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Recall that N denotes the set {0, 1, 2, . . .}.
Recall that if n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

0.1. Instances of the “Laurent phenomenon”: Sequences that
produce integers despite division in their definition

There is a whole genre of theorem where you define a sequence recursively and
then it turns out that all entries of the sequence are integers, although this is not
obvious from the definition.

Here are two results from this genre, illustrating strategic use of induction.

Exercise 1. Define a sequence (t0, t1, t2, . . .) of positive rational numbers recur-
sively by setting

t0 = 1, t1 = 1, t2 = 1, and

tn =
1 + tn−1tn−2

tn−3
for each n ≥ 3.

(For example, t3 =
1 + t2t1

t0
=

1 + 1 · 1
1

= 2 and t4 =
1 + t3t2

t1
=

1 + 2 · 1
1

= 3.)

(a) Prove that tn+2 = 4tn − tn−2 for each n ≥ 2.
(b) Prove that tn ∈N for each n ∈N.
[Hint: First prove part (a) by induction on n. Then prove part (b) by induction

on n, using part (a).]
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Remark 0.1. The sequence (t0, t1, t2, . . .) defined in Exercise 1 is the sequence
A005246 in the OEIS (Online Encyclopedia of Integer Sequences). Its first values
are

t0 = 1, t1 = 1, t2 = 1, t3 = 2, t4 = 3,
t5 = 7, t6 = 11, t7 = 26, t8 = 41, t9 = 97.

Exercise 1 (b) is an instance of the Laurent phenomenon (see, e.g., [FomZel02,
Example 3.2]).

Exercise 1 appears in [Grinbe16, Proposition 2.64].

Solution to Exercise 1. First, we notice that the recursive definition of the sequence
(t0, t1, t2, . . .) yields

t3 =
1 + t3−1t3−2

t3−3
=

1 + t2t1

t0
=

1 + 1 · 1
1

(since t0 = 1 and t1 = 1 and t2 = 1)

= 2.

Furthermore, the recursive definition of the sequence (t0, t1, t2, . . .) yields

t4 =
1 + t4−1t4−2

t4−3
=

1 + t3t2

t1
=

1 + 2 · 1
1

(since t1 = 1 and t2 = 1 and t3 = 2)

= 3.

Thus, t2+2 = t4 = 3. Comparing this with 4 t2︸︷︷︸
=1

− t2−2︸︷︷︸
=t0=1

= 4 · 1− 1 = 3, we obtain

t2+2 = 4t2 − t2−2.
(a) We shall solve Exercise 1 (a) by induction on n:
Induction base: We have already shown that t2+2 = 4t2 − t2−2. In other words,

Exercise 1 (a) holds for n = 2. This completes the induction base.
Induction step: Let m ≥ 2 be an integer. Assume that Exercise 1 (a) holds for

n = m. We must prove that Exercise 1 (a) holds for n = m + 1.
We have assumed that Exercise 1 (a) holds for n = m. In other words, we have

tm+2 = 4tm − tm−2.
We have m ≥ 2 and thus m + 1 ≥ 2 + 1 = 3. Thus, the recursive definition of the

sequence (t0, t1, t2, . . .) yields

tm+1 =
1 + t(m+1)−1t(m+1)−2

t(m+1)−3
=

1 + tmtm−1

tm−2
.

Multiplying this equality by tm−2, we obtain tm−2tm+1 = 1 + tmtm−1. In other
words,

tm−2tm+1 − 1 = tmtm−1. (1)

https://oeis.org/A005246
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Also, m + 3 ≥ 3. Thus, the recursive definition of the sequence (t0, t1, t2, . . .)
yields

tm+3 =
1 + t(m+3)−1t(m+3)−2

t(m+3)−3
=

1 + tm+2tm+1

tm
=

1
tm

1 + tm+2︸︷︷︸
=4tm−tm−2

tm+1


=

1
tm

(1 + (4tm − tm−2) tm+1)︸ ︷︷ ︸
=4tmtm+1−(tm−2tm+1−1)

=
1
tm

(4tmtm+1 − (tm−2tm+1 − 1))

= 4tm+1 −
1
tm

(tm−2tm+1 − 1)︸ ︷︷ ︸
=tmtm−1
(by (1))

= 4tm+1 −
1
tm

tm︸ ︷︷ ︸
=1

tm−1 = 4tm+1 − tm−1.

In view of m+ 3 = (m + 1)+ 2 and m− 1 = (m + 1)− 2, this rewrites as t(m+1)+2 =
4tm+1− t(m+1)−2. In other words, Exercise 1 (a) holds for n = m+ 1. This completes
the induction step. Hence, Exercise 1 (a) is solved by induction.

(b) We shall solve Exercise 1 (b) by strong induction on n:
Induction step:1 Let m ∈ N. Assume that Exercise 1 (b) holds whenever n < m.

We must now show that Exercise 1 (b) holds for n = m.
We have assumed that Exercise 1 (b) holds whenever n < m. In other words, we

have
tn ∈N for each n ∈N satisfying n < m. (2)

We must now show that Exercise 1 (b) holds for n = m. In other words, we must
show that tm ∈N.

Recall that (t0, t1, t2, . . .) is a sequence of positive rational numbers. Thus, tm is a
positive rational number.

We are in one of the following five cases:
Case 1: We have m = 0.
Case 2: We have m = 1.
Case 3: We have m = 2.
Case 4: We have m = 3.
Case 5: We have m > 3.
Let us first consider Case 1. In this case, we have m = 0. Thus, tm = t0 = 1 ∈ N.

Hence, tm ∈N is proven in Case 1.
Similarly, we can prove tm ∈ N in Case 2 (using t1 = 1) and in Case 3 (using

t2 = 1) and in Case 4 (using t3 = 2). It thus remains to prove tm ∈N in Case 5.
So let us consider Case 5. In this case, we have m > 3. Thus, m ≥ 4 (since

m is an integer), so that m − 2 ≥ 4 − 2 = 2. Hence, Exercise 1 (a) (applied to
n = m − 2) yields t(m−2)+2 = 4tm−2 − t(m−2)−2. In view of (m− 2) + 2 = m and
(m− 2)− 2 = m− 4, this rewrites as tm = 4tm−2 − tm−4.

1A strong induction does not strictly require an induction base. (But we will need to separate five
cases in the induction step, and the first four of these cases can be interpreted as “induction
bases” if one so desires.)
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But m ≥ 4, so that m− 4 ∈N, and m− 4 < m. Hence, (2) (applied to n = m− 4)
yields tm−4 ∈N ⊆ Z. Similarly, tm−2 ∈ Z.

So we know that tm−2 and tm−4 are both integers (since tm−2 ∈ Z and tm−4 ∈ Z).
Hence, 4tm−2 − tm−4 is an integer as well. In other words, tm is an integer (because
tm = 4tm−2 − tm−4). Since tm is positive, we thus conclude that tm is a positive
integer. Hence, tm ∈N. This shows that tm ∈N in Case 5.

We now have proven tm ∈ N in each of the five Cases 1, 2, 3, 4 and 5. Thus,
tm ∈ N always holds. In other words, Exercise 1 (b) holds for n = m. This
completes the induction step. Thus, Exercise 1 (b) is solved by strong induction.

Exercise 2. Fix a positive integer r. Define a sequence (b0, b1, b2, . . .) of positive
rational numbers recursively by setting

b0 = 1, b1 = 1, and

bn =
br

n−1 + 1
bn−2

for each n ≥ 2.

(For example, b2 =
br

1 + 1
b0

=
1r + 1

1
= 2 and b3 =

br
2 + 1
b1

=
2r + 1

1
= 2r + 1.)

(a) Prove that bn ∈N for each n ∈N.
(b) If r ≥ 2, then prove that bn | bn−2 + bn+2 for each n ≥ 2.

[Hint: For every nonzero x ∈ Q, we set H (x) =
(x + 1)r − 1

x
. Show that

H (x) ∈ Z whenever x is a nonzero integer. Next, show that bn+2 = bn−2br
n+1 −

br−1
n H (br

n) for each n ≥ 2. Use this to prove (a).]

Remark 0.2. If r = 1, then the sequence (b0, b1, b2, . . .) defined in Exercise 2 is

(1, 1, 2, 3, 2, 1, 1, 2, 3, 2, 1, 1, 2, 3, 2, . . .)

(this is a periodic sequence, which consists of the five terms 1, 1, 2, 3, 2 repeated
over and over); this can easily be proven by induction. Despite its simplicity, this
sequence is the sequence A076839 in the OEIS.

If r = 2, then the sequence (b0, b1, b2, . . .) defined in Exercise 2 is

(1, f1, f3, f5, f7, . . .) = (1, 1, 2, 5, 13, 34, 89, 233, 610, 1597, . . .)

consisting of all Fibonacci numbers at odd positions (i.e., Fibonacci numbers
of the form f2n−1 for n ∈ N) with an extra 1 at the front. This, again, can
be proven by induction. Also, this sequence satisfies the recurrence relation
bn = 3bn−1 − bn−2 for all n ≥ 2. This is the sequence A001519 in the OEIS.

If r = 3, then the sequence (b0, b1, b2, . . .) defined in Exercise 2 is

(1, 1, 2, 9, 365, 5403014, 432130991537958813, . . .) ;

https://oeis.org/A076839
https://oeis.org/A001519
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its entries grow so fast that I am only showing the first seven. This is the sequence
A003818 in the OEIS. Unlike the cases of r = 1 and r = 2, not much can be said
about this sequence, other than what has been said in Exercise 2.

Exercise 2 (a) is an instance of the Laurent phenomenon for cluster algebras (see,
e.g., [FomZel01, Example 2.5]; also, see [Marsh13] and [FoWiZe16] for exposi-
tions). See also [MusPro07] for a study of the specific recurrence equation from
Exercise 2 (a) (actually, a slightly more general equation).

Exercise 2 appears in [Grinbe16, Proposition 2.66].
As the hint to Exercise 2 suggests, we first show the following lemma before

solving the exercise:

Lemma 0.3. Let r ∈N. For every nonzero x ∈ Q, we set H (x) =
(x + 1)r − 1

x
.

Then, H (x) ∈ Z whenever x is a nonzero integer.

First proof of Lemma 0.3. Here is a quick proof using modular arithmetic:
Let x be a nonzero integer. Then, x + 1 ≡ 1 mod x.
But it is well-known that if a, b and m are three integers satisfying a ≡ b mod m,

then ak ≡ bk mod m for each k ∈ N. Applying this to a = x + 1, b = 1 and m = x,
we conclude that (x + 1)k ≡ 1k mod x for each k ∈ N. Applying this to k = r,
we obtain (x + 1)r ≡ 1r = 1 mod x. In other words, (x + 1)r − 1 is divisible by x.

In other words,
(x + 1)r − 1

x
∈ Z. Thus, H (x) =

(x + 1)r − 1
x

∈ Z. This proves
Lemma 0.3.

Second proof of Lemma 0.3. Let x be a nonzero integer. The binomial formula yields

(x + 1)r =
r

∑
k=0

(
r
k

)
xk 1r−k︸︷︷︸

=1

=
r

∑
k=0

(
r
k

)
xk

=

(
r
0

)
︸︷︷︸
=1

x0︸︷︷︸
=1

+
r

∑
k=1

(
r
k

)
xk︸︷︷︸

=xxk−1

(since k≥1)

= 1 +
r

∑
k=1

(
r
k

)
xxk−1

︸ ︷︷ ︸
=x

r
∑

k=1

(
r
k

)
xk−1

= 1 + x
r

∑
k=1

(
r
k

)
xk−1.

Subtracting 1 from this equality, we obtain

(x + 1)r − 1 = x
r

∑
k=1

(
r
k

)
xk−1.

Dividing this equality by x, we find

(x + 1)r − 1
x

=
r

∑
k=1

(
r
k

)
xk−1 ∈ Z

https://oeis.org/A003818
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(since x ∈ Z and since the binomial coefficients
(

r
k

)
are integers as well). Thus,

H (x) =
(x + 1)r − 1

x
∈ Z. This proves Lemma 0.3.

Solution to Exercise 2. First, we notice that the recursive definition of the sequence
(b0, b1, b2, . . .) yields

b2 =
br

2−1 + 1
b2−2

=
br

1 + 1
b0

=
1r + 1

1
(since b0 = 1 and b1 = 1)

=
1 + 1

1
(since 1r = 1)

= 2.

Furthermore, the recursive definition of the sequence (b0, b1, b2, . . .) yields

b3 =
br

3−1 + 1
b3−2

=
br

2 + 1
b1

=
2r + 1

1
(since b1 = 1 and b2 = 2)

= 2r + 1.

For every nonzero x ∈ Q, we set H (x) =
(x + 1)r − 1

x
.

For every integer m ≥ 1, we have

br
m + 1 = bm+1bm−1. (3)

[Proof of (3): Let m ≥ 1 be an integer. From m ≥ 1, we obtain m + 1 ≥ 1 + 1 = 2.
Hence, the recursive definition of the sequence (b0, b1, b2, . . .) yields

bm+1 =
br
(m+1)−1 + 1

b(m+1)−2
=

br
m + 1
bm−1

.

Multiplying both sides of this equality by bm−1, we obtain bm+1bm−1 = br
m + 1. This

proves (3).]
Let us first prove the following observation:

Observation 1: Each integer n ≥ 2 satisfies bn+2 = bn−2br
n+1− br−1

n H (br
n).

[Proof of Observation 1: Let n ≥ 2 be an integer. Thus, n ≥ 2 ≥ 1. Thus, (3)
(applied to m = n) yields

br
n + 1 = bn+1bn−1. (4)

On the other hand, n + 1 ≥ n ≥ 2 ≥ 1. Hence, (3) (applied to m = n + 1) yields

br
n+1 + 1 = b(n+1)+1b(n+1)−1 = bn+2bn.

Hence,
br

n+1 = bn+2bn − 1. (5)
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Also, n− 1 ≥ 1 (since n ≥ 2 = 1 + 1). Hence, (3) (applied to m = n− 1) yields

br
n−1 + 1 = b(n−1)+1b(n−1)−1 = bnbn−2.

Hence,
br

n−1 = bnbn−2 − 1. (6)

But bn is a positive rational number (since (b0, b1, b2, . . .) is a sequence of positive
rational numbers). Thus, br

n is also a positive rational number. Hence, br
n ∈ Q is

nonzero. The definition of H (br
n) yields H (br

n) =
(br

n + 1)r − 1
br

n
; therefore,

br−1
n H (br

n)︸ ︷︷ ︸
=
(br

n + 1)r − 1
br

n

= br−1
n · (b

r
n + 1)r − 1

br
n

=
br−1

n
br

n︸︷︷︸
=

1
bn

·


 br

n + 1︸ ︷︷ ︸
=bn+1bn−1

(by (4))


r

− 1



=
1
bn
·

(bn+1bn−1)
r︸ ︷︷ ︸

=br
n+1br

n−1

−1

 =
1
bn
·

 br
n+1︸︷︷︸

=bn+2bn−1
(by (5))

br
n−1︸︷︷︸

=bnbn−2−1
(by (6))

−1


=

1
bn
· ((bn+2bn − 1) (bnbn−2 − 1)− 1)︸ ︷︷ ︸

=bn(bnbn+2bn−2−bn+2−bn−2)

=
1
bn
· bn (bnbn+2bn−2 − bn+2 − bn−2)

= bnbn+2bn−2 − bn+2 − bn−2 = bn−2 (bn+2bn − 1)︸ ︷︷ ︸
=br

n+1
(by (5))

−bn+2

= bn−2br
n+1 − bn+2.

Solving this equation for bn+2, we obtain bn+2 = bn−2br
n+1− br−1

n H (br
n). This proves

Observation 1.]
(a) We shall solve Exercise 2 (a) by strong induction on n:
Induction step: Let m ∈ N. Assume that Exercise 2 (a) holds whenever n < m.

We must now prove that Exercise 2 (a) holds for n = m.
We have assumed that Exercise 2 (a) holds whenever n < m. In other words, we

have
bn ∈N for each n ∈N satisfying n < m. (7)

We must now show that Exercise 2 (a) holds for n = m. In other words, we must
show that bm ∈N.
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Recall that (b0, b1, b2, . . .) is a sequence of positive rational numbers. Thus, bm is
a positive rational number.

We are in one of the following five cases:
Case 1: We have m = 0.
Case 2: We have m = 1.
Case 3: We have m = 2.
Case 4: We have m = 3.
Case 5: We have m > 3.
Let us first consider Case 1. In this case, we have m = 0. Thus, bm = b0 = 1 ∈N.

Hence, bm ∈N is proven in Case 1.
Similarly, we can prove bm ∈ N in Case 2 (using b1 = 1) and in Case 3 (using

b2 = 2) and in Case 4 (using b3 = 2r + 1). It thus remains to prove bm ∈ N in Case
5.

So let us consider Case 5. In this case, we have m > 3. Thus, m ≥ 4 (since m is an
integer), so that m− 2 ≥ 4− 2 = 2. Hence, Observation 1 (applied to n = m− 2)
yields b(m−2)+2 = b(m−2)−2br

(m−2)+1 − br−1
m−2H

(
br

m−2
)
. In view of (m− 2) + 2 = m

and (m− 2)− 2 = m− 4 and (m− 2) + 1 = m− 1, this rewrites as

bm = bm−4br
m−1 − br−1

m−2H
(
br

m−2
)

. (8)

But m − 2 ∈ N (since m ≥ 4 ≥ 2) and m − 2 < m. Hence, (7) (applied to
n = m− 2) yields bm−2 ∈ N ⊆ Z. Also, bm−2 is a positive rational number (since
(b0, b1, b2, . . .) is a sequence of positive rational numbers) and thus a positive integer
(since bm−2 ∈N), hence a nonzero integer. Thus, br

m−2 is a nonzero integer as well.
Therefore, Lemma 0.3 (applied to x = br

m−2) shows that H
(
br

m−2
)
∈ Z. Also,

r− 1 ≥ 0 (since r ≥ 1), and thus r− 1 ∈ N. Hence, br−1
m−2 is an integer (since bm−2

is an integer).
Also, m− 4 ∈N (since m ≥ 4) and m− 4 < m. Hence, (7) (applied to n = m− 4)

yields bm−4 ∈N ⊆ Z.
Similarly, bm−1 ∈ Z. Thus, br

m−1 ∈ Z.
We now know that the four numbers bm−4, br

m−1, br−1
m−2 and H

(
br

m−2
)

all are inte-
gers (since we have shown that bm−4 ∈ Z, br

m−1 ∈ Z, br−1
m−2 ∈ Z and H

(
br

m−2
)
∈ Z).

Thus, the number bm−4br
m−1 − br−1

m−2H
(
br

m−2
)

also is an integer (since it is obtained
from these four numbers by multiplication and subtraction). In view of (8), this
rewrites as follows: The number bm is an integer. Since bm is positive, we thus
conclude that bm is a positive integer. Hence, bm ∈ N. This shows that bm ∈ N in
Case 5.

We now have proven bm ∈ N in each of the five Cases 1, 2, 3, 4 and 5. Thus,
bm ∈ N always holds. In other words, Exercise 2 (a) holds for n = m. This
completes the induction step. Thus, Exercise 2 (a) is solved by strong induction.

(b) Assume that r ≥ 2. We must prove that bn | bn−2 + bn+2 for each n ≥ 2.
So let n ≥ 2 be an integer. We must show that bn | bn−2 + bn+2.
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Exercise 2 (a) (applied to n− 2 instead of n) yields bn−2 ∈N. Exercise 2 (a) yields
bn ∈ N. Similarly, bn+1 ∈ N and bn+2 ∈ N. Thus, all of bn−2, bn+1, bn are bn+2 are
integers.

We have n+ 2 ≥ n ≥ 2. Hence, the recursive definition of the sequence (b0, b1, b2, . . .)

yields bn+2 =
br
(n+2)−1 + 1

b(n+2)−2
=

br
n+1 + 1

bn
. Multiplying this equality by bn, we obtain

bnbn+2 = br
n+1 + 1. (9)

We have r ≥ 2, so that r − 2 ≥ 0. Therefore, br−2
n is an integer (since bn is an

integer).
Observation 1 yields bn+2 = bn−2br

n+1 − br−1
n H (br

n). Thus,

bn+2︸︷︷︸
=bn−2br

n+1−br−1
n H(br

n)

+bn−2

= bn−2br
n+1 − br−1

n H (br
n) + bn−2 = bn−2br

n+1 + bn−2︸ ︷︷ ︸
=bn−2(br

n+1+1)

−br−1
n H (br

n)

= bn−2
(
br

n+1 + 1
)︸ ︷︷ ︸

=bnbn+2
(by (9))

− br−1
n︸︷︷︸

=bnbr−2
n

H (br
n) = bn−2bnbn+2 − bnbr−2

n H (br
n)

= bn

(
bn−2bn+2 − br−2

n H (br
n)
)

. (10)

But bn−2bn+2 − br−2
n H (br

n) is an integer (because bn−2, bn+2, br−2
n and H (br

n) are
integers). Denote this integer by z. Thus, z = bn−2bn+2 − br−2

n H (br
n). Since bn and

z are integers, we have

bn | bn z︸︷︷︸
=bn−2bn+2−br−2

n H(br
n)

= bn

(
bn−2bn+2 − br−2

n H (br
n)
)
= bn+2 + bn−2 (by (10))

= bn−2 + bn+2.

This solves Exercise 2 (b).

For a (slightly) different solution to Exercise 2, see http://artofproblemsolving.
com/community/c6h428645p3705719 .

0.2. Lacunar subsets with a given number of even and a given
number of odd elements

Recall the following definition: A set S of integers is said to be lacunar if no two
consecutive integers occur in S (that is, there exists no i ∈ Z such that both i and

http://artofproblemsolving.com/community/c6h428645p3705719
http://artofproblemsolving.com/community/c6h428645p3705719
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i + 1 belong to S). For example, {1, 3, 6} is lacunar, but {2, 4, 5} is not. (The empty
set and any 1-element set are lacunar, of course.)

Also recall the Iverson bracket notation: If A is any logical statement, then the truth
value of A is defined to be the integer{

1, if A is true;
0, if A is false

∈ {0, 1} .

This truth value is denoted by [A]. For example, [1 + 1 = 2] = 1 (since 1 + 1 = 2 is
true), whereas [1 + 1 = 1] = 0 (since 1 + 1 = 1 is false).

Exercise 3. For any n ∈ N, a ∈ Z and b ∈ Z, we let N (n, a, b) denote the
number of all lacunar subsets of [n] that contain exactly a even and exactly b odd
elements.

(a) Prove that N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
for all m ∈ N,

a ∈N and b ∈N.

(b) Prove that N (2m + 1, a, b) = [a ≤ m] [b ≤ m + 1]
(

m + 1− a
b

)(
m− b

a

)
for

all m ∈N, a ∈N and b ∈N.
[Hint: One way is to prove parts (a) and (b) simultaneously by induction (that

is, let A (m) be the statement “N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
and N (2m + 1, a, b) = [a ≤ m] [b ≤ m + 1]

(
m + 1− a

b

)(
m− b

a

)
for all a ∈ N

and b ∈ N”, and prove this by induction on m). One part of the induction step
is an expression for N (2m + 2, a, b) through N (2m + 1, a, b) and N (2m, a− 1, b).
Another similar expression will be needed for N (2m + 3, a, b). Make sure to treat
the base case properly, as well as justifying the switch between the truth values
necessary at one point in the induction step. There is also a bijective proof.]

Exercise 3 originates in [MusPro07, Theorem 3] (although the authors of this
paper forget the [a ≤ m] [b ≤ m] and [a ≤ m] [b ≤ m + 1] factors), and also appears
in [Lampe, Proposition 3.2.5] (where it is proven according to the Hint given above).
The probably simplest solution is the proof given in [MusPro07]; however, this
proof uses the concept of a multiset, which I (unfortunately) have not introduced
in class yet. Thus, here are two other solutions (one inductive following the hint,
and one bijective):

First solution to Exercise 3 (rough outline). We first claim the following:

Observation 1: Let n ≥ 2 be an integer.

(a) If n is odd, then N (n, a, b) = N (n− 1, a, b) + N (n− 2, a, b− 1) for
all a ∈ Z and b ∈ Z.

(b) If n is even, then N (n, a, b) = N (n− 1, a, b) + N (n− 2, a− 1, b) for
all a ∈ Z and b ∈ Z.
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[Proof of Observation 1: This is similar to [Fall2017-HW1s, solution to Exercise
4 (b)]. In fact, back in the exercise, we proved that g (n) = g (n− 1) + g (n− 2),
where g (k) (for an integer k) denotes the number of all lacunar subsets of [k]. The
gist of the argument was that

g (n) = (the number of lacunar subsets of [n])
= (the number of lacunar subsets of [n] that don’t contain n)︸ ︷︷ ︸

=(the number of lacunar subsets of [n−1])
(because a subset of [n] that doesn’t contain n is exactly the same as a subset of [n−1])

+ (the number of lacunar subsets of [n] that contain n)︸ ︷︷ ︸
=(the number of lacunar subsets of [n−2])

(because there is a bijection from {lacunar subsets of [n] that contain n}
to {lacunar subsets of [n−2]}; namely, this bijection sends each T to T\{n})

= (the number of lacunar subsets of [n− 1])︸ ︷︷ ︸
=g(n−1)

(by the definition of g(n−1))

+ (the number of lacunar subsets of [n− 2])︸ ︷︷ ︸
=g(n−2)

(by the definition of g(n−2))

= g (n− 1) + g (n− 2) .

We now need to tweak this argument so that it counts not all lacunar subsets of
[n], but only those that contain exactly a even and exactly b odd elements (for given
a and b).

For brevity, we introduce a notation: Given two integers a and b and a set S of
integers, we say that S is (a, b)-good if and only if S contains exactly a even and
exactly b odd elements2. Thus, if a ∈ Z, b ∈ Z and k ∈ Z, then

N (k, a, b) = (the number of (a, b) -good lacunar subsets of [k]) . (11)

(This is simply the definition of N (k, a, b), rewritten using the word “(a, b)-good”.)
(a) Assume that n is odd. Aping our above argument for g (n) = g (n− 1) +

2Mathematicians use the word “good” when they need an adjective and really have no inspiration.
Any better suggestion? The word should be short.
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g (n− 2), we compute

N (n, a, b) = (the number of (a, b) -good lacunar subsets of [n])
= (the number of (a, b) -good lacunar subsets of [n] that don’t contain n)︸ ︷︷ ︸

=(the number of (a,b)-good lacunar subsets of [n−1])
(because a subset of [n] that doesn’t contain n is exactly the same as a subset of [n−1])

+ (the number of (a, b) -good lacunar subsets of [n] that contain n)︸ ︷︷ ︸
=(the number of (a,b−1)-good lacunar subsets of [n−2])

(because there is a bijection from {lacunar (a,b)-good subsets of [n] that contain n}
to {lacunar (a,b−1)-good subsets of [n−2]}; namely, this bijection sends each T to T\{n}

(see Claim 1.1 below for details))

= (the number of (a, b) -good lacunar subsets of [n− 1])︸ ︷︷ ︸
=N(n−1,a,b)

(by (11))

+ (the number of (a, b− 1) -good lacunar subsets of [n− 2])︸ ︷︷ ︸
=N(n−2,a,b−1)

(by (11))

= N (n− 1, a, b) + N (n− 2, a, b− 1) . (12)

Here, we have used the following claim:

Claim 1.1: There is a bijection from
{lacunar (a, b) -good subsets of [n] that contain n} to
{lacunar (a, b− 1) -good subsets of [n− 2]}; namely, this bijection sends
each T to T \ {n}.

Why is this claim true? Essentially, it can be proven in the same way as we
proved that there is a bijection from {lacunar subsets of [n] that contain n} to
{lacunar subsets of [n− 2]} sending each T to T \ {n} (see [Fall2017-HW1s, so-
lution to Exercise 4 (b)] for a detailed writeup of this argument); we only need
to ensure that if T is an (a, b)-good subset of [n] that contains n, then T \ {n} is
(a, b− 1)-good (and vice versa). But this is clear: Removing n from T results in
the loss of one of the b odd elements of T (because n is odd); thus, the result-
ing set T \ {n} has exactly a even elements and exactly b − 1 odd elements. In
other words, T \ {n} is (a, b− 1)-good. The opposite direction (i.e., adding n to an
(a, b− 1)-good subset of [n− 2] results in an (a, b)-good subset of [n]) should be
equally clear.

So we have proven (12). This proves Observation 1 (a).
(b) The proof of Observation 1 (b) is analogous to the proof of (a) just given (but,

of course, n is now even, so removing n from T leads to the loss of one of the a
even elements rather than one of the b odd elements).]

Now, let’s solve the actual exercise.
For each m ∈N, let A (m) be the statement
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“N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
and N (2m + 1, a, b) =

[a ≤ m] [b ≤ m + 1]
(

m + 1− a
b

)(
m− b

a

)
for all a ∈N and b ∈N”.

We want to show that A (m) holds for all m ∈ N (because this will clearly yield
both parts (a) and (b) of Exercise 3).

We shall prove this by induction on m.
The induction base is the case m = 0, and requires proving the equalities

N (0, a, b) = [a ≤ 0] [b ≤ 0]
(

0− a
b

)(
0− b

a

)
and (13)

N (1, a, b) = [a ≤ 0] [b ≤ 1]
(

1− a
b

)(
0− b

a

)
(14)

for all a ∈ N and b ∈ N. This is straightforward: The number N (1, a, b) (for
example) counts all lacunar subsets of [1] that contain exactly a even and exactly b
odd elements. But there are only two subsets of [1], both of them lacunar, and so
the number N (1, a, b) is nonzero only in the case when a = 0 and b ∈ {0, 1}, in
which case this number is 1. The right hand side of (14) behaves exactly the same:
It is nonzero only in the case when a = 0 and b ∈ {0, 1} (because in all other cases,
the factor [a ≤ 0] [b ≤ 1] vanishes, causing the whole right hand side to vanish),
and in this case it equals 1 (which is easily checked by hand). Thus, the equality
(14) holds. The equality (13) is similar but even simpler, and so we leave it to the
reader.

Induction step: Let m be a positive integer. Assume that A (m− 1) holds. We
must prove that A (m) holds.

We have assumed that A (m− 1) holds. In other words, we have

N (2 (m− 1) , a, b) = [a ≤ m− 1] [b ≤ m− 1]
(

m− 1− a
b

)(
m− 1− b

a

)
and

N (2 (m− 1) + 1, a, b) = [a ≤ m− 1] [b ≤ (m− 1) + 1]
(
(m− 1) + 1− a

b

)(
m− 1− b

a

)
for all a ∈N and b ∈N. These two equalities simplify to

N (2m− 2, a, b) = [a ≤ m− 1] [b ≤ m− 1]
(

m− 1− a
b

)(
m− 1− b

a

)
and

(15)

N (2m− 1, a, b) = [a ≤ m− 1] [b ≤ m]

(
m− a

b

)(
m− 1− b

a

)
(16)

for all a ∈N and b ∈N.
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We must prove that A (m) holds. In other words, we must prove that

N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
and (17)

N (2m + 1, a, b) = [a ≤ m] [b ≤ m + 1]
(

m + 1− a
b

)(
m− b

a

)
(18)

for all a ∈N and b ∈N.
Let us start by proving (17). Fix a ∈ N and b ∈ N. Observation 1 (b) (applied to

n = 2m) yields

N (2m, a, b) = N (2m− 1, a, b) + N (2m− 2, a− 1, b) . (19)

We now want to apply (15) to a− 1 instead of a, in order to expand the N (2m− 2, a− 1, b)
on the right hand side. Unfortunately, a− 1 might not be an element of N, which
would preclude such an application; thus, we need to deal with the case a = 0
separately (since this is precisely the case when a− 1 is not an element of N). For-
tunately, this case is easy (left to the reader). Thus, we WLOG assume that we don’t
have a = 0. Hence, (19) becomes

N (2m, a, b)
= N (2m− 1, a, b)︸ ︷︷ ︸

=[a≤m−1][b≤m]

(
m− a

b

)(
m− 1− b

a

)
(by (16))

+ N (2m− 2, a− 1, b)︸ ︷︷ ︸
=[a−1≤m−1][b≤m−1]

(
m− 1− (a− 1)

b

)(
m− 1− b

a− 1

)
(by (15), applied to a−1 instead of a)

= [a ≤ m− 1] [b ≤ m]

(
m− a

b

)(
m− 1− b

a

)

+

a− 1 ≤ m− 1︸ ︷︷ ︸
⇐⇒ (a≤m)

 [b ≤ m− 1]
(

m− 1− (a− 1)
b

)
︸ ︷︷ ︸

=

(
m− a

b

)
(

m− 1− b
a− 1

)

= [a ≤ m− 1] [b ≤ m]

(
m− a

b

)(
m− 1− b

a

)
+ [a ≤ m] [b ≤ m− 1]

(
m− a

b

)(
m− 1− b

a− 1

)
.

The right hand side of this computation begins to resemble the right hand side of
(17) (which we are trying to prove), but we’re not quite there. For one, the truth
value [a ≤ m− 1] and [b ≤ m− 1] are not quite the same as [a ≤ m] and [b ≤ m],
respectively. However, they are “almost” the same: [a ≤ m− 1] differs from [a ≤ m]
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only when a = m, and [b ≤ m− 1] differs from [b ≤ m] only if b = m. So let us
treat the cases a = m and b = m separately.

Treating the case a = m means studying (m, b)-good subsets of [2m].
An (m, b)-good subset of [2m] must contain exactly a = m even elements; thus, it

must contain all the even numbers 2, 4, . . . , 2m (because [2m] has only these m even
elements). Furthermore, such a subset is lacunar only if it is precisely {2, 4, . . . , 2m}
(because if it contains any further element, then this further element is adjacent to
one of 2, 4, . . . , 2m, and thus the subset cannot be lacunar). Thus, an (m, b)-good
lacunar subset of [2m] exists only if b = 0, and in this case there is only 1 such
subset. Thus, for the number of such subsets, we get the formula N (2m, m, b) =
[b = 0]. This formula leads to an easy and straightforward proof of (17) in the case
when a = m. We leave this proof to the reader, and from now on WLOG assume
that a 6= m.

Similarly, the case b = m can be eliminated, and so we WLOG assume that b 6= m.
Since a 6= m, we have [a ≤ m− 1] = [a ≤ m]. Similarly, [b ≤ m− 1] = [b ≤ m].
Thus, we can continue our computation as follows:

N (2m, a, b)

= [a ≤ m− 1]︸ ︷︷ ︸
=[a≤m]

[b ≤ m]

(
m− a

b

)(
m− 1− b

a

)
+ [a ≤ m] [b ≤ m− 1]︸ ︷︷ ︸

=[b≤m]

(
m− a

b

)(
m− 1− b

a− 1

)

= [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− 1− b

a

)
+ [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− 1− b

a− 1

)
= [a ≤ m] [b ≤ m]

(
m− a

b

) ((
m− 1− b

a

)
+

(
m− 1− b

a− 1

))
︸ ︷︷ ︸

=

(
m− b

a

)
(by the recurrence relation of the binomial coefficients)

= [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
.

This proves (17).
The proof of (18) is similar, except that we now have to use Observation 1 (a)

instead of Observation 1 (b), and we have to use (17) and (16) instead of (16) and
(15) in the computation that ensues. The reader can check the details. (The cases
that need to be handled separately this time are the cases b = 0, a = m and
b = m + 1.)

With both (17) and (18) proven, we conclude that A (m) holds. This completes
the induction step. Thus, by induction, we have shown that A (m) holds for all
m ∈N. This proves both parts of Exercise 3.

Second solution to Exercise 3 (rough outline). Here is a (sketch of) a bijective proof:
(a) Let m ∈ N, a ∈ N and b ∈ N. We WLOG assume that a ≤ m and b ≤ m

(because in the other cases, it is easy to see that N (2m, a, b) = 0).
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Let A be the set of all (m− a)-tuples which consist of m− a− b times the entry

0 and b times the entry 1. Then, |A| =
(

m− a
b

)
(because we can construct an

(m− a)-tuple in A by specifying which of its m− a positions will contain the entry
1; these must be b positions).

Let B be the set of all (m− b)-tuples which consist of m− a− b times the entry 0

and a times the entry 2. Then, |B| =
(

m− b
a

)
(by a similar argument).

Let C be the set of all lacunar subsets of [2m] that contain exactly a even and
exactly b odd elements. Clearly, N (2m, a, b) = |C| (by the definition of N (2m, a, b)).

Now, we assign to every S ∈ C an m-tuple wS = (wS,1, wS,2, . . . , wS,m), whose
entries are defined by the equality

wS,i =


0, if 2i− 1 /∈ S and 2i /∈ S;
1, if 2i− 1 ∈ S (and thus 2i /∈ S);
2, if 2i ∈ S (and thus 2i− 1 /∈ S)

for each i ∈ [m]

3. This m-tuple wS contains the entry 1 exactly b times (because each entry 1
corresponds to an odd element of S) and the entry 2 exactly a times (similarly),
and it never has a 1 directly following a 2 (because if it had, then there would be
an i ∈ [m] such that wS,i = 2 and wS,i+1 = 1; but this would mean that 2i ∈ S and
2i + 1 ∈ S, which would contradict the fact that S is lacunar). Other than this, this
m-tuple wS can be arbitrary, and the map that assigns wS to S ∈ C is injective (i.e.,
if S1 and S2 are two different sets in C, then wS1 6= wS2).

[Example: If m = 5, a = 3, b = 1 and S = {2, 4, 7, 10}, then wS = (2, 2, 0, 1, 2).]
Now, we can define a map Φ : C → A× B by sending each S ∈ C to the pair(

w′S, w′′S
)
, where the (m− a)-tuple w′S is obtained from wS by removing all 2’s, and

where the (m− b)-tuple w′′S is obtained from wS by removing all 1’s.
[Example: If m = 5, a = 3, b = 1 and S = {2, 4, 7, 10}, then w′S = (0, 1) and

w′′S = (2, 2, 0, 2), so that Φ (S) = ((0, 1) , (2, 2, 0, 2)).]
We claim that this map Φ is bijective. This may be somewhat surprising, but it’s

true. You may want to try constructing its inverse yourself rather than reading on;
you might be done faster this way.

[Proof of the fact that Φ is bijective: What is the inverse map Φ−1 ? Well, let (α, β) ∈ A× B be a pair
of an (m− a)-tuple α ∈ A and an (m− b)-tuple β ∈ B. Then, we want to define Φ−1 (α, β) to be a
set S ∈ C such that Φ (S) = (α, β). To find such an S, let us first find its corresponding m-tuple wS.

We want S to satisfy Φ (S) = (α, β). Thus, we want S to satisfy (α, β) = Φ (S) =
(
w′S, w′′S

)
. In

other words, we want to have α = w′S and β = w′′S . Thus, wS should be an m-tuple containing the
entry 1 exactly b times, the entry 2 exactly a times, and never having a 1 directly following a 2, and
it should have the property that removing all 2’s results in α whereas removing all 1’s results in β.

To construct such an m-tuple wS, we observe that each of the tuples α and β contains the entry 0
exactly m− a− b times. Thus, we can represent each of the tuples α and β as a sequence of m− a− b

3Why “2i − 1 ∈ S (and thus 2i /∈ S)” ? Well, S must be lacunar (since S ∈ C), and therefore S
cannot contain the two consecutive integers 2i− 1 and 2i at the same time. Hence, if 2i− 1 ∈ S,
then 2i /∈ S. Similarly, if 2i ∈ S, then 2i− 1 /∈ S.
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many 0’s, interrupted by other entries (namely, by 1’s in the case of α, and by 2’s in the case of β).
Specifically:

• Reading α from left to right, let’s say we first encounter g0 many 1’s, then the first 0, then
g1 many 1’s, then the second 0, then g2 many 1’s, then the third 0, and so on, finally ending
with gm−a−b many 1’s. The numbers g0, g1, . . . , gm−a−b here are nonnegative integers; they
may be 0 (for example, if g3 = 0, then there are no 1’s between the third and the fourth 0).
Thus, the (m− a)-tuple α looks as follows:

α =

1, 1, . . . , 1︸ ︷︷ ︸
g0 times

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
g1 times

, 0, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
gm−a−b times

 .

• Reading β from left to right, let’s say we first encounter h0 many 2’s, then the first 0, then
h1 many 2’s, then the second 0, then h2 many 2’s, then the third 0, and so on, finally ending
with hm−a−b many 2’s. The numbers h0, h1, . . . , hm−a−b here are nonnegative integers; they
may be 0. Thus, the (m− b)-tuple β looks as follows:

β =

2, 2, . . . , 2︸ ︷︷ ︸
h0 times

, 0, 2, 2, . . . , 2︸ ︷︷ ︸
h1 times

, 0, . . . , 2, 2, . . . , 2︸ ︷︷ ︸
hm−a−b times

 .

Now, let wS be the m-tuple that (when read from left to right) looks as follows:

• first, g0 many 1’s, then h0 many 2’s,

• then the first 0,

• then g1 many 1’s, then h1 many 2’s,

• then the second 0,

• then g2 many 1’s, then h2 many 2’s,

• then the third 0,

• and so on, finally ending with gm−a−b many 1’s and hm−a−b many 2’s.

In other words, wS is the m-tuple1, 1, . . . , 1︸ ︷︷ ︸
g0 times

, 2, 2, . . . , 2︸ ︷︷ ︸
h0 times

, 0, 1, 1, . . . , 1︸ ︷︷ ︸
g1 times

, 2, 2, . . . , 2︸ ︷︷ ︸
h1 times

, 0, . . . , 1, 1, . . . , 1︸ ︷︷ ︸
gm−a−b times

, 2, 2, . . . , 2︸ ︷︷ ︸
hm−a−b times

 .

We still need to construct the set S ∈ C that leads to this m-tuple wS; but this is easy: just let

S = {2i− 1 | i ∈ [m] , and the i-th entry of wS is 1}
∪ {2i | i ∈ [m] , and the i-th entry of wS is 2} .

(This is just inverting the construction of wS.)
It is not hard to see that this correctly defines a map A× B → C which is inverse to the map Φ.

Thus, the map Φ is bijective.]
Hence, there is a bijection from C to A× B (namely, Φ). Consequently,

|C| = |A× B| = |A|︸︷︷︸
=

(
m− a

b

) · |B|︸︷︷︸
=

(
m− b

a

) =

(
m− a

b

)(
m− b

a

)
.
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Now, as we have seen,

N (2m, a, b) = |C| =
(

m− a
b

)(
m− b

a

)
= [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
(here, we have introduced the [a ≤ m] and [b ≤ m] factors, which are both 1 and
therefore do not change the product). This solves Exercise 3 (a).

(b) The proof is similar to the above proof of (a), with the difference that wS now
has to be an (m + 1)-tuple and is not allowed to end with a 2.

0.3. Delannoy numbers

Fix two positive integers r and s.
If (a, b) ∈ Z2 and (c, d) ∈ Z2 are two points on the integer lattice, then a (r, s)-

Delannoy path from (a, b) to (c, d) is a path from (a, b) to (c, d) that uses only three
kinds of steps:

• up-steps (U), which have the form (x, y) 7→ (x, y + 1);

• right-steps (R), which have the form (x, y) 7→ (x + 1, y);

• diagonal steps (D), which have the form (x, y) 7→ (x + r, y + s).

Thus, strictly speaking, a (r, s)-Delannoy path from (a, b) to (c, d) is a sequence
(v0, v1, . . . , vn) of points vi ∈ Z2 such that for each i ∈ [n], the difference vector
vi − vi−1 is either (0, 1) or (1, 0) or (r, s).

For two integers n and m, we let dn,m be the number of (r, s)-Delannoy paths
from (0, 0) to (n, m). (This depends on r and s, too, but we regard r and s as fixed.)
Note that dn,m = 0 if (at least) one of n and m is negative (because neither the
x-coordinate nor the y-coordinate can ever decrease along an (r, s)-Delannoy path).

For example, if r = 1 and s = 1, then d2,1 = 5, the five (1, 1)-Delannoy paths
being RRU, RD, RUR, DR and URR. Here are these five paths drawn in the plane:

, , , , .

Exercise 4. (a) Show that dn,m = dn−1,m + dn,m−1 + dn−r,m−s for all n ∈ N and
m ∈N, unless (n, m) = (0, 0).

(b) Show that

dn,m =
n

∑
k=0

[n + m ≥ (r + s− 1) k]
(

n− (r− 1) k
k

)(
n + m− (r + s− 1) k

n− (r− 1) k

)
for all n ∈N and m ∈N.

(c) Assume that r = s. Show that dn,m = dm,n for all n ∈N and m ∈N.
[Hint: The case r = 1 and s = 1 is studied in [Galvin17, §28].]
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We will outline a solution of this exercise; but first, we need to recall the symme-
try of Pascal’s triangle:

Proposition 0.4. Let n ∈N and k ∈ Z. Then,(
n
k

)
=

(
n

n− k

)
.

We have proven Proposition 0.4 in class (see the proof of Theorem 1.13 in the 24
January 2018 lecture). If we don’t have the luxury of knowing that n ∈N, we have
at least the following:

Proposition 0.5. Let n ∈ Z and k ∈ Z. Then,

[n ≥ 0]
(

n
k

)
= [n ≥ 0]

(
n

n− k

)
.

Proof of Proposition 0.5. If n ∈N, then Proposition 0.5 follows from Proposition 0.4.
If not, then we have n < 0 (since n ∈ Z), and thus both sides in Proposition 0.5 are 0
(because the [n ≥ 0] factors vanish). Thus, in either case, Proposition 0.5 holds.

Solution to Exercise 4 (sketched). In the following, the word “point” will always mean
a pair (x, y) ∈ Z2 (and will be regarded as a point in the Euclidean plane R2). The
word “path” will always mean an (r, s)-Delannoy path. Moreover, if n and m are
two integers, then “path to (n, m)” shall always mean “path from (0, 0) to (n, m)”.
(So, paths start at (0, 0) by default.)

Thus,
dn,m = (the number of all paths to (n, m)) (20)

for any integers n and m.
A step in a path (v0, v1, . . . , vn) means a pair of the form (vi−1, vi) for some i ∈ [n].

More precisely, this pair (vi−1, vi) will be called the i-th step of the path.
We say that a path (v0, v1, . . . , vn) passes through a point w if w ∈ {v0, v1, . . . , vn}.
(a) Fix n ∈ N and m ∈ N that don’t satisfy (n, m) = (0, 0). Then, any (r, s)-

Delannoy path from (0, 0) to (n, m) contains at least one step, and thus has a last
step. This last step must be either an up-step, or a right-step, or a diagonal step.
Hence,

(the number of all paths to (n, m))

= (the number of all paths to (n, m) whose last step is an up-step)
+ (the number of all paths to (n, m) whose last step is a right-step)
+ (the number of all paths to (n, m) whose last step is a diagonal step) .

(21)

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018jan24.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018jan24.pdf
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In order to profit from this observation, we need to actually compute the three
numbers on the right hand side.

Any path p to (n, m) whose last step is an up-step must pass through (n, m− 1)
(because this is the point from which an up-step leads to (n, m)). Thus, this path p
consists of two parts: the first part is a path to (n, m− 1); the second part is a single
up-step from (n, m− 1) to (n, m). Let us denote the first part by L (p). Hence, we
have defined a map

L : {paths to (n, m) whose last step is an up-step} → {paths to (n, m− 1)}

(which simply removes the last step from a path). This map L is a bijection (indeed,
the inverse map simply adds an up-step at the end of a path). Thus,

|{paths to (n, m− 1)}|
= |{paths to (n, m) whose last step is an up-step}|
= (the number of all paths to (n, m) whose last step is an up-step) .

Comparing this with

|{paths to (n, m− 1)}| = (the number of all paths to (n, m− 1))
= dn,m−1 (by (20)) ,

we obtain

(the number of all paths to (n, m) whose last step is an up-step) = dn,m−1.

Similarly,

(the number of all paths to (n, m) whose last step is a right-step) = dn−1,m

and

(the number of all paths to (n, m) whose last step is a diagonal step) = dn−r,m−s.

Hence, (21) becomes

(the number of all paths to (n, m))

= (the number of all paths to (n, m) whose last step is an up-step)︸ ︷︷ ︸
=dn,m−1

+ (the number of all paths to (n, m) whose last step is a right-step)︸ ︷︷ ︸
=dn−1,m

+ (the number of all paths to (n, m) whose last step is a diagonal step)︸ ︷︷ ︸
=dn−r,m−s

= dn,m−1 + dn−1,m + dn−r,m−s = dn−1,m + dn,m−1 + dn−r,m−s.
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Hence, (20) yields

dn,m = (the number of all paths to (n, m)) = dn−1,m + dn,m−1 + dn−r,m−s.

This solves Exercise 4 (a).
(b) The argument we shall give is a straightforward generalization of an argu-

ment made (for the particular case when r = 1 and s = 1) in [Galvin17, §28 (after
the sentence “Could we have seen this formula combinatorially?”)].

Fix n ∈N and m ∈N. Consider the following way to construct a path to (n, m):

• First, decide how many diagonal steps this path will have. This number
must be an integer in {0, 1, . . . , n} 4. Denote it by k. So we have decided
that our path should have k diagonal steps. Thus, it must have exactly n− rk
right-steps5 and exactly m− sk up-steps6. Hence, it will have a total of

k + (n− rk) + (m− sk) = n + m− (r + s− 1) k

steps. If n + m− (r + s− 1) k < 0, then this is plainly impossible7, and thus
there are no paths to (n, m) in this case.

• We now decide which m − sk among the n + m − (r + s− 1) k steps of our
path will be up-steps8. This can be done in

[n + m− (r + s− 1) k ≥ 0]
(

n + m− (r + s− 1) k
m− sk

)
many ways9. The remain-

ing
(n + m− (r + s− 1) k)− (m− sk) = n− (r− 1) k

steps must therefore be right-steps or diagonal steps.

• Finally, we decide which k among these n − (r− 1) k remaining steps will

be diagonal steps. This can be done in
(

n− (r− 1) k
k

)
many ways (since

4Indeed, it cannot be > n, because any diagonal step raises the x-coordinate of the point by at least
r ≥ 1, so if we take > n diagonal steps, then we will overshoot our target (n, m) at least in its
x-coordinate.

5Indeed, our path starts at (0, 0) and ends at (n, m), so its x-coordinate must change from 0 to n.
The only steps that change the x-coordinate are right-steps (which change it by 1) and diagonal
steps (which change it by r); in fact, up-steps don’t change the x-coordinate. Thus, if our path
has α right-steps, then the total change of the x-coordinate is α · 1 + k · r (since the path has k
diagonal steps). Thus, we must have α · 1 + k · r = n, therefore n = α · 1 + k · r = α + rk, hence
α = n− rk. In other words, our path must have exactly n− rk right-steps.

6for similar reasons
7In fact, a path cannot have a negative number of steps.
8i.e., for which i ∈ [n + m− (r + s− 1) k] will the i-th step of our path be an up-step?
9Why? Because if n + m− (r + s− 1) k ≥ 0, then we are simply choosing an (m− sk)-element sub-

set of a given (n + m− (r + s− 1) k)-element set, which can be done in
(

n + m− (r + s− 1) k
m− sk

)
many ways; but if n + m − (r + s− 1) k < 0, then (as explained above) there are no paths to
(n, m) at all.
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we are just choosing a k-element subset of a given (n− (r− 1) k)-element
set10). Once this has been decided, we automatically know that the remaining
(n− (r− 1) k)− k = n− rk steps of our paths will be right-steps. Thus, the
path is uniquely determined.

It is fairly clear (by retracing this argument backwards) that this construction
yields every path to (n, m) exactly once. Thus, the number of paths to (n, m) equals
the number of possible ways to perform this construction. But the former number
is dn,m (by (20)), whereas the latter number is

∑
k∈{0,1,...,n}

[n + m− (r + s− 1) k ≥ 0]
(

n + m− (r + s− 1) k
m− sk

)(
n− (r− 1) k

k

)
(this follows by multiplying the numbers of choices we had at each step of our
construction). Thus, we conclude that

dn,m

= ∑
k∈{0,1,...,n}︸ ︷︷ ︸

=
n
∑

k=0

[n + m− (r + s− 1) k ≥ 0]
(

n + m− (r + s− 1) k
m− sk

)
︸ ︷︷ ︸

=[n+m−(r+s−1)k≥0]

(
n + m− (r + s− 1) k

(n + m− (r + s− 1) k)− (m− sk)

)
(by Proposition 0.5, applied

to n+m−(r+s−1)k and m−sk instead of n and k)

(
n− (r− 1) k

k

)

=
n

∑
k=0

n + m− (r + s− 1) k ≥ 0︸ ︷︷ ︸
⇐⇒ (n+m≥(r+s−1)k)

( n + m− (r + s− 1) k
(n + m− (r + s− 1) k)− (m− sk)

)
︸ ︷︷ ︸

=

(
n + m− (r + s− 1) k

n− (r− 1) k

)
(

n− (r− 1) k
k

)

=
n

∑
k=0

[n + m ≥ (r + s− 1) k]
(

n + m− (r + s− 1) k
n− (r− 1) k

)(
n− (r− 1) k

k

)
=

n

∑
k=0

[n + m ≥ (r + s− 1) k]
(

n− (r− 1) k
k

)(
n + m− (r + s− 1) k

n− (r− 1) k

)
.

This solves Exercise 4 (b).
(c) We have r = s. Thus, diagonal steps have the form (x, y) 7→ (x + s, y + s). In

geometric terms, this means that they are parallel to the y = x diagonal (i.e., they
are at an angle of 45◦ against the x-axis). In combinatorial terms, this means that
they change the x-coordinate and the y-coordinate by the same amount.

10We don’t need any [n− (r− 1) k ≥ 0] factor this time, because we already know that n −
(r− 1) k ≥ 0 at this point in our construction (in fact, we have just chosen m− sk among n+m−
(r + s− 1) k steps; therefore, m− sk ≤ n+m− (r + s− 1) k, so that 0 ≤ (n + m− (r + s− 1) k)−
(m− sk) = n− (r− 1) k).
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Now, let R be the map Z2 → Z2 that sends every point (x, y) to (y, x). In
geometric terms, R is the reflection across the y = x diagonal. This map R is
inverse to itself (i.e., it satisfies R ◦ R = id), like any reflection.

If p = (v0, v1, . . . , vk) is a path to (n, m), then (R (v0) , R (v1) , . . . , R (vk)) is a path
to R ((n, m)) = (m, n) (indeed, every up-step (vi−1, vi) of p yields a corresponding
right-step (R (vi−1) , R (vi)) in (R (v0) , R (v1) , . . . , R (vk)); every right-step (vi−1, vi)
of p yields a corresponding up-step (R (vi−1) , R (vi)) in (R (v0) , R (v1) , . . . , R (vk));
and finally, every diagonal step (vi−1, vi) of p yields a corresponding diagonal step
(R (vi−1) , R (vi)) in (R (v0) , R (v1) , . . . , R (vk))

11). We denote this latter path by
R (p). Thus, we have defined a map

R : {paths to (n, m)} → {paths to (m, n)}

(which sends every path p = (v0, v1, . . . , vk) to R (p) = (R (v0) , R (v1) , . . . , R (vk))).
Similarly, we can define a map

R′ : {paths to (m, n)} → {paths to (n, m)}

(which sends every path p = (v0, v1, . . . , vk) to R′ (p) = (R (v0) , R (v1) , . . . , R (vk))).
These maps R and R′ are mutually inverse (since R ◦ R = id), and thus are bijec-
tions. Hence, there is a bijection {paths to (n, m)} → {paths to (m, n)} (namely,
R). Thus,

|{paths to (n, m)}| = |{paths to (m, n)}|
= (the number of all paths to (m, n)) = dm,n

(by (20), applied to m and n instead of n and m). Hence,

dm,n = |{paths to (n, m)}| = (the number of all paths to (n, m)) = dn,m

(by (20) again). This solves Exercise 4 (c).

0.4. On inclusion/exclusion

0.4.1. The Principle of Inclusion and Exclusion

One version of the Principle of Inclusion and Exclusion is the following theorem
(see, e.g., [Grinbe16, Theorem 3.42 and Theorem 3.43] or [Galvin17, Theorem 16.1
and (11)]):

Theorem 0.6. Let n ∈N. Let A1, A2, . . . , An be finite sets.
(a) We have ∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n];
I 6=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

11Here, we are using r = s.
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(b) Let S be a finite set. Assume that each of A1, A2, . . . , An is a subset of S.
Then, ∣∣∣∣∣S \ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Here, the “empty” intersection
⋂

i∈∅
Ai is understood to mean the set S.

(See also [White10, Theorem 1] for a proof of Theorem 0.6 (b). It is easy to see that

parts (a) and (b) of Theorem 0.6 are equivalent, because
∣∣∣∣S \ n⋃

i=1
Ai

∣∣∣∣ = |S| − ∣∣∣∣ n⋃
i=1

Ai

∣∣∣∣.)
Here is another way to write Theorem 0.6 (a):

Corollary 0.7. Let n ∈N. Let A1, A2, . . . , An be finite sets. Then,

|A1 ∪ A2 ∪ · · · ∪ An| =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ .

Indeed, Corollary 0.7 is equivalent to Theorem 0.6 (a) because the k-tuples (i1, i2, . . . , ik)
of integers satisfying k ∈ [n] and 1 ≤ i1 < i2 < · · · < ik ≤ n are in bijection with the
nonempty subsets I of [n] (namely, the bijection sends the k-tuple (i1, i2, . . . , ik) to
the subset {i1, i2, . . . , ik}), and under this bijection, the term (−1)k−1 ∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣
corresponds to (−1)|I|−1

∣∣∣∣⋂
i∈I

Ai

∣∣∣∣.
0.4.2. The exercise

Recall that if I is a set of real numbers, then min I stands for the minimum of
I (that is, the smallest element of I). This is not always defined: Not every set
of numbers has a minimum. But a nonempty finite set I of real numbers al-
ways has a minimum min I. (Infinite sets might not have minima; e.g., the set{

1
n
| n is a positive integer

}
does not, nor does Z. Also, the empty set has no

minimum.)

Exercise 5. Let n be a positive integer. Let a1, a2, . . . , an be n integers. Prove that

max {a1, a2, . . . , an}

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}

. (22)
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For example, if n = 3, then this says that

max {a1, a2, a3} = min {a1}+ min {a2}+ min {a3}
−min {a1, a2} −min {a1, a3} −min {a2, a3}
+ min {a1, a2, a3} .

[Hint: You can derive this from Corollary 0.7 by constructing n sets
A1, A2, . . . , An such that

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ = min
{

ai1 , ai2 , . . . , aik
}

, if the ai
are nonnegative. If some ai are negative, a slight tweak is required. Alterna-
tively, and perhaps more easily, there is a proof without using the Principle of
Inclusion and Exclusion.

Note that (22) can be rewritten as

max {a1, a2, . . . , an} = ∑
I⊆[n];
I 6=∅

(−1)|I|−1 min {ai | i ∈ I} . (23)

It might be easier to prove this equivalent form.]

0.4.3. First solution

First solution to Exercise 5. Let us forget that we fixed a1, a2, . . . , an. We shall first
prove the particular case of the exercise where all the ai are assumed to be ∈N:

Observation 1: Let a1, a2, . . . , an be n elements of N. Then,

max {a1, a2, . . . , an} =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}

.

[Proof of Observation 1: For each i ∈ [n], we define a finite set Ai by Ai = [ai].
Thus, for each i ∈ [n], we have

Ai = [ai] = {g ∈ {1, 2, 3, . . .} | g ≤ ai} .

Hence,

A1 ∪ A2 ∪ · · · ∪ An = {g ∈ {1, 2, 3, . . .} | g ≤ a1} ∪ {g ∈ {1, 2, 3, . . .} | g ≤ a2}
∪ · · · ∪ {g ∈ {1, 2, 3, . . .} | g ≤ an}

= {g ∈ {1, 2, 3, . . .} | g ≤ a1 or g ≤ a2 or · · · or g ≤ an}
= {g ∈ {1, 2, 3, . . .} | g ≤ max {a1, a2, . . . , an}}

(because for any g ∈ {1, 2, 3, . . .}, the statement “g ≤ a1 or g ≤ a2 or · · · or g ≤ an”
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is equivalent to the statement “g ≤ max {a1, a2, . . . , an}”). Thus,

|A1 ∪ A2 ∪ · · · ∪ An|

=

∣∣∣∣∣∣∣{g ∈ {1, 2, 3, . . .} | g ≤ max {a1, a2, . . . , an}}︸ ︷︷ ︸
={1,2,...,max{a1,a2,...,an}}

∣∣∣∣∣∣∣
= |{1, 2, . . . , max {a1, a2, . . . , an}}| = max {a1, a2, . . . , an} . (24)

A similar argument shows that every k ∈ [n] and every k-tuple (i1, i2, . . . , ik) of
elements of [n] satisfy∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ = min
{

ai1 , ai2 , . . . , aik
}

(25)

12.
Now, Corollary 0.7 yields

|A1 ∪ A2 ∪ · · · ∪ An| =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ .

12Proof of (25): Let k ∈ [n]. Let (i1, i2, . . . , ik) be a k-tuple of elements of [n]. Then, for each p ∈ [k],
we have

Aip =
[

aip

] (
by the definition of Aip

)
=
{

g ∈ {1, 2, 3, . . .} | g ≤ aip

}
.

Hence,

Ai1 ∩ Ai2 ∩ · · · ∩ Aik

=
{

g ∈ {1, 2, 3, . . .} | g ≤ ai1
}
∩
{

g ∈ {1, 2, 3, . . .} | g ≤ ai2
}

∩ · · · ∩
{

g ∈ {1, 2, 3, . . .} | g ≤ aik
}

=
{

g ∈ {1, 2, 3, . . .} | g ≤ ai1 and g ≤ ai2 and · · · and g ≤ aik
}

=
{

g ∈ {1, 2, 3, . . .} | g ≤ min
{

ai1 , ai2 , . . . , aik
}}

(because for any g ∈ {1, 2, 3, . . .}, the statement “g ≤ ai1 and g ≤ ai2 and · · · and g ≤ aik ” is
equivalent to the statement “g ≤ min

{
ai1 , ai2 , . . . , aik

}
”). Thus,

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ =
∣∣∣∣∣∣∣∣∣∣
{

g ∈ {1, 2, 3, . . .} | g ≤ min
{

ai1 , ai2 , . . . , aik
}}︸ ︷︷ ︸

=
{

1,2,...,min
{

ai1
,ai2 ,...,aik

}}

∣∣∣∣∣∣∣∣∣∣
=
∣∣{1, 2, . . . , min

{
ai1 , ai2 , . . . , aik

}}∣∣ = min
{

ai1 , ai2 , . . . , aik
}

.

This proves (25).
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Comparing this with (24), we find

max {a1, a2, . . . , an} =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣︸ ︷︷ ︸
=min{ai1

,ai2 ,...,aik}
(by (25))

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}

.

This proves Observation 1.]
From Observation 1, we can get the following corollary (whose usefulness we

will soon see):

Observation 2: Let b ∈ Z. Then,

n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

b = b.

[Proof of Observation 2: Apply Observation 1 to ai = 1. The result is

max {1, 1, . . . , 1} =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min {1, 1, . . . , 1}︸ ︷︷ ︸
=1

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

1.

Compared with max {1, 1, . . . , 1} = 1, this yields

1 =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

1.

Multiplying both sides of this equality by b, we find

b =

(
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

1

)
b =

n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

b.

This proves Observation 2.]
Finally, we need the following elementary fact:

Observation 3: Let a1, a2, . . . , an be n integers. Then, there exists some
b ∈ Z such that the n integers a1 + b, a2 + b, . . . , an + b belong to N.

[Proof of Observation 3: The set {a1, a2, . . . , an} is a finite subset of Z, and thus has
a lower bound (since any finite subset of Z has a lower bound). In other words,
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there exists a c ∈ Z such that each element of {a1, a2, . . . , an} is ≥ c. Consider such
a c.

Let i ∈ [n]. Then, each element of {a1, a2, . . . , an} is ≥ c; therefore, ai is ≥ c (since
ai is an element of {a1, a2, . . . , an}). In other words, ai ≥ c. Hence, ai − c ≥ 0. In
other words, ai + (−c) ≥ 0. Thus, ai + (−c) ∈N (since ai + (−c) is an integer).

Now, forget that we fixed i. We thus have shown that ai + (−c) ∈ N for each
i ∈ [n]. In other words, the n integers a1 + (−c) , a2 + (−c) , . . . , an + (−c) belong to
N. Thus, there exists some b ∈ Z such that the n integers a1 + b, a2 + b, . . . , an + b
belong to N (namely, b = −c). This proves Observation 3.]

We are now finally ready to solve the exercise. Let a1, a2, . . . , an be n integers.
Observation 3 shows that there exists some b ∈ Z such that the n integers a1 +
b, a2 + b, . . . , an + b belong to N. Consider such a b. Thus, Observation 1 (applied
to ai + b instead of ai) yields

max {a1 + b, a2 + b, . . . , an + b}

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 + b, ai2 + b, . . . , aik + b
}︸ ︷︷ ︸

=min{ai1
,ai2 ,...,aik}+b

(because when several integers get shifted by b,
their minimum also gets shifted by b)

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

(
min

{
ai1 , ai2 , . . . , aik

}
+ b
)

︸ ︷︷ ︸
= ∑

1≤i1<i2<···<ik≤n
min{ai1

,ai2 ,...,aik}+ ∑
1≤i1<i2<···<ik≤n

b

=
n

∑
k=1

(−1)k−1

(
∑

1≤i1<i2<···<ik≤n
min

{
ai1 , ai2 , . . . , aik

}
+ ∑

1≤i1<i2<···<ik≤n
b

)

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}
+

n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

b︸ ︷︷ ︸
=b

(by Observation 2)

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}
+ b.

Hence,
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}

= max {a1 + b, a2 + b, . . . , an + b}︸ ︷︷ ︸
=max{a1,a2,...,an}+b

(because when several integers get shifted by b,
their maximum also gets shifted by b)

−b

= max {a1, a2, . . . , an}+ b− b = max {a1, a2, . . . , an} .
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This solves Exercise 5.

0.4.4. Second solution

Let me next show a different solution, which is somewhat similar to an argument
I used in class (14 February 2018, 2nd proof of Corollary 3.3) – although it will be
worded more economically (instead of splitting the sum into an “even” subsum
and an “odd” subsum, I will keep it together and see how its terms cancel). Before
the solution, let me state a lemma:

Lemma 0.8. Let S be a set. Let g be an element of S. Then, the map

{J ⊆ S | g /∈ J} → {J ⊆ S | g ∈ J} ,
K 7→ K ∪ {g}

is a bijection.

So Lemma 0.8 says that if g is an element of S, then those subsets of S that don’t
contain g are in 1-to-1 correspondence with those subsets of S that do contain g –
and that this correspondence is given by adding g to the subset. This should be
fairly clear. For the sake of completeness, here is a formalized version of this proof:

Proof of Lemma 0.8. Clearly, {g} is a subset of S (since g ∈ S).
For each K ∈ {J ⊆ S | g /∈ J}, we have K ∪ {g} ∈ {J ⊆ S | g ∈ J} 13. Thus, the map

{J ⊆ S | g /∈ J} → {J ⊆ S | g ∈ J} ,
K 7→ K ∪ {g}

is well-defined. Let us denote this map by α.
For each L ∈ {J ⊆ S | g ∈ J}, we have L \ {g} ∈ {J ⊆ S | g /∈ J} 14. Hence, the map

{J ⊆ S | g ∈ J} → {J ⊆ S | g /∈ J} ,
L 7→ L \ {g}

is well-defined. Let us denote this map by β.
We have α ◦ β = id 15 and β ◦ α = id 16. Thus, the maps α and β are mutually inverse. Hence,

13Proof. Let K ∈ {J ⊆ S | g /∈ J}. Thus, K is a subset of S satisfying g /∈ K.
Now, both sets K and {g} are subsets of S. Thus, their union K ∪ {g} is a subset of S as well.

Hence, K ∪ {g} is a subset of S satisfying g ∈ K ∪ {g} (since g ∈ {g} ⊆ K ∪ {g}). In other words,
K ∪ {g} ∈ {J ⊆ S | g ∈ J}, qed.

14Proof. Let L ∈ {J ⊆ S | g ∈ J}. Thus, L is a subset of S satisfying g ∈ J.
Hence, L ⊆ S, so that L \ {g} ⊆ L ⊆ S. In other words, L \ {g} is a subset of S. Furthermore,

g /∈ L \ {g} (since g ∈ {g}). Hence, L \ {g} is a subset of S satisfying g /∈ L \ {g}. In other
words, L \ {g} ∈ {J ⊆ S | g /∈ J}, qed.

15Proof. Let L ∈ {J ⊆ S | g ∈ J}. Thus, L is a subset of S satisfying g ∈ L. Now, the defini-
tion of β shows that β (L) = L \ {g}. Furthermore, the definition of α shows that α (β (L)) =
β (L)︸ ︷︷ ︸
=L\{g}

∪ {g} = (L \ {g}) ∪ {g} = L (since g ∈ L). Hence, (α ◦ β) (L) = α (β (L)) = L = id (L).

Forget that we fixed L. We thus have shown that (α ◦ β) (L) = id (L) for each L ∈
{J ⊆ S | g ∈ J}. In other words, α ◦ β = id.

16Proof. Let K ∈ {J ⊆ S | g /∈ J}. Thus, K is a subset of S satisfying g /∈ K. Now, the definition

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb14.pdf
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the map α is invertible, i.e., is a bijection. In other words, the map

{J ⊆ S | g /∈ J} → {J ⊆ S | g ∈ J} ,
K 7→ K ∪ {g}

is a bijection (since this map is precisely α). This proves Lemma 0.8.

Lemma 0.8 helps us find lots of cancellations in certain kinds of sums:

Lemma 0.9. Let S be a finite set. Let g be an element of S. For any nonempty
subset I of S, let bI be a real number. Assume that for every subset K of S
satisfying g /∈ K and K 6= ∅, we have

bK∪{g} = bK. (26)

Then,
∑

I⊆S;
I 6=∅

(−1)|I|−1 bI = b{g}. (27)

We will later solve Exercise 5 (more precisely, prove (23)) by applying Lemma 0.8
to S = [n] and bI = min {ai | i ∈ I} (and a carefully chosen g ∈ S).

Proof of Lemma 0.9. Each subset I of S satisfies either g ∈ I or g /∈ I (but not both).
Hence, the sum ∑

I⊆S;
I 6=∅

(−1)|I|−1 bI can be split as follows:

∑
I⊆S;
I 6=∅

(−1)|I|−1 bI = ∑
I⊆S;
I 6=∅;
g∈I

(−1)|I|−1 bI + ∑
I⊆S;
I 6=∅;
g/∈I

(−1)|I|−1 bI . (28)

For a subset I of S, the condition “I 6= ∅ and g ∈ I” is equivalent to the condition
“g ∈ I” 17. Hence, the summation sign ∑

I⊆S;
I 6=∅;
g∈I

can be replaced by the simpler

of α shows that α (K) = K ∪ {g}. Furthermore, the definition of β shows that β (α (K)) =
α (K)︸ ︷︷ ︸
=K∪{g}

\ {g} = (K ∪ {g}) \ {g} = K (since g /∈ K). Hence, (β ◦ α) (K) = β (α (K)) = id (K).

Forget that we fixed K. We thus have shown that (β ◦ α) (K) = id (K) for each K ∈
{J ⊆ S | g /∈ J}. In other words, β ◦ α = id.

17Proof. Let I be a subset of S. If g ∈ I, then (I 6= ∅ and g ∈ I) (because g ∈ I clearly implies I 6= ∅).
Thus, we have the logical implication (g ∈ I) =⇒ (I 6= ∅ and g ∈ I). Combining this with
the implication (I 6= ∅ and g ∈ I) =⇒ (g ∈ I) (which is obvious), we obtain the equivalence
(I 6= ∅ and g ∈ I) ⇐⇒ (g ∈ I). In other words, the condition “I 6= ∅ and g ∈ I” is equivalent
to the condition “g ∈ I”, qed.
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summation sign ∑
I⊆S;
g∈I

. Thus,

∑
I⊆S;
I 6=∅;
g∈I

(−1)|I|−1 bI = ∑
I⊆S;
g∈I︸︷︷︸

= ∑
I∈{J⊆S | g∈J}

(−1)|I|−1 bI

= ∑
I∈{J⊆S | g∈J}

(−1)|I|−1 bI . (29)

But Lemma 0.8 shows that the map

{J ⊆ S | g /∈ J} → {J ⊆ S | g ∈ J} ,
K 7→ K ∪ {g}

is a bijection. Hence, we can substitute K∪S for I in the sum ∑
I∈{J⊆S | g∈J}

(−1)|I|−1 bI .
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We thus obtain

∑
I∈{J⊆S | g∈J}

(−1)|I|−1 bI

= ∑
K∈{J⊆S | g/∈J}︸ ︷︷ ︸

= ∑
K⊆S;
g/∈K

(−1)|K∪{g}|−1 bK∪{g}

= ∑
K⊆S;
g/∈K

(−1)|K∪{g}|−1 bK∪{g} = ∑
K⊆S;
g/∈K

(−1)|K∪{g}|−1︸ ︷︷ ︸
=(−1)(|K|+1)−1

(since |K∪{g}|=|K|+1
(because g/∈K))

bK∪{g}

= ∑
K⊆S;
g/∈K

(−1)(|K|+1)−1︸ ︷︷ ︸
=(−1)|K|

bK∪{g} = ∑
K⊆S;
g/∈K

(−1)|K| bK∪{g}

= (−1)|∅|︸ ︷︷ ︸
=1

(since |∅|=0)

b∅∪{g}︸ ︷︷ ︸
=b{g}

(since ∅∪{g}={g})

+ ∑
K⊆S;
g/∈K;
K 6=∅

(−1)|K| bK∪{g}

(
here, we have split off the addend for K = ∅

from the sum, since ∅ is a subset of S satisfying g /∈ ∅

)
= b{g} + ∑

K⊆S;
g/∈K;
K 6=∅

(−1)|K| bK∪{g}︸ ︷︷ ︸
=bK

(by (26))

= b{g} + ∑
K⊆S;
g/∈K;
K 6=∅

(−1)|I| bK

= b{g} + ∑
I⊆S;
g/∈I;
I 6=∅

(−1)|I| bI (30)
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(here, we have renamed the summation index K as I). Now, (28) becomes

∑
I⊆S;
I 6=∅

(−1)|I|−1 bI = ∑
I⊆S;
I 6=∅;
g∈I

(−1)|I|−1 bI

︸ ︷︷ ︸
= ∑

I∈{J⊆S | g∈J}
(−1)|I|−1bI

(by (29))

+ ∑
I⊆S;
I 6=∅;
g/∈I︸︷︷︸

= ∑
I⊆S;
g/∈I;
I 6=∅

(−1)|I|−1︸ ︷︷ ︸
=−(−1)|I|

bI

= ∑
I∈{J⊆S | g∈J}

(−1)|I|−1 bI︸ ︷︷ ︸
=b{g}+ ∑

I⊆S;
g/∈I;
I 6=∅

(−1)|I|bI

+ ∑
I⊆S;
g/∈I;
I 6=∅

(
− (−1)|I|

)
bI

︸ ︷︷ ︸
=− ∑

I⊆S;
g/∈I;
I 6=∅

(−1)|I|bI

= b{g} + ∑
I⊆S;
g/∈I;
I 6=∅

(−1)|I| bI +

− ∑
I⊆S;
g/∈I;
I 6=∅

(−1)|I| bI

 = b{g}.

This proves Lemma 0.9.

Second solution to Exercise 5. We shall prove (23).
The set {a1, a2, . . . , an} is nonempty (since n is positive) and finite. Thus, the

set {a1, a2, . . . , an} is a nonempty finite set of integers, and therefore has a maxi-
mum. In other words, there exists some g ∈ [n] such that ag = max {a1, a2, . . . , an}.
Consider such a g. (There may be several choices for g, but we choose one.)

For every subset K of [n] satisfying g /∈ K and K 6= ∅, we have

min {ai | i ∈ K ∪ {g}} = min {ai | i ∈ K} . (31)

[Proof of (31): Roughly speaking, all that (31) is claiming is that if you add ag to the set {ai | i ∈ K},
then the minimum of this set does not change. This should be fairly clear, since ag (being the max-
imum of {a1, a2, . . . , an}) is ≥ to all elements of the set {ai | i ∈ K}, and thus cannot pull the
minimum of this set down. For the sake of completeness, let me give a fully formalized version of
this argument:

Let K be a subset of [n] satisfying g /∈ K and K 6= ∅. The set K is nonempty (since K 6= ∅) and
finite; thus, min {ai | i ∈ K} is well-defined.

Clearly, min {ai | i ∈ K} is an element of the set {ai | i ∈ K}. In other words, min {ai | i ∈ K} =
aj for some j ∈ K. Consider this j.

The number aj is the minimum of the set {ai | i ∈ K} (since aj = min {ai | i ∈ K}), and thus is
≤ to each element of this set. In other words,

aj ≤ ai for each i ∈ K. (32)
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But ag = max {a1, a2, . . . , an} ≥ ap for each p ∈ [n]. Applying this to p = j, we obtain ag ≥ aj

(since j ∈ K ⊆ [n]). Thus, aj ≤ ai for each i ∈ K ∪ {g} 18.
Also, j ∈ K ⊆ K ∪ {g}; hence, aj is an element of the set {ai | i ∈ K ∪ {g}}. Moreover, this

element aj is ≤ to each element of this set (because aj ≤ ai for each i ∈ K∪ {g}). Hence, this element
aj is the minimum of this set {ai | i ∈ K ∪ {g}}. In other words, aj = min {ai | i ∈ K ∪ {g}}.
Hence,

min {ai | i ∈ K ∪ {g}} = aj = min {ai | i ∈ K} .

This proves (31).]
Thus, Lemma 0.9 (applied to S = [n] and bI = min {ai | i ∈ I}) yields that

∑
I⊆[n];
I 6=∅

(−1)|I|−1 min {ai | i ∈ I} = min {ai | i ∈ {g}}︸ ︷︷ ︸
={ag}

= min
{

ag
}

= ag = max {a1, a2, . . . , an} .

This proves (23). Thus, Exercise 5 is solved once again.

Remark 0.10. The above Second solution to Exercise 5 shows that Exercise 5
holds more generally if a1, a2, . . . , an are real numbers rather than integers. This
is not immediately obvious from the First solution.

0.4.5. Third solution

Another solution of Exercise 5 relies on a few lemmas. First, two simple identities
for binomial coefficients:

Proposition 0.11. We have (
m
n

)
= 0

for every m ∈N and n ∈N satisfying m < n.

This identity we have already seen many times.

Lemma 0.12. Let n ∈N. Then,

n

∑
h=0

(−1)h
(

n
h

)
= [n = 0] .

We have proven Lemma 0.12 in class (Corollary 3.3 in 14 February 2018). In a
nutshell, it can be proven combinatorially, but it can also be obtained as a particular
case of the binomial formula for (x + y)n when x is set to −1 and y is set to 1.

18Proof. Let i ∈ K ∪ {g}. We must prove that aj ≤ ai.
If i ∈ K, then this follows from (32). Thus, we WLOG assume that we don’t have i ∈ K. Hence,

we have i /∈ K. Combining this with i ∈ K ∪ {g}, we obtain i ∈ (K ∪ {g}) \ K ⊆ {g}. In other
words, i = g. Hence, ai = ag ≥ aj, so that aj ≤ ai. This completes our proof.
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Lemma 0.13. Let n ∈N. Let k ∈ [n]. Then,

∑
I⊆[n];
I 6=∅;

min I=k

(−1)|I|−1 = [k = n] .

Example 0.14. For n = 4 and k = 2, Lemma 0.13 says that

(−1)|{2}|−1 + (−1)|{2,3}|−1 + (−1)|{2,4}|−1 + (−1)|{2,3,4}|−1 = [2 = 4]

(because the subsets I of [4] satisfying I 6= ∅ and min I = 2 are precisely the four
subsets {2} , {2, 3} , {2, 4} , {2, 3, 4}). And this is easily verified to be true (since
both sides are 0).

Proof of Lemma 0.13 (sketched). We first prove the following auxiliary observation:

Observation 1: Let g ∈N. Then,

|{I ⊆ [n] | I 6= ∅ and min I = k and |I| = g}| =
(

n− k
g− 1

)
.

[Proof of Observation 1: Fix g ∈ N. How do we construct a g-element subset I of
[n] satisfying I 6= ∅ and min I = k (that is, k is the smallest element of I) ?

One simple way is the following: Since k has to be an element of I, we only
need to choose the remaining g− 1 elements of I. These g− 1 elements must be
greater than k (since we want min I to be k); in other words, they must belong to
{k + 1, k + 2, . . . , n}. So we just need to choose g − 1 elements from the (n− k)-

element set {k + 1, k + 2, . . . , n}. This can be done in
(

n− k
g− 1

)
ways19.

Clearly, this construction yields every g-element subset I of [n] satisfying I 6= ∅
and min I = k in exactly one way. Thus, the number of g-element subsets I of [n]

satisfying I 6= ∅ and min I = k is precisely
(

n− k
g− 1

)
. In other words, the number

of all I ⊆ [n] satisfying I 6= ∅ and min I = k and |I| = g is precisely
(

n− k
g− 1

)
. In

other words,

|{I ⊆ [n] | I 6= ∅ and min I = k and |I| = g}| =
(

n− k
g− 1

)
.

Observation 1 is thus proven.]

19Check that this is true even if g = 0.
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Now, let us split the sum ∑
I⊆[n];
I 6=∅;

min I=k

(−1)|I|−1 according to the size |I| of I (which

must be a positive integer, because the sum includes only those subsets I that
satisfy I 6= ∅). We thus obtain

∑
I⊆[n];
I 6=∅;

min I=k

(−1)|I|−1

= ∑
g≥1

∑
I⊆[n];
I 6=∅;

min I=k;
|I|=g

(−1)|I|−1︸ ︷︷ ︸
=(−1)g−1

(since |I|=g)

= ∑
g≥1

∑
I⊆[n];
I 6=∅;

min I=k;
|I|=g

(−1)g−1

︸ ︷︷ ︸
=|{I⊆[n] | I 6=∅ and min I=k and |I|=g}|·(−1)g−1

= ∑
g≥1
|{I ⊆ [n] | I 6= ∅ and min I = k and |I| = g}|︸ ︷︷ ︸

=

(
n− k
g− 1

)
(by Observation 1)

· (−1)g−1

= ∑
g≥1

(
n− k
g− 1

)
· (−1)g−1 = ∑

h≥0

(
n− k

h

)
· (−1)h

(here, we have substituted h for g− 1 in the sum)

= ∑
h≥0

(−1)h
(

n− k
h

)

=
n−k

∑
h=0

(−1)h
(

n− k
h

)
︸ ︷︷ ︸

=[n−k=0]
(by Lemma 0.12,

applied to n−k instead of n)

+
∞

∑
h=n−k+1

(−1)h
(

n− k
h

)
︸ ︷︷ ︸

=0
(by Proposition 0.11,

applied to n−k and h instead of m and n
(since n−k<h))

=

n− k = 0︸ ︷︷ ︸
⇐⇒ (n=k)

+
∞

∑
h=n−k+1

(−1)h 0︸ ︷︷ ︸
=0

= [n = k] .

This proves Lemma 0.13.

Third solution to Exercise 5 (sketched). We want to prove the identity (23). This iden-
tity clearly does not change when the numbers a1, a2, . . . , an are permuted (because
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when this happens, the addends (−1)|I|−1 min {ai | i ∈ I} on the right hand side
get permuted as well, while the left hand side max {a1, a2, . . . , an} is preserved).
Hence, we WLOG assume that a1 ≤ a2 ≤ · · · ≤ an (because we can always achieve
this by permuting the numbers a1, a2, . . . , an: this is called sorting). Hence, each
nonempty subset I of [n] satisfies

min {ai | i ∈ I} = amin I . (33)

(For example, min {a3, a5, a6} = a3 = amin{3,5,6}.)
Now,

∑
I⊆[n];
I 6=∅

(−1)|I|−1 min {ai | i ∈ I}︸ ︷︷ ︸
=amin I

(by (33))

= ∑
I⊆[n];
I 6=∅

(−1)|I|−1 amin I = ∑
k∈[n]︸︷︷︸
=

n
∑

k=1

∑
I⊆[n];
I 6=∅;

min I=k

(−1)|I|−1 amin I︸ ︷︷ ︸
=ak

(since min I=k)

(here, we have split the sum according to the value of min I)

=
n

∑
k=1

∑
I⊆[n];
I 6=∅;

min I=k

(−1)|I|−1 ak =
n

∑
k=1

ak ∑
I⊆[n];
I 6=∅;

min I=k

(−1)|I|−1

︸ ︷︷ ︸
=[k=n]

(by Lemma 0.13)

=
n

∑
k=1

ak [k = n] =
n−1

∑
k=1

ak [k = n]︸ ︷︷ ︸
=0

(since we don’t have k=n
(because k≤n−1<n))

+an [n = n]︸ ︷︷ ︸
=1

=
n−1

∑
k=1

ak0︸ ︷︷ ︸
=0

+an = an = max {a1, a2, . . . , an} (since a1 ≤ a2 ≤ · · · ≤ an) .

This proves (23). Thus, Exercise 5 is solved.

Remark 0.15. The above Third solution to Exercise 5 shows that Exercise 5 holds
more generally if a1, a2, . . . , an are real numbers rather than integers. This is not
immediately obvious from the First solution.

A fourth solution of Exercise 5 can be done by induction on n.

0.5. Not-quite-derangements

https://en.wikipedia.org/wiki/Sorting_algorithm


Math 4707 Spring 2018 (Darij Grinberg): homework set 2 page 38

Exercise 6. Let n be a positive integer. An nqd (“not-quite-derangement”) of [n]
shall denote a permutation σ of [n] such that every i ∈ [n− 1] satisfies σ (i) 6=
i + 1. Prove that the number of nqds of [n] is

(n− 1)!
n−1

∑
k=0

(−1)k · n− k
k!

.

This is similar to the formula, proven in [Galvin17, §16], which says that the number

of derangements of [n] is n!
n
∑

k=0
(−1)k · 1

k!
. Unsurprisingly, the solution to Exercise

6 is also similar to the proof of the latter formula for the number of derangements
of [n].

In preparation for solving Exercise 6, let us restate Theorem 0.6 (b) as follows:

Lemma 0.16. Let k ∈ N. Let S be a finite set. Let A1, A2, . . . , Ak be k subsets of
S. Then, ∣∣∣∣∣S \ k⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[k]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Here, the “empty” intersection
⋂

i∈∅
Ai is understood to mean the set S.

Proof of Lemma 0.16. Theorem 0.6 (b) (applied to n = k) yields∣∣∣∣∣S \ k⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[k]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

This proves Lemma 0.16.

We furthermore recall the following fact:

Proposition 0.17. We have (
m
n

)
=

m!
n! (m− n)!

for any m ∈N and n ∈N satisfying m ≥ n.

Next, let us show a simple identity for binomial coefficients:

Lemma 0.18. Let n be a positive integer. Let k ∈ {0, 1, . . . , n− 1}. Then,(
n− 1

k

)
(n− k)! = (n− 1)! · n− k

k!
.



Math 4707 Spring 2018 (Darij Grinberg): homework set 2 page 39

Proof of Lemma 0.18. We have k ∈ {0, 1, . . . , n− 1} ⊆ N, and k ≤ n− 1 (since k ∈
{0, 1, . . . , n− 1}). Thus, n − 1 ≥ k ≥ 0 (since k ∈ N), so that n − 1 ∈ N. Now,
Proposition 0.17 (applied to n− 1 and k instead of m and n) yields(

n− 1
k

)
=

(n− 1)!
k! ((n− 1)− k)!

=
(n− 1)!

k! ((n− k)− 1)!

(since (n− 1)− k = (n− k)− 1).
But n − k ≥ 1 (since n − 1 ≥ k) and thus (n− k)! = (n− k) · ((n− k)− 1)!.

Hence, (
n− 1

k

)
︸ ︷︷ ︸

=
(n− 1)!

k! ((n− k)− 1)!

(n− k)!︸ ︷︷ ︸
=(n−k)·((n−k)−1)!

=
(n− 1)!

k! ((n− k)− 1)!
(n− k) · ((n− k)− 1)! = (n− 1)! · n− k

k!
.

This proves Lemma 0.18.

Next, we shall count permutations σ of [n] that do satisfy σ (i) = i + 1 for certain
values of i ∈ [n] (so, in a sense, the opposite of nqds). Specifically, we shall need
the following lemma:

Lemma 0.19. Let n ∈N. Let I be a subset of [n− 1]. Then,

|{σ ∈ Sn | σ (i) = i + 1 for all i ∈ I}| = (n− |I|)!.

In order to prove this lemma, let us generalize it a bit:

Lemma 0.20. Let n ∈ N. Let I be a subset of [n]. Let hi be an element of [n] for
each i ∈ I. Assume that the hi for different i ∈ I are distinct. Then,

|{σ ∈ Sn | σ (i) = hi for all i ∈ I}| = (n− |I|)!.

Proof of Lemma 0.20 (sketched). We say that a permutation σ ∈ Sn is fine if it satisfies
(σ (i) = hi for all i ∈ I). (Keep in mind that I is fixed here, so we don’t need to
mention it every time.)

Let
(

g1, g2, . . . , gn−|I|

)
be the list of all the n − |I| elements of the set [n] \ I in

some arbitrarily chosen order (with no repetitions).
How can we construct a fine permutation σ ∈ Sn ? One way to construct an

arbitrary permutation in Sn is to choose its values one by one, each time choosing a
value that has not already been chosen (to ensure that the values are distinct). We
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are going to choose the values of σ ∈ Sn in a specific order: namely, first we shall
choose the values σ (i) at elements i of I, and then we will choose the remaining
values σ (g1) , σ (g2) , . . . , σ

(
gn−|I|

)
.

Here is the algorithm we will use to construct a fine permutation σ ∈ Sn:

• For each i ∈ I, we choose the value σ (i) to be hi (since we want σ to be fine).
This is allowed, because the hi for different i ∈ I are distinct (so we are always
choosing a value that has not already been chosen).

Notice that we have only 1 option at this step (because σ (i) must be hi for
each i ∈ I).

• It remains to choose the values σ (j) of σ on all the elements j ∈ [n] \ I. We
do this step by step: First, we choose σ (g1); then, we choose σ (g2); then, we
choose σ (g3), and so on. Here, we have n− |I| options when choosing σ (g1)
(because σ (g1) can be any element of [n] except for the |I| already chosen
values of σ); then, we have n− |I| − 1 options when choosing σ (g2) (because
σ (g2) can be any element of [n] except for the |I|+ 1 already chosen values
of σ); then, we have n− |I| − 2 options when choosing σ (g3) at the next step,
and so on. Thus, we have

(n− |I|) (n− |I| − 1) · · · (n− |I| − (n− |I| − 1))
= (n− |I|) (n− |I| − 1) · · · 1 = (n− |I|)!

options altogether.

Hence, this algorithm allows for 1 · (n− |I|)! = (n− |I|)! many choices. Since
this algorithm constructs each fine permutation σ ∈ Sn exactly once, we thus con-
clude that the number of fine permutations σ ∈ Sn is (n− |I|)!. Hence,

(n− |I|)! = (the number of fine permutations σ ∈ Sn)

= (the number of σ ∈ Sn such that (σ (i) = hi for all i ∈ I))
(by the definition of “fine permutations”)

= |{σ ∈ Sn | σ (i) = hi for all i ∈ I}| .

This proves Lemma 0.20.

Proof of Lemma 0.19 (sketched). We have I ⊆ [n− 1] ⊆ [n]. For each i ∈ I, we have
i + 1 ∈ [n] 20. Moreover, the i + 1 for different i ∈ I are distinct. Hence, Lemma
0.20 (applied to hi = i + 1) shows that |{σ ∈ Sn | σ (i) = i + 1 for all i ∈ I}| =
(n− |I|)!. This proves Lemma 0.19.

Solution to Exercise 6 (sketched). For each i ∈ [n− 1], we define a subset Ai of Sn by

Ai = {σ ∈ Sn | σ (i) = i + 1} . (34)

20Proof. Let i ∈ I. Thus, i ∈ I ⊆ [n− 1] = {1, 2, . . . , n− 1}, so that i + 1 ∈ {2, 3, . . . , n} ⊆ [n], qed.
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Then, for each subset I of [n− 1], we have⋂
i∈I

Ai =
⋂
i∈I
{σ ∈ Sn | σ (i) = i + 1} (by (34))

= {σ ∈ Sn | σ (i) = i + 1 for all i ∈ I}

and therefore∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ = |{σ ∈ Sn | σ (i) = i + 1 for all i ∈ I}| = (n− |I|)! (35)

(by Lemma 0.19).
On the other hand, recall that an nqd of [n] means a permutation σ of [n] such

that every i ∈ [n− 1] satisfies σ (i) 6= i + 1. Thus,

{nqds of [n]}
= {permutations σ of [n] such that every i ∈ [n− 1] satisfies σ (i) 6= i + 1}

=

σ ∈ Sn | σ (i) 6= i + 1 for all i ∈ [n− 1]︸ ︷︷ ︸
⇐⇒ (not (σ(i)=i+1 for some i∈[n−1]))


= {σ ∈ Sn | not (σ (i) = i + 1 for some i ∈ [n− 1])}
= Sn \ {σ ∈ Sn | σ (i) = i + 1 for some i ∈ [n− 1]}︸ ︷︷ ︸

=
⋃

i∈[n−1]
{σ∈Sn | σ(i)=i+1}

= Sn \
⋃

i∈[n−1]︸ ︷︷ ︸
=

n−1⋃
i=1

{σ ∈ Sn | σ (i) = i + 1}︸ ︷︷ ︸
=Ai

(by (34))

= Sn \
n−1⋃
i=1

Ai.
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Hence,

|{nqds of [n]}|

=

∣∣∣∣∣Sn \
n−1⋃
i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n−1]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣︸ ︷︷ ︸
=(n−|I|)!
(by (35))

(by Lemma 0.16, applied to S = Sn and k = n− 1)

= ∑
I⊆[n−1]︸ ︷︷ ︸

=
n−1
∑

k=0
∑

I⊆[n−1];
|I|=k

(since |I|∈{0,1,...,n−1}
for each I⊆[n−1])

(−1)|I| (n− |I|)! =
n−1

∑
k=0

∑
I⊆[n−1];
|I|=k

(−1)|I|︸ ︷︷ ︸
=(−1)k

(since |I|=k)

(n− |I|)!︸ ︷︷ ︸
=(n−k)!

(since |I|=k)

=
n−1

∑
k=0

∑
I⊆[n−1];
|I|=k

(−1)k (n− k)!

︸ ︷︷ ︸
=|{I⊆[n−1] | |I|=k}|·(−1)k(n−k)!

=
n−1

∑
k=0

|{I ⊆ [n− 1] | |I| = k}|︸ ︷︷ ︸
=(the number of all k-element subsets I of [n−1])

=

(
n− 1

k

)
(since n−1∈N)

· (−1)k (n− k)!

=
n−1

∑
k=0

(
n− 1

k

)
· (−1)k (n− k)! =

n−1

∑
k=0

(−1)k
(

n− 1
k

)
(n− k)!︸ ︷︷ ︸

=(n−1)!·
n− k

k!
(by Lemma 0.18)

=
n−1

∑
k=0

(−1)k (n− 1)! · n− k
k!

= (n− 1)!
n−1

∑
k=0

(−1)k · n− k
k!

.

In other words, the number of nqds of [n] is (n− 1)!
n−1
∑

k=0
(−1)k · n− k

k!
. This solves

Exercise 6.

0.6. Socks
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Exercise 7. Let n and s be two even positive integers. Let q and r be the quotient
and the remainder of division of n by s. (Thus, q ∈ Z, r ∈ {0, 1, . . . , s− 1} and
n = qs + r.)

Assume that n socks are hanging on a clothesline, with n/2 of these socks
being black and the remaining n/2 white.

A balanced window will mean a choice of s consecutive socks on the clothesline
such that s/2 of these socks are black and the remaining s/2 are white.

(a) If r < 2q, then show that there is a balanced window.
(b) If s ≤ 2q + r, then show that there is a balanced window.
[Hint: Number the socks by 1, 2, . . . , n in the order in which they appear on

the clothesline. For each i ∈ [n− s + 1], define the integer

bi = (the number of black socks among socks i, i + 1, . . . , i + s− 1)− s/2.

Proceed as in class, and take a look at the last r socks on the clothesline (i.e.,
those not counted in b1, bs+1, b2s+1, . . . , b(q−1)s+1). For part (b), take a closer look
at the last s socks on the clothesline.]

(In class (Example 2.13 in classwork from 7 February 2018), we mostly considered
the case when n = 30 and s = 10; this falls under the situation of part (a). For an
example of part (b), try n = 26 and s = 10.)

Remark 0.21. A converse can also be shown: If neither r < 2q nor s ≤ 2q + r
holds, then one can place n socks (n/2 black, n/2 white) on a clothesline in such
a way that no balanced window exists. (This observation, and part (b) of the
exercise, are due to Daniel Harrer.)

Our solution to Exercise 7 relies on the discrete continuity principle (Lemma 2.14
in classwork from 7 February 2018):

Lemma 0.22. Let w be a positive integer. Let b1, b2, . . . , bw be w nonzero integers.
Assume that b1 ≥ 0. Assume furthermore that

|bi+1 − bi| ≤ 1 for all i ∈ [w− 1] . (36)

Then, bi > 0 for all i ∈ [w].

Proof of Lemma 0.22. We claim that

bi > 0 for all i ∈ [w] . (37)

We shall prove (37) by induction on i:
Induction base: We have b1 ≥ 0 (by assumption). But b1 is a nonzero integer (since b1, b2, . . . , bw

are w nonzero integers). Thus, b1 6= 0. Combining this with b1 ≥ 0, we obtain b1 > 0. In other
words, (37) holds for i = 1. This completes the induction base.

Induction step: Let j ∈ [w− 1]. Assume that (37) holds for i = j. We must then prove that (37)
holds for i = j + 1.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb7.pdf
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018feb7.pdf
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We have assumed that (37) holds for i = j. In other words, bj > 0. Hence, bj ≥ 1 (since bj is an
integer).

But (36) (applied to i = j) yields
∣∣bj+1 − bj

∣∣ ≤ 1. But every x ∈ Z satisfies |x| ≥ −x. Applying
this to x = bj+1 − bj, we obtain

∣∣bj+1 − bj
∣∣ ≥ − (bj+1 − bj

)
= bj − bj+1. Therefore, bj − bj+1 ≤∣∣bj+1 − bj

∣∣ ≤ 1, so that bj ≤ bj+1 + 1. In other words, bj+1 ≥ bj − 1 ≥ 0 (because bj ≥ 1).
However, recall that b1, b2, . . . , bw are nonzero integers. Thus, bj+1 is a nonzero integer. Therefore,

bj+1 6= 0. Combining this with bj+1 ≥ 0, we obtain bj+1 > 0. In other words, (37) holds for i = j + 1.
This completes the induction step. Thus, we have proven (37) by induction.

But this clearly concludes the proof of Lemma 0.22.

Note that Lemma 0.22 is also a particular case of [Grinbe16, Proposition 2.75].

Solution to Exercise 7 (sketched). We shall prove the contrapositive: If there is no bal-
anced window, then neither r < 2q nor s ≤ 2q + r can hold.

So let us assume that there is no balanced window. We must then show that
neither r < 2q nor s ≤ 2q + r can hold. In other words, we must show that r ≥ 2q
and s > 2q + r.

Notice that s/2 ∈ Z (since s is even). Also, q and r are the quotient and the
remainder of division of n by s. Thus, q ∈ Z, r ∈ {0, 1, . . . , s− 1} and n = qs + r.
From r ∈ {0, 1, . . . , s− 1}, we obtain r < s. Thus, s > r.

The integer q is nonnegative (since it is the quotient of dividing the positive
integer n by the positive integer s).

We must prove that r ≥ 2q and s > 2q + r. If q = 0, then this is obvious (because
if q = 0, then r ≥ 0 = 2 · 0︸︷︷︸

=q

= 2q and s > r = 2 · 0︸︷︷︸
=q

+r = 2q + r). Hence, we

WLOG assume that q 6= 0. Thus, q ≥ 1 (since q is a nonnegative integer). Therefore,
n = q︸︷︷︸

≥1

s + r︸︷︷︸
≥0

≥ s. Hence, n− s + 1 ≥ 1.

Number the socks by 1, 2, . . . , n in the order in which they appear on the clothes-
line.

For each i ∈ [n− s + 1], define the integer

bi = (the number of black socks among socks i, i + 1, . . . , i + s− 1)− s/2. (38)

(This is indeed an integer, because s/2 ∈ Z.) Then, each i ∈ [n− s + 1] satisfies

bi =
1
2
(the number of black socks among socks i, i + 1, . . . , i + s− 1)

− 1
2
(the number of white socks among socks i, i + 1, . . . , i + s− 1) . (39)

[Proof of (39): Let i ∈ [n− s + 1]. Then,

(the number of black socks among socks i, i + 1, . . . , i + s− 1)
+ (the number of white socks among socks i, i + 1, . . . , i + s− 1)

= (the total number of socks i, i + 1, . . . , i + s− 1) = s.
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Hence,

(the number of white socks among socks i, i + 1, . . . , i + s− 1)
= s− (the number of black socks among socks i, i + 1, . . . , i + s− 1) .

Thus,

1
2
(the number of black socks among socks i, i + 1, . . . , i + s− 1)

− 1
2
(the number of white socks among socks i, i + 1, . . . , i + s− 1)︸ ︷︷ ︸

=s−(the number of black socks among socks i,i+1,...,i+s−1)

=
1
2
(the number of black socks among socks i, i + 1, . . . , i + s− 1)

− 1
2
(s− (the number of black socks among socks i, i + 1, . . . , i + s− 1))

= (the number of black socks among socks i, i + 1, . . . , i + s− 1)− s/2
= bi (by (38)) .

This proves (39).]
The equality (39) shows that if we invert the colors of all socks (simultaneously),

then all the numbers b1, b2, . . . , bn−s+1 change signs. Hence, we can WLOG assume
that b1 ≥ 0 (since otherwise, we can invert the colors of all socks, and then b1 will
change sign)21. Assume this.

Note that each i ∈ [n− s + 1] satisfies

(the number of black socks among socks i, i + 1, . . . , i + s− 1) = bi + s/2 (40)

(by (38)).
For each i ∈ [n− s + 1], we have bi 6= 0 (because if we had bi = 0, then

the s consecutive socks i, i + 1, . . . , i + s − 1 would form a balanced window; but
this would contradict our assumption that there is no balanced window). Thus,
b1, b2, . . . , bn−s+1 are nonzero integers. Furthermore,

|bi+1 − bi| ≤ 1 for all i ∈ [(n− s + 1)− 1]

22. Hence, Lemma 0.22 shows that bi > 0 for all i ∈ [n− s + 1]. Since the bi are
integers, this shows that

bi ≥ 1 for all i ∈ [n− s + 1] . (41)

21Here we are tacitly using the fact that b1 exists (since n− s + 1 ≥ 1).
22Proof. Let i ∈ [(n− s + 1)− 1]. Thus, i ∈ [n− s]. Let r be the number of black socks among the

s− 1 socks i + 1, i + 2, . . . , i + s− 1. Then, the definition of bi yields

bi = (the number of black socks among socks i, i + 1, . . . , i + s− 1)︸ ︷︷ ︸
=r+

1, if sock i is black;
0, if sock i is white.

−s/2

= r +

{
1, if sock i is black;
0, if sock i is white.

− s/2.
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Now, let g be the number of black socks among the r socks qs+ 1, qs+ 2, . . . , qs+
r. Thus, clearly, 0 ≤ g ≤ r.

Meanwhile, the definition of bi+1 yields

bi+1 = (the number of black socks among socks i + 1, i + 2, . . . , i + s)︸ ︷︷ ︸
=r+

1, if sock i + s is black;
0, if sock i + s is white.

−s/2

= r +

{
1, if sock i + s is black;
0, if sock i + s is white.

− s/2.

Subtracting the first of these two equalities from the second, we find

bi+1 − bi =

(
r +

{
1, if sock i is black;
0, if sock i is white.

− s/2

)
−
(

r +

{
1, if sock i + s is black;
0, if sock i + s is white.

− s/2

)

=

{
1, if sock i is black;
0, if sock i is white.

−
{

1, if sock i + s is black;
0, if sock i + s is white.

∈ {1− 1, 1− 0, 0− 1, 0− 0} = {1,−1, 0} ,

and thus |bi+1 − bi| ≤ 1, qed.
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Recall that the total number of black socks on the clothesline is n/2. Thus,

n/2 = (the total number of black socks)
= (the number of black socks among socks 1, 2, . . . , n)
= (the number of black socks among socks 1, 2, . . . , qs + r)

(since n = qs + r)
= (the number of black socks among socks 1, 2, . . . , s)

+ (the number of black socks among socks s + 1, s + 2, . . . , 2s)
+ (the number of black socks among socks 2s + 1, 2s + 2, . . . , 3s)
+ · · ·
+ (the number of black socks among socks (q− 1) s + 1, (q− 1) s + 2, . . . , qs)
+ (the number of black socks among socks qs + 1, qs + 2, . . . , qs + r)

=
q−1

∑
h=0

(the number of black socks among socks hs + 1, hs + 2, . . . , (h + 1) s)︸ ︷︷ ︸
=bhs+1+s/2

(by (40))

+ (the number of black socks among socks qs + 1, qs + 2, . . . , qs + r)︸ ︷︷ ︸
=g

=
q−1

∑
h=0

 bhs+1︸ ︷︷ ︸
≥1

(by (41))

+s/2

+ g

≥
q−1

∑
h=0

(1 + s/2)︸ ︷︷ ︸
=q(1+s/2)
=q+qs/2

+g = q + qs/2 + g.

Hence,
q + qs/2 + g ≤ n︸︷︷︸

=qs+r

/2 = (qs + r) /2 = qs/2 + r/2.

Subtracting qs/2 from both sides of this inequality, we find

q + g ≤ r/2. (42)

Hence, r/2 ≥ q + g︸︷︷︸
≥0

≥ q, so that r ≥ 2q.

It remains to prove that s > 2q + r. Note that there is a sock n − s + 1 on our
clothesline (since n− s + 1 ≥ 1).
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From n = qs + r, we obtain n− r = qs. Thus,

(the number of black socks among socks n− r + 1, n− r + 2, . . . , n)
= (the number of black socks among socks qs + 1, qs + 2, . . . , n)
= (the number of black socks among socks qs + 1, qs + 2, . . . , qs + r)

(since n = qs + r)
= g.

Recall that there is a sock n − s + 1 on our clothesline. Let p be the number
of black socks among the s− r socks n− s + 1, n− s + 2, . . . , n− r. Thus, clearly,
p ≤ s− r.

From (40), we obtain

(the number of black socks among socks n− s + 1, n− s + 2, . . . , n)
= bn−s+1︸ ︷︷ ︸

≥1
(by (41))

+s/2 ≥ 1 + s/2.

Hence,

1 + s/2
≤ (the number of black socks among socks n− s + 1, n− s + 2, . . . , n)
= (the number of black socks among socks n− s + 1, n− s + 2, . . . , n− r)︸ ︷︷ ︸

=p

+ (the number of black socks among socks n− r + 1, n− r + 2, . . . , n)︸ ︷︷ ︸
=g

= p︸︷︷︸
≤s−r

+ g︸︷︷︸
≤r/2−q
(by (42))

≤ (s− r) + (r/2− q) = s− r/2− q.

Subtracting s/2 from both sides of this inequality, we find 1 ≤ s/2− r/2− q, so that
s/2− r/2− q ≥ 1 > 0. Multiplying this inequality by 2, we obtain s− r− 2q > 0,
so that s > 2q + r. This completes the solution to Exercise 7.
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