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Math 4707 Spring 2018 (Darij Grinberg): homework set 5 [corrected version]
due date: Wednesday 25 April 2018 at the beginning of class, or before that by

email or moodle
Please solve at most 4 of the 7 exercises!
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For the notations that we will use, we refer to Spring 2017 Math 5707 Homework
set #2 and to classwork. The word “graph” means “multigraph” unless it appears
as part of “simple graph”. Here are the notations that I did not introduce in class:

• A two-element set {u, v} will be denoted by uv when no confusion can arise.
This will be mostly used for two-element sets that appear as edges in simple
graphs (or as images of edges in multigraphs). For example, the simple graph

1 4 5

3 6

has edges 13, 14, 36, 45, 46.

• The set of all vertices of a graph G is called the vertex set of G, and is denoted
by V (G).

The set of all edges of a graph G is called the edge set of G, and is denoted by
E (G).

• If v is a vertex and e is an edge of a graph (V, E, ϕ), then we say that v belongs
to e (or, equivalently, e contains v) if v is an endpoint of e (that is, v ∈ ϕ (e)).

0.1. Perfect matchings of a 2× n grid

Definition 0.1. Let n ∈ N. Then, the path graph Pn is defined to be the sim-
ple graph whose vertices are the n numbers 1, 2, . . . , n, and whose edges are
{1, 2} , {2, 3} , . . . , {n− 1, n}. Here is how it looks like:

1 2 · · · n

http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/17s/hw2s.pdf
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Definition 0.2. Let G and H be two simple graphs. The Cartesian product of G
and H is a new simple graph, denoted G× H, which is defined as follows:

• The vertex set V (G× H) of G× H is the Cartesian product V (G)×V (H).
(So the vertices of G× H are all pairs of the form (v, w), where v is a vertex
of G and w is a vertex of H.)

• A vertex (g, h) of G× H is adjacent to a vertex (g′, h′) of G× H if and only
if we have

either
(

g = g′ and hh′ ∈ E (H)
)

or
(
h = h′ and gg′ ∈ E (G)

)
.

(In particular, exactly one of the two equalities g = g′ and h = h′ has to
hold when (g, h) is adjacent to (g′, h′).)

Definition 0.3. Let n ∈ N and m ∈ N. The grid graph Gn,m is defined to be the
Cartesian product Pn × Pm.

Here is how the grid graph G3,4 looks like:

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

(Check that you understand how the definition of a Cartesian product of two
graphs causes it to look like this.) For arbitrary n, m ∈ N, the grid graph Gn,m
is the simple graph whose vertex set is [n]× [m], and whose edges have the form

(i, j) (i + 1, j) for i ∈ [n− 1] and j ∈ [m] , and
(i, j) (i, j + 1) for i ∈ [n] and j ∈ [m− 1] .

Recall that a matching of a graph G means a set M of disjoint edges of G. A perfect
matching of a graph G means a matching M of G such that each vertex of G belongs
to exactly one edge in M. For example,

{(1, 1) (1, 2) , (1, 3) (1, 4) , (2, 1) (3, 1) , (2, 2) (2, 3) , (3, 2) (3, 3) , (2, 4) (3, 4)}

is a perfect matching of the grid graph G3,4 shown above; let me visualize this
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matching by drawing only the edges of this matching (omitting all the other edges):

(1, 1) (1, 2) (1, 3) (1, 4)

(2, 1) (2, 2) (2, 3) (2, 4)

(3, 1) (3, 2) (3, 3) (3, 4)

Exercise 1. Let n ∈ N. How many perfect matchings does the grid graph G2,n
have?

[Hint: This is something you know in disguise.]

0.2. Eulerian circuits of a windmill

The concept of a circuit in a graph is somewhat ambiguous: In the graph

1 a

cd

2

b

4 3

, (1)

do you consider (1, a, 2, b, 3, c, 1) and (2, b, 3, c, 1, a, 2) as the same circuit? What
about (1, a, 2, b, 3, c, 1) and (1, c, 3, b, 2, a, 1) ? According to our definition of a circuit
(we defined it as a specific kind of walk), the answer is “no” in both cases:

(2, b, 3, c, 1, a, 2) 6= (1, a, 2, b, 3, c, 1) 6= (1, c, 3, b, 2, a, 1) .

But most people would like to equate (1, a, 2, b, 3, c, 1) with (2, b, 3, c, 1, a, 2), at the
very least, since these are “the same circuit with different starting points”. So they
say “circuit” but really mean “equivalence class of circuits with respect to cyclic
rotation (and perhaps mirror reflection)”. This is all irrelevant as long as we just
discuss the existence of circuits; but when we start counting circuits, it becomes
important. Depending on how circuits are defined, the graph (1) has either 6 or 3
or 2 or 1 cycles (which, as you remember, are circuits satisfying some conditions).
According to our definition (which I don’t want to change), it has 6 cycles.

Definition 0.4. Let G be a graph.
(a) A walk (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk) of G is said to be Eulerian if each

edge of G appears exactly once among the k edges e1, e2, . . . , ek.
(b) Let w = (v0, e1, v1, e2, v2, . . . , vk−1, ek, vk) be a walk of G. Then, k is called

the length of w. If k > 0, then e1 is called the starting edge of w.

Counting all Eulerian circuits of a graph is usually difficult. For example, the
number of Eulerian circuits in a complete graph Kn grows very fast with n and
doesn’t have a known expression (see sequence A007082 in the OEIS for the values
when n is odd; of course, the values when n is even are 0).

https://oeis.org/A007082
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Exercise 2. Let g be a positive integer. Let G be the simple graph whose vertices
are the 2g + 1 integers −g,−g + 1, . . . , g− 1, g, and whose edges are

{0, i} for all i ∈ {1, 2, . . . , g} ;
{0,−i} for all i ∈ {1, 2, . . . , g} ;
{i,−i} for all i ∈ {1, 2, . . . , g}

(these are 3g edges in total).
[Here is how G looks like in the case when g = 4:

1 −1

−4 2

0

4 −2

−3 3

(2)

]
(a) Find the number of Eulerian circuits of G whose starting point is 0 and

whose starting edge is {0, 1}.
(b) Find the number of Eulerian circuits of G whose starting point is 0.

0.3. Counting walks in a graph

A graph always has a finite number of paths (since a path can never have more
vertices than the graph has), but usually has an infinite number of walks (indeed,
if the graph has a cycle, then you can build arbitrarily long walks by walking
along this cycle over and over). Nevertheless, walks are much easier to count than
paths. The next exercise states a formula for the number of walks of a given length
between two given vertices in terms of the adjacency matrix of a graph. This matrix
is an important representation of a graph.

Definition 0.5. Let n ∈N and m ∈N. Let A be an n×m-matrix. Let i ∈ [n] and
j ∈ [m]. Then, Ai,j will denote the (i, j)-th entry of A.

Definition 0.6. Let G = (V, E, ϕ) be a graph. Assume that V = [n] for some
n ∈N. Then, the adjacency matrix of G is defined as the n× n-matrix whose (i, j)-
th entry (for each i ∈ [n] and j ∈ [n]) is the number of edges whose endpoints
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are i and j.

For example, the graph
1 2 4

3

(3)

has adjacency matrix 
0 2 1 0
2 0 1 1
1 1 0 0
0 1 0 0

 .

Clearly, the adjacency matrix of a graph G = (V, E, ϕ) with V = [n] is symmetric.
Furthermore, this adjacency matrix “encodes” the whole structure of G apart from
the identities of the edges.

Exercise 3. Let G = (V, E, ϕ) be a graph. Assume that V = [n] for some n ∈ N.
Let A be the adjacency matrix of G. Let i ∈ [n] and j ∈ [n] and k ∈N. Prove that(

Ak)
i,j is the number of walks from i to j that have length k.

0.4. Your friends have more friends than you

If G is a graph, and if v is a vertex of G, then deg v denotes the degree of v (that is,
the number of edges of G that contain v).

Exercise 4. Let G = (V, E, ϕ) be a graph.
If v ∈ V and e ∈ E are such that v ∈ ϕ (e) (that is, the edge e contains the

vertex v), then we let e/v denote the endpoint of e distinct from v. For each
v ∈ V, we define a rational number qv by

qv = ∑
e∈E;

v∈ϕ(e)

deg (e/v)
deg v

.

(Note that the denominator deg v on the right hand side is nonzero whenever
the sum is nonempty!)

[Roughly speaking, qv is the average degree of the neighbors of v. But to be
more precise, this is an average over all edges containing v, not just over all
neighbors of v; the degree of a neighbor of v will factor in the stronger the more
edges join this neighbor to v. When v is an isolated vertex – i.e., when deg v = 0
–, the number qv is 0.]

Prove that
∑

v∈V
qv ≥ ∑

v∈V
deg v. (4)
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[Hint: It helps to use the inequality
x
y
+

y
x
≥ 2, which holds for any two

positive reals x and y (it is a consequence of
x
y
+

y
x
− 2 =

(x− y)2

xy
≥ 0).]

If the graph G is a social network (vertices being people, and edges being friend-
ships), then the inequality (4) (when divided by |V|) can be construed as saying
“the average person is unpopular”, where being “unpopular” means that your av-
erage friend has at least as many friends as you do. This is a slippery statement
(involving an average within an average) and needs to be interpreted correctly:
For example, in the graph (2), the vertex 0 has degree 8, while all other vertices
have degree 2; the corresponding numbers qv are q0 = 2 and qv = 5 (for v 6= 0),
respectively. Thus, (4) says that

2 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 ≥ 8 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2,

which indeed holds (fairly strongly). The vertex 0, of course, is popular (having
deg 0 = 8 friends, whereas its average friend has q0 = 2 friends), but this is bal-
anced out by the unpopularity of all the other vertices.

Note that (4) does not mean that most vertices are unpopular. For example, if G

is the simple graph with 5 vertices 1, 2, 3, 4, 5 and all the
(

5
2

)
= 10 possible edges

between them except for the edge {4, 5}, then the vertices 1, 2, 3 of G are popular (a
majority), while the vertices 4, 5 are unpopular. Nevertheless, (4) holds here, since
the popularity of 1, 2, 3 “outweighs” the unpopularity of 4, 5 when the appropriate
averages are added.

0.5. When do transpositions generate all permutations?

Exercise 5. Let G = (V, E, ϕ) be a connected graph.
For each e = {u, v} ∈ P2 (V), we let te be the permutation of V that swaps u

with v while leaving all other elements of V unchanged.
An E-transposition shall mean a permutation of the form te for some e ∈ ϕ (E).
Prove that every permutation of V can be written as a composition of some

E-transpositions.

Remark 0.7. In Exercise 5, we can WLOG assume (by relabeling the vertices) that
V = [n] for some n ∈N. Thus, Exercise 5 makes a statement about permutations
of [n].

For instance, if we apply Exercise 5 to the connected simple graph Pn =
([n] , {{1, 2} , {2, 3} , . . . , {n− 1, n}}) (for some n > 0), then we obtain the well-
known fact that every permutation of [n] can be written as a composition of some
simple transpositions (because the E-transpositions in this case are precisely the
simple transpositions s1, s2, . . . , sn−1).
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For another example, we can apply Exercise 5 to the connected simple graph
([n] , {{1, 2} , {1, 3} , . . . , {1, n}}) (for some n > 0); this graph is called a “star”,
because here is how it looks like for n = 7:

3 4

2 1 5

6 7

Thus, Exercise 5 shows that every permutation of [n] can be written as a com-
position of some transpositions, each of which swaps 1 with one of the numbers
2, 3, . . . , n. (This fact was Exercise 3 on Fall 2017 Math 4990 homework set #7.)

Exercise 5 also has a converse: If G = (V, E, ϕ) is a graph such that every permu-
tation of V can be written as a composition of some E-transpositions, then G is
connected or V is empty. This is not hard to check.

0.6. Latin rectangles and squares

Definition 0.8. Let n ∈ N and r ∈ N. A Latin r× n-rectangle is an r× n-matrix
with the following properties:

• Each row contains the integers 1, 2, . . . , n in some order.

• No number appears more than once in a column.

For example,
(

1 4 2 3
2 1 3 4

)
is a Latin 2× 4-rectangle, and

 4 3 1 5 2
1 2 5 4 3
3 5 2 1 4

 is

a Latin 3× 5-rectangle, whereas
(

1 4 2 3
1 2 3 4

)
is not a Latin 2× 4-rectangle (as

the number 1 appears twice in the first column) and

 1 3 2
2 2 3
3 1 2

 is not a Latin

3 × 3-rectangle (since the second row is 2, 2, 3, which is not a rearrangement of
1, 2, 3).

Clearly, a Latin r× n-rectangle can only exist if r ≤ n.

Definition 0.9. Let n ∈N. A Latin square of size n means a Latin n× n-rectangle.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw7os.pdf
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Exercise 6. Let r ∈ N and n ∈ N be such that r ≤ n. Let A be a Latin r × n-
rectangle. Show that A can be extended to a Latin square of size n by appending
n− r extra rows.

[Hint: By induction, it suffices to show that, as long as r < n, you can extend
A to a Latin (r + 1) × n-rectangle by appending one extra row. You can use
Hall’s marriage theorem without proof here, even though we have not shown it
in class.]

Latin squares are another classical combinatorial object whose number has not
been expressed to a reasonable standard; see the Wikipedia page for what is known
and why people care.

0.7. Latin squares and signs

Exercise 7. Let n ∈N. Let A be a Latin square of size n. Recall Definition 0.5.
For each i ∈ [n], let ri be the permutation of [n] whose one-line notation is the

i-th row of A (that is, which satisfies ri (j) = Ai,j for each j ∈ [n]).
For each j ∈ [n], let cj be the permutation of [n] whose one-line notation is the

j-th column of A (that is, which satisfies cj (i) = Ai,j for each i ∈ [n]).
For each k ∈ [n], let zk be the permutation of [n] such that for each i ∈ [n], we

have Ai,zk(i) = k. (Thus, the permutation zk sends each i ∈ [n] to the position of
the entry k in the i-th row of A. This is indeed a permutation, as follows easily
from the definition of a Latin square and from the pigeonhole principle.)

Prove that(
n

∏
i=1

(−1)ri

)(
n

∏
j=1

(−1)cj

)(
n

∏
k=1

(−1)zk

)
= (−1)n(n−1)/2 .

Example 0.10. For this example, let n = 4 and A =


4 3 1 2
1 2 4 3
3 4 2 1
2 1 3 4

. Then, A

is a Latin square of size 4. The permutations ri, cj, zk of Exercise 7 then look as
follows in one-line notation:

r1 = [4, 3, 1, 2] , r2 = [1, 2, 4, 3] , r3 = [3, 4, 2, 1] , r4 = [2, 1, 3, 4] ;
c1 = [4, 1, 3, 2] , c2 = [3, 2, 4, 1] , c3 = [1, 4, 2, 3] , c4 = [2, 3, 1, 4] ;
z1 = [3, 1, 4, 2] , z2 = [4, 2, 3, 1] , z3 = [2, 4, 1, 3] , z4 = [1, 3, 2, 4] .

[Hint to Exercise 7: Let S be the set of all triples
(
i, j, Ai,j

)
∈ [n]3 for i ∈ [n] and

j ∈ [n]. Notice that you can visualize the set [n]3 as an n× n× n-cube built out of

https://en.wikipedia.org/wiki/Latin_square
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1× 1× 1-blocks – like a Rubik’s cube –, and then S is a set of n2 blocks of this cube
such that each strip parallel to one of the three coordinate axes contains exactly one
block from S. In other words, if you fix two entries of a triple (i, j, k) ∈ [n]3, then
there exists exactly one value for the third entry that causes the triple to belong to
S. (Notice that this rule characterizes sets S ⊆ [n]3 that come from Latin squares;
thus, it can be viewed as a more symmetric definition of a Latin square.)

Now, whenever α, β and γ are three binary relations on the set [n] (for example,
α can be any of the relations =, <, > and 6=, and so can be β and γ), we define the
set N (α, β, γ) by

N (α, β, γ) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | xαx′ and yβy′ and zγz′

}
.

For example,

N (<,>,=) =
{(

(x, y, z) ,
(
x′, y′, z′

))
∈ S× S | x < x′ and y > y′ and z = z′

}
.

Now, you can follow the following roadmap:
(a) Prove that

|N (<,<,>)| = |N (>,>,<)| and
|N (<,>,<)| = |N (>,<,>)| and
|N (>,<,<)| = |N (<,>,>)| .

(b) Let ∗ be the binary relation on [n]2 such that every pair (i, j) satisfies a ∗ b.
(The “joker relation”.) Show that

|N (∗,<,>)| = (n (n− 1) /2)2 and

|N (<,>, ∗)| = (n (n− 1) /2)2 and

|N (>, ∗,<)| = (n (n− 1) /2)2 .

(c) Prove that

|N (=,<,>)|+ |N (<,<,>)|+ |N (>,<,>)| = |N (∗,<,>)| .

Add this equality with two similar ones, and derive that

|N (=,<,>)|+ |N (<,>,=)|+ |N (>,=,<)| ≡ 3 (n (n− 1) /2)2 ≡ n (n− 1) /2 mod 2.

(d) Prove that
n

∏
i=1

(−1)ri = (−1)|N(=,<,>)| and

n

∏
j=1

(−1)cj = (−1)|N(>,=,<)| and

n

∏
k=1

(−1)zk = (−1)|N(<,>,=)| .

(e) Derive the claim of Exercise 7.]
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