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Math 4707 Spring 2018 (Darij Grinberg): homework set 4
due date: Wednesday 11 April 2018 at the beginning of class, or before that by

email or moodle
Please solve at most 3 of the 6 exercises!
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Recall the following:

• We have N = {0, 1, 2, . . .}.

• If n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

• For each n ∈N, we let Sn denote the set of all permutations of [n].

0.1. Permutations σ with σ (2) = σ (1) + 1

Exercise 1. Let n ≥ 2 be an integer. Prove that there are precisely (n− 1)! per-
mutations σ ∈ Sn satisfying σ (2) = σ (1) + 1.

0.2. An introduction to rook theory

Definition 0.1. For any x ∈ R and n ∈ N, we let xn denote the “n-th lower
factorial of x”; this is the real number x (x− 1) · · · (x− n + 1). (Thus, xn =

n! ·
(

x
n

)
.)

For example, x0 = 1, x1 = x, x2 = x (x− 1), etc.1.

Exercise 2. Let n ∈N. Prove the following:
(a) If (a0, a1, . . . , an) is an (n + 1)-tuple of rational numbers such that each

x ∈ {0, 1, . . . , n} satisfies
n

∑
k=0

akxk = 0,

1For all LATEX users: xn is “x^{\underline{n}}”. Feel free to create a macro for this, e.g., by
putting the following line into the header of your TeX file (along with the other “VARIOUS
USEFUL COMMANDS”):
\newcommand{\lf}[2]{{#1}^{\underline{#2}}}
Then, you can use “\lf{x}{n}” to obtain “xn”.
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then (a0, a1, . . . , an) = (0, 0, . . . , 0).
(b) If (a0, a1, . . . , an) and (b0, b1, . . . , bn) are two (n + 1)-tuples of rational num-

bers such that each x ∈ {0, 1, . . . , n} satisfies

n

∑
k=0

akxk =
n

∑
k=0

bkxk,

then (a0, a1, . . . , an) = (b0, b1, . . . , bn).
[Hint: In terms of linear algebra, part (a) is saying that the n + 1 vectors(

0k, 1k, . . . , nk)T ∈ Qn+1 for k ∈ {0, 1, . . . , n} are linearly independent. You may
find this useful or not; the exercise has a fully elementary solution.]

In the following, we will consider each pair (i, j) ∈ Z2 of two integers as a square
on an (infinite) chessboard; we say that it lies in row i and in column j. A rook
placement shall mean a subset X of Z2 such that any two distinct elements of X lie
in different rows and in different columns2. (The idea behind this name is that if we
place rooks into the squares (i, j) ∈ X, then no two rooks will attack each other.) For
example, {(1, 3) , (2, 2) , (3, 7)} is a rook placement, whereas {(1, 3) , (2, 2) , (7, 3)} is
not (since the distinct squares (1, 3) and (7, 3) lie in the same column). If X is a
rook placement, then the elements of X are called the rooks of X.

Now, fix n ∈ N. If u = (u1, u2, . . . , un) ∈ Nn is an n-tuple of nonnegative
integers, then we define the u-board D (u) to be the set

{(i, j) | i ∈ [n] and j ∈ [ui]} .

We visually represent this set as a “chessboard” consisting of n left-aligned rows3,
where the i-th row consists of ui boxes (which occupy columns 1, 2, . . . , ui).

For example, if n = 4 and u = (2, 1, 4, 1), then D (u) is the set

{(1, 1) , (1, 2) , (2, 1) , (3, 1) , (3, 2) , (3, 3) , (3, 4) , (4, 1)} ,

and is visually represented as the “chessboard”

.

The set (or “chessboard”) D (u) is also known as the Young diagram (or Ferrers
diagram) of u; we have briefly seen its use in the proof of Proposition 4.13 on March
21st.

2In other words, a rook placement means a subset X of Z2 such that any two distinct elements
(i, j) and (i′, j′) of X satisfy i 6= i′ and j 6= j′.

3or “ranks”, to use the terminology of chess (but we label them 1, 2, . . . , n from top to bottom, not
from bottom to top as on an actual chessboard)

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018mar21.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018mar21.pdf
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If u ∈Nn, then a rook placement in D (u) means a subset X of D (u) that is a rook
placement. For example, if n = 4 and u = (2, 1, 4, 1), then {(1, 2) , (3, 3) , (4, 1)} is a
rook placement in D (u). We represent this rook placement by putting rooks (i.e.,
R symbols) into the squares that belong to it; so we get

R

R

R

.

Note that the empty set ∅ is always a rook placement in D (u); so is any 1-
element subset of D (u).

If u ∈ Nn and k ∈ N, then we let Rk (u) denote the number of all rook place-
ments in D (u) of size k. (In terms of the picture, “size k” means that it contains
exactly k rooks.) For example, if n = 3 and u = (2, 1, 3), then

R0 (u) = 1; R1 (u) = 6; R2 (u) = 7;
R3 (u) = 1; Rk (u) = 0 for all k ≥ 4.

It is easy to see that if u =

u, u, . . . , u︸ ︷︷ ︸
n times

 for some u ∈N, then

Rk (u) =
(

n
k

)(
u
k

)
k! for each k ∈N. (1)

(Indeed, in order to place k non-attacking rooks in D (u), we first choose the k rows
they will occupy, then the k columns they will occupy, and finally an appropriate
permutation of [k] that will determine which column has a rook in which row.) For
other n-tuples u, finding Rk (u) is harder.

For example, if you try the same reasoning for u = (2n− 1, 2n− 3, . . . , 5, 3, 1), then you still have(
n
k

)
choices for the k rows occupied by rooks; but the number of options in the following steps will

depend on the specific k rows you have chosen (the lower the rows, the fewer options). This way,
you get the formula

Rk (2n− 1, 2n− 3, . . . , 5, 3, 1) = ∑
1≤s1<s2<···<sk≤n

(sk − 0) (sk−1 − 1) (sk−2 − 2) · · · (s1 − (k− 1)) ,

which is a far cry from the simplicity of (1). But there is a simple formula, which we’ll see in
Corollary 0.3!

We can restrict ourselves to n-tuples u = (u1, u2, . . . , un) satisfying u1 ≥ u2 ≥
· · · ≥ un, because switching some of the entries of u does not change the values of
Rk (u).

In general, Rk (u) = 0 for all k > n, because each of the n rows 1, 2, . . . , n contains
at most one rook. For k = n, we have a neat formula:
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Proposition 0.2. Let u = (u1, u2, . . . , un) ∈ Nn be such that u1 ≥ u2 ≥ · · · ≥ un.
Then,

Rn (u) =
n−1

∏
i=0

(un−i − i) .

Proof of Proposition 0.2. Each square in D (u) belongs to one of the n rows 1, 2, . . . , n.
In a rook placement, each row contains at most one rook. Thus, any rook placement
in D (u) contains at most n rooks, and the only way it can contain n rooks is if it
contains one rook in each of the n rows 1, 2, . . . , n.

Hence, a rook placement in D (u) of size n is the same as a rook placement in
D (u) that contains a rook in each of the n rows 1, 2, . . . , n. We can construct such
a rook placement by the following algorithm:

• First, we place the rook in row n. This rook must lie in one of the un columns
1, 2, . . . , un; so we have un options.

• Then, we place the rook in row n− 1. This rook must lie in one of the un−1
columns 1, 2, . . . , un−1, but not in the column that contains the previous rook;
so we have un−1 − 1 options.

• Then, we place the rook in row n− 2. This rook must lie in one of the un−2
columns 1, 2, . . . , un−2, but not in either of the two columns that contain the
previous rooks; so we have un−2 − 2 options.

• And so on.

Thus, the total number of choices (and therefore the total number of rook place-
ments in D (u) of size n) is

un (un−1 − 1) (un−2 − 2) · · ·
(

un−(n−1) − (n− 1)
)

= (un − 0) (un−1 − 1) (un−2 − 2) · · · (u1 − (n− 1)) =
n−1

∏
i=0

(un−i − i) .

Since the total number of rook placements in D (u) of size n has been denoted by
Rn (u), we thus conclude that

Rn (u) =
n−1

∏
i=0

(un−i − i) .

This proves Proposition 0.2.
[Are you wondering where we have used the condition u1 ≥ u2 ≥ · · · ≥ un ?
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Answer:

1,2,...,un−2(sinceun−2≥un),andsimilarlyforthesecond“forbidden”column.
columnisamongthecolumns1,2,...,unandthereforealsoamongthecolumns

un−2−2optionsforourrook).Thisfactistruebecausethefirst“forbidden”
columns1,2,...,un−2(ifthiswasnotthecase,thenwewouldhavemorethan

columns(i.e.,thetwocolumnsthatcontainthepreviousrooks)areamongtheun−2

containthepreviousrooks.Thistacitlyreliedonthefactthatthetwo“forbidden”
placedinanyoftheun−2columns1,2,...,un−2exceptforthetwocolumnsthat

inrown−2,wearguedthatwehadun−2−2options,becausetherookcouldbe
Answer:Considerthealgorithmabove.Whenweplacedtherook

]

Exercise 3. Let u = (u1, u2, . . . , un) ∈Nn be such that u1 ≥ u2 ≥ · · · ≥ un.
(a) For each x ∈ N, define an n-tuple u + x ∈ Nn by u + x =

(u1 + x, u2 + x, . . . , un + x). Prove that

Rn (u + x) =
n

∑
k=0

Rn−k (u) xk.

[Hint: When u is replaced by u + x, the u-board “grows by x extra (full)
columns”.]

(b) Now, let v = (v1, v2, . . . , vn) ∈ Nn be such that v1 ≥ v2 ≥ · · · ≥ vn.
Assume further that the n numbers u1 + 1, u2 + 2, . . . , un + n are the same as the
n numbers v1 + 1, v2 + 2, . . . , vn + n, up to order. (In other words, there exists a
permutation σ ∈ Sn such that ui + i = vσ(i) + σ (i) for all i ∈ [n].) Prove that

Rk (u) = Rk (v) for each k ∈N.

[Hint: First, prove that Rn (u + x) = Rn (v + x) for each x ∈N. Then, use part
(a) and the previous exercise.]

To illustrate the usefulness of Exercise 3, let me express Rk (2n− 1, 2n− 3, . . . , 5, 3, 1) in a much
simpler way than before:

Corollary 0.3. Let k ∈N. Then,

Rk (2n− 1, 2n− 3, . . . , 5, 3, 1) =
(

n
k

)2
k!.

Proof of Corollary 0.3. Define an n-tuple u = (u1, u2, . . . , un) ∈Nn by (ui = 2 (n− i) + 1 for each i ∈ [n]).
Thus,

u = (u1, u2, . . . , un) = (2n− 1, 2n− 3, . . . , 5, 3, 1) ,

so that u1 ≥ u2 ≥ · · · ≥ un.
Define an n-tuple v = (v1, v2, . . . , vn) ∈Nn by (vi = n for each i ∈ [n]). Thus,

v = (v1, v2, . . . , vn) = (n, n, . . . , n) ,
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so that v1 ≥ v2 ≥ · · · ≥ vn.
The n numbers u1 + 1, u2 + 2, . . . , un + n are the same as the n numbers v1 + 1, v2 + 2, . . . , vn + n,

up to order. (In fact, the former n numbers are 2n, 2n− 1, 2n− 2, . . . , n + 2, n + 1, whereas the latter
n numbers are n+ 1, n+ 2, . . . , 2n− 2, 2n− 1, 2n; these are just two different ways to list all numbers
from n + 1 to 2n.)

Hence, Exercise 3 (b) yields Rk (u) = Rk (v). In view of u = (2n− 1, 2n− 3, . . . , 5, 3, 1) and
v = (n, n, . . . , n), this rewrites as Rk (2n− 1, 2n− 3, . . . , 5, 3, 1) = Rk (n, n, . . . , n).

But (1) (applied to u = n) yields Rk (n, n, . . . , n) =
(

n
k

)(
n
k

)
k!. Hence,

Rk (2n− 1, 2n− 3, . . . , 5, 3, 1) = Rk (n, n, . . . , n) =
(

n
k

)(
n
k

)
k! =

(
n
k

)2
k!.

This proves Corollary 0.3.

Rook theory is the study of rook placements – not only in boards of the form D (u), but also in
more general subsets of Z2. For example, the permutations of [n] can be regarded as rook place-
ments in the board [n]× [n], whereas the derangements of [n] can be regarded as rook placements
in the board {(i, j) ∈ [n]× [n] | i 6= j} (the “n × n-chessboard without the main diagonal”). The
theory has been developed in the 70s at the UMN (by Jay Goldman, J. T. Joichi, Victor Reiner and
Dennis White).

0.3. The sum of the “widths” of all inversions of σ

In the following, “number” means “real number” or “complex number” or “ratio-
nal number”, as you prefer (this doesn’t make a difference in these exercises).

Exercise 4. Let n ∈ N. Let σ ∈ Sn. Let a1, a2, . . . , an be any n numbers. Prove
that

∑
1≤i<j≤n;
σ(i)>σ(j)

(
aj − ai

)
=

n

∑
i=1

ai (i− σ (i)) .

[Here, the symbol “ ∑
1≤i<j≤n;
σ(i)>σ(j)

” means “sum over all pairs (i, j) ∈ [n]2 satisfying

i < j and σ (i) > σ (j)”, that is, “sum over all inversions of σ”.]

0.4. A hollowed-out determinant

In the following, matrices are understood to be matrices whose entries are numbers
(see above).

Exercise 5. Let n ∈N. Let P and Q be two subsets of [n] such that |P|+ |Q| > n.
Let A =

(
ai,j
)

1≤i≤n, 1≤j≤n be an n× n-matrix such that

every i ∈ P and j ∈ Q satisfy ai,j = 0.

Then, prove that det A = 0.
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Example 0.4. Applying Exercise 5 to n = 5, P = {1, 3, 5} and Q = {2, 3, 4}, we
see that

det


a1 0 0 0 a5
b1 b2 b3 b4 b5
c1 0 0 0 c5
d1 d2 d3 d4 d5
e1 0 0 0 e5

 = 0 for any numbers a1, a5, . . . , e5.

0.5. Arrowhead matrices

Exercise 6. Let n be a positive integer.
(a) A permutation σ ∈ Sn will be called arrowheaded if each i ∈ [n− 1] satisfies

σ (i) = i or σ (i) = n.
[For example, the permutation in S5 whose one-line notation is [1, 5, 3, 4, 2] is

arrowheaded.]
Describe all arrowheaded permutations σ ∈ Sn and find their number.
(b) Given n numbers a1, a2, . . . , an as well as n− 1 numbers b1, b2, . . . , bn−1 and

n− 1 further numbers c1, c2, . . . , cn−1. Let A be the n× n-matrix
a1 0 · · · 0 c1
0 a2 · · · 0 c2
...

... . . . ...
...

0 0 · · · an−1 cn−1
b1 b2 · · · bn−1 an

 .

(This is the matrix whose (i, j)-th entry is


ai, if i = j;
bj, if i = n and j 6= n;

ci, if i 6= n and j = n;
0, if i 6= n and j 6= n and i 6= j

for

all i ∈ [n] and j ∈ [n].) Prove that

det A = a1a2 · · · an −
n−1

∑
i=1

bici

 ∏
j∈[n−1];

j 6=i

aj

 .

The matrix A is called a “reverse arrowhead matrix” due to the shape that its
nonzero entries form. (“Reverse” because the usual arrowhead matrix has its arrow
pointing northwest rather than southeast.)


	Permutations  with ( 2) =( 1) +1
	An introduction to rook theory
	The sum of the “widths” of all inversions of 
	A hollowed-out determinant
	Arrowhead matrices

