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Recall the following:

• If n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

• We use the Iverson bracket notation.

• If a ∈ N and b ∈ N, then sur (a, b) denotes the number of surjective maps
from [a] to [b].

Also, here is a collection of identities that we shall use:

• We have (
m
n

)
= 0 (1)

for every m ∈N and n ∈N satisfying m < n.

• We have (
m
n

)
=

(
m− 1
n− 1

)
+

(
m− 1

n

)
(2)

for any m ∈ Z and n ∈ Z. (This is the recurrence relation of the binomial
coefficients.)

• We have (
m
n

)
=

(
m

m− n

)
(3)

for any m ∈N and n ∈N satisfying m ≥ n.
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• We have (
m + n

m

)
=

(
m + n

n

)
(4)

for any m ∈ N and n ∈ N. (This follows by applying (3) to m + n and m
instead of m and n.)

• For every x ∈N and y ∈N and n ∈N, we have(
n + 1

x + y + 1

)
=

n

∑
k=0

(
k
x

)(
n− k

y

)
. (5)

(This is Proposition 3.21 in the classwork from 26 February 2018, or [Grinbe16,
Proposition 3.32 (f)].)

• We have (
m
n

)
=

m
n

(
m− 1
n− 1

)
(6)

for any m ∈ Q and n ∈ {1, 2, 3, . . .}. (This is the absorption identity, and has
been proven in [Grinbe16, Proposition 3.22]. Also, it is very easy to check.)

• Every n ∈N satisfies
n

∑
k=0

(
n
k

)
= 2n. (7)

(This is Corollary 1.16b in the classwork from 22 January 2018, or [Grinbe16,
Proposition 3.39 (b)].)

• Every n ∈N satisfies

n

∑
k=0

(−1)k
(

n
k

)
= [n = 0] . (8)

(This is Corollary 3.3 in the classwork from 14 February 2018, or [Grinbe16,
Proposition 3.39 (c)].)

• If m ∈N and n ∈N, and if S is an m-element set, then(
m
n

)
is the number of all n-element subsets of S. (9)

(This is the combinatorial interpretation of the binomial coefficients.)

0.1. Another binomial identity

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb26.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018jan22.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb14.pdf
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Exercise 1. Let n ∈N. Prove that

n

∑
k=1

(−1)k−1

k

(
n
k

)
=

1
1
+

1
2
+ · · ·+ 1

n
. (10)

[Hint: How does the left hand side grow when n is replaced by n + 1 ?]

We shall outline a solution of this exercise. (For the missing details, see [Grinbe16,
solution to Exercise 3.19].)

Solution to Exercise 1 (sketched). We shall solve Exercise 1 by induction on n:
Induction base: If n = 0, then both sides of (10) are empty sums, and thus are

equal. Hence, Exercise 1 holds for n = 0. This completes the induction base.
Induction step: Let m ∈ N. Assume that Exercise 1 holds for n = m. We must

prove that Exercise 1 holds for n = m + 1.
We have assumed that Exercise 1 holds for n = m. In other words, we have

m

∑
k=1

(−1)k−1

k

(
m
k

)
=

1
1
+

1
2
+ · · ·+ 1

m
. (11)

Now,

m+1

∑
k=1

(−1)k−1

k

(
m + 1

k

)
︸ ︷︷ ︸

=

(
m

k− 1

)
+

(
m
k

)
(by the recurrence relation

of the binomial coefficients)

=
m+1

∑
k=1

(−1)k−1

k

(
m

k− 1

)
︸ ︷︷ ︸

=
(−1)k−1

m + 1
·
m + 1

k

(
m

k− 1

)
+

m+1

∑
k=1

(−1)k−1

k

(
m
k

)
︸ ︷︷ ︸

=
m
∑

k=1

(−1)k−1

k

(
m
k

)
+
(−1)(m+1)−1

m + 1

(
m

m + 1

)
=

m+1

∑
k=1

(−1)k−1

m + 1
· m + 1

k

(
m

k− 1

)
︸ ︷︷ ︸

=
1

m + 1
m+1
∑

k=1
(−1)k−1 m + 1

k

(
m

k− 1

)
+

m

∑
k=1

(−1)k−1

k

(
m
k

)
︸ ︷︷ ︸

=
1
1
+

1
2
+···+

1
m

(by (11))

+
(−1)(m+1)−1

m + 1

(
m

m + 1

)
︸ ︷︷ ︸

=0
(by (1))

=
1

m + 1

m+1

∑
k=1

(−1)k−1 m + 1
k

(
m

k− 1

)
+

(
1
1
+

1
2
+ · · ·+ 1

m

)
.
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In view of

m+1

∑
k=1

(−1)k−1 m + 1
k

(
m

k− 1

)
︸ ︷︷ ︸

=

(
m + 1

k

)
(because (6) (applied to m+1 and k

instead of m and n) yields(
m + 1

k

)
=

m + 1
k

(
m

k− 1

)
)

=
m+1

∑
k=1

(−1)k−1
(

m + 1
k

)
=

m+1

∑
k=0

(−1)k−1︸ ︷︷ ︸
=−(−1)k

(
m + 1

k

)
− (−1)0−1︸ ︷︷ ︸

=−1

(
m + 1

0

)
︸ ︷︷ ︸

=1

= −
m+1

∑
k=0

(−1)k
(

m + 1
k

)
︸ ︷︷ ︸

=[m+1=0]
(by (8))

− (−1) = − [m + 1 = 0]︸ ︷︷ ︸
=0

(since m+1 6=0)

− (−1) = 1,

this becomes

m+1

∑
k=1

(−1)k−1

k

(
m + 1

k

)
=

1
m + 1

m+1

∑
k=1

(−1)k−1 m + 1
k

(
m

k− 1

)
︸ ︷︷ ︸

=1

+

(
1
1
+

1
2
+ · · ·+ 1

m

)

=
1

m + 1
+

(
1
1
+

1
2
+ · · ·+ 1

m

)
=

1
1
+

1
2
+ · · ·+ 1

m + 1
.

In other words, Exercise 1 holds for n = m + 1. This completes the induction step.
Thus, Exercise 1 is solved.

0.2. More on inclusion/exclusion

0.2.1. An exercise on counting surjections and more

Exercise 2. Let A, B and C be three finite sets such that C ⊆ B. Let a = |A|,
b = |B| and c = |C|.

(a) Prove that the number of maps f : A→ B satisfying C ⊆ f (A) is

c

∑
k=0

(−1)k
(

c
k

)
(b− k)a .
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(b) Prove that the number of surjective maps f : A→ B is

sur (a, b) =
b

∑
k=0

(−1)k
(

b
k

)
(b− k)a =

b

∑
k=0

(−1)b−k
(

b
k

)
ka.

[This is a formula I mentioned but did not prove in class; of course, you cannot
use it without proof.]

(c) Prove that
c

∑
k=0

(−1)k
(

c
k

)
(b− k)a = 0

whenever c > a.
(d) Prove that

a

∑
k=0

(−1)k
(

a
k

)
(b− k)a = a!.

[Hint: For part (a), notice that a map f : A→ B satisfies C ⊆ f (A) if and only
if the image of f misses none of the c elements of C. Parts (b), (c) and (d) should
follow from (a).]

This exercise has turned out to be harder than I thought when I posed it. In
particular, deriving its part (d) from the previous parts is tricky, since you cannot
just set c = a and apply part (a) (indeed, in order to set c = a, you would need to
find a b-element set B with an a-element subset C, but this is only possible when
a ≤ b). We shall below outline a solution that addresses these issues by using the
“polynomial identity trick” (Lemma 0.3 below). It is also possible to prove parts
(c) and (d) of Exercise 2 algebraically, completely avoiding the use of the previous
parts; this is done in [Grinbe09, proof of Corollary 2].

0.2.2. Solutions to Exercise 2 (a), (b) and (c)

Let us first recall the principle of inclusion and exclusion:

Theorem 0.1. Let n ∈N. Let A1, A2, . . . , An be finite sets.
(a) We have ∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n];
I 6=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

(b) Let S be a finite set. Assume that each of A1, A2, . . . , An is a subset of S.
Then, ∣∣∣∣∣S \ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Here, the “empty” intersection
⋂

i∈∅
Ai is understood to mean the set S.
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Solution to Exercise 2 (sketched). Let us first solve parts (a), (b) and (c) of the exercise.
Then, we’ll prepare a bit further for the solution to (d).

We shall use the symbol ∼= for “in bijection with”; i.e., for two sets U and V, we
write “U ∼= V” if and only if there is a bijection from U to V. (In abstract algebra,
the symbol ∼= stands for “is isomorphic to”, which is a generalization of our use of
this symbol.)

(a) We WLOG assume that C = [c] (since we can relabel the c elements of C as
we wish, in particular as 1, 2, . . . , c). Thus, [c] = C ⊆ B.

Let S be the set of all maps f : A → B. For each i ∈ C, we let Ti be the set of all
maps f : A → B that satisfy i /∈ f (A) (in other words, that never take the value i).
Thus, we have defined c sets T1, T2, . . . , Tc (since C = [c]). These c sets are subsets
of S. Their union is

c⋃
i=1

Ti = { f : A→ B | there is some i ∈ [c] such that i /∈ f (A)}

=

 f : A→ B | [c]︸︷︷︸
=C

6⊆ f (A)


= { f : A→ B | C 6⊆ f (A)} . (12)

On the other hand, each subset I of [c] satisfies⋂
i∈I

Ti = { f : A→ B | f takes none of the i ∈ I as values}

= { f : A→ B | all values of f belong to B \ I}
∼= { f : A→ B \ I}

(because maps f : A → B whose all values belong to B \ I are in bijection with
maps f : A→ B \ I 1) and thus∣∣∣∣∣⋂

i∈I

Ti

∣∣∣∣∣ = |{ f : A→ B \ I}| = |B \ I||A|

= (|B| − |I|)|A| (since |B \ I| = |B| − |I| (because I ⊆ [c] ⊆ B))
= (b− |I|)a (13)

(since |B| = b and |A| = a). Note that this holds even when I = ∅, as long as the
“empty” intersection

⋂
i∈∅

Ti is understood to mean the set S.

1To transform a former map into a latter map, just switch its target from B to B \ I, without
changing its values. Similarly for the backwards transformation.
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Theorem 0.1 (b) (applied to c and Ti instead of n and Ai) yields∣∣∣∣∣S \ c⋃
i=1

Ti

∣∣∣∣∣
= ∑

I⊆[c]︸︷︷︸
=

c
∑

k=0
∑

I⊆[c];
|I|=k

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ti

∣∣∣∣∣︸ ︷︷ ︸
=(b−|I|)a

(by (13))

=
c

∑
k=0

∑
I⊆[c];
|I|=k

(−1)|I| (b− |I|)a︸ ︷︷ ︸
=(−1)k(b−k)a

(since |I|=k)

=
c

∑
k=0

∑
I⊆[c];
|I|=k

(−1)k (b− k)a

︸ ︷︷ ︸
(the number of all subsets I⊆[c] satisfying |I|=k)·(−1)k(b−k)a

=
c

∑
k=0

(the number of all subsets I ⊆ [c] satisfying |I| = k)︸ ︷︷ ︸
=(the number of all k-element subsets of [c])

=

(
c
k

)
(by (9))

· (−1)k (b− k)a

=
c

∑
k=0

(
c
k

)
· (−1)k (b− k)a =

c

∑
k=0

(−1)k
(

c
k

)
(b− k)a .

In view of

S \
c⋃

i=1

Ti = S \ { f : A→ B | C 6⊆ f (A)} (by (12))

= { f : A→ B | not C 6⊆ f (A)} = { f : A→ B | C ⊆ f (A)} ,

this rewrites as

|{ f : A→ B | C ⊆ f (A)}| =
c

∑
k=0

(−1)k
(

c
k

)
(b− k)a .

This solves Exercise 2 (a).
(b) The surjective maps f : A → B are precisely the maps f : A → B satisfying

B ⊆ f (A). Hence, Exercise 2 (a) (applied to B and b instead of C and c) yields that
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the number of surjective maps f : A→ B is

b

∑
k=0

(−1)k
(

b
k

)
(b− k)a

=
b

∑
k=0

(−1)b−k
(

b
b− k

)
︸ ︷︷ ︸
=

(
b
k

)
(by (3))

(b− (b− k))a︸ ︷︷ ︸
=ka

(here, we have substituted b− k for k in the sum)

=
b

∑
k=0

(−1)b−k
(

b
k

)
ka.

Also, of course, we know that this number is sur (a, b) (since |A| = a and |B| = b).
Thus, Exercise 2 (b) is solved.

(c) Assume that c > a. Thus, there exist no maps f : A→ B satisfying C ⊆ f (A)
(because C ⊆ f (A) would yield |C| ≤ | f (A)| ≤ |A| = a < c = |C|, which is
absurd).

Exercise 2 (a) yields that the number of maps f : A→ B satisfying C ⊆ f (A) is
c

∑
k=0

(−1)k
(

c
k

)
(b− k)a .

On the other hand, the same number must be 0 (since there exist no maps f : A→ B

satisfying C ⊆ f (A)). Comparing the two results, we obtain
c
∑

k=0
(−1)k

(
c
k

)
(b− k)a =

0. This solves Exercise 2 (c).
Part (d) follows from Theorem 0.4 below.

Let us now take a break and discuss a generalization of part (c). In fact, our above
solution of Exercise 2 (c) presumes that A, B, C, a, b and c are as defined in Exercise
2 (thus, A, B and C are three finite sets such that C ⊆ B, and a = |A|, b = |B| and
c = |C|). This is fine – since the exercise itself makes these assumptions. But you
might wonder what happens more generally, if a, b and c are arbitrary nonnegative
integers satisfying c > a, not necessarily the sizes of three finite sets A, B and C

satisfying C ⊆ B. Does
c
∑

k=0
(−1)k

(
c
k

)
(b− k)a = 0 still hold in this case?

The answer is “yes”. We can even generalize a bit further and state this for all
b ∈ Q:

Theorem 0.2. Let a ∈N, b ∈ Q and c ∈N be such that c > a. Then,

c

∑
k=0

(−1)k
(

c
k

)
(b− k)a = 0. (14)
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In order to prove this theorem in full generality, we will need the “polynomial
identity trick”; specifically, we shall use the following fact (Theorem 3.20 (b) in the
classwork from 26 February 2018):

Lemma 0.3. If a polynomial P with rational coefficients has infinitely many roots,
then P is the zero polynomial.

Our proof of Theorem 0.2 will be similar to how we salvaged our first two proofs
of the Chu-Vandermonde convolution identity back in class:

Proof of Theorem 0.2. Let us forget that b is fixed. Thus, a and c are fixed, but b is
not. We must prove that (14) holds for each b ∈ Q.

We now claim that for every integer b ≥ c, the equality (14) holds.
[Proof: Let b ≥ a be an integer. Let A = [a], B = [b] and C = [c]. Then, C ⊆ B

(since c ≤ b). Also, clearly, a = |A| and b = |B| and c = |C|. Thus, Exercise 2 (c)

yields
c
∑

k=0
(−1)k

(
c
k

)
(b− k)a = 0. In other words, the equality (14) holds. Qed.]

So we have shown that for every integer b ≥ c, the equality (14) holds. In other

words, every integer b ≥ c is a root of the polynomial
c
∑

k=0
(−1)k

(
c
k

)
(x− k)a (in the

indeterminate x). Thus, this polynomial has infinitely many roots (because there
are infinitely many integers b ≥ c). Thus, Lemma 0.3 shows that this polynomial is
the zero polynomial. In other words,

c

∑
k=0

(−1)k
(

c
k

)
(x− k)a = 0. (15)

Now, for any b ∈ Q, we can substitute b for x in the identity (15), and we obtain
precisely (14). This proves Theorem 0.2.

0.2.3. Solution to Exercise 2 (d)

Let us next prove a similarly generalized part (d) of Exercise 2:

Theorem 0.4. Let a ∈N and b ∈ Q. Then,

a

∑
k=0

(−1)k
(

a
k

)
(b− k)a = a!. (16)

Our proof will rely on the following simple fact:

Proposition 0.5. Let A, B and C be three finite sets such that C ⊆ B and |C| = |A|.
Then:

(a) The number of injective maps f : A→ B whose image is C is |A|!.
(b) The number of maps f : A→ B satisfying C ⊆ f (A) is |A|!.
(c) The number of injective maps f : A→ B satisfying f (A) ⊆ C is |A|!.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb26.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb26.pdf


Math 4707 Spring 2018 (Darij Grinberg): homework set 3 page 10

Proof of Proposition 0.5 (sketched). (a) The injective maps f : A → B whose image
is C can be identified with the bijective maps from A to C. More precisely: If
f : A → B is any map satisfying f (A) ⊆ C, then we can define a map f : A → C
by (

f (a) = f (a) for all a ∈ A
)

.

This latter map f is well-defined, because f (a) ∈ f (A) ⊆ C for each a ∈ A.
Moreover, f can be reconstructed from f .

If f : A → B is an injective map satisfying f (A) ⊆ C, then the resulting map
f : A→ C is again injective. Moreover, if f : A→ B is a map whose image is C (that
is, we have f (A) = C, not just f (A) ⊆ C), then the resulting map f : A → C is
surjective. Combining the preceding two statements, we conclude that if f : A→ B
is an injective map whose image is C, then the resulting map f : A→ C is bijective.
Thus, we obtain a mapping

{injective maps f : A→ B whose image is C} → {bijective maps from A to C} ,

f 7→ f .

This mapping is easily seen to be itself bijective (indeed, for each bijective map
g from A to C, there is a unique map f : A → B whose image is C such that
f = g: namely, this f is just g with the target switched to B). Hence, we have
found a bijection between the sets {injective maps f : A→ B whose image is C}
and {bijective maps from A to C}. Thus,

|{injective maps f : A→ B whose image is C}|
= |{bijective maps from A to C}| . (17)

On the other hand, there exists a bijection φ : C → A (since |C| = |A|). Fix such
a φ. Then, there is a bijection

{bijective maps from A to C} → {bijective maps from A to A} ,
g 7→ φ ◦ g

(its inverse is given by g 7→ φ−1 ◦ g). Hence,

|{bijective maps from A to C}| = |{bijective maps from A to A}|
= |{permutations of A}|
= (the number of permutations of A)

= |A|!.

Thus, (17) becomes

|{injective maps f : A→ B whose image is C}|
= |{bijective maps from A to C}| = |A|!.
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In other words, the number of injective maps f : A → B whose image is C is |A|!.
This proves Proposition 0.5 (a).

(b) The maps f : A→ B satisfying C ⊆ f (A) are the same as the maps f : A→ B
satisfying C = f (A) (because the inequality |C| = |A| ≥ | f (A)| shows that C
cannot be a proper subset of f (A)). Furthermore, all these maps are necessarily
injective (because if such a map f : A → B was not injective, then it would satisfy
| f (A)| < |A| = |C|, which would contradict the condition C = f (A)). Hence, the
maps f : A → B satisfying C ⊆ f (A) are precisely the injective maps f : A → B
whose image is C. Thus, Proposition 0.5 (b) follows immediately from Proposition
0.5 (a).

(c) If an injective map f : A → B satisfies f (A) ⊆ C, then it must also satisfy
f (A) = C (because the injectivity of f yields | f (A)| = |A| = |C|, so that f (A)
cannot be a proper subset of C). In other words, if an injective map f : A → B
satisfies f (A) ⊆ C, then its image must be C. Thus, the injective maps f : A → B
satisfying f (A) ⊆ C are the same as the injective maps f : A → B whose image is
C. Hence, Proposition 0.5 (c) follows immediately from Proposition 0.5 (a).

Proof of Theorem 0.4 (sketched). Let us forget that b is fixed. Thus, a is fixed, but b is
not. We must prove that (16) holds for each b ∈ Q.

We now claim that for every integer b ≥ a, the equality (16) holds.
[Proof: Let b ≥ a be an integer. Let A = [a], B = [b] and C = [a]. Then, C ⊆ B

(since a ≤ b). Also, clearly, a = |A| and b = |B| and a = |C|. Hence, |C| = a = |A|.
Thus, Proposition 0.5 (b) yields that the number of maps f : A → B satisfying

C ⊆ f (A) is |A|! = a! (since |A| = a).
On the other hand, Exercise 2 (a) (applied to c = a) yields that this number is

a

∑
k=0

(−1)k
(

a
k

)
(b− k)a .

Comparing these two results, we conclude that
a
∑

k=0
(−1)k

(
a
k

)
(b− k)a = a!. In

other words, the equality (16) holds. Qed.]
So we have shown that for every integer b ≥ a, the equality (16) holds. In other

words, every integer b ≥ a is a root of the polynomial
a
∑

k=0
(−1)k

(
a
k

)
(x− k)a − a!

(in the indeterminate x). Thus, this polynomial has infinitely many roots (because
there are infinitely many integers b ≥ a). Thus, Lemma 0.3 shows that this polyno-
mial is the zero polynomial. In other words,

a

∑
k=0

(−1)k
(

a
k

)
(x− k)a − a! = 0. (18)

Now, for any b ∈ Q, we can substitute b for x in the identity (18), and we obtain
a
∑

k=0
(−1)k

(
a
k

)
(b− k)a − a! = 0. This is clearly equivalent to (16). This proves

Theorem 0.4.
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With Theorem 0.4 proven, Exercise 2 (d) immediately follows.

0.3. Multijections, set compositions and set partitions

0.3.1. Definitions and examples

Let us introduce set partitions and set compositions. These are important concepts
in combinatorics, and we will see more of them.

Definition 0.6. Let X be a finite set.
(a) A set composition of X means a tuple (S1, S2, . . . , Sk) of disjoint nonempty

subsets of X such that X = S1 ∪ S2 ∪ · · · ∪ Sk.
(b) A set partition of X means a set {S1, S2, . . . , Sk} of disjoint nonempty subsets

of X (written in such a way that S1, S2, . . . , Sk are distinct) such that X = S1 ∪
S2 ∪ · · · ∪ Sk.

(c) The parts of a set composition (S1, S2, . . . , Sk) are the sets S1, S2, . . . , Sk.
(d) The parts of a set partition {S1, S2, . . . , Sk} are the sets S1, S2, . . . , Sk.

Example 0.7. For this example, let X = {1, 2, 3}.
(a) The 2-tuple ({1, 3} , {2}) is a set composition of X, since {1, 3} and {2} are

disjoint nonempty subsets of X satisfying X = {1, 3} ∪ {2}.
(b) The 2-tuple ({1, 3} , {2, 3}) is not a set composition of X, since {1, 3} and
{2, 3} are not disjoint.

(c) The 3-tuple ({1, 3} , {} , {2}) is not a set composition of X, since {} is not
nonempty.

(d) The 2-tuple ({1} , {3}) is not a set composition of X, since X 6= {1} ∪ {3}.
(e) The set {{1, 3} , {2}} is a set partition of X, since {1, 3} and {2} are disjoint

nonempty subsets of X satisfying X = {1, 3} ∪ {2}.
(f) If (S1, S2, . . . , Sk) is a set composition of X, then {S1, S2, . . . , Sk} is a set

partition of X. The converse also holds if you assume S1, S2, . . . , Sk to be distinct.
(g) The set compositions ({1, 3} , {2}) and ({2} , {1, 3}) of X are distinct, but

the set partitions {{1, 3} , {2}} and {{2} , {1, 3}} are identical.

This illustrates the difference between set compositions and set partitions: The
former come with an ordering of their parts, while the latter don’t. This is why set
compositions are often called ordered set partitions.

Example 0.8. (a) Here are all set compositions of the set X = {1, 2, 3}:

({1, 2, 3}) ,
({1, 2} , {3}) , ({1, 3} , {2}) , ({2, 3} , {1}) ,
({1} , {2, 3}) , ({2} , {1, 3}) , ({3} , {1, 2}) ,
({1} , {2} , {3}) , ({1} , {3} , {2}) , ({2} , {1} , {3}) ,
({2} , {3} , {1}) , ({3} , {1} , {2}) , ({3} , {2} , {1}) .
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And here are the same set compositions, drawn as pictures (each part of the set
composition corresponds to a colored blob):

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

Here, the colors have been chosen as follows: The green-colored blob is the first
part of the set composition; the red-colored blob is the second; the yellow-colored
blob is the third.

(b) Here are all set partitions of the set X = {1, 2, 3}:
{{1, 2, 3}} , {{1, 2} , {3}} , {{1, 3} , {2}} , {{2, 3} , {1}} ,
{{1} , {2} , {3}} .

And here are the same set partitions, drawn as pictures (each part of the set
partition corresponds to a blob):

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3
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Definition 0.9. Let X be a set. Let k ∈N.
(a) A set composition of X into k parts is a set composition of X having exactly k

parts.
(b) A set partition of X into k parts is a set partition of X having exactly k parts.

For example, ({1, 5} , {2} , {3, 4, 6, 7}) is a set composition of [7] into 3 parts.

0.3.2. Counting set partitions and set compositions

There are several natural things to be counted now:

• set compositions of a given set X;

• set partitions of a given set X;

• set compositions of a given set X into k parts for a given k ∈N;

• set partitions of a given set X into k parts for a given k ∈N.

Let’s only briefly comment on the first two questions, and then discuss the last
two.

• If X is an n-element set, then the number of set compositions of X is the n-th ordered Bell
number B̃ (n). Here is a list of the first values of B̃ (n) (see A000670 at OEIS for more):

B̃ (0) = 1, B̃ (1) = 1, B̃ (2) = 3, B̃ (3) = 13,

B̃ (4) = 75, B̃ (5) = 541, B̃ (6) = 4683, B̃ (7) = 47293.

No explicit formulas for B̃ (n) are known. A quick way to compute B̃ (n) for arbitrary n ∈N

is using the recursive equation

B̃ (n) =
n−1

∑
i=0

(
n
i

)
B̃ (i) for all n > 0.

(The proof is easy: Classify all set compositions of [n] according to the size of their last part,
and treat all the remaining parts as a set composition of a smaller set.)

• If X is an n-element set, then the number of set partitions of X is the n-th Bell number B (n).
Here is a list of the first values of B (n) (see A000110 at OEIS for more):

B (0) = 1, B (1) = 1, B (2) = 2, B (3) = 5,
B (4) = 15, B (5) = 52, B (6) = 203, B (7) = 877.

No explicit formulas for B (n) are known. A quick way to compute B (n) for arbitrary n ∈N

is using the recursive equation

B (n + 1) =
n

∑
i=0

(
n
i

)
B (i) for all n ∈N.

(The proof is easy: Classify all set partitions of [n + 1] according to how many elements lie
in the same part as n + 1, and treat all the remaining parts as a set partition of a smaller set.)

Now, let us study the other two questions.

https://en.wikipedia.org/wiki/Ordered_Bell_number
https://en.wikipedia.org/wiki/Ordered_Bell_number
https://oeis.org/A000670
https://en.wikipedia.org/wiki/Bell_number
https://oeis.org/A000110
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Definition 0.10. Let X be a set. Let k ∈N.
(a) We let SCk (X) denote the set of all set compositions of X into k parts.
(b) We let SPk (X) denote the set of all set partitions of X into k parts.

Proposition 0.11. Let X be a finite set. Let k ∈N. Then, |SCk (X)| = sur (|X| , k).

Proof of Proposition 0.11 (sketched). For any sets A and B, we let Sur (A, B) be the set
of all surjections from A to B. If A and B are finite sets, then

|Sur (A, B)| = (the number of surjections from A to B) = sur (|A| , |B|)

(as we have shown in class). Applying this to A = X and B = [k], we obtain

|Sur (X, [k])| = sur

|X| , |[k]|︸︷︷︸
=k

 = sur (|X| , k) .

Here is an outline of the remainder of the proof: We want to find |SCk (X)|; that
is, we want to count all set compositions (S1, S2, . . . , Sk) of X into k parts. We can
construct such a set composition by choosing, for each x ∈ X, which part Si it shall
belong to2. This information can be encoded as a map f : X → [k] (which sends
each x ∈ X to the i ∈ [k] satisfying x ∈ Si); this map f has to be surjective (since
the parts Si should be nonempty, so each Si must have at least one x ∈ X in it),
but otherwise is subject to no constraints. Hence, the number of set compositions
(S1, S2, . . . , Sk) of X into k parts equals the number of surjective maps X → [k]; in
other words, it equals |Sur (X, [k])| = sur (|X| , k). This proves Proposition 0.11.

Here is a more rigorous way to make this argument (without vague terms such as “information”
and “encoded”). We are going to construct a bijection SCk (X) → Sur (X, [k]) (that is, a bijection
between the set compositions of X into k parts and the surjections from X to [k]). Here is how:

• We define a map Φ : SCk (X) → Sur (X, [k]) to be the map that sends any set composition
(S1, S2, . . . , Sk) ∈ SCk (X) to the map

f : X → [k] ,
x 7→ (the unique i ∈ [k] such that x ∈ Si) .

It is easy to see that Φ is well-defined (indeed, for any set composition (S1, S2, . . . , Sk), the
resulting map f : X → [k] is surjective, because the sets S1, S2, . . . , Sk are nonempty).

• We define a map Ψ : Sur (X, [k]) → SCk (X) to be the map that sends any surjective map
f : X → [k] to the set composition (S1, S2, . . . , Sk) ∈ SCk (X), where

Si = f−1 ({i}) = {x ∈ X | f (x) = i} for each i ∈ [k] .

Again, it is easily shown that this map Ψ is well-defined.

2Each x ∈ X must belong to exactly one part of (S1, S2, . . . , Sk) (because (S1, S2, . . . , Sk) is a set
composition of X).
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It is easy to check that the maps Φ and Ψ are mutually inverse, and thus are bijections. Hence,
we have found a bijection SCk (X)→ Sur (X, [k]). This lets us conclude that

|SCk (X)| = |Sur (X, [k])| = sur (|X| , k) .

Thus, Proposition 0.11 is proven.

Next, let us count set partitions of a given finite set X into a given number of
parts:

Proposition 0.12. Let X be a finite set. Let k ∈N. Then, |SPk (X)| = sur (|X| , k)
k!

.

Let us give an informal proof of this proposition. A formalization of it (omitting
only really straightforward details) is given in the Appendix below.

Outline of an informal proof of Proposition 0.12. Let us count the set compositions
(S1, S2, . . . , Sk) of X into k parts in two different ways:

• On the one hand, this number is |SCk (X)| = sur (|X| , k) (by Proposition 0.11).

• On the other hand, we can construct a set composition (S1, S2, . . . , Sk) of
X into k parts by first choosing a set partition of X into k parts (there are
|SPk (X)| ways to do this), and then choosing how to order it3 (there are k!
ways to do this, since it has k distinct parts). Thus, the number of set compo-
sitions (S1, S2, . . . , Sk) of X into k parts equals |SPk (X)| · k!.

Comparing these two results, we conclude that sur (|X| , k) = |SPk (X)| · k!. Thus,
sur (|X| , k)

k!
= |SPk (X)|. This proves Proposition 0.12.

The above proof outline glances over technicalities such as what “ordering” a set
partition means, and why there are k! ways to do this; this is the reason why I am
calling it informal and give a more complete version in the Appendix below.

The method we used to prove Proposition 0.12 is another example of the “shep-
herd’s principle” (“To count sheep, you count the legs and then you divide by
4”). Our sheep here were the set partitions in SPk (X), whereas their legs were the
set compositions in SCk (X). A leg (S1, S2, . . . , Sk) ∈ SCk (X) belongs to the sheep
{S1, S2, . . . , Sk} ∈ SPk (X). This principle (also known as “proof by multijection”)
is useful whenever the legs are easier to count than the sheep. (For example, in
the above case, the legs were in bijection with the surjections X → [k], whereas the
sheep were not in a visible bijection with anything.)

3i.e., in what order to list its parts
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Definition 0.13. Let n ∈ N and k ∈ N. The (n, k)-th Stirling number of the 2nd kind is defined to

be
sur (n, k)

k!
; it is commonly denoted by

{
n
k

}
or by S (n, k).

Proposition 0.12 shows that
{

n
k

}
is the number of set partitions of a given n-element set into

k parts. Thus, in particular,
{

n
k

}
is a nonnegative integer.

The recurrence relation sur (n, k) = k · (sur (n− 1, k) + sur (n− 1, k− 1)) for arbitrary n > 0
and k > 0 (see, for example, Proposition 3.12 in classwork from 21 February 2018) now leads to
the following recurrence relations for Stirling numbers of the 2nd kind:{

n
k

}
= k

{
n− 1

k

}
+

{
n− 1
k− 1

}
.

Meanwhile, Exercise 2 (b) leads to{
a
b

}
=

1
b!

b

∑
k=0

(−1)b−k
(

b
k

)
ka.

Without knowing about set partitions, would you have guessed that the right hand side is a
nonnegative integer?

Now, I want you to count a special kind of set partitions:

Definition 0.14. A perfect matching of a set X means a set partition P of X such
that each part of P has size 2.

Example 0.15. (a) The perfect matchings of the set [4] are

{{1, 2} , {3, 4}} , {{1, 3} , {2, 4}} , {{1, 4} , {2, 3}} .

Here are the same 3 perfect matchings, drawn as blobs:

1

2 3

4 1

2 3

4 1

2 3

4

(b) The set [6] has 15 perfect matchings; three of them are

{{1, 2} , {3, 4} , {5, 6}} , {{1, 4} , {2, 6} , {3, 5}} , {{1, 6} , {2, 5} , {3, 4}} .

Clearly, a perfect matching of a finite set X must have precisely |X| /2 parts (since
|X| is the sum of the sizes of all parts, but these sizes all equal 2). Thus, a perfect
matching of a finite set X can only exist when |X| is even.

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb21.pdf
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Definition 0.16. Let A and B be two sets. Let j ∈ N. A map f : A → B will be
called j-multijective if for each b ∈ B, we have

(the number of a ∈ A satisfying f (a) = b) = j.

In the classical picture illustrating a map, a map f : A → B is j-multijective if
and only if each element of B is hit by exactly j arrows.

For example, a 1-multijective map is the same as a bijective map (make sure you
understand why).

For another example, Proposition 0.19 below says that the map π in that proposition is k!-
multijective.

0.3.3. Exercise 3: counting perfect matchings

Exercise 3. Let n ∈N. Prove the following:

(a) The number of all 2-multijective maps from [2n] to [n] is
(2n)!

2n .

(b) The number of all set compositions C of [2n] such that each part of C has

size 2 is
(2n)!

2n .

(c) The number of all perfect matchings of [2n] is
(2n)!
2nn!

.
[Hint: You don’t need to imitate the level of detail that is given in the Ap-

pendix.]

Solution to Exercise 3 (sketched). (a) A map f : [2n]→ [n] is 2-multijective if and only
if for each i ∈ [n], there are exactly two elements of [2n] that are mapped to i under
f . Thus, the following algorithm lets us construct any 2-multijective map f from
[2n] to [n]:

• First, decide which two elements of [2n] will be mapped to 1 under f . There

are
(

2n
2

)
choices, because we are picking two distinct elements from the

2n-element set [2n] (with no regard for order).

• Then, decide which two elements of [2n] will be mapped to 2 under f . There

are
(

2n− 2
2

)
choices, because we are picking two distinct elements from the

2n-element set [2n] but allowing none of the 2 elements chosen before (so we
are really picking two elements from a 2n− 2-element set).

• Then, decide which two elements of [2n] will be mapped to 3 under f . There

are
(

2n− 4
2

)
choices, because we are picking two distinct elements from the

2n-element set [2n] but allowing none of the 4 elements chosen before (so we
are really picking two elements from a 2n− 4-element set).
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• Proceed likewise, until finally deciding which two elements of [2n] will be
mapped to n.

In total, this algorithm can be performed in(
2n
2

)(
2n− 2

2

)(
2n− 4

2

)
· · ·
(

2n− 2 (n− 1)
2

)
=

n−1

∏
i=0

(
2n− 2i

2

)
many ways. Since this algorithm constructs each 2-multijective map f from [2n] to
[n] exactly once, we thus conclude that the number of all 2-multijective maps from
[2n] to [n] is

n−1

∏
i=0

(
2n− 2i

2

)
=

n

∏
k=1

(
2k
2

)
︸ ︷︷ ︸

=
(2k− 1) (2k)

2
(here, we have substituted k for n− i in the product)

=
n

∏
k=1

(2k− 1) (2k)
2

=
1
2n

n

∏
k=1

((2k− 1) (2k))︸ ︷︷ ︸
=(1·2)(3·4)···((2n−1)·(2n))

=1·2·3·4·····(2n−1)·(2n)=(2n)!

=
1
2n (2n)! =

(2n)!
2n .

This solves Exercise 3 (a).
Now, let X be the set [2n]. A 2-block composition of X shall mean a set composition

C of X such that each part of C has size 2. Thus, each 2-block composition of X
has exactly n parts. (Indeed, each part of a 2-block composition has size 2, but the
sum of the sizes of all its parts is |X| = 2n; therefore, the number of parts must
be 2n/2 = n.) Thus, each 2-block composition of X can be written in the form
(S1, S2, . . . , Sn).

(b) The set compositions C of [2n] such that each part of C has size 2 are precisely
the 2-block compositions of X (because this is how we defined the latter). Thus, we

must prove that the number of all 2-block compositions of X is
(2n)!

2n .
We shall derive this from Exercise 3 (a) in roughly the same way as we proved

Proposition 0.11.
For any sets A and B, we let Mulj2 (A, B) be the set of all 2-multijections from A

to B. Thus, Exercise 3 (a) says that |Mulj2 ([2n] , [n])| = (2n)!
2n .

We want to count all 2-block compositions (S1, S2, . . . , Sn) of X. We can construct
such a 2-block composition by choosing, for each x ∈ X, which part Si it shall
belong to, as long as we ensure that each part Si ends up containing exactly 2
elements x ∈ X. This information can be encoded as a map f : X → [n] (which
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sends each x ∈ X to the i ∈ [n] satisfying x ∈ Si); this map f has to be 2-multijective
(because this says precisely that each part Si contains exactly 2 elements x ∈ X), but
otherwise is subject to no constraints. Hence, the number of 2-block compositions
(S1, S2, . . . , Sn) of X equals the number of 2-multijective maps X → [n]; but this
number is ∣∣∣∣∣∣Mulj2

 X︸︷︷︸
=[2n]

, [n]

∣∣∣∣∣∣ = |Mulj2 ([2n] , [n])| = (2n)!
2n .

This solves Exercise 3 (b).
If you want to make the above argument more rigorous, you can proceed as in the proof of

Proposition 0.11, namely by constructing a bijection SCTB (X) → Mulj2 (X, [n]), where SCTB (X)

denotes the set of all 2-block compositions of X. This bijection is defined exactly as in the proof of
Proposition 0.11 (but with k replaced by n, and other obvious changes).

(c) This is similar to how we derived Proposition 0.12 from Proposition 0.11 (with
the difference that instead of Proposition 0.11, we now need to use Exercise 3 (b)).
Let us just give the informal outline:

Let PM (X) be the set of all perfect matchings of X. Each perfect matching of
X has exactly n parts. (Indeed, each part of a perfect matching has size 2, but the
sum of the sizes of all its parts is |X| = 2n; therefore, the number of parts must be
2n/2 = n.)

Recall that each 2-block composition of X can be written in the form (S1, S2, . . . , Sn).
Let us count all 2-block compositions (S1, S2, . . . , Sn) of X in two different ways:

• On the one hand, this number is
(2n)!

2n (by Exercise 3 (b)).

• On the other hand, we can construct a 2-block composition (S1, S2, . . . , Sn) of
X by first choosing a perfect matching of X (there are |PM (X)| ways to do
this), and then choosing how to order it (there are n! ways to do this, since it
has n distinct parts). Thus, the number of 2-block compositions of X equals
|PM (X)| · n!.

Comparing these two results, we conclude that
(2n)!

2n = |PM (X)| · n!. Thus,

|PM (X)| = (2n)!
2n /n! =

(2n)!
2nn!

.

But PM (X) is the set of all perfect matchings of X = [2n]. Hence, the number of

all perfect matchings of [2n] is |PM (X)| = (2n)!
2nn!

. This solves Exercise 3 (c).

0.4. “Image-injective maps”

If S is a set, then a map f : S → S is said to be image-injective4 if and only if its
restriction f | f (S) is injective. For example:

4This is my terminology; don’t expect to see it in the literature.



Math 4707 Spring 2018 (Darij Grinberg): homework set 3 page 21

• The map [4]→ [4] sending 1, 2, 3, 4 to 4, 1, 4, 1 (respectively) is image-injective
(since its image is {1, 4}, and its restriction to {1, 4} is injective).

• The map [6]→ [6] sending 1, 2, 3, 4, 5, 6 to 2, 4, 4, 6, 6, 2 (respectively) is image-
injective (since its image is {2, 4, 6}, and its restriction to {2, 4, 6} is injective).

• Any injective map f : S → S is image-injective. So is any constant map (i.e.,
any map f : S→ S such that all values of f are equal).

• The map [3]→ [3] sending 1, 2, 3 to 2, 2, 1 (respectively) is not image-injective
(since its restriction to its image {1, 2} is not injective).

As usual, if S is a set, and f : S→ S is a map, then f 2 means the map f ◦ f : S→
S. (More generally, f k means the map f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k times

whenever k ∈N.)

Exercise 4. Let n ∈N.
(a) Prove that a map f : [n] → [n] is image-injective if and only if it has the

following property: For any a ∈ [n] and b ∈ [n] satisfying f 2 (a) = f 2 (b), we
must have f (a) = f (b).

(b) Prove that the number of image-injective maps [n]→ [n] is
n
∑

k=0

(
n
k

)
k!kn−k.

(c) Prove that the number of image-injective maps [n] → [n] is divisible by n
whenever n is positive.

[Hint: This is rather similar to [Fall2017-HW6os, Exercise 1]; feel free to imitate
the solution of the latter exercise.]

The sequence of integers whose n-th term is the number of image-injective maps
[n] → [n] appears in the OEIS as Sequence A006153; our definition of it is ex-
actly what Geoffrey Critzer wrote in his comment. It doesn’t seem to have many
properties.

The solution to Exercise 4 outlined below imitates [Fall2017-HW6os, solution to
Exercise 1], to the point that several parts of it are copied more or less verbatim.

Solution to Exercise 4 (sketched). (a) Let f : [n] → [n] be a map. We must prove that
f is image-injective if and only if it has the following property:(

For any a ∈ [n] and b ∈ [n] satisfying f 2 (a) = f 2 (b) ,
we must have f (a) = f (b)

)
. (19)

=⇒: Assume that f is image-injective. We must prove that f has the property
(19).

The map f is image-injective. In other words, its restriction f | f ([n]) is injective
(by the definition of “image-injective”).

https://oeis.org/A006153
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Let a ∈ [n] and b ∈ [n] be such that f 2 (a) = f 2 (b). Both f (a) and f (b) clearly
belong to the image f ([n]). Furthermore,(

f | f ([n])
)
( f (a)) = f ( f (a)) = f 2 (a) = f 2 (b) = f ( f (b)) =

(
f | f ([n])

)
( f (b)) .

Since f | f ([n]) is injective, we thus conclude that f (a) = f (b).
Now, forget that we fixed a and b. We thus have proven that for any a ∈ [n] and

b ∈ [n] satisfying f 2 (a) = f 2 (b), we must have f (a) = f (b). In other words, f has
the property (19). This proves the “=⇒” direction of Exercise 4 (a).
⇐=: Assume that f has the property (19). We must prove that f is image-

injective.
Let x ∈ f ([n]) and y ∈ f ([n]) be such that

(
f | f ([n])

)
(x) =

(
f | f ([n])

)
(y). Then,(

f | f ([n])
)
(x) = f (x), so that f (x) =

(
f | f ([n])

)
(x) =

(
f | f ([n])

)
(y) = f (y).

But x ∈ f ([n]); thus, there exists some a ∈ [n] such that x = f (a). Consider this
a.

Also, y ∈ f ([n]); thus, there exists some b ∈ [n] such that y = f (b). Consider
this b.

We have f 2 (a) = f

 f (a)︸︷︷︸
=x

 = f (x) = f

 y︸︷︷︸
= f (b)

 = f ( f (b)) = f 2 (b). Hence,

(19) shows that f (a) = f (b). In view of x = f (a) and y = f (b), this rewrites as
x = y.

Now, forget that we fixed x and y. We thus have shown that if x ∈ f ([n]) and
y ∈ f ([n]) are such that

(
f | f ([n])

)
(x) =

(
f | f ([n])

)
(y), then x = y. In other words,

the map f | f ([n]) is injective. In other words, the map f is image-injective (by the
definition of “image-injective”). This proves the “⇐=” direction of Exercise 4 (a).

Hence, Exercise 4 (a) is solved (since we have proven both of its directions).
(b) We first observe the following facts:

Observation 1: Let f : [n] → [n] be an image-injective map. Let S =
f ([n]). Then:

(a) The restriction f |S: S→ [n] is injective.

(b) We have ( f |S) (S) ⊆ S.

[Proof of Observation 1: (a) The map f is image-injective. In other words, the
restriction f | f ([n]) is injective (by the definition of “image-injective”). Since S =

f ([n]), this rewrites as follows: The restriction f |S is injective. This proves Obser-
vation 1 (a).

(b) We have ( f |S) (x) = f (x) for each x ∈ S. Thus, ( f |S) (S) = f

 S︸︷︷︸
⊆[n]

 ⊆
f ([n]) = S. This proves Observation 1 (b).]
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Observation 2: Let f : [n] → [n] be a map. Let S be a subset of
[n]. Assume that the restriction f |S: S → [n] is injective and satisfies
( f |S) (S) ⊆ S. Assume furthermore that f (x) ∈ S for each x ∈ [n] \ S.
Then:

(a) The map f is image-injective.

(b) We have f ([n]) = S.

[Proof of Observation 2: (b) We have f (x) ∈ S for each x ∈ [n] \ S. In other
words, we have f (x) ∈ S for each x ∈ [n] that does not belong to S. But we also
have f (x) ∈ S for each x ∈ [n] that does belong to S (because each x ∈ [n] that

does belong to S satisfies f (x) = ( f |S)

 x︸︷︷︸
∈S

 ∈ ( f |S) (S) ⊆ S). Combining

the previous two sentences, we conclude that f (x) ∈ S for each x ∈ [n] (whether
or not x belongs to S). In other words, { f (x) | x ∈ [n]} ⊆ S. Hence, f ([n]) =
{ f (x) | x ∈ [n]} ⊆ S.

But the restriction f |S: S → [n] is injective. Hence, this restriction must take
exactly |S| distinct values. In other words, |( f |S) (S)| = |S|. Thus, ( f |S) (S) cannot
be a proper subset of S (because if it was, then it would satisfy |( f |S) (S)| < |S|,
which would contradict |( f |S) (S)| = |S|). So we know that ( f |S) (S) is a subset
of S (since ( f |S) (S) ⊆ S), but not a proper subset of S. Therefore, ( f |S) (S) = S.

But ( f |S) (x) = f (x) for each x ∈ S. Hence, ( f |S) (S) = f (S), so that f (S) =
( f |S) (S) = S.

Finally, [n] ⊇ S, so that f ([n]) ⊇ f (S) = S. Combining this with f ([n]) ⊆ S, we
obtain f ([n]) = S. This proves Observation 2 (b).

(a) Observation 2 (b) yields that f ([n]) = S. But the restriction f |S is injective
(by assumption). In view of f ([n]) = S, this rewrites as follows: The restriction
f | f ([n]) is injective. In other words, the map f is image-injective (by the definition
of “image-injective”). This proves Observation 2 (a).]

The following algorithm constructs every image-injective map f : [n]→ [n]:

• First, we choose an integer k ∈ {0, 1, . . . , n}. This integer k shall be the size
| f ([n])| of the image of f . (Of course, this size has to be in {0, 1, . . . , n},
because f ([n]) must be a subset of [n].)

• Next, we choose a k-element subset S of [n]. This subset S shall be the image

f ([n]) of f . There are
(

n
k

)
choices for S (since the number of k-element

subsets of [n] is
(

n
k

)
).

• Now, we choose the values f (x) for all x ∈ S. In other words, we choose the
restriction f |S: S→ [n]. We cannot choose it arbitrarily; in fact, this restriction
f |S must be an injective map (because we want f to be image-injective, and
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thus Observation 1 (a) dictates that the restriction f |S: S → [n] is injective)
and must satisfy ( f |S) (S) ⊆ S (since we want f to be image-injective, and
thus Observation 1 (b) dictates that ( f |S) (S) ⊆ S). Thus, we must choose
an injective map f |S: S → [n] satisfying ( f |S) (S) ⊆ S. Proposition 0.5 (c)
(applied to A = S, B = [n] and C = S) shows that the number of such maps
is |S|!; in other words, it is k! (since |S| = k).

• Finally, we choose the values of f on all remaining elements of [n] (that is,
on all elements of [n] \ S). These values must belong to S (because we want
f ([n]) to be S), but are otherwise unconstrained5. Thus, there are |S||[n]\S|
choices at this step. In other words, there are kn−k choices at this step (since
|S| = k and |[n] \ S| = n− |S|︸︷︷︸

=k

= n− k).

It is easy to check that this algorithm really constructs image-injective maps f :
[n] → [n], and constructs each of them exactly once. Thus, the number of image-
injective maps f : [n]→ [n] is

∑
k∈{0,1,...,n}

(
n
k

)
k!kn−k

(since we get to choose k ∈ {0, 1, . . . , n} in the first step of the algorithm, then

we have
(

n
k

)
choices in the second step, then k! choices in the third step, and

finally kn−k choices in the fourth step). Hence, the number of image-injective maps
f : [n]→ [n] is

∑
k∈{0,1,...,n}

(
n
k

)
k!kn−k =

n

∑
k=0

(
n
k

)
k!kn−k.

This solves Exercise 4 (b).
(c) Assume that n is positive.

5Indeed, by requiring that these values belong to S, we have ensured that our map f satisfies
f (x) ∈ S for each x ∈ [n] \ S. Furthermore, in the previous step, we have already ensured that
the restriction f |S: S → [n] is injective and satisfies ( f |S) (S) ⊆ S. Thus, Observation 2 (a)
yields that our map f is image-injective, and Observation 2 (b) yields that it satisfies f ([n]) = S
(so that the set S, which was meant to be the image of f , will indeed be the image of f ).
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Exercise 4 (b) shows that the number of image-injective maps [n]→ [n] is

n

∑
k=0

(
n
k

)
k!kn−k =

(
n
0

)
0! 0n−0︸︷︷︸

=0n=0
(since n>0)

+
n

∑
k=1

(
n
k

)
︸︷︷︸

=
n
k

(
n− 1
k− 1

)
(by (6))

k!︸︷︷︸
=k·(k−1)!
(since k≥1)

kn−k

=
n

∑
k=1

n
k

(
n− 1
k− 1

)
k︸ ︷︷ ︸

=n

(
n− 1
k− 1

) · (k− 1)!kn−k =
n

∑
k=1

n
(

n− 1
k− 1

)
· (k− 1)!kn−k︸ ︷︷ ︸

this is an integer
(since n−1∈Z and k−1∈Z

and n−k∈N)

=
n

∑
k=1

n · (some integer) = n · (some integer) .

Hence, this number is divisible by n. This solves Exercise 4 (c).

0.5. Counting certain tuples

Exercise 5. Let n ∈N, and let d be a positive integer.
An n-tuple (x1, x2, . . . , xn) ∈ [d]n will be called 1-even if the number 1 occurs

in it an even number of times (i.e., the number of i ∈ [n] satisfying xi = 1 is
even). (For example, the 3-tuples (1, 5, 1) and (3, 2, 6) are 1-even (yes, 0 is an
even number), while the 3-tuple (2, 1, 4) is not.)

Prove that the number of 1-even n-tuples in [d]n is
1
2
(
dn + (d− 2)n).

[Hint: Set e = d− 1; then, (d− 2)n = (e− 1)n and dn = (e + 1)n. There might
also be a bijective proof – after multiplying by 2 –, but I don’t know it.]

Exercise 5 is [Masulo11, Example 1.13]. Our proof of it (taken from [Masulo11,
Example 1.13]) relies on the following fact:

Lemma 0.17. Let n ∈N and x ∈ Q and y ∈ Q. Then,

(x + y)n + (−x + y)n = 2 ∑
k∈{0,1,...,n};

k is even

(
n
k

)
xkyn−k.

Proof of Lemma 0.17 (sketched). The binomial formula yields

(x + y)n =
n

∑
k=0

(
n
k

)
xkyn−k.
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The binomial formula (applied to −x instead of x) yields

(−x + y)n =
n

∑
k=0

(
n
k

)
(−x)k︸ ︷︷ ︸
=(−1)kxk

yn−k =
n

∑
k=0

(
n
k

)
(−1)k xkyn−k.

Adding these two equalities together, we obtain

(x + y)n + (−x + y)n

=
n

∑
k=0

(
n
k

)
xkyn−k +

n

∑
k=0

(
n
k

)
(−1)k xkyn−k =

n

∑
k=0

(
n
k

)(
1 + (−1)k

)
xkyn−k

= ∑
k∈{0,1,...,n};

k is even

(
n
k

)(
1 + (−1)k

)
︸ ︷︷ ︸

=2
(since (−1)k=1

(since k is even))

xkyn−k + ∑
k∈{0,1,...,n};

k is odd

(
n
k

) (
1 + (−1)k

)
︸ ︷︷ ︸

=0
(since (−1)k=−1
(since k is odd))

xkyn−k

= ∑
k∈{0,1,...,n};

k is even

(
n
k

)
2xkyn−k + ∑

k∈{0,1,...,n};
k is odd

(
n
k

)
0xkyn−k

︸ ︷︷ ︸
=0

= 2 ∑
k∈{0,1,...,n};

k is even

(
n
k

)
xkyn−k.

This proves Lemma 0.17.

Solution to Exercise 5 (sketched). Set e = d− 1.
We can construct any 1-even n-tuple (x1, x2, . . . , xn) ∈ [d]n using the following

algorithm:

• First, we choose the number k of times the entry 1 will appear in this n-tuple.
This number k must be even (since we want our n-tuple to be 1-even), and
must belong to {0, 1, . . . , n}.

• Then, we choose the k positions in which this n-tuple will have the entry 1 (in
other words, choose the k indices i ∈ [n] that will satisfy xi = 1). This choice

can be made in
(

n
k

)
many ways (since we are choosing k out of n possible

indices).

• Next, choose the entries in the remaining n− k positions of our n-tuple. The
entries can be arbitrary, except that they must be distinct from 1 (since we
have already chosen the entries that will equal 1). Thus, there are d− 1 = e
choices for each entry, and therefore en−k choices altogether in this step.

Thus, the total number of 1-even n-tuples is ∑
k∈{0,1,...,n};

k is even

(
n
k

)
en−k.
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But Lemma 0.17 (applied to x = 1 and y = e) yields

(1 + e)n + (−1 + e)n = 2 ∑
k∈{0,1,...,n};

k is even

(
n
k

)
1k︸︷︷︸
=1

en−k = 2 ∑
k∈{0,1,...,n};

k is even

(
n
k

)
en−k.

Hence,

∑
k∈{0,1,...,n};

k is even

(
n
k

)
en−k =

1
2

1 + e︸︷︷︸
=d−1

n

+

−1 + e︸︷︷︸
=d−1

n

=
1
2

1 + d− 1︸ ︷︷ ︸
=d

n

+

−1 + d− 1︸ ︷︷ ︸
=d−2

n =
1
2
(
dn + (d− 2)n) .

Hence, the total number of 1-even n-tuples is ∑
k∈{0,1,...,n};

k is even

(
n
k

)
en−k =

1
2
(
dn + (d− 2)n).

This solves Exercise 5.

0.6. And more binomial identities

Exercise 6. (a) Let n ∈N and m ∈N. Prove that every j ∈ {0, 1, . . . , n} satisfies

n

∑
k=0

(
m + k

k

)(
n− k

j

)
=

(
n + m + 1
m + j + 1

)
.

(b) Let x and y be two real numbers. Let z = x + y. Let n ∈ N and m ∈ N.
Prove that

xm+1
n

∑
k=0

(
m + k

k

)
ykzn−k =

n+m+1

∑
i=m+1

(
n + m + 1

i

)
xiy(n+m+1)−i

and

yn+1
m

∑
k=0

(
n + k

k

)
xkzm−k =

m

∑
i=0

(
n + m + 1

i

)
xiy(n+m+1)−i

and

xm+1
n

∑
k=0

(
m + k

k

)
ykzn−k + yn+1

m

∑
k=0

(
n + k

k

)
xkzm−k = zn+m+1.

(c) Let n ∈N. Prove that

n

∑
k=0

(
n + k

k

)
1
2k = 2n.

[Hint: Part (a) is a restatement of something proven in class. Derive (b) from
(a), and (c) from (b).]
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We shall outline a solution of this exercise. (For the missing details, see [Grinbe16,
solution to Exercise 3.27].)

Solution to Exercise 6 (sketched). (a) Let j ∈ {0, 1, . . . , n}. Then, (5) (applied to n + m,
m and j instead of n, x and y) yields(

n + m + 1
m + j + 1

)
=

n+m

∑
k=0

(
k
m

)(
n + m− k

j

)
=

m−1

∑
k=0

(
k
m

)
︸ ︷︷ ︸
=0

(by (1))

(
n + m− k

j

)
+

n+m

∑
k=m

(
k
m

)(
n + m− k

j

)

=
n+m

∑
k=m

(
k
m

)(
n + m− k

j

)
=

n

∑
k=0

(
m + k

m

)
︸ ︷︷ ︸
=

(
m + k

k

)
(by (4))

(
n + m− (m + k)

j

)
︸ ︷︷ ︸

=

(
n− k

j

)
(here, we have substituted m + k for k in the sum)

=
n

∑
k=0

(
m + k

k

)(
n− k

j

)
.

This solves Exercise 6 (a).
(b) Let k ∈ {0, 1, . . . , n}. From z = x + y, we obtain

zn−k = (x + y)n−k =
n−k

∑
j=0

(
n− k

j

)
xjy(n−k)−j

(by the binomial formula). Multiplying both sides of this equality by yk, we find

ykzn−k =
n−k

∑
j=0

(
n− k

j

)
xj y(n−k)−jyk︸ ︷︷ ︸

=yn−j

=
n−k

∑
j=0

(
n− k

j

)
xjyn−j.

Comparing this with

n

∑
j=0

(
n− k

j

)
xjyn−j =

n−k

∑
j=0

(
n− k

j

)
xjyn−j +

n−k

∑
j=n−k+1

(
n− k

j

)
︸ ︷︷ ︸

=0
(by (1))

xjyn−j

=
n−k

∑
j=0

(
n− k

j

)
xjyn−j,
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we find

ykzn−k =
n

∑
j=0

(
n− k

j

)
xjyn−j. (20)

Now, forget that we fixed k. We thus have proven the equality (20) for each
k ∈ {0, 1, . . . , n}.

Now,

xm+1
n

∑
k=0

(
m + k

k

)
ykzn−k︸ ︷︷ ︸

=
n
∑

j=0

(
n− k

j

)
xjyn−j

(by (20))

= xm+1
n

∑
k=0

(
m + k

k

) n

∑
j=0

(
n− k

j

)
xjyn−j = xm+1

n

∑
j=0

(
n

∑
k=0

(
m + k

k

)(
n− k

j

))
︸ ︷︷ ︸

=

(
n + m + 1
m + j + 1

)
(by Exercise 6 (a))

xjyn−j

= xm+1
n

∑
j=0

(
n + m + 1
m + j + 1

)
xjyn−j =

n

∑
j=0

(
n + m + 1
m + j + 1

)
xm+1xj︸ ︷︷ ︸
=xm+1+j

yn−j

=
n

∑
j=0

(
n + m + 1
m + j + 1

)
xm+j+1yn−j =

n+m+1

∑
i=m+1

(
n + m + 1

i

)
xiy(n+m+1)−i (21)

(here, we have substituted i for (m + 1) + j in the sum) .

This proves the first of the three equalities we need to show for Exercise 6 (b).
Now, of course, there is nothing preventing us from applying (21) to y, x, m and

n instead of x, y, n and m (after all, we have z = x + y = y + x, so the roles of x
and y can be interchanged). Thus we find

yn+1
m

∑
k=0

(
n + k

k

)
xkzm−k

=
m+n+1

∑
i=n+1

(
m + n + 1

i

)
yix(m+n+1)−i =

n+m+1

∑
i=n+1

(
n + m + 1

i

)
︸ ︷︷ ︸

=

(
n + m + 1

(n + m + 1)− i

)
(by (3))

yix(n+m+1)−i︸ ︷︷ ︸
=x(n+m+1)−iyi

=
n+m+1

∑
i=n+1

(
n + m + 1

(n + m + 1)− i

)
x(n+m+1)−iyi =

m

∑
i=0

(
n + m + 1

i

)
xiy(n+m+1)−i (22)

(here, we have substituted i for (n + m + 1)− i in the sum) .

This proves the second of the three equalities we need to show for Exercise 6 (b).
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To prove the third equality, we add the equalities (21) and (22) together. We
obtain

xm+1
n

∑
k=0

(
m + k

k

)
ykzn−k + yn+1

m

∑
k=0

(
n + k

k

)
xkzm−k

=
n+m+1

∑
i=m+1

(
n + m + 1

i

)
xiy(n+m+1)−i +

m

∑
i=0

(
n + m + 1

i

)
xiy(n+m+1)−i

=
m

∑
i=0

(
n + m + 1

i

)
xiy(n+m+1)−i +

n+m+1

∑
i=m+1

(
n + m + 1

i

)
xiy(n+m+1)−i

=
n+m+1

∑
i=0

(
n + m + 1

i

)
xiy(n+m+1)−i = (x + y)n+m+1 (by the binomial formula)

= zn+m+1 (since x + y = z) . (23)

This completes the solution of Exercise 6 (b).
(c) Recall that 1 + 1 = 2. Thus, applying (23) to m = n, x = 1, y = 1 and z = 2,

we find

1n+1
n

∑
k=0

(
n + k

k

)
1k2n−k + 1n+1

n

∑
k=0

(
n + k

k

)
1k2n−k = 2n+n+1.

This simplifies to

n

∑
k=0

(
n + k

k

)
2n−k +

n

∑
k=0

(
n + k

k

)
2n−k = 2n+n+1.

In other words, 2
n
∑

k=0

(
n + k

k

)
2n−k = 2n+n+1. Dividing this equality by 2n+1, we

obtain
n
∑

k=0

(
n + k

k

)
1
2k = 2n. This solves Exercise 6 (c).

For two other solutions to Exercise 6 (c), see [Engel98, Chapter 5, Example E18]
and [Engel98, Chapter 8, Problem 4]. (I don’t know if these solutions can be gener-
alized to give proofs of (23).)

0.7. Appendix: Rigorous proof of Proposition 0.12

Let us now give a proof of Proposition 0.12 that keeps to the standards of rigor in
most parts of mathematics. First, we need a lemma from the “isn’t this obvious?”
department:

Lemma 0.18. Let k ∈ N. Let x1, x2, . . . , xk be k distinct objects. Let y1, y2, . . . , yk
be k objects such that {x1, x2, . . . , xk} = {y1, y2, . . . , yk}. Then, there exists a
permutation σ of [k] such that every i ∈ [k] satisfies yi = xσ(i).
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Roughly speaking, Lemma 0.18 says that if k distinct objects x1, x2, . . . , xk form
the same set as k objects y1, y2, . . . , yk (which are not a-priori required to be distinct,
but it follows easily that they are), then the objects y1, y2, . . . , yk are just the objects
x1, x2, . . . , xk rearranged (the rearrangement is what the permutation σ is meant to
take care of). Convince yourself that this is plausible before (or instead of) reading
the following proof. Notice that x1, x2, . . . , xk need to be distinct in Lemma 0.18;
otherwise, the lemma would be easily disproven (e.g., we have {2, 2, 3} = {2, 3, 3},
but there is no way to get 2, 3, 3 by rearranging 2, 2, 3).

Proof of Lemma 0.18 (sketched). For each i ∈ [k], there exists some j ∈ [k] such that yi = xj (since
yi ∈ {y1, y2, . . . , yk} = {x1, x2, . . . , xk}). Moreover, this j is unique (because if j1 and j2 were two
such j’s, then we would have yi = xj1 and yi = xj2 , thus xj1 = y = xj2 , thus j1 = j2 because
x1, x2, . . . , xk are distinct). Let us denote this j by σ (i). Thus, we have defined a σ (i) ∈ [k] for each
i ∈ [k]. In other words, we have defined a map σ : [k] → [k]. Clearly, this map has the property
that every i ∈ [k] satisfies yi = xσ(i) (because this is how σ (i) was defined). Thus, in order to prove
Lemma 0.18, it suffices to check that this map σ is a permutation of [k].

Let h ∈ [k]. Then, xh ∈ {x1, x2, . . . , xk} = {y1, y2, . . . , yk}. In other words, there exists some
i ∈ [k] such that xh = yi. Consider this i. Then, σ (i) is the unique j ∈ [k] such that yi = xj (by the
definition of σ (i)). But this unique j must be h (since h ∈ [k] and yi = xh). Hence, σ (i) = h.

Now, forget that we fixed h. We thus have shown that for each h ∈ [k], there exists some i ∈ [k]
such that σ (i) = h. In other words, the map σ is surjective. Since σ is a map from [k] to [k],
this yields that σ is bijective (by the Pigeonhole Principle for surjections). In other words, σ is a
permutation of [k]. As we said, this completes the proof of Lemma 0.18.

Proposition 0.19. Let X be a set, and let k ∈ N. Let π : SCk (X) → SPk (X)
be the map that sends each set composition (S1, S2, . . . , Sk) to the set partition
{S1, S2, . . . , Sk}. (So what the map π does is forgetting the order of the parts. In
the language of Example 0.8, this means forgetting the colors of the blobs.)

Then, for each set partition P ∈ SPk (X), we have

(the number of all C ∈ SCk (X) satisfying π (C) = P) = k!.

Example 0.20. For this example, pick X = {1, 2, 3} and k = 2 and P =
{{1, 3} , {2}}. Then, Proposition 0.19 says that the number of all set composi-
tions C ∈ SCk (X) satisfying π (C) = P is 2! = 2. These two set compositions are
({1, 3} , {2}) and ({2} , {1, 3}).

Proof of Proposition 0.19 (sketched). Let P ∈ SPk (X). Thus, P is a set partition of X
into k parts. We can thus write P as P = {T1, T2, . . . , Tk}, where T1, T2, . . . , Tk are
some disjoint nonempty subsets of X satisfying T1 ∪ T2 ∪ · · · ∪ Tk = X. Consider
these T1, T2, . . . , Tk. These sets T1, T2, . . . , Tk are nonempty and disjoint, and there-
fore distinct (because if two of them were equal, then their disjointness would force
them to be empty).

The rest is now easy: Informally speaking, the set compositions C ∈ SCk (X) sat-
isfying π (C) = P are just all possible ways to rearrange the k-tuple (T1, T2, . . . , Tk)
(this follows from Lemma 0.18); thus, there are k! of them (in fact, the sets T1, T2, . . . , Tk
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are distinct, so any way of rearranging them results in a different k-tuple). This
proves Proposition 0.19.

Here is a more formal way to make this argument (read this if you care; I don’t require this
level of rigor in solutions): The k-tuple (T1, T2, . . . , Tk) is a set composition of X into k parts. Thus,

for each permutation σ of [k], the k-tuple
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
also is a set composition of X

into k parts, hence belongs to SCk (X). Moreover, this set composition
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
is a

C ∈ SCk (X) satisfying π (C) = P (because π
((

Tσ(1), Tσ(2), . . . , Tσ(k)

))
=
{

Tσ(1), Tσ(2), . . . , Tσ(k)

}
=

{T1, T2, . . . , Tk} = P). Hence, we can define a map

α : {permutations of [k]} → {C ∈ SCk (X) | π (C) = P} ,

σ 7→
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
.

This map is injective6 and surjective7; thus, it is bijective. We have therefore found a bijective map
from {permutations of [k]} to {C ∈ SCk (X) | π (C) = P}. Hence,

|{permutations of [k]}| = |{C ∈ SCk (X) | π (C) = P}|
= (the number of all C ∈ SCk (X) satisfying π (C) = P) ,

so that

(the number of all C ∈ SCk (X) satisfying π (C) = P) = |{permutations of [k]}| = k!.

This proves Proposition 0.19.

6Proof. Let σ and τ be two permutations of [k] such that α (σ) = α (τ). We must show that σ = τ.
Let i ∈ [k]. The definition of α yields α (σ) =

(
Tσ(1), Tσ(2), . . . , Tσ(k)

)
and α (τ) =(

Tτ(1), Tτ(2), . . . , Tτ(k)

)
. Hence, the equality α (σ) = α (τ) rewrites as

(
Tσ(1), Tσ(2), . . . , Tσ(k)

)
=(

Tτ(1), Tτ(2), . . . , Tτ(k)

)
. Thus, Tσ(i) = Tτ(i). Since the sets T1, T2, . . . , Tk are distinct, this entails

σ (i) = τ (i).
Now, forget that we fixed i. We thus have shown that σ (i) = τ (i) for each i ∈ [k]. Therefore,

σ = τ. This completes the proof of the injectivity of α.
7Proof. Let D ∈ {C ∈ SCk (X) | π (C) = P}. We must prove that D = α (σ) for some permutation

σ of [k].
We have D ∈ {C ∈ SCk (X) | π (C) = P}. In other words, D ∈ SCk (X) and π (D) = P.

From D ∈ SCk (X), we conclude that D is a set composition of X into k parts. We can thus
write D as D = (D1, D2, . . . , Dk), where D1, D2, . . . , Dk are some disjoint nonempty subsets of X
satisfying D1 ∪ D2 ∪ · · · ∪ Dk = X. Consider these D1, D2, . . . , Dk.

From D = (D1, D2, . . . , Dk), we conclude that π (D) = π ((D1, D2, . . . , Dk)) =
{D1, D2, . . . , Dk} (by the definition of π), so that {D1, D2, . . . , Dk} = π (D) = P =
{T1, T2, . . . , Tk}. In other words, {T1, T2, . . . , Tk} = {D1, D2, . . . , Dk}. Since T1, T2, . . . , Tk are
distinct, we can thus apply Lemma 0.18 to xi = Ti and yi = Di. We conclude that there ex-
ists a permutation σ of [k] such that every i ∈ [k] satisfies Di = Tσ(i). Consider this σ. We have

(D1, D2, . . . , Dk) =
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
(since every i ∈ [k] satisfies Di = Tσ(i)). The definition

of α yields

α (σ) =
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
= (D1, D2, . . . , Dk) = D.

Hence, we have found a permutation σ of [k] such that D = α (σ). This completes our proof of
the surjectivity of α.
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Proof of Proposition 0.12. Proposition 0.11 yields |SCk (X)| = sur (|X| , k). Thus,

sur (|X| , k) = |SCk (X)|
= (the number of all C ∈ SCk (X))

= ∑
P∈SPk(X)

(the number of all C ∈ SCk (X) satisfying π (C) = P)︸ ︷︷ ︸
=k!

(by Proposition 0.19)(
here, we have subdivided our count according

to the value of π (C)

)
= ∑

P∈SPk(X)

k! = |SPk (X)| · k!.

Dividing this equality by k!, we find
sur (|X| , k)

k!
= |SPk (X)|. This proves Proposi-

tion 0.12.
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