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0.1. Binomial coefficient basics

Definition 0.1. The notation N shall always stand for the set {0, 1, 2, . . .} of non-
negative integers.

Definition 0.2. If n ∈ N, then n! shall denote the product 1 · 2 · · · · · n. For
example, 3! = 1 · 2 · 3 = 6 and 1! = 1 and 0! = (empty product) = 1. (An empty
product is defined to be 1.)

Notice that
n! = n · (n− 1)! for any positive integer n. (1)

Definition 0.3. (a) We define the binomial coefficient
(

n
k

)
by

(
n
k

)
=

n (n− 1) · · · (n− k + 1)
k!

for every n ∈ Q and k ∈N.

For example,
(
−3
4

)
=

(−3) (−4) (−5) (−6)
4!

= 15 and
(

4
1

)
=

4
1!

= 4 and(
4
0

)
=

(empty product)
0!

=
1
1
= 1.

(b) If n ∈ Q and k ∈ Q \N, then
(

n
k

)
is defined to be 0.

See [Grinbe16, Chapter 3] for various properties of binomial coefficients. You are
free to use those shown in [Grinbe16, §3.1] without proof. In particular, you are
free to use the following fact:

Proposition 0.4 (recurrence of the binomial coefficients). Let n ∈ Q and k ∈ Z.
Then, (

n
k

)
=

(
n− 1
k− 1

)
+

(
n− 1

k

)
.
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(This is exactly [Grinbe16, Proposition 3.11] when k is a positive integer. The
cases k = 0 and k < 0 are easy.)

Proposition 0.5 (upper negation). We have(
m
n

)
= (−1)n

(
n−m− 1

n

)
(2)

for any m ∈ Q and n ∈ Z.

(This follows from [Grinbe16, Proposition 3.16] when n ∈ N. The case n /∈ N is
easy.)

Proposition 0.6. We have (
m
n

)
=

(
m

m− n

)
(3)

for any m ∈N and n ∈N satisfying m ≥ n.

(This is exactly [Grinbe16, Proposition 3.8].)

Proposition 0.7. We have (
m
m

)
= 1 (4)

for every m ∈N.

(This is exactly [Grinbe16, Proposition 3.9].)

Proposition 0.8. We have (
m
n

)
= 0 (5)

for every m ∈N and n ∈N satisfying m < n.

(This is exactly [Grinbe16, Proposition 3.6].)

Exercise 1. (a) Show that
(
−1
k

)
= (−1)k for each k ∈N.

(b) Show that
(
−2
k

)
= (−1)k (k + 1) for each k ∈N.

(c) Show that
1! · 2! · · · · · (2n)!

n!
is a perfect square (i.e., the square of an integer)

whenever n ∈N is even.

Remark 0.9. Parts (a) and (b) of Exercise 1 are known facts. I found part (c) on
https://www.reddit.com/r/math/comments/7rybhp/factorial_problem/ .

Exercise 1 now also appears in [Grinbe16, Exercise 3.5 and Remark 3.18].

https://www.reddit.com/r/math/comments/7rybhp/factorial_problem/
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Solution to Exercise 1. (a) First solution to Exercise 1 (a): Let k ∈N. Then, Proposition
0.5 (applied to m = −1 and n = k) yields(

−1
k

)
= (−1)k

(
k− (−1)− 1

k

)
= (−1)k

(
k
k

)
︸︷︷︸
=1

(by Proposition 0.7
(applied to m=k))

(since k− (−1)− 1 = k)

= (−1)k .

This solves Exercise 1 (a).
Second solution to Exercise 1 (a): Let k ∈ N. Then, the definition of k! yields

k! = 1 · 2 · · · · · k. But the definition of
(
−1
k

)
yields

(
−1
k

)
=

(−1) (−2) · · · (−1− k + 1)
k!

=
(−1) (−2) · · · (−k)

k!
(since − 1− k + 1 = −k)

=
1
k!
· (−1) (−2) · · · (−k)︸ ︷︷ ︸

=(−1)k·(1·2·····k)

=
1
k!
· (−1)k · (1 · 2 · · · · · k)︸ ︷︷ ︸

=k!

=
1
k!
· (−1)k · k! = (−1)k .

This solves Exercise 1 (a).
(b) First solution to Exercise 1 (b): Let k ∈ N. Then, k + 1 ∈ N and k + 1 ≥ k.

Hence, Proposition 0.6 (applied to m = k + 1 and n = k) yields(
k + 1

k

)
=

(
k + 1

(k + 1)− k

)
=

(
k + 1

1

)
(since (k + 1)− k = 1)

=
(k + 1) ((k + 1)− 1) · · · ((k + 1)− 1 + 1)

1!(
by the definition of

(
k + 1

k

))
=

1
1!︸︷︷︸
=1

(since 1!·1)

· (k + 1) ((k + 1)− 1) · · · ((k + 1)− 1 + 1)︸ ︷︷ ︸
=k+1

(since this product has only 1 factor)

= 1 · (k + 1) = k + 1.
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But Proposition 0.5 (applied to m = −2 and n = k) yields(
−2
k

)
= (−1)k

(
k− (−2)− 1

k

)
= (−1)k

(
k + 1

k

)
︸ ︷︷ ︸

=k+1

(since k− (−2)− 1 = k + 1)

= (−1)k (k + 1) .

This solves Exercise 1 (b).
Second solution to Exercise 1 (b): Let k ∈N. Then, the definition of (k + 1)! yields

(k + 1)! = 1 · 2 · · · · · (k + 1) = 1 · (2 · 3 · · · · · (k + 1)) = 2 · 3 · · · · · (k + 1) .

On the other hand, applying (1) to n = k + 1, we find

(k + 1)! = (k + 1) ·

(k + 1)− 1︸ ︷︷ ︸
=k

! = (k + 1) · k!.

But the definition of
(
−2
k

)
yields

(
−2
k

)
=

(−2) (−3) · · · (−2− k + 1)
k!

=
(−2) (−3) · · · (− (k + 1))

k!
(since − 2− k + 1 = − (k + 1))

=
1
k!
· (−2) (−3) · · · (− (k + 1))︸ ︷︷ ︸

=(−1)k·(2·3·····(k+1))

=
1
k!
· (−1)k · (2 · 3 · · · · · (k + 1))︸ ︷︷ ︸

=(k+1)!

=
1
k!
· (−1)k · (k + 1)!︸ ︷︷ ︸

=(k+1)·k!

=
1
k!
· (−1)k · (k + 1) · k! = (−1)k (k + 1) .

This solves Exercise 1 (b).
(c) We shall use the ∏ notation for finite products. In a nutshell: If u and v are

integers, and if bu, bu+1, . . . , bv are any numbers, then
v

∏
i=u

bi denotes the product

bubu+1 · · · bv. (See [Grinbe16, §1.4] for properties of this notation. Notice that the

product
v

∏
i=u

bi is understood to be an empty product when u > v, and in this case

is defined to be 1.)
We first claim that

1! · 2! · · · · · (2n)!
n!

= 2n ·
(

n

∏
i=1

((2i− 1)!)

)2

(6)

for every n ∈N.
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We give two proofs (6): one by astutely transforming the left-hand side, another
by straightforward induction.

[First proof of (6): Let n ∈ N. Then, we can group the factors of the product
1! · 2! · · · · · (2n)! into pairs of successive factors. We thus obtain

1! · 2! · · · · · (2n)!

= (1! · 2!) · (3! · 4!) · · · · · ((2n− 1)! · (2n)!) =
n

∏
i=1


(2i− 1)! · (2i)!︸︷︷︸

=2i·(2i−1)!
(by (1), applied

to n=2i)


=

n

∏
i=1

((2i− 1)! · 2i · (2i− 1)!)︸ ︷︷ ︸
=2i·(2i−1)!2

=
n

∏
i=1

(
2i · (2i− 1)!2

)

=

(
n

∏
i=1

(2i)

)
︸ ︷︷ ︸

=2n
n
∏
i=1

i

·
(

n

∏
i=1

(
(2i− 1)!2

))
︸ ︷︷ ︸

=

(
n
∏
i=1

((2i−1)!)
)2

= 2n

(
n

∏
i=1

i

)
︸ ︷︷ ︸

=1·2·····n=n!

·
(

n

∏
i=1

((2i− 1)!)

)2

= 2nn! ·
(

n

∏
i=1

((2i− 1)!)

)2

.

Dividing both sides of this equality by n!, we find

1! · 2! · · · · · (2n)!
n!

= 2n ·
(

n

∏
i=1

((2i− 1)!)

)2

.

This proves (6).]
[Second proof of (6): We shall prove (6) by induction on n:
Induction base: Comparing

1! · 2! · · · · · (2 · 0)!
0!

=
1
0!︸︷︷︸
=1

· (1! · 2! · · · · · (2 · 0)!)︸ ︷︷ ︸
=1!·2!·····0!

=(empty product)=1

= 1

with

20︸︷︷︸
=1

·


0

∏
i=1

((2i− 1)!)︸ ︷︷ ︸
=(empty product)=1


2

= 1 · 12 = 1,
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we obtain
1! · 2! · · · · · (2 · 0)!

0!
= 20 ·

(
0

∏
i=1

((2i− 1)!)
)2

. In other words, (6) holds for

n = 0. This completes the induction base.
Induction step: Let m ∈ N. Assume that (6) holds for n = m. We must prove that

(6) holds for n = m + 1.
Applying (1) to n = m + 1, we find

(m + 1)! = (m + 1) ·

(m + 1)− 1︸ ︷︷ ︸
=m

! = (m + 1) ·m!.

On the other hand, applying (1) to n = 2m + 2, we find

(2m + 2)! = (2m + 2) ·

(2m + 2)− 1︸ ︷︷ ︸
=2m+1

! = (2m + 2) · (2m + 1)!.

We have assumed that (6) holds for n = m. In other words, we have

1! · 2! · · · · · (2m)!
m!

= 2m ·
(

m

∏
i=1

((2i− 1)!)

)2

.

Now,

1! · 2! · · · · · (2 (m + 1))!
(m + 1)!

=
1! · 2! · · · · · (2m + 2)!

(m + 1) ·m!
(since 2 (m + 1) = 2m + 2 and (m + 1)! = (m + 1) ·m!)

=
1

(m + 1) ·m!
· (1! · 2! · · · · · (2m + 2)!)︸ ︷︷ ︸
=(1!·2!·····(2m)!)·(2m+1)!·(2m+2)!

=
1

(m + 1) ·m!
· (1! · 2! · · · · · (2m)!) · (2m + 1)! · (2m + 2)!︸ ︷︷ ︸

=(2m+2)·(2m+1)!

=
1

(m + 1) ·m!
· (1! · 2! · · · · · (2m)!) · (2m + 1)! · (2m + 2) · (2m + 1)!

=
2m + 2
m + 1︸ ︷︷ ︸
=2

· 1! · 2! · · · · · (2m)!
m!︸ ︷︷ ︸

=2m·
(

m
∏
i=1

((2i−1)!)
)2

· ((2m + 1)!)2

= 2 · 2m ·
(

m

∏
i=1

((2i− 1)!)

)2

· ((2m + 1)!)2 .
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Comparing this with

2m+1︸ ︷︷ ︸
=2·2m

·


m+1

∏
i=1

((2i− 1)!)︸ ︷︷ ︸
=

(
m
∏
i=1

((2i−1)!)
)
·(2(m+1)−1)!



2

= 2 · 2m ·

( m

∏
i=1

((2i− 1)!)

)
·

2 (m + 1)− 1︸ ︷︷ ︸
=2m+1

!

2

= 2 · 2m ·
((

m

∏
i=1

((2i− 1)!)

)
· (2m + 1)!

)2

= 2 · 2m ·
(

m

∏
i=1

((2i− 1)!)

)2

· ((2m + 1)!)2 ,

we obtain
1! · 2! · · · · · (2 (m + 1))!

(m + 1)!
= 2m+1 ·

(
m+1

∏
i=1

((2i− 1)!)

)2

.

In other words, (6) holds for n = m + 1. This completes the induction step. Thus,
(6) is proven again.]

Now, let n ∈ N be even. Then, n/2 ∈ N. Thus, 2n/2 is an integer. Now, (6)
yields

1! · 2! · · · · · (2n)!
n!

= 2n︸︷︷︸
=(2n/2)

2

·
(

n

∏
i=1

((2i− 1)!)

)2

=
(

2n/2
)2
·
(

n

∏
i=1

((2i− 1)!)

)2

=

(
2n/2 ·

n

∏
i=1

((2i− 1)!)

)2

.

The right-hand side of this equality is a perfect square (since 2n/2 is an integer, and
n
∏
i=1

((2i− 1)!) is an integer as well). Thus,
1! · 2! · · · · · (2n)!

n!
is a perfect square. This

solves Exercise 1 (c).

0.2. A fraction appears
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Definition 0.10. Let x be a real number. Then, bxc is defined to be the unique
integer n satisfying n ≤ x < n + 1. This integer bxc is called the floor of x, or the
integer part of x. For example,

bnc = n for every n ∈ Z; (7)⌊
n +

1
2

⌋
= n for every n ∈ Z; (8)

b1.32c = 1; bπc = 3; b0.98c = 0;
b−2.3c = −3; b−0.4c = −1.

Exercise 2. Let n ∈N. Prove that

n

∑
k=0

(−1)k (k + 1) = (−1)n
⌊

n + 2
2

⌋
.

First solution to Exercise 2. We shall solve Exercise 2 by induction on n:
Induction base: Comparing

(−1)0︸ ︷︷ ︸
=1

0 + 2
2︸ ︷︷ ︸
=1

 = b1c = 1

with
0
∑

k=0
(−1)k (k + 1) = (−1)0︸ ︷︷ ︸

=1

(0 + 1)︸ ︷︷ ︸
=1

= 1, we find
0
∑

k=0
(−1)k (k + 1) = (−1)0

⌊
0 + 2

2

⌋
.

In other words, Exercise 2 holds for n = 0. This completes the induction base.
Induction step: Let m be a positive integer. Assume that Exercise 2 holds for

n = m− 1. We must prove that Exercise 2 holds for n = m.
We have assumed that Exercise 2 holds for n = m− 1. In other words,

m−1

∑
k=0

(−1)k (k + 1) = (−1)m−1
⌊
(m− 1) + 2

2

⌋
.
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Now,

m

∑
k=0

(−1)k (k + 1) =
m−1

∑
k=0

(−1)k (k + 1)︸ ︷︷ ︸
=(−1)m−1

(m− 1) + 2
2


+ (−1)m (m + 1)

= (−1)m−1︸ ︷︷ ︸
=−(−1)m

⌊
(m− 1) + 2

2

⌋
+ (−1)m (m + 1)

= − (−1)m
⌊
(m− 1) + 2

2

⌋
+ (−1)m (m + 1)

= (−1)m (m + 1)− (−1)m
⌊
(m− 1) + 2

2

⌋
= (−1)m

(
(m + 1)−

⌊
(m− 1) + 2

2

⌋)
. (9)

Now, we claim

(m + 1)−
⌊
(m− 1) + 2

2

⌋
=

⌊
m + 2

2

⌋
. (10)

[Proof of (10): We are in one of the following two cases:
Case 1: The integer m is even.
Case 2: The integer m is odd.
Let us first consider Case 1. In this case, the integer m is even. In other words,

m = 2g for some g ∈ Z. Consider this g.

Now, m = 2g, so that
(m− 1) + 2

2
=

(2g− 1) + 2
2

= g +
1
2

. Hence,⌊
(m− 1) + 2

2

⌋
=

⌊
g +

1
2

⌋
= g (by (8) (applied to n = g)) .

Also, from m = 2g, we obtain
m + 2

2
=

2g + 2
2

= g + 1. Hence,⌊
m + 2

2

⌋
= bg + 1c = g + 1 (by (7) (applied to n = g + 1)) .

Comparing this with m︸︷︷︸
=2g

+1

− ⌊ (m− 1) + 2
2

⌋
︸ ︷︷ ︸

=g

= (2g + 1)− g = g + 1,

we find (m + 1)−
⌊
(m− 1) + 2

2

⌋
=

⌊
m + 2

2

⌋
. Thus, (10) is proven in Case 1.
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Let us now consider Case 2. In this case, the integer m is odd. In other words,
m = 2g + 1 for some g ∈ Z. Consider this g.

Now, m = 2g + 1, so that
(m− 1) + 2

2
=

((2g + 1)− 1) + 2
2

= g + 1. Hence,⌊
(m− 1) + 2

2

⌋
= bg + 1c = g + 1 (by (7) (applied to n = g + 1)) .

Also, from m = 2g + 1, we obtain
m + 2

2
=

(2g + 1) + 2
2

= (g + 1) +
1
2

. Hence,⌊
m + 2

2

⌋
=

⌊
(g + 1) +

1
2

⌋
= g + 1 (by (8) (applied to n = g + 1)) .

Comparing this with m︸︷︷︸
=2g+1

+1

− ⌊ (m− 1) + 2
2

⌋
︸ ︷︷ ︸

=g+1

= (2g + 1 + 1)− (g + 1) = g + 1,

we find (m + 1)−
⌊
(m− 1) + 2

2

⌋
=

⌊
m + 2

2

⌋
. Thus, (10) is proven in Case 2.

We thus have proven (10) in each of the two Cases 1 and 2. Thus, (10) always
holds.]

Now, (9) becomes

m

∑
k=0

(−1)k (k + 1) = (−1)m
(
(m + 1)−

⌊
(m− 1) + 2

2

⌋)
︸ ︷︷ ︸

=

⌊m + 2
2

⌋
(by (10))

= (−1)m
⌊

m + 2
2

⌋
.

In other words, Exercise 2 holds for n = m. This completes the induction step.
Thus, Exercise 2 is proven by induction.

Let me stress that the above solution of Exercise 2 was almost completely straight-
forward. The only step that might have taken some creativity was to distinguish
the two cases based on whether m is even or odd in the proof of (10). But this,
too, has a clear motivation: It allows us to get rid of the floor function, which is
the only thing preventing both sides of (10) from being explicit polynomials in m.

It is clear that the floors
⌊
(m− 1) + 2

2

⌋
and

⌊
m + 2

2

⌋
can be rewritten without the

floor function if m is even, and also (differently) if m is odd; thus, treating these
two cases separately becomes completely natural.
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Remark 0.11. The floor function has its own share of curious properties (see, e.g.,
its Wikipedia page). One of these is the identity

bxc+
⌊

x +
1
2

⌋
= b2xc for every x ∈ R. (11)

This is actually a particular case of Hermite’s identity, which states that for every
x ∈ R and every positive integer n, we have

n−1

∑
k=0

⌊
x +

k
n

⌋
= bnxc .

Convince yourself that (10) can easily be derived (without distinguishing be-
tween any cases!) from (11).

Second solution to Exercise 2. We notice that

n

∑
k=0

(−1)k (k + 1)

= (−1)0 1 + (−1)1 2 + (−1)2 3 + (−1)3 4 + · · ·+ (−1)n (n + 1)
= 1− 2 + 3− 4± · · ·+ (−1)n (n + 1) . (12)

Notice that the sign of the last addend on the right hand side depends on whether
n is even or odd. Thus, we distinguish between the following two cases:

Case 1: The integer n is even.
Case 2: The integer n is odd.
Let us first consider Case 1. In this case, the integer n is even. Thus, (−1)n = 1.

Hence, (12) becomes

n

∑
k=0

(−1)k (k + 1)

= 1− 2 + 3− 4± · · ·+ (−1)n︸ ︷︷ ︸
=1

(n + 1)

= 1− 2 + 3− 4± · · ·+ (n + 1)
= (1− 2)︸ ︷︷ ︸

=−1

+ (3− 4)︸ ︷︷ ︸
=−1

+ (5− 6)︸ ︷︷ ︸
=−1

+ · · ·+ ((n− 1)− n)︸ ︷︷ ︸
=−1

+ (n + 1)

= ((−1) + (−1) + (−1) + · · ·+ (−1))︸ ︷︷ ︸
n/2 addends︸ ︷︷ ︸

=n/2·(−1)=−n/2

+ (n + 1)

= −n/2 + (n + 1) = n/2 + 1. (13)

But n is even; thus, n = 2g for some g ∈ Z. Consider this g. From n = 2g, we

https://en.wikipedia.org/wiki/Floor_and_ceiling_functions
https://en.wikipedia.org/wiki/Hermite's_identity
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obtain
n + 2

2
=

2g + 2
2

= g + 1. Hence,⌊
n + 2

2

⌋
= bg + 1c = g + 1

(by (7) (applied to g + 1 instead of n)). Hence,

(−1)n︸ ︷︷ ︸
=1

⌊
n + 2

2

⌋
︸ ︷︷ ︸

=g+1

= g︸︷︷︸
=n/2

(since n=2g)

+1 = n/2 + 1.

Comparing this with (13), we obtain
n
∑

k=0
(−1)k (k + 1) = (−1)n

⌊
n + 2

2

⌋
. Hence,

Exercise 2 is solved in Case 1.
Let us next consider Case 2. In this case, the integer n is odd. Thus, (−1)n = −1.

Hence, (12) becomes

n

∑
k=0

(−1)k (k + 1)

= 1− 2 + 3− 4± · · ·+ (−1)n︸ ︷︷ ︸
=−1

(n + 1)

= 1− 2 + 3− 4± · · · − (n + 1)
= (1− 2)︸ ︷︷ ︸

=−1

+ (3− 4)︸ ︷︷ ︸
=−1

+ (5− 6)︸ ︷︷ ︸
=−1

+ · · ·+ (n− (n + 1))︸ ︷︷ ︸
=−1

= ((−1) + (−1) + (−1) + · · ·+ (−1))︸ ︷︷ ︸
(n+1)/2 addends

= (n + 1) /2 · (−1) = − (n + 1) /2. (14)

But n is odd; thus, n = 2g + 1 for some g ∈ Z. Consider this g. From n = 2g + 1,

we obtain
n + 2

2
=

(2g + 1) + 2
2

= (g + 1) +
1
2

. Hence,⌊
n + 2

2

⌋
=

⌊
(g + 1) +

1
2

⌋
= g + 1

(by (8) (applied to g + 1 instead of n)). Hence,

(−1)n︸ ︷︷ ︸
=−1

⌊
n + 2

2

⌋
︸ ︷︷ ︸

=g+1

= −

 g︸︷︷︸
=(n−1)/2

(since n=2g+1)

+1

 = − ((n− 1) /2 + 1) = − (n + 1) /2.
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Comparing this with (14), we obtain
n
∑

k=0
(−1)k (k + 1) = (−1)n

⌊
n + 2

2

⌋
. Hence,

Exercise 2 is solved in Case 2.
We thus have solved Exercise 2 in both Cases 1 and 2. Hence, Exercise 2 always

holds.

0.3. Lemmas for the Sierpinski gasket appearing in Pascal’s
triangle

Exercise 3. Let a ∈N and b ∈N.

(a) Prove that
(

2a
2b

)
≡
(

a
b

)
mod 2.

(b) Prove that
(

2a + 1
2b

)
≡
(

a
b

)
mod 2.

(c) Prove that
(

2a
2b + 1

)
≡ 0 mod 2.

(d) Prove that
(

2a + 1
2b + 1

)
≡
(

a
b

)
mod 2.

[Hint: Prove all four parts simultaneously by an induction on a, using Propo-
sition 0.4.]

Before we solve this exercise, we make our life a bit easier by stating explicit formu-

las for binomial coefficients of the form
(

0
b

)
and

(
1
b

)
for arbitrary b ∈ Z. (These

are the least interesting binomial coefficients around – but we want to have them
at our disposal.)

We shall use the Iverson bracket notation: If A is any logical statement, then the
truth value of A is defined to be the integer{

1, if A is true;
0, if A is false

∈ {0, 1} .

This truth value is denoted by [A]. For example, [1 + 1 = 2] = 1 (since 1 + 1 = 2 is
true), whereas [1 + 1 = 1] = 0 (since 1 + 1 = 1 is false).

Lemma 0.12. Let b ∈ Z.

(a) We have
(

0
b

)
= [b = 0].

(b) We have
(

1
b

)
= [b ∈ {0, 1}].

The proof of this lemma is completely straightforward yet takes up a lot of space.
Sorry for the waste of paper:
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Proof of Lemma 0.12. (a) We are in one of the following three cases:
Case 1: We have b < 0.
Case 2: We have b = 0.
Case 3: We have b > 0.
Let us first consider Case 1. In this case, we have b < 0. Hence, b /∈ N, so that

b ∈ Q \N, and thus
(

0
b

)
= 0 (by Definition 0.3 (b)). But we don’t have b = 0

(since we have b < 0); thus, [b = 0] = 0. Comparing this with
(

0
b

)
= 0, we obtain(

0
b

)
= [b = 0]. Thus, Lemma 0.12 (a) is proven in Case 1.

Let us now consider Case 2. In this case, we have b = 0. Thus,
(

0
b

)
=

(
0
0

)
= 1.

Comparing this with [b = 0] = 1 (since we have b = 0), we obtain
(

0
b

)
= [b = 0].

Thus, Lemma 0.12 (a) is proven in Case 2.
Let us finally consider Case 3. In this case, we have b > 0. Thus, 0 < b. Therefore,

Proposition 0.8 (applied to m = 0 and n = b) yields
(

0
b

)
= 0. But we don’t have

b = 0 (since we have b > 0); thus, [b = 0] = 0. Comparing this with
(

0
b

)
= 0, we

obtain
(

0
b

)
= [b = 0]. Thus, Lemma 0.12 (a) is proven in Case 3.

We thus have proven Lemma 0.12 (a) in all three Cases 1, 2 and 3. Hence, Lemma
0.12 (a) always holds.

(b) We have b ∈ Z. Thus, we are in one of the following four cases:
Case 1: We have b < 0.
Case 2: We have b = 0.
Case 3: We have b = 1.
Case 4: We have b > 1.
Let us first consider Case 1. In this case, we have b < 0. Hence, b /∈ N, so that

b ∈ Q \N, and thus
(

1
b

)
= 0 (by Definition 0.3 (b)). But we don’t have b ∈ {0, 1}

(since we have b < 0); thus, [b ∈ {0, 1}] = 0. Comparing this with
(

1
b

)
= 0, we

obtain
(

1
b

)
= [b ∈ {0, 1}]. Thus, Lemma 0.12 (b) is proven in Case 1.

Let us now consider Case 2. In this case, we have b = 0. Thus,
(

1
b

)
=

(
1
0

)
= 1.

Comparing this with [b ∈ {0, 1}] = 1 (since we have b = 0 ∈ {0, 1}), we obtain(
1
b

)
= [b ∈ {0, 1}]. Thus, Lemma 0.12 (b) is proven in Case 2.
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Let us now consider Case 3. In this case, we have b = 1. Thus,(
1
b

)
=

(
1
1

)
=

1
1!

(
by the definition of

(
1
1

))
= 1.

Comparing this with [b ∈ {0, 1}] = 1 (since we have b = 1 ∈ {0, 1}), we obtain(
1
b

)
= [b ∈ {0, 1}]. Thus, Lemma 0.12 (b) is proven in Case 3.

Let us finally consider Case 4. In this case, we have b > 1. Thus, 1 < b. Therefore,

Proposition 0.8 (applied to m = 1 and n = b) yields
(

1
b

)
= 0. But we don’t have

b ∈ {0, 1} (since we have b > 1); thus, [b ∈ {0, 1}] = 0. Comparing this with(
1
b

)
= 0, we obtain

(
1
b

)
= [b ∈ {0, 1}]. Thus, Lemma 0.12 (b) is proven in Case 4.

We thus have proven Lemma 0.12 (b) in all four Cases 1, 2, 3 and 4. Hence,
Lemma 0.12 (b) always holds.

Solution to Exercise 3. Forget that we fixed a and b. We claim the following:

Claim 1: Let a ∈ N and b ∈ Z. Then, we have
(

2a
2b

)
≡
(

a
b

)
mod 2

and
(

2a + 1
2b

)
≡
(

a
b

)
mod 2 and

(
2a

2b + 1

)
≡ 0 mod 2 and

(
2a + 1
2b + 1

)
≡(

a
b

)
mod 2.

(This Claim 1 combines the statements of all four parts of Exercise 3 into one
large statement, and also extends the domain for b from N to Z. The latter is
a minor trick; it will slightly simplify the proof below. The former is crucial to
our proof below: We will prove Claim 1 by induction on a. In the induction step
(from a = c − 1 to a = c), we shall use the induction hypothesis in a way that
wouldn’t be possible if we were proving parts (a), (b), (c) and (d) of the exercise
separately (because we would be using the induction hypothesis of one of them in
the induction step of the other); instead, we need the four parts together so they
can “help each other out”. There is a way to solve the four parts of Exercise 3
separately, but it is more complicated than what we shall do below.)

[Proof of Claim 1: We shall prove Claim 1 by induction on a:
Induction base: We are going to prove that Claim 1 holds for a = 0.
Let a ∈N and b ∈ Z be such that a = 0. From a = 0, we obtain(

a
b

)
=

(
0
b

)
= [b = 0] (15)

(by Lemma 0.12 (a)).
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We have a = 0, thus 2a = 0. Hence,(
2a
2b

)
=

(
0
2b

)
= [2b = 0]

(by Lemma 0.12 (a) (applied to 2b instead of b))
= [b = 0] (since the condition 2b = 0 is equivalent to b = 0)

=

(
a
b

)
(by (15)) .

Thus, of course,
(

2a
2b

)
≡
(

a
b

)
mod 2.

We have a = 0, thus 2a + 1 = 2 · 0 + 1 = 1. Hence,(
2a + 1

2b

)
=

(
1
2b

)
= [2b ∈ {0, 1}]

(by Lemma 0.12 (b) (applied to 2b instead of b))
= [2b = 0](

since the condition 2b ∈ {0, 1} is equivalent to 2b = 0
(because 2b cannot be 1 (since 2b is even but 1 is not))

)
= [b = 0] (since the condition 2b = 0 is equivalent to b = 0)

=

(
a
b

)
(by (15)) .

Thus, of course,
(

2a + 1
2b

)
≡
(

a
b

)
mod 2.

We have 2a = 0, thus(
2a

2b + 1

)
=

(
0

2b + 1

)
= [2b + 1 = 0]

(by Lemma 0.12 (a) (applied to 2b + 1 instead of b))
= 0

(since 2b + 1 = 0 is false (since 2b + 1 is an odd integer, but 0 is not)). Thus, of

course,
(

2a
2b + 1

)
≡ 0 mod 2.
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We have 2a + 1 = 1. Hence,(
2a + 1
2b + 1

)
=

(
1

2b + 1

)
= [2b + 1 ∈ {0, 1}]

(by Lemma 0.12 (b) (applied to 2b + 1 instead of b))
= [2b + 1 = 1](

since the condition 2b + 1 ∈ {0, 1} is equivalent to 2b + 1 = 1
(because 2b + 1 cannot be 0 (since 2b + 1 is odd but 0 is not))

)
= [b = 0] (since the condition 2b + 1 = 1 is equivalent to b = 0)

=

(
a
b

)
(by (15)) .

Thus, of course,
(

2a + 1
2b + 1

)
≡
(

a
b

)
mod 2.

We thus have proven the four congruences
(

2a
2b

)
≡
(

a
b

)
mod 2 and

(
2a + 1

2b

)
≡(

a
b

)
mod 2 and

(
2a

2b + 1

)
≡ 0 mod 2 and

(
2a + 1
2b + 1

)
≡
(

a
b

)
mod 2. In other words,

Claim 1 holds. Thus, we have shown that Claim 1 holds for a = 0. This completes
the induction base.

Induction step: Let c be a positive integer. Assume (as the induction hypothesis)
that Claim 1 holds for a = c− 1. We must show that Claim 1 holds for a = c.

We have assumed that Claim 1 holds for a = c − 1. In other words, for every
b ∈ Z, we have (

2 (c− 1)
2b

)
≡
(

c− 1
b

)
mod 2

and (
2 (c− 1) + 1

2b

)
≡
(

c− 1
b

)
mod 2 (16)

and (
2 (c− 1)
2b + 1

)
≡ 0 mod 2

and (
2 (c− 1) + 1

2b + 1

)
≡
(

c− 1
b

)
mod 2. (17)

Now, let b ∈ Z. Then, 2c− 1 = 2 (c− 1) + 1. Thus,(
2c− 1

2b

)
=

(
2 (c− 1) + 1

2b

)
≡
(

c− 1
b

)
mod 2 (18)

(by (16)). From 2c− 1 = 2 (c− 1) + 1, we also obtain(
2c− 1
2b + 1

)
=

(
2 (c− 1) + 1

2b + 1

)
≡
(

c− 1
b

)
mod 2 (19)
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(by (17)). Finally, from 2c− 1 = 2 (c− 1) + 1 and 2b− 1 = 2 (b− 1) + 1, we obtain(
2c− 1
2b− 1

)
=

(
2 (c− 1) + 1
2 (b− 1) + 1

)
≡
(

c− 1
b− 1

)
mod 2 (20)

(by (17) (applied to b− 1 instead of b)). (Notice that it is perfectly kosher to apply
(17) to b− 1 instead of b: In fact, we know that (17) holds for each b ∈ Z, which
needs not be equal to the b that we are currently considering!)

Proposition 0.4 (applied to n = c and k = b) yields(
c
b

)
=

(
c− 1
b− 1

)
+

(
c− 1

b

)
. (21)

Now, Proposition 0.4 (applied to n = 2c and k = 2b) yields(
2c
2b

)
=

(
2c− 1
2b− 1

)
︸ ︷︷ ︸

≡

(
c− 1
b− 1

)
mod 2

(by (20))

+

(
2c− 1

2b

)
︸ ︷︷ ︸

≡

(
c− 1

b

)
mod 2

(by (18))

≡
(

c− 1
b− 1

)
+

(
c− 1

b

)
=

(
c
b

)
mod 2 (22)

(by (21)). Furthermore, Proposition 0.4 (applied to n = 2c and k = 2b + 1) yields(
2c

2b + 1

)
=

(
2c− 1

2b + 1− 1

)
︸ ︷︷ ︸

=

(
2c− 1

2b

)
≡

(
c− 1

b

)
mod 2

(by (18))

+

(
2c− 1
2b + 1

)
︸ ︷︷ ︸

≡

(
c− 1

b

)
mod 2

(by (19))

≡
(

c− 1
b

)
+

(
c− 1

b

)
= 2

(
c− 1

b

)
≡ 0 mod 2. (23)

Now, forget that we fixed b. We thus have proven the congruences (22) and (23)
for each b ∈ Z.

Let us fix b ∈ Z again. We can apply (23) to b− 1 instead of b (because we have
proven the congruence (23) for each b ∈ Z) 1. As a result, we obtain(

2c
2 (b− 1) + 1

)
≡ 0 mod 2.

In view of 2 (b− 1) + 1 = 2b− 1, this rewrites as(
2c

2b− 1

)
≡ 0 mod 2. (24)

1This is the reason why we “unfixed” b and then fixed b again: We wanted to apply (23) to a
different value of b.
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Next, Proposition 0.4 (applied to n = 2c + 1 and k = 2b) yields(
2c + 1

2b

)
=

(
2c + 1− 1

2b− 1

)
︸ ︷︷ ︸

=

(
2c

2b− 1

)
≡0 mod 2

(by (24))

+

(
2c + 1− 1

2b

)
︸ ︷︷ ︸

=

(
2c
2b

)
≡

(
c
b

)
mod 2

(by (22))

≡ 0 +
(

c
b

)
=

(
c
b

)
mod 2. (25)

Finally, Proposition 0.4 (applied to n = 2c + 1 and k = 2b + 1) yields(
2c + 1
2b + 1

)
=

(
2c + 1− 1
2b + 1− 1

)
︸ ︷︷ ︸

=

(
2c
2b

)
≡

(
c
b

)
mod 2

(by (22))

+

(
2c + 1− 1

2b + 1

)
︸ ︷︷ ︸

=

(
2c

2b + 1

)
≡0 mod 2

(by (23))

≡
(

c
b

)
+ 0 =

(
c
b

)
mod 2. (26)

Now, forget that we fixed b. We thus have proven the congruences (25) and (26)
for each b ∈ Z.

Hence, altogether, we have proven the four congruences (22), (25), (23) and (26)
for each b ∈ Z. In other words, we have shown that for every b ∈ Z, we have(

2c
2b

)
≡
(

c
b

)
mod 2 and

(
2c + 1

2b

)
≡
(

c
b

)
mod 2 and

(
2c

2b + 1

)
≡ 0 mod 2 and(

2c + 1
2b + 1

)
≡
(

c
b

)
mod 2. In other words, Claim 1 holds for a = c. This completes

the induction step. Thus, Claim 1 is proven.]
Clearly, Exercise 3 follows immediately from Claim 1.

Remark 0.13. Exercise 3 is a particular case (namely, the case p = 2) of the
following result:

Theorem 0.14 (Lucas’s theorem). Let p be a prime. Let a and b be two integers.
Let c and d be two elements of {0, 1, . . . , p− 1}. Then,(

ap + c
bp + d

)
≡
(

a
b

)(
c
d

)
mod p.

It is not too hard to prove Theorem 0.14 using some further properties of bino-
mial coefficients (most importantly, the Vandermonde convolution identity) and
some basic facts about prime numbers (mainly: if a prime p divides a product cd
of two integers c and d, then p | c or p | d). See, e.g., [Grinbe17] for such a proof.

Notice that Theorem 0.14 shows that the conditions “a ∈ N and b ∈ N” in
Exercise 3 can be loosened to “a ∈ Z and b ∈ Z”.
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Exercise 4. Let n ∈ N. Let a and b be two elements of {0, 1, . . . , 2n − 1}. Prove
that (

2n + a
b

)
≡
(

a
b

)
mod 2 and(

2n + a
2n + b

)
≡
(

a
b

)
mod 2.

[Here, “{0, 1, . . . , 2n − 1}” means the set of all integers k satisfying 0 ≤ k ≤
2n − 1.]

[Hint: Induction on n. You can use Exercise 3 here even if you have not solved
it.]

Back in class, Exercise 4 helped us prove that Pascal’s triangle becomes a Sier-
pinski gasket (see, e.g., the Wikipedia) if its entries are replaced by their parities.

Solution to Exercise 4. We shall solve Exercise 4 by induction on n:
Induction base: It is easy to see that Exercise 4 holds for n = 0 2. This completes

the induction base.
Induction step: Let m ∈ N. Assume that Exercise 4 holds for n = m. We must

prove that Exercise 4 holds for n = m + 1.
We have assumed that Exercise 4 holds for n = m. In other words, if a and b are

two elements of {0, 1, . . . , 2m − 1}, then(
2m + a

b

)
≡
(

a
b

)
mod 2 and (27)(

2m + a
2m + b

)
≡
(

a
b

)
mod 2. (28)

2Proof. Assume that n = 0. We must prove that Exercise 4 holds.
We have n = 0, so that 2n = 20 = 1 and thus 2n − 1 = 0.
Let a and b be as in Exercise 4. Thus,

a ∈ {0, 1, . . . , 2n − 1} = {0, 1, . . . , 0} (since 2n − 1 = 0)
= {0} ,

so that a = 0. Similarly, b = 0. From a = 0 and b = 0, we obtain
(

a
b

)
=

(
0
0

)
= 1. But from

n = 0, a = 0 and b = 0, we obtain(
2n + a

b

)
=

(
20 + 0

0

)
=

(
1
0

)
= 1 ≡ 1 =

(
a
b

)
mod 2

and (
2n + a
2n + b

)
=

(
20 + 0
20 + 0

)
=

(
1
1

)
= 1 ≡ 1 =

(
a
b

)
mod 2.

Thus, Exercise 4 is solved (for our values of n, a and b). We thus have shown that Exercise 4
holds for n = 0.

https://en.wikipedia.org/wiki/Sierpinski_triangle#Pascal's_triangle
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We first show the following simple observation:

Observation 1: Let g ∈
{

0, 1, . . . , 2m+1 − 1
}

.

(a) If g is even, then there exists some h ∈ {0, 1, . . . , 2m − 1} such that
g = 2h.

(b) If g is odd, then there exists some h ∈ {0, 1, . . . , 2m − 1} such that
g = 2h− 1.

[Proof of Observation 1: (a) Assume that g is even. Thus, g = 2c for some c ∈ Z.
Consider this c. We have 2c = g ∈

{
0, 1, . . . , 2m+1 − 1

}
, so that 0 ≤ 2c ≤ 2m+1− 1 <

2m+1 = 2 · 2m. From 0 ≤ 2c, we obtain 0 ≤ c. From 2c < 2 · 2m, we obtain
c < 2m, so that c ≤ 2m − 1 (since c is an integer). Combining this with 0 ≤ c,
we obtain 0 ≤ c ≤ 2m − 1, so that c ∈ {0, 1, . . . , 2m − 1}. Thus, there exists some
h ∈ {0, 1, . . . , 2m − 1} such that g = 2h (namely, h = c). This proves Observation 1
(a).

(b) Assume that g is odd. Thus, g = 2c + 1 for some c ∈ Z. Consider this
c. We have 2c + 1 = g ∈

{
0, 1, . . . , 2m+1 − 1

}
, so that 0 ≤ 2c + 1 ≤ 2m+1 − 1.

Hence, 2c + 1 ≥ 0. But 2c + 1 6= 0 (since 2c + 1 is odd, but 0 is odd). Combining
this with 2c + 1 ≥ 0, we obtain 2c + 1 > 0. Since 2c + 1 is an integer, this yields
2c + 1 ≥ 0 + 1, so that 2c ≥ 0 and thus c ≥ 0. Also, 2c + 1 ≤ 2m+1 − 1, so that
2c ≤ 2m+1 − 1− 1 = 2m+1︸ ︷︷ ︸

=2·2m

−2 = 2 · 2m − 2 = 2 · (2m − 1) and thus c ≤ 2m − 1.

Combining this with c ≥ 0, we obtain 0 ≤ c ≤ 2m − 1, so that c ∈ {0, 1, . . . , 2m − 1}.
Thus, there exists some h ∈ {0, 1, . . . , 2m − 1} such that g = 2h + 1 (namely, h = c).
This proves Observation 1 (b). Thus, Observation 1 is fully proven.]

Now, let a and b be two elements of
{

0, 1, . . . , 2m+1 − 1
}

. We are going to prove
the two congruences (

2m+1 + a
b

)
≡
(

a
b

)
mod 2 and (29)(

2m+1 + a
2m+1 + b

)
≡
(

a
b

)
mod 2. (30)

We are in one of the following two cases:
Case 1: The integer a is even.
Case 2: The integer a is odd.
Let us first consider Case 1. In this case, the integer a is even. Thus, Observation

1 (a) (applied to g = a) shows that there exists some h ∈ {0, 1, . . . , 2m − 1} such that
a = 2h. Consider this h, and denote it by c. Thus, c ∈ {0, 1, . . . , 2m − 1} satisfies
a = 2c.

We are in one of the following two subcases:
Subcase 1.1: The integer b is even.
Subcase 1.2: The integer b is odd.
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Let us first consider Subcase 1.1. In this case, the integer b is even. Thus, Obser-
vation 1 (a) (applied to g = b) shows that there exists some h ∈ {0, 1, . . . , 2m − 1}
such that b = 2h. Consider this h, and denote it by d. Thus, d ∈ {0, 1, . . . , 2m − 1}
satisfies b = 2d.

From a = 2c and b = 2d, we obtain(
a
b

)
=

(
2c
2d

)
≡
(

c
d

)
mod 2 (31)

(by Exercise 3 (a) (applied to c and d instead of a and b)).
From 2m+1 = 2 · 2m and a = 2c, we obtain 2m+1 + a = 2 · 2m + 2c = 2 (2m + c).
From 2m+1 = 2 · 2m and b = 2d, we obtain 2m+1 + b = 2 · 2m + 2d = 2 (2m + d).
From 2m+1 + a = 2 (2m + c) and b = 2d, we obtain(

2m+1 + a
b

)
=

(
2 (2m + c)

2d

)
≡
(

2m + c
d

) (
by Exercise 3 (a) (applied to 2m + c and d

instead of a and b)

)
≡
(

c
d

)
(by (27) (applied to c and d instead of a and b))

≡
(

a
b

)
mod 2 (by (31)) .

Thus, the congruence (29) holds.
From 2m+1 + a = 2 (2m + c) and 2m+1 + b = 2 (2m + d), we obtain(
2m+1 + a
2m+1 + b

)
=

(
2 (2m + c)
2 (2m + d)

)
≡
(

2m + c
2m + d

) (
by Exercise 3 (a) (applied to 2m + c and 2m + d

instead of a and b)

)
≡
(

c
d

)
(by (28) (applied to c and d instead of a and b))

≡
(

a
b

)
mod 2 (by (31)) .

Thus, the congruence (30) holds.
We thus have proven the congruences (29) and (30) in Subcase 1.1.
We still need to deal with Subcase 1.2, as well as Case 2 (which we are going

to split into two Subcases again). This will be mostly analogous to what we have
done in Subcase 1.1 above.

Let us consider Subcase 1.2. In this case, the integer b is odd. Thus, Observation
1 (a) (applied to g = b) shows that there exists some h ∈ {0, 1, . . . , 2m − 1} such
that b = 2h + 1. Consider this h, and denote it by d. Thus, d ∈ {0, 1, . . . , 2m − 1}
satisfies b = 2d + 1.
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From a = 2c and b = 2d + 1, we obtain(
a
b

)
=

(
2c

2d + 1

)
≡ 0 mod 2 (32)

(by Exercise 3 (c) (applied to c and d instead of a and b)).
From 2m+1 = 2 · 2m and a = 2c, we obtain 2m+1 + a = 2 · 2m + 2c = 2 (2m + c).
From 2m+1 = 2 · 2m and b = 2d + 1, we obtain 2m+1 + b = 2 · 2m + (2d + 1) =

2 (2m + d) + 1.
From 2m+1 + a = 2 (2m + c) and b = 2d + 1, we obtain(

2m+1 + a
b

)
=

(
2 (2m + c)

2d + 1

)
≡ 0

(
by Exercise 3 (c) (applied to 2m + c and d

instead of a and b)

)
≡
(

a
b

)
mod 2 (by (32)) .

Thus, the congruence (29) holds.
From 2m+1 + a = 2 (2m + c) and 2m+1 + b = 2 (2m + d) + 1, we obtain(

2m+1 + a
2m+1 + b

)
=

(
2 (2m + c)

2 (2m + d) + 1

)
≡ 0

(
by Exercise 3 (c) (applied to 2m + c and 2m + d

instead of a and b)

)
≡
(

a
b

)
mod 2 (by (32)) .

Thus, the congruence (30) holds.
We thus have proven the congruences (29) and (30) in Subcase 1.2.
We now have proven the congruences (29) and (30) in both Subcases 1.1 and 1.2.

Since these two Subcases cover Case 1, we thus know that the congruences (29) and
(30) hold in Case 1.

Let us now consider Case 2. In this case, the integer a is odd. Thus, Observation
1 (b) (applied to g = a) shows that there exists some h ∈ {0, 1, . . . , 2m − 1} such
that a = 2h + 1. Consider this h, and denote it by c. Thus, c ∈ {0, 1, . . . , 2m − 1}
satisfies a = 2c + 1.

We are in one of the following two subcases:
Subcase 2.1: The integer b is even.
Subcase 2.2: The integer b is odd.
Let us first consider Subcase 2.1. In this case, the integer b is even. Thus, Obser-

vation 1 (a) (applied to g = b) shows that there exists some h ∈ {0, 1, . . . , 2m − 1}
such that b = 2h. Consider this h, and denote it by d. Thus, d ∈ {0, 1, . . . , 2m − 1}
satisfies b = 2d.
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From a = 2c + 1 and b = 2d, we obtain(
a
b

)
=

(
2c + 1

2d

)
≡
(

c
d

)
mod 2 (33)

(by Exercise 3 (b) (applied to c and d instead of a and b)).
From 2m+1 = 2 · 2m and a = 2c + 1, we obtain 2m+1 + a = 2 · 2m + (2c + 1) =

2 (2m + c) + 1.
From 2m+1 = 2 · 2m and b = 2d, we obtain 2m+1 + b = 2 · 2m + 2d = 2 (2m + d).
From 2m+1 + a = 2 (2m + c) + 1 and b = 2d, we obtain(

2m+1 + a
b

)
=

(
2 (2m + c) + 1

2d

)
≡
(

2m + c
d

) (
by Exercise 3 (b) (applied to 2m + c and d

instead of a and b)

)
≡
(

c
d

)
(by (27) (applied to c and d instead of a and b))

≡
(

a
b

)
mod 2 (by (33)) .

Thus, the congruence (29) holds.
From 2m+1 + a = 2 (2m + c) + 1 and 2m+1 + b = 2 (2m + d), we obtain(
2m+1 + a
2m+1 + b

)
=

(
2 (2m + c) + 1

2 (2m + d)

)
≡
(

2m + c
2m + d

) (
by Exercise 3 (b) (applied to 2m + c and 2m + d

instead of a and b)

)
≡
(

c
d

)
(by (28) (applied to c and d instead of a and b))

≡
(

a
b

)
mod 2 (by (33)) .

Thus, the congruence (30) holds.
We thus have proven the congruences (29) and (30) in Subcase 2.1.
Let us now consider Subcase 2.2. In this case, the integer b is odd. Thus, Observa-

tion 1 (b) (applied to g = b) shows that there exists some h ∈ {0, 1, . . . , 2m − 1} such
that b = 2h + 1. Consider this h, and denote it by d. Thus, d ∈ {0, 1, . . . , 2m − 1}
satisfies b = 2d + 1.

From a = 2c + 1 and b = 2d + 1, we obtain(
a
b

)
=

(
2c + 1
2d + 1

)
≡
(

c
d

)
mod 2 (34)

(by Exercise 3 (d) (applied to c and d instead of a and b)).
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From 2m+1 = 2 · 2m and a = 2c + 1, we obtain 2m+1 + a = 2 · 2m + (2c + 1) =
2 (2m + c) + 1.

From 2m+1 = 2 · 2m and b = 2d + 1, we obtain 2m+1 + b = 2 · 2m + (2d + 1) =
2 (2m + d) + 1.

From 2m+1 + a = 2 (2m + c) + 1 and b = 2d + 1, we obtain(
2m+1 + a

b

)
=

(
2 (2m + c) + 1

2d + 1

)
≡
(

2m + c
d

) (
by Exercise 3 (d) (applied to 2m + c and d

instead of a and b)

)
≡
(

c
d

)
(by (27) (applied to c and d instead of a and b))

≡
(

a
b

)
mod 2 (by (34)) .

Thus, the congruence (29) holds.
From 2m+1 + a = 2 (2m + c) + 1 and 2m+1 + b = 2 (2m + d) + 1, we obtain(
2m+1 + a
2m+1 + b

)
=

(
2 (2m + c) + 1
2 (2m + d) + 1

)
≡
(

2m + c
2m + d

) (
by Exercise 3 (d) (applied to 2m + c and 2m + d

instead of a and b)

)
≡
(

c
d

)
(by (28) (applied to c and d instead of a and b))

≡
(

a
b

)
mod 2 (by (34)) .

Thus, the congruence (30) holds.
We thus have proven the congruences (29) and (30) in Subcase 2.2.
We now have proven the congruences (29) and (30) in both Subcases 2.1 and 2.2.

Since these two Subcases cover Case 2, we thus know that the congruences (29) and
(30) hold in Case 2.

We now have proven the congruences (29) and (30) in both Cases 1 and 2. Thus,
the congruences (29) and (30) always hold.

Now, forget that we fixed a and b. We thus have shown that if a and b are two
elements of

{
0, 1, . . . , 2m+1 − 1

}
, then the congruences (29) and (30) always hold.

In other words, if a and b are two elements of
{

0, 1, . . . , 2m+1 − 1
}

, then(
2m+1 + a

b

)
≡
(

a
b

)
mod 2 and(

2m+1 + a
2m+1 + b

)
≡
(

a
b

)
mod 2.

In other words, Exercise 4 holds for n = m + 1. This completes the induction step.
The induction proof of Exercise 4 is thus complete.



Math 4707 Spring 2018 (Darij Grinberg): homework set 1 page 26

0.4. More on Fibonacci numbers

Definition 0.15. The Fibonacci sequence is the sequence ( f0, f1, f2, . . .) of integers
which is defined recursively by f0 = 0, f1 = 1, and

fn = fn−1 + fn−2 for all n ≥ 2. (35)

Its first terms are

f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5,
f6 = 8, f7 = 13, f8 = 21, f9 = 34, f10 = 55,

f11 = 89, f12 = 144, f13 = 233.

Exercise 5. Let n ∈ N. Let Rn,2 denote the set [n] × [2], which we regard as
a rectangle of width n and height 2 (by identifying the squares with pairs of
coordinates). (Note: I might have been careless in class and confused width with
height a few times. In case of doubt, follow the conventions just given.)

A vertical domino is a set of the form {(i, j) , (i, j + 1)} for some i ∈ Z and j ∈ Z.
A horizontal domino is a set of the form {(i + 1, j) , (i, j)} for some i ∈ Z and

j ∈ Z.
A domino tiling of Rn,2 means a set of disjoint dominos (i.e., vertical dominos

and horizontal dominos) whose union is Rn,2.
For example, there are 5 domino tilings of R4,2, namely

, , ,

, .

Written as a set of dominos, the second of these tilings is

{{(1, 1) , (1, 2)} , {(2, 1) , (2, 2)} , {(3, 1) , (4, 1)} , {(3, 2) , (4, 2)}} .

We have seen in class (January 17) that

the number of domino tilings of Rn,2 is fn+1. (36)

A domino tiling S of Rn,2 is said to be axisymmetric if reflecting it across the
vertical axis of the rectangle Rn,2 leaves it unchanged. (Formally, if S is regarded
as a set, it means that for every domino {(i, j) , (i′, j′)} ∈ S, its “mirror domino”
{(n + 1− i, j) , (n + 1− i′, j′)} is also in S.) For example, among the 5 domino
tilings of R4,2 listed above, exactly 3 are axisymmetric (namely, the first, the
fourth and the fifth).

https://en.wikipedia.org/wiki/Fibonacci_number
http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018jan17.pdf
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Let sn be the number of axisymmetric domino tilings of Rn,2.
(a) Prove that sn = f(n+1)/2 if n is odd.
(b) Prove that sn = fn/2+2 if n is even.

Solution of Exercise 5 (sketched). (a) Assume that n is odd. Let m = (n + 1) /2; this
m is an element of [n] (since n is odd). More precisely, m is the “middle” element of
[n] (that is, the set [n] has as many elements < m as it has elements > m). The m-th
column of the rectangle Rn,2 (i.e., the subset {(m, 1) , (m, 2)}) is the vertical axis of
symmetry of this rectangle. Let us denote the vertical domino {(m, 1) , (m, 2)} (that
is, the domino that falls along this m-th column) as M.

Every axisymmetric domino tiling of Rn,2 contains the domino M 3. Thus,
every axisymmetric domino tiling of Rn,2 has the following form:

• The m-th column of Rn,2 is covered by the vertical domino M.

• The first m − 1 columns are covered by some dominos forming a domino
tiling of Rm−1,2.

• The last m− 1 columns are covered by some dominos, namely by the reflec-
tions of the dominos covering the first m− 1 columns across the vertical axis
of symmetry of Rn,2.

Thus, in order to construct an axisymmetric domino tiling of Rn,2, all we need to
do is to choose a domino tiling of Rm−1,2. But (36) (applied to m− 1 instead of n)
shows that the number of latter domino tilings is f(m−1)+1 = fm. Thus, the number
of axisymmetric domino tilings of Rn,2 is fm as well. In other words, sn = fm (since
sn is the number of axisymmetric domino tilings of Rn,2). In view of m = (n + 1) /2,
this rewrites as sn = f(n+1)/2. This solves Exercise 5 (a).

(b) Assume that n is even. Let m = n/2; this m is an element of [n] (since n
is even). The vertical axis of symmetry of the rectangle Rn,2 falls right between
the m-th and (m + 1)-st columns of Rn,2. Let us denote this axis by a. Thus, an
axisymmetric domino tiling of Rn,2 is a tiling that is preserved under reflection
across a.

Let N1 and N2 be the two horizontal dominos {(m, 1) , (m + 1, 1)} and
{(m, 2) , (m + 1, 2)}.

3Proof. Assume the contrary. Then, there exists some axisymmetric domino tiling T of Rn,2 that
does not contain M. Consider this T.

The cell (m, 1) of Rn,2 must be covered by some domino D in T. This D cannot be a vertical
domino (since then it would be M, but T does not contain M); thus, it must be a horizontal
domino. Let D′ be the reflection of D across the vertical axis of Rn,2. Then, D′ ∈ T (since D ∈ T,
but T is axisymmetric). Moreover, D 6= D′ (indeed, one of D and D′ intersects columns m− 1
and m, while the other intersects columns m and m + 1), so that D and D′ must be disjoint (since
T is a tiling, so that any two distinct dominos in T are disjoint).

But (m, 1) ∈ D and thus also (m, 1) ∈ D′ (indeed, the cell (m, 1) lies on the vertical axis of
symmetry of Rn,2, and thus is preserved under reflection across this axis). Hence, the sets D and
D′ are not disjoint. This contradicts the fact that D and D′ are disjoint. This contradiction shows
that our assumption was wrong, qed.
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A domino D is said to cut across a if and only if D contains both a cell to the left
of a and a cell to the right of a. Clearly, the only dominos that cut across a are N1
and N2.

A domino tiling T of Rn,2 will be called split if it contains no domino cutting
across a. Every split axisymmetric domino tiling of Rn,2 has the following form:

• The first m columns of Rn,2 are covered by some dominos forming a domino
tiling of Rm,2.

• The last m columns are covered by some dominos, namely by the reflections
of the dominos covering the first m columns across a.

Thus, in order to construct a split axisymmetric domino tiling of Rn,2, all we
need to do is to choose a domino tiling of Rm,2. But (36) (applied to m instead of n)
shows that the number of latter domino tilings is fm+1. Thus,

(the number of split axisymmetric domino tilings of Rn,2) = fm+1. (37)

Now, let us count the axisymmetric domino tilings of Rn,2 that are not split. To
no one’s surprise, we shall call these domino tilings non-split.

Every non-split domino tiling of Rn,2 must contain the two dominos N1 and N2
4. Hence, every non-split axisymmetric domino tiling of Rn,2 has the following

4Proof. Let T be a non-split domino tiling of Rn,2. We must prove that T contains N1 and N2.
Assume the contrary. Thus, at least one of N1 and N2 is not contained in T.
The domino tiling T is non-split, i.e., it is not split. Thus, it contains a domino that cuts across

a. In other words, it contains one of the dominos N1 and N2 (since N1 and N2 are the only
dominos that cut across a). In other words, N1 ∈ T or N2 ∈ T. We WLOG assume that N1 ∈ T
(since the proof in the case N2 ∈ T is analogous). Hence, N2 /∈ T (since at least one of N1 and
N2 is not contained in T).

A domino in T will be called western if it fully lies to the left of the vertical axis a. Let w be the
number of all western dominos in T. Then, altogether, these western dominos cover precisely
2w cells (since each domino covers 2 cells). In other words, the total number of cells covered by
western dominos in T is 2w; in particular, it is even.

The cell (m, 2) of Rn,2 must be covered with some domino in T. If this domino would cut
across a, then it would have to be N2 (because N1 and N2 are the only dominos that cut across a,
but only N2 among them contains the cell (m, 2)), which would contradict the fact that N2 /∈ T.
Hence, this domino cannot cut across a. Hence, this domino must fully lie to the left of the
vertical axis a; in other words, it is western. Thus, the cell (m, 2) is covered by a western domino
in T.

We thus know that all the 2m cells to the left of a are covered by western dominos in T, except
for the cell (m, 1) (which is covered by the domino N1, which cuts across a). (Indeed, we have
shown that the cell (m, 2) is covered by a western domino in T; the same is true for all the cells
in columns 1, 2, . . . , m− 1, because they lie too far away from a to be covered by a non-western
domino.) Thus, we have found 2m− 1 cells that are covered by western dominos in T. These
are the only cells that are covered by western dominos in T (because we have already seen that
(m, 1) is not covered by a western domino in T; furthermore, any cell to the right of a cannot
be covered by a western domino at all). Hence, the total number of cells covered by western
dominos in T is 2m− 1.

But we have already shown that the total number of cells covered by western dominos is
even. Comparing these two results, we see that 2m − 1 is even. This is clearly absurd. This
contradiction shows that our assumption was wrong, qed.
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form:

• The m-th and (m + 1)-st columns of Rn,2 are covered by the horizontal domi-
nos N1 and N2.

• The first m − 1 columns of Rn,2 are covered by some dominos forming a
domino tiling of Rm−1,2.

• The last m− 1 columns are covered by some dominos, namely by the reflec-
tions of the dominos covering the first m− 1 columns across a.

Thus, in order to construct a non-split axisymmetric domino tiling of Rn,2, all we
need to do is to choose a domino tiling of Rm−1,2. But (36) (applied to m− 1 instead
of n) shows that the number of latter domino tilings is f(m−1)+1 = fm. Thus,

(the number of non-split axisymmetric domino tilings of Rn,2) = fm. (38)

But the definition of sn yields

sn = (the number of axisymmetric domino tilings of Rn,2)

= (the number of split axisymmetric domino tilings of Rn,2)︸ ︷︷ ︸
= fm+1

(by (37))

+ (the number of non-split axisymmetric domino tilings of Rn,2)︸ ︷︷ ︸
= fm

(by (38))

= fm+1 + fm = fm+2

(since (35) (applied to m + 2 instead of n) yields fm+2 = f(m+2)−1 + f(m+2)−2 =
fm+1 + fm). In view of m = n/2, this rewrites as sn = fn/2+2. This solves Exercise
5 (b).

0.5. Some basic counting

Definition 0.16. Let n ∈ Z. Then, [n] shall denote the set {1, 2, . . . , n}. This is an
empty set if n ≤ 0.

Recall that if n ∈N and k ∈ Z, and if S is an n-element set, then(
n
k

)
is the number of k-element subsets of S. (39)

(This is proven, e.g., in [Grinbe16, Proposition 3.12], or in any text on combina-
torics.)
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Exercise 6. Let n ∈ N, a ∈ N and b ∈ N. Let N be the number of subsets of [n]
that contain exactly a even elements and exactly b odd elements.

(a) Prove that N =

(
n/2

a

)(
n/2

b

)
if n is even.

(b) Compute N when n is odd.

Solution to Exercise 6 (sketched). (a) Roughly speaking, our argument is as follows:
Let P be the set of all even elements of [n]; let Q be the set of all odd elements of [n].
We know that N is the number of subsets of [n] that contain exactly a even elements
and exactly b odd elements. In order to construct such a subset, we can choose its
a even elements and its b odd elements separately. The a even elements must be
chosen from the set P; thus, choosing them means choosing an a-element subset of

P. There are
(
|P|
a

)
ways to make this choice (by (39), applied to P, |P| and a instead

of S, n and k). The b odd elements must be chosen from the set Q; thus, choosing

them means choosing a b-element subset of Q. There are
(
|Q|
b

)
ways to make this

choice (by (39), applied to Q, |Q| and b instead of S, n and k). Hence, altogether,

our choices can be made in
(
|P|
a

)(
|Q|
b

)
many ways; thus, N =

(
|P|
a

)(
|Q|
b

)
. But

when n is even, both sets P and Q have exactly n/2 elements. In other words,

|P| = n/2 and |Q| = n/2. Hence, the equality N =

(
|P|
a

)(
|Q|
b

)
rewrites as

N =

(
n/2

a

)(
n/2

b

)
in this case. This solves Exercise 6 (a).

Here is a more rigorous way to write up the same solution. Let P be the set of all
even elements of [n]; let Q be the set of all odd elements of [n]. Let N be the set of
all subsets of [n] that contain exactly a even elements and exactly b odd elements.
Thus, |N | = N (since N was defined to be the number of such subsets).

For any set X and every k ∈ N, we let Pk (X) denote the set of all k-element
subsets of X. Now, the two maps

N → Pa (P)×Pb (Q) ,
S 7→ (S ∩ P, S ∩Q)

and

Pa (P)×Pb (Q)→ N ,
(U, V) 7→ U ∪V

are well-defined and mutually inverse5. Hence, these maps are bijections. Thus,
there exists a bijection N → Pa (P)×Pb (Q). Therefore,

|N | = |Pa (P)×Pb (Q)| = |Pa (P)| · |Pb (Q)| . (40)
5Instead of proving this in detail (which is straightforward), let me unfold the notations and

explain what the maps do. The first map sends any S ∈ N (that is, any subset S of [n] that
contains exactly a even elements and exactly b odd elements) to the pair (S ∩ P, S ∩Q), which
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But every finite set S and every k ∈N satisfy

|Pk (S)| =
(
|S|
k

)
. (41)

(Indeed, this equality just says that the number of k-element subsets of S is
(
|S|
k

)
;

this is just a restatement of (39) in a more formal language.)
Recall that |N | = N. Comparing this with (40), we find

N = |Pa (P)|︸ ︷︷ ︸
=

(
|P|
a

)
(by (41))

· |Pb (Q)|︸ ︷︷ ︸
=

(
|Q|
b

)
(by (41))

=

(
|P|
a

)(
|Q|
b

)
.

Now, assume that n is even. Then, there are exactly n/2 even numbers in the set
[n]. In other words, the set of all even elements of [n] has size n/2. In other words,
the set P has size n/2 (since P is the set of all even elements of [n]). In other words,
|P| = n/2. Similarly, |Q| = n/2. Now,

N =

(
|P|
a

)(
|Q|
b

)
=

(
n/2

a

)(
n/2

b

)
(since |P| = n/2 and |Q| = n/2). This solves Exercise 6 (a) (rigorously this time).

(b) If n is odd, then N =

(
(n− 1) /2

a

)(
(n + 1) /2

b

)
. The proof is analogous to

the above solution of Exercise 6 (a).

Exercise 7. A set S of integers shall be called self-starting if its size |S| is also its
smallest element. (For example, {3, 5, 6} is self-starting, while {2, 3, 4} and {3}
are not.)

Let n ∈N.
(a) For any k ∈ [n], find the number of self-starting subsets of [n] having size

k.
(b) Find the number of all self-starting subsets of [n].

Our following solution to Exercise 7 imitates [Fall2017-HW1s, solution to Exer-
cise 8] (which solves a quite similar exercise, but the answers are different).

Before we solve this exercise, let us recall a useful fact:6

consists of the set S ∩ P (this is the set of all even elements of S; it is an a-element set, because S
contains exactly a even elements) and the set S ∩ Q (this is the set of all odd elements of S; it is
a b-element set). In other words, the first map splits any S ∈ N into its set of even elements and
its set of odd elements. The second map sends any pair (U, V) ∈ Pa (P)×Pb (Q) to the union
U ∪V ∈ N . In other words, the second map takes a pair (U, V) consisting of an a-element set of
even numbers and a b-element set of odd numbers, and combines them to the set U ∪V (which
belongs to N , because it has exactly a even elements and exactly b odd elements). From this
point of view, it should be clear that the maps are well-defined and mutually inverse.

6See Definition 0.15 for the definition of fm+1.
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Proposition 0.17. Let m ∈ {−1, 0, 1, . . .}. Then,

m

∑
k=0

(
m− k

k

)
= fm+1.

Proposition 0.17 has been mentioned in class (Proposition 1.18 from January 22),
but wasn’t proven there. There are several places where a proof can be found,
however. For example, [Fall2017-HW2s, Exercise 3 (b)] shows that

fn+2 =
n

∑
k=0

(
n− k + 1

k

)
for each n ∈N. (42)

It is easy to derive Proposition 0.17 from this:

Proof of Proposition 0.17. If m = −1, then Proposition 0.17 can easily be checked
(indeed, it boils down to 0 = f(−1)+1 in this case, which follows from f0 = 0).
Thus, we WLOG assume that we don’t have m = −1. Hence, m 6= −1, so that
m ∈ {−1, 0, 1, . . .} \ {−1} = {0, 1, 2, . . .} = N.

If m = 0, then Proposition 0.17 can easily be checked (indeed, it boils down to(
0− 0

0

)
= f0+1 in this case, which follows from f1 = 1). Thus, we WLOG assume

that we don’t have m = 0. Hence, m 6= 0, so that m is a positive integer (since
m ∈N). Therefore, m− 1 ∈N. Now, (42) (applied to n = m− 1) yields

f(m−1)+2 =
m−1

∑
k=0

(
(m− 1)− k + 1

k

)
︸ ︷︷ ︸

=

(
m− k

k

)
(since (m−1)−k+1=m−k)

=
m−1

∑
k=0

(
m− k

k

)
. (43)

On the other hand, 0 < m (since m is a positive integer). Thus, Proposition 0.8

(applied to 0 and m instead of m and n) yields
(

0
m

)
= 0. Now,

m

∑
k=0

(
m− k

k

)
=

m−1

∑
k=0

(
m− k

k

)
+

(
m−m

m

)
︸ ︷︷ ︸
=

(
0
m

)
=0

=
m−1

∑
k=0

(
m− k

k

)

= f(m−1)+2 (by (43))

= fm+1.

This proves Proposition 0.17.

http://www.cip.ifi.lmu.de/~grinberg/t/18s/4707-2018jan22.pdf
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Solution to Exercise 7. (a) Fix k ∈ [n]. Let K be the subset {k + 1, k + 2, . . . , n} of [n].
In other words, K is the set of all elements of [n] that are larger than k. Clearly,
|K| = n− k.

The self-starting subsets of [n] having size k are exactly the subsets of [n] having
size k and smallest element k. Thus, the maps

{self-starting subsets of [n] having size k} → {subsets of K having size k− 1} ,
S 7→ S \ {k}

and

{subsets of K having size k− 1} → {self-starting subsets of [n] having size k} ,
T 7→ T ∪ {k}
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are well-defined7 and mutually inverse8, and thus are bijections.

7This means the following:

• If S is a self-starting subset of [n] having size k, then S \ {k} is a subset of K having size
k− 1.

• If T is a subset of K having size k− 1, then T ∪ {k} is a self-starting subset of [n] having
size k.

Checking this is straightforward; you can do it in your head (we shall outline the argument
further below), but don’t forget to do this! If you don’t check well-definedness, then it may
happen that one of your “maps” does not exist; for example, convince yourself that there is no
map

{subsets of [n]} → {subsets of [n]} ,
S 7→ S ∪ {|S|+ 1} ,

because the set S∪ {|S|+ 1} is not always a subset of [n] (namely, it fails to be so when |S| = n).
Anyway, let us check that our two maps are well-defined:

• First, we must show that if S is a self-starting subset of [n] having size k, then S \ {k} is a
subset of K having size k− 1.
Indeed, let S be a self-starting subset of [n] having size k. Since S is self-starting, we know
that the size of S is also its smallest element (by the definition of “self-starting”). In other
words, k is the smallest element of S (since the size of S is k). Thus, k is an element of S,
and all elements of S other than k are larger than k.
We have |S| = k (since S has size k). Since k is an element of S, we have |S \ {k}| =
|S| − 1 = k− 1 (since |S| = k). Thus, the set S \ {k} has size k− 1.
Furthermore, recall that all elements of S other than k are larger than k. In other words,
all elements of S \ {k} are larger than k. In other words, all elements of S \ {k} belong to
K (since K is the set of all elements of [n] that are larger than k). In other words, S \ {k} is
a subset of K.
Hence, we have shown that S \ {k} is a subset of K having size k− 1. Thus, our first map
is well-defined.

• Next, we must prove that if T is a subset of K having size k − 1, then T ∪ {k} is a self-
starting subset of [n] having size k.
Indeed, let T be a subset of K having size k − 1. Thus, |T| = k − 1. Also, all elements
of T belong to K (since T is a subset of K) and thus are larger than k (since K is the set
of all elements of [n] that are larger than k). Thus, k is not an element of T. Hence,
|T ∪ {k}| = |T| + 1 = k (since |T| = k − 1). In other words, the set T ∪ {k} has size k.
Clearly, the set T ∪ {k} is a subset of [n] (since T ⊆ K ⊆ [n] and {k} ⊆ [n]).
Also, recall that all elements of T are larger than k. Thus, all elements of T ∪ {k} other
than k are larger than k (since all elements of T ∪ {k} other than k are elements of T).
Hence, k is the smallest element of T ∪ {k} (since k is clearly an element of T ∪ {k}). Since
k is the size of T ∪ {k}, this rewrites as follows: The size of T ∪ {k} is also the smallest
element of T ∪ {k}. In other words, the set T ∪ {k} is self-starting (by the definition of
“self-starting”).
Thus, we have shown that T ∪ {k} is a self-starting subset of [n] having size k. This shows
that our second map is well-defined.
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Hence, there exists a bijection from {self-starting subsets of [n] having size k} to
{subsets of K having size k− 1}. Therefore,

|{self-starting subsets of [n] having size k}|
= |{subsets of K having size k− 1}|

=

(
|K|

k− 1

)
 because for any finite set Q and any m ∈N, we have

|{subsets of Q having size m}| =
(
|Q|
m

) 
=

(
n− k
k− 1

)
(since |K| = n− k) . (44)

In other words, the number of self-starting subsets of [n] having size k is
(

n− k
k− 1

)
.

(b) Any self-starting subset of [n] must have at least one element (namely, its
size); thus, its size must be one of the integers 1, 2, . . . , n. Hence,

|{self-starting subsets of [n]}|

=
n

∑
k=1
|{self-starting subsets of [n] having size k}|︸ ︷︷ ︸

=

(
n− k
k− 1

)
(by (44))

=
n

∑
k=1

(
n− k
k− 1

)
=

n−1

∑
k=0

(
n− (k + 1)

k

)
︸ ︷︷ ︸
=

(
n− 1− k

k

)
(since n−(k+1)=n−1−k)

(here, we have substituted k for k− 1 in the sum)

=
n−1

∑
k=0

(
n− 1− k

k

)
= f(n−1)+1 (by Proposition 0.17 (applied to m = n− 1))

= fn.

In other words, the number of all self-starting subsets of [n] is the Fibonacci number
fn. This solves Exercise 7 (b).

8For this, you need to show that

• If S is a self-starting subset of [n] having size k, then (S \ {k}) ∪ {k} = S.

• If S is a subset of K having size k− 1, then (S ∪ {k}) \ {k} = S.

This is again entirely straightforward, and it is perfectly fine to do this in your head, but you
should do it.
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