
University of Minnesota, School of Mathematics

Math 4707: Combinatorics, Spring 2018
Midterm 1

Brady Olson (edited by Darij Grinberg)

January 10, 2019

1 Exercise 1

1.1 Problem

Let n ∈ N.

(a) Prove that the integer
(
2n − 1

b

)
is odd for each b ∈ {0, 1, . . . , 2n − 1}.

(b) Prove that the integer
(
2n

b

)
is even for each b ∈ {1, 2, . . . , 2n − 1}.

[Here, the set {0, 1, . . . , 2n − 1} means the set of all integers k with 0 ≤ k ≤ 2n− 1, and
the set {1, 2, . . . , 2n − 1} means the set of all integers k with 1 ≤ k ≤ 2n − 1.]

1.2 Solution

Lemma 1.1. The definition of binomial coefficient demonstrates that for any k ∈ N(
0

k

)
= [k = 0] .

This was shown briefly in class.

We now solve the actual exercise.

1

Solutions to midterm #1 page 2 of 6

(a) Proof. Let p(n) be the logical statement that (a) holds for some n ∈ N. First, for
n = 0 we have b ∈ {0, . . . , 20 − 1} = {0} so(

2n − 1

b

)
=

(
0

0

)
=

Lemma 1.1
1,

which is clearly odd, so p(0) is true.
For an inductive hypothesis, assume p(m) holds for some m ∈ N. Let’s examine
p(m + 1). We can express 2m+1 − 1 as 2m + (2m − 1). Clearly 2m − 1 is in N since
2m ∈ N and 2m ≥ 1. Fix b ∈ {0, 1, . . . , 2m+1 − 1}.
If b ≤ 2m − 1, we are able to apply HW1 Exe4 (congruence 1) substituting n :=
m, a := 2m − 1, b := b since our variables satisfy the domain constraints (since
b ∈ {0, 1, . . . , 2m − 1}), and obtain(

2m+1 − 1

b

)
=

(
2m + 2m − 1

b

)
≡
(
2m − 1

b

)
mod 2.

If b > 2m−1, we are able to apply HW1 Exe4 (congruence 2) substituting n := m, a :=
2m − 1, b := b − 2m where our variables again satisfy the domain constraints (since
b > 2m − 1 yields b− 2m ≥ 0 and thus b− 2m ∈ {0, 1, . . . , 2m − 1}), and obtain(

2m+1 − 1

b

)
=

(
2m + 2m − 1

2m + b− 2m

)
≡
(
2m − 1

b

)
mod 2.

In either case, we obtain (
2m+1 − 1

b

)
≡
(
2m − 1

b

)
mod 2.

From our inductive hypothesis, we know that
(
2m − 1

b

)
is odd, so

(
2m+1 − 1

b

)
is also

odd since they are congruent modulo 2. Thus, p(m+1) holds given p(m). Hence, p(n)
holds for all n ∈ N via the Principle of Mathematical Induction.

(b) Proof. Both 0 and b belong to {0, 1, . . . , 2n − 1}. Hence, we can apply HW1 Exe4
(congruence 2) directly (substituting n := n, a := 0, b := b) to get(

2n

b

)
≡
(
0

b

)
mod 2 =

Lemma 1.1
0mod 2.

So
(
2n

b

)
is even.

Remark 1.2. For (b), note that the set {1, 2, . . . , 2n − 1} is the empty set for n = 0. This
means that (b) is vacuously true for n = 0, since no there are no b that it would make a
statement about.

2 Exercise 4

2.1 Problem

(a) Given six integers a1, b1, c1, a2, b2, c2 satisfying 0 ≤ a1 ≤ b1 ≤ c1 and 0 ≤ a2 ≤ b2 ≤ c2.
How many lattice paths from (0, 0) to (c1, c2) pass through none of the points (a1, a2)
nor (b1, b2)?

(b) Given six integers a, b, c, A,B,C satisfying 0 ≤ a ≤ b ≤ c and 0 ≤ A ≤ B ≤ C. How
many c-element subsets S of [C] satisfy |S ∩ [A]| 6= a and |S ∩ [B]| 6= b?

Brady Olson (edited by Darij Grinberg), — 2 —

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw1s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw1s.pdf

Solutions to midterm #1 page 3 of 6

2.2 Solution

Lemma 2.1. Let m ∈ Z and n ∈ Z be such that m + n ≥ 0. The number of lattice paths

from (0, 0) to (m,n) is
(
m+ n

n

)
=

(
m+ n

m

)
.

Proof. In the case when m ∈ N and n ∈ N, this was proven in class. Thus, it remains to
consider the other case. So, we assume that one of m and n does not belong to N. In other
words, one of m and n is negative. Then, the other one is smaller than m+ n. Hence, both(
m+ n

n

)
and

(
m+ n

m

)
equal 0 (since m + n ∈ N). It remains to check that the number

of lattice paths from (0, 0) to (m,n) is 0 as well. But this is clear: Since one of m and n is
negative, there are no lattice paths from (0, 0) to (m,n) (because both coordinates can only
increase along a lattice path, and therefore we can never get to negative coordinates if we
start at (0, 0)).

We now solve the exercise:

(a) Rather than just solving the exercise as it is stated, we generalize it a little bit: We
replace the requirement “0 ≤ a1 ≤ b1 ≤ c1 and “0 ≤ a2 ≤ b2 ≤ c2” by the (weaker)
requirement “0 ≤ a1 + a2 ≤ b1 + b2 ≤ c1 + c2”. This will come in handy when we later
deduce part (b) from part (a).

Proof. Define the following sets

U = {all lattice paths from (0, 0) to (c1, c2)} ,

Pa = {paths from (0, 0) to (c1, c2) passing through (a1, a2)} ,

Pb = {paths from (0, 0) to (c1, c2) passing through (b1, b2)} ;

thus,

U \ (Pa ∪ Pb)

= {paths from (0, 0) to (c1, c2) passing through neither (a1, a2) nor (b1, b2)} .

But the Inclusion-Exclusion Principle shows that

|U \ (Pa ∪ Pb)| = |U | − |Pa| − |Pb|+ |Pa ∩ Pb|.

So, we just need to count each of these sets using Lemma 2.1. If m,n, p, q are integers
satisfying 0 ≤ p + q ≤ m + n, then the number of paths from (0, 0) to (m,n) passing

through (p, q) is
(
p+ q

p

)(
(m+ n)− (p+ q)

m− p

)
(since we are independently choosing

paths from (0, 0) to (p, q) and from (p, q) to (m,n), but Lemma 2.1 shows that there

are
(
p+ q

p

)
options for the former and

(
(m+ n)− (p+ q)

m− p

)
options for the latter).

This generalizes to a formula for the number of paths from (0, 0) to (m,n) passing
through k specified points; it is expressed as a product of of k+1 binomial coefficients

Brady Olson (edited by Darij Grinberg), — 3 —

Solutions to midterm #1 page 4 of 6

(indeed, any lattice path must traverse the k points in the order of increasing sum of
coordinates1, so it breaks into k + 1 smaller paths with known endpoints). Hence,

|Pa| =
(
a1 + a2

a1

)(
(c1 + c2)− (a1 + a2)

c1 − a1

)
;

|Pb| =
(
b1 + b2

b1

)(
(c1 + c2)− (b1 + b2)

c1 − b1

)
;

|Pa ∩ Pb| =
(
a1 + a2

a1

)(
(b1 + b2)− (a1 + a2)

b1 − a1

)(
(c1 + c2)− (b1 + b2)

c1 − b1

)
.

We can then count the desired lattice paths:

|U \ (Pa ∪ Pb) | = |U | − |Pa| − |Pb|+ |Pa ∩ Pb|

=

(
c1 + c2

c1

)
−
(
a1 + a2

a1

)(
(c1 + c2)− (a1 + a2)

c1 − a1

)
−
(
b1 + b2

b1

)(
(c1 + c2)− (b1 + b2)

c1 − b1

)
+

(
a1 + a2

a1

)(
(b1 + b2)− (a1 + a2)

b1 − a1

)(
(c1 + c2)− (b1 + b2)

c1 − b1

)
.

(b) Proof. Let a1 = a, b1 = b, and c1 = c.
Let a2 = A− a, b2 = B − b, and c2 = C − c.
Clearly, 0 ≤ a1 + a2 ≤ b1 + b2 ≤ c1 + c2.

Let Pc be the set U \ (Pa ∪ Pb) from (a).

Let us construct a bijection between Pc and Qc, the set of all c-element subsets S of
[C] satisfy |S ∩ [A] | 6= a and |S ∩ [B] | 6= b.

Every path in Pc can be bijectively mapped to a subset S of [C] with |S| = c. For
a given path P ∈ Pc, it has C = c1 + c2 steps, either north or east. Let us number
these steps {1, 2, . . . , C} = [C]. Define a subset S ⊂ [C] as the set of the indices of
eastern steps (so a path from (0, 0) to (1, 1) consisting of an eastern step followed by
a northern step would have S = {1}). This constructed set S is clearly a subset of
[C] containing c = c1 elements. Since P does not pass through (a1, a2), P either takes
more or less than a1 eastern steps in its first A = a1 + a2 steps. This implies that
there are either more or less than a = a1 elements in the first A elements of S, so
|S ∩ [A]| 6= a. Similarly, since P does not pass through (b1, b2), we have |S ∩ [B]| 6= b.
Thus, S is a valid member of Qc.

The inverse of this function (Qc → Pc) follows naturally: For a given subset S ∈ Qc,
map each element i ∈ S to an eastern step in a path P and each element j ∈ [C]\S to a
northern step. A matching argument can be given to the correctness of this mapping.
Moreover, this is a bijection since it is a two-sided inverse and each path P uniquely
determines a subset S and vice versa.

Thus, there exists a bijection between Pc and Qc, so that |Qc| = |Pc|. The right hand
side has been expressed in (a).

1If two of the k points have the same sum of coordinates, while being distinct, then the number is 0,
because no lattice path can traverse them both.

Brady Olson (edited by Darij Grinberg), — 4 —

Solutions to midterm #1 page 5 of 6

3 Exercise 5

3.1 Problem

We say that a binary n-string (a1, a2, . . . , an) is zig-zag if it satisfies a1 ≤ a2 ≥ a3 ≤ a4 ≥ · · ·
(in other words, ai ≤ ai+1 for every odd i ∈ [n− 1], and ai ≥ ai+1 for every even i ∈ [n− 1]).

Find a simple expression (no summation signs, only known functions and sequences) for
the number of zig-zag binary n-strings for all n ∈ N.

3.2 Solution

We shall use the ceiling function: For any integer x, we let dxe denote the smallest integer
that is ≥ x.

First let us define the color of a binary string bn as

color(bn) =

{
black if bn’s final element is 0
red otherwise

(in particular, we count the binary 0-string () as red). Let zn,black and zn,red denote the
number of black and red zig-zag binary n-strings, respectively. Let zn be the number of all
zig-zag binary n-strings. Then, zn = zn,black + zn,red, since every zig-zag binary string must
either be black or red.

If b is a binary n-string, and if g ∈ {0, 1}, then b#g will mean the binary (n+ 1)-string
obtained by appending g to the end of b. (For example, (0, 1, 1, 0)#1 = (0, 1, 1, 0, 1).)

Let us devise a constructive algorithm to recursively build zig-zag binary strings. Given
a zig-zag binary n-string bn, the following algorithm constructs all zig-zag binary (n+ 1)-
strings that begin with bn:

Algorithm 3.1 Generating zig-zag binary strings
1: procedure GenerateZigZag(bn)
2: if bn is black then
3: if n is even then return bn#0
4: else return bn#0, bn#1

5: else % bn is red
6: if n is even then return bn#0, bn#1
7: else return bn#1

This algorithm can be shown to be correct and that it generates all zig-zag binary
(n+ 1)-strings. Simply, it generates all binary (n+ 1)-strings but prunes those that do not
satisfy the zig-zag condition; lines 3 and 7 exclude strings which do not satisfy ai ≤ ai+1 for
every odd i ∈ [n], and ai ≥ ai+1 for every even i ∈ [n].

Applying Algorithm 3.1 for low n gives familiar values for zn,black, zn,red, and zn:
We now solve the exercise:

Proof. Define p(n) as the logical statement, for n ∈ N, that

zn,black = f2dn
2
e and zn,red = f2dn+1

2
e−1,

where fi is the ith Fibonacci number (having f0 = 0, f1 = 1). For the base case, n = 0, we
have one red zig-zag binary string and no black zig-zag binary strings, so p(0) holds since
zn,black = fd2 0

2
e = f0 = 0 and zn,red = f2d 0+1

2
e−1 = f1 = 1.

Brady Olson (edited by Darij Grinberg), — 5 —

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions

Solutions to midterm #1 page 6 of 6

n zn,black zn,red zn

0 0 1 1
1 1 1 2
2 1 2 3
3 3 2 5
4 3 5 8
5 8 5 13
...

...
...

...

For the inductive hypothesis, assume p(m) holds for some m ∈ N. Then, let’s examine
p(m+ 1); count the red and black zig-zag binary (m+ 1)-strings.

If m is even, for each black zig-zag binary m-string, GenerateZigZag will generate 1
black zig-zag binary (m+ 1)-string (line 3). Likewise, each red zig-zag binary m-string will
generate 1 black zig-zag binary (m+ 1)-string and 1 red zig-zag binary (m+ 1)-string (line
6). So, there are zm,black + zm,red black zig-zag binary (m+ 1)-strings and zm,red red zig-zag
binary (m+ 1)-strings. This gives us the expressions

zm+1,black = zm,black + zm,red =
IH

f2dm
2
e + f2dm+1

2
e−1

(the symbol “=
IH

” means “equals, by the inductive hypothesis”). Sincem is even, this evaluates
to

zm+1,black = fm + fm+2−1 = fm+2 = f2dm+1
2
e,

where the last equality is true since m is even. More simply, the number of red zig-zag
binary (m+ 1)-strings is the same as the number of those with length m:

zm+1,red = zm,red = f2dm+1
2
e−1 = f

2d (m+1)+1
2

e−1,

where again the last equality holds since m is even.
On the other hand, ifm is odd, for each black zig-zag binarym-string, GenerateZigZag

will generate 1 black zig-zag binary (m + 1)-string and 1 red zig-zag binary (m + 1)-string
(line 4). Likewise, each red zig-zag binarym-string will generate 1 red zig-zag binary (m+1)-
string (line 7). So, there are zm,black + zm,red red zig-zag binary (m + 1)-strings and zm,black

black zig-zag binary (m+1)-strings. A very similar argument as with even m (where ceiling
terms are affected differently since m is odd) yields the same results.

So, p(m+1) holds given p(m). Hence, by the Principle of Mathematical Induction, p(n)
holds for all n ∈ N.

Now, recall that zn = zn,black + zn,red. Since p(n) holds, this simplifies to

zn = f2dn
2
e + f2dn+1

2
e−1 =

{
fn + fn+1 if n is even
fn+1 + fn if n is odd

= fn+2.

So, the number of zig-zag binary n-strings is zn = fn+2, the (n+2)th Fibonacci number.

Brady Olson (edited by Darij Grinberg), — 6 —

	Exercise 1
	Problem
	Solution

	Exercise 4
	Problem
	Solution

	Exercise 5
	Problem
	Solution

