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EXERCISE 1

Exercise 0.1. Let n € N. Then
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Proof. This will be shown by induction on n. For each n € N, let A(n) represent the
n (—1)k1 11 1

statement =0T =—+4=+---+ =" We will first show that 4(0) is true.
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Observe that if n = 0, then ) .
k=1

of zero, and — + = 4+ --- + — is also the empty sum, which also takes on a value of zero.

n
( k‘) is the empty sum, which takes on a value

n
Hence, we have equality, so .A(0) is true.

Now we will show that if A(n) is true for some n € N, then it follows that A(n + 1) is
true. Fix n € N and suppose that A4(n) holds. Then, by the induction hypothesis, it holds
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thatz( ) (n):—+—+---+—.
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An identity proven in class says that Y (—1)k1 (7;;) = [m = 0] for all m € N. Applied
k=0
n+1 1
to m = n + 1, this yields > (=1)*! (n—ll;_ ) =[n+1=0]=0.
k=0
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First, observe that any positive integer k satisfies

< n >:n(n—1)---(n—k+2): E-(n+1D)(n)n—1)---(n—k+2)
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But the recurrence relation of the binomial coefficients leads to
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here, we split off the addend for kK = n + 1 from the first sum,
and rewrote the second sum using
+
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(using the induction hypothesis and using ( :L_ 1) = 0)
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This means that A(n + 1) holds.
So we know that .4(0) holds, and if n € N, and A(n) holds, then it follows that A(n+ 1)
holds. Hence, by induction, A(n) holds for all n € N. Hence, for all n € N, it follows that
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EXERCISE 3

PART A
(2n)!
on

Exercise 0.2. Let n € N. Then the number of 2-multijective maps from [2n] to [n] is
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Proof. Let r represent the number of 2-multijective maps from [2n] to [n]. We will first
count the number of permutations o of [2n]. On the one hand, there are (2n)! of them. We
now go about counting these another way.

To construct a permutation o of [2n], proceed as follows: First, choose a 2-multijective
map m from [2n] to [n]. There are r ways to do this. Now, given this m, we define, for
each i € [n], the two values o (2i — 1) and o (2i) to be the two preimages of ¢ under m in
some order. There are 2" ways to do this (because for each of the n elements i € [n], we
get to choose the order of the two preimages of i, and there are 2 choices for this order).
Thus, in total, the procedure can be performed in r - 2" many ways. Since it constructs
every permutation o of [2n] exactly once (indeed, the 2-multijection m that was used to
construct o can be reconstructed from o, because it is the unique map [2n] — [n] sending
both o (2 — 1) and o (2i) to i for all i € [n]), we thus see that the number of permutations
o of 2n]isr- 2™

Comparing our two expressions for this number, we conclude that r - 2" = (2n)!. So

2n)!
r o= (QLH) And thus, the number of 2-multijective maps from [2n] to [n] is given by
)]
(2n) -
on
PART B
Exercise 0.3. Let n € N. The number of all set compositions C of [2n] such that each part
2n)!
of C has size 2 is (22) .

Proof. Let J be the set of 2-multijective maps from [2n] to [n], and C be the set of all
set compositions C of [2n] such that every part of C has exactly two elements. We will
construct a bijection between these two sets.

First, define a map « : J — C such that if j € J, then a maps j to a set composition
¢ of [2n] into n parts such that, for each i € [n], the i-th part of ¢ is the set of the two
preimages of ¢ under j. Clearly, this map is well defined, as the number of elements in the
image of each j € J is equal to n, which is also equal to the number of parts of each ¢ € C.
And further, each j € J is a 2-multijection, so that each element of [n] will have exactly 2
preimages under j, which is also equal to the size of each part of each ¢ € C.

Now let 5 : C' — J be defined such that, if ¢ € C, then 8 maps ¢ to a 2-multijection
J € J such that, for each ¢ € [n], the two elements of the i-th part of ¢ make up the preimage
of ¢ under j. Clearly, this map is well defined, as each ¢ € C' will have n parts, and also
each j € J will have exactly n image elements. And also, each part of each ¢ € C' will have
2 elements, which is the number of preimages of each ¢ € [n] under each j € J.

We will now show that o and g are mutually inverse. First, let j € J. We will show
that (Boa)(j) = j. By definition, a maps j to a set composition ¢ of [2n] such that, for each
i € [n], the i-th part of ¢ comprises the two preimages of ¢ under j. Then § maps this new
set composition to a 2-multijective map such that, for each i € [n], the preimages of i are
the elements of the i-th part of ¢, which are precisely the two preimages of ¢ under j. Hence,
this map is precisely 7, and (8o «)(j) = j. The proof that, for each ¢ € C, (a0 f)(c) = ¢ is
very similar.

Hence, a and (8 are two functions which are well defined and mutually inverse, and thus
they define a bijection between C' and J, which means that |C| = |J|. In part (a), we

2n)! 2n)!
showed that |J| = (2—2) So then |C| = (2—2) And thus, the number of set compositions
2n)!
C of [2n] such that each part of C has size 2 is equal to (272) : O
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PArRT C
(2n)!

2np!’

Exercise 0.4. Let n € N. The number of perfect matchings of [2n] is equal to

Proof. Let M be the number of perfect matchings of [2n]. We will count the number of all

set compositions C of [2n] such that each part of C has 2 elements. In part (b), we showed
|

2
that there are (

such set compositions.

n

Alternatively, we can construct such a set composition C of [2n] by first choosing which
elements will be together in some part of C, without yet choosing in which part of C they
will be in. In other words, we first choose the set of all parts of C, but we don’t yet decide
which of them will be the first part, which the second, and so on. This is the same as
choosing a perfect matching of [2n], of which there are M ways to do. We next select which
part of this matching will represent which part of C by choosing a (total) order on the parts
of the matching. Since |[2n]| = 2n, our perfect matching of [2n] must have exactly n parts,
and hence, there are n! different orderings which these parts can take. Clearly, these steps
will create a unique set composition C of [2n] such that each part of C has 2 elements. And
because there are M ways of selecting the perfect matching of [2n], and n! different ways to
order the parts of this perfect matching, there are Mn! of such set compositions.

2n)! 2n)!

Hence, it follows that Mn! = (2L), so M = (277,)‘ Thus, the number of prefect
n nn‘

2n)!

(2n) .

2np!”

matchings of [2n] is equal to

EXERCISE 5

Exercise 0.5. Let n € N and d € N with d > 1. Then the number of 1-even n-tuples in
1
[d]™ is equal to §(d" + (d—2)").

Proof. Forget that n is fixed. (But d will be fixed.)

For each n € N, let ¢,, represent the number of 1-even n-tuples in [d]".

We will first find a recursive formula for ¢,,. Fix a positive integer n. We would like to
count the number of 1-even n-tuples in [d]". Let s be such a tuple. Then we consider two
possible cases for the final entry of s.

Case 1: The final entry of s is not equal to 1. If s is 1-even, and the last entry of s is
not equal to 1, then there must be an even number of entries which are equal to 1 among
the first n — 1 entries of s. This means that, if the first n — 1 entries are considered as an
(n — 1)-tuple, that tuple would be 1-even. Hence, s is formed by concatenating an element
of [d] which is not equal to 1 onto the end of a 1-even (n — 1)-tuple in [d|"~!. Hence, there
are (d — 1)t,—; ways of forming a 1-even n-tuple whose last entry is not equal to 1.

Case 2: The final entry of s is equal to 1. If s is 1-even, and the last entry of s is equal
to 1, then there must be an odd number of entries which are equal to 1 among the first n —1
entries of s. This means that, if the first n — 1 entries are considered as an (n — 1)-tuple,
that tuple would not be 1-even. Hence, s is formed by concatenating 1 onto the end of a
non-1-even (n — 1)-tuple in [d|"~'. Since a tuple is either 1-even, or not 1-even, and there
are d"~! elements of [d]"~!, we can conclude that the number of (n — 1)-tuples which are
not l-even is equal to d"~! —t,_,. Hence, there are d"~! — t,,_; ways of forming a l-even
n-tuple whose last entry is equal to 1.

Since a 1-even n-tuple must fall either into case 1, or into case 2, but certainly not both,
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it follows that
ty=(d— Dty +(d" ™ —ty_1) = (d— Dty +d" . (2)

Now, the claim of the exercise will be proven by induction on n. Unfix n. For each n € N|
1
let A(n) be the statement “the number of 1-even tuples of [d]" is equal to §(d" +(d—2)")".

Observe that if n = 0, there is only one element of [d]", which is the empty tuple. This
tuple has no elements, so zero of the entries of this tuple are equal to 1. Hence, this tuple is

1
1-even, so there is one 1-even tuple of [d|" (for n = 0). And observe that §(do +(d—2)°%) =

1
5(1 + 1) = 1. Hence, A(0) holds.

Now suppose that, for some n € N, we knew that A(n) is true. We will show that
this fact would imply that A(n + 1) is true. By the induction hypothesis, we know that

1
= §(d" + (d — 2)™). Therefore, (2) (applied to n + 1 instead of n) yields

tnar = (d — 2)t, + d"

— (d- 2)1(dn A=) +d
1

1
dn+1 d" Z(d =2 n+1 d"
=3 +o(d=2"" +
1 1
dn+1 (d-=2 n+1
=5d" +5(d-2)
1
— §(dn+1 _|_ (d _ 2)n+1).

1
This means that there are §(d"+1 + (d —2)"*1) 1-even (n + 1)-tuples in [d]"™, so A(n + 1)

holds.
We now know that A(0) holds, and for each n € N, A(n) being true would imply that
A(n + 1) is true. Hence, by induction, A(n ) is true for all n € N. In other words, the

number of 1-even n-tuples in [d]" is equal to 2(d” (d—2)"). O
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