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Math 4707 Spring 2018 (Darij Grinberg): homework set 2
due date: Wednesday 21 February 2018 at the beginning of class, or before that by

email or moodle
Please solve at most 3 of the 7 exercises!

Please write your name on each page. Feel free to use LaTeX (here is a sample
file with lots of amenities included).

See [Fall2017-HW1s, solution to Exercise 8] for an example of how a counting
proof can be written.

Recall that if n ∈N, then [n] denotes the n-element set {1, 2, . . . , n}.

0.1. Instances of the “Laurent phenomenon”: Sequences that
produce integers despite division in their definition

There is a whole genre of theorem where you define a sequence recursively and
then it turns out that all entries of the sequence are integers, although this is not
obvious from the definition.

Here are two results from this genre, illustrating strategic use of induction.

Exercise 1. Define a sequence (t0, t1, t2, . . .) of positive rational numbers recur-
sively by setting

t0 = 1, t1 = 1, t2 = 1, and

tn =
1 + tn−1tn−2

tn−3
for each n ≥ 3.

(For example, t3 =
1 + t2t1

t0
=

1 + 1 · 1
1

= 2 and t4 =
1 + t3t2

t1
=

1 + 2 · 1
1

= 3.)

(a) Prove that tn+2 = 4tn − tn−2 for each n ≥ 2.
(b) Prove that tn ∈N for each n ∈N.
[Hint: First prove part (a) by induction on n. Then prove part (b) by induction

on n, using part (a).]

Exercise 2. Fix a positive integer r. Define a sequence (b0, b1, b2, . . .) of positive
rational numbers recursively by setting

b0 = 1, b1 = 1, and

bn =
br

n−1 + 1
bn−2

for each n ≥ 2.

(For example, b2 =
br

1 + 1
b0

=
1r + 1

1
= 2 and b3 =

br
2 + 1
b1

=
2r + 1

1
= 2r + 1.)

(a) Prove that bn ∈N for each n ∈N.
(b) If r ≥ 2, then prove that bn | bn−2 + bn+2 for each n ≥ 2.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/hw-template.tex
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[Hint: For every nonzero x ∈ Q, we set H (x) =
(x + 1)r − 1

x
. Show that

H (x) ∈ Z whenever x is a nonzero integer. Next, show that bn+2 = bn−2br
n+1 −

br−1
n H (br

n) for each n ≥ 2. Use this to prove (a).]

0.2. Lacunar subsets with a given number of even and a given
number of odd elements

Recall the following definition: A set S of integers is said to be lacunar if no two
consecutive integers occur in S (that is, there exists no i ∈ Z such that both i and
i + 1 belong to S). For example, {1, 3, 6} is lacunar, but {2, 4, 5} is not. (The empty
set and any 1-element set are lacunar, of course.)

Also recall the Iverson bracket notation: If A is any logical statement, then the truth
value of A is defined to be the integer{

1, if A is true;
0, if A is false

∈ {0, 1} .

This truth value is denoted by [A]. For example, [1 + 1 = 2] = 1 (since 1 + 1 = 2 is
true), whereas [1 + 1 = 1] = 0 (since 1 + 1 = 1 is false).

Exercise 3. For any n ∈ N, a ∈ Z and b ∈ Z, we let N (n, a, b) denote the
number of all lacunar subsets of [n] that contain exactly a even and exactly b odd
elements.

(a) Prove that N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
for all m ∈ N,

a ∈N and b ∈N.

(b) Prove that N (2m + 1, a, b) = [a ≤ m] [b ≤ m + 1]
(

m + 1− a
b

)(
m− b

a

)
for

all m ∈N, a ∈N and b ∈N.
[Hint: One way is to prove parts (a) and (b) simultaneously by induction (that

is, let A (m) be the statement “N (2m, a, b) = [a ≤ m] [b ≤ m]

(
m− a

b

)(
m− b

a

)
and N (2m + 1, a, b) = [a ≤ m] [b ≤ m + 1]

(
m + 1− a

b

)(
m− b

a

)
for all a ∈ N

and b ∈ N”, and prove this by induction on m). One part of the induction step
is an expression for N (2m + 2, a, b) through N (2m + 1, a, b) and N (2m, a− 1, b).
Another similar expression will be needed for N (2m + 3, a, b). Make sure to treat
the base case properly, as well as justifying the switch between the truth values
necessary at one point in the induction step. There is also a bijective proof.]

0.3. Delannoy numbers

Fix two positive integers r and s.



Math 4707 Spring 2018 (Darij Grinberg): homework set 2 page 3

If (a, b) ∈ Z2 and (c, d) ∈ Z2 are two points on the integer lattice, then a (r, s)-
Delannoy path from (a, b) to (c, d) is a path from (a, b) to (c, d) that uses only three
kinds of steps:

• up-steps (U), which have the form (x, y) 7→ (x, y + 1);

• right-steps (R), which have the form (x, y) 7→ (x + 1, y);

• diagonal steps (D), which have the form (x, y) 7→ (x + r, y + s).

Thus, strictly speaking, a (r, s)-Delannoy path from (a, b) to (c, d) is a sequence
(v0, v1, . . . , vn) of points vi ∈ Z2 such that for each i ∈ [n], the difference vector
vi − vi−1 is either (0, 1) or (1, 0) or (r, s).

For two integers n and m, we let dn,m be the number of (r, s)-Delannoy paths
from (0, 0) to (n, m). (This depends on r and s, too, but we regard r and s as fixed.)
Note that dn,m = 0 if (at least) one of n and m is negative (because neither the
x-coordinate nor the y-coordinate can ever decrease along an (r, s)-Delannoy path).

For example, if r = 1 and s = 1, then d2,1 = 5, the five (1, 1)-Delannoy paths
being RRU, RD, RUR, DR and URR. Here are these five paths drawn in the plane:

, , , , .

Exercise 4. (a) Show that dn,m = dn−1,m + dn,m−1 + dn−r,m−s for all n ∈ N and
m ∈N, unless (n, m) = (0, 0).

(b) Show that

dn,m =
n

∑
k=0

[n + m ≥ (r + s− 1) k]
(

n− (r− 1) k
k

)(
n + m− (r + s− 1) k

n− (r− 1) k

)
for all n ∈N and m ∈N.

(c) Assume that r = s. Show that dn,m = dm,n for all n ∈N and m ∈N.
[Hint: The case r = 1 and s = 1 is studied in [Galvin17, §28].]

0.4. On inclusion/exclusion

One version of the Principle of Inclusion and Exclusion is the following theorem
(see, e.g., [Galvin17, Theorem 16.1 and (11)]):

Theorem 0.1. Let n ∈N. Let A1, A2, . . . , An be finite sets.
(a) We have ∣∣∣∣∣ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n];
I 6=∅

(−1)|I|−1

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .
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(b) Let S be a finite set. Assume that each of A1, A2, . . . , An is a subset of S.
Then, ∣∣∣∣∣S \ n⋃

i=1

Ai

∣∣∣∣∣ = ∑
I⊆[n]

(−1)|I|
∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ .

Here, the “empty” intersection
⋂

i∈∅
Ai is understood to mean the set S.

Here is another way to write Theorem 0.1 (a):

Corollary 0.2. Let n ∈N. Let A1, A2, . . . , An be finite sets. Then,

|A1 ∪ A2 ∪ · · · ∪ An| =
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ .

Exercise 5. Let n be a positive integer. Let a1, a2, . . . , an be n integers. Prove that

max {a1, a2, . . . , an}

=
n

∑
k=1

(−1)k−1 ∑
1≤i1<i2<···<ik≤n

min
{

ai1 , ai2 , . . . , aik
}

. (1)

For example, if n = 3, then this says that

max {a1, a2, a3} = min {a1}+ min {a2}+ min {a3}
−min {a1, a2} −min {a1, a3} −min {a2, a3}
+ min {a1, a2, a3} .

[Hint: You can derive this from Corollary 0.2 by constructing n sets
A1, A2, . . . , An such that

∣∣Ai1 ∩ Ai2 ∩ · · · ∩ Aik

∣∣ = min
{

ai1 , ai2 , . . . , aik
}

, if the ai
are nonnegative. If some ai are negative, a slight tweak is required. Alterna-
tively, and perhaps more easily, there is a proof without using the Principle of
Inclusion and Exclusion.

Note that (1) can be rewritten as

max {a1, a2, . . . , an} = ∑
I⊆[n];
I 6=∅

(−1)|I|−1 min {ai | i ∈ I} . (2)

It might be easier to prove this equivalent form.]

0.5. Not-quite-derangements
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Exercise 6. Let n be a positive integer. An nqd (“not-quite-derangement”) of [n]
shall denote a permutation σ of [n] such that every i ∈ [n− 1] satisfies σ (i) 6=
i + 1. Prove that the number of nqds of [n] is

(n− 1)!
n−1

∑
k=0

(−1)k · n− k
k!

.

(Compare with the formula, proven in [Galvin17, §16], which says that the number

of derangements of [n] is n!
n
∑

k=0
(−1)k · 1

k!
.)

0.6. Socks

Exercise 7. Let n and s be two even positive integers. Let q and r be the quotient
and the remainder of division of n by s. (Thus, q ∈ Z, r ∈ {0, 1, . . . , s− 1} and
n = qs + r.)

Assume that n socks are hanging on a clothesline, with n/2 of these socks
being black and the remaining n/2 white.

A balanced window will mean a choice of s consecutive socks on the clothesline
such that s/2 of these socks are black and the remaining s/2 are white.

(a) If r < 2q, then show that there is a balanced window.
(b) If s ≤ 2q + r, then show that there is a balanced window.
[Hint: Number the socks by 1, 2, . . . , n in the order in which they appear on

the clothesline. For each i ∈ [n− s + 1], define the integer

bi = (the number of black socks among socks i, i + 1, . . . , i + s− 1)− s/2.

Proceed as in class, and take a look at the last r socks on the clothesline (i.e.,
those not counted in b1, bs+1, b2s+1, . . . , b(q−1)s+1). For part (b), take a closer look
at the last s socks on the clothesline.]

(In class, we mostly considered the case when n = 30 and s = 10; this falls under
the situation of part (a). For an example of part (b), try n = 26 and s = 10.)

Remark 0.3. A converse can also be shown: If neither r < 2q nor s ≤ 2q + r
holds, then one can place n socks (n/2 black, n/2 white) on a clothesline in such
a way that no balanced window exists.
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