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Math 4707 Spring 2018 (Darij Grinberg): midterm 3
due date: Wednesday 2 May 2018 at the beginning of class, or before that by email

or moodle
Please solve at most 3 of the 5 exercises!

Collaboration is not allowed!

Contents

0.1. Ordering acyclic digraphs . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2. Watersheds in digraphs . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.3. Arborescences of a wheel . . . . . . . . . . . . . . . . . . . . . . . . . 4
0.4. Back to undirected graphs . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.5. Chromatic polynomials of complete bipartite graphs . . . . . . . . . 6
0.6. Counting independent sets . . . . . . . . . . . . . . . . . . . . . . . . 8

Please write your name on each page. Feel free to use LaTeX (here is a sample
file with lots of amenities included).

Recall the following:

• If n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

• We use the Iverson bracket notation.

Keep in mind that everything you claim must be proven (unless it was stated in
class or on previous homeworks/midterms/solutions), even if the exercise doesn’t
explicitly say so.

0.1. Ordering acyclic digraphs

See Spring 2017 Math 5707 Homework set #2 (or our class notes from April 23)
for the definition of a “multidigraph”. We will refer to multidigraphs simply as
digraphs.

Definition 0.1. A digraph is said to be acyclic if it has no cycles.

For example, the digraph
1 α //

β
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is acyclic, whereas the digraph
1 α // 2

γ
��

3

β

OO

λ
(( 4

µ
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http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw-template.tex
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018apr23.pdf
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is not acyclic (both (1, α, 2, γ, 4, µ, 3, β, 1) and (3, λ, 4, µ, 3) are cycles of this latter
digraph).

[Acyclic digraphs are often called “dags”, apparently because the proper abbre-
viation “adgs” would be harder to pronounce.]

Exercise 1. Let D = (V, A, ϕ) be an acyclic digraph. Prove that there is a list
(v1, v2, . . . , vn) of elements of V such that

• each element of V appears exactly once in this list (v1, v2, . . . , vn);

• whenever i and j are two elements of [n] such that some arc of D has source
vi and target vj, we must have i < j.

(In other words, prove that there is a list consisting of all vertices of V, which
contains each of them exactly once, and with the property that the source of any
arc must appear before the target of this arc in the list. For example, if D is the
digraph (1), then there are two such lists: (1, 2, 3, 4) and (1, 3, 2, 4).)

[Hint: For each vertex v of D, we let Anc (v) be the set of all w ∈ V such
that there exists a path from w to v in D. The elements of Anc (v) are called
the ancestors of v (whence the notation Anc). Now, let (v1, v2, . . . , vn) be a list
of all vertices of D in the order of increasing |Anc (v)|, where ties are resolved
arbitrarily. Prove that this list does the job.]

0.2. Watersheds in digraphs

A simple digraph means a pair (V, A), where V is a finite set, and where A is a
subset of V × V. We identify every simple digraph (V, A) with the multidigraph
(V, A, ι), where ι is the map sending each (u, v) ∈ A to (u, v) ∈ V × V. Thus,
simple digraphs are the same as multidigraphs whose arcs are already pairs of
vertices, the first entry being the source and the second entry being the target. (So
the relation between simple digraphs and multidigraphs is the same as the relation
between simple graphs and multigraphs.)
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Example 0.2. Consider the following simple digraph:

1

�� ��

2

��

��

4

��
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3

�� ��

6

��

5

7

. (2)

Imagine a game chip placed initially at the vertex 1. The chip is allowed to move
along the arcs of the digraph (from source to target). For example, the chip can
first move along the arc (1, 2) to 2, then along the arc (2, 3) to 3, then along the
arc (3, 5) to 5. Once it arrives at 5, it can no longer move, because there are no
arcs with source 5. We say that 5 is a sink for this reason (see Exercise 2 below
for the precise definition).

Alternatively, the chip could have moved along the arc (1, 2) to 2, then along
the arc (2, 6) to 6, then along the arc (6, 7) to 7. At this point it would again be
stuck, since 7 is a sink.

Thus, the chip can get stuck in two different sinks, depending on the path it
takes. (It will always get stuck in some sink, because our digraph has no cycles.)

Now, consider the following simple digraph:
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. (3)

This time, any chip starting at any given vertex will necessarily get stuck at the
same sink no matter what path it takes (either the sink 1, if it started at one of
the vertices 1, 2, 3, 4, 5, 6, 7; or the sink 9, if it started at one of the vertices 8, 9, 10).
How can we show this without checking all possible paths?

One criterion, which is clearly necessary, is that there are no “watershed ver-
tices”: i.e., there is no vertex u from which the chip can take two different arcs
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(u, v) and (u, w) such that v and w “never meet again” (i.e., there exists no vertex
reachable both from v and from w). For example, the digraph (2) has a “water-
shed vertex” (namely, 3, because the arcs (3, 5) and (3, 6) lead to the vertices 5
and 6 which “never meet again”).

The next exercise claims that this condition is also sufficient (as long as our
digraph is acyclic). That is, if there are no “watershed vertices” and no cycles,
then the sink at which a chip gets stuck is uniquely determined by the vertex it
started at (rather than by the path it took).

Exercise 2. Let D be an acyclic multidigraph. A vertex v of D is said to be a sink
if there is no arc of D with source v.

If u and v are any two vertices of D, then:

• we write u −→ v if and only if D has an arc with source u and target v;

• we write u ∗−→ v if and only if D has a path from u to v.

The so-called no-watershed condition says that for any three vertices u, v and w
of D satisfying u −→ v and u −→ w, there exists a vertex t of D such that v ∗−→ t
and w ∗−→ t.

Assume that the no-watershed condition holds. Prove that for each vertex p of
D, there exists exactly one sink q of D such that p ∗−→ q.

[Hint: Induction on the “height” of p (that is, the length of a longest path
starting at p).]

0.3. Arborescences of a wheel

Definition 0.3. Let D be a digraph, and let u be a vertex of D.
(a) Then, D is called a u-arborescence if and only if for each vertex v of D, there

is a unique walk from u to v in D.
(b) Assume that D is a simple digraph (V, A). A u-arborescence of D means a

subset B of A such that the digraph (V, B) is a u-arborescence.

I believe that what I just called a “u-arborescence” is the same as what Vic called
“arborescence with root u”, except that maybe the arcs are pointing in the opposite
direction.

For an example, the simple digraph

1 //

��

2

3 //

��

5
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4 6



Math 4707 Spring 2018 (Darij Grinberg): midterm 3 page 5

is a 1-arborescence.

Exercise 3. Let m be a positive integer. Let Wm be the simple digraph with m + 1
vertices 0, 1, . . . , m and the following 3m arcs:

(1, 2) , (2, 3) , . . . , (m− 1, m) , (m, 1) ;
(0, i) for each i ∈ [m] ;
(i, 0) for each i ∈ [m] .

(Visually speaking, Wm consists of a cycle that traverses m vertices 1, 2, . . . , m, as
well as a “center vertex” 0 which is joined to each of these m vertices by one edge
in each direction. For example, here is how W6 looks like:

2 //

��
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.

And here is a 0-arborescence of W6:

2 // 3

1

@@

0 ++

xx

kk 4

��

6 5

.

)
(a) Compute the number of 0-arborescences of Wm.
(b) Let i ∈ [m]. Compute the number of i-arborescences of Wm.
[For example, if m = 3, then both answers are 7, and the 0-arborescenses of

W3 are

{(0, 1) , (0, 2) , (0, 3)} , {(0, 1) , (0, 2) , (2, 3)} ,
{(0, 1) , (0, 3) , (1, 2)} , {(0, 1) , (1, 2) , (2, 3)} ,
{(0, 2) , (0, 3) , (3, 1)} , {(0, 2) , (2, 3) , (3, 1)} ,
{(0, 3) , (1, 2) , (3, 1)} .

]
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0.4. Back to undirected graphs

In the following exercises, we will use the following definitions:

Definition 0.4. For each n ∈ N, we define the n-th path graph to be the simple
graph

({1, 2, . . . , n} , {{i, i + 1} | i ∈ {1, 2, . . . , n− 1}})
= ({1, 2, . . . , n} , {{1, 2} , {2, 3} , . . . , {n− 1, n}}) .

This graph is denoted by Pn. It has n vertices and n− 1 edges (unless n = 0, in
which case it has 0 edges). Here is a drawing of P4:

1 2 3 4 .

Definition 0.5. For each integer n > 1, we define the n-th cycle graph to be the
simple graph

({1, 2, . . . , n} , {{i, i + 1} | i ∈ {1, 2, . . . , n− 1}} ∪ {n, 1})
= ({1, 2, . . . , n} , {{1, 2} , {2, 3} , . . . , {n− 1, n} , {n, 1}}) .

This graph is denoted by Cn. It has n vertices and

{
n, if n ≥ 3;
1, if n = 2

edges. Here is

a drawing of C6:
1 2

6 3

5 4

.

0.5. Chromatic polynomials of complete bipartite graphs

For the definition and properties of the chromatic polynomial of a simple graph,
see Exercise 4 on Spring 2017 Math 5707 midterm #2. In a nutshell:

• If G = (V, E) is a simple graph, then the chromatic polynomial χG of G is a
polynomial in a single indeterminate x (with integer coefficients) defined by

χG = ∑
F⊆E

(−1)|F| xconn(V,F).

(Here, as usual, conn H denotes the number of connected components of any
graph H.)

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt2s.pdf
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We could easily extend this definition to multigraphs, but I don’t want to
carry the extra notation around.

• The main property of chromatic polynomials in the following: If G = (V, E)
is a graph, and if k ∈ N, then χG (k) is the number of all proper k-colorings1

of G. Note that this property uniquely determines χG, because any polyno-
mial in a single indeterminate x is uniquely determined by its values on all
nonnegative integers.

• For any n ∈ N, the complete graph Kn (that is, the simple graph with n ver-
tices 1, 2, . . . , n and all possible edges {i, j} with 1 ≤ i < j ≤ n) has chromatic
polynomial χKn = x (x− 1) · · · (x− n + 1).

• If T is a tree with n vertices, then χT = x (x− 1)n−1. Thus, in particular, for
any positive integer n, the path graph Pn (see Definition 0.4) has characteristic
polynomial χPn = x (x− 1)n−1 (since it is a tree with n vertices).

• If n > 1 is an integer, then the chromatic polynomial of the cycle graph Cn
(see Definition 0.5) is χCn = (x− 1)n + (−1)n (x− 1). (This is Exercise 2 (a)
on Spring 2017 Math 5707 midterm #3.)

Definition 0.6. Let n ∈ N and m ∈ N. The graph Kn,m is defined to be the
simple graph with n + m vertices

1, 2, . . . , n,−1,−2, . . . ,−m

and nm edges
{i,−j} for all i ∈ [n] and j ∈ [m] .

(Note that (Kn,m; {1, 2, . . . , n} , {−1,−2, . . . ,−m}) is a bipartite graph, called the
complete bipartite graph.)

For example, the graph K2,3 is

1 2

−1 −2 −3

.

Exercise 4. Let n ∈N and m ∈N.
(a) Prove that the chromatic polynomial of Kn,m is

χKn,m =
n

∑
i=0

sur (n, i)
(

x
i

)
(x− i)m .

1Recall that a k-coloring of G means a map f : V → {1, 2, . . . , k}. (The image f (v) of a vertex v ∈ V
under this map is called the color of v under this k-coloring f .) A k-coloring f of G is said to
be proper if each edge {u, v} of G satisfies f (u) 6= f (v). (In other words, a k-coloring f of G is
proper if and only if no two adjacent vertices share the same color.)

http://www.cip.ifi.lmu.de/~grinberg/t/17s/mt3s-ogden.pdf
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(Recall that sur (n, i) denotes the number of all surjections from [n] to [i].)
(b) Prove that

n

∑
i=0

sur (n, i)
(

x
i

)
(x− i)m =

m

∑
i=0

sur (m, i)
(

x
i

)
(x− i)n .

Remark 0.7. Applying Exercise 4 (b) to n = 0, we recover the identity

xm =
m

∑
i=0

sur (m, i)
(

x
i

)
,

which was Theorem 3.15 in the class of February 21.

0.6. Counting independent sets

Now let us return to independent sets of graphs.

Definition 0.8. Let G be a graph.
(a) An independent set of G means a set S of vertices of G such that no two

distinct elements of S are adjacent.
(b) We let ind G be the number of all independent sets of G.

There are no good formulas for ind G in general, but we can always try to com-
pute it when G is a particularly simple type of graph. For example, if G is the path
graph Pn for some n ∈N, then the independent sets of G are precisely the lacunar
subsets of [n], and thus ind G is the Fibonacci number fn+2 (by Proposition 1.22 in
the February 5 class). The independent sets of the cycle graph Cn are the lacunar
subsets of [n] which don’t contain 1 and n simultaneously (i.e., they can contain at
most one of 1 and n). The following definition will help counting them:

Definition 0.9. Let G be a graph. Let S be a set of vertices of G. Then, G \ S will
denote the graph obtained from G by removing all vertices in S (along with all
edges that use these vertices).

(More rigorously: If G is a simple graph (V, E), then G \ S is the simple graph
(V \ S, E′), where E′ is the set of all edges e ∈ E such that no endpoint of
e belongs to S. If G is a multigraph (V, E, ϕ), then G \ S is the multigraph
(V \ S, E′, ϕ |E′), where E′ is the set of all edges e ∈ E such that no endpoint of e
belongs to S.)

For example, if G is the graph

1 3 5

2 4 6

,

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb21.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb5.pdf
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then G \ {2, 3} is the graph
1 5

4 6

.

Exercise 5. (a) Let v be a vertex of a graph G. Let N (v) be the set of all neighbors
of v. Let N+ (v) = {v} ∪ N (v). Prove that

ind G = ind (G \ {v}) + ind
(
G \

(
N+ (v)

))
.

(b) Compute ind (Cn) for each n ≥ 2 (in terms of the Fibonacci sequence).

Remark 0.10. (a) It is instructive to see what Exercise 5 (a) says when G is a path
graph. Let n > 1 be an integer, and let G be the path graph Pn. Let v ∈ [n] (so
that v is a vertex of G). If v = n, then G \ {v} = Pn−1 and G \ (N+ (v)) = Pn−2
(since N+ (v) = {n, n− 1} in this case), so that Exercise 5 (a) yields

ind (Pn) = ind (Pn−1) + ind (Pn−2) .

This is precisely the recurrence equation of the Fibonacci numbers. Thus, we
obtain a new (inductive) proof of the fact that

ind (Pn) = fn+2 for each n ∈N. (4)

However, we can also apply Exercise 5 (a) to another vertex v. Let v ∈
{2, 3, . . . , n− 1}. Then, G \ {v} is a disconnected graph looking as follows:

1 2 · · · v− 1 v + 1 v + 2 · · · n .

We can treat this graph as a “disjoint union” of two path graphs, one of which
is Pv−1 while the other is Pn−v “in all but name” (its vertices are called v +
1, v + 2, . . . , n rather than 1, 2, . . . , n − v, but otherwise it is identical to Pn−v).
To construct an independent set of G \ {v}, we thus just need to choose an
independent set of the former path graph Pv−1 and an independent set of the
latter path grad Pn−v (with vertices renamed as v + 1, v + 2, . . . , n), and take the
union of these two independent sets. Hence,

ind (G \ {v}) = ind (Pv−1) · ind (Pn−v) .

A similar argument shows that the graph G \ (N+ (v)) has the form

1 2 · · · v− 2 v + 2 v + 3 · · · n

(again, a “disjoint union” of two path graphs, which this time are Pv−2 and
Pn−v−1), and thus

ind
(
G \

(
N+ (v)

))
= ind (Pv−2) · ind (Pn−v−1) .
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Hence, Exercise 5 (a) becomes

ind G = ind (G \ {v})︸ ︷︷ ︸
=ind(Pv−1)·ind(Pn−v)

+ ind
(
G \

(
N+ (v)

))︸ ︷︷ ︸
=ind(Pv−2)·ind(Pn−v−1)

= ind (Pv−1) · ind (Pn−v) + ind (Pv−2) · ind (Pn−v−1) .

Since G = Pn, this rewrites as

ind (Pn) = ind (Pv−1) · ind (Pn−v) + ind (Pv−2) · ind (Pn−v−1) .

Using the equality (4), we can rewrite this as

fn+2 = f(v−1)+2 · f(n−v)+2 + f(v−2)+2 · f(n−v−1)+2 = fv+1 fn−v+2 + fv fn−v+1.

Applying this to v = a and n = a + b− 1, we conclude that

fa+b+1 = fa+1 fb+1 + fa fb for all a ∈N and b ∈N.

(To be more precise, we have only proven this in the case when a > 1 and b > 1;
but all other cases are easy.) Thus, we have recovered the claim of Exercise 3 (e)
on midterm #1.

(b) We can similarly count independent sets of a given size. For Cn, we
find that the number of independent sets of Cn having size k (for a given

k ∈ {0, 1, . . . , n− 1}) is
n

n− k

(
n− k

k

)
. This can also be proven combinatorially;

see [Stan11, Lemma 2.3.4].
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