Math 4707: Combinatorics, Spring 2018 Midterm 3

Nathaniel Gorski (edited by Darij Grinberg)

January 1, 2019

Exercise 1

Exercise 0.1. Let $D = (V, A, \psi)$ be an acyclic digraph. Then there is a list of elements (v_1, v_2, \ldots, v_n) of V such that each element of V appears exactly once in the list (v_1, v_2, \ldots, v_n) , and whenever i and j are two elements of [n], and D features an arc which starts in v_i and ends in v_j , then this implies that i < j.

Proof. Let Anc: $V \to \{\text{subsets of } V\}$ be the function that maps each $v \in V$ to the set

 $\{w \in V \mid \text{ and there exists a walk from } w \text{ to } v\}.$

(As we know, the existence of a walk from w to v is equivalent to the existence of a path from w to v; but we won't actually need this.)

Since V is a finite set, there exists some $n \in \mathbb{N}$ such that |V| = n. Consider this n. Since |V| = n = |[n]|, there exists a bijection $\phi : [n] \to V$. Fix this bijection ϕ .

We now define the list $(v_1, v_2, ..., v_n)$ to be the list of all the n elements $v \in V$ in increasing order of $|\operatorname{Anc}(v)|$, where ties are broken as follows: If $v, w \in V$ satisfy $|\operatorname{Anc}(v)| = |\operatorname{Anc}(w)|$, then v should be placed after w if $\phi(v) > \phi(w)$ (and conversely, w should be placed after v if $\phi(w) > \phi(v)$).

We will now show that this list satisfies the two requirements in the claim. First of all, it is clear that each element of V appears exactly once in this list, since this list has been constructed as a list of all elements of V in some order.

It remains to check the second requirement. In other words, it remains to show that, if i and j are two elements of [n], and if D has an arc which starts at v_i and ends at v_j , then i < j.

Indeed, let i and j be two elements of [n], and assume that D has an arc which starts at v_i and ends at v_j . We must prove i < j.

We will first show that $\operatorname{Anc}(v_i) \subseteq \operatorname{Anc}(v_j)$. Indeed, suppose that $w \in \operatorname{Anc}(v_i)$. Thus, there exists a walk **a** from w to v_i (by the definition of $\operatorname{Anc}(v_i)$). And because there is an arc which begins at v_i and ends at v_j , then one can add that arc to the end of the walk **a** to construct a walk from w to v_j . Hence, there exists a walk from w to v_j , so $w \in \operatorname{Anc}(v_j)$. So we have shown that $w \in \operatorname{Anc}(v_i)$ implies that $w \in \operatorname{Anc}(v_j)$. In other words, $\operatorname{Anc}(v_i) \subseteq \operatorname{Anc}(v_j)$.

We will next show that $v_j \notin \operatorname{Anc}(v_i)$. Suppose to the contrary that $v_j \in \operatorname{Anc}(v_i)$. Then there exists some walk **b** from v_j to v_i (by the definition of $\operatorname{Anc}(v_i)$). Because D is acyclic, **b** must not contain any cycles, which means that v_j does not appear in **b** except for at the very start. This means that the arc from v_i to v_j is not used in **b**, as otherwise, v_j would appear in the walk after that arc was used, which would by definition not be at the very start. Therefore, the walk constructed by adding that arc from v_i to v_j on to the end of **b** is a cycle in D (going from v_j to v_j). Thus, D has a cycle. This contradicts the assumption that D is acyclic. This contradiction reveals that $v_j \notin \operatorname{Anc}(v_i)$.

But there exists a walk from v_j to v_j (namely, the trivial walk (v_j)). Thus, $v_j \in \operatorname{Anc}(v_j)$ (by the definition of $\operatorname{Anc}(v_j)$). Contrasting this to $v_j \notin \operatorname{Anc}(v_i)$, we obtain $\operatorname{Anc}(v_i) \neq \operatorname{Anc}(v_j)$. Thus, $\operatorname{Anc}(v_i)$ is a **proper** subset of $\operatorname{Anc}(v_j)$. Hence, $|\operatorname{Anc}(v_i)| < |\operatorname{Anc}(v_j)|$. Therefore, the vertex v_i appears earlier than v_j in the list (v_1, v_2, \ldots, v_n) (due to how the list was constructed). In other words, i < j. This concludes our proof that the second requirement holds.

Hence, the constructed list satisfies the requirements of the claim.

Exercise 2

Exercise 0.2. Let D be an acyclic multidigraph. A vertex v of D is said to be a sink if there is no arc of D with source v.

If u and v are any two vertices of D, then:

- we write $u \longrightarrow v$ if and only if D has an **arc** with source u and target v;
- we write $u \xrightarrow{*} v$ if and only if D has a **path** from u to v.

The so-called no-watershed condition says that for any three vertices u, v and w of D satisfying $u \longrightarrow v$ and $u \longrightarrow w$, there exists a vertex t of D such that $v \stackrel{*}{\longrightarrow} t$ and $w \stackrel{*}{\longrightarrow} t$.

If the no-watershed condition holds, then for each vertex p of D, there exists exactly one sink q of D such that $p \xrightarrow{*} q$.

Proof. Let D be an acyclic multidigraph for which the no-watershed condition holds. Let V be the vertex set of D, and let $h:V\to\mathbb{N}$ be the function that maps each $v\in V$ to the maximum length of a path in D which begins at v.

We will first show that h is well defined. Observe that D has finitely many vertices. Also, each path in D goes through each vertex of D at most one time. Since the length of a path is equal to the number of edges taken in that path, which is equal to the number of vertices taken in that path minus one, the length of a path in D must be an integer $\leq |V| - 1$. So the set of lengths of paths which begin at a vertex $v \in V$ is some subset of $\{0, 1, \ldots, |V| - 1\}$. And since this subset is a finite nonempty set of integers (nonempty because the trivial path (v) always exists), it must have a maximum value. Hence, for all vertices $v \in V$, the number h(v) is defined.

We will next show that if $u, v \in V$, and if there exists a path of nonzero length from u to v, then

$$h(v) < h(u). \tag{1}$$

[Proof of (1). Let $u, v \in V$, and suppose that there exists a path of nonzero length from u to v. Consider such a path \mathbf{a} ; thus, its length is positive. By the definition of h(v), we know that there is a path \mathbf{b} of length h(v) which begins at v. Now consider the walk \mathbf{c} formed by adding the path \mathbf{b} onto the end of the path \mathbf{a} . This new walk \mathbf{c} is still a path (since otherwise, it would contain a cycle, but this would contradict the acyclicity of D), and has length > h(v) (indeed, its length equals the sum of the lengths of \mathbf{a} and \mathbf{b} , but the former length is positive and the latter is h(v)). Thus, \mathbf{c} is a path in D which begins at u and has length > h(v). Since h(u) is the maximum length of a path in D which starts at u, we thus conclude that h(u) is at least as large as the length of \mathbf{c} , which is > h(v). Hence, h(u) > h(v). This proves (1).]

From (1), we immediately obtain the following: If $u, v \in V$, and if there exists a path from u to v, then

$$h(v) \le h(u). \tag{2}$$

(Indeed, if this path has nonzero length, then this inequality follows from (1), whereas otherwise it follows from v = u.)

The exercise claims that for each vertex v of D, there exists exactly one sink q of D such that there is a path from v to q. We will now prove this claim by strong induction on h(v).

For the base case, suppose that $v \in V$ and h(v) = 0. Since h(v) = 0, there are no paths in D of nonzero length which start at v. This is possible only if there are no arcs in D which begin at v, which implies that v is a sink. Thus, v is a sink; hence, there exists only one vertex $q \in V$ for which there exists a path from v to q (namely, v itself). And since v is a sink, this means that there exists a path from v to exactly one sink (itself), and no other sinks (or even vertices for that matter). This completes the induction base.

Now, to the induction step. Let $n \in \mathbb{N}$. Assume that the claim holds for all vertices $u \in V$ such that h(u) < n. Consider a vertex $v \in V$ such that h(v) = n. We need to prove the claim for this vertex v. If h(v) = 0, then this has already been proven in the above induction base; thus, we assume that h(v) > 0. Hence, there exists a path of nonzero length which originates at v. Thus, there exists an arc with source v.

Let B be the set of the targets of all arcs with source v. Since such arcs do exist (as we have just seen), we have $B \neq \emptyset$. And also, each path which begins at v must have its second vertex be a vertex in B. And further, if $w \in B$, then there exists a path from v to w, so that h(w) < h(v) (by (1)).

Now let $w_1 \in B$. Since $B \neq \emptyset$, such a w_1 must exist. And since $h(w_1) < h(v) = n$, we can apply the induction hypothesis to w_1 instead of v. We conclude that there exists exactly one sink $x \in V$ such that there is a path from w_1 to x. Consider this x. Since $w_1 \in B$, there exists a path from v to w_1 , so there exists a path from v to v (via v).

Now let $w_2 \in B$ be arbitrary (in particular, w_2 may be equal to w_1). Since $w_1, w_2 \in B$, we have $v \longrightarrow w_1$ and $v \longrightarrow w_2$. Since the no-watershed condition holds, we conclude that there exists a vertex $t \in V$ such that there is a path from w_1 to t and there is a path from w_2 to t. Therefore, using (2), we obtain $h(t) \leq h(w_1) < h(v) = n$. So by the induction hypothesis (applied to t instead of v), there exists exactly one sink $y \in V$ such that there is a path from t to t0. Consider this t1. Concatenating a path from t2 to t3 with a path from t4 to t5. Similarly, we find that there is a path from t6 to t7. Similarly, we find that there is a path from t8 to t9.

So y is a sink for which there exists a path from w_1 to y. But we have previously defined x to be the only such sink. Therefore, y = x. But recall that there is a path from w_2 to y.

In other words, there is a path from w_2 to x (since y = x).

We thus have shown that for each $w_2 \in B$, there is a path from w_2 to x.

Now, consider any sink z for which there is a path from v to z. This path has nonzero length (since h(v) > 0, so that v itself is not a sink), and thus has a second vertex. Denote this second vertex by w_2 ; thus, $w_2 \in B$, so that (as we have just seen) there is a path from w_2 to x. Also, from $w_2 \in B$, we obtain $h(w_2) < h(v) = n$, so that we can apply the induction hypothesis to w_2 instead of v. We thus conclude that there is exactly one sink q such that there is a path from w_2 to q. Since both x and z qualify as such q, this entails that z = x. So we have proven that if z is any sink for which there is a path from v to z, then z = x. So there exists exactly one sink q such that there is a path from v to q, namely the sink x. This proves the claim for our vertex v. So the induction step is complete, and the claim of the exercise follows.

Exercise 4

Part A

Definition 0.3. Let $n \in \mathbb{N}$ and $m \in \mathbb{N}$. The graph $K_{n,m}$ is defined to be the simple graph with n + m vertices

$$1, 2, \ldots, n, -1, -2, \ldots, -m$$

and nm edges

$$\{i, -j\}$$
 for all $i \in [n]$ and $j \in [m]$.

(Note that $(K_{n,m}; \{1, 2, ..., n\}, \{-1, -2, ..., -m\})$ is a bipartite graph, called the *complete bipartite graph*.)

Exercise 0.4. Let $m, n \in \mathbb{N}$. Then the chromatic polynomial of $K_{n,m}$ is given by

$$\chi_{K_{n,m}} = \sum_{i=0}^{n} \operatorname{sur}(n,i) \binom{x}{i} (x-i)^{m}$$

Proof. Refer to the vertices 1, 2, ..., n of $K_{n,m}$ as the positive vertices of $K_{n,m}$, and to the vertices -1, -2, ..., -m as the negative vertices of $K_{n,m}$.

Observe that for any color used in a proper coloring of $K_{n,m}$, that color can not appear on both a positive vertex and a negative vertex, since there is an edge connecting each positive vertex to each negative vertex. Hence, in a proper coloring of $K_{n,m}$, the set of colors used to color the positive vertices, and the set of colors used to color the negative vertices are disjoint.

Now, let $k \in \mathbb{N}$. Recall that the value $\chi_{K_{n,m}}(k)$ of the chromatic polynomial is equal to the number of proper k-colorings of $K_{n,m}$. We will count these k-colorings now. Let C = [k]; thus, a k-coloring of $K_{n,m}$ is a map from the set of vertices of $K_{n,m}$ to C. We can construct such a coloring f in the following four steps:

- Choose the number i of colors that will be used to color the positive vertices (so i will be |f([n])|). This is a number between 0 and n.
- Choose the set C_p of colors that will be used to color the positive vertices. This must be an *i*-element subset of the *k*-element set C. Thus, there are $\binom{k}{i}$ options here.

- Color the positive vertices with the colors from C_p , using each color at least once. This is tantamount to choosing a surjective map from the n-element set [n] to the i-element set C_p (sending each positive vertex to its color); thus, there are sur (n, i) options for it.
- Finally, color the negative vertices. Their colors need to be chosen from the k-i colors that don't belong to C_p (since the set of colors used to color the positive vertices, and the set of colors used to color the negative vertices must be disjoint in a proper k-coloring), but we don't have to use each color. Hence, this is tantamount to choosing a map from the m-element set $\{-1, -2, \ldots, -m\}$ to the k-i-element set $C \setminus C_p$. Thus, there are $(k-i)^m$ options at this step.

At the end of this algorithm, all vertices of $K_{n,m}$ are colored, and the resulting k-coloring is proper (because each edge connects a positive vertex with a negative vertex, and we've ensured that the latter vertex has a different color than the former). Hence, the number of all proper k-colorings of $K_{n,m}$ is $\sum_{i=0}^{n} {k \choose i} \sup(n,i) (k-i)^m$ (which we get by multiplying the numbers of options in the above algorithm). On the other hand, this is $\chi_{K_{n,m}}(k)$ (as we already showed). Comparing the two results, we find

$$\chi_{K_{n,m}}(k) = \sum_{i=0}^{n} {k \choose i} \operatorname{sur}(n,i) (k-i)^{m}.$$

Now we have proven this for each $k \in \mathbb{N}$. Thus, the two polynomials

$$\chi_{K_{n,m}}(x)$$
 and $\sum_{i=0}^{n} {x \choose i} \operatorname{sur}(n,i) (x-i)^m$

are equal to each other on each point $k \in \mathbb{N}$. This means that they are equal to each other on infinitely many points. Hence, they must be identical as polynomials (by the "polynomial identity trick"). In other words,

$$\chi_{K_{n,m}}(x) = \sum_{i=0}^{n} {x \choose i} \operatorname{sur}(n,i) (x-i)^{m} = \sum_{i=0}^{n} \operatorname{sur}(n,i) {x \choose i} (x-i)^{m}.$$

Part B

Exercise 0.5. For all $m, n \in \mathbb{N}$, it holds that

$$\sum_{i=0}^{n} \operatorname{sur}(n,i) {x \choose i} (x-i)^m = \sum_{i=0}^{m} \operatorname{sur}(m,i) {x \choose i} (x-i)^n.$$

Proof. Let $m, n \in \mathbb{N}$. We claim that the graphs $K_{n,m}$ and $K_{m,n}$ are identical up to the names of their vertices¹.

Indeed, the graph $K_{n,m}$ has vertices 1, 2, ..., n and -1, -2, ..., -m, with edges $\{i, -j\}$ for $i \in [n]$ and $j \in [m]$. If one renames each vertex k as -k, and updates the formula for edges such that it is consistent with the new names, then the resulting graph has the

¹That is, we can rename the vertices of $K_{n,m}$ in such a way that the resulting graph is $K_{m,n}$. In more rigorous language, we are saying that the graphs $K_{n,m}$ and $K_{m,n}$ are isomorphic.

vertices $-1, -2, \ldots, -n$ and $1, 2, \ldots, m$, with edges $\{-i, j\}$ for $i \in [n]$ and $j \in [m]$. But this is precisely the graph $K_{m,n}$. Hence, $K_{n,m}$ is equal to the graph $K_{m,n}$, except for the fact that the vertices are named differently.

And since the way the vertices of a graph are named does not in any way affect the number of proper colorings of a graph, it follows that $\chi_{K_{n,m}}(k) = \chi_{K_{m,n}}(k)$ for each $k \in \mathbb{N}$. In other words, the polynomials $\chi_{K_{n,m}}$ and $\chi_{K_{m,n}}$ are equal to each other on each point $k \in \mathbb{N}$. Hence, $\chi_{K_{n,m}} = \chi_{K_{m,n}}$.

In part (a), it was shown that $\chi_{K_{n,m}} = \sum_{i=0}^{n} \operatorname{sur}(n,i) \binom{x}{i} (x-i)^{m}$. And swapping m and n in this formula yields $\chi_{K_{m,n}} = \sum_{i=0}^{m} \operatorname{sur}(m,i) \binom{x}{i} (x-i)^{n}$. Thus, the equality $\chi_{K_{n,m}} = \chi_{K_{m,n}}$ rewrites as $\sum_{i=0}^{n} \operatorname{sur}(n,i) \binom{x}{i} (x-i)^{m} = \sum_{i=0}^{m} \operatorname{sur}(m,i) \binom{x}{i} (x-i)^{n}$.