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1 Exercise 1

1.1 Problem

Let D = (V,A, ϕ) be an acyclic multidigraph. Prove that there is a list (v1, v2, . . . , vn) of
elements of V such that

• each element of V appears exactly once in this list (v1, v2, . . . , vn);

• whenever i and j are two elements of [n] such that some arc of D has source vi and
target vj, we must have i < j.

1.2 Solution

Definition 1.1. Let D = (V,A, ϕ) be a multidigraph. For a vertex v ∈ V , we define its
outdegree as

outdeg(v) = |{a ∈ A | source(a) = v}|

(where source(v) denotes the source of v).

Lemma 1.2. Let D = (V,A, ϕ) be an acyclic multidigraph. Then, any walk in D is a path.

Proof. Let w be any walk in D. We must show that w is a path.
Let u0, u1, . . . , uk be the vertices of the walk w, from first to last. We claim that

these vertices are distinct. Indeed, assume the contrary. Thus, there exist some elements
i and j of {0, 1, . . . , k} satisfying i < j and ui = uj. In other words, there exists some
j ∈ {0, 1, . . . , k} satisfying uj ∈ {u0, u1, . . . , uj−1}. Consider the smallest such j. Then,
there is an i < j satisfying uj = ui (since uj ∈ {u0, u1, . . . , uj−1}). Consider this i. The
vertices ui, ui+1, . . . , uj−1 are distinct (because of the minimality of j), but the vertex uj

equals ui. Hence, the part of the walk w between ui and uj is a cycle of D. Hence, D
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contains a cycle. But this contradicts the acyclicity of D. This contradiction shows that
our assumption was wrong. Thus, the vertices u0, u1, . . . , uk of the walk w are distinct. In
other words, this walk w is a path.

Lemma 1.3. Let D = (V,A, ϕ) be an acyclic multidigraph with V 6= ∅. Then, there exists
a vertex v ∈ V having outdeg(v) = 0.

Proof. Assume the contrary. Then, for each v ∈ V we have outdeg(v) 6= 0. Thus, a walk in
D can be constructed by starting at an arbitrary vertex u and taking an arc leaving it (such
an arc exists since outdeg(u) 6= 0). The target of this arc also has outdegree 6= 0, so it has
an arc leaving it, which we take. We continue taking arcs in this way until we have taken
|V | many arcs. The resulting walk has at least |V | many arcs, and thus it has |V |+1 many
vertices. But this walk is a path (by Lemma 1.2), and thus its vertices are distinct. Hence,
this walk has at most |V | many vertices. This contradicts the fact that it has |V |+ 1 many
vertices. So, there is a contradiction and our assumption was false.

Proposition 1.4. Let D = (V,A, ϕ) be an acyclic multidigraph. Then, there exists a list
(v1, v2, . . . , vn) of elements of V such that

• each element of V appears exactly once in this list (v1, v2, . . . , vn);

• whenever i and j are two elements of [n] such that some arc of D has source vi and
target vj, we must have i < j.

Proof by induction on |V |. Base case: |V | = 0. In this case, D is a multidigraph with no
vertices, and thus the empty list () contains each element of V , and it is vacuously true that
for any i and j in [0] = ∅ such that an arc of D has source vi and target vj, we have i < j.
So Proposition 1.4 is proven in the case where |V | = 0.

Inductive Step: Fix n ∈ N. Assume as the inductive hypothesis that Proposition 1.4
holds for any acyclic multidigraph having |V | = n. We now want to show that Proposition
1.4 holds for any acyclic multidigraph D = (V,A, ϕ) having |V | = n+ 1.

So let D = (V,A, ϕ) be an acyclic multidigraph having |V | = n + 1. Let u ∈ V be
a vertex of D having outdeg(u) = 0 (such a vertex exists by Lemma 1.3). Let D′ be the
multidigraph D with vertex u and all arcs using u removed. Removing arcs cannot create
a new cycle, so D′ is an acyclic multidigraph having |V ′| = n, where V ′ = V \ {u} is its
set of vertices. By the inductive hypothesis, Proposition 1.4 holds for this multidigraph D′.
Thus, there is a list (v1, v2, . . . , vn) containing each element of V ′ = V \ {u} exactly once
and having the property that for any i and j in [n] such that some arc of D′ has source
vi and target vj, we have i < j. Consider such a list. Extend it to a list (v1, v2, . . . , vn+1)
of vertices of D by setting vn+1 = u. Then, the list (v1, v2, . . . , vn+1) = (v1, v2, . . . , vn, u)
contains each element of V exactly once. Furthermore, whenever i and j are two elements
of [n+ 1] such that some arc of D has source vi and target vj, we must have i < j. (Indeed,
in the case where i and j are both in [n], this follows from the analogous property of the
list (v1, v2, . . . , vn). In the case where i is in [n] and j = n + 1, the inequality i < j is
obvious. The only remaining case – the case where i = n+ 1 – does not occur, because the
vertex vn+1 = u has outdegree 0 and thus cannot be the source of any arc of D.) Thus, the
list (v1, v2, . . . , vn+1) satifies the conditions of Proposition 1.4 for our multidigraph D. This
completes the inductive step.
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2 Exercise 2

2.1 Problem

Let D be an acyclic multidigraph. A vertex v of D is said to be a sink if there is no arc of
D with source v.

If u and v are any two vertices of D, then:

• we write u −→ v if and only if D has an arc with source u and target v;

• we write u
∗−→ v if and only if D has a path from u to v.

The so-called no-watershed condition says that for any three vertices u, v and w of D
satisfying u −→ v and u −→ w, there exists a vertex t of D such that v ∗−→ t and w

∗−→ t.
Assume that the no-watershed condition holds. Prove that for each vertex p of D, there

exists exactly one sink q of D such that p ∗−→ q.

2.2 Solution

Definition 2.1. Let D = (V,A, ϕ) be an acyclic multidigraph. For a vertex p ∈ V , we
define its height H (p) as the maximum number of edges in a path in D that starts at p.

Remark 2.2. The height of a vertex is an integer between 0 and |V | − 1, since every vertex
has a path to itself (which contains 0 edges) and a path can have at most |V | − 1 edges
(since it can contain at most |V | vertices).
Remark 2.3. Let u and v be two vertices of an acyclic multidigraph D such that there is
a path from u to v of nonzero length in D. Then, H (u) > H (v). Indeed, a longest path
in D starting at v can be concatenated with any path from u to v of nonzero length to
form a longer path in D starting at u (and this concatenation is indeed a path, because of
Lemma 1.2).

Proposition 2.4. Let D be an acyclic multidigraph for which the no-watershed condition
holds. Then, for each vertex p of D, there is exactly one sink q of D such that p

∗−→ q.

Proof by strong induction on H (p): Base case: H (p) = 0.
If the height of p is 0, then the only path in D that starts at p is the “empty path”,

and so there is no arc of D with source p. So, in this case, p is a sink of D, and p is the
unique sink of D such that there is a path from p to it. This proves Proposition 2.4 when
H (p) = 0. This completes the induction base.

Inductive Step: Fix an integer n ≥ 1. Assume as the inductive hypothesis that for any
vertex w of D with H (w) < n, there is exactly one sink of D such that there is a path from
w to that sink. We want to show that for a vertex p with H (p) = n, there is exactly one
sink q of D such that p ∗−→ q.

In the following, an out-neighbor of a vertex x ∈ D means any vertex y ∈ D such that
D has an arc with source x and target y.

Consider any vertex p with H (p) = n. We have H (p) = n ≥ 1, so there is a path in
D starting at p that contains at least one edge; thus, p has an out-neighbor. Let u be any
out-neighbor of p. Then, H (p) > H (u) by Remark 2.3 (since there is a path from p to u
of nonzero length in D), and therefore H (u) < H (p) = n. Hence, the inductive hypothesis
shows that there is a unique sink of D such that there is a path from u to this sink. Denote
this sink by qu. Forget that we fixed u. Thus, for each out-neighbor u of p, we have defined
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a sink qu of D with the property that qu is the unique sink of D such that there is a path
from u to this sink.

Let u and v be two out-neighbors of p (it is possible that u = v). Because there is a
path from p to u of nonzero length in D, we have H (p) > H (u) by Remark 2.3; similarly,
H (p) > H (v). Recall that qu is the unique sink of D such that there is a path from u to qu.
Since the no-watershed condition holds (and since p −→ u and p −→ v), there is a vertex t

such that u ∗−→ t and v
∗−→ t. Again by Remark 2.3, this vertex t has a smaller height than

v, and so its height is smaller than H (p) = n. Thus, by the inductive hypothesis, t has a
path in D to exactly one sink of D. Call this sink q. Because u

∗−→ t and t
∗−→ q, we have

u
∗−→ q. This means that q is a sink of D that u has a path to in D. Since we already know

that the only such sink is qu (because this is how we defined qu), we thus obtain qu = q.
Similarly, qv = q. Thus, qu = qv.

Now, forget that we fixed u and v. We have shown that any two out-neighbors u and
v of p satisfy qu = qv. Thus, the sink qu corresponding to an out-neighbor u of p does not
depend on u. Hence, there is a sink q of D such that each out-neighbor u of p satisfies qu = q
(since we know that p has an out-neighbor). Consider this q. For each out-neighbor u of p,
there is a path from u to q (since qu = q). Thus, there is a walk from p to q (since there
is a path from p to any of its out-neighbors and a path from any of its out-neighbors to q),
therefore also a path from p to q (by Lemma 1.2). In other words, p ∗−→ q.

The vertex p is not a sink (since H (p) ≥ 1). Hence, any path from p to a sink of D
must leave p, and thus must travel through some out-neighbor u of p. Hence, the sink that
this path leads to must be qu. In other words, this sink must be q (since qu = q). So we
have proven that if there is a path from p to a sink of D, then this sink must be q. In other
words, q is the unique sink of D such that there is a path from p to this sink. Thus, there
is exactly one sink r of D such that p ∗−→ r (namely, q). This completes the inductive step.

Proposition 2.4 is thus proven for any vertex p having H (p) ≥ 0, and so it is proven for
any p ∈ V .

3 Exercise 5

Definition 3.1. Let G be a graph.
(a) An independent set of G means a set S of vertices of G such that no two distinct

elements of S are adjacent.
(b) We let indG be the number of all independent sets of G.

Definition 3.2. Let G be a graph. Let S be a set of vertices of G. Then, G \S will denote
the graph obtained from G by removing all vertices in S (along with all edges that use these
vertices).

Definition 3.3. For each n ∈ N, we define the n-th path graph to be the simple graph

({1, 2, . . . , n} , {{i, i+ 1} | i ∈ {1, 2, . . . , n− 1}})
= ({1, 2, . . . , n} , {{1, 2} , {2, 3} , . . . , {n− 1, n}}) .

This graph is denoted by Pn.

Definition 3.4. For each integer n > 1, we define the n-th cycle graph to be the simple
graph

({1, 2, . . . , n} , {{i, i+ 1} | i ∈ {1, 2, . . . , n− 1}} ∪ {n, 1})
= ({1, 2, . . . , n} , {{1, 2} , {2, 3} , . . . , {n− 1, n} , {n, 1}}) .

This graph is denoted by Cn.
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3.1 Problem

(a) Let v be a vertex of a graph G. Let N (v) be the set of all neighbors of v. Let
N+ (v) = {v} ∪N (v). Prove that

indG = ind (G \ {v}) + ind
(
G \

(
N+ (v)

))
.

(b) Compute ind (Cn) for each n ≥ 2 (in terms of the Fibonacci sequence).

3.2 Solution to part a)

Proposition 3.5. Let G = (V,E, ϕ) be a graph, and let v ∈ V be one of its vertices. Then,

indG = ind (G \ {v}) + ind
(
G \

(
N+ (v)

))
.

Proof. There are two types of independent sets of G: those that contain v and those that
don’t. So,

indG = | {independent sets S of G with v /∈ S} |
+ | {independent sets S of G with v ∈ S} |. (1)

There is a map

{independent sets S of G with v /∈ S} → {independent sets of G \ {v}} ,
S 7→ S

(this is simply the identity map). (Indeed, this map is well-defined, because if S is an
independent set of G with v /∈ S, then S is a subset of V containing no vertices which are
neighbors in G and satisfying v /∈ S, so S is also a subset of V \ {v} containing no vertices
which are neighbors in G \ {v}, and therefore S is an independent set of G \ {v}.)
This map has an inverse map, which is

{independent sets of G \ {v}} → {independent sets S of G with v /∈ S} ,
S 7→ S.

(This map is well-defined for similar reasons.) Thus, the map above is a bijection. Hence,

| {independent sets S of G with v /∈ S} | = |{independent sets of G \ {v}}|
= ind (G \ {v}) . (2)

In addition, there is a map

{independent sets S of G with v ∈ S} →
{
independent sets of G \

(
N+ (v)

)}
,

S 7→ S \ {v} .

(Indeed, this map is well-defined for the following reason: If S is an independent set of
G with v ∈ S, then none of the neighbors of v belongs to S. Thus, S \ {v} is a subset
of V \ (N+ (v)). Removing an element from an independent set leaves it independent, so
S \ {v} is an independent set and this map is well-defined.)
This map, too, has an inverse map, which is the map{

independent sets of G \
(
N+ (v)

)}
→ {independent sets S of G with v ∈ S} ,

T 7→ T ∪ {v} .
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(Here is why this map is well-defined: If T is an independent set of G \ (N+ (v)), then T
contains none of the neighbors of v. Thus, adding v to T keeps the set independent. Thus,
T ∪ {v} is an independent set of G, and of course it satisfies v ∈ T ∪ {v}.) Thus, the map
above is a bijection. Hence,

| {independent sets S of G with v ∈ S} | =
∣∣{independent sets of G \ (N+ (v)

)}∣∣
= ind

(
G \

(
N+ (v)

))
. (3)

Now, (1) becomes

indG = | {independent sets S of G with v /∈ S} |+ | {independent sets S of G with v ∈ S} |
= ind (G \ {v}) + ind

(
G \

(
N+ (v)

))
(by (2) and (3)). This is Proposition 3.5.

3.3 Solution to part b)

Recall that the Fibonacci sequence (f0, f1, f2, . . .) is defined recursively by

f0 = 0, f1 = 1, and fn = fn−1 + fn−2 for all n ≥ 2.

Lemma 3.6. Let n ∈ N. Then,
ind (Pn) = fn+2.

Proof. In the n-th path graph, two vertices are neighbors if and only if they are consecutive
integers. For this reason, an independent set of Pn is the same as a subset of V = [n] that
contains no two consecutive integers. This is what we called a lacunar subset of [n]. Hence,

ind (Pn) = (the number of lacunar subsets of [n]) .

But by Proposition 1.22 from the February 5 lecture, the number of lacunar subsets of [n]
is fn+2. Combining the above, we obtain

ind (Pn) = (the number of lacunar subsets of [n]) = fn+2.

Proposition 3.7. Let n ≥ 2. Then,

ind (Cn) = fn+1 + fn−1.

Proof. We WLOG assume that n ≥ 3, since the case n = 2 can be dealt with easily by
hand. Proposition 3.5 applied to v = n gives

ind (Cn) = ind (Cn \ {n}) + ind
(
Cn \

(
N+ (n)

))
.

The graph Cn \ {n} is the graph Cn with vertex n and edges {n− 1, n} and {n, 1} removed.
This is the graph Pn−1. By Lemma 3.6 (applied to n− 1 instead of n), we have

ind (Pn−1) = fn+1.

In Cn, the neighbors of n are the vertices 1 and n− 1, and so the set N+ (n) is {1, n− 1, n}.
Thus, the graph Cn \ (N+ (n)) is Cn with the vertices 1, n − 1, and n removed, as well as
their connected edges {n− 2, n− 1}, {n− 1, n}, {n, 1} and {1, 2} removed. After relabeling
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the remaining vertices 2, 3, . . . , n − 2 as 1, 2, . . . , n − 3, this graph becomes Pn−3. Thus,
ind (Cn \ (N+ (n))) = ind (Pn−3). But by Lemma 3.6 (applied to n − 3 instead of n), we
have

ind (Pn−3) = fn−1.

So,

ind (Cn) = ind

Cn \ {n}︸ ︷︷ ︸
=Pn−1

+ ind
(
Cn \

(
N+ (n)

))︸ ︷︷ ︸
=ind(Pn−3)

= ind (Pn−1)︸ ︷︷ ︸
=fn+1

+ ind (Pn−3)︸ ︷︷ ︸
=fn−1

= fn+1 + fn−1.
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