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Exercise 1

Exercise 0.1. Let D = (V,A, ψ) be an acyclic digraph. Then there is a list of ele-
ments (v1, v2, . . . , vn) of V such that each element of V appears exactly once in the list
(v1, v2, . . . , vn), and whenever i and j are two elements of [n], and D features an arc which
starts in vi and ends in vj, then this implies that i < j.

Proof. Let Anc : V → {subsets of V } be the function that maps each v ∈ V to the set

{w ∈ V | and there exists a walk from w to v} .

(As we know, the existence of a walk from w to v is equivalent to the existence of a path
from w to v; but we won’t actually need this.)

Since V is a finite set, there exists some n ∈ N such that |V | = n. Consider this n.
Since |V | = n = |[n]|, there exists a bijection φ : [n]→ V . Fix this bijection φ.

We now define the list (v1, v2, . . . , vn) to be the list of all the n elements v ∈ V in
increasing order of |Anc(v)|, where ties are broken as follows: If v, w ∈ V satisfy |Anc(v)| =
|Anc(w)|, then v should be placed after w if φ(v) > φ(w) (and conversely, w should be
placed after v if φ(w) > φ(v)).

We will now show that this list satisfies the two requirements in the claim. First of all,
it is clear that each element of V appears exactly once in this list, since this list has been
constructed as a list of all elements of V in some order.

It remains to check the second requirement. In other words, it remains to show that, if
i and j are two elements of [n], and if D has an arc which starts at vi and ends at vj, then
i < j.
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Indeed, let i and j be two elements of [n], and assume that D has an arc which starts
at vi and ends at vj. We must prove i < j.

We will first show that Anc(vi) ⊆ Anc(vj). Indeed, suppose that w ∈ Anc(vi). Thus,
there exists a walk a from w to vi (by the definition of Anc(vi)). And because there is an
arc which begins at vi and ends at vj, then one can add that arc to the end of the walk a to
construct a walk from w to vj. Hence, there exists a walk from w to vj, so w ∈ Anc(vj). So we
have shown that w ∈ Anc(vi) implies that w ∈ Anc(vj). In other words, Anc(vi) ⊆ Anc(vj).

We will next show that vj 6∈ Anc(vi). Suppose to the contrary that vj ∈ Anc(vi). Then
there exists some walk b from vj to vi (by the definition of Anc(vi)). Because D is acyclic,
b must not contain any cycles, which means that vj does not appear in b except for at the
very start. This means that the arc from vi to vj is not used in b, as otherwise, vj would
appear in the walk after that arc was used, which would by definition not be at the very
start. Therefore, the walk constructed by adding that arc from vi to vj on to the end of b
is a cycle in D (going from vj to vj). Thus, D has a cycle. This contradicts the assumption
that D is acyclic. This contradiction reveals that vj /∈ Anc(vi).

But there exists a walk from vj to vj (namely, the trivial walk (vj)). Thus, vj ∈ Anc(vj)
(by the definition of Anc(vj)). Contrasting this to vj /∈ Anc(vi), we obtain Anc(vi) 6=
Anc(vj). Thus, Anc(vi) is a proper subset of Anc(vj). Hence, |Anc(vi)| < |Anc(vj)|.
Therefore, the vertex vi appears earlier than vj in the list (v1, v2, . . . , vn) (due to how the
list was constructed). In other words, i < j. This concludes our proof that the second
requirement holds.

Hence, the constructed list satisfies the requirements of the claim.

Exercise 2

Exercise 0.2. Let D be an acyclic multidigraph. A vertex v of D is said to be a sink if
there is no arc of D with source v.

If u and v are any two vertices of D, then:

• we write u −→ v if and only if D has an arc with source u and target v;

• we write u ∗−→ v if and only if D has a path from u to v.

The so-called no-watershed condition says that for any three vertices u, v and w of D
satisfying u −→ v and u −→ w, there exists a vertex t of D such that v ∗−→ t and w ∗−→ t.

If the no-watershed condition holds, then for each vertex p of D, there exists exactly
one sink q of D such that p ∗−→ q.

Proof. Let D be an acyclic multidigraph for which the no-watershed condition holds. Let
V be the vertex set of D, and let h : V → N be the function that maps each v ∈ V to the
maximum length of a path in D which begins at v.

We will first show that h is well defined. Observe that D has finitely many vertices.
Also, each path in D goes through each vertex of D at most one time. Since the length of
a path is equal to the number of edges taken in that path, which is equal to the number
of vertices taken in that path minus one, the length of a path in D must be an integer
≤ |V | − 1. So the set of lengths of paths which begin at a vertex v ∈ V is some subset
of {0, 1, . . . , |V | − 1}. And since this subset is a finite nonempty set of integers (nonempty
because the trivial path (v) always exists), it must have a maximum value. Hence, for all
vertices v ∈ V , the number h(v) is defined.
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We will next show that if u, v ∈ V , and if there exists a path of nonzero length from u
to v, then

h(v) < h(u). (1)

[Proof of (1). Let u, v ∈ V , and suppose that there exists a path of nonzero length from
u to v. Consider such a path a; thus, its length is positive. By the definition of h(v), we
know that there is a path b of length h(v) which begins at v. Now consider the walk c
formed by adding the path b onto the end of the path a. This new walk c is still a path
(since otherwise, it would contain a cycle, but this would contradict the acyclicity of D),
and has length > h(v) (indeed, its length equals the sum of the lengths of a and b, but the
former length is positive and the latter is h(v)). Thus, c is a path in D which begins at u
and has length > h(v). Since h(u) is the maximum length of a path in D which starts at u,
we thus conclude that h(u) is at least as large as the length of c, which is > h(v). Hence,
h(u) > h(v). This proves (1).]

From (1), we immediately obtain the following: If u, v ∈ V , and if there exists a path
from u to v, then

h(v) ≤ h(u). (2)

(Indeed, if this path has nonzero length, then this inequality follows from (1), whereas
otherwise it follows from v = u.)

The exercise claims that for each vertex v of D, there exists exactly one sink q of D such
that there is a path from v to q. We will now prove this claim by strong induction on h(v).

For the base case, suppose that v ∈ V and h(v) = 0. Since h(v) = 0, there are no paths
in D of nonzero length which start at v. This is possible only if there are no arcs in D which
begin at v, which implies that v is a sink. Thus, v is a sink; hence, there exists only one
vertex q ∈ V for which there exists a path from v to q (namely, v itself). And since v is a
sink, this means that there exists a path from v to exactly one sink (itself), and no other
sinks (or even vertices for that matter). This completes the induction base.

Now, to the induction step. Let n ∈ N. Assume that the claim holds for all vertices
u ∈ V such that h(u) < n. Consider a vertex v ∈ V such that h(v) = n. We need to prove
the claim for this vertex v. If h(v) = 0, then this has already been proven in the above
induction base; thus, we assume that h(v) > 0. Hence, there exists a path of nonzero length
which originates at v. Thus, there exists an arc with source v.

Let B be the set of the targets of all arcs with source v. Since such arcs do exist (as
we have just seen), we have B 6= ∅. And also, each path which begins at v must have its
second vertex be a vertex in B. And further, if w ∈ B, then there exists a path from v to
w, so that h(w) < h(v) (by (1)).

Now let w1 ∈ B. Since B 6= ∅, such a w1 must exist. And since h(w1) < h(v) = n, we
can apply the induction hypothesis to w1 instead of v. We conclude that there exists exactly
one sink x ∈ V such that there is a path from w1 to x. Consider this x. Since w1 ∈ B, there
exists a path from v to w1, so there exists a path from v to x (via w1).

Now let w2 ∈ B be arbitrary (in particular, w2 may be equal to w1). Since w1, w2 ∈ B,
we have v −→ w1 and v −→ w2. Since the no-watershed condition holds, we conclude that
there exists a vertex t ∈ V such that there is a path from w1 to t and there is a path from
w2 to t. Therefore, using (2), we obtain h(t) ≤ h(w1) < h(v) = n. So by the induction
hypothesis (applied to t instead of v), there exists exactly one sink y ∈ V such that there is
a path from t to y. Consider this t. Concatenating a path from w2 to t with a path from t
to y, we obtain a walk from w2 to y, thus a path from w2 to y. Similarly, we find that there
is a path from w1 to y.

So y is a sink for which there exists a path from w1 to y. But we have previously defined
x to be the only such sink. Therefore, y = x. But recall that there is a path from w2 to y.
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In other words, there is a path from w2 to x (since y = x).
We thus have shown that for each w2 ∈ B, there is a path from w2 to x.
Now, consider any sink z for which there is a path from v to z. This path has nonzero

length (since h(v) > 0, so that v itself is not a sink), and thus has a second vertex. Denote
this second vertex by w2; thus, w2 ∈ B, so that (as we have just seen) there is a path from
w2 to x. Also, from w2 ∈ B, we obtain h(w2) < h(v) = n, so that we can apply the induction
hypothesis to w2 instead of v. We thus conclude that there is exactly one sink q such that
there is a path from w2 to q. Since both x and z qualify as such q’s, this entails that z = x.
So we have proven that if z is any sink for which there is a path from v to z, then z = x.
So there exists exactly one sink q such that there is a path from v to q, namely the sink x.
This proves the claim for our vertex v. So the induction step is complete, and the claim of
the exercise follows.

Exercise 4

Part A

Definition 0.3. Let n ∈ N and m ∈ N. The graph Kn,m is defined to be the simple graph
with n+m vertices

1, 2, . . . , n,−1,−2, . . . ,−m

and nm edges
{i,−j} for all i ∈ [n] and j ∈ [m] .

(Note that (Kn,m; {1, 2, . . . , n} , {−1,−2, . . . ,−m}) is a bipartite graph, called the complete
bipartite graph.)

Exercise 0.4. Let m,n ∈ N. Then the chromatic polynomial of Kn,m is given by

χKn,m =
n∑

i=0

sur(n, i)

(
x

i

)
(x− i)m

Proof. Refer to the vertices 1, 2, . . . , n of Kn,m as the positive vertices of Kn,m, and to the
vertices −1,−2, . . . ,−m as the negative vertices of Kn,m.

Observe that for any color used in a proper coloring of Kn,m, that color can not appear
on both a positive vertex and a negative vertex, since there is an edge connecting each
positive vertex to each negative vertex. Hence, in a proper coloring of Kn,m, the set of
colors used to color the positive vertices, and the set of colors used to color the negative
vertices are disjoint.

Now, let k ∈ N. Recall that the value χKn,m(k) of the chromatic polynomial is equal to
the number of proper k-colorings of Kn,m. We will count these k-colorings now. Let C = [k];
thus, a k-coloring of Kn,m is a map from the set of vertices of Kn,m to C. We can construct
such a coloring f in the following four steps:

• Choose the number i of colors that will be used to color the positive vertices (so i will
be |f([n])|). This is a number between 0 and n.

• Choose the set Cp of colors that will be used to color the positive vertices. This must

be an i-element subset of the k-element set C. Thus, there are
(
k

i

)
options here.
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• Color the positive vertices with the colors from Cp, using each color at least once. This
is tantamount to choosing a surjective map from the n-element set [n] to the i-element
set Cp (sending each positive vertex to its color); thus, there are sur (n, i) options for
it.

• Finally, color the negative vertices. Their colors need to be chosen from the k−i colors
that don’t belong to Cp (since the set of colors used to color the positive vertices, and
the set of colors used to color the negative vertices must be disjoint in a proper k-
coloring), but we don’t have to use each color. Hence, this is tantamount to choosing a
map from the m-element set {−1,−2, . . . ,−m} to the k− i-element set C \Cp. Thus,
there are (k − i)m options at this step.

At the end of this algorithm, all vertices of Kn,m are colored, and the resulting k-coloring
is proper (because each edge connects a positive vertex with a negative vertex, and we’ve
ensured that the latter vertex has a different color than the former). Hence, the number

of all proper k-colorings of Kn,m is
n∑

i=0

(
k

i

)
sur (n, i) (k − i)m (which we get by multiplying

the numbers of options in the above algorithm). On the other hand, this is χKn,m(k) (as we
already showed). Comparing the two results, we find

χKn,m(k) =
n∑

i=0

(
k

i

)
sur (n, i) (k − i)m .

Now we have proven this for each k ∈ N. Thus, the two polynomials

χKn,m(x) and
n∑

i=0

(
x

i

)
sur (n, i) (x− i)m

are equal to each other on each point k ∈ N. This means that they are equal to each other
on infinitely many points. Hence, they must be identical as polynomials (by the “polynomial
identity trick”). In other words,

χKn,m(x) =
n∑

i=0

(
x

i

)
sur (n, i) (x− i)m =

n∑
i=0

sur (n, i)

(
x

i

)
(x− i)m .

Part B

Exercise 0.5. For all m,n ∈ N, it holds that
n∑

i=0

sur(n, i)

(
x

i

)
(x− i)m =

m∑
i=0

sur(m, i)

(
x

i

)
(x− i)n.

Proof. Let m,n ∈ N. We claim that the graphs Kn,m and Km,n are identical up to the
names of their vertices1.

Indeed, the graph Kn,m has vertices 1, 2, . . . , n and −1,−2, . . . ,−m, with edges {i,−j}
for i ∈ [n] and j ∈ [m]. If one renames each vertex k as −k, and updates the formula
for edges such that it is consistent with the new names, then the resulting graph has the

1That is, we can rename the vertices of Kn,m in such a way that the resulting graph is Km,n. In more
rigorous language, we are saying that the graphs Kn,m and Km,n are isomorphic.
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vertices −1,−2, . . . ,−n and 1, 2, . . . ,m, with edges {−i, j} for i ∈ [n] and j ∈ [m]. But this
is precisely the graph Km,n. Hence, Kn,m is equal to the graph Km,n, except for the fact
that the vertices are named differently.

And since the way the vertices of a graph are named does not in any way affect the
number of proper colorings of a graph, it follows that χKn,m (k) = χKm,n (k) for each k ∈ N.
In other words, the polynomials χKn,m and χKm,n are equal to each other on each point
k ∈ N. Hence, χKn,m = χKm,n .

In part (a), it was shown that χKn,m =
n∑

i=0

sur(n, i)

(
x

i

)
(x− i)m. And swapping m and

n in this formula yields χKm,n =
m∑
i=0

sur(m, i)

(
x

i

)
(x− i)n. Thus, the equality χKn,m = χKm,n

rewrites as
n∑

i=0

sur(n, i)

(
x

i

)
(x− i)m =

m∑
i=0

sur(m, i)

(
x

i

)
(x− i)n.
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