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Math 4707 Spring 2018 (Darij Grinberg): midterm 1
due date: Wednesday 7 March 2018 at the beginning of class, or before that by

email or moodle
Please solve at most 4 of the 7 exercises!

Please write your name on each page. Feel free to use LaTeX (here is a sample
file with lots of amenities included).

See [Fall2017-HW1s, solution to Exercise 8] for an example of how a counting
proof can be written.

0.1. More on the Sierpinski triangle in Pascal’s triangle

Exercise 1. Let n ∈N.

(a) Prove that the integer
(

2n − 1
b

)
is odd for each b ∈ {0, 1, . . . , 2n − 1}.

(b) Prove that the integer
(

2n

b

)
is even for each b ∈ {1, 2, . . . , 2n − 1}.

[Here, the set {0, 1, . . . , 2n − 1} means the set of all integers k with 0 ≤ k ≤
2n − 1, and the set {1, 2, . . . , 2n − 1} means the set of all integers k with 1 ≤ k ≤
2n − 1.]

0.2. Counting by symmetry

Recall that if n ∈ N, then [n] denotes the n-element set {1, 2, . . . , n}. If n ∈ N,
then Sn shall mean the set of all permutations of the set [n]. The number of these
permutations is |Sn| = n!. (We shall prove this in class soon.) Note that Sn is called
the n-th symmetric group.

Proposition 0.1. Let n ≥ 4 be an integer. Then, the number of all permutations
σ ∈ Sn satisfying σ (3) > σ (4) is n!/2.

Proof of Proposition 0.1. I say that a permutation σ ∈ Sn is

• green if it satisfies σ (3) > σ (4);

• red if it satisfies σ (3) < σ (4).

Every permutation σ ∈ Sn is either green or red (indeed, every permutation
σ ∈ Sn is injective, and thus satisfies σ (3) 6= σ (4), so that it must satisfy either
σ (3) > σ (4) or σ (3) < σ (4)), but no permutation σ ∈ Sn can be both green and
red at the same time (since σ (3) > σ (4) would contradict σ (3) < σ (4)). Hence,
the set Sn is the union of its two disjoint subsets {green permutations σ ∈ Sn} and
{red permutations σ ∈ Sn}. Thus,

|Sn| = |{green permutations σ ∈ Sn}|+ |{red permutations σ ∈ Sn}| . (1)

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw-template.tex
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On the other hand, I claim that “the colors are equidistributed”, i.e., the number
of green permutations σ ∈ Sn equals the number of red permutations σ ∈ Sn.

To prove this, I will construct a bijection from {green permutations σ ∈ Sn} to
{red permutations σ ∈ Sn}.

Indeed, let s3 be the permutation of [n] that swaps the numbers 3 and 4 while
leaving all other numbers unchanged. That is, s3 is given by

s3 (i) =


4, if i = 3;
3, if i = 4;
i, if i /∈ {3, 4}

for all i ∈ [n] .

(In one-line notation, s3 is represented as (1, 2, 4, 3, 5, 6, . . . , n), where only the two
numbers 3 and 4 are out of order.)

Notice that s3 ◦ s3 = id. (Visually speaking, this is clear: If we swap 3 and 4, and
then swap 3 and 4 again, then all numbers return to their old places.)

If α and β are two permutations of [n], then their composition α ◦ β is a permu-
tation of [n] as well1. Hence, for every permutation σ ∈ Sn, the map σ ◦ s3 is also a
permutation of [n].

We now claim that

if σ ∈ Sn is green, then σ ◦ s3 ∈ Sn is red. (2)

[Proof of (2): Assume that σ ∈ Sn is green. Thus, σ (3) > σ (4) (by the definition
of “green”).

We know σ ◦ s3 is a permutation of [n]. In other words, σ ◦ s3 ∈ Sn. We must
prove that σ ◦ s3 is red. In other words, we must prove that (σ ◦ s3) (3) < (σ ◦ s3) (4)
(because this is what it means for σ ◦ s3 to be red).

But the definition of s3 shows that s3 (3) = 4 and s3 (4) = 3. Thus, (σ ◦ s3) (3) =

σ

s3 (3)︸ ︷︷ ︸
=4

 = σ (4) and (σ ◦ s3) (4) = σ

s3 (4)︸ ︷︷ ︸
=3

 = σ (3). Hence, (σ ◦ s3) (4) =

σ (3) > σ (4) = (σ ◦ s3) (3). In other words, (σ ◦ s3) (3) < (σ ◦ s3) (4). But this is
exactly what we wanted to prove. Thus, (2) is proven.]

An analogous argument shows that

if σ ∈ Sn is red, then σ ◦ s3 ∈ Sn is green. (3)

Now, let α be the map

{green permutations σ ∈ Sn} → {red permutations σ ∈ Sn} ,
σ 7→ σ ◦ s3

1because permutations of [n] are just bijective maps [n]→ [n], but the composition of two bijective
maps is again bijective



Math 4707 Spring 2018 (Darij Grinberg): midterm 1 page 3

(this is well-defined because of (2)). Let β be the map

{red permutations σ ∈ Sn} → {green permutations σ ∈ Sn} ,
σ 7→ σ ◦ s3

(this is well-defined because of (3)). We have α ◦ β = id (since every red permuta-
tion σ ∈ Sn satisfies

(α ◦ β) (σ) = α

 β (σ)︸ ︷︷ ︸
=σ◦s3

(by the definition of β)

 = α (σ ◦ s3)

= (σ ◦ s3) ◦ s3 (by the definition of α)

= σ ◦ (s3 ◦ s3)︸ ︷︷ ︸
=id

= σ = id (σ)

) and β ◦ α = id (by an analogous computation). Thus, the two maps α and β
are mutually inverse. Hence, α is a bijection. Thus, we have found a bijection from
{green permutations σ ∈ Sn} to {red permutations σ ∈ Sn} (namely, α). Therefore,

|{green permutations σ ∈ Sn}| = |{red permutations σ ∈ Sn}| . (4)

Now, (1) becomes

|Sn| = |{green permutations σ ∈ Sn}|+ |{red permutations σ ∈ Sn}|︸ ︷︷ ︸
=|{green permutations σ∈Sn}|

(by (4))

= |{green permutations σ ∈ Sn}|+ |{green permutations σ ∈ Sn}|
= 2 · |{green permutations σ ∈ Sn}| .

Hence,

|{green permutations σ ∈ Sn}| =
1
2
|Sn|︸︷︷︸
=n!

=
1
2

n! = n!/2.

In other words, the number of all green permutations σ ∈ Sn is n!/2. In other
words, the number of all permutations σ ∈ Sn satisfying σ (3) > σ (4) is n!/2
(because these permutations are precisely the green permutations σ ∈ Sn). This
proves Proposition 0.1.

Our above proof was an example of a “counting by symmetry”: We did not count
the green permutations directly; instead, we showed that they are in bijection with
the remaining (i.e., red) permutations σ ∈ Sn (that is, we matched up each green
permutation with a red one), from which we concluded that they make up exactly

half of the set Sn; and this told us that there are
1
2
|Sn| = n!/2 of them.
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Exercise 2. Let n ≥ 4 be an integer. Prove the following:
(a) The number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) and σ (3) >

σ (4) is n!/4.
(b) The number of all permutations σ ∈ Sn satisfying σ (1) > σ (2) > σ (3) is

n!/6.
[Hint: You’ll need more than 2 colors...]

0.3. More on Fibonacci numbers

Recall that the Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of integers which is
defined recursively by f0 = 0, f1 = 1, and

fn = fn−1 + fn−2 for all n ≥ 2. (5)

Exercise 3. Prove the following:
(a) We have 7 fn = fn−4 + fn+4 for each n ≥ 4.
(b) We have f1 + f2 + · · ·+ fn = fn+2 − 1 for each n ∈N.
(c) We have f1 + f3 + f5 + · · ·+ f2n−1 = f2n for each n ∈N.
(d) We have f2 + f4 + f6 + · · ·+ f2n = f2n+1 − 1 for each n ∈N.
(e) We have fm+n+1 = fm+1 fn+1 + fm fn for all m ∈N and n ∈N.
(f) For every m ∈N, we have

f2m+2 = ∑
(a,b)∈N2;

a+b≤m

(
m− a

b

)(
m− b

a

)
.

[Hint: All parts can be proven bijectively; part (f) is actually easiest to prove
bijectively! (On the other hand, proving part (a) bijectively is a challenge; there
are much easier ways.) As a reminder: Any exercises from previous problem
sets can be used without proof.]

0.4. More lattice path counting

Recall that the set Z2 is called the integer lattice, and its elements (a, b) ∈ Z2 are
called points. We regard these points as points on the Cartesian plane.

A lattice path is a path on the integer lattice that uses only two kinds of steps:

• up-steps (U), which have the form (x, y) 7→ (x, y + 1);

• right-steps (R), which have the form (x, y) 7→ (x + 1, y).

Thus, strictly speaking, a lattice path is a sequence (v0, v1, . . . , vn) of points vi ∈ Z2

such that for each i ∈ [n], the difference vector vi − vi−1 is either (0, 1) or (1, 0).
If (a, b) ∈ Z2 and (c, d) ∈ Z2 are two points on the integer lattice, then a lattice

path from (a, b) to (c, d) is a lattice path (v0, v1, . . . , vn) satisfying v0 = (a, b) and
vn = (c, d).

https://en.wikipedia.org/wiki/Fibonacci_number
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Exercise 4. (a) Given six integers a1, b1, c1, a2, b2, c2 satisfying 0 ≤ a1 ≤ b1 ≤ c1
and 0 ≤ a2 ≤ b2 ≤ c2. How many lattice paths from (0, 0) to (c1, c2) pass through
none of the points (a1, a2) nor (b1, b2) ?

(b) Given six integers a, b, c, A, B, C satisfying 0 ≤ a ≤ b ≤ c and 0 ≤ A ≤ B ≤
C. How many c-element subsets S of [C] satisfy |S ∩ [A]| 6= a and |S ∩ [B]| 6= b ?

0.5. Zig-zag binary strings

If n ∈ N, then a binary n-string shall mean an n-tuple of elements of {0, 1}. (For
example, (0, 1, 1, 0, 1) is a binary 5-string.)

We say that a binary n-string (a1, a2, . . . , an) is zig-zag if it satisfies a1 ≤ a2 ≥ a3 ≤
a4 ≥ · · · (in other words, ai ≤ ai+1 for every odd i ∈ [n− 1], and ai ≥ ai+1 for
every even i ∈ [n− 1]).

For example, (0, 1, 1, 1, 0, 0, 0, 1) is a zig-zag binary 8-string, but (0, 1, 0, 0, 1) is
not.

Exercise 5. Find a simple expression (no summation signs, only known functions
and sequences) for the number of zig-zag binary n-strings for all n ∈N.

0.6. A binomial identity

Exercise 6. Let n ∈N. Prove that

n

∑
k=0

(−1)k(
n
k

) = 2 · n + 1
n + 2

[n is even] .

(Again, we are using the Iverson bracket notation, so [n is even] is 1 if n is even
and 0 otherwise.)

[Hint: Show that
1(
n
k

) =

 1(
n + 1

k

) +
1(

n + 1
k + 1

)
 n + 1

n + 2
for each k ∈

{0, 1, . . . , n}.]

Remark 0.2. The left hand side in Exercise 6 is the alternating sum of the re-
ciprocals of all (nonzero) binomial coefficients in the n-th row of Pascal’s trian-
gle. What about the regular (non-alternating) sum? It appears that the simplest
known formula merely rewrites it as a different (somewhat simpler) sum:

n

∑
k=0

1(
n
k

) =
n + 1
2n+1

n+1

∑
k=1

2k

k
.
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See, e.g., https://math.stackexchange.com/a/481686/ for a proof of this for-
mula (and also of the fact that the sum on the left tends to 2 as n→ ∞).

0.7. Splitting integers into binomial coefficients

Exercise 7. Let j be a positive integer. A j-trail shall mean a j-tuple
(
n1, n2, . . . , nj

)
of nonnegative integers satisfying n1 < n2 < · · · < nj.

Let n ∈N. Prove that there exists a unique j-trail
(
n1, n2, . . . , nj

)
satisfying

n =
j

∑
k=1

(
nk
k

)
.

Example 0.3. For j = 3, Exercise 7 says the following: For each n ∈ N, there
exists a unique 3-trail (n1, n2, n3) satisfying

n =

(
n1

1

)
+

(
n2

2

)
+

(
n3

3

)
.

For example, for n = 0, this 3-trail is (0, 1, 2); for n = 1, this 3-trail is (0, 1, 3);

for n = 5, this 3-trail is (0, 2, 4) (since 5 =

(
0
1

)
+

(
2
2

)
+

(
4
3

)
).
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