Math 4707 Spring 2018 (Darij Grinberg): homework set 1

due date: Wednesday 31 January 2018 Please solve at most 4 of the 7 exercises!

Please write your name on each page. Feel free to use LaTeX (here is a sample file with lots of amenities included).

See [Fall2017-HW1s, solution to Exercise 8] for an example of how a counting proof can be written.

0.1. Binomial coefficient basics

Definition 0.1. The notation \mathbb{N} shall always stand for the set $\{0, 1, 2, \ldots\}$ of nonnegative integers.

Definition 0.2. If $n \in \mathbb{N}$, then n! shall denote the product $1 \cdot 2 \cdot \cdots \cdot n$. For example, $3! = 1 \cdot 2 \cdot 3 = 6$ and 1! = 1 and 0! = (empty product) = 1. (An empty product is defined to be 1.)

Definition 0.3. (a) We define the binomial coefficient $\binom{n}{k}$ by

$$\binom{n}{k} = \frac{n(n-1)\cdots(n-k+1)}{k!}$$

for every $n \in \mathbb{Q}$ and $k \in \mathbb{N}$.

For example, $\binom{-3}{4} = \frac{(-3)(-4)(-5)(-6)}{4!} = 15$ and $\binom{4}{1} = \frac{4}{1!} = 4$ and $\binom{4}{0} = \frac{(\text{empty product})}{0!} = \frac{1}{1} = 1.$ **(b)** If $n \in \mathbb{Q}$ and $k \in \mathbb{Q} \setminus \mathbb{N}$, then $\binom{n}{k}$ is defined to be 0.

See [Grinbe16, Chapter 3] for various properties of binomial coefficients. You are free to use those shown in [Grinbe16, §3.1] without proof. In particular, you are free to use the following fact:

Proposition 0.4 (recurrence of the binomial coefficients). Let $n \in \mathbb{Q}$ and $k \in \mathbb{Z}$. Then,

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}.$$

(This is exactly [Grinbe16, Proposition 3.11] when k is a positive integer. The cases k = 0 and k < 0 are easy.)

- **Exercise 1. (a)** Show that $\binom{-1}{k} = (-1)^k$ for each $k \in \mathbb{N}$. **(b)** Show that $\binom{-2}{k} = (-1)^k (k+1)$ for each $k \in \mathbb{N}$. **(c)** Show that $\frac{1! \cdot 2! \cdot \dots \cdot (2n)!}{n!}$ is a perfect square (i.e., the square of an integer) whenever $n \in \mathbb{N}$ is even

0.2. A fraction appears

Definition 0.5. Let x be a real number. Then, |x| is defined to be the unique integer n satisfying $n \le x < n+1$. This integer |x| is called the *floor* of x, or the *integer part* of *x*. For example,

$$\lfloor n \rfloor = n$$
 for every $n \in \mathbb{Z}$;
 $\lfloor 1.32 \rfloor = 1$; $\lfloor \pi \rfloor = 3$; $\lfloor 0.98 \rfloor = 0$;
 $\lfloor -2.3 \rfloor = -3$; $\lfloor -0.4 \rfloor = -1$.

Exercise 2. Let $n \in \mathbb{N}$. Prove that

$$\sum_{k=0}^{n} (-1)^{k} (k+1) = (-1)^{n} \left\lfloor \frac{n+2}{2} \right\rfloor.$$

0.3. Lemmas for the Sierpinski gasket appearing in Pascal's triangle

Exercise 3. Let $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

- Exercise 3. Let $a \in \mathbb{N}$ and $b \in \mathbb{N}$.

 (a) Prove that $\binom{2a}{2b} \equiv \binom{a}{b} \mod 2$.

 (b) Prove that $\binom{2a+1}{2b} \equiv \binom{a}{b} \mod 2$.

 (c) Prove that $\binom{2a}{2b+1} \equiv 0 \mod 2$.

 (d) Prove that $\binom{2a+1}{2b+1} \equiv \binom{a}{b} \mod 2$.

[Hint: Prove all four parts simultaneously by an induction on a, using Proposition 0.4.]

Exercise 4. Let $n \in \mathbb{N}$. Let a and b be two elements of $\{0, 1, \dots, 2^n - 1\}$. Prove that

[Here, " $\{0,1,\ldots,2^n-1\}$ " means the set of all integers k satisfying $0 \le k \le 2^n-1$.]

[**Hint:** Induction on *n*. You can use Exercise 3 here even if you have not solved it.]

Back in class, Exercise 4 helped us prove that Pascal's triangle becomes a Sierpinski gasket (see, e.g., the Wikipedia) if its entries are replaced by their parities.

0.4. More on Fibonacci numbers

Definition 0.6. The *Fibonacci sequence* is the sequence $(f_0, f_1, f_2,...)$ of integers which is defined recursively by $f_0 = 0$, $f_1 = 1$, and $f_n = f_{n-1} + f_{n-2}$ for all $n \ge 2$. Its first terms are

$$f_0 = 0,$$
 $f_1 = 1,$ $f_2 = 1,$ $f_3 = 2,$ $f_4 = 3,$ $f_5 = 5,$ $f_6 = 8,$ $f_7 = 13,$ $f_8 = 21,$ $f_9 = 34,$ $f_{10} = 55,$ $f_{11} = 89,$ $f_{12} = 144,$ $f_{13} = 233.$

Exercise 5. Let $n \in \mathbb{N}$. Let $R_{n,2}$ denote the set $[n] \times [2]$, which we regard as a rectangle of width n and height 2 (by identifying the squares with pairs of coordinates). (Note: I might have been careless in class and confused width with height a few times. In case of doubt, follow the conventions just given.)

A *vertical domino* is a set of the form $\{(i,j), (i,j+1)\}$ for some $i \in \mathbb{Z}$ and $j \in \mathbb{Z}$. A *horizontal domino* is a set of the form $\{(i+1,j), (i,j)\}$ for some $i \in \mathbb{Z}$ and $j \in \mathbb{Z}$.

A *domino tiling* of $R_{n,2}$ means a set of disjoint dominos (i.e., vertical dominos and horizontal dominos) whose union is $R_{n,2}$.

For example, there are 5 domino tilings of $R_{4,2}$, namely

Written as a set of dominos, the second of these tilings is

$$\{\{(1,1),(1,2)\},\{(2,1),(2,2)\},\{(3,1),(4,1)\},\{(3,2),(4,2)\}\}.$$

We have seen in class (January 17) that the number of domino tilings of $R_{n,2}$ is f_{n+1} .

A domino tiling S of $R_{n,2}$ is said to be *axisymmetric* if reflecting it across the vertical axis of the rectangle $R_{n,2}$ leaves it unchanged. (Formally, if S is regarded as a set, it means that for every domino $\{(i,j),(i',j')\}\in S$, its "mirror domino" $\{(n+1-i,j),(n+1-i',j')\}$ is also in S.) For example, among the 5 domino tilings of $R_{4,2}$ listed above, exactly 3 are axisymmetric (namely, the first, the fourth and the fifth).

Let s_n be the number of axisymmetric domino tilings of $R_{n,2}$.

- (a) Prove that $s_n = f_{(n+1)/2}$ if n is odd.
- **(b)** Prove that $s_n = f_{n/2+2}$ if n is even.

0.5. Some basic counting

Definition 0.7. Let $n \in \mathbb{Z}$. Then, [n] shall denote the set $\{1, 2, ..., n\}$. This is an empty set if $n \leq 0$.

Recall that if $n \in \mathbb{N}$ and $k \in \mathbb{Z}$, and if S is an n-element set, then $\binom{n}{k}$ is the number of k-element subsets of S. (This can be used without proof; see, e.g., [Grinbe16, Proposition 3.12], or any text on combinatorics.)

Exercise 6. Let $n \in \mathbb{N}$, $a \in \mathbb{N}$ and $b \in \mathbb{N}$. Let N be the number of subsets of [n] that contain exactly a even elements and exactly b odd elements.

- (a) Prove that $N = \binom{n/2}{a} \binom{n/2}{b}$ if n is even.
- **(b)** Compute N when n is odd.

Exercise 7. A set *S* of integers shall be called *self-starting* if its size |S| is also its smallest element. (For example, $\{3,5,6\}$ is self-starting, while $\{2,3,4\}$ and $\{3\}$ are not.)

Let $n \in \mathbb{N}$.

- (a) For any $k \in [n]$, find the number of self-starting subsets of [n] having size k.
 - **(b)** Find the number of all self-starting subsets of [n].

References

[Grinbe16] Darij Grinberg, Notes on the combinatorial fundamentals of algebra, 10 January 2019.

http://www.cip.ifi.lmu.de/~grinberg/primes2015/sols.pdf The numbering of theorems and formulas in this link might shift when the project gets updated; for a "frozen" version whose numbering is guaranteed to match that in the citations above, see https://github.com/darijgr/detnotes/releases/tag/2019-01-10.

[Fall2017-HW1s] Darij Grinberg, Math 4707 & Math 4990 Fall 2017 (Darij Grinberg): homework set 1 with solutions.

http://www.cip.ifi.lmu.de/~grinberg/t/17f/hw1s.pdf