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1 EXERCISE 1

1.1 PROBLEM
Let n € N.

n

(a) Prove that the integer ( ) is odd for each b € {0,1,...,2" — 1}.

2n
(b) Prove that the integer ( b) is even for each b € {1,2,...,2" — 1}.

[Here, the set {0,1,...,2" — 1} means the set of all integers k with 0 < k& < 2™ —1, and
the set {1,2,...,2" — 1} means the set of all integers k£ with 1 <k < 2" —1/]

1.2 SOLUTION

Lemma 1.1. The definition of binomial coefficient demonstrates that for any k € N

(2>:[k=0].

This was shown briefly in class.

We now solve the actual exercise.
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(a) Proof. Let p(n) be the logical statement that (a) holds for some n € N. First, for
n =0 we have b € {0,...,2° — 1} = {0} so

2" —1 0
( b > (0) Lemma [IL1]

which is clearly odd, so p(0) is true.

For an inductive hypothesis, assume p(m) holds for some m € N. Let’s examine
p(m +1). We can express 2™ — 1 as 2™ + (2™ — 1). Clearly 2™ — 1 is in N since
9m € Nand 2" > 1. Fix b€ {0,1,...,27+ — 1}.

If b < 2™ — 1, we are able to apply HW1 Exe4 (congruence 1) substituting n :=

m, a := 2™ — 1, b := b since our variables satisfy the domain constraints (since
be{0,1,...,2™ — 1}), and obtain

om+l 1 2m4-2m -1\ _ [2" -1
L) ()

If b > 2™ —1, we are able to apply HW1 Exe4 (congruence 2) substituting n := m, a :=
2™ — 1, b := b — 2™ where our variables again satisfy the domain constraints (since
b> 2™ —1yields b — 2™ > 0 and thus b — 2™ € {0,1,...,2™ — 1}), and obtain

AN C L L AL A
b “\omyp_om) =y )OS

In either case, we obtain

omtl 1 2m — 1
= 2.
)=

2m —1 amtl
From our inductive hypothesis, we know that b is odd, so b ) is also

odd since they are congruent modulo 2. Thus, p(m+ 1) holds given p(m). Hence, p(n)
holds for all n € N via the Principle of Mathematical Induction. O

(b) Proof. Both 0 and b belong to {0,1,...,2" —1}. Hence, we can apply HW1 Exe4
(congruence 2) directly (substituting n:=n, a:=0, b:=b) to get

2 = ¥ mod 2 = 0 mod 2.
b b Lemmea [I1]

So (2:) is even. O

Remark 1.2. For (b), note that the set {1,2,...,2" — 1} is the empty set for n = 0. This
means that (b) is vacuously true for n = 0, since no there are no b that it would make a
statement about.

2 EXERCISE 4

2.1 PROBLEM

(a) Given six integers aq, by, ¢1, as, be, ca satisfying 0 < a; < by < ¢; and 0 < ay < by < .
How many lattice paths from (0,0) to (c1, ¢o) pass through none of the points (a;, as)
nor (by, bg)?

(b) Given six integers a, b, ¢, A, B, C satisfying 0 < a <b<cand 0 < A< B <C. How
many c-element subsets S of [C] satisfy |S N [A]| # @ and |S N [B]| # b?
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2.2 SOLUTION
Lemma 2.1. Let m € Z and n € Z be such that m +n > 0. The number of lattice paths

from (0,0) to (m,n) is (m: ”) _ (m N "> .

m

Proof. In the case when m € N and n € N, this was proven in class. Thus, it remains to
consider the other case. So, we assume that one of m and n does not belong to N. In other
words, one of m and n is negative. Then, the other one is smaller than m + n. Hence, both

(m N n) and (m i n) equal 0 (since m +n € N). It remains to check that the number
n m

of lattice paths from (0,0) to (m,n) is 0 as well. But this is clear: Since one of m and n is
negative, there are no lattice paths from (0,0) to (m,n) (because both coordinates can only
increase along a lattice path, and therefore we can never get to negative coordinates if we
start at (0,0)). O

We now solve the exercise:

(a) Rather than just solving the exercise as it is stated, we generalize it a little bit: We
replace the requirement “0 < a7 < by < ¢ and “0 < ag < by < ¢” by the (weaker)
requirement “0 < ay + as < by + by < ¢; + ¢o”. This will come in handy when we later
deduce part (b) from part (a).

Proof. Define the following sets
U = {all lattice paths from (0,0) to (c1,c2)},

P, = {paths from (0,0) to (¢, c2) passing through (a1, as)},
P, = {paths from (0,0) to (¢, cy) passing through (by,bs)} ;
thus,

U\ (P,UP,)
= {paths from (0,0) to (¢1, c2) passing through neither (ay,as) nor (by,be)}.

But the Inclusion-Exclusion Principle shows that

U\ (FaUB)| = U] = [Fu| = |B| + [Pa N By|.

So, we just need to count each of these sets using Lemma 2.1} If m,n, p, ¢ are integers

satisfying 0 < p + ¢ < m + n, then the number of paths from (0,0) to (m,n) passing

p+q\((m+n)—(p+q)
m-—p

paths from (0,0) to (p,¢) and from (p,q) to (m,n), but Lemma shows that there

(m+n)—(p+q)
m-—p

This generalizes to a formula for the number of paths from (0,0) to (m,n) passing

through k specified points; it is expressed as a product of of k+ 1 binomial coefficients

through (p, q) is ( (since we are independently choosing

- . -
are (p q) options for the former and options for the latter).
p
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(indeed, any lattice path must traverse the k£ points in the order of increasing sum of
coordinatesﬂ7 so it breaks into k£ + 1 smaller paths with known endpoints). Hence,

A al;uag (c1 +c2:£§1 ta) |
= Ebl +le>> (((Cl +ea) = (b + bz))>;

by cp—b
IP,N Py = ar +as (b1 +b2) — (a1 + az)\ [(c1 + c2) — (by + ba) .
ay b —ay c1— b

We can then count the desired lattice paths:
U\ (PaUB)| = |U| = [Fa| = [P] + [Fa O By

_(ate)  (ata)((a+c)—(a+a)
B <<b1 ;52)) ((c§+ 2) )Z(ng + b2)>Cl " )
. (a1 + a2) ((b1 + b(;l)_— (1al + a2)) ((01 +e2) = (b + bz))

a1 by —ay c—b

(b) Proof. Let a; = a, by = b, and ¢; = c.
Let ap=A—a,by =B —b,and co = C —c.
Clearly, 0 < a; +as < by + by < 1+ co.

Let P. be the set U \ (P, U B,) from (a).

Let us construct a bijection between P. and ()., the set of all c-element subsets S of
[C] satisty [S N [A]| # a and |SN[B]| # b.

Every path in P. can be bijectively mapped to a subset S of [C] with |S| = ¢. For
a given path P € P, it has C' = ¢; + co steps, either north or east. Let us number
these steps {1,2,...,C} = [C]. Define a subset S C [C] as the set of the indices of
eastern steps (so a path from (0,0) to (1,1) consisting of an eastern step followed by
a northern step would have S = {1}). This constructed set S is clearly a subset of
[C] containing ¢ = ¢; elements. Since P does not pass through (a1, as), P either takes
more or less than a; eastern steps in its first A = a; + ao steps. This implies that
there are either more or less than a = a; elements in the first A elements of S, so
|S N [A]] # a. Similarly, since P does not pass through (b1, bs), we have |S N [B]| # b.
Thus, S is a valid member of Q..

The inverse of this function (Q. — P.) follows naturally: For a given subset S € Q.,
map each element i € S to an eastern step in a path P and each element j € [C]\S to a
northern step. A matching argument can be given to the correctness of this mapping.
Moreover, this is a bijection since it is a two-sided inverse and each path P uniquely
determines a subset S and vice versa.

Thus, there exists a bijection between P, and @, so that |Q.| = |P.|. The right hand
side has been expressed in (a). O

'If two of the k points have the same sum of coordinates, while being distinct, then the number is 0,
because no lattice path can traverse them both.
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3 EXERCISE 5

3.1 PROBLEM

We say that a binary n-string (aq, as, . . ., a,) is zig-zag if it satisfies a3 < ag > a3 <ay > ---
(in other words, a; < a;1; for every odd i € [n — 1], and a; > a;4; for every even i € [n — 1]).

Find a simple expression (no summation signs, only known functions and sequences) for
the number of zig-zag binary n-strings for all n € N.

3.2 SOLUTION

We shall use the ceiling function: For any integer x, we let [z] denote the smallest integer
that is > x.
First let us define the color of a binary string b,, as

color(b,) =

black if b,’s final element is 0
red otherwise

(in particular, we count the binary O-string () as red). Let 2, piack and zp,eq denote the
number of black and red zig-zag binary n-strings, respectively. Let z, be the number of all
zig-zag binary n-strings. Then, 2, = 2, piack + Zn.red, Sihce every zig-zag binary string must
either be black or red.

If b is a binary n-string, and if g € {0, 1}, then b#g¢ will mean the binary (n + 1)-string
obtained by appending g to the end of b. (For example, (0,1,1,0) #1 = (0,1,1,0,1).)

Let us devise a constructive algorithm to recursively build zig-zag binary strings. Given
a zig-zag binary n-string b,, the following algorithm constructs all zig-zag binary (n + 1)-
strings that begin with b,,:

Algorithm 3.1 Generating zig-zag binary strings
1: procedure GENERATEZIGZAG(b,,)
2 if b,, is black then
3 if n is even then return b,#0
4: else return b,#0, b, #1
5
6
7

else % b, is red
if n is even then return b,#0, b,#1
else return b,#1

This algorithm can be shown to be correct and that it generates all zig-zag binary
(n 4 1)-strings. Simply, it generates all binary (n + 1)-strings but prunes those that do not
satisfy the zig-zag condition; lines 3 and 7 exclude strings which do not satisfy a; < a;;; for
every odd i € [n], and a; > a;41 for every even i € [n].

Applying Algorithm 3.1 for low n gives familiar values for 2, piack, 2nred, and 2y:

We now solve the exercise:

Proof. Define p(n) as the logical statement, for n € N, that
Znblack = fZ[%] and Znred = f2["T+1]717

where f; is the i'® Fibonacci number (having fo = 0, f; = 1). For the base case, n = 0, we
have one red zig-zag binary string and no black zig-zag binary strings, so p(0) holds since

Znblack = f[2%] = fO =0 and Znred = fQ[Oizl'\—l = fl =1
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N | Zpblack | #n,red | #n
0 0 1 1
1 1 1 2
2 1 2 3
3 3 2 )
4 3 ) 8
5 8 ) 13

For the inductive hypothesis, assume p(m) holds for some m € N. Then, let’s examine
p(m + 1); count the red and black zig-zag binary (m + 1)-strings.

If m is even, for each black zig-zag binary m-string, GENERATEZIGZAG will generate 1
black zig-zag binary (m + 1)-string (line 3). Likewise, each red zig-zag binary m-string will
generate 1 black zig-zag binary (m + 1)-string and 1 red zig-zag binary (m + 1)-string (line
6). So, there are zp, piack + Zm.rea black zig-zag binary (m + 1)-strings and z,, ,.q red zig-zag
binary (m + 1)-strings. This gives us the expressions

Zm+1,black = Zm,black + Zm,red Ii] f2f%1 + f2’—m;11_1

(the symbol “;I” means “equals, by the inductive hypothesis”). Since m is even, this evaluates
to
“m+1,black = Jm T fmi2-1 = fmi2 = fz(mTH]a

where the last equality is true since m is even. More simply, the number of red zig-zag
binary (m + 1)-strings is the same as the number of those with length m:

St red = S = g 2 = ytuspiny

where again the last equality holds since m is even.

On the other hand, if m is odd, for each black zig-zag binary m-string, GENERATEZIGZAG
will generate 1 black zig-zag binary (m + 1)-string and 1 red zig-zag binary (m + 1)-string
(line 4). Likewise, each red zig-zag binary m-string will generate 1 red zig-zag binary (m+1)-
string (line 7). So, there are z,, piack + Zmrea red zig-zag binary (m + 1)-strings and 2z, prack
black zig-zag binary (m+ 1)-strings. A very similar argument as with even m (where ceiling
terms are affected differently since m is odd) yields the same results.

So, p(m+1) holds given p(m). Hence, by the Principle of Mathematical Induction, p(n)
holds for all n € N.

Now, recall that z, = 2z piack + Zn.rea- Since p(n) holds, this simplifies to

fo+ fnr1 ifnis even

fos1+ fn ifnisodd = Jova:

Zn = forp) + fornpry o = {

So, the number of zig-zag binary n-strings is z, = f,42, the (n+2)" Fibonacci number. [
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