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Let us recall that (
m
n

)
= 0 (1)

for every m ∈ N and n ∈ N satisfying m < n. (This is exactly [Grinbe16, Proposi-
tion 3.6].)

We also recall the recurrence relation of the binomial coefficients. It says that(
n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1

k

)
for all n ∈ Q and k ∈ Z.

0.1. More on the Sierpinski triangle in Pascal’s triangle

Exercise 1. Let n ∈N.

(a) Prove that the integer
(

2n − 1
b

)
is odd for each b ∈ {0, 1, . . . , 2n − 1}.

(b) Prove that the integer
(

2n

b

)
is even for each b ∈ {1, 2, . . . , 2n − 1}.

[Here, the set {0, 1, . . . , 2n − 1} means the set of all integers k with 0 ≤ k ≤
2n − 1, and the set {1, 2, . . . , 2n − 1} means the set of all integers k with 1 ≤ k ≤
2n − 1.]

I know of several solutions for Exercise 1. The shortest one (though seemingly
somewhat unmotivated) relies on the following binomial-coefficient identity:

Proposition 0.1. Let n ∈N and m ∈N. Then,

m

∑
r=0

(−1)r
(

n
r

)
= (−1)m

(
n− 1

m

)
.
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Proposition 0.1 is the particular case of [Grinbe16, Lemma 3.47] obtained by
setting k = 0. But it also falls prey to a straightforward induction, which should be
routine by now:

Proof of Proposition 0.1. We shall prove Proposition 0.1 by induction on m:

Induction base: We have
0
∑

r=0
(−1)r

(
n
r

)
= (−1)0︸ ︷︷ ︸

=1

(
n
0

)
︸︷︷︸
=1

= 1. Comparing this with (−1)0︸ ︷︷ ︸
=1

(
n− 1

0

)
︸ ︷︷ ︸

=1

=

1, we obtain
0
∑

r=0
(−1)r

(
n
r

)
= (−1)0

(
n− 1

0

)
. In other words, Proposition 0.1 holds for m = 0.

Induction step: Let µ ∈ N. Assume that Proposition 0.1 holds for m = µ. We must prove that
Proposition 0.1 holds for m = µ + 1.

We have assumed that Proposition 0.1 holds for m = µ. In other words, we have

µ

∑
r=0

(−1)r
(

n
r

)
= (−1)µ

(
n− 1

µ

)
.

Now,

µ+1

∑
r=0

(−1)r
(

n
r

)
=

µ

∑
r=0

(−1)r
(

n
r

)
︸ ︷︷ ︸
=(−1)µ

(
n− 1

µ

)
+ (−1)µ+1

(
n

µ + 1

)
︸ ︷︷ ︸

=

(
n− 1

(µ + 1)− 1

)
+

(
n− 1
µ + 1

)
(by the recurrence relation of the binomial coefficients)

= (−1)µ︸ ︷︷ ︸
=−(−1)µ+1

(
n− 1

µ

)
+ (−1)µ+1


(

n− 1
(µ + 1)− 1

)
︸ ︷︷ ︸

=

(
n− 1

µ

)
+

(
n− 1
µ + 1

)


=
(
− (−1)µ+1

)(n− 1
µ

)
+ (−1)µ+1

((
n− 1

µ

)
+

(
n− 1
µ + 1

))
= − (−1)µ+1

(
n− 1

µ

)
+ (−1)µ+1

(
n− 1

µ

)
+ (−1)µ+1

(
n− 1
µ + 1

)
= (−1)µ+1

(
n− 1
µ + 1

)
.

In other words, Proposition 0.1 holds for m = µ + 1. This completes the induction step. Thus,
Proposition 0.1 is proven by induction.

Actually, Proposition 0.1 holds for all n ∈ Q (not just for n ∈ N), and the same
proof that we gave above applies in this generality.

Our next is ingredient is Exercise 4 from Math 4707 Homework Set 1, which we
restate as a proposition:

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw1s.pdf
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Proposition 0.2. Let n ∈ N. Let a and b be two elements of {0, 1, . . . , 2n − 1}.
Then, (

2n + a
b

)
≡
(

a
b

)
mod 2 and (2)(

2n + a
2n + b

)
≡
(

a
b

)
mod 2. (3)

[Here, “{0, 1, . . . , 2n − 1}” means the set of all integers k satisfying 0 ≤ k ≤
2n − 1.]

We recall also the following easy fact (which appeared as Lemma 0.12 (a) in the
solutions to Math 4707 Homework Set 1):

Lemma 0.3. Let b ∈ Z. Then,
(

0
b

)
= [b = 0]. (Here, the Iverson bracket notation

is being used.)

We can now easily deal with Exercise 1:

Solution to Exercise 1. (b) Let b ∈ {1, 2, . . . , 2n − 1}. We have 0 ∈ {0, 1, . . . , 2n − 1}
and b ∈ {1, 2, . . . , 2n − 1} ⊆ {0, 1, . . . , 2n − 1}. Hence, (2) (applied to a = 0) yields(

2n + 0
b

)
≡
(

0
b

)
mod 2.

Lemma 0.3 yields
(

0
b

)
= [b = 0]. But b 6= 0 (since b ∈ {1, 2, . . . , 2n − 1}). Hence,

[b = 0] = 0. Finally, 2n = 2n + 0. Therefore,(
2n

b

)
=

(
2n + 0

b

)
≡
(

0
b

)
= [b = 0] = 0 mod 2.

In other words, the integer
(

2n

b

)
is even. This solves Exercise 1 (b).

(a) Let b ∈ {0, 1, . . . , 2n − 1}. Thus, b ≤ 2n − 1. Now,(
2n

r

)
≡ 0 mod 2 for each r ∈ {1, 2, . . . , b} . (4)

[Proof of (4): Let r ∈ {1, 2, . . . , b}. Thus, r ∈ {1, 2, . . . , b} ⊆ {1, 2, . . . , 2n − 1} (since
b ≤ 2n − 1). Hence, Exercise 1 (b) (applied to r instead of b) yields that the integer(

2n

r

)
is even. In other words,

(
2n

r

)
≡ 0 mod 2. This proves (4).]

The integer (−1)b is odd (because it is either 1 or −1). In other words, (−1)b ≡
1 mod 2.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw1s.pdf
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Proposition 0.1 (applied to 2n and b instead of n and m) yields

b

∑
r=0

(−1)r
(

2n

r

)
= (−1)b︸ ︷︷ ︸
≡1 mod 2

(
2n − 1

b

)
≡
(

2n − 1
b

)
mod 2.

Hence, (
2n − 1

b

)
≡

b

∑
r=0

(−1)r
(

2n

r

)
= (−1)0︸ ︷︷ ︸

=1

(
2n

0

)
︸ ︷︷ ︸
=1

+
b

∑
r=1

(−1)r
(

2n

r

)
︸ ︷︷ ︸
≡0 mod 2
(by (4))

≡ 1 +
b

∑
r=1

(−1)r 0︸ ︷︷ ︸
=0

= 1 mod 2.

In other words, the integer
(

2n − 1
b

)
is odd. This solves Exercise 1 (a).

Remark 0.4. The above solution of Exercise 1 (a) appears to come out of left field; how did I
come up with Proposition 0.1, and how did I think of applying it to 2n and b instead of n and m
?

Here is the motivation: Having solved part (b), I wanted to deduce part (a) from it. This
necessitates finding a formula for the entries in the (2n − 1)-st row of Pascal’s triangle in terms
of entries in the 2n-th row. To get such a formula, I try to reorganize the recurrence relation of
the binomial coefficients as (

2n − 1
b

)
=

(
2n

b

)
−
(

2n − 1
b− 1

)
. (5)

But now, I have a
(

2n − 1
b− 1

)
on the right hand side, which is another entry on the (2n − 1)-st row.

I rewrite this
(

2n − 1
b− 1

)
again using the recurrence relation of the binomial coefficients, obtaining(

2n − 1
b− 1

)
=

(
2n

b− 1

)
−
(

2n − 1
b− 2

)
. Substituting into (5), I obtain(

2n − 1
b

)
=

(
2n

b

)
−
((

2n

b− 1

)
−
(

2n − 1
b− 2

))
=

(
2n

b

)
−
(

2n

b− 1

)
+

(
2n − 1
b− 2

)
.

Now, I have a
(

2n − 1
b− 2

)
on the right hand side, which I rewrite using the recurrence relation in

the same way... and so on. I obtain the following chain of equalities:(
2n − 1

b

)
=

(
2n

b

)
−
(

2n − 1
b− 1

)
=

(
2n

b

)
−
(

2n

b− 1

)
+

(
2n − 1
b− 2

)
=

(
2n

b

)
−
(

2n

b− 1

)
+

(
2n

b− 2

)
−
(

2n − 1
b− 3

)
= · · · .



Math 4707 Spring 2018 (Darij Grinberg): midterm 1 page 5

I end this chain once the binomial coefficient with the 2n − 1 on top is
(

2n − 1
−1

)
. The result is

(
2n − 1

b

)
=

(
2n

b

)
−
(

2n

b− 1

)
+

(
2n

b− 2

)
± · · ·+ (−1)b

(
2n

0

)
+ (−1)b+1

(
2n − 1
−1

)
︸ ︷︷ ︸

=0

=

(
2n

b

)
−
(

2n

b− 1

)
+

(
2n

b− 2

)
± · · ·+ (−1)b

(
2n

0

)
.

This is a binomial identity that doesn’t rely on 2n being a power of 2, so I generalize it to(
n− 1

b

)
=

(
n
b

)
−
(

n
b− 1

)
+

(
n

b− 2

)
± · · ·+ (−1)b

(
n
0

)
for all n ∈N. This is just a restatement of Proposition 0.1.

0.2. Counting by symmetry

Recall that if n ∈ N, then [n] denotes the n-element set {1, 2, . . . , n}. If n ∈ N,
then Sn shall mean the set of all permutations of the set [n]. The number of these
permutations is |Sn| = n!. (We shall prove this in class soon.) Note that Sn is called
the n-th symmetric group.

Proposition 0.5. Let n ≥ 4 be an integer. Then, the number of all permutations
σ ∈ Sn satisfying σ (3) > σ (4) is n!/2.

Proof of Proposition 0.5. I say that a permutation σ ∈ Sn is

• green if it satisfies σ (3) > σ (4);

• red if it satisfies σ (3) < σ (4).

Every permutation σ ∈ Sn is either green or red (indeed, every permutation
σ ∈ Sn is injective, and thus satisfies σ (3) 6= σ (4), so that it must satisfy either
σ (3) > σ (4) or σ (3) < σ (4)), but no permutation σ ∈ Sn can be both green and
red at the same time (since σ (3) > σ (4) would contradict σ (3) < σ (4)). Hence,
the set Sn is the union of its two disjoint subsets {green permutations σ ∈ Sn} and
{red permutations σ ∈ Sn}. Thus,

|Sn| = |{green permutations σ ∈ Sn}|+ |{red permutations σ ∈ Sn}| . (6)

On the other hand, I claim that “the colors are equidistributed”, i.e., the number
of green permutations σ ∈ Sn equals the number of red permutations σ ∈ Sn.

To prove this, I will construct a bijection from {green permutations σ ∈ Sn} to
{red permutations σ ∈ Sn}.



Math 4707 Spring 2018 (Darij Grinberg): midterm 1 page 6

Indeed, let s3 be the permutation of [n] that swaps the numbers 3 and 4 while
leaving all other numbers unchanged. That is, s3 is given by

s3 (i) =


4, if i = 3;
3, if i = 4;
i, if i /∈ {3, 4}

for all i ∈ [n] .

(In one-line notation, s3 is represented as (1, 2, 4, 3, 5, 6, . . . , n), where only the two
numbers 3 and 4 are out of order.)

Notice that s3 ◦ s3 = id. (Visually speaking, this is clear: If we swap 3 and 4, and
then swap 3 and 4 again, then all numbers return to their old places.)

If α and β are two permutations of [n], then their composition α ◦ β is a permu-
tation of [n] as well1. Hence, for every permutation σ ∈ Sn, the map σ ◦ s3 is also a
permutation of [n].

We now claim that

if σ ∈ Sn is green, then σ ◦ s3 ∈ Sn is red. (7)

[Proof of (7): Assume that σ ∈ Sn is green. Thus, σ (3) > σ (4) (by the definition
of “green”).

We know σ ◦ s3 is a permutation of [n]. In other words, σ ◦ s3 ∈ Sn. We must
prove that σ ◦ s3 is red. In other words, we must prove that (σ ◦ s3) (3) < (σ ◦ s3) (4)
(because this is what it means for σ ◦ s3 to be red).

But the definition of s3 shows that s3 (3) = 4 and s3 (4) = 3. Thus, (σ ◦ s3) (3) =

σ

s3 (3)︸ ︷︷ ︸
=4

 = σ (4) and (σ ◦ s3) (4) = σ

s3 (4)︸ ︷︷ ︸
=3

 = σ (3). Hence, (σ ◦ s3) (4) =

σ (3) > σ (4) = (σ ◦ s3) (3). In other words, (σ ◦ s3) (3) < (σ ◦ s3) (4). But this is
exactly what we wanted to prove. Thus, (7) is proven.]

An analogous argument shows that

if σ ∈ Sn is red, then σ ◦ s3 ∈ Sn is green. (8)

Now, let α be the map

{green permutations σ ∈ Sn} → {red permutations σ ∈ Sn} ,
σ 7→ σ ◦ s3

(this is well-defined because of (7)). Let β be the map

{red permutations σ ∈ Sn} → {green permutations σ ∈ Sn} ,
σ 7→ σ ◦ s3

1because permutations of [n] are just bijective maps [n]→ [n], but the composition of two bijective
maps is again bijective
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(this is well-defined because of (8)). We have α ◦ β = id (since every red permuta-
tion σ ∈ Sn satisfies

(α ◦ β) (σ) = α

 β (σ)︸ ︷︷ ︸
=σ◦s3

(by the definition of β)

 = α (σ ◦ s3)

= (σ ◦ s3) ◦ s3 (by the definition of α)

= σ ◦ (s3 ◦ s3)︸ ︷︷ ︸
=id

= σ = id (σ)

) and β ◦ α = id (by an analogous computation). Thus, the two maps α and β
are mutually inverse. Hence, α is a bijection. Thus, we have found a bijection from
{green permutations σ ∈ Sn} to {red permutations σ ∈ Sn} (namely, α). Therefore,

|{green permutations σ ∈ Sn}| = |{red permutations σ ∈ Sn}| . (9)

Now, (6) becomes

|Sn| = |{green permutations σ ∈ Sn}|+ |{red permutations σ ∈ Sn}|︸ ︷︷ ︸
=|{green permutations σ∈Sn}|

(by (9))

= |{green permutations σ ∈ Sn}|+ |{green permutations σ ∈ Sn}|
= 2 · |{green permutations σ ∈ Sn}| .

Hence,

|{green permutations σ ∈ Sn}| =
1
2
|Sn|︸︷︷︸
=n!

=
1
2

n! = n!/2.

In other words, the number of all green permutations σ ∈ Sn is n!/2. In other
words, the number of all permutations σ ∈ Sn satisfying σ (3) > σ (4) is n!/2
(because these permutations are precisely the green permutations σ ∈ Sn). This
proves Proposition 0.5.

Our above proof was an example of a “counting by symmetry”: We did not count
the green permutations directly; instead, we showed that they are in bijection with
the remaining (i.e., red) permutations σ ∈ Sn (that is, we matched up each green
permutation with a red one), from which we concluded that they make up exactly

half of the set Sn; and this told us that there are
1
2
|Sn| = n!/2 of them.

Exercise 2. Let n ≥ 4 be an integer. Prove the following:
(a) The number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) and σ (3) >

σ (4) is n!/4.
(b) The number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) > σ (3) is

n!/6.
[Hint: You’ll need more than 2 colors...]
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Solution to Exercise 2 (sketched). I will be more laconic than in the proof of Propo-
sition 0.5 above, because much of the arguments below simply repeats arguments
made in the latter proof.

The main tool for this solution will be the n− 1 simple transpositions s1, s2, . . . , sn−1.
These are defined as follows: Given k ∈ [n− 1], we let sk be the permutation of [n]
that swaps the numbers k and k + 1 while leaving all other numbers unchanged.2

Of course, for k = 3, this sk is precisely the permutation s3 that was used in the
proof of Proposition 0.5. These permutations s1, s2, . . . , sn−1 are known as the simple
transpositions in Sn, and they are in a sense the “building blocks” of all permutations
(see Remark 0.6 (c) below).

For each k ∈ [n− 1], we have sk ◦ sk = id. (This generalizes the s3 ◦ s3 = id from
the proof of Proposition 0.5. Of course, the proof is just as trivial.)

Let us now come to the actual solution.
(a) I say that a permutation σ ∈ Sn is

• green-green if it satisfies σ (1) > σ (2) and σ (3) > σ (4);

• green-red if it satisfies σ (1) > σ (2) and σ (3) < σ (4);

• red-green if it satisfies σ (1) < σ (2) and σ (3) > σ (4);

• red-red if it satisfies σ (1) < σ (2) and σ (3) < σ (4).

Every permutation σ ∈ Sn is either green-green or green-red or red-green or
red-red, but no permutation σ ∈ Sn can have two (or more) of these properties
simultaneously. Thus,

|Sn|
= |{green-green permutations σ ∈ Sn}|

+ |{green-red permutations σ ∈ Sn}|
+ |{red-green permutations σ ∈ Sn}|
+ |{red-red permutations σ ∈ Sn}| . (10)

Next, I claim that the four “colors” (by which I mean the properties “green-
green”, “green-red”, “red-green” and “red-red”) are equidistributed, i.e., the num-
ber of permutations of one color equals the number of permutations of any other.

2That is, sk is given by

sk (i) =


k + 1, if i = k;
k, if i = k + 1;
i, if i /∈ {k, k + 1}

for all i ∈ [n] .

(In one-line notation, sk is represented as (1, 2, . . . , k− 1, k + 1, k, k + 2, k + 3, . . . , n), where only
the two numbers k and k + 1 are out of order.)
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It is easy to see that if σ ∈ Sn is green-green, then σ ◦ s3 ∈ Sn is green-red3. This
lets us define a map

{green-green permutations σ ∈ Sn} → {green-red permutations σ ∈ Sn} ,
σ 7→ σ ◦ s3.

Likewise, we can define a map

{green-red permutations σ ∈ Sn} → {green-green permutations σ ∈ Sn} ,
σ 7→ σ ◦ s3.

These two maps are mutually inverse4. Thus, we have found a bijection from
{green-green permutations σ ∈ Sn} to {green-red permutations σ ∈ Sn}. Hence,

|{green-green permutations σ ∈ Sn}|
= |{green-red permutations σ ∈ Sn}| . (11)

Similarly,

|{red-green permutations σ ∈ Sn}|
= |{red-red permutations σ ∈ Sn}| . (12)

But we also have

|{green-green permutations σ ∈ Sn}|
= |{red-green permutations σ ∈ Sn}| . (13)

(The proof of this is analogous to the proof of (11), but we now need to use s1 in-
stead of s3. Thus, the mutually inverse bijections between {green-green permutations σ ∈ Sn}
and {red-green permutations σ ∈ Sn} no longer send a permutation σ to σ ◦ s3, but
instead send a permutation σ to σ ◦ s1.)

Combining the three equalities (11), (12) and (13), we see that the four numbers

|{green-green permutations σ ∈ Sn}| , |{green-red permutations σ ∈ Sn}| ,
|{red-green permutations σ ∈ Sn}| , |{red-red permutations σ ∈ Sn}|

are all the same. Hence, all four addends on the right hand side of (10) equal
|{green-green permutations σ ∈ Sn}|. Thus, (10) simplifies to

|Sn| = 4 · |{green-green permutations σ ∈ Sn}| .
3The proof of this is analogous to the proof of (7) above, except that we now also need to check

that (σ ◦ s3) (1) > (σ ◦ s3) (2) (but this is obvious: we have (σ ◦ s3) (1) = σ

s3 (1)︸ ︷︷ ︸
=1

 = σ (1) and

similarly (σ ◦ s3) (2) = σ (2)).
4This can be proven in the same way as we showed that α and β are mutually inverse in the proof

of Proposition 0.5 above.
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Hence,

|{green-green permutations σ ∈ Sn}| =
1
4
|Sn|︸︷︷︸
=n!

=
1
4

n! = n!/4.

In other words, the number of all green-green permutations σ ∈ Sn is n!/4. In
other words, the number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) and
σ (3) > σ (4) is n!/4 (because these permutations are precisely the green-green
permutations σ ∈ Sn). This solves Exercise 2 (a).

(b) I say that a permutation σ ∈ Sn is

• color-123 if it satisfies σ (1) > σ (2) > σ (3);

• color-132 if it satisfies σ (1) > σ (3) > σ (2);

• color-213 if it satisfies σ (2) > σ (1) > σ (3);

• color-231 if it satisfies σ (2) > σ (3) > σ (1);

• color-312 if it satisfies σ (3) > σ (1) > σ (2);

• color-321 if it satisfies σ (3) > σ (2) > σ (1).

(By now we have dropped all pretense that our adjectives are real colors.)
Each permutation σ ∈ Sn has exactly one of the six properties “color-123”, “color-

132”, “color-213”, “color-231”, “color-312” and “color-321” (because these proper-
ties classify permutations σ ∈ Sn according to the relative order between their first
three values σ (1) , σ (2) , σ (3)). Hence,

|Sn| = |{color-123 permutations σ ∈ Sn}|+ |{color-132 permutations σ ∈ Sn}|
+ |{color-213 permutations σ ∈ Sn}|+ |{color-231 permutations σ ∈ Sn}|
+ |{color-312 permutations σ ∈ Sn}|+ |{color-321 permutations σ ∈ Sn}| .

(14)

We shall now, as before, prove that these six properties (“colors”) are “equidis-
tributed”. The arguments we use will again be similar to those used in the proof
of Proposition 0.5, so we restrict ourselves to a sketch:

• It is easy to see that if σ ∈ Sn is color-123, then σ ◦ s1 ∈ Sn is color-213. This
lets us define a map

{color-123 permutations σ ∈ Sn} → {color-213 permutations σ ∈ Sn} ,
σ 7→ σ ◦ s1.

Likewise, we can define a map

{color-213 permutations σ ∈ Sn} → {color-123 permutations σ ∈ Sn} ,
σ 7→ σ ◦ s1.
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These two maps are mutually inverse. Thus, we have found a bijection from
{color-123 permutations σ ∈ Sn} to {color-213 permutations σ ∈ Sn}. Hence,

|{color-123 permutations σ ∈ Sn}|
= |{color-213 permutations σ ∈ Sn}| . (15)

• Similarly,

|{color-132 permutations σ ∈ Sn}|
= |{color-231 permutations σ ∈ Sn}| (16)

and

|{color-312 permutations σ ∈ Sn}|
= |{color-321 permutations σ ∈ Sn}| . (17)

• A similar argument using s2 instead of s1 shows that

|{color-213 permutations σ ∈ Sn}|
= |{color-312 permutations σ ∈ Sn}| (18)

and

|{color-321 permutations σ ∈ Sn}|
= |{color-231 permutations σ ∈ Sn}| . (19)

Combining the five equalities (15), (16), (17), (18) and (19), we conclude that the
six numbers

|{color-123 permutations σ ∈ Sn}| , |{color-132 permutations σ ∈ Sn}|
|{color-213 permutations σ ∈ Sn}| , |{color-231 permutations σ ∈ Sn}|
|{color-312 permutations σ ∈ Sn}| , |{color-321 permutations σ ∈ Sn}|

are all the same. Hence, all six addends on the right hand side of (14) equal
|{color-123 permutations σ ∈ Sn}|. Thus, (14) simplifies to

|Sn| = 6 · |{color-123 permutations σ ∈ Sn}| .

Hence,

|{color-123 permutations σ ∈ Sn}| =
1
6
|Sn|︸︷︷︸
=n!

=
1
6

n! = n!/6.

In other words, the number of all color-123 permutations σ ∈ Sn is n!/6. In other
words, the number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) > σ (3) is
n!/6 (because these permutations are precisely the color-123 permutations σ ∈ Sn).
This solves Exercise 2 (b).
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Remark 0.6. Let n ∈ N. The simple transpositions s1, s2, . . . , sn−1 introduced in
the above solution of Exercise 2 are rather significant. Here are three more of
their properties:

(a) If k ∈ [n− 1] and l ∈ [n− 1] satisfy |k− l| > 1, then sk ◦ sl = sl ◦ sk. (This is
often called a “locality principle”; essentially, it says that swapping k and k + 1
doesn’t interact with swapping l and l + 1 when |k− l| > 1.)

(b) For each k ∈ [n− 2], we have sk ◦ sk+1 ◦ sk = sk+1 ◦ sk ◦ sk+1. (This is called
the “braid relation”, and is easily verified by hand; in fact, both sk ◦ sk+1 ◦ sk and
sk+1 ◦ sk ◦ sk+1 turn out to be the permutation of [n] that swaps k with k + 2 while
leaving all other numbers unchanged.)

(c) Each permutation in Sn can be written as a composition of some of the
s1, s2, . . . , sn−1. (Note that the composition may be empty – in which case it is un-
derstood to mean the trivial permutation id – and that any of the s1, s2, . . . , sn−1
can appear many times in the composition.)

For an example, the permutation of [5] that sends 1, 2, 3, 4, 5 to 5, 3, 1, 2, 4 can
be written as s4 ◦ s3 ◦ s2 ◦ s1 ◦ s3 ◦ s2.

(We will prove this later this semester.)

Remark 0.7. Exercise 2 (b) can be generalized: If n ∈ N and k ∈ {0, 1, . . . , n},
then the number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) > · · · > σ (k)
is n!/k!. This can be proven in the same way as we solved Exercise 2 (b), except
that we now need to be more systematic about the colors (there are k! colors
now) and justify their equidistribution abstractly – which is more difficult.

There is a simpler proof, though. [Hint: In order to construct a permu-
tation σ ∈ Sn satisfying σ (1) > σ (2) > · · · > σ (k), you can first choose
the set {σ (1) , σ (2) , . . . , σ (k)} (this should be a k-element subset of [n], so

there are
(

n
k

)
choices for it), which automatically determines the values

σ (1) , σ (2) , . . . , σ (k) (namely, they must be the k elements of this set in decreas-
ing order); then choose the remaining n− k values σ (k + 1) , σ (k + 2) , . . . , σ (n)
(these are just n − k distinct values chosen from an (n− k)-element set, so
there are (n− k)! choices for them). Thus, the total number of options is(

n
k

)
(n− k)! = n!/k!.]

0.3. More on Fibonacci numbers

Recall that the Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of integers which is
defined recursively by f0 = 0, f1 = 1, and

fn = fn−1 + fn−2 for all n ≥ 2. (20)

https://en.wikipedia.org/wiki/Fibonacci_number
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Exercise 3. Prove the following:
(a) We have 7 fn = fn−4 + fn+4 for each n ≥ 4.
(b) We have f1 + f2 + · · ·+ fn = fn+2 − 1 for each n ∈N.
(c) We have f1 + f3 + f5 + · · ·+ f2n−1 = f2n for each n ∈N.
(d) We have f2 + f4 + f6 + · · ·+ f2n = f2n+1 − 1 for each n ∈N.
(e) We have fm+n+1 = fm+1 fn+1 + fm fn for all m ∈N and n ∈N.
(f) For every m ∈N, we have

f2m+2 = ∑
(a,b)∈N2;

a+b≤m

(
m− a

b

)(
m− b

a

)
.

[Hint: All parts can be proven bijectively; part (f) is actually easiest to prove
bijectively! (On the other hand, proving part (a) bijectively is a challenge; there
are much easier ways.) As a reminder: Any exercises from previous problem
sets can be used without proof.]

Solution to Exercise 3 (sketched). We shall use the symbol “
(20)
= ” for “equals, because

of the recurrence equation (20)”. For example, f5
(20)
= f4 + f3 and f3 + f2

(20)
= f4 and

fk+5
(20)
= fk+4 + fk+3 for every k ∈N.

(a) Let n ≥ 4. Then,

fn−4 + fn+4︸︷︷︸
(20)
= fn+3+ fn+2

= fn−4 + fn+3︸︷︷︸
(20)
= fn+2+ fn+1

+ fn+2︸︷︷︸
(20)
= fn+1+ fn

= fn−4 + fn+2 + fn+1 + fn+1 + fn = fn−4 + fn+2︸︷︷︸
(20)
= fn+1+ fn

+2 fn+1 + fn

= fn−4 + fn+1 + fn + 2 fn+1 + fn = fn−4 + 2 fn + 3 fn+1︸︷︷︸
(20)
= fn+ fn−1

= fn−4 + 2 fn + 3 ( fn + fn−1) = fn−4 + 5 fn + 3 fn−1︸︷︷︸
(20)
= fn−2+ fn−3

= fn−4 + 5 fn + 3 ( fn−2 + fn−3) = fn−4 + fn−3︸ ︷︷ ︸
(20)
= fn−2

+5 fn + 3 fn−2 + 2 fn−3

= fn−2 + 5 fn + 3 fn−2 + 2 fn−3 = 5 fn + 2 fn−2 + 2 ( fn−2 + fn−3)︸ ︷︷ ︸
(20)
= fn−1

= 5 fn + 2 fn−2 + 2 fn−1 = 5 fn + 2 ( fn−1 + fn−2)︸ ︷︷ ︸
(20)
= fn

= 5 fn + 2 fn = 7 fn.
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This solves Exercise 3 (a).
(b) We shall solve Exercise 3 (b) by induction on n:
Induction base: Comparing f1 + f2 + · · ·+ f0 = (empty sum) = 0 with f0+2− 1 =

f2︸︷︷︸
=1

−1 = 1 − 1 = 0, we obtain f1 + f2 + · · · + f0 = f0+2 − 1. In other words,

Exercise 3 (b) holds for n = 0. This completes the induction base.
Induction step: Let k ∈ N. Assume that Exercise 3 (b) holds for n = k. We must

prove that Exercise 3 (b) holds for n = k + 1.
We have f1 + f2 + · · ·+ fk = fk+2− 1 (since Exercise 3 (b) holds for n = k). Now,

f1 + f2 + · · ·+ fk+1 = ( f1 + f2 + · · ·+ fk)︸ ︷︷ ︸
= fk+2−1

+ fk+1 = fk+2 − 1 + fk+1 = fk+2 + fk+1︸ ︷︷ ︸
(20)
= fk+3= f(k+1)+2

−1

= f(k+1)+2 − 1.

In other words, Exercise 3 (b) holds for n = k + 1. This completes the induction
step. Thus, Exercise 3 (b) is solved.

(c) We shall solve Exercise 3 (c) by induction on n:
Induction base: Comparing f1 + f3 + f5 + · · · + f2·0−1 = (empty sum) = 0 with

f2·0 = f0 = 0, we obtain f1 + f3 + f5 + · · ·+ f2·0−1 = f2·0. In other words, Exercise
3 (c) holds for n = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that Exercise 3 (c) holds for n = k. We must
prove that Exercise 3 (c) holds for n = k + 1.

We have f1 + f3 + f5 + · · · + f2k−1 = f2k (since Exercise 3 (c) holds for n = k).
Now,

f1 + f3 + f5 + · · ·+ f2(k+1)−1 = ( f1 + f3 + f5 + · · ·+ f2k−1)︸ ︷︷ ︸
= f2k

+ f2(k+1)−1︸ ︷︷ ︸
= f2k+1

= f2k + f2k+1

= f2k+1 + f2k
(20)
= f2k+2 = f2(k+1).

In other words, Exercise 3 (c) holds for n = k + 1. This completes the induction
step. Thus, Exercise 3 (c) is solved.

(d) We shall solve Exercise 3 (d) by induction on n:
Induction base: Comparing f2 + f4 + f6 + · · · + f2·0 = (empty sum) = 0 with

f2·0+1 − 1 = f1︸︷︷︸
=1

−1 = 1− 1 = 0, we obtain f2 + f4 + f6 + · · ·+ f2·0 = f2·0+1 − 1.

In other words, Exercise 3 (d) holds for n = 0. This completes the induction base.
Induction step: Let k ∈ N. Assume that Exercise 3 (d) holds for n = k. We must

prove that Exercise 3 (d) holds for n = k + 1.
We have f2 + f4 + f6 + · · ·+ f2k = f2k+1− 1 (since Exercise 3 (d) holds for n = k).
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Now,

f2 + f4 + f6 + · · ·+ f2(k+1) = ( f2 + f4 + f6 + · · ·+ f2k)︸ ︷︷ ︸
= f2k+1−1

+ f2(k+1)︸ ︷︷ ︸
= f2k+2

= f2k+1 − 1 + f2k+2

= f2k+2 + f2k+1︸ ︷︷ ︸
(20)
= f2k+3= f2(k+1)+1

−1 = f2(k+1)+1 − 1.

In other words, Exercise 3 (d) holds for n = k + 1. This completes the induction
step. Thus, Exercise 3 (d) is solved.

(e) We shall solve Exercise 3 (e) by induction on n:
Induction base: For all m ∈ N, we have fm+0+1 = fm+1 f0+1 + fm f0

5. In other
words, Exercise 3 (e) holds for n = 0. This completes the induction base.

Induction step: Let k ∈ N. Assume that Exercise 3 (e) holds for n = k. We must
prove that Exercise 3 (e) holds for n = k + 1.

We have assumed that Exercise 3 (e) holds for n = k. In other words, we have

fm+k+1 = fm+1 fk+1 + fm fk for all m ∈N. (21)

Now, let m ∈N. Then, we can apply (21) to m + 1 instead of m. Thus, we obtain

f(m+1)+k+1 = f(m+1)+1︸ ︷︷ ︸
= fm+2

(20)
= fm+1+ fm

fk+1 + fm+1 fk

= ( fm+1 + fm) fk+1 + fm+1 fk = fm+1 fk+1 + fm fk+1 + fm+1 fk

= fm+1 ( fk+1 + fk)︸ ︷︷ ︸
(20)
= fk+2= f(k+1)+1

+ fm fk+1 = fm+1 f(k+1)+1 + fm fk+1.

Now, forget that we fixed m. We thus have shown that f(m+1)+k+1 = fm+1 f(k+1)+1 +
fm fk+1 for all m ∈ N. In other words, Exercise 3 (e) holds for n = k + 1. This com-
pletes the induction step. Thus, Exercise 3 (e) is solved.

(f) Recall the definition of a lacunar subset of Z. (We defined this in Math 4707
Homework set 2.)

For any n ∈N, we have

(the number of all lacunar subsets of [n]) = fn+2. (22)

(For a proof of (22), see Exercise 4 (c) on Fall 2017 Math 4707 Homework set 1, in
which the number of all lacunar subsets of [n] was denoted by g (n).)

5Proof. Let m ∈ N. Then, fm+0+1 = fm+1. Comparing this with fm+1 f0+1︸︷︷︸
= f1=1

+ fm f0︸︷︷︸
=0

= fm+11 +

fm0 = fm+1, we obtain fm+0+1 = fm+1 f0+1 + fm f0, qed.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf
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For any n ∈ N, a ∈ Z and b ∈ Z, we let N (n, a, b) denote the number of all
lacunar subsets of [n] that contain exactly a even and exactly b odd elements. Then,
Exercise 3 (a) from Math 4707 Homework set 2 states that

N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
(23)

for all m ∈N, a ∈N and b ∈N.
Now, let m ∈N. If a and b are two elements of {0, 1, . . . , m} satisfying a + b > m,

then (
m− a

b

)
= 0. (24)

[Proof of (24): Let a and b be two elements of {0, 1, . . . , m} satisfying a + b > m. From a + b > m,
we obtain b > m− a, so that m− a < b. Also, a ≤ m (since a ∈ {0, 1, . . . , m}) and thus m− a ≥ 0, so

that m− a ∈ N. Hence, (1) (applied to m− a and b instead of m and n) shows that
(

m− a
b

)
= 0.

This proves (24).]
Any subset of [2m] has at most m even elements (because the whole set [2m]

has only m even elements) and at most m odd elements (similarly). Thus, we can
classify the lacunar subsets of [2m] according to their number of even elements
(which is an integer in {0, 1, . . . , m}) and their number of odd elements (which is

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw2s.pdf
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an integer in {0, 1, . . . , m}). Hence,

(the number of all lacunar subsets of [2m])

= ∑
a∈{0,1,...,m}

∑
b∈{0,1,...,m}

(
the number of all lacunar subsets of [2m] that contain

exactly a even and exactly b odd elements

)
︸ ︷︷ ︸

=N(2m,a,b)
(by the definition of N(2m,a,b))

= ∑
a∈{0,1,...,m}

∑
b∈{0,1,...,m}

N (2m, a, b)︸ ︷︷ ︸
=[a≤m][b≤m]

(
m− a

b

)(
m− b

a

)
(by (23))

= ∑
a∈{0,1,...,m}

∑
b∈{0,1,...,m}

[a ≤ m]︸ ︷︷ ︸
=1

(since a∈{0,1,...,m})

[b ≤ m]︸ ︷︷ ︸
=1

(since b∈{0,1,...,m})

(
m− a

b

)(
m− b

a

)

= ∑
a∈{0,1,...,m}

∑
b∈{0,1,...,m}︸ ︷︷ ︸

= ∑
(a,b)∈{0,1,...,m}2

(
m− a

b

)(
m− b

a

)
= ∑

(a,b)∈{0,1,...,m}2

(
m− a

b

)(
m− b

a

)

= ∑
(a,b)∈{0,1,...,m}2;

a+b≤m︸ ︷︷ ︸
= ∑
(a,b)∈N2;

a+b≤m
(since any two nonnegative

integers a and b
satisfying a+b≤m must

satisfy (a,b)∈{0,1,...,m}2)

(
m− a

b

)(
m− b

a

)
+ ∑

(a,b)∈{0,1,...,m}2;
a+b>m

(
m− a

b

)
︸ ︷︷ ︸

=0
(by (24))

(
m− b

a

)

= ∑
(a,b)∈N2;

a+b≤m

(
m− a

b

)(
m− b

a

)
+ ∑

(a,b)∈{0,1,...,m}2;
a+b>m

0
(

m− b
a

)
︸ ︷︷ ︸

=0

= ∑
(a,b)∈N2;

a+b≤m

(
m− a

b

)(
m− b

a

)
.

Comparing this with

(the number of all lacunar subsets of [2m])

= f2m+2 (by (22), applied to n = 2m) ,

we obtain f2m+2 = ∑
(a,b)∈N2;

a+b≤m

(
m− a

b

)(
m− b

a

)
. This solves Exercise 3 (f).



Math 4707 Spring 2018 (Darij Grinberg): midterm 1 page 18

Remark 0.8. Exercise 3 (a) is one of the so-called Zeckendorf family identities. Here
are the first seven of them:

1 fn = fn for all n ≥ 0;
2 fn = fn−2 + fn+1 for all n ≥ 2;
3 fn = fn−2 + fn+2 for all n ≥ 2;
4 fn = fn−2 + fn + fn+2 for all n ≥ 2;
5 fn = fn−4 + fn−1 + fn+3 for all n ≥ 4;
6 fn = fn−4 + fn+1 + fn+3 for all n ≥ 4;
7 fn = fn−4 + fn+4 for all n ≥ 4.

See [Grinbe10] for more about them (particularly, about how to construct them
all).

Of course, parts (a), (b), (c), (d), (e) of Exercise 3 can also be proven using
Binet’s formula (and the formula for the sum of a geometric series); the compu-
tations aren’t particularly fun but can be done.

Alternative solutions abound. For example, part (d) can be easily derived from
parts (b) and (c).

Exercise 3 (e) also is a particular case of [Grinbe16, Theorem 2.26 (a)] (ob-
tained by setting a = 1 and b = 1, so that the sequence (x0, x1, x2, . . .) de-
fined in [Grinbe16, Theorem 2.26 (a)] becomes precisely the Fibonacci sequence
( f0, f1, f2, . . .)).

Perhaps more interesting is the question of solving Exercise 3 bijectively (when
fn is understood, e.g., as the number of all lacunar subsets of [n− 2], or as the
number of domino tilings of a 2× (n− 1)-rectangle). This, too, can be done. A
bijective proof for part (a) can, in principle, be obtained from the bijective proof
of (20) (but the bijection will involve myriad cases). More generally, each of the
Zeckendorf family identities can be proven bijectively; see [WooZei09, §3.7] for
details.

For a bijective proof of part (b), see [BenQui03, Identity 1] or [BenQui04, Iden-
tity 1]. (Notice that the notations in [BenQui03, Identity 1] or [BenQui04, Identity
1] are different from ours; their fn is our fn+1.)

For a bijective proof of part (c), see [BenQui03, Identity 2]. A similar argument
can be used to prove part (d).

For a bijective proof of part (e), see [BenQui03, Identity 3] or [BenQui04, Iden-
tity 2].

For a bijective proof of part (f) (different from the one we have given), see
[BenQui04, Identity 5] (but beware that Benjamin and Quinn are cavalier about
the summation bounds: their double sum ∑

i≥0
∑

j≥0
should be ∑

i∈{0,1,...,n}
∑

j∈{0,1,...,n}
).
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0.4. More lattice path counting

Recall that the set Z2 is called the integer lattice, and its elements (a, b) ∈ Z2 are
called points. We regard these points as points on the Cartesian plane.

A lattice path is a path on the integer lattice that uses only two kinds of steps:

• up-steps (U), which have the form (x, y) 7→ (x, y + 1);

• right-steps (R), which have the form (x, y) 7→ (x + 1, y).

Thus, strictly speaking, a lattice path is a sequence (v0, v1, . . . , vn) of points vi ∈ Z2

such that for each i ∈ [n], the difference vector vi − vi−1 is either (0, 1) or (1, 0).
If (a, b) ∈ Z2 and (c, d) ∈ Z2 are two points on the integer lattice, then a lattice

path from (a, b) to (c, d) is a lattice path (v0, v1, . . . , vn) satisfying v0 = (a, b) and
vn = (c, d).

Exercise 4. (a) Given six integers a1, b1, c1, a2, b2, c2 satisfying 0 ≤ a1 ≤ b1 ≤ c1
and 0 ≤ a2 ≤ b2 ≤ c2. How many lattice paths from (0, 0) to (c1, c2) pass through
none of the points (a1, a2) nor (b1, b2) ?

(b) Given six integers a, b, c, A, B, C satisfying 0 ≤ a ≤ b ≤ c and 0 ≤ A ≤ B ≤
C. How many c-element subsets S of [C] satisfy |S ∩ [A]| 6= a and |S ∩ [B]| 6= b ?

Solution to Exercise 4 (sketched). (b) Observe that A ≤ B ≤ C and thus [A] ⊆ [B] ⊆
[C].

We define the following three sets:

U = {c-element subsets S of [C]} ;
X = {c-element subsets S of [C] satisfying |S ∩ [A]| = a} ;
Y = {c-element subsets S of [C] satisfying |S ∩ [B]| = b} .

Then,

U \ (X ∪Y)
= {c-element subsets S of [C] satisfying neither |S ∩ [A]| = a nor |S ∩ [B]| = b}
= {c-element subsets S of [C] satisfying |S ∩ [A]| 6= a and |S ∩ [B]| 6= b} .

Hence, |U \ (X ∪Y)| is the number of all c-element subsets S of [C] satisfying
|S ∩ [A]| 6= a and |S ∩ [B]| 6= b. This is the number that we need to compute.

But X ∪Y is clearly a subset of U. Thus,

|U \ (X ∪Y)| = |U| − |X ∪Y|︸ ︷︷ ︸
=|X|+|Y|−|X∩Y|

= |U| − (|X|+ |Y| − |X ∩Y|)

= |U| − |X| − |Y|+ |X ∩Y| . (25)

Hence, we need to compute |U|, |X|, |Y| and |X ∩Y|.
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Computing |U| is easy: The definition of U yields

|U| = |{c-element subsets S of [C]}|
= (the number of all c-element subsets S of [C])

=

(
C
c

)
(26)

(by the combinatorial interpretation of binomial coefficients).
Let us next compute |X|. Recall that

X = {c-element subsets S of [C] satisfying |S ∩ [A]| = a} .

Thus, |X| is the number of all c-element subsets S of [C] satisfying |S ∩ [A]| = a.
Such a subset must always contain exactly a elements from [A] (because it must
satisfy |S ∩ [A]| = a) and exactly c − a elements from [C] \ [A] (because it must
have c elements in total). Thus, we can construct such a subset as follows:

• First, we decide which a elements of [A] shall belong to S. This can be done

in
(

A
a

)
many ways (since we are just choosing an a-element subset of [A]).

• Next, we decide which c− a elements of [C] \ [A] shall belong to S. This can

be done in
(

C− A
c− a

)
many ways (since |[C] \ [A]| = C− A).

Thus, altogether, the number of options is
(

A
a

)(
C− A
c− a

)
. We thus have proven

that

|X| =
(

A
a

)(
C− A
c− a

)
. (27)

Similarly,

|Y| =
(

B
b

)(
C− B
c− b

)
. (28)

It remains to compute |X ∩Y|. The definitions of X and Y yield

X∩Y = {c-element subsets S of [C] satisfying both |S ∩ [A]| = a and |S ∩ [B]| = b} .

Thus, |X ∩Y| is the number of all c-element subsets S of [C] satisfying both |S ∩ [A]| =
a and |S ∩ [B]| = b. Such a subset must always contain exactly a elements from [A]
(because it must satisfy |S ∩ [A]| = a), exactly b− a elements from [B] \ [A] (because
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it must satisfy |S ∩ [B]| = b and |S ∩ [A]| = a, so that∣∣∣∣∣∣∣S ∩ ([B] \ [A])︸ ︷︷ ︸
=(S∩[B])\(S∩[A])

∣∣∣∣∣∣∣ = |(S ∩ [B]) \ (S ∩ [A])|

= |S ∩ [B]|︸ ︷︷ ︸
=b

− |S ∩ [A]|︸ ︷︷ ︸
=a

since S ∩ [A]︸︷︷︸
⊆[B]

⊆ S ∩ [B]


= b− a

), and exactly c− b elements from [C] \ [B] (because it must have c elements in total,
but |S ∩ [B]| = b). Thus, we can construct such a subset as follows:

• First, we decide which a elements of [A] shall belong to S. This can be done

in
(

A
a

)
many ways (since we are just choosing an a-element subset of [A]).

• Next, we decide which b− a elements of [B] \ [A] shall belong to S. This can

be done in
(

B− A
b− a

)
many ways (since |[B] \ [A]| = B− A).

• Next, we decide which c− b elements of [C] \ [B] shall belong to S. This can

be done in
(

C− B
c− b

)
many ways (since |[C] \ [B]| = C− B).

Thus, altogether, the number of options is
(

A
a

)(
B− A
b− a

)(
C− B
c− b

)
. We thus have

proven that

|X ∩Y| =
(

A
a

)(
B− A
b− a

)(
C− B
c− b

)
. (29)

Now, (25) becomes

|U \ (X ∪Y)|
= |U|︸︷︷︸

=

(
C
c

)
(by (26))

− |X|︸︷︷︸
=

(
A
a

)(
C− A
c− a

)
(by (27))

− |Y|︸︷︷︸
=

(
B
b

)(
C− B
c− b

)
(by (28))

+ |X ∩Y|︸ ︷︷ ︸
=

(
A
a

)(
B− A
b− a

)(
C− B
c− b

)
(by (29))

=

(
C
c

)
−
(

A
a

)(
C− A
c− a

)
−
(

B
b

)(
C− B
c− b

)
+

(
A
a

)(
B− A
b− a

)(
C− B
c− b

)
.

So this is the number of all c-element subsets S of [C] satisfy |S ∩ [A]| 6= a and
|S ∩ [B]| 6= b.

(As far as I know, this answer cannot be simplified any further.)
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(a) If v = (v0, v1, . . . , vn) is a lattice path, then the up-set of v shall mean the set
of all i ∈ [n] such that the difference vector vi − vi−1 equals (0, 1) (in other words,
such that the step from vi−1 to vi is an up-step). Roughly speaking, the up-set of
a lattice path v tells us which steps of the path v are up-steps. For example, the

up-set of the lattice path is {3, 6, 7}, since the up-steps
of this path are its 3-rd, 6-th and 7-th steps.

If v = (v0, v1, . . . , vn) is a lattice path from (0, 0) to (c1, c2), then we necessarily
have n = c1 + c2 (indeed, we need precisely c1 + c2 steps to get from (0, 0) to (c1, c2),
because each step increases the sum of the coordinates of the point by exactly 1),
and therefore the up-set of v is a subset of [n] = [c1 + c2]. Moreover, this up-set
is a c2-element set (indeed, its size is the number of all up-steps of v, but this
number must be c1 because v goes from a point with y-coordinate 0 to a point with
y-coordinate c2), and thus is a c2-element subset of [c1 + c2].

Let L be the set of all lattice paths from (0, 0) to (c1, c2). Thus, what we have just
showed is the following: For any v ∈ L, the up-set of v is a c2-element subset of
[c1 + c2]. Thus, we can define a map

Ups : L → {c2-element subsets of [c1 + c2]} ,
v 7→ (the up-set of v) .

It is easy to see that this map Ups is injective (since any lattice path v from (0, 0)
to (c1, c2) is uniquely determined by its up-set) and surjective (because for any c2-
element subset S of [c1 + c2], we can easily construct a lattice path from (0, 0) to
(c1, c2) whose up-set is S). Thus, Ups is a bijection.

Moreover, it is easy to check the following two facts:

• A lattice path v ∈ L passes through the point (a1, a2) if and only if its up-
set Ups v satisfies |(Ups v) ∩ [a1 + a2]| = a2. (Indeed, for the path v to pass
through (a1, a2), it must spend precisely a2 of its first a1 + a2 steps moving
upwards; i.e., its up-set Ups v should contain exactly a2 elements of [a1 + a2],
but this is equivalent to saying that |(Ups v) ∩ [a1 + a2]| = a2.)

• A lattice path v ∈ L passes through the point (b1, b2) if and only if its up-set
Ups v satisfies |(Ups v) ∩ [b1 + b2]| = b2. (The reason for this is analogous.)

Hence, a lattice path v ∈ L passes through none of the points (a1, a2) and (b1, b2)
if and only if it satisfies neither |(Ups v) ∩ [a1 + a2]| = a2 nor |(Ups v) ∩ [b1 + b2]| =
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b2. Thus,(
the number of lattice paths v ∈ L passing through

none of the points (a1, a2) and (b1, b2)

)
=

(
the number of lattice paths v ∈ L satisfying

neither |(Ups v) ∩ [a1 + a2]| = a2 nor |(Ups v) ∩ [b1 + b2]| = b2

)
=

(
the number of S ∈ {c2-element subsets of [c1 + c2]} satisfying

neither |S ∩ [a1 + a2]| = a2 nor |S ∩ [b1 + b2]| = b2

)
(

here, we have substituted S for Ups v, since
Ups : L → {c2-element subsets of [c1 + c2]} is a bijection

)
=

(
the number of c2-element subsets S of [c1 + c2] satisfying

neither |S ∩ [a1 + a2]| = a2 nor |S ∩ [b1 + b2]| = b2

)
=

(
the number of c2-element subsets S of [c1 + c2] satisfying

|S ∩ [a1 + a2]| 6= a2 and |S ∩ [b1 + b2]| 6= b2

)
. (30)

Now, define six integers a, b, c, A, B, C by a = a2, b = b2, c = c2, A = a1 + a2,
B = b1 + b2 and C = c1 + c2. Clearly, 0 ≤ a ≤ b ≤ c (since 0 ≤ a2 ≤ b2 ≤ c2) and
0 ≤ A ≤ B ≤ C (since 0 ≤ a1 ≤ b1 ≤ c1 and 0 ≤ a2 ≤ b2 ≤ c2). Thus, our answer to
Exercise 4 (b) yields(

the number of c-element subsets S of [C] satisfying
|S ∩ [A]| 6= a and |S ∩ [B]| 6= b

)
=

(
C
c

)
−
(

A
a

)(
C− A
c− a

)
−
(

B
b

)(
C− B
c− b

)
+

(
A
a

)(
B− A
b− a

)(
C− B
c− b

)
.

In view of a = a2, b = b2, c = c2, A = a1 + a2, B = b1 + b2 and C = c1 + c2, this
rewrites as(

the number of c2-element subsets S of [c1 + c2] satisfying
|S ∩ [a1 + a2]| 6= a2 and |S ∩ [b1 + b2]| 6= b2

)
=

(
c1 + c2

c2

)
−
(

a1 + a2

a2

)(
(c1 + c2)− (a1 + a2)

c2 − a2

)
−
(

b1 + b2

b2

)(
(c1 + c2)− (b1 + b2)

c2 − b2

)
+

(
a1 + a2

a2

)(
(b1 + b2)− (a1 + a2)

b2 − a2

)(
(c1 + c2)− (b1 + b2)

c2 − b2

)
. (31)

Recall that the lattice paths from (0, 0) to (c1, c2) are precisely the lattice paths
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v ∈ L (because of how we defined L). Hence,(
the number of lattice paths from (0, 0) to (c1, c2) passing

through none of the points (a1, a2) and (b1, b2)

)
=

(
the number of lattice paths v ∈ L passing through

none of the points (a1, a2) and (b1, b2)

)
=

(
the number of c2-element subsets S of [c1 + c2] satisfying

|S ∩ [a1 + a2]| 6= a2 and |S ∩ [b1 + b2]| 6= b2

)
(by (30))

=

(
c1 + c2

c2

)
−
(

a1 + a2

a2

)(
(c1 + c2)− (a1 + a2)

c2 − a2

)
−
(

b1 + b2

b2

)(
(c1 + c2)− (b1 + b2)

c2 − b2

)
+

(
a1 + a2

a2

)(
(b1 + b2)− (a1 + a2)

b2 − a2

)(
(c1 + c2)− (b1 + b2)

c2 − b2

)
(by (31)) .

0.5. Zig-zag binary strings

If n ∈ N, then a binary n-string shall mean an n-tuple of elements of {0, 1}. (For
example, (0, 1, 1, 0, 1) is a binary 5-string.)

We say that a binary n-string (a1, a2, . . . , an) is zig-zag if it satisfies a1 ≤ a2 ≥ a3 ≤
a4 ≥ · · · (in other words, ai ≤ ai+1 for every odd i ∈ [n− 1], and ai ≥ ai+1 for
every even i ∈ [n− 1]).

For example, (0, 1, 1, 1, 0, 0, 0, 1) is a zig-zag binary 8-string, but (0, 1, 0, 0, 1) is
not.

Exercise 5. Find a simple expression (no summation signs, only known functions
and sequences) for the number of zig-zag binary n-strings for all n ∈N.

Solution to Exercise 5 (sketched). For each n ∈ N, let zn be the number of zig-zag
binary n-strings. We must then find a simple expression for zn.

We claim that
zn = fn+2 for each n ∈N. (32)

In order to prove this, we will first show that

zn = zn−1 + zn−2 for each n > 1. (33)

But before we do this, let us find the first few values of zn. The only binary
0-string is the empty 0-tuple (), and it is zig-zag. Thus, there exists exactly 1 zig-
zag binary 0-string; in other words, z0 = 1. Likewise, z1 = 2, because there are
exactly 2 zig-zag binary 1-strings (namely, (0) and (1)). There are 3 zig-zag binary
2-strings (namely, (0, 0), (0, 1) and (1, 1)); hence, z2 = 3.
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Now, we introduce a “mirror” version of zig-zag strings: We shall say that a
binary n-string (a1, a2, . . . , an) is zag-zig if it satisfies a1 ≥ a2 ≤ a3 ≥ a4 ≤ · · · (in
other words, ai ≥ ai+1 for every odd i ∈ [n− 1], and ai ≤ ai+1 for every even
i ∈ [n− 1]). Clearly, for each n ∈N, we have

(the number of zag-zig binary n-strings)
= (the number of zig-zag binary n-strings) . (34)

(Indeed, there is a bijection {zag-zig binary n-strings} → {zig-zag binary n-strings},
which sends every zag-zig binary n-string (a1, a2, . . . , an) to the zig-zag binary
string (1− a1, 1− a2, . . . , 1− an).)

Let us now prove (33):
[Proof of (33): Let n > 1 be an integer. There are two kinds of zig-zag binary

n-strings: those that start with a 0, and those that start with a 1. Let us count them
separately.

A zig-zag binary n-string that starts with a 0 must have the form (0, a2, a3, . . . , an),
where 0 ≤ a2 ≥ a3 ≤ a4 ≥ a5 ≤ · · · . The inequality 0 ≤ a2 is automatically
satisfied, and thus can be omitted; hence, the requirement “0 ≤ a2 ≥ a3 ≤ a4 ≥
a5 ≤ · · · ” becomes “a2 ≥ a3 ≤ a4 ≥ a5 ≤ · · · ”. In other words, this requirement
says that the binary (n− 1)-string (a2, a3, . . . , an) is zag-zig. Hence, the map

{zig-zag binary n-strings starting with a 0} → {zag-zig binary (n− 1) -strings} ,
(a1, a2, . . . , an) 7→ (a2, a3, . . . , an)

is well-defined. This map is furthermore a bijection (as can be easily seen: the
inverse map sends each (a2, a3, . . . , an) to (0, a2, a3, . . . , an)). Thus,

|{zig-zag binary n-strings starting with a 0}|
= |{zag-zig binary (n− 1) -strings}|
= (the number of zag-zig binary (n− 1) -strings)
= (the number of zig-zag binary (n− 1) -strings)

(by (34) (applied to n− 1 instead of n))
= zn−1 (35)

(since zn−1 is defined as the number of zig-zag binary (n− 1)-strings).
On the other hand, a zig-zag binary n-string that starts with a 1 must have the

form (1, a2, a3, . . . , an), where 1 ≤ a2 ≥ a3 ≤ a4 ≥ a5 ≤ · · · . The inequality 1 ≤ a2 is
equivalent to a2 = 1 (because a2 ∈ {0, 1}), and thus a zig-zag binary n-string that
starts with a 1 must have the form (1, 1, a3, a4, . . . , an), where 1 ≤ 1 ≥ a3 ≤ a4 ≥
a5 ≤ · · · . The inequalities 1 ≤ 1 ≥ a3 are automatically satisfied (since a3 ∈ {0, 1}),
and thus can be omitted; hence, the requirement “1 ≤ 1 ≥ a3 ≤ a4 ≥ a5 ≤ · · · ”
becomes “a3 ≤ a4 ≥ a5 ≤ a6 ≥ · · · ”. In other words, this requirement says that the
binary (n− 2)-string (a3, a4, . . . , an) is zig-zag. Hence, the map

{zig-zag binary n-strings starting with a 1} → {zig-zag binary (n− 2) -strings} ,
(a1, a2, . . . , an) 7→ (a3, a4, . . . , an)
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is well-defined. This map is furthermore a bijection (as can be easily seen: the
inverse map sends each (a3, a4, . . . , an) to (1, 1, a3, a4, . . . , an)). Thus,

|{zig-zag binary n-strings starting with a 1}|
= |{zig-zag binary (n− 2) -strings}|
= (the number of zig-zag binary (n− 2) -strings)
= zn−2 (36)

(since zn−2 is defined as the number of zig-zag binary (n− 2)-strings).
Now, each zig-zag binary n-string either starts with a 0 or starts with a 1 (since

its first entry is in {0, 1}). Hence,

(the number of zig-zag binary n-strings)
= (the number of zig-zag binary n-strings starting with a 0)︸ ︷︷ ︸

=|{zig-zag binary n-strings starting with a 0}|
=zn−1

(by (35))

+ (the number of zig-zag binary n-strings starting with a 1)︸ ︷︷ ︸
=|{zig-zag binary n-strings starting with a 1}|

=zn−2
(by (36))

= zn−1 + zn−2.

Now, recall that zn is defined as the number of zig-zag binary n-strings. Thus,

zn = (the number of zig-zag binary n-strings) = zn−1 + zn−2.

This proves (33).]
Now, it is straightforward to prove (32) by strong induction on n. The induction

step relies on the recurrence equation (33) (which is exactly the same as the recur-
rence equation for the Fibonacci sequence) and on the starting values z0 = 1 and
z1 = 2. We leave the details to the reader. Thus, Exercise 5 is solved.

Remark 0.9. Exercise 5 is [Stan11, Exercise 1.35 (e)]; see the same source for other
combinatorial properties of Fibonacci numbers.

There is also a bijective proof of (32), relying on (22). The key step is to show
that the map

{zig-zag binary n-strings} → {lacunar subsets of [n]} ,
(a1, a2, . . . , an) 7→ {i ∈ [n] | ai ≡ i mod 2}

is a bijection. The inverse map sends a lacunar subset S of [n] to the n-tuple
(a1, a2, . . . , an), where ai is the remainder of i + [i /∈ S] upon division by 2. Can
you check that these maps are well-defined and mutually inverse?



Math 4707 Spring 2018 (Darij Grinberg): midterm 1 page 27

0.6. A binomial identity

Exercise 6. Let n ∈N. Prove that

n

∑
k=0

(−1)k(
n
k

) = 2 · n + 1
n + 2

[n is even] .

(Again, we are using the Iverson bracket notation, so [n is even] is 1 if n is even
and 0 otherwise.)

[Hint: Show that
1(
n
k

) =

 1(
n + 1

k

) +
1(

n + 1
k + 1

)
 n + 1

n + 2
for each k ∈

{0, 1, . . . , n}.]

Remark 0.10. The left hand side in Exercise 6 is the alternating sum of the re-
ciprocals of all (nonzero) binomial coefficients in the n-th row of Pascal’s trian-
gle. What about the regular (non-alternating) sum? It appears that the simplest
known formula merely rewrites it as a different (somewhat simpler) sum:

n

∑
k=0

1(
n
k

) =
n + 1
2n+1

n+1

∑
k=1

2k

k
.

See, e.g., https://math.stackexchange.com/a/481686/ for a proof of this for-
mula (and also of the fact that the sum on the left tends to 2 as n → ∞). (This
formula is also proven in [Grinbe16, solution to Exercise 3.20 (b)].)

Let us give a sketch of a solution to Exercise 6. (The solution in all its details can
be found in [Grinbe16, solution to Exercise 3.20 (a)]; but I believe almost all of it is
routine for you at this point.)

Following the hint, we begin by proving the following lemma:

Lemma 0.11. Let n ∈N. Let k ∈ {0, 1, . . . , n}. Then,

1(
n
k

) =

 1(
n + 1

k

) +
1(

n + 1
k + 1

)
 n + 1

n + 2
. (37)

(In particular, all the fractions in this equality are well-defined.)

Proof of Lemma 0.11 (sketched). Because of k ∈ {0, 1, . . . , n}, we have(
n
k

)
=

n!
k! (n− k)!

. (38)

https://math.stackexchange.com/a/481686/
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In particular,
(

n
k

)
6= 0, so that the fraction

1(
n
k

) in (37) is well-defined. But k ∈ {0, 1, . . . , n} also

entails that both k and k + 1 belong to {0, 1, . . . , n + 1}. Therefore,(
n + 1

k

)
=

(n + 1)!
k! ((n + 1)− k)!

=
(n + 1)!

k! (n− k + 1)!
(39)

and (
n + 1
k + 1

)
=

(n + 1)!
(k + 1)! ((n + 1)− (k + 1))!

=
(n + 1)!

(k + 1)! (n− k)!
. (40)

These two numbers are nonzero; thus, the fractions
1(

n + 1
k

) and
1(

n + 1
k + 1

) in (37) are also well-

defined. (Of course, so is the fraction
n + 1
n + 2

, since n + 2 ≥ 2 > 0.)

It remains to verify the equality (37) itself. But this is easy: The equalities (38), (39) and (40) allow
us to rewrite (37) as

1(
n!

k! (n− k)!

) =

 1(
(n + 1)!

k! (n− k + 1)!

) +
1(

(n + 1)!
(k + 1)! (n− k)!

)
 n + 1

n + 2
.

In view of (n + 1)! = (n + 1) · n!, (n− k + 1)! = (n− k + 1) · (n− k)! and (k + 1)! = (k + 1) · k!, this
can be further rewritten as

1(
n!

k! (n− k)!

) =

 1(
(n + 1) · n!

k! (n− k + 1) · (n− k)!

) +
1(

(n + 1) · n!
(k + 1) · k! (n− k)!

)
 n + 1

n + 2
.

If we multiply both sides of this equality by
n!

k! (n− k)!
, we obtain

1 =

 1(
n + 1

n− k + 1

) +
1(

n + 1
k + 1

)
 n + 1

n + 2
.

But this follows from straightforward computations. Thus, Lemma 0.11 is proven.
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Solution to Exercise 6. Let λ =
n + 1
n + 2

. Every k ∈ {0, 1, . . . , n} satisfies

(−1)k(
n
k

) = (−1)k 1(
n
k

)
︸ ︷︷ ︸

=


1(

n + 1
k

)+
1(

n + 1
k + 1

)


n + 1
n + 2

(by (37))

= (−1)k

 1(
n + 1

k

) +
1(

n + 1
k + 1

)
 n + 1

n + 2︸ ︷︷ ︸
=λ

= (−1)k

 1(
n + 1

k

) +
1(

n + 1
k + 1

)
 λ

=
(−1)k(
n + 1

k

)λ +
(−1)k(
n + 1
k + 1

)
︸ ︷︷ ︸

=
− (−1)k+1(

n + 1
k + 1

)
(since (−1)k=−(−1)k+1)

λ

=
(−1)k(
n + 1

k

)λ +
− (−1)k+1(

n + 1
k + 1

) λ =
(−1)k(
n + 1

k

)λ− (−1)k+1(
n + 1
k + 1

)λ.
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Adding up this equality for all k ∈ {0, 1, . . . , n}, we obtain

n

∑
k=0

(−1)k(
n
k

) =
n

∑
k=0

 (−1)k(
n + 1

k

)λ− (−1)k+1(
n + 1
k + 1

)λ

 =
(−1)0(
n + 1

0

)λ− (−1)n+1(
n + 1
n + 1

)λ

(by the telescope principle)

=
1
1

λ− (−1)n+1

1
λ(

since (−1)0 = 1 and
(

n + 1
0

)
= 1 and

(
n + 1
n + 1

)
= 1

)
= λ− (−1)n+1︸ ︷︷ ︸

=−(−1)n

λ = λ + (−1)n λ =
(
1 + (−1)n)︸ ︷︷ ︸
=2[n is even]

(because 1+(−1)n

equals 2 when n is even,
and equals 0 when n is odd)

λ

= 2 [n is even] λ︸︷︷︸
=

n + 1
n + 2

= 2 · n + 1
n + 2

[n is even] .

This solves Exercise 6.

0.7. Splitting integers into binomial coefficients

Exercise 7. Let j be a positive integer. A j-trail shall mean a j-tuple
(
n1, n2, . . . , nj

)
of nonnegative integers satisfying n1 < n2 < · · · < nj.

Let n ∈N. Prove that there exists a unique j-trail
(
n1, n2, . . . , nj

)
satisfying

n =
j

∑
k=1

(
nk
k

)
.

Example 0.12. For j = 3, Exercise 7 says the following: For each n ∈ N, there
exists a unique 3-trail (n1, n2, n3) satisfying

n =

(
n1

1

)
+

(
n2

2

)
+

(
n3

3

)
.

For example, for n = 0, this 3-trail is (0, 1, 2); for n = 1, this 3-trail is (0, 1, 3);

for n = 5, this 3-trail is (0, 2, 4) (since 5 =

(
0
1

)
+

(
2
2

)
+

(
4
3

)
).
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Exercise 7 is a result of Macaulay, and appears in various texts on commutative
algebra (e.g., [SwaHun06, Lemma A.5.1]).

The following solution essentially follows [SwaHun06, proof of Lemma A.5.1].
We begin with proving lemmas:

Lemma 0.13. Every n ∈N and q ∈ Q satisfy

n

∑
r=0

(
r + q

r

)
=

(
n + q + 1

n

)
.

Lemma 0.13 is one of the forms of the hockey-stick identity. It is easily proven
by induction on n (see [Grinbe16, Exercise 3.3 (a)] for the details).

From now on, we shall be tacitly using the following fact: If m ∈ N and n ∈ Z,
then (

m
n

)
≥ 0. (41)

(This follows, e.g., from the fact that
(

m
n

)
is the number of all n-element subsets

of [m].)

Lemma 0.14. Let k ∈N.

(a) If k is positive, then
(

k− 1
k

)
<

(
k
k

)
<

(
k + 1

k

)
<

(
k + 2

k

)
< · · · .

(b) We have
(

0
k

)
≤
(

1
k

)
≤
(

2
k

)
≤ · · · .

(c) Let a ∈N and b ∈N be such that
(

a
k

)
>

(
b
k

)
. Then, a > b.

Proof of Lemma 0.14 (sketched). (a) Assume that k is positive. We must prove that
(

k− 1
k

)
<

(
k
k

)
<(

k + 1
k

)
<

(
k + 2

k

)
< · · · . In other words, we must show that

(
a
k

)
<

(
a + 1

k

)
for each a ∈

{k− 1, k, k + 1, . . .}.
So let a ∈ {k− 1, k, k + 1, . . .}. Then, k− 1 ∈ N (since k is a positive integer), so that k− 1 ≥ 0.

Also, a ∈ {k− 1, k, k + 1, . . .}, so that a ≥ k − 1 and therefore k − 1 ∈ {0, 1, . . . , a} (since k − 1 ≥

0). Hence,
(

a
k− 1

)
=

a!
(k− 1)! (a− (k− 1))!

> 0. Now, the recurrence relation of the binomial

coefficients yields (
a + 1

k

)
=

(
a

k− 1

)
︸ ︷︷ ︸

>0

+

(
a
k

)
>

(
a
k

)
.

In other words,
(

a
k

)
<

(
a + 1

k

)
. This is precisely what we wanted to prove. Thus, Lemma 0.14 (a)

is proven.

https://en.wikipedia.org/wiki/Macaulay_representation_of_an_integer
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(b) We must show that
(

0
k

)
≤
(

1
k

)
≤
(

2
k

)
≤ · · · . In other words, we must show that

(
a
k

)
≤(

a + 1
k

)
for each a ∈N.

So let a ∈N. We must show that
(

a
k

)
≤
(

a + 1
k

)
.

This is obvious when k = 0 (because in this case, both
(

a
k

)
and

(
a + 1

k

)
equal 1). Hence, we

WLOG assume that k 6= 0. Thus, k ≥ 1 (since k ∈ N), so that k − 1 ∈ N. Also, a ∈ N. Hence,(
a

k− 1

)
≥ 0 (by (41)). Now, the recurrence relation of the binomial coefficients yields(

a + 1
k

)
=

(
a

k− 1

)
︸ ︷︷ ︸
≥0

+

(
a
k

)
≥
(

a
k

)
.

In other words,
(

a
k

)
≤
(

a + 1
k

)
. This is precisely what we wanted to prove. Thus, Lemma 0.14 (b)

is proven.
(c) Assume the contrary. Thus, a ≤ b.

Lemma 0.14 (b) yields
(

0
k

)
≤
(

1
k

)
≤
(

2
k

)
≤ · · · . In other words, for any u ∈ N and v ∈ N

satisfying u ≤ v, we have
(

u
k

)
≤
(

v
k

)
. Applying this to u = a and v = b, we obtain

(
a
k

)
≤
(

b
k

)
(since a ≤ b). But this contradicts

(
a
k

)
>

(
b
k

)
. This contradiction shows that our assumption was

wrong. Thus, Lemma 0.14 (c) is proven.

Lemma 0.15. Let g be a positive integer. Let n1, n2, . . . , ng be nonnegative integers
satisfying n1 < n2 < · · · < ng. Then:

(a) We have ni ≤ ng − g + i for each i ∈ [g].
(b) We have (

ng

g− 1

)
>

g−1

∑
k=1

(
nk
k

)
.

(c) Let mg be an integer such that ng < mg. Then,(
mg

g

)
>

g

∑
k=1

(
nk
k

)
.

Proof of Lemma 0.15 (sketched). (a) We have ni− i ≤ ni+1− (i + 1) for each i ∈ [g− 1]
6. In other words,

n1 − 1 ≤ n2 − 2 ≤ · · · ≤ ng − g. (42)
Now, let i ∈ [g]. Thus, 1 ≤ i ≤ g, so that g ≥ 1 and thus 1 ∈ [g]. Also, i ≤ g;

therefore, (42) yields ni − i ≤ ng − g. Hence, ni ≤ ng − g + i. This proves Lemma
0.15 (a).

6Proof. Let i ∈ [g− 1]. Thus, ni < ni+1 (since n1 < n2 < · · · < ng), so that ni ≤ ni+1 − 1
(since ni and ni+1 are integers). Subtracting i from both sides of this inequality, we obtain
ni − i ≤ ni+1 − 1− i = ni+1 − (i + 1). Qed.



Math 4707 Spring 2018 (Darij Grinberg): midterm 1 page 33

(b) Let k ∈ [g− 1]. Thus, Lemma 0.15 (a) (applied to i = k) yields nk ≤ ng− g+ k.
Thus, ng − g + k ≥ nk ≥ 0 (since nk is nonnegative), so that ng − g + k ∈ N. Also,

nk ∈ N (since nk is a nonnegative integer). But Lemma 0.14 (b) yields
(

0
k

)
≤(

1
k

)
≤
(

2
k

)
≤ · · · . Hence,

(
u
k

)
≤
(

v
k

)
for any u ∈N and v ∈N satisfying u ≤ v.

Applying this to u = nk and v = ng− g+ k, we obtain
(

nk
k

)
≤
(

ng − g + k
k

)
(since

nk ≤ ng − g + k). In other words,(
ng − g + k

k

)
≥
(

nk
k

)
. (43)

Now, forget that we fixed k. We thus have proven the inequality (43) for each
k ∈ [g− 1].

But g − 1 ∈ N (since g is a positive integer). Hence, Lemma 0.13 (applied to
g− 1 and ng − g instead of n and q) yields

g−1

∑
r=0

(
r + ng − g

r

)
=

((
ng − g

)
+ (g− 1) + 1
g− 1

)
=

(
ng

g− 1

)
(since

(
ng − g

)
+ (g− 1) + 1 = ng). Thus,(

ng

g− 1

)
=

g−1

∑
r=0

(
r + ng − g

r

)
=

g−1

∑
k=0

(
k + ng − g

k

)
(here, we have renamed the summation index r as k)

=

(
0 + ng − g

0

)
︸ ︷︷ ︸

=1

+
g−1

∑
k=1

(
k + ng − g

k

)
︸ ︷︷ ︸

=

(
ng − g + k

k

)
≥

(
nk
k

)
(by (43))

≥ 1 +
g−1

∑
k=1

(
nk
k

)
>

g−1

∑
k=1

(
nk
k

)
.

This proves Lemma 0.15 (b).
(c) We have ng < mg, so that ng ≤ mg − 1 (since ng and mg are integers). Thus,

ng + 1 ≤ mg.

Lemma 0.14 (b) (applied to k = g) yields
(

0
g

)
≤
(

1
g

)
≤
(

2
g

)
≤ · · · . Hence,(

u
g

)
≤
(

v
g

)
for any u ∈N and v ∈N satisfying u ≤ v. Applying this to u = ng + 1
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and v = mg, we obtain
(

ng + 1
g

)
≤
(

mg

g

)
(since ng + 1 ≤ mg). Hence,

(
mg

g

)
≥
(

ng + 1
g

)
=

(
ng

g− 1

)
︸ ︷︷ ︸
>

g−1
∑

k=1

(
nk
k

)
(by Lemma 0.15 (b))

+

(
ng

g

)

(by the recurrence relation of the binomial coefficients)

>
g−1

∑
k=1

(
nk
k

)
+

(
ng

g

)
=

g

∑
k=1

(
nk
k

)
.

This proves Lemma 0.15 (c).

We are now close to the uniqueness part of Exercise 7:

Lemma 0.16. Let j be a positive integer. Let n ∈ N. Then, there exists at most
one j-trail

(
n1, n2, . . . , nj

)
satisfying

n =
j

∑
k=1

(
nk
k

)
. (44)

Proof of Lemma 0.16 (sketched). We need to show that any two j-trails
(
n1, n2, . . . , nj

)
satisfying (44) are equal.

So let
(
a1, a2, . . . , aj

)
and

(
b1, b2, . . . , bj

)
be two such j-trails. We must then prove

that
(
a1, a2, . . . , aj

)
and

(
b1, b2, . . . , bj

)
are equal.

Assume the contrary. Thus,
(
a1, a2, . . . , aj

)
6=
(
b1, b2, . . . , bj

)
. Hence, there exists

some k ∈ [j] satisfying ak 6= bk. Let g be the largest such k. Thus, g is an element of
[j] satisfying ag 6= bg, but

every k ∈ [j] that is larger than g must satisfy ak = bk. (45)

We can rewrite (45) as follows: Every k ∈ {g + 1, g + 2, . . . , j} must satisfy ak =
bk. Thus,

every k ∈ {g + 1, g + 2, . . . , j} must satisfy
(

ak
k

)
=

(
bk
k

)
. (46)

We know that
(
a1, a2, . . . , aj

)
is a j-trail. In other words,

(
a1, a2, . . . , aj

)
is a j-tuple

of nonnegative integers satisfying a1 < a2 < · · · < aj (because this is how a j-trail
was defined). Similarly,

(
b1, b2, . . . , bj

)
is a j-tuple of nonnegative integers satisfying

b1 < b2 < · · · < bj.
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Also,
(
a1, a2, . . . , aj

)
is a j-trail

(
n1, n2, . . . , nj

)
satisfying (44). In other words,(

a1, a2, . . . , aj
)

is a j-trail and satisfies

n =
j

∑
k=1

(
ak
k

)
. (47)

Similarly,
(
b1, b2, . . . , bj

)
is a j-trail and satisfies

n =
j

∑
k=1

(
bk
k

)
. (48)

We can WLOG assume that ag ≤ bg (since otherwise, we can simply switch
the roles of

(
a1, a2, . . . , aj

)
and

(
b1, b2, . . . , bj

)
). Thus, ag < bg (since ag 6= bg).

Now, a1, a2, . . . , ag are nonnegative integers satisfying a1 < a2 < · · · < ag (since
a1 < a2 < · · · < aj). Hence, Lemma 0.15 (c) (applied to ai and bg instead of ni and
mg) yields (

bg

g

)
>

g

∑
k=1

(
ak
k

)
. (49)

Now, (47) yields

n =
j

∑
k=1

(
ak
k

)
=

g

∑
k=1

(
ak
k

)
+

j

∑
k=g+1

(
ak
k

)
︸ ︷︷ ︸
=

(
bk
k

)
(by (46))

=
g

∑
k=1

(
ak
k

)
+

j

∑
k=g+1

(
bk
k

)
. (50)

On the other hand, (48) yields

n =
j

∑
k=1

(
bk
k

)
=

g−1

∑
k=1

(
bk
k

)
︸ ︷︷ ︸
≥0

(since bk and k are
nonnegative integers)

+
j

∑
k=g

(
bk
k

)
≥

g−1

∑
k=1

0︸︷︷︸
=0

+
j

∑
k=g

(
bk
k

)

=
j

∑
k=g

(
bk
k

)
=

(
bg

g

)
︸ ︷︷ ︸

>
g
∑

k=1

(
ak
k

)
(by (49))

+
j

∑
k=g+1

(
bk
k

)

>
g

∑
k=1

(
ak
k

)
+

j

∑
k=g+1

(
bk
k

)
= n (by (50)) .
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This is clearly absurd. Thus, we have found a contradiction. This shows that our
assumption was wrong. Hence,

(
a1, a2, . . . , aj

)
and

(
b1, b2, . . . , bj

)
are equal. This

proves Lemma 0.16.

Next, we need another simple lemma:

Lemma 0.17. Let k be a positive integer. Let n ∈ N. Then, there exists an

h ∈ {k− 1, k, k + 1, . . .} such that
(

h
k

)
≤ n <

(
h + 1

k

)
.

Notice that the h in Lemma 0.17 is also unique; but we will not need this.

Proof of Lemma 0.17 (sketched). The gist of the proof is the following: The sequence((
k− 1

k

)
,
(

k
k

)
,
(

k + 1
k

)
,
(

k + 2
k

)
, . . .

)
of nonnegative integers begins with

(
k− 1

k

)
= 0, and is strictly increasing (by

Lemma 0.14 (a)); therefore, it eventually “outgrows” the number n. In other words,(
g
k

)
> n for large enough g. Now, if we pick the smallest such g, then g− 1 will

be an h ∈ {k− 1, k, k + 1, . . .} such that
(

h
k

)
≤ n <

(
h + 1

k

)
; this proves Lemma

0.17.
For the sake of completeness, let me show a more formalized version of this argument.
We have k− 1 ∈ N (since k is a positive integer) and k− 1 < k. Thus, (1) (applied to k− 1 and k

instead of m and n) yields
(

k− 1
k

)
= 0.

Lemma 0.14 (a) yields that(
k− 1

k

)
<

(
k
k

)
<

(
k + 1

k

)
<

(
k + 2

k

)
< · · · .

Hence, the elements
(

k− 1
k

)
,
(

k
k

)
,
(

k + 1
k

)
,
(

k + 2
k

)
, . . . are distinct. Thus, in particular, the el-

ements
(

k− 1
k

)
,
(

k
k

)
,
(

k + 1
k

)
, . . . ,

(
k + n

k

)
are distinct. In other words, the elements

(
g
k

)
for

g ∈ {k− 1, k, k + 1, . . . , k + n} are distinct. Hence,∣∣∣∣{(g
k

)
| g ∈ {k− 1, k, k + 1, . . . , k + n}

}∣∣∣∣
= |{k− 1, k, k + 1, . . . , k + n}| = n + 2 > n + 1. (51)

Thus, there exists some g ∈ {k− 1, k, k + 1, . . . , k + n} such that
(

g
k

)
/∈ {0, 1, . . . , n} 7. Let

p be the smallest such g. Thus, p is an element of {k− 1, k, k + 1, . . . , k + n} such that
(

p
k

)
/∈

{0, 1, . . . , n}, but each g ∈ {k− 1, k, k + 1, . . . , k + n} that is smaller than p must satisfy(
g
k

)
∈ {0, 1, . . . , n} . (52)

7Proof. Assume the contrary. Thus, there exists no such g. In other words, each g ∈
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If we had p = k − 1, then we would have
(

p
k

)
=

(
k− 1

k

)
= 0 ∈ {0, 1, . . . , n} (since n ∈ N),

which would contradict
(

p
k

)
/∈ {0, 1, . . . , n}. Hence, we cannot have p = k− 1. Thus, p 6= k− 1.

Combining this with p ∈ {k− 1, k, k + 1, . . . , k + n}, we obtain

p ∈ {k− 1, k, k + 1, . . . , k + n} \ {k− 1} = {k, k + 1, . . . , k + n} ,

so that p − 1 ∈ {k− 1, k, k + 1, . . . , k + n− 1} ⊆ {k− 1, k, k + 1, . . . , k + n}. Since p − 1 is smaller

than p, we can thus apply (52) to g = p− 1. As a result, we obtain
(

p− 1
k

)
∈ {0, 1, . . . , n}. Hence,(

p− 1
k

)
≤ n.

Also, p ∈ {k− 1, k, k + 1, . . . , k + n} ⊆ N (since k − 1 ∈ N). Hence, p is a nonnegative inte-

ger. Now,
(

p
k

)
∈ N (since both p and k are nonnegative integers). Combining this with

(
p
k

)
/∈

{0, 1, . . . , n}, we obtain
(

p
k

)
∈N \ {0, 1, . . . , n} = {n + 1, n + 2, n + 3, . . .}, so that

(
p
k

)
≥ n+ 1 > n.

Thus, n <

(
p
k

)
=

(
(p− 1) + 1

k

)
(since p = (p− 1) + 1).

Altogether, we now know that p− 1 ∈ {k− 1, k, k + 1, . . . , k + n− 1} ⊆ {k− 1, k, k + 1, . . .} and(
p− 1

k

)
≤ n <

(
(p− 1) + 1

k

)
. Hence, there exists an h ∈ {k− 1, k, k + 1, . . .} such that

(
h
k

)
≤ n <(

h + 1
k

)
(namely, h = p− 1). This proves Lemma 0.17.

We can now show the existence part of Exercise 7:

Lemma 0.18. Let j be a positive integer. Let n ∈ N. Then, there exists at least
one j-trail

(
n1, n2, . . . , nj

)
satisfying

n =
j

∑
k=1

(
nk
k

)
. (53)

Proof of Lemma 0.18 (sketched). We shall prove Lemma 0.18 by induction on j:
Induction base: For each n ∈ N, there exists at least one 1-trail (n1, n2, . . . , n1)

satisfying n =
1
∑

k=1

(
nk
k

)
(namely, the 1-trail (n)). 8 In other words, Lemma 0.18

holds for j = 1. This completes the induction base.

{k− 1, k, k + 1, . . . , k + n} satisfies
(

g
k

)
∈ {0, 1, . . . , n}. In other words,

{(
g
k

)
| g ∈ {k− 1, k, k + 1, . . . , k + n}

}
⊆ {0, 1, . . . , n} .

Hence, ∣∣∣∣{(g
k

)
| g ∈ {k− 1, k, k + 1, . . . , k + n}

}∣∣∣∣ ≤ |{0, 1, . . . , n}| = n + 1.

But this contradicts (51). This contradiction shows that our assumption was wrong, qed.
8Indeed, a 1-trail (n1, n2, . . . , n1) is the same as a 1-tuple (n1) consisting of a single nonnega-
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Induction step: Let i be a positive integer. Assume that Lemma 0.18 holds for
j = i. We must prove that Lemma 0.18 holds for j = i + 1.

Let n ∈N. We are going to show that there is at least one (i + 1)-trail (n1, n2, . . . , ni+1)

satisfying n =
i+1
∑

k=1

(
nk
k

)
.

Lemma 0.17 (applied to k = i + 1) shows that there exists an

h ∈ {(i + 1)− 1, i + 1, (i + 1) + 1, . . .} such that
(

h
i + 1

)
≤ n <

(
h + 1
i + 1

)
. Consider

this h.
We have

h ∈ {(i + 1)− 1, i + 1, (i + 1) + 1, . . .} = {i, i + 1, i + 2, . . .} ,

so that h ∈N and h ≥ i.

From
(

h
i + 1

)
≤ n, we conclude that n−

(
h

i + 1

)
≥ 0, so that n−

(
h

i + 1

)
∈ N.

Thus, we can define an m ∈N by m = n−
(

h
i + 1

)
.

Now, recall that we assumed that Lemma 0.18 holds for j = i. Hence, we can
apply Lemma 0.18 to i and m instead of j and n. We thus conclude that there exists
at least one i-trail (n1, n2, . . . , ni) satisfying

m =
i

∑
k=1

(
nk
k

)
. (54)

Consider this i-trail (n1, n2, . . . , ni).
We know that (n1, n2, . . . , ni) is an i-trail. In other words, (n1, n2, . . . , ni) is an

i-tuple of nonnegative integers satisfying n1 < n2 < · · · < ni (because this is how
an i-trail was defined).

We have m = n−
(

h
i + 1

)
, so that

m +

(
h

i + 1

)
= n <

(
h + 1
i + 1

)
=

(
h
i

)
+

(
h

i + 1

)

(by the recurrence relation of the binomial coefficients). Subtracting
(

h
i + 1

)
from

tive integer n1; and this 1-trail satisfies n =
1
∑

k=1

(
nk
k

)
if and only if we have n = n1 (because

1
∑

k=1

(
nk
k

)
=

(
n1

1

)
= n1).
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this inequality, we obtain m <

(
h
i

)
. Hence,

(
h
i

)
> m =

i

∑
k=1

(
nk
k

)
=

i−1

∑
k=1

(
nk
k

)
︸ ︷︷ ︸
≥0

(since nk and k
are nonnegative)

+

(
ni

i

)
≥

i−1

∑
k=1

0︸︷︷︸
=0

+

(
ni

i

)
=

(
ni

i

)
.

Hence, Lemma 0.14 (c) (applied to i, h and ni instead of k, a and b) yields h > ni.
In other words, ni < h.

Now, let us extend the i-tuple (n1, n2, . . . , ni) to an (i + 1)-tuple (n1, n2, . . . , ni+1)
by setting ni+1 = h. Thus, ni < h = ni+1. Combining n1 < n2 < · · · < ni with
ni < ni+1, we obtain n1 < n2 < · · · < ni+1. Also, ni+1 = h ∈ N, so that ni+1 is a
nonnegative integer.

Also, n1, n2, . . . , ni+1 are nonnegative integers (since n1, n2, . . . , ni are nonneg-
ative integers, and since ni+1 is a nonnegative integer). Thus, (n1, n2, . . . , ni+1)
is an (i + 1)-tuple of nonnegative integers satisfying n1 < n2 < · · · < ni+1. In
other words, (n1, n2, . . . , ni+1) is an (i + 1)-trail (by the definition of an (i + 1)-trail).
Moreover, we have

i+1

∑
k=1

(
nk
k

)
=

i

∑
k=1

(
nk
k

)
︸ ︷︷ ︸

=m
(by (54))

+

(
ni+1

i + 1

)
︸ ︷︷ ︸
=

(
h

i + 1

)
(since ni+1=h)

= m +

(
h

i + 1

)
= n.

In other words, n =
i+1
∑

k=1

(
nk
k

)
.

Thus, we have constructed an (i + 1)-trail (n1, n2, . . . , ni+1) satisfying n =
i+1
∑

k=1

(
nk
k

)
.

Hence, there exists at least one such (i + 1)-trail.
Now, forget that we fixed n. We thus have shown that for each n ∈ N, there

exists at least one (i + 1)-trail (n1, n2, . . . , ni+1) satisfying n =
i+1
∑

k=1

(
nk
k

)
. In other

words, Lemma 0.18 holds for j = i + 1. This completes the induction step. Thus,
Lemma 0.18 is proven by induction.

Solution to Exercise 7 (sketched). Lemma 0.18 shows that there exists at least one j-
trail

(
n1, n2, . . . , nj

)
satisfying

n =
j

∑
k=1

(
nk
k

)
.

Moreover, this j-trail is unique, according to Lemma 0.16. Hence, Exercise 7 is
solved.
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