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Mar 2018)
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Recall the following:

• If n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

• We use the Iverson bracket notation.

• If a ∈ N and b ∈ N, then sur (a, b) denotes the number of surjective maps
from [a] to [b].

0.1. Another binomial identity

Exercise 1. Let n ∈N. Prove that

n

∑
k=1

(−1)k−1

k

(
n
k

)
=

1
1
+

1
2
+ · · ·+ 1

n
.

[Hint: How does the left hand side grow when n is replaced by n + 1 ?]

0.2. More on inclusion/exclusion

Exercise 2. Let A, B and C be three finite sets such that C ⊆ B. Let a = |A|,
b = |B| and c = |C|.

(a) Prove that the number of maps f : A→ B satisfying C ⊆ f (A) is

c

∑
k=0

(−1)k
(

c
k

)
(b− k)a .

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw-template.tex
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(b) Prove that the number of surjective maps f : A→ B is

sur (a, b) =
b

∑
k=0

(−1)k
(

b
k

)
(b− k)a =

b

∑
k=0

(−1)b−k
(

b
k

)
ka.

[This is a formula I mentioned but did not prove in class; of course, you cannot
use it without proof.]

(c) Prove that
c

∑
k=0

(−1)k
(

c
k

)
(b− k)a = 0

whenever c > a.
(d) Prove that

a

∑
k=0

(−1)k
(

a
k

)
(b− k)a = a!.

[Hint: For part (a), notice that a map f : A→ B satisfies C ⊆ f (A) if and only
if the image of f misses none of the c elements of C. Parts (b), (c) and (d) should
follow from (a).]

0.3. Multijections, set compositions and set partitions

Let us introduce set partitions and set compositions. These are important concepts
in combinatorics, and we will see more of them.

Definition 0.1. Let X be a finite set.
(a) A set composition of X means a tuple (S1, S2, . . . , Sk) of disjoint nonempty

subsets of X such that X = S1 ∪ S2 ∪ · · · ∪ Sk.
(b) A set partition of X means a set {S1, S2, . . . , Sk} of disjoint nonempty subsets

of X (written in such a way that S1, S2, . . . , Sk are distinct) such that X = S1 ∪
S2 ∪ · · · ∪ Sk.

(c) The parts of a set composition (S1, S2, . . . , Sk) are the sets S1, S2, . . . , Sk.
(d) The parts of a set partition {S1, S2, . . . , Sk} are the sets S1, S2, . . . , Sk.

Example 0.2. For this example, let X = {1, 2, 3}.
(a) The 2-tuple ({1, 3} , {2}) is a set composition of X, since {1, 3} and {2} are

disjoint nonempty subsets of X satisfying X = {1, 3} ∪ {2}.
(b) The 2-tuple ({1, 3} , {2, 3}) is not a set composition of X, since {1, 3} and
{2, 3} are not disjoint.

(c) The 3-tuple ({1, 3} , {} , {2}) is not a set composition of X, since {} is not
nonempty.

(d) The 2-tuple ({1} , {3}) is not a set composition of X, since X 6= {1} ∪ {3}.
(e) The set {{1, 3} , {2}} is a set partition of X, since {1, 3} and {2} are disjoint

nonempty subsets of X satisfying X = {1, 3} ∪ {2}.
(f) If (S1, S2, . . . , Sk) is a set composition of X, then {S1, S2, . . . , Sk} is a set

partition of X. The converse also holds if you assume S1, S2, . . . , Sk to be distinct.
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(g) The set compositions ({1, 3} , {2}) and ({2} , {1, 3}) of X are distinct, but
the set partitions {{1, 3} , {2}} and {{2} , {1, 3}} are identical.

This illustrates the difference between set compositions and set partitions: The
former come with an ordering of their parts, while the latter don’t. This is why set
compositions are often called ordered set partitions.

Example 0.3. (a) Here are all set compositions of the set X = {1, 2, 3}:
({1, 2, 3}) ,
({1, 2} , {3}) , ({1, 3} , {2}) , ({2, 3} , {1}) ,
({1} , {2, 3}) , ({2} , {1, 3}) , ({3} , {1, 2}) ,
({1} , {2} , {3}) , ({1} , {3} , {2}) , ({2} , {1} , {3}) ,
({2} , {3} , {1}) , ({3} , {1} , {2}) , ({3} , {2} , {1}) .

And here are the same set compositions, drawn as pictures (each part of the set
composition corresponds to a colored blob):

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3
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Here, the colors have been chosen as follows: The green-colored blob is the first
part of the set composition; the red-colored blob is the second; the yellow-colored
blob is the third.

(b) Here are all set partitions of the set X = {1, 2, 3}:

{{1, 2, 3}} , {{1, 2} , {3}} , {{1, 3} , {2}} , {{2, 3} , {1}} ,
{{1} , {2} , {3}} .

And here are the same set partitions, drawn as pictures (each part of the set
partition corresponds to a blob):

1 2

3

1 2

3

1 2

3

1 2

3

1 2

3

Definition 0.4. Let X be a set. Let k ∈N.
(a) A set composition of X into k parts is a set composition of X having exactly k

parts.
(b) A set partition of X into k parts is a set partition of X having exactly k parts.

For example, ({1, 5} , {2} , {3, 4, 6, 7}) is a set composition of [7] into 3 parts.
There are several natural things to be counted now:

• set compositions of a given set X;

• set partitions of a given set X;

• set compositions of a given set X into k parts for a given k ∈N;

• set partitions of a given set X into k parts for a given k ∈N.

Let’s only briefly comment on the first two questions, and then discuss the last
two.

• If X is an n-element set, then the number of set compositions of X is the n-th ordered Bell
number B̃ (n). Here is a list of the first values of B̃ (n) (see A000670 at OEIS for more):

B̃ (0) = 1, B̃ (1) = 1, B̃ (2) = 3, B̃ (3) = 13,

B̃ (4) = 75, B̃ (5) = 541, B̃ (6) = 4683, B̃ (7) = 47293.

No explicit formulas for B̃ (n) are known. A quick way to compute B̃ (n) for arbitrary n ∈N

is using the recursive equation

B̃ (n) =
n−1

∑
i=0

(
n
i

)
B̃ (i) for all n > 0.

https://en.wikipedia.org/wiki/Ordered_Bell_number
https://en.wikipedia.org/wiki/Ordered_Bell_number
https://oeis.org/A000670
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(The proof is easy: Classify all set compositions of [n] according to the size of their last part,
and treat all the remaining parts as a set composition of a smaller set.)

• If X is an n-element set, then the number of set partitions of X is the n-th Bell number B (n).
Here is a list of the first values of B (n) (see A000110 at OEIS for more):

B (0) = 1, B (1) = 1, B (2) = 2, B (3) = 5,
B (4) = 15, B (5) = 52, B (6) = 203, B (7) = 877.

No explicit formulas for B (n) are known. A quick way to compute B (n) for arbitrary n ∈N

is using the recursive equation

B (n + 1) =
n

∑
i=0

(
n
i

)
B (i) for all n ∈N.

(The proof is easy: Classify all set partitions of [n + 1] according to how many elements lie
in the same part as n + 1, and treat all the remaining parts as a set partition of a smaller set.)

Now, let us study the other two questions.

Definition 0.5. Let X be a set. Let k ∈N.
(a) We let SCk (X) denote the set of all set compositions of X into k parts.
(b) We let SPk (X) denote the set of all set partitions of X into k parts.

Proposition 0.6. Let X be a finite set. Let k ∈N. Then, |SCk (X)| = sur (|X| , k).

Proof of Proposition 0.6 (sketched). For any sets A and B, we let Sur (A, B) be the set
of all surjections from A to B. If A and B are finite sets, then

|Sur (A, B)| = (the number of surjections from A to B) = sur (|A| , |B|)

(as we have shown in class). Applying this to A = X and B = [k], we obtain

|Sur (X, [k])| = sur

|X| , |[k]|︸︷︷︸
=k

 = sur (|X| , k) .

Here is an outline of the remainder of the proof: We want to find |SCk (X)|; that
is, we want to count all set compositions (S1, S2, . . . , Sk) of X into k parts. We can
construct such a set composition by choosing, for each x ∈ X, which part Si it shall
belong to1. This information can be encoded as a map f : X → [k] (which sends
each x ∈ X to the i ∈ [k] satisfying x ∈ Si); this map f has to be surjective (since
the parts Si should be nonempty, so each Si must have at least one x ∈ X in it),
but otherwise is subject to no constraints. Hence, the number of set compositions
(S1, S2, . . . , Sk) of X into k parts equals the number of surjective maps X → [k]; in
other words, it equals |Sur (X, [k])| = sur (|X| , k). This proves Proposition 0.6.

Here is a more rigorous way to make this argument (without vague terms such as “information”
and “encoded”). We are going to construct a bijection SCk (X) → Sur (X, [k]) (that is, a bijection
between the set compositions of X into k parts and the surjections from X to [k]). Here is how:

1Each x ∈ X must belong to exactly one part of (S1, S2, . . . , Sk) (because (S1, S2, . . . , Sk) is a set
composition of X).

https://en.wikipedia.org/wiki/Bell_number
https://oeis.org/A000110
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• We define a map Φ : SCk (X) → Sur (X, [k]) to be the map that sends any set composition
(S1, S2, . . . , Sk) ∈ SCk (X) to the map

f : X → [k] ,
x 7→ (the unique i ∈ [k] such that x ∈ Si) .

It is easy to see that Φ is well-defined (indeed, for any set composition (S1, S2, . . . , Sk), the
resulting map f : X → [k] is surjective, because the sets S1, S2, . . . , Sk are nonempty).

• We define a map Ψ : Sur (X, [k]) → SCk (X) to be the map that sends any surjective map
f : X → [k] to the set composition (S1, S2, . . . , Sk) ∈ SCk (X), where

Si = f−1 ({i}) = {x ∈ X | f (x) = i} for each i ∈ [k] .

Again, it is easily shown that this map Ψ is well-defined.

It is easy to check that the maps Φ and Ψ are mutually inverse, and thus are bijections. Hence,
we have found a bijection SCk (X)→ Sur (X, [k]). This lets us conclude that

|SCk (X)| = |Sur (X, [k])| = sur (|X| , k) .

Thus, Proposition 0.6 is proven.

Next, let us count set partitions of a given finite set X into a given number of
parts:

Proposition 0.7. Let X be a finite set. Let k ∈N. Then, |SPk (X)| = sur (|X| , k)
k!

.

Let us give an informal proof of this proposition. A formalization of it (omitting
only really straightforward details) is given in the Appendix below.

Outline of an informal proof of Proposition 0.7. Let us count the set compositions
(S1, S2, . . . , Sk) of X into k parts in two different ways:

• On the one hand, this number is |SCk (X)| = sur (|X| , k) (by Proposition 0.6).

• On the other hand, we can construct a set composition (S1, S2, . . . , Sk) of
X into k parts by first choosing a set partition of X into k parts (there are
|SPk (X)| ways to do this), and then choosing how to order it2 (there are k!
ways to do this, since it has k distinct parts). Thus, the number of set compo-
sitions (S1, S2, . . . , Sk) of X into k parts equals |SPk (X)| · k!.

Comparing these two results, we conclude that sur (|X| , k) = |SPk (X)| · k!. Thus,
sur (|X| , k)

k!
= |SPk (X)|. This proves Proposition 0.7.

2i.e., in what order to list its parts
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The above proof outline glances over technicalities such as what “ordering” a set
partition means, and why there are k! ways to do this; this is the reason why I am
calling it informal and give a more complete version in the Appendix below.

The method we used to prove Proposition 0.7 is another example of the “shep-
herd’s principle” (“To count sheep, you count the legs and then you divide by
4”). Our sheep here were the set partitions in SPk (X), whereas their legs were the
set compositions in SCk (X). A leg (S1, S2, . . . , Sk) ∈ SCk (X) belongs to the sheep
{S1, S2, . . . , Sk} ∈ SPk (X). This principle (also known as “proof by multijection”)
is useful whenever the legs are easier to count than the sheep. (For example, in
the above case, the legs were in bijection with the surjections X → [k], whereas the
sheep were not in a visible bijection with anything.)

Definition 0.8. Let n ∈N and k ∈N. The (n, k)-th Stirling number of the 2nd kind is defined to be
sur (n, k)

k!
; it is commonly denoted by

{
n
k

}
or by S (n, k).

Proposition 0.7 shows that
{

n
k

}
is the number of set partitions of a given n-element set into k

parts. Thus, in particular,
{

n
k

}
is a nonnegative integer.

The recurrence relation sur (n, k) = k · (sur (n− 1, k) + sur (n− 1, k− 1)) for arbitrary n > 0
and k > 0 (see, for example, Proposition 3.12 in classwork from 21 February 2018) now leads to
the following recurrence relations for Stirling numbers of the 2nd kind:{

n
k

}
= k

{
n− 1

k

}
+

{
n− 1
k− 1

}
.

Meanwhile, Exercise 2 (b) leads to{
a
b

}
=

1
b!

b

∑
k=0

(−1)b−k
(

b
k

)
ka.

Without knowing about set partitions, would you have guessed that the right hand side is a
nonnegative integer?

Now, I want you to count a special kind of set partitions:

Definition 0.9. A perfect matching of a set X means a set partition P of X such
that each part of P has size 2.

Example 0.10. (a) The perfect matchings of the set [4] are

{{1, 2} , {3, 4}} , {{1, 3} , {2, 4}} , {{1, 4} , {2, 3}} .

Here are the same 3 perfect matchings, drawn as blobs:

1

2 3

4 1

2 3

4 1

2 3

4

https://en.wikipedia.org/wiki/Stirling_numbers_of_the_second_kind
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb21.pdf
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(b) The set [6] has 15 perfect matchings; three of them are

{{1, 2} , {3, 4} , {5, 6}} , {{1, 4} , {2, 6} , {3, 5}} , {{1, 6} , {2, 5} , {3, 4}} .

Clearly, a perfect matching of a finite set X must have precisely |X| /2 parts (since
|X| is the sum of the sizes of all parts, but these sizes all equal 2). Thus, a perfect
matching of a finite set X can only exist when |X| is even.

Definition 0.11. Let A and B be two sets. Let j ∈ N. A map f : A → B will be
called j-multijective if for each b ∈ B, we have

(the number of a ∈ A satisfying f (a) = b) = j.

In the classical picture illustrating a map, a map f : A → B is j-multijective if
and only if each element of B is hit by exactly j arrows.

For example, a 1-multijective map is the same as a bijective map (make sure you
understand why).

For another example, Proposition 0.13 below says that the map π in that proposition is k!-
multijective.

Exercise 3. Let n ∈N. Prove the following:

(a) The number of all 2-multijective maps from [2n] to [n] is
(2n)!

2n .

(b) The number of all set compositions C of [2n] such that each part of C has

size 2 is
(2n)!

2n .

(c) The number of all perfect matchings of [2n] is
(2n)!
2nn!

.
[Hint: You don’t need to imitate the level of detail that is given in the Ap-

pendix.]

0.4. “Image-injective maps”

If S is a set, then a map f : S → S is said to be image-injective3 if and only if its
restriction f | f (S) is injective. For example:

• The map [4]→ [4] sending 1, 2, 3, 4 to 4, 1, 4, 1 (respectively) is image-injective
(since its image is {1, 4}, and its restriction to {1, 4} is injective).

• The map [6]→ [6] sending 1, 2, 3, 4, 5, 6 to 2, 4, 4, 6, 6, 2 (respectively) is image-
injective (since its image is {2, 4, 6}, and its restriction to {2, 4, 6} is injective).

3This is my terminology; don’t expect to see it in the literature.
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• Any injective map f : S → S is image-injective. So is any constant map (i.e.,
any map f : S→ S such that all values of f are equal).

• The map [3]→ [3] sending 1, 2, 3 to 2, 2, 1 (respectively) is not image-injective
(since its restriction to its image {1, 2} is not injective).

As usual, if S is a set, and f : S→ S is a map, then f 2 means the map f ◦ f : S→
S. (More generally, f k means the map f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸

k times

whenever k ∈N.)

Exercise 4. Let n ∈N.
(a) Prove that a map f : [n] → [n] is image-injective if and only if it has the

following property: For any a ∈ [n] and b ∈ [n] satisfying f 2 (a) = f 2 (b), we
must have f (a) = f (b).

(b) Prove that the number of image-injective maps [n]→ [n] is
n
∑

k=0

(
n
k

)
k!kn−k.

(c) Prove that the number of image-injective maps [n] → [n] is divisible by n
whenever n is positive.

[Hint: This is rather similar to [Fall2017-HW6os, Exercise 1]; feel free to imitate
the solution of the latter exercise.]

0.5. Counting certain tuples

Exercise 5. Let n ∈N, and let d be a positive integer.
An n-tuple (x1, x2, . . . , xn) ∈ [d]n will be called 1-even if the number 1 occurs

in it an even number of times (i.e., the number of i ∈ [n] satisfying xi = 1 is
even). (For example, the 3-tuples (1, 5, 1) and (3, 2, 6) are 1-even (yes, 0 is an
even number), while the 3-tuple (2, 1, 4) is not.)

Prove that the number of 1-even n-tuples in [d]n is
1
2
(
dn + (d− 2)n).

[Hint: Set e = d− 1; then, (d− 2)n = (e− 1)n and dn = (e + 1)n. There might
also be a bijective proof – after multiplying by 2 –, but I don’t know it.]

0.6. And more binomial identities

Exercise 6. (a) Let n ∈N and m ∈N. Prove that every j ∈ {0, 1, . . . , n} satisfies

n

∑
k=0

(
m + k

k

)(
n− k

j

)
=

(
n + m + 1
m + j + 1

)
.

(b) Let x and y be two real numbers. Let z = x + y. Let n ∈ N and m ∈ N.
Prove that

xm+1
n

∑
k=0

(
m + k

k

)
ykzn−k =

n+m+1

∑
i=m+1

(
n + m + 1

i

)
xiy(n+m+1)−i
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and

yn+1
m

∑
k=0

(
n + k

k

)
xkzm−k =

m

∑
i=0

(
n + m + 1

i

)
xiy(n+m+1)−i

and

xm+1
n

∑
k=0

(
m + k

k

)
ykzn−k + yn+1

m

∑
k=0

(
n + k

k

)
xkzm−k = zn+m+1.

(c) Let n ∈N. Prove that

n

∑
k=0

(
n + k

k

)
1
2k = 2n.

[Hint: Part (a) is a restatement of something proven in class. Derive (b) from
(a), and (c) from (b).]

0.7. Appendix: Rigorous proof of Proposition 0.7

Let us now give a proof of Proposition 0.7 that keeps to the standards of rigor in
most parts of mathematics. First, we need a lemma from the “isn’t this obvious?”
department:

Lemma 0.12. Let k ∈ N. Let x1, x2, . . . , xk be k distinct objects. Let y1, y2, . . . , yk
be k objects such that {x1, x2, . . . , xk} = {y1, y2, . . . , yk}. Then, there exists a
permutation σ of [k] such that every i ∈ [k] satisfies yi = xσ(i).

Roughly speaking, Lemma 0.12 says that if k distinct objects x1, x2, . . . , xk form
the same set as k objects y1, y2, . . . , yk (which are not a-priori required to be distinct,
but it follows easily that they are), then the objects y1, y2, . . . , yk are just the objects
x1, x2, . . . , xk rearranged (the rearrangement is what the permutation σ is meant to
take care of). Convince yourself that this is plausible before (or instead of) reading
the following proof. Notice that x1, x2, . . . , xk need to be distinct in Lemma 0.12;
otherwise, the lemma would be easily disproven (e.g., we have {2, 2, 3} = {2, 3, 3},
but there is no way to get 2, 3, 3 by rearranging 2, 2, 3).

Proof of Lemma 0.12 (sketched). For each i ∈ [k], there exists some j ∈ [k] such that yi = xj (since
yi ∈ {y1, y2, . . . , yk} = {x1, x2, . . . , xk}). Moreover, this j is unique (because if j1 and j2 were two
such j’s, then we would have yi = xj1 and yi = xj2 , thus xj1 = y = xj2 , thus j1 = j2 because
x1, x2, . . . , xk are distinct). Let us denote this j by σ (i). Thus, we have defined a σ (i) ∈ [k] for each
i ∈ [k]. In other words, we have defined a map σ : [k] → [k]. Clearly, this map has the property
that every i ∈ [k] satisfies yi = xσ(i) (because this is how σ (i) was defined). Thus, in order to prove
Lemma 0.12, it suffices to check that this map σ is a permutation of [k].

Let h ∈ [k]. Then, xh ∈ {x1, x2, . . . , xk} = {y1, y2, . . . , yk}. In other words, there exists some
i ∈ [k] such that xh = yi. Consider this i. Then, σ (i) is the unique j ∈ [k] such that yi = xj (by the
definition of σ (i)). But this unique j must be h (since h ∈ [k] and yi = xh). Hence, σ (i) = h.

Now, forget that we fixed h. We thus have shown that for each h ∈ [k], there exists some i ∈ [k]
such that σ (i) = h. In other words, the map σ is surjective. Since σ is a map from [k] to [k],
this yields that σ is bijective (by the Pigeonhole Principle for surjections). In other words, σ is a
permutation of [k]. As we said, this completes the proof of Lemma 0.12.
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Proposition 0.13. Let X be a set, and let k ∈ N. Let π : SCk (X) → SPk (X)
be the map that sends each set composition (S1, S2, . . . , Sk) to the set partition
{S1, S2, . . . , Sk}. (So what the map π does is forgetting the order of the parts. In
the language of Example 0.3, this means forgetting the colors of the blobs.)

Then, for each set partition P ∈ SPk (X), we have

(the number of all C ∈ SCk (X) satisfying π (C) = P) = k!.

Example 0.14. For this example, pick X = {1, 2, 3} and k = 2 and P =
{{1, 3} , {2}}. Then, Proposition 0.13 says that the number of all set composi-
tions C ∈ SCk (X) satisfying π (C) = P is 2! = 2. These two set compositions are
({1, 3} , {2}) and ({2} , {1, 3}).

Proof of Proposition 0.13 (sketched). Let P ∈ SPk (X). Thus, P is a set partition of X
into k parts. We can thus write P as P = {T1, T2, . . . , Tk}, where T1, T2, . . . , Tk are
some disjoint nonempty subsets of X satisfying T1 ∪ T2 ∪ · · · ∪ Tk = X. Consider
these T1, T2, . . . , Tk. These sets T1, T2, . . . , Tk are nonempty and disjoint, and there-
fore distinct (because if two of them were equal, then their disjointness would force
them to be empty).

The rest is now easy: Informally speaking, the set compositions C ∈ SCk (X) sat-
isfying π (C) = P are just all possible ways to rearrange the k-tuple (T1, T2, . . . , Tk)
(this follows from Lemma 0.12); thus, there are k! of them (in fact, the sets T1, T2, . . . , Tk
are distinct, so any way of rearranging them results in a different k-tuple). This
proves Proposition 0.13.

Here is a more formal way to make this argument (read this if you care; I don’t require this
level of rigor in solutions): The k-tuple (T1, T2, . . . , Tk) is a set composition of X into k parts. Thus,

for each permutation σ of [k], the k-tuple
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
also is a set composition of X

into k parts, hence belongs to SCk (X). Moreover, this set composition
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
is a

C ∈ SCk (X) satisfying π (C) = P (because π
((

Tσ(1), Tσ(2), . . . , Tσ(k)

))
=
{

Tσ(1), Tσ(2), . . . , Tσ(k)

}
=

{T1, T2, . . . , Tk} = P). Hence, we can define a map

α : {permutations of [k]} → {C ∈ SCk (X) | π (C) = P} ,

σ 7→
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
.

This map is injective4 and surjective5; thus, it is bijective. We have therefore found a bijective map

4Proof. Let σ and τ be two permutations of [k] such that α (σ) = α (τ). We must show that σ = τ.
Let i ∈ [k]. The definition of α yields α (σ) =

(
Tσ(1), Tσ(2), . . . , Tσ(k)

)
and α (τ) =(

Tτ(1), Tτ(2), . . . , Tτ(k)

)
. Hence, the equality α (σ) = α (τ) rewrites as

(
Tσ(1), Tσ(2), . . . , Tσ(k)

)
=(

Tτ(1), Tτ(2), . . . , Tτ(k)

)
. Thus, Tσ(i) = Tτ(i). Since the sets T1, T2, . . . , Tk are distinct, this entails

σ (i) = τ (i).
Now, forget that we fixed i. We thus have shown that σ (i) = τ (i) for each i ∈ [k]. Therefore,

σ = τ. This completes the proof of the injectivity of α.
5Proof. Let D ∈ {C ∈ SCk (X) | π (C) = P}. We must prove that D = α (σ) for some permutation
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from {permutations of [k]} to {C ∈ SCk (X) | π (C) = P}. Hence,

|{permutations of [k]}| = |{C ∈ SCk (X) | π (C) = P}|
= (the number of all C ∈ SCk (X) satisfying π (C) = P) ,

so that

(the number of all C ∈ SCk (X) satisfying π (C) = P) = |{permutations of [k]}| = k!.

This proves Proposition 0.13.

Proof of Proposition 0.7. Proposition 0.6 yields |SCk (X)| = sur (|X| , k). Thus,

sur (|X| , k) = |SCk (X)|
= (the number of all C ∈ SCk (X))

= ∑
P∈SPk(X)

(the number of all C ∈ SCk (X) satisfying π (C) = P)︸ ︷︷ ︸
=k!

(by Proposition 0.13)(
here, we have subdivided our count according

to the value of π (C)

)
= ∑

P∈SPk(X)

k! = |SPk (X)| · k!.

Dividing this equality by k!, we find
sur (|X| , k)

k!
= |SPk (X)|. This proves Proposi-

tion 0.7.
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σ of [k].
We have D ∈ {C ∈ SCk (X) | π (C) = P}. In other words, D ∈ SCk (X) and π (D) = P.

From D ∈ SCk (X), we conclude that D is a set composition of X into k parts. We can thus
write D as D = (D1, D2, . . . , Dk), where D1, D2, . . . , Dk are some disjoint nonempty subsets of X
satisfying D1 ∪ D2 ∪ · · · ∪ Dk = X. Consider these D1, D2, . . . , Dk.

From D = (D1, D2, . . . , Dk), we conclude that π (D) = π ((D1, D2, . . . , Dk)) =
{D1, D2, . . . , Dk} (by the definition of π), so that {D1, D2, . . . , Dk} = π (D) = P =
{T1, T2, . . . , Tk}. In other words, {T1, T2, . . . , Tk} = {D1, D2, . . . , Dk}. Since T1, T2, . . . , Tk are
distinct, we can thus apply Lemma 0.12 to xi = Ti and yi = Di. We conclude that there ex-
ists a permutation σ of [k] such that every i ∈ [k] satisfies Di = Tσ(i). Consider this σ. We have

(D1, D2, . . . , Dk) =
(

Tσ(1), Tσ(2), . . . , Tσ(k)

)
(since every i ∈ [k] satisfies Di = Tσ(i)). The definition

of α yields
α (σ) =

(
Tσ(1), Tσ(2), . . . , Tσ(k)

)
= (D1, D2, . . . , Dk) = D.

Hence, we have found a permutation σ of [k] such that D = α (σ). This completes our proof of
the surjectivity of α.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw6os.pdf
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