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Recall the following:

• If n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

0.1. Ordering acyclic digraphs

See Spring 2017 Math 5707 Homework set #2 (or our class notes from April 23)
for the definition of a “multidigraph”. We will refer to multidigraphs simply as
digraphs. Thus, any digraph D is a triple (V, A, ϕ), where V and A are finite sets,
and where ϕ is a map A→ V ×V.

Definition 0.1. A digraph is said to be acyclic if it has no cycles.

For example, the digraph
1 α //

β
��

2
γ
��

3
λ
((

µ
66 4

(1)

is acyclic, whereas the digraph
1 α // 2

γ
��

3

β

OO

λ
(( 4

µ
hh

is not acyclic (both (1, α, 2, γ, 4, µ, 3, β, 1) and (3, λ, 4, µ, 3) are cycles of this latter
digraph).

[Acyclic digraphs are often called “dags”, apparently because the proper abbre-
viation “adgs” would be harder to pronounce.]

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018apr23.pdf
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Exercise 1. Let D = (V, A, ϕ) be an acyclic digraph. Prove that there is a list
(v1, v2, . . . , vn) of elements of V such that

• each element of V appears exactly once in this list (v1, v2, . . . , vn);

• whenever i and j are two elements of [n] such that some arc of D has source
vi and target vj, we must have i < j.

(In other words, prove that there is a list consisting of all vertices of V, which
contains each of them exactly once, and with the property that the source of any
arc must appear before the target of this arc in the list. For example, if D is the
digraph (1), then there are two such lists: (1, 2, 3, 4) and (1, 3, 2, 4).)

Exercise 1 is a fundamental result of far-reaching use. In the situation of Exercise
1, a list (v1, v2, . . . , vn) of elements of V satisfying the two required conditions is
called a topological ordering or topological sorting of D. Any Linux distribution comes
with a built-in utility for computing a topological sorting of a digraph, tsort. For
example, if I want to compute a topological sorting of the digraph

4 ((
66

��

3

��

// 5

6

HH

1 // 2

OO (2)

(whose arcs I have not labeled because the names of the arcs don’t matter), I just
create a text file (say, arcs.txt) that lists its arcs (each arc on a separate line, in the
format “source target”):

4 3
4 3
3 5
4 6
6 3
3 1
1 2
2 5

and then run “tsort arcs.txt”, which yields the following output:

$ tsort arcs.txt
4
6
3
1
2
5

https://en.wikipedia.org/wiki/Topological_sorting
https://en.wikipedia.org/wiki/Tsort
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This is telling me that (4, 6, 3, 1, 2, 5) is a topological ordering of the digraph (2).
And indeed, it is.

Why would Linux provide such a utility? The specific reasons seem to be his-
torical, but the algorithm itself is highly useful. For example, you want to install
a piece of software through a package manager (e.g., apt-get install), but that
software depends on some other software that is not installed, and that latter soft-
ware in turn depends on some further software... These dependencies are known
(each program declares a list of other programs it depends on, or at least its direct
dependencies), so the package manager learns a hopefully acyclic digraph whose
vertices are software packages and whose arcs stand for dependencies (i.e., an arc
with source s and target t means that program s needs to be installed before t).
Now the package manager needs to know in what order the packages may be
installed. That order has to be a topological sorting of the digraph.

I shall outline one of many possible solutions for Exercise 1:

Solution to Exercise 1 (sketched). For each vertex v of D, we let Anc (v) be the set of
all w ∈ V such that there exists a path from w to v in D. The elements of Anc (v)
are called the ancestors of v (whence the notation Anc).

Now, let (v1, v2, . . . , vn) be a list of all vertices of D in the order of increasing
|Anc (v)|, where ties are resolved arbitrarily. In other words, let (v1, v2, . . . , vn)
be a list of all vertices of D (with each vertex appearing exactly once in this list)
satisfying

|Anc (v1)| ≤ |Anc (v2)| ≤ · · · ≤ |Anc (vn)| . (3)

(Such a list clearly exists.)
The digraph D is acyclic, and thus has no cycles.
Now, we claim the following:

Claim 1: Each element of V appears exactly once in this list (v1, v2, . . . , vn).

Claim 2: Whenever i and j are two elements of [n] such that some arc of
D has source vi and target vj, we must have i < j.

Once these two claims are proven, the exercise will clearly follow, since the very
assertion of the exercise was the existence of a list (v1, v2, . . . , vn) of elements of V
satisfying Claim 1 and Claim 2. So it remains to prove Claim 1 and Claim 2.

[Proof of Claim 1: Claim 1 is obvious from the construction of the list (v1, v2, . . . , vn).]
[Proof of Claim 2: Let i and j be two elements of [n] such that some arc of D has

source vi and target vj. We must prove that i < j.
Assume the contrary. Thus, i ≥ j, so that j ≤ i. Hence, from (3), we obtain∣∣Anc
(
vj
)∣∣ ≤ |Anc (vi)|.

We know that some arc of D has source vi and target vj. Consider such an arc,
and denote it by a.
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But Anc (vi) ⊆ Anc
(
vj
) 1. However, vj ∈ Anc

(
vj
) 2 and therefore Anc (vi) 6=

Anc
(
vj
) 3. Combining this with Anc (vi) ⊆ Anc

(
vj
)
, we conclude that Anc (vi)

is a proper subset of Anc
(
vj
)
. Hence, |Anc (vi)| <

∣∣Anc
(
vj
)∣∣. This contradicts∣∣Anc

(
vj
)∣∣ ≤ |Anc (vi)|. This contradiction shows that our assumption was false.

Thus, we have i < j. This proves Claim 2.]
Having proven both Claim 1 and Claim 2, we are done solving Exercise 1 (as

explained above).

0.2. Watersheds in digraphs

A simple digraph means a pair (V, A), where V is a finite set, and where A is a
subset of V × V. We identify every simple digraph (V, A) with the multidigraph
(V, A, ι), where ι is the map sending each (u, v) ∈ A to (u, v) ∈ V × V. Thus,
simple digraphs are the same as multidigraphs whose arcs are already pairs of
vertices, the first entry being the source and the second entry being the target. (So
the relation between simple digraphs and multidigraphs is the same as the relation
between simple graphs and multigraphs.)

1Proof. Let t ∈ Anc (vi). Thus, t is an element of V such that there exists a path from t to vi in D
(by the definition of Anc (vi)). Consider this path; denote it by p. Extend this path p further by
the arc a and the vertex vj; it then becomes a walk from t to vj. Hence, there exists a walk from
t to vj. Thus, there exists a path from t to vj as well (since we can turn any walk into a path by
removing redundant parts). Hence, t is an element of V such that there exists a path from t to
vj in D. In other words, t ∈ Anc

(
vj
)

(by the definition of Anc
(
vj
)
).

Now, forget that we fixed t. We thus have proven that t ∈ Anc
(
vj
)

for each t ∈ Anc (vi). In
other words, Anc (vi) ⊆ Anc

(
vj
)
.

2Proof. There exists a path from vj to vj in D (namely, the trivial path
(
vj
)
). Hence, vj is an element

w of V such that there exists a path from w to vj in D. In other words, vj ∈ Anc
(
vj
)

(by the
definition of Anc

(
vj
)
).

3Proof. Assume the contrary. Thus, Anc (vi) = Anc
(
vj
)
. Hence, vj ∈ Anc

(
vj
)
= Anc (vi). In other

words, vj is an element w of V such that there exists a path from w to vi in D (by the definition
of Anc (vi)). In other words, vj is an element of V, and there exists a path from vj to vi in D.
Consider this path. Extend this path by the arc a and the vertex vj. The result will be a cycle
from vj to vj. Thus, the digraph D has a cycle. This contradicts the fact that the digraph D has
no cycles. This contradiction shows that our assumption was false, qed.
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Example 0.2. Consider the following simple digraph:

1

�� ��

2

��

��

4

��

��

3

�� ��

6

��

5

7

. (4)

Imagine a game chip placed initially at the vertex 1. The chip is allowed to move
along the arcs of the digraph (from source to target). For example, the chip can
first move along the arc (1, 2) to 2, then along the arc (2, 3) to 3, then along the
arc (3, 5) to 5. Once it arrives at 5, it can no longer move, because there are no
arcs with source 5. We say that 5 is a sink for this reason (see Exercise 2 below
for the precise definition).

Alternatively, the chip could have moved along the arc (1, 2) to 2, then along
the arc (2, 6) to 6, then along the arc (6, 7) to 7. At this point it would again be
stuck, since 7 is a sink.

Thus, the chip can get stuck in two different sinks, depending on the path it
takes. (It will always get stuck in some sink, because our digraph has no cycles.)

Now, consider the following simple digraph:

7

��

6

��

��

5

��

��

8

��

10

��

3

����

9

2

��

4

��

1

. (5)

This time, any chip starting at any given vertex will necessarily get stuck at the
same sink no matter what path it takes (either the sink 1, if it started at one of
the vertices 1, 2, 3, 4, 5, 6, 7; or the sink 9, if it started at one of the vertices 8, 9, 10).
How can we show this without checking all possible paths?

One criterion, which is clearly necessary, is that there are no “watershed ver-
tices”: i.e., there is no vertex u from which the chip can take two different arcs
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(u, v) and (u, w) such that v and w “never meet again” (i.e., there exists no vertex
reachable both from v and from w). For example, the digraph (4) has a “water-
shed vertex” (namely, 3, because the arcs (3, 5) and (3, 6) lead to the vertices 5
and 6 which “never meet again”).

The next exercise claims that this condition is also sufficient (as long as our
digraph is acyclic). That is, if there are no “watershed vertices” and no cycles,
then the sink at which a chip gets stuck is uniquely determined by the vertex it
started at (rather than by the path it took).

Exercise 2. Let D be an acyclic multidigraph. A vertex v of D is said to be a sink
if there is no arc of D with source v.

If u and v are any two vertices of D, then:

• we write u −→ v if and only if D has an arc with source u and target v;

• we write u ∗−→ v if and only if D has a path from u to v.

The so-called no-watershed condition says that for any three vertices u, v and w
of D satisfying u −→ v and u −→ w, there exists a vertex t of D such that v ∗−→ t
and w ∗−→ t.

Assume that the no-watershed condition holds. Prove that for each vertex p of
D, there exists exactly one sink q of D such that p ∗−→ q.

[Hint: Induction on the “height” of p (that is, the length of a longest path
starting at p).]

Exercise 2 is a well-known result rewritten in the language of digraphs. The
result is known as Newman’s diamond lemma, or, more precisely, its variant where
the well-foundedness condition is replaced by finiteness and acyclicity. Note that
the “no-watershed condition” is commonly called the diamond condition or local con-
fluence. My talk [Grinbe17a] gives an introduction into the subject, including an
outline of a solution to Exercise 2. Other references are collected in the MathOver-
flow post #289300 [MO289300]. Most authors working in this subject don’t use
the concept of multidigraphs, but instead speak of “abstract rewriting systems”;
the vertices of D are then called the “objects”, the relation −→ is called the “re-
duction relation”, and the sinks of D are called the “normal forms”. The claim of
Exercise 2 (and its more general version, in which D may have infinitely many ver-
tices and arcs, but we requires the extra condition that there exist no infinite paths
v0 −→ v1 −→ v2 −→ · · · ) is used, e.g., in the theory of Gröbner bases and in the
abstract study of computation (e.g., the Church-Rosser property for λ-calculus).

0.3. Arborescences of a wheel
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Definition 0.3. Let D be a digraph, and let u be a vertex of D.
(a) Then, D is called a u-arborescence if and only if for each vertex v of D, there

is a unique walk from u to v in D.
(b) Assume that D is a multidigraph (V, A, φ). A u-arborescence of D means a

subset B of A such that the multidigraph (V, B, φ |B) is a u-arborescence.

I believe that what I just called a “u-arborescence” is the same as what Vic called
“arborescence with root u”, except that maybe the arcs are pointing in the opposite
direction. My notion of a “u-arborescence” is equivalent to what is called a “di-
rected tree with root u” in [Sahi13], but the equivalence is not entirely obvious to
prove.

For an example, the simple digraph

1 //

��

2

3 //

��

5

��

4 6

is a 1-arborescence. Thus, the set

{(1, 2) , (1, 3) , (3, 4) , (3, 5) , (5, 6)}

is a 1-arborescence of the simple digraph

1 //

��

2

��

3 //

��

5

��

4 // 6

.

Lemma 0.4. Let D be a digraph. Let u be a vertex of D. Let B be a u-arborescence
of D.

(a) No arc in B has target u.
(b) Let v be a vertex of D distinct from u. Then, exactly one arc in B has target

v.

Proof of Lemma 0.4 (sketched). Write the digraph D in the form D = (V, A, φ). The
multidigraph (V, B, φ |B) is a u-arborescence (since B is a u-arborescence of D).
In other words, for each vertex v ∈ V, there is a unique walk from u to v in
(V, B, φ |B). Let us denote this walk by wv. Of course, wv is a walk in the digraph
D as well (since B ⊆ A).

(a) Assume the contrary. Thus, some arc b ∈ B has target u. Consider this b. Let
v be the source of this arc b. We can extend the walk wv (which is a walk from
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u to v in (V, B, φ |B)) by the arc b (which is an arc from v to u in (V, B, φ |B)) and
the vertex u. The result is a walk from u to u in (V, B, φ |B) having nonzero length.
But there also exists a walk from u to u in (V, B, φ |B) having zero length (namely,
the walk (u)). Thus, we have found two different walks from u to u in (V, B, φ |B).
This contradicts the fact that there is a unique walk from u to u in (V, B, φ |B),
namely wu (because this is how wu was defined). This contradiction shows that
our assumption was false. Thus, Lemma 0.4 (a) is proven.

(b) Recall that wv is a walk from u to v in (V, B, φ |B). This walk wv has at least
one arc (since v is distinct from u), and thus has a last arc. Let b be this last arc.
Thus, b is an arc in B that has target v. Hence, at least one arc in B has target v.
But we must prove that exactly one arc in B has target v. Thus, it remains to prove
that b is the only arc in B that has target v.

Indeed, let c be any arc in B that has target v. We must prove that c = b.
Let w be the source of the arc c. Then, ww is a walk from u to w in (V, B, φ |B)

(by the definition of ww). We can extend this walk ww (which is a walk from u to
w in (V, B, φ |B)) by the arc c (which is an arc from w to v in (V, B, φ |B)) and the
vertex v. The result is a walk from u to v in (V, B, φ |B) whose last arc is c. This
walk must therefore be wv (because wv was defined to be the unique walk from u
to v in (V, B, φ |B)). Hence, c (being the last arc of this walk) must be the last arc of
the walk wv. But we already know that b is the last arc of the walk wv (since this
is how b was defined). Hence, c = b.

Now, forget that we fixed c. We thus have shown that if c is any arc in B that has
target v, then c = b. Thus, b is the only arc in B that has target v. As explained,
this concludes the proof of Lemma 0.4 (b).

Lemma 0.5. Let D = (V, A, φ) be a multidigraph. Let u be a vertex of D. Let B
be a u-arborescence of D. Then, the multidigraph (V, B, φ |B) has no cycles.

Proof of Lemma 0.5 (sketched). Let c be a cycle of the multidigraph (V, B, φ |B). We
must derive a contradiction.

Let v be the starting point of c. The multidigraph (V, B, φ |B) is a u-arborescence
(since B is a u-arborescence of D). Hence, there is a unique walk from u to v in
(V, B, φ |B) (by the definition of a u-arborescence). Let us denote this walk by w.
Now, concatenating this walk w with the cycle c, we obtain a new walk from u to
v in (V, B, φ |B). This new walk must be w (because w is the unique walk from u
to v in (V, B, φ |B)). But this contradicts the fact that this new walk is longer than
w (since it was obtained by concatenating w with the cycle c).

Forget that we fixed c. We thus have obtained a contradiction for each cycle c
of the multidigraph (V, B, φ |B). Thus, the multidigraph (V, B, φ |B) has no cycles.
This proves Lemma 0.5.

Notice that Lemma 0.4 has something like a converse, which we can use to char-
acterize u-arborescences:
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Lemma 0.6. Let D = (V, A, φ) be a multidigraph. Let B be a subset of A. Let u
be a vertex of D. Assume the following:

• No arc in B has target u.

• For each vertex v of D distinct from u, there is exactly one arc in B that has
target v.

• For each vertex v of D distinct from u, there is at least one walk from u to
v in (V, B, φ |B).

Then, B is a u-arborescence of D.

We leave the proof of this lemma to the reader.
Two much less trivial properties of arborescences are the following:

Theorem 0.7. Let D = (V, A, φ) be a multidigraph. For any two vertices i and j
of D, we let ai,j be the number of arcs of D having source i and target j. For any
vertex i of D, we let wi be the number of i-arborescences of D. Then, each vertex
i of D satisfies

∑
j∈V

ai,jwj =

(
∑

k∈V
ak,i

)
wi.

Theorem 0.7 is essentially [Sahi13, Theorem 1] (restated without using matrices,
and with weighted arcs instead of parallel arcs: e.g., instead of having 4 arcs with
source i and target j, [Sahi13, Theorem 1] would speak of an arc of weight 4 from i
to j). Here is the main idea of its proof:

Hint to the proof of Theorem 0.7. For any two vertices i and j of D, we let Ai,j be
the set of all arcs of D having source i and target j. Note that this set satisfies∣∣Ai,j

∣∣ = ai,j.
For any vertex i of D, we let Wi be the set of all i-arborescences of D. This set Wi

satisfies |Wi| = wi.
Now, let i be a vertex of D. A subset B of A is said to be univalent if for each

v ∈ V, there is exactly one arc in B whose target is v. A subset B of A is said to be
an i-unicycle if it has the following properties:

• The subset B is univalent.

• Each cycle of the digraph (V, B, φ |B) contains the vertex i.

• The digraph (V, B, φ |B) has exactly one cycle from i to i.

(Note that these properties imply that the digraph (V, B, φ |B) has only one cycle,
up to cyclic rotation. Therefore the name “i-unicycle”.)

If B is an i-unicycle, then
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• the unique cycle from i to i of the digraph (V, B, φ |B) will be denoted by
z (B);

• the first arc of this cycle will be denoted by f (B);

• the last arc of this cycle will be denoted by ` (B);

• the target of f (B) will be denoted by j (B);

• the source of ` (B) will be denoted by k (B).

The following facts are important and easy to check:

Claim 1: Let v be a vertex of D. Let β be an arc of D with target v such
that i is either the source or the target of v. Let C be a v-arborescence of
D. Then, C ∪ {β} is a i-unicycle.

Claim 2: Let B be an i-unicycle. Let β be an arc of the cycle z (B), and let
v be the target of β. Then, B \ {β} is a v-arborescence of D.

Now, we can prove that the map

{i-unicycles} →
⋃
j∈V

(
Ai,j ×Wj

)
,

B 7→ ( f (B) , B \ { f (B)})

is well-defined (i.e., most importantly, if B is an i-unicycle, then B \ { f (B)} is a
j (B)-arborescence of D (by Claim 2)) and bijective (indeed, its inverse map sends a
pair (β, C) ∈ Ai,j×Wj for any j ∈ V to the i-unicycle C∪{β} (which is well-defined
by Claim 1)). Thus, it is a bijection from {i-unicycles} to

⋃
j∈V

(
Ai,j ×Wj

)
. Hence,

|{i-unicycles}| =

∣∣∣∣∣∣⋃j∈V

(
Ai,j ×Wj

)∣∣∣∣∣∣ = ∑
j∈V

∣∣Ai,j
∣∣︸ ︷︷ ︸

=ai,j

·
∣∣Wj
∣∣︸︷︷︸

=wj since the sets Ai,j ×Wj for different j ∈ V
are disjoint (because the sets Ai,j for different j ∈ V

are disjoint)


= ∑

j∈V
ai,jwj. (6)

On the other hand, we can prove that the map

{i-unicycles} →
(⋃

k∈V

Ak,i

)
×Wi,

B 7→ (` (B) , B \ {` (B)})
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is well-defined (i.e., most importantly, if B is an i-unicycle, then B \ {` (B)} is an
i-arborescence of D (by Claim 2)) and bijective (indeed, its inverse map sends a pair
(β, C) ∈ Ak,i ×Wi for any k ∈ V to the i-unicycle C ∪ {β} (which is well-defined by

Claim 1)). Thus, it is a bijection from {i-unicycles} to
( ⋃

k∈V
Ak,i

)
×Wi. Hence,

|{i-unicycles}| =
∣∣∣∣∣
(⋃

k∈V

Ak,i

)
×Wi

∣∣∣∣∣ =
∑

k∈V
|Ak,i|︸ ︷︷ ︸
=ak,i

 · |Wi|︸︷︷︸
=wi(

since the sets Ak,i for different k ∈ V
are disjoint

)
=

(
∑

k∈V
ak,i

)
wi.

Comparing this with (6), we obtain ∑
j∈V

ai,jwj =

(
∑

k∈V
ak,i

)
wi. This proves Theorem

0.7.

Definition 0.8. Let D = (V, A, φ) be a multidigraph. Let v be a vertex of D.
(a) The indegree indeg v of v denotes the number of arcs a ∈ A having target v.
(b) The outdegree outdeg v of v denotes the number of arcs a ∈ A having source

v.

Theorem 0.9. Let D be a multidigraph. For any vertex i of D, we let wi be
the number of i-arborescences of D. Assume that each vertex v of D satisfies
indeg v = outdeg v. Then, wi = wj for any two vertices i and j of D.

Theorem 0.9 appears in various sources (e.g., [Berge91, Chapter 11, §3, Corollary
1]), and can be derived from the BEST theorem (see, e.g., [Klings11, Theorem 2]4 or
[Bollob98, §I.3, Theorem 13]5 or [JacGou79, Corollary 4.1]). The main idea is that
if D is a multidigraph with the property that each vertex of D satisfies indeg v =

4Klingsberg’s [Klings11, §2] gives a self-contained proof of the BEST theorem. If you want to read
it, keep in mind that the condition that D be “connected” (I am not sure whether he means
“strongly connected” or “weakly connected” by this word) is never used in the proof and thus
can (and should) be removed from the statement of [Klings11, Theorem 2]. Also, keep in mind
that he works with “trees flowing into” a vertex u; this is almost the same as u-arborescences,
but instead of requiring a unique walk from u to any vertex v, he requires a unique walk from
any vertex v to u. Thus, of course, the concept of a tree flowing into u becomes the concept of a
u-arborescence once you reverse each arc of your digraph (i.e., swap the source with the target).
Also, Klingsberg defines a circuit to be an equivalence class of circuits up to cyclic rotation.

5When reading Bollobás’s [Bollob98, §I.3], keep in mind that he works with “spanning trees ori-
ented towards” a vertex u; this is almost the same as u-arborescences, but instead of requiring a
unique walk from u to any vertex v, he requires a unique walk from any vertex v to u. This is
exactly what Klingsberg calls a “tree flowing into” u. Also, Bollobás counts cyclic rotations of a
circuit as identical.



Math 4707 Spring 2018 (Darij Grinberg): midterm 3 page 12

outdeg v, then the BEST theorem shows that the total number of Eulerian circuits
of D (counted up to cyclic rotation) equals

wi · ∏
v∈V

(outdeg v− 1)!

for any given i ∈ V. Since this number clearly doesn’t depend on i, we thus
conclude that any two vertices i and j of such a multidigraph D satisfy

wi · ∏
v∈V

(outdeg v− 1)! = wj · ∏
v∈V

(outdeg v− 1)!,

and therefore wi = wj, which proves Theorem 0.9.
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Exercise 3. Let m be a positive integer. Let Wm be the simple digraph with m + 1
vertices 0, 1, . . . , m and the following 3m arcs:

(1, 2) , (2, 3) , . . . , (m− 1, m) , (m, 1) ;
(0, i) for each i ∈ [m] ;
(i, 0) for each i ∈ [m] .

(Visually speaking, Wm consists of a cycle that traverses m vertices 1, 2, . . . , m, as
well as a “center vertex” 0 which is joined to each of these m vertices by one edge
in each direction. For example, here is how W6 looks like:

2 //

��

3

��
xx1

@@

++ 0

VV 88

++

��
xx

kk 4

��

kk

6

^^ 88

5oo

VV

.

And here is a 0-arborescence of W6:

2 // 3

1

@@

0 ++

xx

kk 4

��

6 5

, (7)

where of course we draw a 0-arborescence B by drawing the digraph (V, B) with
V being the vertex set of Wm.)

(a) Compute the number of 0-arborescences of Wm.
(b) Let i ∈ [m]. Compute the number of i-arborescences of Wm.
[For example, if m = 3, then both answers are 7, and the 0-arborescenses of

W3 are

{(0, 1) , (0, 2) , (0, 3)} , {(0, 1) , (0, 2) , (2, 3)} ,
{(0, 1) , (0, 3) , (1, 2)} , {(0, 1) , (1, 2) , (2, 3)} ,
{(0, 2) , (0, 3) , (3, 1)} , {(0, 2) , (2, 3) , (3, 1)} ,
{(0, 3) , (1, 2) , (3, 1)} .

]

Solution to Exercise 3 (sketched). Let V be the set of all vertices of Wm. We classify
the 3m arcs of Wm into the following three classes:

• The arcs (1, 2) , (2, 3) , . . . , (m− 1, m) , (m, 1) of Wm will be called the circle-
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arcs. Note that there are m of these arcs. Note also that for any two vertices
i, j ∈ [m], there is exactly one path from i to j that uses only circle-arcs. This
path will be denoted by Pi,j.

• The arcs (0, 1) , (0, 2) , . . . , (0, m) of Wm will be called the centrifugal arcs.

• The arcs (1, 0) , (2, 0) , . . . , (m, 0) of Wm will be called the centripetal arcs.

Also, if i ∈ [m], then i− shall denote the source of the unique circle-arc whose
target is i. Thus, i− = i− 1 when i > 1, whereas 1− = m.

Also, if i ∈ [m], then i+ shall denote the source of the unique circle-arc whose
source is i. Thus, i+ = i + 1 when i < m, whereas m+ = 1.

In the following, if u is a vertex of Wm, then “u-arborescence” will always mean
“u-arborescence of Wm”.

(a) This number is 2m − 1.
Proof. If S is any nonempty subset of [m], then the S-spider shall mean the subset

of A consisting of the following arcs:

• the k centrifugal arcs (0, i) for all i ∈ S;

• the m− k circle-arcs (i−, i) for all i /∈ S.

For example, here is how the {1, 2, 4}-spider in W6 looks like:

2 // 3

1 0

VV

++
kk 4

��

6 5oo

.

Also, the 0-arborescence of W6 shown in (7) is actually the {1, 4, 6}-spider.
It is easy to see that for every nonempty subset S of [m], the S-spider is a 0-

arborescence. Thus, we have found 2m − 1 many 0-arborescences (one for each
nonempty subset S of [m]), and they are all distinct (indeed, we can recover S from
the S-spider by looking at the centrifugal arcs appearing in the S-spider). Thus, the
number of 0-arborescences of Wm is at least 2m− 1. In order to complete this proof,
we only need to check that these are the only 0-arborescences. In other words,
we only need to check that each 0-arborescence is an S-spider for some nonempty
subset S of [m].

Let B be a 0-arborescence. We want to show that B is an S-spider for some
nonempty subset S of [m]. Indeed, let S be the set of all i ∈ [m] such that B
contains the centrifugal arc (0, i). Then, S is a nonempty subset of [m] (indeed, it
must be nonempty, since some centrifugal arc needs to be used in order to escape
0). Clearly, B cannot contain any centripetal arcs (by Lemma 0.4 (a), applied to
D = Wm and u = 0). Moreover, for each i ∈ S, the circle-arc (i−, i) is not contained
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in B (since that would cause B to contain two different arcs with target i, which
would contradict Lemma 0.4 (b)). Meanwhile, for each i ∈ [m] \ S, the circle-arc
(i−, i) is contained in B (by Lemma 0.4 (b) again, because the centrifugal arc (0, i)
is not in B). This shows that the arcs contained in B are precisely the arcs that are
contained in the S-spider. Hence, B is the S-spider. This proves what we wanted to
show. Thus, Exercise 3 (a) is solved.

(b) This number is 2m − 1 as well.
Proof. This can be shown similarly to how we proved part (a) above, but the

argument will be much messier due to the asymmetry of the situation. Instead,
here are two different proofs, using Theorem 0.7 and Theorem 0.9 instead.

First proof of the fact that the number of i-arborescences B of Wm is 2m − 1: For any
vertex u of D, we let wu be the number of u-arborescences of D. Then, Theorem 0.7
shows that

∑
j∈V

ai,jwj =

(
∑

k∈V
ak,i

)
wi. (8)

But the digraph Wm has a rotational symmetry: Specifically, there is a digraph
isomorphism from Wm to Wm that sends the vertices 0, 1, 2, . . . , m to 0, i, i+ 1, . . . , m, 1, 2, . . . , i−
1, respectively. (Visually speaking, it just rotates the circumference of the circle so
that vertex 1 falls onto vertex i.) Thus, wi = w1. Similarly, wj = w1 for each j ∈ [m].
In other words, w1 = w2 = · · · = wm. Now, (8) yields(

∑
k∈V

ak,i

)
wi = ∑

j∈V
ai,jwj

= ai,0︸︷︷︸
=1

w0︸︷︷︸
=2m−1

(by our answer to
part (a))

+ ai,i+︸︷︷︸
=1

wi+︸︷︷︸
=wi

(since w1=w2=···=wm)

+ ∑
j∈V;

j/∈{0,i+}

ai,j︸︷︷︸
=0

wj

= (2m − 1) + wi,

so that

(2m − 1) + wi =

(
∑

k∈V
ak,i

)
︸ ︷︷ ︸

=2

wi = 2wi.

Subtracting wi from this equality, we find 2m − 1 = wi, so that wi = 2m − 1, qed.
Second proof of the fact that the number of i-arborescences B of Wm is 2m − 1: Each

vertex v of Wm satisfies indeg v = outdeg v (namely, both indeg v and outdeg v

equal

{
m, if v = 0;
2, if v 6= 0

). For any vertex u of Wm, we let wu be the number of u-

arborescences of Wm. Then, Theorem 0.9 shows that wi = wj for every vertex j of
D. Applying this to j = 0, we obtain wi = w0 = 2m − 1 (because in part (a) of this
exercise, we have proven that the number of 0-arborescences of Wm is 2m− 1). Qed.
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0.4. Back to undirected graphs

In the following exercises, we will use the following definitions:

Definition 0.10. For each n ∈ N, we define the n-th path graph to be the simple
graph

({1, 2, . . . , n} , {{i, i + 1} | i ∈ {1, 2, . . . , n− 1}})
= ({1, 2, . . . , n} , {{1, 2} , {2, 3} , . . . , {n− 1, n}}) .

This graph is denoted by Pn. It has n vertices and n− 1 edges (unless n = 0, in
which case it has 0 edges). Here is a drawing of P4:

1 2 3 4 .

Definition 0.11. For each integer n > 1, we define the n-th cycle graph to be the
simple graph

({1, 2, . . . , n} , {{i, i + 1} | i ∈ {1, 2, . . . , n− 1}} ∪ {n, 1})
= ({1, 2, . . . , n} , {{1, 2} , {2, 3} , . . . , {n− 1, n} , {n, 1}}) .

This graph is denoted by Cn. It has n vertices and

{
n, if n ≥ 3;
1, if n = 2

edges. Here is

a drawing of C6:
1 2

6 3

5 4

.

0.5. Chromatic polynomials of complete bipartite graphs

For the definition and properties of the chromatic polynomial of a simple graph,
see Exercise 4 on Spring 2017 Math 5707 midterm #2. In a nutshell:

• If G = (V, E) is a simple graph, then the chromatic polynomial χG of G is a
polynomial in a single indeterminate x (with integer coefficients) defined by

χG = ∑
F⊆E

(−1)|F| xconn(V,F).

(Here, as usual, conn H denotes the number of connected components of any
graph H.)

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt2s.pdf
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We could easily extend this definition to multigraphs, but I don’t want to
carry the extra notation around.

• The main property of chromatic polynomials in the following: If G = (V, E)
is a graph, and if k ∈ N, then χG (k) is the number of all proper k-colorings6

of G. Note that this property uniquely determines χG, because any polyno-
mial in a single indeterminate x is uniquely determined by its values on all
nonnegative integers.

• For any n ∈ N, the complete graph Kn (that is, the simple graph with n ver-
tices 1, 2, . . . , n and all possible edges {i, j} with 1 ≤ i < j ≤ n) has chromatic
polynomial χKn = x (x− 1) · · · (x− n + 1).

• If T is a tree with n vertices, then χT = x (x− 1)n−1. Thus, in particular, for
any positive integer n, the path graph Pn (see Definition 0.10) has characteris-
tic polynomial χPn = x (x− 1)n−1 (since it is a tree with n vertices).

• If n > 1 is an integer, then the chromatic polynomial of the cycle graph Cn
(see Definition 0.11) is χCn = (x− 1)n + (−1)n (x− 1). (This is Exercise 2 (a)
on Spring 2017 Math 5707 midterm #3.)

Definition 0.12. Let n ∈ N and m ∈ N. The graph Kn,m is defined to be the
simple graph with n + m vertices

1, 2, . . . , n,−1,−2, . . . ,−m

and nm edges
{i,−j} for all i ∈ [n] and j ∈ [m] .

(Note that (Kn,m; {1, 2, . . . , n} , {−1,−2, . . . ,−m}) is a bipartite graph, called the
complete bipartite graph.)

For example, the graph K2,3 is

1 2

−1 −2 −3

.

Exercise 4. Let n ∈N and m ∈N.
(a) Prove that the chromatic polynomial of Kn,m is

χKn,m =
n

∑
i=0

sur (n, i)
(

x
i

)
(x− i)m .

6Recall that a k-coloring of G means a map f : V → {1, 2, . . . , k}. (The image f (v) of a vertex v ∈ V
under this map is called the color of v under this k-coloring f .) A k-coloring f of G is said to
be proper if each edge {u, v} of G satisfies f (u) 6= f (v). (In other words, a k-coloring f of G is
proper if and only if no two adjacent vertices share the same color.)

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt3s-ogden.pdf
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(Recall that sur (n, i) denotes the number of all surjections from [n] to [i].)
(b) Prove that

n

∑
i=0

sur (n, i)
(

x
i

)
(x− i)m =

m

∑
i=0

sur (m, i)
(

x
i

)
(x− i)n .

Remark 0.13. Applying Exercise 4 (b) to n = 0, we recover the identity

xm =
m

∑
i=0

sur (m, i)
(

x
i

)
,

which was Theorem 3.15 in the class of February 21.

0.6. Counting independent sets

Now let us return to independent sets of graphs.

Definition 0.14. Let G be a graph.
(a) An independent set of G means a set S of vertices of G such that no two

distinct elements of S are adjacent.
(b) We let ind G be the number of all independent sets of G.

There are no good formulas for ind G in general, but we can always try to com-
pute it when G is a particularly simple type of graph. For example, if G is the path
graph Pn for some n ∈N, then the independent sets of G are precisely the lacunar
subsets of [n], and thus ind G is the Fibonacci number fn+2 (by Proposition 1.22 in
the February 5 class). The independent sets of the cycle graph Cn are the lacunar
subsets of [n] which don’t contain 1 and n simultaneously (i.e., they can contain at
most one of 1 and n). The following definition will help counting them:

Definition 0.15. Let G be a graph. Let S be a set of vertices of G. Then, G \ S
will denote the graph obtained from G by removing all vertices in S (along with
all edges that use these vertices).

(More rigorously: If G is a simple graph (V, E), then G \ S is the simple graph
(V \ S, E′), where E′ is the set of all edges e ∈ E such that no endpoint of
e belongs to S. If G is a multigraph (V, E, ϕ), then G \ S is the multigraph
(V \ S, E′, ϕ |E′), where E′ is the set of all edges e ∈ E such that no endpoint of e
belongs to S.)

For example, if G is the graph

1 3 5

2 4 6

,

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb21.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb5.pdf
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then G \ {2, 3} is the graph
1 5

4 6

.

Exercise 5. (a) Let v be a vertex of a graph G. Let N (v) be the set of all neighbors
of v. Let N+ (v) = {v} ∪ N (v). Prove that

ind G = ind (G \ {v}) + ind
(
G \

(
N+ (v)

))
.

(b) Compute ind (Cn) for each n ≥ 2 (in terms of the Fibonacci sequence).

Remark 0.16. (a) It is instructive to see what Exercise 5 (a) says when G is a path
graph. Let n > 1 be an integer, and let G be the path graph Pn. Let v ∈ [n] (so
that v is a vertex of G). If v = n, then G \ {v} = Pn−1 and G \ (N+ (v)) = Pn−2
(since N+ (v) = {n, n− 1} in this case), so that Exercise 5 (a) yields

ind (Pn) = ind (Pn−1) + ind (Pn−2) .

This is precisely the recurrence equation of the Fibonacci numbers. Thus, we
obtain a new (inductive) proof of the fact that

ind (Pn) = fn+2 for each n ∈N. (9)

However, we can also apply Exercise 5 (a) to another vertex v. Let v ∈
{2, 3, . . . , n− 1}. Then, G \ {v} is a disconnected graph looking as follows:

1 2 · · · v− 1 v + 1 v + 2 · · · n .

We can treat this graph as a “disjoint union” of two path graphs, one of which
is Pv−1 while the other is Pn−v “in all but name” (its vertices are called v +
1, v + 2, . . . , n rather than 1, 2, . . . , n − v, but otherwise it is identical to Pn−v).
To construct an independent set of G \ {v}, we thus just need to choose an
independent set of the former path graph Pv−1 and an independent set of the
latter path grad Pn−v (with vertices renamed as v + 1, v + 2, . . . , n), and take the
union of these two independent sets. Hence,

ind (G \ {v}) = ind (Pv−1) · ind (Pn−v) .

A similar argument shows that the graph G \ (N+ (v)) has the form

1 2 · · · v− 2 v + 2 v + 3 · · · n

(again, a “disjoint union” of two path graphs, which this time are Pv−2 and
Pn−v−1), and thus

ind
(
G \

(
N+ (v)

))
= ind (Pv−2) · ind (Pn−v−1) .
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Hence, Exercise 5 (a) becomes

ind G = ind (G \ {v})︸ ︷︷ ︸
=ind(Pv−1)·ind(Pn−v)

+ ind
(
G \

(
N+ (v)

))︸ ︷︷ ︸
=ind(Pv−2)·ind(Pn−v−1)

= ind (Pv−1) · ind (Pn−v) + ind (Pv−2) · ind (Pn−v−1) .

Since G = Pn, this rewrites as

ind (Pn) = ind (Pv−1) · ind (Pn−v) + ind (Pv−2) · ind (Pn−v−1) .

Using the equality (9), we can rewrite this as

fn+2 = f(v−1)+2 · f(n−v)+2 + f(v−2)+2 · f(n−v−1)+2 = fv+1 fn−v+2 + fv fn−v+1.

Applying this to v = a and n = a + b− 1, we conclude that

fa+b+1 = fa+1 fb+1 + fa fb for all a ∈N and b ∈N.

(To be more precise, we have only proven this in the case when a > 1 and b > 1;
but all other cases are easy.) Thus, we have recovered the claim of Exercise 3 (e)
on midterm #1.

(b) We can similarly count independent sets of a given size. For Cn, we
find that the number of independent sets of Cn having size k (for a given

k ∈ {0, 1, . . . , n− 1}) is
n

n− k

(
n− k

k

)
. This can also be proven combinatorially;

see [Stan11, Lemma 2.3.4].
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