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EXERCISE 1

Exercise 0.1. Let n and d be positive integers. Then the number of first-even n-tuples in
1
[d]™ is equal to §d(d"*1 —(d—2)"Y).

Proof. Fix d € N with d > 0. For each n > 1, let t,, be the number of first-even n-tuples in
)"

We will first find a recursive formula for ¢,. Let n € N with n > 2. Thus, t, is the
number of first-even n-tuples in [d]". Let s be one such n-tuple. We examine two cases
depending on the value of the last entry of s.

e CASE 1: The last entry of s is equal to the first entry of s: If this is the case, then
if we consider the first n — 1 entries of s as an (n — 1)-tuple, that tuple will have the
same first entry as s. And further, that tuple must have an odd number of occurrences
of that first entry. Hence, that (n — 1)-tuple is not first-even. In fact, one can notice
that s is formed by taking any (n — 1)-tuple which is not first-even, and concatenating
the first entry of that tuple to the end. Therefore, there must be the same number
of first-even n-tuples in [d]” which have the same first and last entries as there are
(n—1)-tuples in [d]"~! which are not first-even. Since a tuple must either be first-even
or not first-even, and there are d"~! total (n — 1)-tuples in [d]"~!, then the number
of tuples which are not first-even in [d]"! is equal to d"~' —¢,_;. Hence, there are
d" ! —t,_; first-even n-tuples which have the same first and last entry.
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e CASE 2: The last entry of s is not equal to the first entry of s: If this is the case, then
we consider the first n — 1 entries of s as an (n — 1)-tuple. Since the last entry of s
is not equal to the first entry of s, then the first (n — 1) entries of s form a first-even
(n — 1)-tuple as well, of which there are ¢, _; of. Clearly, s can be formed by taking
any such first-even (n — 1)-tuple and concatenating an element of [d] to its end which
is not equal to the first entry, of which there are (d — 1). Hence, there are a total
of (d — 1)t,—; different first-even n-tuples in [d|" which have different first and last
entries.

And since, for any first-even n-tuple in [d]", the last entry must either be equal to the
first entry, or not equal to the first entry, the total number of first-even n-tuples must be
equal to the sum of those which have the same first and last entry, and those which have
different first and last entries. So we can therefore conclude that

ty= (""" =ty 1)+ (d— Dty =d" "+ (d—2)t, 1. (1)
Using this fact, we will now verify the claim of the exercise by induction. Let A(n)

represent the statement “The number of first-even n-tuples in [d]" is equal to éal(d”_1 —(d—

2)"~1)”. We will first show that A(1) holds. If n = 1, then for any 1-tuple in [d]', there is
only one entry, which is equal to the first entry. Hence, there are zero first-even 1-tuples in

1 1
[d]'. And observe that if n = 1, then éd(dn_1 —(d—-2)"1) = §d(1 — 1) = 0. Hence, if

1
n = 1, the number of first-even n-tuples in [d]" is §d(d”_1 —(d—2)"1), so A(1) holds.

Now suppose that, for some positive n € N, A(n) holds. We will show that A(n + 1)
holds. Our induction hypothesis says that A(n) holds. In other words, the number of first-

1 1
even n-tuples in [d]" is equal to §d(d”_1 — (d —2)"1). Equivalently, t, = §d(d”_1 —(d —
2)n1).
Now, applying (1)) to n + 1 instead of n, we get

= d" +(d— 2)%d(d”1 —(d—2)" (since tn = %d<d’” —(d- 2>"1)>

=d"+ (d—2) %dd"‘l —(d—2) %d (d—2)"""
:d“+%(d—2)d”— %d(d—2)”

= %dd” - %d (d—2)" (since d" + % (d—2)d" = %dd”)
- %d(d" —(d—-2))

= %al(d(”“)_1 — (d — 2)(mD=1y,

1
In other words, the number of first-even (n+ 1)-tuples in [d]"™! is equal to éd(d(”“)*1 -
(d —2)"*D=1): hence, A(n + 1) holds.
We now have shown that A(1) holds, and that A(n) implies A(n + 1). Therefore, by
induction, A(n) holds for all positive n € N. In other words, for all positive n € N, the
1
number of first-even n-tuples in [d]™ is equal to éal(d”*1 —(d—2)"71).

]
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EXERCISE 3

Exercise 0.2. Let £ < a < b be three positive integers. Then,

E—1<~ 1 1 1

CEG) 6o ()

Proof. For any integer n with a < n < b, we have

1 B 1 B (k—1)! (k—1)!
n—1 n T n—-1)(n—=2)--(n—k+1) ()n—-1)---(n—k+2)
G ()
(k—1)In (k=1 n—-k+1)

:(n)(n—l)---(n—k+1) n)n—1)---(n—k+1)
(k=1n—(n—-k+1))

() n—1)---(n—k+1)

(k-1 (k1)

Cmn—=1) - (n—k+1)

<k;1)mxn—wfﬂn—k+n

5

Therefore,

b

b
kE—1 1 k—1 1 1 1 1 1
k — (n _;( k ) n _; n—1\ n T (a—-1\ b
k k k—1 E—1 kE—1 kE—1
by the telescope principle. (All the denominators are nonzero, since the relevant values of
n satisfy n > a > k and since a — 1 and b surpass k — 1.) O

EXERCISE 4

The solution will rely on the following lemma:

Lemma 0.3. Let n € N. Let 0 € S,, be a derangement which is also an involution. Then
all of the cycles in the cycle digraph of o are 2-cycles.

Proof. Let i € [n]. Then, in the cycle digraph of o, i is either part of a cycle of length 1, or
part of a cycle of length 2, or part of a cycle of length greater than 2. Suppose that ¢ was
part of a cycle in ¢ which had length greater then 2. Then this implies that o(o (7)) # .
But since o is an involution, we know that o(o(i)) = ¢, which is a contradiction. Likewise,
if ¢ were part of a 1-cycle, then we would have that () = ¢. But since o is a derangement,
we know that o (i) # 4, which is a contradiction.

Therefore, the only valid length of a cycle in the cycle digraph of o that ¢ could be part
of is 2. Since i could represent any element of [n], every element of [n] is in a 2-cycle in the
cycle digraph of o. Hence, every cycle in the cycle digraph of ¢ is a 2-cycle. O

Nathaniel Gorski (edited by Darij Grinberg),3



Solutions to Midterm #2 page 4 of @

PART A

Exercise 0.4. Let n € N be odd. Then there exist no derangements of [n] which are
involutions.

Proof. Let n € N be odd. Suppose, to the contrary, that there existed a derangement o of
[n] which was an involution. Since o is a derangement, it is a permutation. Thus, consider
the cycle digraph of 0. Each element of [n] is featured in exactly one cycle of this digraph.
Thus, the sum of the lengths of the cycles in the cycle digraph is equal to n. Since n is odd,
therefore, the sum of the lengths of the cycles must be odd. From the lemma, however, each
cycle must have length 2, so the sum of all their lengths must be a multiple of 2, which is

even. This is a contradiction. O
PART B
Exercise 0.5. Let n € N be even. Then the number of derangements of [n] which are
!
involutions is #71/2)'

Proof. In the lemma, we showed that the cycle digraph of any derangement which is an
involution must contain only 2-cycles. We will now show that any permutation for which
every element in the domain is part of a 2-cycle is both a derangement and an involution.
Indeed, let o € S, be a permutation such that every element in [n] lies in a 2-cycle in the
cycle digraph of . Each i € [n] is part of a 2-cycle in the cycle digraph of o, and thus
satisfies o(i) # i; hence, o is a derangement. And also, each i € [n] is part of a 2-cycle in
the cycle digraph of o, and thus satisfies o(o(i)) = i; hence, o is an involution.

Thus, every derangement which is also an involution has a cycle digraph composed only
of 2-cycles, and conversely, every permutation which has a cycle digraph composed only of
2-cycles is both a derangement and an involution. Therefore, the number of derangements
which are also involutions is equal to the number of permutations which have a cycle digraph
composed only of 2-cycles.

Now let A be the set of derangements of [n] which are also involutions, and let B be
the set of perfect matchings of [n|. (See Homework set #3 for the definition of a perfect
matching.) Then we claim that there is a bijection from A to B.

Let a: A — B be defined such that, if 0 € A, then a maps ¢ to the perfect matching

{all cycles in the cycle digraph of o}

of [n] (where we regard each cycle as the set of all elements belonging to this cycle). This is
well-defined, since each cycle in the cycle digraph of o has exactly 2 elements (because o is
a derangement which is also an involution, and thus has a cycle digraph composed only of
2-cycles), and because each element of [n] belongs to exactly one cycle in the cycle digraph

of o.
1 2 3 45 6

[For example: If n = 6 and o0 = < 3615 4 9 ), then a () = {{1,3},{2,6},{4,5}} ]

And let § : B — A be defined such that, if p = {{p1, a1}, {p2, 2}, . . {pr,ax}} € B
(with p1,pa, ..., Pk, q1, G2, - - -, @ all being distinct), then 8 maps p to the derangement of
[n] which sends p1,p2, ..., Pks G152, - - -, Gk 1O G1,G2, - - -, Qrs D1, P2, - - - , Pk, Tespectively. (This
latter derangement can also be computed as the composition ¢,, 4, 0 tp, 4, © =+ 0 tp g Of
transpositions.) Because each element of [n] is contained in a pair in p, then each element
of [n] will be contained in a 2-cycle of g (p), so 5(p) € A and [ is well defined.

It is easy to see that ao f =id and o a =id.
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Since the maps o and ( are well-defined and mutually inverse, they are bijections be-
tween the set of derangements of [n] which are also involutions, and the set of perfect
matchings of [n]. So there are an equal number of each. Since n is even, then there exists
some a € N such that n = 2a. Consider this a. Exercise 3 (c) of homework set 3 shows that

2a)!
@) ;- In other words, the number of

2¢(a)!

. And thus, the number of derangements of

the number of perfect matchings of [2a] is equal to

n!
2(n/2)(n /2)!
n!

2072 (n/2)1

perfect matchings of [n] is equal to

[n] which are also involutions is equal to O

EXERCISE 6

Exercise 0.6. Let n be a positive integer. Then the sum of the lengths of all compositions
of nis (n+1)2" 2.

Proof. Corollary 1.16b from the class of January 22nd says that, for any m € N, we have

i (T) = om. 2)

=0

A composition of n can take any size k such that 1 < k < n (since n is positive). If
n—1

k € [n] is given, then the number of compositions of n into k parts is k1) Since

a composition of n into k parts has length k, the total length of all compositions of n

n—1
into k ts is k
into k parts is (k—l

n n—1
k . But
Sk y)

>. And hence, the sum of the lengths of all compositions of n is
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_ (n(n—l)(n—2) (n—k+1)
o (k—1)!
m=—1(Mn-2)n—=3)---(n—k+1)
— b (k= 1)! )
B " m=—1)(n-2)---(n—k+1) (n—2)(n—23)---(n—k)
= (v = S e

- o772 (2 ( 1>n—2
= - n_

p k—1 k—2 k—1
) n—1\ [(n—2 n n—2
e -1) T \k-1 k-2

B - n—2 n n—2
o \"\k-2) T \k-1

k=1

" /n—2 -

(i-2) 2 (1)

k=1 k=1
If we substitute i := k — 2 and j := k — 1 in the two sums, the right hand side of this

equality becomes
n—2 n—9 n—1 n—9
2 ()20

i=—1 j=0

Il
N

And if we set m := n — 2, then this further becomes

(502 (02 ()- (1)

=0+n2"4+2"40 (here, we used (2)) twice)

=(n+1)2"
= (n+1)2"2
n —1
Hence, we have that »_ k (n 1) = (n+1)2"72. And since the sum of the lengths of
= _
all compositions of n is Z ( ), it is therefore also (n + 1)2"2. O
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