Math 4707 Spring 2018 (Darij Grinberg): midterm 2 [corrected version]

due date: Wednesday 4 April 2018 at the beginning of class, or before that by email or moodle

Please solve at most 4 of the 6 exercises! Collaboration is not allowed!

Contents

0.1.	Counting first-even tuples	1
0.2.	Counting legal paths (generalization of Catalan numbers)	1
0.3.	Scary fractions	3
0.4.	Derangements that are involutions	3
0.5.	Hypergreen permutations	3
0.6.	Counting the parts of all compositions	4

Please write your name on each page. Feel free to use LaTeX (here is a sample file with lots of amenities included).

Recall the following:

- If $n \in \mathbb{N}$, then [n] denotes the n-element set $\{1, 2, \dots, n\}$.
- We use the Iverson bracket notation.

0.1. Counting first-even tuples

Exercise 1. Let *n* and *d* be two positive integers.

An n-tuple $(x_1, x_2, ..., x_n) \in [d]^n$ will be called *first-even* if its first entry x_1 occurs in it an even number of times (i.e., the number of $i \in [n]$ satisfying $x_i = x_1$ is even). (For example, the 3-tuples (1,5,1) and (2,2,3) are first-even, while the 3-tuple (4,1,1) is not.)

Prove that the number of first-even *n*-tuples in $[d]^n$ is $\frac{1}{2}d\left(d^{n-1}-(d-2)^{n-1}\right)$.

0.2. Counting legal paths (generalization of Catalan numbers)

Recall the notion of a *lattice path*, defined in Midterm 1. (Lattice paths have up-steps and right-steps.)

We say that a point $(x, y) \in \mathbb{Z}^2$ is *off-limits* if y > x. (Thus, the off-limits points are the ones that lie strictly above the x = y diagonal in Cartesian coordinates.)

A lattice path $(v_0, v_1, ..., v_n)$ is said to be *legal* if none of the points $v_0, v_1, ..., v_n$ is off-limits.

For example, the lattice path drawn from (0,0) to (4,5) drawn in the picture

 1 is not legal, since it contains the off-limits point (3,4). Meanwhile, the lattice path from (0,0) to (4,4) drawn in the picture

is legal.

For any $n \in \mathbb{Z}$ and $m \in \mathbb{Z}$, we let $L_{n,m}$ be the number of all legal lattice paths from (0,0) to (n,m). Clearly, $L_{n,m}=0$ if any of n and m is negative. Also, $L_{n,m}=0$ if m > n (because if m > n, then the point (n,m) is off-limits).

Exercise 2. (a) Prove that $L_{n,m} = L_{n-1,m} + L_{n,m-1}$ for any $n \in \mathbb{Z}$ and $m \in \mathbb{Z}$ satisfying $n \ge m$ and $(n,m) \ne (0,0)$.

(b) Prove that

$$L_{n,m} = \binom{n+m}{m} - \binom{n+m}{m-1}$$

for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$ satisfying $n \ge m - 1$.

[The requirement $n \ge m-1$ as opposed to $n \ge m$ is not a typo; the equality still holds for n = m-1, albeit for fairly simple reasons.]

(c) Prove that
$$L_{n,m} = \frac{n+1-m}{n+1} \binom{n+m}{m}$$
 for all $n \in \mathbb{N}$ and $m \in \mathbb{N}$ satisfying $> m-1$.

$$n \ge m-1.$$
(d) Prove that $L_{n,n} = \frac{1}{n+1} \binom{2n}{n}$ for any $n \in \mathbb{N}$.

¹Formally speaking, this lattice path is the list ((0,0),(1,0),(1,1),(2,1),(3,1),(3,2),(3,3),(3,4),(4,4),(5,4)).

[You cannot use generating functions in this exercise.]

[Hint: You may know part (d) from Vic's lectures, but the whole exercise can be solved by induction without recourse to any of what Vic did – I even think this is the easiest way to solve it!]

0.3. Scary fractions

Exercise 3. Let k, a and b be three positive integers such that $k \le a \le b$. Prove that

$$\frac{k-1}{k} \sum_{n=a}^{b} \frac{1}{\binom{n}{k}} = \frac{1}{\binom{a-1}{k-1}} - \frac{1}{\binom{b}{k-1}}.$$

0.4. Derangements that are involutions

Definition 0.1. Let σ be a permutation of a set X.

- (a) We say that σ is a *derangement* if and only if each $x \in X$ satisfies $\sigma(x) \neq x$.
- **(b)** We say that σ is an *involution* if and only if $\sigma \circ \sigma = \operatorname{id}$ (that is, each $x \in X$ satisfies $\sigma(\sigma(x)) = x$).

For example, the permutation α of the set [5] that sends 1,2,3,4,5 to 3,5,1,4,2 is

an involution (it satisfies
$$\alpha\left(\underbrace{\alpha\left(1\right)}_{=3}\right)=\alpha\left(3\right)=1$$
 and $\alpha\left(\underbrace{\alpha\left(2\right)}_{=5}\right)=\alpha\left(5\right)=2$ and

similarly α (α (x)) = x for all other $x \in [5]$), but not a derangement (since α (4) = 4). On the other hand, the permutation β of the set [6] that sends 1,2,3,4,5,6 to 3,4,2,1,6,5 is a derangement (it satisfies β (x) \neq x for all $x \in [6]$), but not an involution (since β (β (1)) \neq 1).

Exercise 4. Let $n \in \mathbb{N}$. Prove the following:

- (a) If n is odd, then there exist no derangements of [n] that are involutions.
- (b) If n is even, then the number of derangements of [n] that are involutions is $\frac{n!}{2^{n/2}(n/2)!}$.

[**Hint:** What does the number $\frac{n!}{2^{n/2}(n/2)!}$ remind you of?]

0.5. Hypergreen permutations

Exercise 5. Let $n \in \mathbb{N}$ be such that $n \geq 2$. We shall call a permutation $\pi \in S_n$ hypergreen if it satisfies both $\pi(1) < \pi(2)$ and $\pi^{-1}(1) < \pi^{-1}(2)$.

(a) Prove that any $\pi \in S_n$ satisfying $\pi(1) = 1$ must be hypergreen.

(b) Prove that the number of hypergreen permutations $\pi \in S_n$ that **do not** satisfy $\pi(1) = 1$ is $\binom{n-2}{2}^2 (n-4)!$. (Here, $\binom{n-2}{2}^2 (n-4)!$ is understood to be 0 when n < 4.)

[**Hint:** For **(b)**, argue first that if $\pi \in S_n$ is hypergreen but does not satisfy $\pi(1) = 1$, then the four numbers $1, 2, \pi(1), \pi(2)$ are distinct.]

0.6. Counting the parts of all compositions

Recall that if $n \in \mathbb{N}$, then a *composition* of n means a finite list (a_1, a_2, \dots, a_k) of positive integers such that $a_1 + a_2 + \dots + a_k = n$.

For example, the compositions of 3 are (3), (2,1), (1,2) and (1,1,1).

The *length* of a composition $(a_1, a_2, ..., a_k)$ of n is defined to be k.

Exercise 6. Let n be a positive integer. Prove that the sum of the lengths of all compositions of n is $(n + 1) 2^{n-2}$.