Math 4707: Combinatorics, Spring 2018 Homework 4

Nathaniel Gorski (edited by Darij Grinberg)
April 12, 2018

EXERCISE 1

Exercise 0.1. Let $n \geq 2$ be an integer. Then there are precisely (n-1)! permutations $\sigma \in S_n$ which satisfy $\sigma(2) = \sigma(1) + 1$.

Proof. Let us construct such a permutation σ . We will first select $\sigma(1)$. Since $\sigma(2)$ must be one higher than $\sigma(1)$, it follows that $\sigma(1)$ must be an element of [n-1], of which there are n-1. And, $\sigma(2)$ must be equal to $\sigma(1)+1$, for which there is exactly one choice.

We now wish to select the images for each element of $[n]\setminus[2]$. This is the same as selecting a bijection from $[n]\setminus[2]$ to $[n]\setminus\{\sigma(1),\sigma(2)\}$. Since $[2]\subseteq[n]$ and $\{\sigma(1),\sigma(2)\}\subseteq[n]$, it follows that $|[n]\setminus[2]|=|[n]|-|[2]|$, and $|[n]\setminus\{\sigma(1),\sigma(2)\}|=|[n]|-|\{\sigma(1),\sigma(2)\}|$. And clearly, [n] has n elements, [2] has 2 elements, and $\{\sigma(1),\sigma(2)\}$ has 2 elements. Therefore, a bijection between $[n]\setminus[2]$ to $[n]\setminus\{\sigma(1),\sigma(2)\}$ is a bijection between two (n-2)-element sets. We know that there are (n-2)! such bijections. Hence, there are (n-2)! ways to select the images of each element of $[n]\setminus[2]$ for σ . This completes the construction.

In this construction, three decisions were made: $\sigma(1)$ was chosen from n-1 options, then $\sigma(2)$ was chosen from 1 option, and then the images of the elements of $[n] \setminus [2]$ were chosen from (n-2)! options. So, by the multiplication principle, there are (n-1)(1)(n-2)! = (n-1)! total ways of constructing σ .

Exercise 4

Exercise 0.2. Let $n \in \mathbb{N}$. Let $\sigma \in S_n$. And let a_1, a_2, \ldots, a_n be any n numbers. Then

$$\sum_{\substack{1 \le i < j \le n; \\ \sigma(i) > \sigma(j)}} (a_j - a_i) = \sum_{i=1}^n a_i (i - \sigma(i)).$$

Proof. Let $U:[n] \to [n]$ be the map sending each $i \in [n]$ to the number of distinct elements $j \in [n]$ such that i > j but $\sigma(i) < \sigma(j)$.

Let $L:[n] \to [n]$ be the map sending each $i \in [n]$ to the number of distinct elements $j \in [n]$ such that i < j but $\sigma(i) > \sigma(j)$.

Let $M:[n] \to [n]$ be the map sending each $i \in [n]$ to the number of distinct elements $j \in [n]$ such that i > j and also $\sigma(i) > \sigma(j)$.

Fix $i \in [n]$.

There are exactly i-1 elements j of [n] such that i>j. Because σ is a bijection, each element $j\in [n]$ with j< i must satisfy either $\sigma(j)<\sigma(i)$ or $\sigma(j)>\sigma(i)$. But the number of j< i where $\sigma(j)<\sigma(i)$ is counted by M(i), whereas the number of j< i where $\sigma(j)>\sigma(i)$ is counted by U(i). Hence, it follows that i-1=M(i)+U(i). Equivalently, i=M(i)+U(i)+1.

There are exactly $\sigma(i) - 1$ elements k of [n] such that $\sigma(i) > k$. We can substitute $\sigma(j)$ for k in this statement (since σ is a bijection $[n] \to [n]$), and thus obtain the following: There are exactly $\sigma(i) - 1$ elements j of [n] such that $\sigma(i) > \sigma(j)$. Each such j satisfies either i > j or i < j (since otherwise, i = j would contradict $\sigma(i) > \sigma(j)$). The number of j such that $\sigma(i) > \sigma(j)$ but i < j is counted by L(i), whereas the number of j such that $\sigma(i) > \sigma(j)$ and i > j is counted by M(i). So we obtain $\sigma(i) - 1 = L(i) + M(i)$. So $\sigma(i) = L(i) + M(i) + 1$.

Subtracting the equality $\sigma(i) = L(i) + M(i) + 1$ from the equality i = M(i) + U(i) + 1, we obtain

$$i - \sigma(i) = (M(i) + U(i) + 1) - (L(i) + M(i) + 1) = U(i) - L(i).$$
(1)

Now, forget that we fixed i. Hence, (1) is proven for each $i \in [n]$.

But the sum $\sum_{\substack{1 \leq j < i \leq n; \\ \sigma(j) > \sigma(i)}} a_i$ contains each a_i exactly U(i) times (by the definition of U(i)).

Hence,

$$\sum_{\substack{1 \le j < i \le n; \\ \sigma(j) > \sigma(i)}} a_i = \sum_{i=1}^n a_i U(i). \tag{2}$$

Similarly,

$$\sum_{\substack{1 \le i < j \le n; \\ \sigma(i) > \sigma(j)}} a_i = \sum_{i=1}^n a_i L(i).$$
(3)

Now

$$\sum_{\substack{1 \le i < j \le n; \\ \sigma(i) > \sigma(j)}} (a_j - a_i) = \sum_{\substack{1 \le i < j \le n; \\ \sigma(i) > \sigma(j)}} a_j - \sum_{\substack{1 \le i < j \le n; \\ \sigma(i) > \sigma(j)}} a_i$$

$$= \sum_{\substack{1 \le j < i \le n; \\ \sigma(j) > \sigma(i)}} a_i - \sum_{\substack{1 \le i < j \le n; \\ \sigma(i) > \sigma(j)}} a_i$$

$$\text{(here, we have renamed } (i, j) \text{ as } (j, i) \text{ in the first sum)}$$

$$= \sum_{i=1}^n a_i U(i) - \sum_{i=1}^n a_i L(i) \text{ (by (2) and (3))}$$

$$= \sum_{i=1}^n a_i \underbrace{(U(i) - L(i))}_{=i - \sigma(i)} = \sum_{i=1}^n a_i (i - \sigma(i)).$$

This solves the exercise.