, this means that it looks as follows:
some L-tromino

tiling of Rn−3,2
.)

Hence,8

(# of type-1 tilings) = (# of L-tromino tilings of Rn−3,2)

= Ln−3 (14)

(since Ln−3 was defined as the # of L-tromino tilings of Rn−3,2).
We can similarly analyze type-2 tilings, and conclude that

(# of type-2 tilings) = Ln−3. (15)

(Alternatively, we can obtain this from (14) by a symmetry argument: There is clearly a
bijection from the set of all type-1 tilings to the set of all type-2 tilings9. This shows that
(# of type-1 tilings) = (# of type-2 tilings), according to the bijection principle. Hence,
(# of type-2 tilings) = (# of type-1 tilings) = Ln−3 (by (14)).)

8When we say “type-1 tiling”, we mean “type-1 tiling of Rn,2”, of course. (The same will apply to “type-2
tiling” later on.)

9Namely, this bijection transforms any type-1 tiling by reflecting it across the horizontal axis of symmetry
of Rn,2.
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Now, recall that each L-tromino tiling of Rn,2 is either a type-1 tiling or a type-2 tiling
(but never both at the same time). Hence,

(# of L-tromino tilings of Rn,2)

= (# of type-1 tilings) + (# of type-2 tilings)
= Ln−3 + Ln−3 (16)

(by adding the equalities (14) and (15) together). Now, the definition of Ln yields

Ln = (# of L-tromino tilings of Rn,2) = Ln−3 + Ln−3 = 2Ln−3

(by (16)). This proves (13).]

With (13) proven, it is now a matter of straightforward induction to solve the exercise:
[Proof of (12): We shall prove (12) by strong induction on n.
Thus, let m ∈ N, and let us assume (as the induction hypothesis) that (12) holds for

all n < m. We must prove that (12) holds for n = m. In other words, we must prove that
Lm = [3 | m] · 2m/3.

The rectangle R0,2 is the empty set, and thus has exactly one L-tromino tiling (namely,
the empty set). In other words, L0 = 1. Comparing this with [3 | 0]︸ ︷︷ ︸

=1

· 20/3︸︷︷︸
=20=1

= 1, we obtain

L0 = [3 | 0] · 20/3. In other words, Lm = [3 | m] · 2m/3 holds if m = 0. Thus, for the rest of
our proof of Lm = [3 | m] · 2m/3, we WLOG assume that m 6= 0.

The rectangle R1,2 has 2 squares, and thus has no L-tromino tiling (since any L-tromino
would take up 3 squares). In other words, L1 = 0. Comparing this with [3 | 1]︸ ︷︷ ︸

=0

·21/3 = 0, we

obtain L1 = [3 | 1] · 21/3. In other words, Lm = [3 | m] · 2m/3 holds if m = 1. Thus, for the
rest of our proof of Lm = [3 | m] · 2m/3, we WLOG assume that m 6= 1.

The rectangle R2,2 has 4 squares, and thus has no L-tromino tiling (since any L-tromino
has 3 squares, and thus any set that has an L-tromino tiling must have either 0 or 3 or 6 or
more squares10). In other words, L2 = 0. Comparing this with [3 | 2]︸ ︷︷ ︸

=0

·22/3 = 0, we obtain

L2 = [3 | 2] · 22/3. In other words, Lm = [3 | m] · 2m/3 holds if m = 2. Thus, for the rest of
our proof of Lm = [3 | m] · 2m/3, we WLOG assume that m 6= 2.

As a consequence of our WLOG assumptions, we now have m 6= 0 and m 6= 1 and
m 6= 2. Hence, m ≥ 3 (since m ∈ N). Thus, m− 3 ∈ N and m− 3 < m. Hence, (12) holds
for n = m − 3 (due to our induction hypothesis saying that (12) holds for all n < m). In
other words,

Lm−3 = [3 | m− 3] · 2(m−3)/3. (17)

The integers m− 3 and m differ by 3. Thus, one of them is divisible by 3 if and only if
the other is. In other words, the statements (3 | m− 3) and (3 | m) are equivalent.

But here comes one of the most basic properties of truth values: If A and B are two
equivalent statements, then [A] = [B]. (This follows easily by noticing that A is true if and
only if B is true.) Applying this property to A = (3 | m− 3) and B = (3 | m), we conclude
that [3 | m− 3] = [3 | m] (since the statements (3 | m− 3) and (3 | m) are equivalent).

Also, (m− 3) /3 = m/3− 1, so that 2(m−3)/3 = 2m/3−1 = 2m/3/2. Hence, (17) becomes

Lm−3 = [3 | m− 3]︸ ︷︷ ︸
=[3|m]

· 2(m−3)/3︸ ︷︷ ︸
=2m/3/2

= [3 | m] · 2m/3/2.

10Of course, we have used the sum rule here.
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But recall that m ≥ 3. Hence, (13) (applied to n = m) yields

Lm = 2 Lm−3︸ ︷︷ ︸
=[3|m]·2m/3/2

= 2 [3 | m] · 2m/3/2 = [3 | m] · 2m/3.

In other words, (12) holds for n = m. This completes the induction step. Thus, (12) is
proven by induction.]

This solves the exercise.

3 Exercise 3

3.1 Problem

Again, we shall use the notations of [Math222, §1.1].
A horimino shall mean a rectangle of height 1 and positive width (i.e., formally speaking,

a set of the form {(i, 1) , (i+ 1, 1) , . . . , (j, 1)} for some integers i ≤ j).
If S is a set of squares, then a horimino tiling of S will mean a set of disjoint horiminos

whose union is S.
For example, here are all four horimino tilings of the rectangle R3,1:

, , , .

Let n ∈ N. Find a simple expression for the number of all horimino tilings of the
rectangle Rn,1.

[Hint: Make sure your answer works for n = 0 (you might need to handle this case
separately).]

3.2 First solution sketch

We first recall the following fact:

Proposition 3.1. Let n ∈ N. Then, the number of all subsets of {1, 2, . . . , n} is 2n.

Proposition 3.1 is [19f-hw0s, Exercise 1 (a)], so we have no need to prove it again.
Now, let us fix n ∈ N. We must compute the number of all horimino tilings of the

rectangle Rn,1.
If n = 0, then this number is since there is exactly one horimino tiling of the rectangle

R0,1 (indeed, the rectangle R0,1 is the empty set, so its only horimino tiling is the empty set
as well). Thus, we have solved the exercise in the case n = 0.

Hence, we WLOG assume that n 6= 0 from now on. Thus, n − 1 ∈ N. Thus, Proposi-
tion 3.1 (applied to n−1 instead of n) shows that the number of all subsets of {1, 2, . . . , n− 1}
is 2n−1. In other words,

(# of all subsets of {1, 2, . . . , n− 1}) = 2n−1. (18)

In the following, the word “horimino tiling” shall always “horimino tiling of Rn,1”.
Recall that if S is any set, then P (S) denotes the powerset of S (that is, the set of all

subsets of S). Now, we claim that there is a bijection

β : {horimino tilings} → P ([n− 1]) .
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Let us first describe this bijection visually, before giving a formal definition.
The rectangle Rn,1 has n squares (1, 1) , (2, 1) , . . . , (n, 1), separated by n−1 “walls”. The

wall between the two adjacent squares (i, 1) and (i+ 1, 1) will be called “wall i”. Thus, when
moving from the western to the eastern end of Rn,1, we have to cross the walls 1, 2, . . . , n−1
in this order. Hence, the set of all walls is [n− 1] (or at least can be identified with the set
[n− 1]).

Now, if T is a horimino tiling, and if i ∈ [n− 1], then the wall i will either fall inside
one of the horiminos of T (that is, the squares (i, 1) and (i+ 1, 1) belong to one and the same
horimino of T ), or separate two horiminos of T . For example, in the following horimino
tiling of R7,1:

(where the three horiminos have widths 2, 3 and 2, from left to right), the wall 1 falls inside
the leftmost horimino; the wall 2 separates this horimino from the middle horimino; the
walls 3 and 4 fall inside the middle horimino; the wall 5 separates it from the rightmost
horimino; and the wall 6 falls inside the rightmost horimino.

We shall say that a wall W is visible in a horimino tiling T if it separates two horiminos
of T . Otherwise, we shall say that W is invisible in T .

It is intuitively obvious that any horimino tiling T is uniquely determined by the set of
all walls that are visible in T (because the horiminos of T can be reconstructed from this
set simply by placing a horimino into the space between any two consecutive visible walls).
Conversely, for any set S of walls (i.e., for any subset S of [n− 1]), there is exactly one
horimino tiling T such that the visible walls in T will be precisely the walls in S.

Thus, we can define a bijection

β : {horimino tilings} → P ([n− 1]) ,

T 7→ (the set of all walls that are visible in T ) .

As we said above, a look at the picture makes it intuitively obvious that β is a bijection;
nevertheless, it is worth proving this rigorously as well. Let me give an outline of how this can be
done, without going into the straightforward details. First, let us define the notions of “walls” and
“visible walls” without referring to the picture. We define a wall simply as an element of [n− 1],
and we say that a wall i ∈ [n− 1] is visible in a horimino tiling T if and only if the squares (i, 1) and
(i+ 1, 1) belong to two different horiminos of T . (It is easy to see that this definition of “visible”
matches the more geometric definition we gave above.) Thus, the map β is clearly well-defined.

In order to see that β is a bijection, we need to show that β is injective and surjective.
[Proof of the surjectivity of β: Let S ∈ P ([n− 1]). We need to find a horimino tiling T such

that β (T ) = S.
Write the subset S of P ([n− 1]) in the form S = {s1, s2, . . . , sk} with s1 < s2 < · · · < sk.

(Clearly, there is exactly one way to write S in this form11.) Set s0 = 0 and sk+1 = n; thus,
0 = s0 < s1 < s2 · · · < sk < sk+1 = n. Let T be the horimino tiling consisting of the following
k + 1 horiminos:

{(s0 + 1, 1) , (s0 + 2, 1) , . . . , (s1, 1)} ,
{(s1 + 1, 1) , (s1 + 2, 1) , . . . , (s2, 1)} ,
{(s2 + 1, 1) , (s2 + 2, 1) , . . . , (s3, 1)} ,

...
{(sk + 1, 1) , (sk + 2, 1) , . . . , (sk+1, 1)} .

11To be fully rigorous: It is [19f-hw0s, Proposition 1.3] that we are using here.
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(That is, the i-th horimino is {(si−1 + 1, 1) , (si−1 + 2, 1) , . . . , (si, 1)} for each i ∈ [k + 1].) It is
easy to see that this T is indeed a horimino tiling (since each element of [n] belongs to exactly one
of the k + 1 intervals

(s0 + 1, s0 + 2, . . . , s1) ,

(s1 + 1, s1 + 2, . . . , s2) ,

(s2 + 1, s2 + 2, . . . , s3) ,

...
(sk + 1, sk + 2, . . . , sk+1) ,

which is because 0 = s0 < s1 < s2 < · · · < sk+1 = n). It is easy to see that the walls that are
visible in this tiling T are precisely the walls s1, s2, . . . , sk, that is, the walls in the set S (since
S = {s1, s2, . . . , sk}). Hence, the definition of the map β yields β (T ) = S.

Now, forget that we fixed S. Thus, for each S ∈ P ([n− 1]), we have found a horimino tiling
T such that β (T ) = S. This shows that the map β is surjective.]

[Proof of the injectivity of β: Let T be a horimino tiling. We are going to show how T can be
reconstructed from the set β (T ).

Write the tiling T in the form

T = {{(s1, 1) , (s1 + 1, 1) , . . . , (t1, 1)} ,
{(s2, 1) , (s2 + 1, 1) , . . . , (t2, 1)} ,
{(s3, 1) , (s3 + 1, 1) , . . . , (t3, 1)} ,

...
{(sp, 1) , (sp + 1, 1) , . . . , (tp, 1)}} (19)

(so that s1, s2, . . . , sp are the columns in which the horiminos of T begin, and t1, t2, . . . , tp are the
columns in which they end). We WLOG assume that s1 ≤ s2 ≤ · · · ≤ sp (since otherwise, we just
relabel the horiminos of T ). Thus, it is easy to see that

s1 ≤ t1 < s2 ≤ t2 < s3 ≤ t3 < · · · < sp ≤ tp (20)

(that is, si ≤ ti for all i ∈ [p] and ti < si+1 for all i ∈ [p− 1]), because the horiminos of T must not
overlap. Hence, recalling that the horiminos of T must cover the whole rectangle Rn,1, we conclude
that s1 = 1 and tp = n and ti = si+1 − 1 for each i ∈ [p− 1] (since otherwise, there would be
squares that are not covered by any of the horiminos). Thus, (19) rewrites as follows:

T = {{(1, 1) , (2, 1) , . . . , (s2 − 1, 1)} ,
{(s2, 1) , (s2 + 1, 1) , . . . , (s3 − 1, 1)} ,
{(s3, 1) , (s3 + 1, 1) , . . . , (s4 − 1, 1)} ,

...
{(sp, 1) , (sp + 1, 1) , . . . , (n, 1)}} . (21)

(If p = 1, then this should be understood as T = {{(1, 1) , (2, 1) , . . . , (n, 1)}}; this is the case when
the tiling T consists of a single horimino of width n.)

From (20), we obtain s1 < s2 < · · · < sp+1, hence s2 < s3 < · · · < sp.
From (21), we see immediately which walls are visible in T : Namely, the walls s2 − 1, s3 −

1, . . . , sp − 1 (and no others) are visible in T . In other words, the set of all walls that are visible in
T is {s2 − 1, s3 − 1, . . . , sp − 1}. In other words,

β (T ) = {s2 − 1, s3 − 1, . . . , sp − 1} (22)
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(since β (T ) was defined as the set of all walls that are visible in T ). Hence, the numbers s2 −
1, s3− 1, . . . , sp− 1 are precisely the elements of β (T ) listed in increasing order with no repetitions
(since s2 < s3 < · · · < sp). Thus, the set β (T ) determines the numbers s2 − 1, s3 − 1, . . . , sp − 1.
These numbers, in turn, determine s2, s3, . . . , sp, and thus determine the tiling T (because (21)
expresses T in terms of s2, s3, . . . , sp). Combining these, we conclude that the set β (T ) determines
the tiling T (that is, we can uniquely reconstruct T from β (T )). In other words, if T1 and T2
are two horimino tilings satisfying β (T1) = β (T2), then T1 = T2. In other words, the map β is
injective.]

We have now showed that β is injective and surjective. Hence, β is bijective, i.e., a bijection.

We have now found a bijection β : {horimino tilings} → P ([n− 1]). Thus, the bijection
principle shows that

|{horimino tilings}| = |P ([n− 1])| = (# of subsets of [n− 1])(
since P ([n− 1]) is the set of all subsets of [n− 1]

)
= (# of all subsets of {1, 2, . . . , n− 1})(

since [n− 1] = {1, 2, . . . , n− 1}
)

= 2n−1
(
by (18)

)
.

In other words, the number of all horimino tilings of the rectangle Rn,1 is 2n−1.
Now we have solved our problem first in the case when n = 0, and then in the case when

n 6= 0. We obtained the answer 1 in the former case, and the answer 2n−1 in the latter. We
can combine these two answers into the following general formula:

(# of all horimino tilings of Rn,1) =

{
2n−1, if n 6= 0;
1, if n = 0

for all n ∈ N.

The right hand side of this formula can also be rewritten as 2max{n−1,0}, where maxS denotes
the maximum element of a set S. (Check this!)

3.3 Second solution sketch

Forget that we fixed n. For each n ∈ N, we let hn denote the number of all horimino tilings
of Rn,1. Thus, the problem asks us to find a simple expression for hn.

We answer this as follows: We claim that

hn =

{
2n−1, if n 6= 0;
1, if n = 0

for all n ∈ N. (23)

It remains to prove this. We shall achieve this by proving a recurrence relation for the
hn first: We shall show that

hn = h0 + h1 + · · ·+ hn−1 for all positive integers n. (24)

[Proof of (24): Let n be a positive integer.
Consider the square (n, 1); this is the easternmost square of Rn,1.
In any horimino tiling T of Rn,1, this square (n, 1) must be covered by some horimino.

We let kT denote the size (i.e., the width) of this horimino. Clearly, this size kT is a number
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in {1, 2, . . . , n} (since any horimino that fits into Rn,1 must have size ≤ n). Thus, we can
count horimino tilings of Rn,1 according to their value of kT :

(# of horimino tilings of Rn,1)

=
∑

i∈{1,2,...,n}

(# of horimino tilings T of Rn,1 satisfying kT = i) . (25)

(Strictly speaking, this is a consequence of the sum rule.)
Now, let i ∈ {1, 2, . . . , n}. Consider any horimino tiling T of Rn,1 satisfying kT = i.

Then, the square (n, 1) is covered by a horimino of size kT in T (by the definition of kT ). In
other words, the square (n, 1) is covered by a horimino of size i in T (since kT = i). This
horimino must end12 in this square (n, 1) (since it has to be contained in Rn,1, but (n, 1)
is the easternmost square of Rn,1), and thus must begin in the square (n− i+ 1, 1) (since
it has size i). Hence, this horimino is {(n− i+ 1, 1) , (n− i+ 2, 1) , . . . , (n, 1)}, and covers
the last (i.e., easternmost) i columns of Rn,1. The remaining horiminos in the tiling T must
therefore cover the remaining n− i columns of Rn,1; in other words, they must constitute a
horimino tiling of Rn−i,1. Hence, the set

T \ {the horimino in T that covers (n, 1)}

is a horimino tiling of Rn−i,1.
Now, forget that we fixed T . We thus have shown that if T is a horimino tiling of Rn,1

satisfying kT = i, then T \ {the horimino in T that covers (n, 1)} is a horimino tiling of
Rn−i,1. Thus, the map

{horimino tilings T of Rn,1 satisfying kT = i} → {horimino tilings of Rn−i,1} ,
T 7→ T \ {the horimino in T that covers (n, 1)}

is well-defined. Furthermore, this map is a bijection13. Thus, the bijection principle shows
that

|{horimino tilings T of Rn,1 satisfying kT = i}|
= |{horimino tilings of Rn−i,1}| . (26)

Thus,

(# of horimino tilings T of Rn,1 satisfying kT = i)

= |{horimino tilings T of Rn,1 satisfying kT = i}|
= |{horimino tilings of Rn−i,1}|
= (# of horimino tilings of Rn−i,1)

= hn−i (27)

(since hn−i was defined to be the # of horimino tilings of Rn−i,1).

12We say that a horimino ends in its easternmost square.
13because the map

{horimino tilings of Rn−i,1} → {horimino tilings T of Rn,1 satisfying kT = i} ,
Q 7→ Q ∪ {{(n− i+ 1, 1) , (n− i+ 2, 1) , . . . , (n, 1)}}

is inverse to it

Darij Grinberg 12 darij.grinberg@drexel.edu



Solutions to homework set #1 page 13 of 23

Forget that we fixed i. We thus have proved (27) for each i ∈ {1, 2, . . . , n}. Now, the
definition of hn yields

hn = (# of horimino tilings of Rn,1)

=
∑

i∈{1,2,...,n}

(# of horimino tilings T of Rn,1 satisfying kT = i)︸ ︷︷ ︸
=hn−i

(by (27))

(
by (25)

)

=
∑

i∈{1,2,...,n}

hn−i = hn−1 + hn−2 + · · ·+ hn−n = h0 + h1 + · · ·+ hn−1.

This proves (24).]

The recurrent equation (24) is a bit complicated (it involves n terms on the right hand
side), but it is already good enough to let us easily prove (23) by strong induction on n
(more precisely, it reduces (23) to the identity 2n−1 = 1 + (20 + 21 + · · ·+ 2n−2), which is
well-known and itself is easy to prove by induction). Nevertheless, we can simplify our
remaining work a little bit further: We can use (24) to derive a simpler recursion. Namely,
we claim that

hn = 2hn−1 for all integers n > 1. (28)

[Proof of (28): Let n > 1 be an integer. Then, n− 1 is a positive integer. Hence, (24)
(applied to n− 1 instead of n) yields

hn−1 = h0 + h1 + · · ·+ h(n−1)−1 = h0 + h1 + · · ·+ hn−2.

But n is a positive integer, too (since n > 1), and thus (24) yields

hn = h0 + h1 + · · ·+ hn−1.

Subtracting the previous equality from this one, we obtain

hn − hn−1 = (h0 + h1 + · · ·+ hn−1)− (h0 + h1 + · · ·+ hn−2) = hn−1.

Thus, hn = hn−1 + hn−1 = 2hn−1. This proves (28).]

Now, proving (23) is completely straightforward:
[Proof of (23): We shall prove (23) by induction on n:
Induction base: There is exactly 1 horimino tiling of R0,1 (namely, the empty set). In

other words, h0 = 1. Thus, (23) holds for n = 0. This completes the induction base.
Induction step: Let m be a positive integer. Assume that (23) holds for n = m− 1. We

must prove that (23) holds for n = m. In other words, we must prove that

hm =

{
2m−1, if m 6= 0;
1, if m = 0

.

This rewrites as
hm = 2m−1

(because m 6= 0). Thus, all we need to prove is the equality hm = 2m−1. This equality is
easy to verify when m = 1, because a quick look at the rectangle R1,1 (which has only one
square, and thus only one horimino tiling) reveals that h1 = 1 = 21−1. Thus, for the rest
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of this proof, we WLOG assume that m 6= 1. Hence, m > 1 (since m is a positive integer).
Thus, m− 1 > 0, so that m− 1 6= 0. But we assumed that (23) holds for n = m− 1. Thus,

hm−1 =

{
2(m−1)−1, if m− 1 6= 0;
1, if m− 1 = 0

= 2(m−1)−1
(
since m− 1 6= 0

)
.

But (28) (applied to n = m) yields

hm = 2 hm−1︸ ︷︷ ︸
=2(m−1)−1

= 2 · 2(m−1)−1 = 2m−1.

This is precisely the equality that we need to prove. Thus, we have shown that (23) holds
for n = m. This completes the induction step, and with it our inductive proof of (23).]

3.4 Remark

There is also a third solution, similar to the second but obtaining the recurrence (28) directly
(without the detour through (24)). The main idea is that (for n > 1) we can subdivide the
horimino tilings of Rn,1 into two types: “type-1” (in which the horimino covering the square
(n, 1) has size 1) and “type-2” (in which the horimino covering the square (n, 1) has size > 1).
It is clear that the type-1 horimino tilings of Rn,1 are in bijection with the horimino tilings
of Rn−1,1. But the type-2 horimino tilings of Rn,1 are also in bijection with the horimino
tilings of Rn−1,1 (in fact, the bijection simply removes the square (n, 1) from the horimino
containing it, so that this particular horimino becomes shorter by 1). Thus, the sum rule
yields (28).

4 Exercise 4

4.1 Problem

Let n ∈ N. Prove that

02 · 1! + 12 · 2! + 22 · 3! + · · ·+ (n− 1)2 · n! = (n− 2) · (n+ 1)! + 2.

4.2 Remark

A well-known identity (see, e.g., [19s-hw0s, Exercise 2 (b)]) says that each n ∈ N satisfies

1 · 1! + 2 · 2! + 3 · 3! + · · ·+ n · n! = (n+ 1)!− 1. (29)

The exercise above can be viewed as a variant of this identity.

4.3 Solution

We shall give two solutions, both closely resembling the two proofs of (29) given in [19s-hw0s,
solution to Exercise 2 (b)]. The first solution is a straightforward induction argument,
whereas the second is a slicker-looking application of the telescope principle (but in reality,
the only difference is the presentation).
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Both solutions will rely on the following fundamental fact about factorials:

n! = n · (n− 1)! for each positive integer n. (30)

(This appears, e.g., in [19s-hw0s, Exercise 2 (a)]. It follows easily from the definition of
factorials.)

Now we solve our exercise:
First solution (by induction): We shall prove the claim of the exercise by induction on

n:
Induction base: We have

02 · 1! + 12 · 2! + 22 · 3! + · · ·+ (0− 1)2 · 0! = (empty sum) = 0.

Comparing this with (0− 2) · (0 + 1)!︸ ︷︷ ︸
=1!=1

+2 = (0− 2) · 1 + 2 = 0, we obtain 02 · 1! + 12 · 2! +

22 · 3! + · · · + (0− 1)2 · 0! = (0− 2) · (0 + 1)! + 2. Thus, the claim of the exercise holds for
n = 0. This completes the induction base.

Induction step: Let m ∈ N. Assume that the claim of the exercise holds for n = m. We
must prove that the claim of the exercise holds for n = m+ 1.

We have assumed that the claim of the exercise holds for n = m. In other words, we
have

02 · 1! + 12 · 2! + 22 · 3! + · · ·+ (m− 1)2 ·m! = (m− 2) · (m+ 1)! + 2.

Now,

02 · 1! + 12 · 2! + 22 · 3! + · · ·+ ((m+ 1)− 1)2 · (m+ 1)!

= 02 · 1! + 12 · 2! + 22 · 3! + · · ·+ (m− 1)2 ·m!︸ ︷︷ ︸
=(m−2)·(m+1)!+2

+((m+ 1)− 1)2︸ ︷︷ ︸
=m2

· (m+ 1)!

= (m− 2) · (m+ 1)! + 2 +m2 · (m+ 1)! =
(
(m− 2) +m2

)︸ ︷︷ ︸
=m2+m−2

=(m−1)(m+2)

· (m+ 1)! + 2

= (m− 1) (m+ 2) · (m+ 1)! + 2. (31)

But (30) (applied to n = m+ 2) yields

(m+ 2)! = (m+ 2) ·

(m+ 2)− 1︸ ︷︷ ︸
=m+1

! = (m+ 2) · (m+ 1)!.

Hence, (31) becomes

02 · 1! + 12 · 2! + 22 · 3! + · · ·+ ((m+ 1)− 1)2 · (m+ 1)!

= (m− 1)︸ ︷︷ ︸
=(m+1)−2

(m+ 2) · (m+ 1)!︸ ︷︷ ︸
=(m+2)!

=((m+1)+1)!

+2 = ((m+ 1)− 2) ((m+ 1) + 1)! + 2.

In other words, the claim of the exercise holds for n = m+1. This completes the induction
step. Thus, the claim of the exercise is proven by induction.

Second solution (using telescope principle): This proof shall rely on the following fact:
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Proposition 4.1. Let m ∈ N. Let a0, a1, . . . , am be m+ 1 real numbers. Then,
m∑
i=1

(ai − ai−1) = am − a0.

Proposition 4.1 is proven (e.g.) in [19s-hw0s, proof of Proposition 2.2] and in [detnotes,

proof of (16)]. It is known as the “telescope principle” since it contracts the sum
m∑
i=1

(ai − ai−1)

to the single difference am − a0, like folding a telescope.
Now, how can we apply Proposition 4.1 to the exercise? We have 02 · 1! + 12 · 2! + 22 ·

3!+ · · ·+(n− 1)2 ·n! =
n∑

i=1

(i− 1)2 · i!. If we could write each addend (i− 1)2 · i! in the form

ai − ai−1 for some n+ 1 real numbers a0, a1, . . . , an, then we could use Proposition 4.1.
The tricky part is finding these ai. Namely, set ai = (i− 2) · (i+ 1)! for each i ∈

{0, 1, . . . , n}. Then, I claim that

(i− 1)2 · i! = ai − ai−1 for each i ∈ {1, 2, . . . , n} . (32)

The proof of (32) is not tricky at all: Let i ∈ {1, 2, . . . , n}. Then, (30) (applied to i+ 1
instead of n) yields

(i+ 1)! = (i+ 1) ·

(i+ 1)− 1︸ ︷︷ ︸
=i

! = (i+ 1) · i!.

Now,

ai︸︷︷︸
=(i−2)·(i+1)!

(by the definition of ai)

− ai−1︸︷︷︸
=((i−1)−2)·((i−1)+1)!

(by the definition of ai−1)

= (i− 2) · (i+ 1)!︸ ︷︷ ︸
=(i+1)·i!

− ((i− 1)− 2)︸ ︷︷ ︸
=i−3

·

(i− 1) + 1︸ ︷︷ ︸
=i

! = (i− 2) · (i+ 1) · i!− (i− 3) · i!

= ((i− 2) · (i+ 1)− (i− 3))︸ ︷︷ ︸
=(i−1)2

·i! = (i− 1)2 · i!,

and this proves (32).
Now,

02 · 1! + 12 · 2! + 22 · 3! + · · ·+ (n− 1)2 · n!

=
n∑

i=1

(i− 1)2 · i!︸ ︷︷ ︸
=ai−ai−1

(by (32))

=
n∑

i=1

(ai − ai−1)

= an︸︷︷︸
=(n−2)·(n+1)!

(by the definition of an)

− a0︸︷︷︸
=(0−2)·(0+1)!

(by the definition of a0)

(by Proposition 4.1, applied to m = n)

= (n− 2) · (n+ 1)!− (0− 2) · (0 + 1)!︸ ︷︷ ︸
=1!=1

=(n− 2) · (n+ 1)!− (0− 2) · 1 = (n− 2) · (n+ 1)! + 2.

This solves the exercise again.
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4.4 Remark

The second solution above is not actually hard to find. When I said that finding the ai is “the
tricky part”, I referred to the situation in which you are trying to find a formula for the sum
n∑

i=1

(i− 1)2 · i!. But in this exercise, you are in a better situation: You know such a formula

(it is stated in the exercise), and all you need is to prove it. In this situation, it is easy to
reverse-engineer what the ai should be: You want to have an−a0 = (n− 2) · (n+ 1)!+2, so
it makes sense to set ai = (i− 2) · (i+ 1)! + 2 + C for some constant C. Choosing C = −2
(to cancel out the constant terms), we obtain ai = (i− 2) · (i+ 1)!, which is what I used in
the above solution; of course, any other value of C would have worked just as well.

Sums that can be computed using the telescope principle (Proposition 4.1) are called
telescoping sums. See https://brilliant.org/wiki/telescoping-series/ or https:
//en.wikipedia.org/wiki/Telescoping_series or https://www.cut-the-knot.org/m/
Algebra/TelescopingSums.shtml for other examples of such sums. (A famous example is
sinα + sin (2α) + sin (3α) + · · ·+ sin (nα).)

5 Exercise 5

5.1 Problem

Let (u0, u1, u2, . . .) be a sequence of real numbers such that every n ≥ 1 satisfies

un = nun−1 + (−1)n . (33)

Prove that un = (n− 1) (un−1 + un−2) for each n ≥ 2.

5.2 Remark

This shows that the recurrence Dn = nDn−1 + (−1)n for the derangement numbers implies
the recurrence Dn = (n− 1) (Dn−1 +Dn−2).

5.3 Solution

Let n ≥ 2 be an integer. Thus, n− 1 ≥ 2− 1 = 1. Hence, (33) (applied to n− 1 instead of
n) yields

un−1 = (n− 1)u(n−1)−1︸ ︷︷ ︸
=un−2

+(−1)n−1︸ ︷︷ ︸
=−(−1)n

= (n− 1)un−2 + (− (−1)n) = (n− 1)un−2 − (−1)n .

Thus,

un−1 + (−1)n = (n− 1)un−2. (34)

But n ≥ 2 ≥ 1. Hence, (33) yields

un = n︸︷︷︸
=(n−1)+1

un−1 + (−1)n = ((n− 1) + 1)un−1︸ ︷︷ ︸
=(n−1)un−1+un−1

+(−1)n = (n− 1)un−1 + un−1 + (−1)n︸ ︷︷ ︸
=(n−1)un−2

(by (34))

= (n− 1)un−1 + (n− 1)un−2 = (n− 1) (un−1 + un−2) .

This solves the exercise.
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5.4 Remark

A more systematic (but slightly less neat) solution proceeds by applying (33) to n− 1 and
to n (as we did), and then using the resulting formulas to express both un and un−1 in terms
of un−2. Once this is done, the equality in question (un = (n− 1) (un−1 + un−2)) can be
verified by direct computation.

The claim of this exercise is due to Leonhard Euler ([Euler79, Section X]).

6 Exercise 6

6.1 Problem

Let n and m be positive integers.
An n-tuple (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}n is said to be even if the sum i1 + i2 + · · ·+ in

is even. (For example, the 4-tuple (1, 0, 4, 1) is even, whereas (1, 0, 3, 1) is not.)

(a) Find a formula for the number of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}n when
m is odd.

(b) Find a formula for the number of all even n-tuples (i1, i2, . . . , in) ∈ {0, 1, . . . ,m}n when
m is even.

[Hint: Particular cases of this exercise (for m = 1, 2, 3) were done in [19f-hw0s, Exercise
3] and [18f-hw1s, Exercises 2 and 1]. Can you generalize some of that reasoning?]

6.2 Solution

Forget that we fixed n (but leave m fixed).
We extend our definition of even n-tuples to the case when n and m are merely nonneg-

ative (as opposed to positive). Thus, in particular, the 0-tuple () (also known as the empty
list) is even (because its sum is 0).

For every n ∈ N, we let en denote the number of all even n-tuples (i1, i2, . . . , in) ∈
{0, 1, . . . ,m}n. (Keep in mind that m is fixed, so we don’t need to mention it in our
notation.) Thus, part (a) asks us to find a formula for en when m is odd, while part (b)
asks us to do the same whenm is even. We are now going to solve these two parts separately,
both times using a modified version of the argument from [18f-hw1s, solution to Exercise 2].
We begin with part (b):

(b) Assume that m is even. We claim that

en =
(m+ 1)n + 1

2
for each n ∈ N. (35)

[Proof of (35): We proceed by induction on n:
Induction base: There is only one 0-tuple (i1, i2, . . . , i0) ∈ {0, 1, . . . ,m}0, namely the

empty list (). This empty list is even (since the sum i1 + i2 + · · · + i0 = (empty sum) = 0

is even). Thus, e0 = 1. Comparing this with
(m+ 1)0 + 1

2
=

1 + 1

2
= 1, we conclude that

e0 =
(m+ 1)0 + 1

2
. Hence, (35) is proven for n = 0. This completes the induction base.
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Induction step: Let N be a positive integer. Assume that (35) holds for n = N − 1. We
must prove that (35) holds for n = N .

In the following, the word “k-tuple” (for k being a nonnegative integer) shall always
mean “k-tuple in {0, 1, . . . ,m}k”. Thus, for each n ∈ N, the number en is simply the number
of all even n-tuples. We note that the total number of k-tuples (for a given k ∈ N) is∣∣∣{0, 1, . . . ,m}k∣∣∣ = |{0, 1, . . . ,m}|k = (m+ 1)k

(
since |{0, 1, . . . ,m}| = m+ 1

)
.

We have assumed that (35) holds for n = N − 1. In other words,

eN−1 =
(m+ 1)N−1 + 1

2
. (36)

Recall that an (N − 1)-tuple (i1, i2, . . . , iN−1) ∈ {0, 1, . . . ,m}N−1 is even if and only
if the sum i1 + i2 + · · · + iN−1 is even. Let us introduce the natural counterpart to this
notion: An (N − 1)-tuple (i1, i2, . . . , iN−1) ∈ {0, 1, . . . ,m}N−1 is said to be odd if the sum
i1 + i2 + · · ·+ iN−1 is odd.

Thus, each (N − 1)-tuple is either even or odd, but not both at the same time. Hence,

(the number of all (N − 1)-tuples)
= (the number of all even (N − 1)-tuples)︸ ︷︷ ︸

=eN−1

(by the definition of eN−1)

+(the number of all odd (N − 1)-tuples)

= eN−1 + (the number of all odd (N − 1)-tuples) .

Thus,

(the number of all odd (N − 1)-tuples) = (the number of all (N − 1)-tuples)︸ ︷︷ ︸
=(m+1)N−1

−eN−1

= (m+ 1)N−1 − eN−1.

Now, we want to count the even N -tuples (i1, i2, . . . , iN). Each N -tuple (i1, i2, . . . , iN)
has a well-defined last entry iN (since N > 0). Now, for each j ∈ {0, 1, . . . ,m}, we can
count the even N -tuples whose last entry is j:

• Let j ∈ {0, 1, . . . ,m} be even. Then, for any (N − 1)-tuple (i1, i2, . . . , iN−1), we have
the following chain of logical equivalences:

(the (N − 1)-tuple (i1, i2, . . . , iN−1) is even)
⇐⇒ (i1 + i2 + · · ·+ iN−1 is even)

(
by the definition of “even” for tuples

)
⇐⇒ (i1 + i2 + · · ·+ iN−1 + j is even)

(
since j is even

)
⇐⇒ (the N -tuple (i1, i2, . . . , iN−1, j) is even)(

by the definition of “even” for tuples
)
.

Hence, there is a bijection

{even (N − 1)-tuples} → {even N -tuples (i1, i2, . . . , iN) with iN = j} ,
(i1, i2, . . . , iN−1) 7→ (i1, i2, . . . , iN−1, j) .

Darij Grinberg 19 darij.grinberg@drexel.edu



Solutions to homework set #1 page 20 of 23

14 Hence,

|{even (N − 1)-tuples}| = |{even N -tuples (i1, i2, . . . , iN) with iN = j}| .

In other words,

(the number of all even (N − 1)-tuples)
= (the number of all even N -tuples (i1, i2, . . . , iN) with iN = j) .

Hence,

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = j)

= (the number of all even (N − 1)-tuples)
= eN−1. (37)

Forget that we fixed j. We thus have proven (37) for each even j ∈ {0, 1, . . . ,m}.

• Let j ∈ {0, 1, . . . ,m} be odd. Then, for any (N − 1)-tuple (i1, i2, . . . , iN−1), we have
the following chain of logical equivalences:

(the (N − 1)-tuple (i1, i2, . . . , iN−1) is odd)
⇐⇒ (i1 + i2 + · · ·+ iN−1 is odd)

(
by the definition of “odd” for tuples

)
⇐⇒ (i1 + i2 + · · ·+ iN−1 + j is even)

(
since j is odd

)
⇐⇒ (the N -tuple (i1, i2, . . . , iN−1, j) is even)(

by the definition of “even” for tuples
)
.

Hence, there is a bijection

{odd (N − 1)-tuples} → {even N -tuples (i1, i2, . . . , iN) with iN = j} ,
(i1, i2, . . . , iN−1) 7→ (i1, i2, . . . , iN−1, j) .

15 Hence,

|{odd (N − 1)-tuples}| = |{even N -tuples (i1, i2, . . . , iN) with iN = j}| .

In other words,

(the number of all odd (N − 1)-tuples)
= (the number of all even N -tuples (i1, i2, . . . , iN) with iN = j) .

Hence,

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = j)

= (the number of all odd (N − 1)-tuples)

= (m+ 1)N−1 − eN−1. (38)

Forget that we fixed j. We thus have proven (38) for each odd j ∈ {0, 1, . . . ,m}.

14We leave it to the reader to verify that this map is well-defined and is actually a bijection.
15We leave it to the reader to verify that this map is well-defined and is actually a bijection.
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But eN is the number of all even N -tuples. Thus,

eN = (the number of all even N -tuples (i1, i2, . . . , iN))

=
∑

j∈{0,1,...,m}

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = j)(
because for each even N -tuple (i1, i2, . . . , iN), there
exists a unique j ∈ {0, 1, . . . ,m} satisfying iN = j

)
=

∑
j∈{0,1,...,m};

j is odd

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = j)︸ ︷︷ ︸
=(m+1)N−1−eN−1

(by (38))

+
∑

j∈{0,1,...,m};
j is even

(the number of all even N -tuples (i1, i2, . . . , iN) with iN = j)︸ ︷︷ ︸
=eN−1

(by (37))(
since each j ∈ {0, 1, . . . ,m} is either odd or even (but not both)

)
=

∑
j∈{0,1,...,m};

j is odd

(
(m+ 1)N−1 − eN−1

)
︸ ︷︷ ︸

=(the number of all odd j ∈ {0, 1, . . . ,m})·((m+1)N−1−eN−1)

+
∑

j∈{0,1,...,m};
j is even

eN−1

︸ ︷︷ ︸
=(the number of all even j ∈ {0, 1, . . . ,m})·eN−1

= (the number of all odd j ∈ {0, 1, . . . ,m}) ·
(
(m+ 1)N−1 − eN−1

)
+ (the number of all even j ∈ {0, 1, . . . ,m}) · eN−1. (39)

Now, it is time to recall that m is even. Hence, there are exactly m/2 + 1 many even
elements j ∈ {0, 1, . . . ,m} (namely, 0, 2, 4, . . . ,m). In other words,

(the number of all even j ∈ {0, 1, . . . ,m}) = m/2 + 1.

Likewise,
(the number of all odd j ∈ {0, 1, . . . ,m}) = m/2

(since there are exactlym/2 many odd elements j ∈ {0, 1, . . . ,m}, namely 1, 3, 5, . . . ,m−1).
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Hence, (39) becomes

eN = (the number of all odd j ∈ {0, 1, . . . ,m})︸ ︷︷ ︸
=m/2

·
(
(m+ 1)N−1 − eN−1

)
+ (the number of all even j ∈ {0, 1, . . . ,m})︸ ︷︷ ︸

=m/2+1

·eN−1

= (m/2) ·
(
(m+ 1)N−1 − eN−1

)
+ (m/2 + 1) · eN−1︸ ︷︷ ︸

=(m/2)·eN−1+eN−1

= (m/2) ·
(
(m+ 1)N−1 − eN−1

)
+ (m/2) · eN−1︸ ︷︷ ︸

=(m/2)·(m+1)N−1

+ eN−1︸︷︷︸
=
(m+ 1)N−1 + 1

2
(by (36))

= (m/2) · (m+ 1)N−1 +
(m+ 1)N−1 + 1

2
=

(
m/2 +

1

2

)
︸ ︷︷ ︸

=
1

2
(m+1)

(m+ 1)N−1 +
1

2

=
1

2
(m+ 1) (m+ 1)N−1︸ ︷︷ ︸

=(m+1)N

+
1

2
=

1

2
(m+ 1)N +

1

2
=

(m+ 1)N + 1

2
.

In other words, (35) holds for n = N . This completes the induction step. Hence, (35) is
proven.]

(a) Assume that m is odd. We claim that

en =
(m+ 1)n

2
for each positive integer n. (40)

(This does not hold for n = 0, but of course we have e0 = 1 for obvious reasons.)
[Proof of (40): Fix a positive integer N . Then, the equality (39) holds, and can be

proven exactly as in our above proof of (35) (since we did not use the evenness of m in its
proof).

But m is odd. Hence, there are exactly (m+ 1) /2 even elements j ∈ {0, 1, . . . ,m}
(namely, 0, 2, 4, . . . ,m− 1). In other words,

(the number of all even j ∈ {0, 1, . . . ,m}) = (m+ 1) /2.

Likewise,
(the number of all odd j ∈ {0, 1, . . . ,m}) = (m+ 1) /2.

Hence, (39) becomes

eN = (the number of all odd j ∈ {0, 1, . . . ,m})︸ ︷︷ ︸
=(m+1)/2

·
(
(m+ 1)N−1 − eN−1

)
+ (the number of all even j ∈ {0, 1, . . . ,m})︸ ︷︷ ︸

=(m+1)/2

·eN−1

= ((m+ 1) /2) ·
(
(m+ 1)N−1 − eN−1

)
+ ((m+ 1) /2) · eN−1

= ((m+ 1) /2) · (m+ 1)N−1 =
1

2
(m+ 1) (m+ 1)N−1︸ ︷︷ ︸

=(m+1)N

=
1

2
(m+ 1)N =

(m+ 1)N

2
.
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Forget that we fixed N . Thus we have shown that eN =
(m+ 1)N

2
for each positive

integer N . Renaming N as n in this statement, we conclude that en =
(m+ 1)n

2
for each

positive integer n. Hence, (40) is proven.]
Note that we did not have to use induction on n in the proof of (40), since the eN−1

on the right hand side of (39) disappeared after cancellations (and thus we did not have to
know its value).

6.3 Remark

Part (a) can be solved in other ways, too (namely, similarly to the solutions of [19f-hw0s,
Exercise 3] and [18f-hw1s, Exercise 1]); but these ways don’t extend to part (b).
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