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For the notations that we will use, we refer to Spring 2017 Math 5707 Homework
set #2 and to classwork. The word “graph” means “multigraph” unless it appears
as part of “simple graph”. Here are the notations that I did not introduce in class:

• A two-element set {u, v} will be denoted by uv when no confusion can arise.
This will be mostly used for two-element sets that appear as edges in simple
graphs (or as images of edges in multigraphs). For example, the simple graph

1 4 5

3 6

has edges 13, 14, 36, 45, 46.

• The set of all vertices of a graph G is called the vertex set of G, and is denoted
by V (G).

The set of all edges of a graph G is called the edge set of G, and is denoted by
E (G).

• If v is a vertex and e is an edge of a graph (V, E, ϕ), then we say that v belongs
to e (or, equivalently, e contains v) if v is an endpoint of e (that is, v ∈ ϕ (e)).

0.1. Perfect matchings of a 2× n grid

Definition 0.1. Let n ∈ N. Then, the path graph Pn is defined to be the sim-
ple graph whose vertices are the n numbers 1, 2, . . . , n, and whose edges are
{1, 2} , {2, 3} , . . . , {n− 1, n}. Here is how it looks like:

1 2 · · · n

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
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Definition 0.2. Let G and H be two simple graphs. The Cartesian product of G
and H is a new simple graph, denoted G× H, which is defined as follows:

• The vertex set V (G× H) of G× H is the Cartesian product V (G)×V (H).
(So the vertices of G× H are all pairs of the form (v, w), where v is a vertex
of G and w is a vertex of H.)

• A vertex (g, h) of G× H is adjacent to a vertex (g′, h′) of G× H if and only
if we have

either
(

g = g′ and hh′ ∈ E (H)
)

or
(
h = h′ and gg′ ∈ E (G)

)
.

(In particular, exactly one of the two equalities g = g′ and h = h′ has to
hold when (g, h) is adjacent to (g′, h′).)

Definition 0.3. Let n ∈ N and m ∈ N. The grid graph Gn,m is defined to be the
Cartesian product Pn × Pm.

Here is how the grid graph G3,4 looks like:

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(Check that you understand how the definition of a Cartesian product of two
graphs causes it to look like this.) For arbitrary n, m ∈ N, the grid graph Gn,m
is the simple graph whose vertex set is [n]× [m], and whose edges have the form

(i, j) (i + 1, j) for i ∈ [n− 1] and j ∈ [m] , and
(i, j) (i, j + 1) for i ∈ [n] and j ∈ [m− 1] .

Two edges of a graph G are said to be disjoint if they have no common endpoint.
A matching of a graph G means a set of disjoint edges of G. A perfect matching of
a graph G means a matching M of G such that each vertex of G belongs to exactly
one edge in M. For example,

{(1, 1) (1, 2) , (1, 3) (1, 4) , (2, 1) (3, 1) , (2, 2) (2, 3) , (3, 2) (3, 3) , (2, 4) (3, 4)}

is a perfect matching of the grid graph G3,4 shown above; let me visualize this



Math 4707 Spring 2018 (Darij Grinberg): homework set 5 page 3

matching by drawing only the edges of this matching (omitting all the other edges):

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

Exercise 1. Let n ∈ N. How many perfect matchings does the grid graph G2,n
have?

[Hint: This is something you know in disguise.]

Hints to Exercise 1. We shall use the notations of Exercise 5 on homework set #1. In
particular, we recall that Rn,2 denotes the set [n]× [2], regarded as a rectangle of
width n and height 2. We know from class that the number of domino tilings of
Rn,2 is the Fibonacci number fn+1.

But there is a bijection

{perfect matchings of G2,n} → {domino tilings of Rn,2} .

(This bijection acts by replacing each edge (i, j) (u, v) by the domino {(j, i) , (v, u)}.
For example, for n = 5, it maps the perfect matching

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5)

to the domino tiling

.)

This bijection shows that the number of perfect matchings of G2,n is the number of
domino tilings of Rn,2. But the latter number is the Fibonacci number fn+1. Hence,
the number of perfect matchings of G2,n is fn+1.

0.2. Eulerian circuits of a windmill

The concept of a circuit in a graph is somewhat ambiguous: In the graph

1 a

cd

2

b

4 3

, (1)

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw1s.pdf
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do you consider (1, a, 2, b, 3, c, 1) and (2, b, 3, c, 1, a, 2) as the same circuit? What
about (1, a, 2, b, 3, c, 1) and (1, c, 3, b, 2, a, 1) ? According to our definition of a circuit
(we defined it as a specific kind of walk), the answer is “no” in both cases:

(2, b, 3, c, 1, a, 2) 6= (1, a, 2, b, 3, c, 1) 6= (1, c, 3, b, 2, a, 1) .

But most people would like to equate (1, a, 2, b, 3, c, 1) with (2, b, 3, c, 1, a, 2), at the
very least, since these are “the same circuit with different starting points”. So they
say “circuit” but really mean “equivalence class of circuits with respect to cyclic
rotation (and perhaps mirror reflection)”. This is all irrelevant as long as we just
discuss the existence of circuits; but when we start counting circuits, it becomes
important. Depending on how circuits are defined, the graph (1) has either 6 or 3
or 2 or 1 cycles (which, as you remember, are circuits satisfying some conditions).
According to our definition (which I don’t want to change), it has 6 cycles.

Definition 0.4. Let G be a graph.
(a) A walk (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk) of G is said to be Eulerian if each

edge of G appears exactly once among the k edges e1, e2, . . . , ek.
(b) Let w = (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk) be a walk of G. Then, k is called

the length of w. If k > 0, then e1 is called the starting edge of w.

Counting all Eulerian circuits of a graph is usually difficult. For example, the
number of Eulerian circuits in a complete graph Kn grows very fast with n and
doesn’t have a known expression (see sequence A007082 in the OEIS for the values
when n is odd; of course, the values when n is even are 0).

Exercise 2. Let g be a positive integer. Let G be the simple graph whose vertices
are the 2g + 1 integers −g,−g + 1, . . . , g− 1, g, and whose edges are

{0, i} for all i ∈ {1, 2, . . . , g} ;
{0,−i} for all i ∈ {1, 2, . . . , g} ;
{i,−i} for all i ∈ {1, 2, . . . , g}

(these are 3g edges in total).
[Here is how G looks like in the case when g = 4:

1 −1

−4 2

0

4 −2

−3 3

(2)

https://oeis.org/A007082
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]
(a) Find the number of Eulerian circuits of G whose starting point is 0 and

whose starting edge is {0, 1}.
(b) Find the number of Eulerian circuits of G whose starting point is 0.

Hints to Exercise 2. We shall refer to the g sets {0, 1,−1}, {0, 2,−2}, . . ., {0, g,−g}
as the triangles.

(b) An Eulerian circuit of G whose starting point is 0 must have the following
form: Start at 0, traverse some triangle, come back to 0, traverse another triangle,
come back to 0, traverse another triangle, and so on, until each triangle has been
traversed exactly once. (No other Eulerian circuits are possible, because there is no
way to “escape” a triangle short of fully traversing it.)

Thus, in order to construct an Eulerian circuit of G whose starting point is 0, we
need to decide in what order it should traverse the g triangles, and moreover, for
each triangle {0, i,−i}, we need to decide whether it shall traverse it “clockwise”
(that is, 0 → i → −i → 0) or “counterclockwise” (that is, 0 → −i → i → 0).
The first of these decisions can be made in g! many ways; the second in 2g many
ways (since there are two choices for each of the g triangles). Thus, the number of
Eulerian circuits of G whose starting point is 0 is g! · 2g.

(a) The number of Eulerian circuits of G whose starting point is 0 and whose
starting edge is {0, 1} is (g− 1)! · 2g−1. Indeed, the same argument as used for
part (b) applies here, except that we are somewhat restricted in our decision, since
our circuit must begin with the triangle {0, 1,−1} and it must traverse this triangle
“clockwise”.

0.3. Counting walks in a graph

A graph always has a finite number of paths (since a path can never have more
vertices than the graph has), but usually has an infinite number of walks (indeed,
if the graph has a cycle, then you can build arbitrarily long walks by walking
along this cycle over and over). Nevertheless, walks are much easier to count than
paths. The next exercise states a formula for the number of walks of a given length
between two given vertices in terms of the adjacency matrix of a graph. This matrix
is an important representation of a graph.

Definition 0.5. Let n ∈N and m ∈N. Let A be an n×m-matrix. Let i ∈ [n] and
j ∈ [m]. Then, Ai,j will denote the (i, j)-th entry of A.

Definition 0.6. Let G = (V, E, ϕ) be a graph. Assume that V = [n] for some
n ∈N. Then, the adjacency matrix of G is defined as the n× n-matrix whose (i, j)-
th entry (for each i ∈ [n] and j ∈ [n]) is the number of edges whose endpoints
are i and j.
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For example, the graph
1 2 4

3

(3)

has adjacency matrix 
0 2 1 0
2 0 1 1
1 1 0 0
0 1 0 0

 .

Clearly, the adjacency matrix of a graph G = (V, E, ϕ) with V = [n] is symmetric.
Furthermore, this adjacency matrix “encodes” the whole structure of G apart from
the identities of the edges.

Exercise 3. Let G = (V, E, ϕ) be a graph. Assume that V = [n] for some n ∈ N.
Let A be the adjacency matrix of G. Let i ∈ [n] and j ∈ [n] and k ∈N. Prove that(

Ak)
i,j is the number of walks from i to j that have length k.

Exercise 3 is a fundamental result. For example, it appears in [Stanle13, Theorem
1.1]. The simplest proof uses induction:

Solution to Exercise 3 (sketched). Forget that we fixed i, j and k. We want to prove
the following claim:

Claim 1: Let i ∈ [n] and j ∈ [n] and k ∈N. Then,(
Ak
)

i,j
= (the number of walks from i to j that have length k) .

Before we prove this claim, let us recall that A is the adjacency matrix of G. Thus,
for each i ∈ [n] and j ∈ [n], we have

Ai,j = (the number of edges whose endpoints are i and j)

(by the definition of the adjacency matrix). Renaming i as w in this statement, we
obtain the following: For each w ∈ [n] and j ∈ [n], we have

Aw,j = (the number of edges whose endpoints are w and j) . (4)

Let us also recall that any two n× n-matrices B and C satisfy

(BC)i,j =
n

∑
w=1

Bi,wCw,j (5)

for any i ∈ [n] and j ∈ [n]. (Indeed, this is just the rule for how matrices are
multiplied.)
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We can now prove Claim 1:
[Proof of Claim 1: We shall prove Claim 1 by induction on k:
Induction base: We shall first prove Claim 1 for k = 0.
Indeed, let i ∈ [n] and j ∈ [n]. For any two objects u and v, we let δu,v = [u = v]

(where we are using the Iverson bracket notation). Then, the n× n identity matrix
In satisfies (In)i,j = δi,j (by the definition of the identity matrix). Hence, (In)i,j =

δi,j = [i = j] (by the definition of δi,j). But the 0-th power of any n × n-matrix is
defined to be the n× n identity matrix In; thus, A0 = In. Hence,

(
A0)

i,j = (In)i,j =

[i = j].
On the other hand, how many walks from i to j have length 0 ? A walk that has

length 0 must consist of a single vertex, which is simultaneously the starting point
and the ending point of this walk. Thus, a walk from i to j that has length 0 exists
only when i = j, and in this case there is exactly one such walk (namely, the walk
(i)). Hence,

(the number of walks from i to j that have length 0) =

{
1, if i = j;
0, if i 6= j

= [i = j] .

Comparing this with the equality
(

A0)
i,j = [i = j], we conclude that(

A0
)

i,j
= (the number of walks from i to j that have length 0) . (6)

Now, forget that we fixed i and j. We thus have proven (6) for any i ∈ [n] and
j ∈ [n]. In other words, Claim 1 holds for k = 0. Thus, the induction base is
complete.

Induction step: Let g be a positive integer. Assume that Claim 1 holds for k =
g− 1. We must show that Claim 1 holds for k = g as well.

We have assumed that Claim 1 holds for k = g− 1. In other words, for any i ∈ [n]
and j ∈ [n], we have(

Ag−1
)

i,j
= (the number of walks from i to j that have length g− 1) .

Renaming j as w in this statement, we obtain the following: For any i ∈ [n] and
w ∈ [n], we have(

Ag−1
)

i,w
= (the number of walks from i to w that have length g− 1) . (7)

Each walk from i to j that has length g has the form
(
v0, e1, v1, e2, v2, . . . , eg−1, vg−1, eg, vg

)
for some vertices v0, v1, . . . , vg of G and some edges e1, e2, . . . , eg of G satisfying
v0 = i, vg = j and (ϕ (eh) = {vh−1, vh} for all h ∈ [g]). Thus, each such walk can
be constructed by the following algorithm:

• First, we choose a vertex w of G to serve as the vertex vg−1 (that is, as the
penultimate vertex of the walk). This vertex w must belong to V = [n].
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• Now, we choose the vertices v0, v1, . . . , vg−1 (that is, all vertices of our walk
except for the last one) and the edges e1, e2, . . . , eg−1 (that is, all edges of our
walk except for the last one) in such a way that vg−1 = w. This is tantamount
to choosing a walk

(
v0, e1, v1, e2, v2, . . . , eg−1, vg−1

)
from i to w that has length

g− 1. This choice can be made in
(

Ag−1)
i,w many ways (because (7) shows

that the number of walks from i to w that have length g− 1 is
(

Ag−1)
i,w).

• We have now determined all but the last vertex and all but the last edge of our
walk

(
v0, e1, v1, e2, v2, . . . , eg, vg

)
. We set the last vertex vg of our walk to be j.

(This is the only possible option, since our walk
(
v0, e1, v1, e2, v2, . . . , eg−1, vg−1, eg, vg

)
has to be a walk from i to j.)

• We choose the last edge eg of our walk. This edge eg must have endpoints
vg−1 and vg; in other words, it must have endpoints w and j (since vg−1 = w
and vg = j). Thus, we need to choose an edge whose endpoints are w and
j. This choice can be made in Aw,j many ways (because (4) shows that the
number of edges whose endpoints are w and j is Aw,j).

Conversely, of course, this algorithm always constructs a walk from i to j that
has length g, and different choices in the algorithm lead to distinct walks. Thus,
the total number of walks from i to j that have length g equals the total number
of choices in the algorithm. But the latter number is ∑

w∈[n]

(
Ag−1)

i,w Aw,j (since the

algorithm first chooses a w ∈ [n], then involves a step with
(

Ag−1)
i,w choices, and

then involves a step with Aw,j choices). Hence, the total number of walks from i to
j that have length g is ∑

w∈[n]

(
Ag−1)

i,w Aw,j. In other words,

(the number of walks from i to j that have length g) = ∑
w∈[n]

(
Ag−1

)
i,w

Aw,j.

Comparing this with Ag︸︷︷︸
=Ag−1 A


i,j

=
(

Ag−1A
)

i,j
=

n

∑
w=1

(
Ag−1

)
i,w

Aw,j

(
by (5) (applied to B = Ag−1 and C = A)

)
= ∑

w∈[n]

(
Ag−1

)
i,w

Aw,j,

we obtain

(Ag)i,j = (the number of walks from i to j that have length g) . (8)
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Now, forget that we fixed i and j. We thus have proven (8) for any i ∈ [n] and
j ∈ [n]. In other words, Claim 1 holds for k = g. Thus, the induction step is
complete. Hence, Claim 1 is proven by induction.]

Exercise 3 follows immediately from Claim 1.

Remark 0.7. There is an analogue of Exercise 3 for multidigraphs. If D is a
multidigraph with vertices 1, 2, . . . , n, then the adjacency matrix A of D is defined
to be the n× n-matrix whose (i, j)-th entry (for each i ∈ [n] and j ∈ [n]) is the
number of arcs with source i and target j. In general, this adjacency matrix A is
not symmetric. Now, if D = (V, A, φ) is a multidigraph with V = [n] for some
n ∈ N and with adjacency matrix A, and if i ∈ [n] and j ∈ [n] and k ∈ N are
arbitrary, then

(
Ak)

i,j is the number of walks from i to j that have length k. The
proof of this is completely analogous to the solution of Exercise 3.

0.4. Your friends have more friends than you (the “friendship
paradox”)

If G is a graph, and if v is a vertex of G, then deg v denotes the degree of v (that is,
the number of edges of G that contain v).

Exercise 4. Let G = (V, E, ϕ) be a graph.
If v ∈ V and e ∈ E are such that v ∈ ϕ (e) (that is, the edge e contains the

vertex v), then we let e/v denote the endpoint of e distinct from v. For each
v ∈ V, we define a rational number qv by

qv = ∑
e∈E;

v∈ϕ(e)

deg (e/v)
deg v

.

(Note that the denominator deg v on the right hand side is nonzero whenever
the sum is nonempty!)

[Roughly speaking, qv is the average degree of the neighbors of v. But to be
more precise, this is an average over all edges containing v, not just over all
neighbors of v; the degree of a neighbor of v will factor in the stronger the more
edges join this neighbor to v. When v is an isolated vertex – i.e., when deg v = 0
–, the number qv is 0.]

Prove that
∑

v∈V
qv ≥ ∑

v∈V
deg v. (9)

If the graph G is a social network (vertices being people, and edges being friend-
ships), then the inequality (9) (when divided by |V|) can be construed as saying
“the average person is unpopular”, where being “unpopular” means that your av-
erage friend has at least as many friends as you do. This is a slippery statement
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(involving an average within an average) and needs to be interpreted correctly:
For example, in the graph (2), the vertex 0 has degree 8, while all other vertices
have degree 2; the corresponding numbers qv are q0 = 2 and qv = 5 (for v 6= 0),
respectively. Thus, (9) says that

2 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 ≥ 8 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2,

which indeed holds (fairly strongly). The vertex 0, of course, is popular (having
deg 0 = 8 friends, whereas its average friend has q0 = 2 friends), but this is bal-
anced out by the unpopularity of all the other vertices.

Note that (9) does not mean that most vertices are unpopular. For example, if G

is the simple graph with 5 vertices 1, 2, 3, 4, 5 and all the
(

5
2

)
= 10 possible edges

between them except for the edge {4, 5}, then the vertices 1, 2, 3 of G are popular (a
majority), while the vertices 4, 5 are unpopular. Nevertheless, (9) holds here, since
the popularity of 1, 2, 3 “outweighs” the unpopularity of 4, 5 when the appropriate
averages are added. See the Wikipedia page for the friendship paradox for further
discussion.

The solution to Exercise 4 relies on the following basic inequality:

Lemma 0.8. Let x and y be two positive reals. Then,
x
y
+

y
x
≥ 2.

Proof of Lemma 0.8. Straightforward computations reveal that
x
y
+

y
x
− 2 =

(x− y)2

xy
.

But (x− y)2 ≥ 0 (since the square of a real number is always ≥ 0), and thus
(x− y)2

xy
≥ 0 (since x and y are positive). Thus,

x
y
+

y
x
− 2 =

(x− y)2

xy
≥ 0, so that

x
y
+

y
x
≥ 2. This proves Lemma 0.8.

Solution to Exercise 4 (sketched). We first observe that every e ∈ E satisfies

∑
v∈ϕ(e)

deg (e/v)
deg v

≥ 2. (10)

[Proof of (10): Let e ∈ E. Recall that ϕ (e) is a 2-element subset of V. Thus, we
can write ϕ (e) in the form ϕ (e) = {p, q} for two distinct elements p and q of V.
Consider these p and q. Thus, p and q are the endpoints of the edge e. Hence,
e/p = q (due to how we defined e/p) and e/q = p (similarly). Also, the vertex p
of V belongs to at least one edge (namely, to the edge e); thus, its degree is ≥ 1.
In other words, deg p ≥ 1 > 0. Similarly, deg q > 0. Thus, Lemma 0.8 (applied to

x = deg q and y = deg p) yields
deg q
deg p

+
deg p
deg q

≥ 2.

https://en.wikipedia.org/wiki/Friendship_paradox
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But recall that ϕ (e) = {p, q}, with p and q being distinct. Hence,

∑
v∈ϕ(e)

deg (e/v)
deg v

=
deg (e/p)

deg p
+

deg (e/q)
deg q

=
deg q
deg p

+
deg p
deg q

(since e/p = q and e/q = p)

≥ 2.

This proves (10).]
On the other hand, the handshaking lemma (Proposition 6.3 in the classwork

from April 2nd) yields
∑

v∈V
deg v = 2 |E| . (11)

Now,

∑
v∈V

qv︸︷︷︸
= ∑

e∈E;
v∈ϕ(e)

deg (e/v)
deg v

(by the definition of qv)

= ∑
v∈V

∑
e∈E;

v∈ϕ(e)︸ ︷︷ ︸
= ∑

e∈E
∑

v∈V;
v∈ϕ(e)

deg (e/v)
deg v

= ∑
e∈E

∑
v∈V;

v∈ϕ(e)︸ ︷︷ ︸
= ∑

v∈ϕ(e)
(since ϕ(e) is
a subset of V)

deg (e/v)
deg v

= ∑
e∈E

∑
v∈ϕ(e)

deg (e/v)
deg v︸ ︷︷ ︸
≥2

(by (10))

≥ ∑
e∈E

2 = |E| · 2 = 2 |E| = ∑
v∈V

deg v

(by (11)). This solves Exercise 4.

0.5. When do transpositions generate all permutations?

Exercise 5. Let G = (V, E, ϕ) be a connected graph.
For each e = {u, v} ∈ P2 (V), we let te be the permutation of V that swaps u

with v while leaving all other elements of V unchanged.
An E-transposition shall mean a permutation of the form te for some e ∈ ϕ (E).
Prove that every permutation of V can be written as a composition of some

E-transpositions.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018apr2.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018apr2.pdf
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Remark 0.9. In Exercise 5, we can WLOG assume (by relabeling the vertices) that
V = [n] for some n ∈N. Thus, Exercise 5 makes a statement about permutations
of [n].

For instance, if we apply Exercise 5 to the connected simple graph Pn =
([n] , {{1, 2} , {2, 3} , . . . , {n− 1, n}}) (for some n > 0), then we obtain the well-
known fact that every permutation of [n] can be written as a composition of some
simple transpositions (because the E-transpositions in this case are precisely the
simple transpositions s1, s2, . . . , sn−1).

For another example, we can apply Exercise 5 to the connected simple graph
([n] , {{1, 2} , {1, 3} , . . . , {1, n}}) (for some n > 0); this graph is called a “star”,
because here is how it looks like for n = 7:

3 4

2 1 5

6 7

Thus, Exercise 5 shows that every permutation of [n] can be written as a com-
position of some transpositions, each of which swaps 1 with one of the numbers
2, 3, . . . , n. (This fact was Exercise 3 on Fall 2017 Math 4990 homework set #7.)

Exercise 5 also has a converse: If G = (V, E, ϕ) is a graph such that every permu-
tation of V can be written as a composition of some E-transpositions, then G is
connected or V is empty. This is not hard to prove1.

Our solution of Exercise 5 relies on the following notation:

Definition 0.10. Let V be any set. Let u and v be two distinct elements of V.
Then, tu,v shall denote the permutation of V that swaps u with v while leaving
all other elements of V unchanged. This permutation tu,v is called a transposition
of V.

Lemma 0.11. Let V be a set. Let i, p and q be three distinct elements of V. Then,

ti,q = tp,q ◦ ti,p ◦ tp,q.

Proof of Lemma 0.11 (sketched). This is straightforward: We just need to show that
ti,q (x) =

(
tp,q ◦ ti,p ◦ tp,q

)
(x) for each x ∈ V. This can be shown by considering the

cases x = i, x = p, x = q and x /∈ {i, p, q} separately; in the first three cases, the
verification is a straightforward computation, whereas in the fourth case, the claim
follows from ti,q (x) = x and

(
tp,q ◦ ti,p ◦ tp,q

)
(x) = x.

1Hint: Show that if a composition of some E-transpositions maps a vertex u ∈ V to a vertex v ∈ V,
then there exists a walk from u to v in G.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
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Solution to Exercise 5 (sketched). Recall that every permutation of V is a composition
of transpositions2. We now focus on proving the following fact:

Statement 1: Let i and j be two distinct elements of V. Then, the transpo-
sition ti,j of V can be written as a composition of some E-transpositions.

[Proof of Statement 1: Since G is connected, there is a path
(
k0, e1, k1, . . . , ep, kp

)
from i to j in G (with k0 = i and kp = j). Consider such a path. For each r ∈ [p], the
transposition tkr−1,kr is an E-transposition (since it can be written as ter). Thus, in
particular, tk0,k1 is an E-transposition. Note that the path

(
k0, e1, k1, . . . , ep, kp

)
has

length > 0 (since i 6= j). In other words, p > 0. Hence, p ∈ [p].
We claim that ti,kr is a composition of some E-transpositions for each r ∈ {1, 2, . . . , p}.

Indeed, this can be proven by induction on r: The base case (r = 1) is clear, since
ti,k1 = tk0,k1 is itself an E-transposition. For the induction step, let r ∈ {1, 2, . . . , p}
be such that r > 1, and assume that ti,kr−1 is a composition of some E-transpositions;
we must show that ti,kr is a composition of some E-transpositions. But the ver-
tices k0, kr−1, kr of V are distinct (since they are three different vertices of the
path

(
k0, e1, k1, . . . , ep, kp

)
). In other words, the vertices i, kr−1, kr of V are distinct

(since k0 = i). Hence, Lemma 0.11 (applied to kr−1 and kr instead of p and q)
yields ti,kr = tkr−1,kr ◦ ti,kr−1 ◦ tkr−1,kr . But the right hand side of this equality is
a composition of some E-transpositions (since ti,kr−1 is a composition of some E-
transpositions, whereas tkr−1,kr is itself an E-transposition). Hence, so is the left
hand side. In other words, ti,kr is a composition of some E-transpositions. That
completes the induction. Now, applying our claim to r = p, we conclude that ti,kp
is a composition of some E-transpositions. Since kp = j, this means that ti,j is a
composition of some E-transpositions. This proves Statement 1.]

Statement 1 shows that each transposition of V can be written as a composition of
some E-transpositions. We thus know that every permutation of V is a composition
of transpositions, each of which can in turn be written as a composition of some
E-transpositions. Hence, every permutation of V is a composition of compositions
of E-transpositions. But this means that every permutation of V can be written as
a composition of E-transpositions. This solves Exercise 5.

0.6. Latin rectangles and squares

Definition 0.12. Let n ∈ N and r ∈ N. A Latin r× n-rectangle is an r× n-matrix
with the following properties:

• Each row contains the integers 1, 2, . . . , n in some order.

• No number appears more than once in a column.

2This is proven, e.g., in [Grinbe16, Exercise 5.15 (b)] (but also follows easily from what we have
done in class).
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For example,
(

1 4 2 3
2 1 3 4

)
is a Latin 2× 4-rectangle, and

 4 3 1 5 2
1 2 5 4 3
3 5 2 1 4

 is

a Latin 3× 5-rectangle, whereas
(

1 4 2 3
1 2 3 4

)
is not a Latin 2× 4-rectangle (as

the number 1 appears twice in the first column) and

 1 3 2
2 2 3
3 1 2

 is not a Latin

3 × 3-rectangle (since the second row is 2, 2, 3, which is not a rearrangement of
1, 2, 3).

Clearly, a Latin r× n-rectangle can only exist if r ≤ n.

Definition 0.13. Let n ∈N. A Latin square of size n means a Latin n× n-rectangle.

Latin squares are another classical combinatorial object whose number has not
been expressed to a reasonable standard; see the Wikipedia page for what is known
and why people care.

Exercise 6. Let r ∈ N and n ∈ N be such that r ≤ n. Let A be a Latin r × n-
rectangle. Show that A can be extended to a Latin square of size n by appending
n− r extra rows.

[Hint: By induction, it suffices to show that, as long as r < n, you can extend
A to a Latin (r + 1) × n-rectangle by appending one extra row. You can use
Hall’s marriage theorem without proof here, even though we have not shown it
in class.]

Exercise 6 is a famous result in the theory of Latin squares, due to Marshall Hall
in 1945 (see [Hall45]). His proof derives it rather quickly from Hall’s marriage
theorem (restated in terms of systems of distinct representatives). For a readable
writeup of this proof, see [Bartle12, Latin Squares, Lecture 2, §2.2]. Note that the
Hall who discovered Hall’s marriage theorem is a Philip Hall; thus, it makes sense
to call Exercise 6 the “Hall-Hall theorem”.

See [HilVau11, Theorem 1] for a generalization (from which you can obtain Ex-
ercise 6 by setting s = n and observing that ν (σ) = r).

0.7. Latin squares and signs

Exercise 7. Let n ∈N. Let A be a Latin square of size n. Recall Definition 0.5.
For each i ∈ [n], let ri be the permutation of [n] whose one-line notation is the

i-th row of A (that is, which satisfies ri (j) = Ai,j for each j ∈ [n]).
For each j ∈ [n], let cj be the permutation of [n] whose one-line notation is the

j-th column of A (that is, which satisfies cj (i) = Ai,j for each i ∈ [n]).
For each k ∈ [n], let zk be the permutation of [n] such that for each i ∈ [n], we

have Ai,zk(i) = k. (Thus, the permutation zk sends each i ∈ [n] to the position of

https://en.wikipedia.org/wiki/Latin_square
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the entry k in the i-th row of A. This is indeed a permutation, as follows easily
from the definition of a Latin square and from the pigeonhole principle.)

Prove that(
n

∏
i=1

(−1)ri

)(
n

∏
j=1

(−1)cj

)(
n

∏
k=1

(−1)zk

)
= (−1)n(n−1)/2 .

Example 0.14. For this example, let n = 4 and A =


4 3 1 2
1 2 4 3
3 4 2 1
2 1 3 4

. Then, A

is a Latin square of size 4. The permutations ri, cj, zk of Exercise 7 then look as
follows in one-line notation:

r1 = [4, 3, 1, 2] , r2 = [1, 2, 4, 3] , r3 = [3, 4, 2, 1] , r4 = [2, 1, 3, 4] ;
c1 = [4, 1, 3, 2] , c2 = [3, 2, 4, 1] , c3 = [1, 4, 2, 3] , c4 = [2, 3, 1, 4] ;
z1 = [3, 1, 4, 2] , z2 = [4, 2, 3, 1] , z3 = [2, 4, 1, 3] , z4 = [1, 3, 2, 4] .

Exercise 7 is Wilson’s sign identity for Latin squares. For solutions, see [Glynn10,
proof of Theorem 2.1], [Jansse95, proof of Theorem 3.2] or [Bernds12, proof of
Theorem 2.4].

Hints to Exercise 7. Step 1: Let us introduce some notations.
Let S be the set of all triples

(
i, j, Ai,j

)
∈ [n]3 for i ∈ [n] and j ∈ [n]. In other

words,
S =

{
(i, j, k) ∈ [n]3 | k = Ai,j

}
.

Notice that you can visualize the set [n]3 as an n× n× n-cube built out of 1× 1× 1-
blocks – like a Rubik’s cube –, and then S is a set of n2 blocks of this cube such that
each strip parallel to one of the three coordinate axes contains exactly one block
from S. In other words, if you fix two entries of a triple (i, j, k) ∈ [n]3, then there
exists exactly one value for the third entry that causes the triple to belong to S.
More precisely:

• For each pair (i, j) ∈ [n]2, there is exactly one k ∈ [n] such that (i, j, k) ∈ S.
(Namely, this k is Ai,j.)

• For each pair (i, k) ∈ [n]2, there is exactly one j ∈ [n] such that (i, j, k) ∈ S.
(This j is the index of the entry k in the i-th row of A; in other words, j is such
that Ai,j = k.)
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• For each pair (j, k) ∈ [n]2, there is exactly one i ∈ [n] such that (i, j, k) ∈ S.
(This i is the index of the entry k in the j-th column of A; in other words, i is
such that Ai,j = k.)

(Notice that these three conditions characterize sets S ⊆ [n]3 that come from
Latin squares; thus, they can be viewed as a more symmetric definition of a Latin
square.)

Now, whenever α, β and γ are three binary relations on the set [n] (for example,
α can be any of the relations =, <, > and 6=, and so can be β and γ), we define the
set N (α, β, γ) by

N (α, β, γ) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | xαx′ and yβy′ and zγz′

}
.

For example,

N (<,>,=) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′

}
and

N (>,=,=) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x > x′ and y = y′ and z = z′

}
.

Step 2: We have

|N (<,<,>)| = |N (>,>,<)| and (12)
|N (<,>,<)| = |N (>,<,>)| and (13)
|N (>,<,<)| = |N (<,>,>)| . (14)

[Proof: The map

N (<,<,>)→ N (>,>,<) ,(
(x, y, z) ,

(
x′, y′, z′

))
7→
((

x′, y′, z′
)

, (x, y, z)
)

is a bijection. Thus, |N (<,<,>)| = |N (>,>,<)|. Similarly, |N (<,>,<)| =
|N (>,<,>)| and |N (>,<,<)| = |N (<,>,>)|.]

Step 3: Let ∗ be the binary relation on [n] such that every pair (i, j) satisfies i ∗ j.
(The “joker relation”.) Show that

|N (∗,<,>)| = (n (n− 1) /2)2 and (15)

|N (<,>, ∗)| = (n (n− 1) /2)2 and (16)

|N (>, ∗,<)| = (n (n− 1) /2)2 . (17)

[Proof: The definition of N (∗,<,>) yields

N (∗,<,>)

=


(
(x, y, z) ,

(
x′, y′, z′

))
∈ S× S | x ∗ x′︸ ︷︷ ︸

this always
holds

and y < y′ and z > z′


=
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | y < y′ and z > z′

}
. (18)
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Thus, the elements of N (∗,<,>) are simply the pairs ((x, y, z) , (x′, y′, z′)) ∈ S× S
satisfying y < y′ and z > z′. We can construct any such pair by the following
algorithm:

• Choose two elements y, y′ ∈ [n] satisfying y < y′. Note that there are
(

n
2

)
=

n (n− 1) /2 ways to do this.

• Then choose z, z′ ∈ [n] satisfying z > z′. Again, there are
(

n
2

)
= n (n− 1) /2

ways to do this.

• Find the unique x ∈ [n] such that (x, y, z) ∈ S. (This is indeed unique, because
for each pair (j, k) ∈ [n]2, there is exactly one i ∈ [n] such that (i, j, k) ∈ S.)

• Find the unique x′ ∈ [n] such that (x′, y′, z′) ∈ S. (Again, this is unique for
the same reason.)

Hence, altogether, there are (n (n− 1) /2)2 such pairs (because we had n (n− 1) /2
choices in the first step of the above algorithm, and then again n (n− 1) /2 choices
in the second step, and no further choices). Thus,∣∣{((x, y, z) ,

(
x′, y′, z′

))
∈ S× S | y < y′ and z > z′

}∣∣ = (n (n− 1) /2)2 .

In view of (18), this rewrites as |N (∗,<,>)| = (n (n− 1) /2)2. This proves (15).
Similarly, (16) and (17) can be shown.]

Step 4: We have

|N (=,<,>)|+ |N (<,<,>)|+ |N (>,<,>)| = |N (∗,<,>)| ; (19)
|N (>,=,<)|+ |N (>,<,<)|+ |N (>,>,<)| = |N (>, ∗,<)| ; (20)
|N (<,>,=)|+ |N (<,>,<)|+ |N (<,>,>)| = |N (<,>, ∗)| . (21)

[Proof: The definition of N (∗,<,>) yields

N (∗,<,>)

=


(
(x, y, z) ,

(
x′, y′, z′

))
∈ S× S | x ∗ x′︸ ︷︷ ︸

this always
holds

and y < y′ and z > z′


=
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | y < y′ and z > z′

}
.

Clearly, each element ((x, y, z) , (x′, y′, z′)) of N (∗,<,>) satisfies either x = x′ or
x < x′ or x > x′ (but not more than one of these relations); and, correspond-
ingly, it belongs to either N (=,<,>) or N (<,<,>) or N (>,<,>). Thus, the set
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N (∗,<,>) is the union of its three disjoint subsets N (=,<,>), N (<,<,>) and
N (>,<,>). Hence,

|N (∗,<,>)| = |N (=,<,>)|+ |N (<,<,>)|+ |N (>,<,>)| .

This proves (19). Analogous arguments prove (20) and (21).]
Step 5: Adding the equalities (19), (20) and (21) together, we obtain

|N (=,<,>)|+ |N (<,<,>)|+ |N (>,<,>)|
+ |N (>,=,<)|+ |N (>,<,<)|+ |N (>,>,<)|
+ |N (<,>,=)|+ |N (<,>,<)|+ |N (<,>,>)|

= |N (∗,<,>)|︸ ︷︷ ︸
=(n(n−1)/2)2

(by (15))

+ |N (>, ∗,<)|︸ ︷︷ ︸
=(n(n−1)/2)2

(by (17))

+ |N (<,>, ∗)|︸ ︷︷ ︸
=(n(n−1)/2)2

(by (16))

= (n (n− 1) /2)2 + (n (n− 1) /2)2 + (n (n− 1) /2)2

= 3 (n (n− 1) /2)2 ≡ (n (n− 1) /2)2 ≡ n (n− 1) /2 mod 2

(since m2 ≡ m mod 2 for each integer m (because
m2 −m

2
=

(
m
2

)
is an integer)).

Comparing this with

|N (=,<,>)|+ |N (<,<,>)|︸ ︷︷ ︸
=|N(>,>,<)|

(by (12))

+ |N (>,<,>)|

+ |N (>,=,<)|+ |N (>,<,<)|︸ ︷︷ ︸
=|N(<,>,>)|

(by (14))

+ |N (>,>,<)|

+ |N (<,>,=)|+ |N (<,>,<)|︸ ︷︷ ︸
=|N(>,<,>)|

(by (13))

+ |N (<,>,>)|

= |N (=,<,>)|+ |N (>,>,<)|+ |N (>,<,>)|
+ |N (>,=,<)|+ |N (<,>,>)|+ |N (>,>,<)|
+ |N (<,>,=)|+ |N (>,<,>)|+ |N (<,>,>)|

= |N (=,<,>)|+ |N (<,>,=)|+ |N (>,=,<)|
+ 2 (|N (>,>,<)|+ |N (>,<,>)|+ |N (<,>,>)|)

≡ |N (=,<,>)|+ |N (<,>,=)|+ |N (>,=,<)|mod 2,

we obtain

|N (=,<,>)|+ |N (<,>,=)|+ |N (>,=,<)|
≡ n (n− 1) /2 mod 2. (22)
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Step 6: We have

n

∏
i=1

(−1)ri = (−1)|N(=,<,>)| and (23)

n

∏
j=1

(−1)cj = (−1)|N(>,=,<)| and (24)

n

∏
k=1

(−1)zk = (−1)|N(<,>,=)| . (25)

[Proof: We begin by proving (23). For each i ∈ [n], the length ` (ri) of the permu-
tation ri ∈ Sn is given by

` (ri) = (the number of inversions of ri)

(by the definition of the length of a permutation)

=
(

the number of all (u, v) ∈ [n]2 satisfying u < v and ri (u) > ri (v)
)

(by the definition of an inversion)

=
∣∣∣{(u, v) ∈ [n]2 | u < v and ri (u) > ri (v)

}∣∣∣
=
∣∣∣{(y, y′

)
∈ [n]2 | y < y′ and ri (y) > ri

(
y′
)}∣∣∣ (26)

(here, we have renamed the index (u, v) as (y, y′)).
But

N (=,<,>) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x = x′ and y < y′ and z > z′

}
and thus

|N (=,<,>)|
=
∣∣{((x, y, z) ,

(
x′, y′, z′

))
∈ S× S | x = x′ and y < y′ and z > z′

}∣∣
= ∑

i∈[n]

∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x = x′ = i and y < y′ and z > z′

}∣∣ .

(27)



Math 4707 Spring 2018 (Darij Grinberg): homework set 5 page 20

But each i ∈ [n] satisfies∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x = x′ = i and y < y′ and z > z′

}∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣


(
y, z, y′, z′

)
∈ [n]4 | (i, y, z) ∈ S︸ ︷︷ ︸

⇐⇒ (Ai,y=z)
(by the definition of S)

and
(
i, y′, z′

)
∈ S︸ ︷︷ ︸

⇐⇒
(

Ai,y′=z′
)

(by the definition of S)

and y < y′ and z > z′



∣∣∣∣∣∣∣∣∣∣∣∣(
because the ((x, y, z) , (x′, y′, z′)) ∈ S× S satisfying x = x′ = i are

uniquely determined by their coordinates y, z, y′, z′

)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣


(
y, z, y′, z′

)
∈ [n]4 | Ai,y︸︷︷︸

=ri(y)
(by the definition

of ri)

= z and Ai,y′︸︷︷︸
=ri(y′)

(by the definition
of ri)

= z′ and y < y′ and z > z′



∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣{(y, z, y′, z′

)
∈ [n]4 | ri (y) = z and ri

(
y′
)
= z′ and y < y′ and z > z′

}∣∣∣
=
∣∣∣{(y, y′

)
∈ [n]2 | y < y′ and ri (y) > ri

(
y′
)}∣∣∣(

since the 4-tuples (y, z, y′, z′) ∈ [n]4 satisfying ri (y) = z and ri (y′) = z′

are uniquely determined by their coordinates y and y′

)
= ` (ri) (by (26)) .

Thus, (27) becomes

|N (=,<,>)| = ∑
i∈[n]

∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x = x′ = i and y < y′ and z > z′

}∣∣︸ ︷︷ ︸
=`(ri)

= ∑
i∈[n]

` (ri) =
n

∑
i=1

` (ri) .

Thus,

(−1)|N(=,<,>)| = (−1)

n
∑

i=1
`(ri)

=
n

∏
i=1

(−1)`(ri)︸ ︷︷ ︸
=(−1)ri

(since (−1)ri=(−1)`(ri)

(by the definition of (−1)ri ))

=
n

∏
i=1

(−1)ri .

This proves (23).
Next, we will prove (24). This proof is similar, but differs in some details, so we

give it in full. For each j ∈ [n], the length `
(
cj
)

of the permutation cj ∈ Sn is given
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by

`
(
cj
)
=
(
the number of inversions of cj

)
(by the definition of the length of a permutation)

=
(

the number of all (u, v) ∈ [n]2 satisfying u < v and cj (u) > cj (v)
)

(by the definition of an inversion)

=
∣∣∣{(u, v) ∈ [n]2 | u < v and cj (u) > cj (v)

}∣∣∣
=

∣∣∣∣∣∣∣∣
(u, v) ∈ [n]2 | v < u︸ ︷︷ ︸

⇐⇒ (u>v)

and cj (v) > cj (u)︸ ︷︷ ︸
⇐⇒ (cj(u)<cj(v))


∣∣∣∣∣∣∣∣(

here, we have substituted (v, u) for the index (u, v) ,
since the map [n]2 → [n]2 , (u, v) 7→ (v, u) is a bijection

)
=
∣∣∣{(u, v) ∈ [n]2 | u > v and cj (u) < cj (v)

}∣∣∣
=
∣∣∣{(x, x′

)
∈ [n]2 | x > x′ and cj (x) < cj

(
x′
)}∣∣∣ (28)

(here, we have renamed the index (u, v) as (x, x′)).
But

N (>,=,<) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x > x′ and y = y′ and z < z′

}
and thus

|N (>,=,<)|
=
∣∣{((x, y, z) ,

(
x′, y′, z′

))
∈ S× S | x > x′ and y = y′ and z < z′

}∣∣
= ∑

j∈[n]

∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x > x′ and y = y′ = j and z < z′

}∣∣ .

(29)



Math 4707 Spring 2018 (Darij Grinberg): homework set 5 page 22

But each j ∈ [n] satisfies∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x > x′ and y = y′ = j and z < z′

}∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣


(
x, z, x′, z′

)
∈ [n]4 | (x, j, z) ∈ S︸ ︷︷ ︸

⇐⇒ (Ax,j=z)
(by the definition of S)

and
(
x′, j, z′

)
∈ S︸ ︷︷ ︸

⇐⇒
(

Ax′ ,j=z′
)

(by the definition of S)

and x > x′ and z < z′



∣∣∣∣∣∣∣∣∣∣∣∣(
because the ((x, y, z) , (x′, y′, z′)) ∈ S× S satisfying y = y′ = j are

uniquely determined by their coordinates x, z, x′, z′

)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣


(
x, z, x′, z′

)
∈ [n]4 | Ax,j︸︷︷︸

=cj(x)
(by the definition

of cj)

= z and Ax′,j︸︷︷︸
=cj(x′)

(by the definition
of cj)

= z′ and x > x′ and z < z′



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣{(x, z, x′, z′

)
∈ [n]4 | cj (x) = z and cj

(
x′
)
= z′ and x > x′ and z < z′

}∣∣∣
=
∣∣∣{(x, x′

)
∈ [n]2 | x > x′ and cj (x) < cj

(
x′
)}∣∣∣(

since the 4-tuples (x, z, x′, z′) ∈ [n]4 satisfying cj (x) = z and cj (x′) = z′

are uniquely determined by their coordinates x and x′

)
= `

(
cj
)

(by (28)) .

Thus, (29) becomes

|N (>,=,<)| = ∑
j∈[n]

∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x > x′ and y = y′ = j and z < z′

}∣∣︸ ︷︷ ︸
=`(cj)

= ∑
j∈[n]

`
(
cj
)
=

n

∑
j=1

`
(
cj
)

.

Thus,

(−1)|N(>,=,<)| = (−1)

n
∑

j=1
`(cj)

=
n

∏
j=1

(−1)`(cj)︸ ︷︷ ︸
=(−1)

cj

(since (−1)
cj=(−1)

`(cj)

(by the definition of (−1)
cj ))

=
n

∏
j=1

(−1)cj .

This proves (24).
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Finally, we need to prove (25). For each k ∈ [n], the length ` (zk) of the permuta-
tion zk ∈ Sn is given by

` (zk) = (the number of inversions of zk)

(by the definition of the length of a permutation)

=
(

the number of all (u, v) ∈ [n]2 satisfying u < v and zk (u) > zk (v)
)

(by the definition of an inversion)

=
∣∣∣{(u, v) ∈ [n]2 | u < v and zk (u) > zk (v)

}∣∣∣
=
∣∣∣{(x, x′

)
∈ [n]2 | x < x′ and zk (x) > zk

(
x′
)}∣∣∣ (30)

(here, we have renamed the index (u, v) as (x, x′)).
But

N (<,>,=) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′

}
and thus

|N (<,>,=)|
=
∣∣{((x, y, z) ,

(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′

}∣∣
= ∑

k∈[n]

∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′ = k

}∣∣ .

(31)
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But each k ∈ [n] satisfies∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′ = k

}∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣


(
x, y, x′, y′

)
∈ [n]4 | (x, y, k) ∈ S︸ ︷︷ ︸

⇐⇒ (Ax,y=k)
(by the definition of S)

and
(
x′, y′, k

)
∈ S︸ ︷︷ ︸

⇐⇒
(

Ax′ ,y′=k
)

(by the definition of S)

and x < x′ and y > y′



∣∣∣∣∣∣∣∣∣∣∣∣(
because the ((x, y, z) , (x′, y′, z′)) ∈ S× S satisfying z = z′ = k are

uniquely determined by their coordinates x, y, x′, y′

)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣


(
x, y, x′, y′

)
∈ [n]4 | Ax,y = k︸ ︷︷ ︸

⇐⇒ (y=zk(x))
(by the definition

of zk)

and Ax′,y′ = k︸ ︷︷ ︸
⇐⇒ (y′=zk(x′))
(by the definition

of zk)

and x < x′ and y > y′



∣∣∣∣∣∣∣∣∣∣∣∣∣
=
∣∣∣{(x, y, x′, y′

)
∈ [n]4 | y = zk (x) and y′ = zk

(
x′
)

and x < x′ and y > y′
}∣∣∣

=
∣∣∣{(x, x′

)
∈ [n]2 | x < x′ and zk (x) > zk

(
x′
)}∣∣∣(

since the 4-tuples (x, y, x′, y′) ∈ [n]4 satisfying y = zk (x) and y′ = zk (x′)
are uniquely determined by their coordinates x and x′

)
= ` (zk) (by (30)) .

Thus, (31) becomes

|N (<,>,=)| = ∑
k∈[n]

∣∣{((x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′ = k

}∣∣︸ ︷︷ ︸
=`(zk)

= ∑
k∈[n]

` (zk) =
n

∑
k=1

` (zk) .

Thus,

(−1)|N(<,>,=)| = (−1)

n
∑

k=1
`(zk)

=
n

∏
k=1

(−1)`(zk)︸ ︷︷ ︸
=(−1)zk

(since (−1)zk=(−1)`(zk)

(by the definition of (−1)zk ))

=
n

∏
k=1

(−1)zk .

This proves (25).]
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Step 7: Multiplying the three equalities (23), (24) and (25), we obtain(
n

∏
i=1

(−1)ri

)(
n

∏
j=1

(−1)cj

)(
n

∏
k=1

(−1)zk

)
= (−1)|N(=,<,>)| (−1)|N(>,=,<)| (−1)|N(<,>,=)|

= (−1)|N(=,<,>)| (−1)|N(<,>,=)| (−1)|N(>,=,<)|

= (−1)|N(=,<,>)|+|N(<,>,=)|+|N(>,=,<)| = (−1)n(n−1)/2

(by (22)). This solves Exercise 7.
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