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1. Introduction

1.1. What is this?

In these notes, we will explain the basics of the theory of network flows. We
will barely scratch the surface; for a more comprehensive survey, see Schrijver’s
Chapter 4]. Also, §8.2] gives a neat introduction, and
is the classical text on the subject. The thesis appears to be a thorough



Notes on network flows page 2

treatment of the subject with lots of technical details. See also the “Lecture notes
on maximum flows and minimum cut problems” in [Goeman17].

We shall mostly follow [Martinl7, §8.2]. In particular, we will only use elemen-
tary methods. More advanced disciplines (such as linear optimization and poly-
hedral geometry) offer alternative points of view on the theory of network flows;
we shall ignore these. We shall also ignore real-life applications, although there are
many (see [Schrijl7, Chapter 4] for a few, and see [Schrij12, §2] for the Cold War
origins of the subject).

These notes have been written for undergraduate classes on graph theory and
combinatorics. They are derivative of the notes [Grinbel7b|], but are more self-
contained than [Grinbel7b] and are concerned with a more general setting.

1.2. Notations

We let IN denote the set {0,1,2,...} of all nonnegative integers.
We let Q. denote the set {x € Q | x > 0} of all nonnegative rational numbers.
We let R, denote the set {x € R | x > 0} of all nonnegative real numbers.

1.3. Simple digraphs and multidigraphs

The theory of network flows can be built either on the notion of a simple digraph, or
on the (somewhat more general) notion of a multidigraph. We shall take the latter
choice (thus obtaining a slightly more general theory), but we will define both
simple digraphs and multidigraphs.

First, let us define simple digraphs, since these are the simpler object:

Definition 1.1. A simple digraph is defined to be a pair (V, A) consisting of a finite
set V and of a subset A of V x V. The elements of V are called the vertices of this
simple digraph; the elements of A are called its arcs. If a = (u,v) is an arc of a
simple digraph (V, A), then u is called the source of this arc a, and v is called the
target of this arc a.

Example 1.2. (a) The pair

({1,2,3},{(1,2),(2,3),(1,3)})

is a simple digraph. Its vertices are 1,2, 3. Its arcs are (1,2), (2,3) and (1,3). The
arc (2,3) has source 2 and target 3.

(b) The pair
({1,3,5},{(1,5),(55)})
is a simple digraph. Its vertices are 1,3, 5. Its arcs are (1,5) and (5,5).

A simple digraph (V, A) can be visually represented as follows:

e For each vertex v € V, choose a point in the plane and label it with a “v”.
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e For each arc (u,v) € A, draw an arrow from the point labelled “u” to the
point labelled “v”. (The arrow can be straight or curved.)

(Of course, the drawing should be made with readability in mind: The points
labelled by the vertices should be chosen sufficiently far apart that the labels don’t
overlap. The arrows are allowed to cros but they should cross in such a way that
it is clear which arrow goes where. In short, the representation should unambigu-
ously determine the digraph.)

There are many ways to represent a given digraph.

Example 1.3. (a) The digraph ({1,2,3},{(1,2),(2,3),(1,3)}) from Example
(a) can be represented as follows:

/ 2 .
1—3
It can also be represented as follows:

1— 2.

N

3
(b) The digraph ({1,3,5},{(1,5),(5,5)}) from Example [1.2| (b) can be repre-
sented as follows: (M)
1—5 3.

Note that an arc of a simple digraph is uniquely determined by its source and its
target: indeed, it is the pair consisting of its source and its target. Multidigraphs
are similar to simple digraphs, except that this is no longer true: their arcs are not
uniquely determined by their sources and their targets any more, but rather have
“their own identities”. Here is how multidigraphs are defined:

Definition 1.4. A multidigraph is a triple (V, A, ¢), where V and A are finite sets
and where ¢ is a map from A to V x V. The elements of V are called the vertices
of this multidigraph; the elements of A are called its arcs. If a is an arc of a
multidigraph (V, A, ¢), and if (u,v) = ¢ (a), then u is called the source of this arc
a, and w is called the target of this arc a.

Example 1.5. (a) Let «, B, 7y, 0 be any four distinct objects (it doesn’t matter which
objects we take; for example, 10,11,12,13 do the job). Let V be the set {1,2,3},

n fact, this is unavoidable for certain digraphs.
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and let A be the set {«,B,7,0}. Let ¢ : A — V x V be the map given by

¢ (a) = (1,3), ¢ (B) =(23),
¢(v)=(13), ¢(0) = (21).
Then, the triple (V, A, ¢) is a multidigraph. Its vertices are 1,2,3; its arcs are

«,B,7,6. The arc a has source 1 and target 3; so does the arc v.
(b) Let V and A be as in part (a). But now, let ¢ : A — V x V be the map given

by

¢ (@) = (L1), ¢ (B) = (1,2),
¢ () =(22), ¢(0)=(1,2).

Then, the triple (V, A, ¢) is a multidigraph as well.

A multidigraph (V, A, ¢) is visually represented in the same way as a simple
digraph (V,A), with one difference: An arc 2 € A is now drawn as an arrow
from the point labelled by its source to the point labelled by its target, and we

“ 177

furthermore label this arrow with an “a

Example 1.6. (a) The multidigraph (V, A, ¢) from Example [1.5| (a) can be repre-
sented as follows:
2 .

C>

(b) The multidigraph (V, A, ¢) from Example [1.5 (b) can be represented as

follows:
14

s e
) 3.

o

Let us summarize the difference between a simple digraph and a multidigraph:
An arc of a simple digraph (V, A) is merely a pair consisting of its source and its
target, whereas an arc of a multidigraph (V, A, ¢) can be an arbitrary object (so it
“has its own identity”) whose source and target are assigned to it by the map ¢.
Thus, we can regard multidigraphs as a refined version of simple digraphs. Every
simple digraph gives rise to a multidigraph as follows:
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Definition 1.7. Let (V, A) be a simple digraph. Let: : A — V x V be the
inclusion map (i.e., the map that sends each a € A to a itself); this is well-defined
because A is a subset of V x V (since (V, A) is a simple digraph). Then, (V, A, 1)
is a multidigraph. This multidigraph (V, A, 1) is called the multidigraph induced
by (V,A); we will often just identify it with the simple digraph (V, A) (so that
each simple digraph becomes a multidigraph in this way).

Example 1.8. The simple digraph

AN

becomes identified with the multidigraph

2
(Ly \2,3)
1]—————3

(1,3)

in this way.

Both simple digraphs and multidigraphs are subsumed under the concept of a
digraph, which is an abbreviation for “directed graph”.

1.4. Walks and paths

Two of the fundamental concepts regarding multidigraphs is that of a walk and
that of a path. Let us define them:

Definition 1.9. Let D = (V, A, ¢) be a multidigraph.

(@) A walk in D is defined to be a list of the form (v, ay,v1,4a2,0,...,4;, V%),
where vg, vy, ..., are vertices of D, and where g; is an arc of D having source
v;_1 and target v; for each i € {1,2,...,k}. (Note that k = 0 is allowed; in this
case, the walk is a 1-tuple (vg) consisting of a single vertex vy.)

(b) Consider any walk (vg,a1,v1,4a2,02,...,4,,0;) in D. The vertices of this
walk are defined to be vy, v4,...,vx. Moreover, v is called the starting point of
the walk, and vy, is called the ending point of the walk. The arcs of this walk are
defined to be a5, a5, ..., a;. The length of this walk is defined to be k.

(c) A walk is said to be a path if its vertices are distinct. (In other words, a walk
(vo,a1,v1,a2,02, . ..,4ax, k) is a path if and only if vy, vy, ..., vk are distinct.)

(d) Let s and t be two vertices of D. A walk from s to t in D means a walk
(vo,a1,v1,a2,02, .. .,0;,vk) in D such that vy = s and vy = t. Likewise, a path from
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s to t in D means a path (vg,a1,v1,4a2,0y,...,4;,0;) in D such that vy = s and
U = t.

Example 1.10. (a) Let D be the multidigraph (V, A, ¢) from Example [1.5 (a).
Then,

(1), (1,7,3), (1,6,3), (2) and (2,4,1,4,3)

are five distinct walks in D. All of them are also paths in D. The lengths of these
walks are 0,1,1,0, 2, respectively. The fifth of these walks is a walk from 2 to 3
(and also a path from 2 to 3). The vertices of the third walk are 1 and 3.

(b) Now, let D be the multidigraph (V, A, ¢) from Example (b) instead.
Then,

(1), (1,,1), (1,8,2), (2,7,2), and (3)

are five distinct walks in D. The first, third and fifth of these walks are paths in D;
the other two are not. The lengths of these five walks are 0,1,1, 1,0, respectively.
The fifth of these walks is a walk from 3 to 3 (and also a path from 3 to 3). The
vertices of the second walk are 1 and 1.

(c) Now, let D be the multidigraph

1—* 52,
N
3

Then, (1,4,2,B,3,7,1) is a walk from 1 to 1, but not a path (since its vertices
1,2,3,1 are not distinct).

One of the most fundamental facts about walks in a multidigraph is the follow-
ing:
Proposition 1.11. Let D be a multidigraph. Let s and t be two vertices of D.

Assume that there exists a walk from s to t in D. Then, there exists a path from
stotin D.

Example 1.12. Let D be the multidigraph

Then, (1,«,2,8,5,7,3,0,4,¢,2,A,3,14,6) is a walk from 1 to 6 in D, but not a path.
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Thus, Proposition (applied to s = 1 and t = 6) yields that there exists a path
from 1 to 6 in D. And indeed, (1,&,2,A,3,4,6) is such a path. (It is not the only
path; another is (1,«,2,8,5,7,3,1,6).)

Proof of Proposition (sketched). We claim the following:

Claim 1: Let w be a walk from s to t in D. Then, there exists a path from
stotin D.

[Proof of Claim 1: We shall prove Claim 1 by strong induction on the length of w.
Thus, we fix a k € IN, and we assume that Claim 1 holds for all walks w having
length < k. We must now prove Claim 1 for all walks w having length k.

We have assumed that Claim 1 holds for all walks w having length < k. In other
words,

(1)

Let w be a walk from s to t in D having length k. We want to prove that there
exists a path from s to t in D.

Write the walk w in the form w = (vg, a1, v1, 42,03, ..., ak, V). (This can be done,
since the walk w has length k.) Thus, (vo,a1,v1,a2,v2,...,4,v;) = W is a walk in
D; hence, the definition of a walk shows that vy, vy,...,v; are vertices of D, and
that g; is an arc of D having source v;_; and target v; for each i € {1,2,...,k}.
Furthermore, (vg,a1,v1,4a2,0, ..., a5, vx) = W is a walk from s to f; thus, vg = s and
O = t.

We are in one of the following two cases:

if v is a walk from s to t in D having length < k,
then there exists a path from s to ¢t in D '

Case 1: The vertices vy, vy, ..., v, are distinct.
Case 2: The vertices vy, v1, ..., v} are not distinct.

We consider Case 1 first. In this case, the vertices v, v1, ..., v are distinct. Thus,
the walk (vg,a1,v1,a2,0,...,ax,0) is a path in D (by the definition of a “path”),
and therefore is a path from s to t in D (because vy = s and vy = t). Hence, there
exists a path from s to t in D. Thus, we have proven in Case 1 that there exists a
path from s to t in D.

Let us now consider Case 2. In this case, the vertices v, vq,..., v, are not dis-
tinct. Hence, there exist two elements i and j of {0,1,...,k} such thati < j and
v; = vj. Consider such i and j. Let v’ be the vertex v; = vj of D. Our walk
(vo,a1,v1,a2,02, . ..,4ax, ;) thus visits this vertex v (at least) twice. We can there-
fore shorten this walk by removing the part between these two visits. The resulting
shorter walk is

/
0p,041,01,42,02,...,04;_1, vi,l,ai-,v ,Llj+1,vj+1,a]'+2, Z)]'+2,. « ey i, O ;

This is the part of the This is the part of the
walk w until it reaches v; walk w after it leaves v;
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this is still a walk from s to ¢ in D, but now has length PR (k—j)<j+(k—j) =
<

k. Denote this new walk by v. Thus, v is a walk from s té tin D having length < k.

Hence, (1) yields that there exists a path from s to t in D. Thus, we have proven in

Case 2 that there exists a path from s to t in D.

We have now proven in both cases that there exists a path from s to t in D. Thus,
this always holds.

Now, forget that we fixed w. Hence, we have shown that if w is a walk from s
to t in D having length k, then there exists a path from s to ¢t in D. In other words,
Claim 1 holds for all walks w having length k. This completes the induction step;
thus, Claim 1 is proven.]

Proposition immediately follows from Claim 1. O

We observe another simple fact:

Proposition 1.13. Let D be a multidigraph. Let n be the number of vertices of D.
Then:
(@) Any path in D has length <#n —1.
(b) For any given k € IN, there are only finitely many walks in D of length k.
(c) There are only finitely many paths in D.

Proof of Proposition (sketched). Write the multidigraph D in the form D = (V, A, ¢).
Then, V is the set of all vertices of D. Thus, |V| = n (since n is the number of ver-
tices of D). Also, V and A are finite sets.

(@) Let (vg,a1,v1,a2,02,...,a, ) be a path in D. We must prove that this path
(vo,a1,v1,a2,02, . ..,4ax, k) has length < n — 1.

The vertices vy, vy, . .., vy are distinct (since (vg, a1, v1,a2,v2, ..., ax, k) is a path).
Hence, [{vo,v1,...,0¢}| = k+ 1. But vg, vy, ..., v, are vertices of D, thus elements
of V. Thus, {vg,v1,...,v¢} C V, so that [{vg,v1,...,0¢}| < |V| = n. Hence,
k+1=|{vg,v1,...,vx}| <m, sothatk <n—1.

Now, the path (vg,a1,v1,a2,v2,...,ax,vk) has length k < n — 1. This completes
the proof of Proposition (a.

(b) Let k € IN. Each walk in D of length k has the form (vg, a1, v1,a2,v, . .., ax, vk)
for some vertices vy, v1,...,v; of D and some arcs ay,ay,...,a; of D. Thus, each
walk in D of length k can be constructed by choosing k + 1 vertices v, vy, ..., v} of
D and k arcs ay, ay, ..., a; of D (although not every such choice will yield a walk in
D). There are only finitely many such choices (namely, |V|kJrl : \A]k many). Thus,
there are only finitely many walks in D of length k. This proves Proposition m
(b).

(c) Proposition (a) yields that any path in D has length < n — 1. In other
words, any path in D has length € {0,1,...,n — 1}. Hence, the set of all paths in
D can be decomposed as follows:

{paths in D} = U {paths in D of length k} . (2)
ke{0,1,...n—1}
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But for every k € {0,1,...,n —1}, the set {paths in D of length k} is finitef]
Hence, the equality shows that {pathsin D} is a union of finitely many fi-
nite sets. Thus, the set {paths in D} is itself finite. In other words, there are only
finitely many paths in D. This proves Proposition (0). O

2. Network flows

2.1. The concept of a network
Definition 2.1. A network consists of:
e a multidigraph (V, A, ¢);

e two distinct vertices s € V and t € V, called the source and the sink, respec-
tively;

e a function ¢ : A — Q, called the capacity function.

Note that the word “source” in Definition is unrelated to the concept of the
source of an arc. In particular, we are not requiring that the source s of a network
is an actual source of an arc. (It is also allowed for s to be the target of some arc, or
for t to be the source of some arc.)

We draw a network (with notations as in Definition as follows: We first draw
the multidigraph (V, A, ¢) (with source s and sink t+ marked as such), and then we
write “a : ¢ (a)” atop each arc a € A. For example, the picture

2
2 F 5
4 x:1 6 o:1

s—1 a2 3 71

8=t

)
represents a network N whose underlying multidigraph (V, A, ¢) has 8 vertices
1,2,3,4,5,6,7,8 and has 11 arcs , B,7,9,¢, A, u, x, v, T, 0 with

¢ (a) =(L3), ¢(B)=(L7), ¢ (1) =52), ¢(0) =(34),
¢(e) =(7.4), ¢(A)=(42), ¢ () =(25), ¢ (k) = (4,6),
¢ (v)=(54), ¢ (m) = (58), ¢ () =(68),

2Proof. Letk € {0,1,...,n — 1}. Then, Proposition (b) yields that there are only finitely many

walks in D of length k. Hence, there are only finitely many paths in D of length k (since every
path in D is a walk in D). In other words, the set {paths in D of length k} is finite.

€3
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with 1 chosen as source of the network and 8 chosen as sink of the network, and
with capacity function c given by

c(a) =2, c(B) =1, c(y)=1, c(0) =2,
c(e) =3, c(A)=1, c(pu) =2, c(k)=1,
clv)=1, c(m)=2, clo) =1

Definition 2.2. Let N be a network consisting of a multidigraph (V, A, ¢), a
source s € V and a sink t € V, and a capacity function ¢ : A — Q4. Then, we
define the following notations:

e For any arc a € A, we call the number ¢ (a) € Q4 the capacity of the arc a.

For any subset S of V, we let S denote the subset V' \ S of V.

If P and Q are two subsets of V, then [P, Q] shall mean the set of all arcs
a € A whose source belongs to P and whose target belongs to Q. (In other
words, [P,Q] = AN¢~1 (P x Q).

If P and Q are two subsets of V, and if d : A — Q. is any function, then
the number d (P, Q) € Q. is defined by

d(P,Q)= ) d(a).

ac[P,Q]

2.2. The concept of a flow

Definition 2.3. Let N, V, A, ¢, s, t and ¢ be as in Definition
A flow (on the network N) means a function f : A — Q4 with the following
properties:

e Wehave0 < f (a) < c(a) foralla € A. This is called the capacity constraints.
e For any vertex v € V' \ {s,t}, we have
fr@)=f"(v),

where the rational numbers f~ (v) and f* (v) are defined as follows:

ffloo= ) fla) and fflo)= ). fla).

acA is an arc acA is an arc
with target v with source v

This is called the conservation constraints.
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We can visualize a network N as a collection of water pipes (the pipes are the
arcs a € A; the capacity ¢ (a) of a pipe a is how much water it can maximally
transport in a second); then, a flow f on N can be visualized as water flowing
through the pipes (namely, the amount of water traveling through a pipe a in a
second is f (a)). The capacity constraints say that no pipe is over its capacity or
carries a negative amount of watelﬂ The conservation constraints say that at every
vertex v other than s and ¢, the amount of water coming in (that is, f~ (v)) equals
the amount of water moving out (that is, f* (v)); that is, there are no leaks and no
water being injected into the system other than at s and ¢. This is why s is called
the “source” and t is the “sink”*} This visualization of flows suggests some real-life
applications (although usually, the flow is not a flow of water, but, e.g., of traffic on
a highway systemE[). Such applications can be found, for example, in [Schrij12, §2]
and [Schrij17, Chapter 4].

To draw a flow f on a network N (with notations as in Definition [2.2)), we proceed
in the same way as when drawing the network N itself, but instead of writing
“a:c(a)” atop each arca € A, we write “a : f (a) of ¢ (a)” atop each arc a € A. For
example, here is a flow f on the network N shown on (@):

. 1ofl 20f2
s—1 a:l of 2 3 Y ) M 5
v:lofl 1 of 2
B1of 1 Alof1 / \
7 e:1of 3 4 x:1 of 1 6 o:1ofl 8=t
(4)

(so, for example, f () =1, f (1) =2 and f (§) = 0).
Let us make a definition (which we already made temporarily in Definition [2.3):

Definition 2.4. Let N, V, A, ¢, s, t and ¢ be as in Definition Let f: A— Q4
be any map. Let v € V. Then, we define two rational numbers f~ (v) € Q4 and
fT (v) € Q4 as follows:

fflo)= ), fla) and fflo)= ). fla).

a€A is an arc acA is an arc
with target v with source v

3Notice that each pipe has a pre-determined direction; water can only flow in that direction!

“although these words are not to be taken fully at face value: it is possible that the source has more
water coming in than moving out, and that the sink has more water moving out than coming in

5Somewhat unrealistically, the definition of a network requires that traffic can only enter and exit
the network at s and t, and that each highway can only be used in one direction. But both of
these issues are easy to fix: To model traffic that can enter at several points sq,s7,...,5,, we
introduce a new “virtual” source s and arcs going from s to each of sy,sy,...,5, so that any
traffic that enters at s; can be re-interpreted as traffic that enters at s instead (and then goes
straight to s;, before moving further through the network). Similarly, we can allow traffic to exit
at several points t1,1y,...,t;. Finally, we model a bidirectional highway joining two vertices p
and g by two arcs, one of which has source p and target g, while the other has source g4 and
target p.
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(We may call f~ (v) the inflow of f into v, and we may call f* (v) the outflow of
f from v.)

We can now define the value of a flow:

Definition 2.5. Let N, V, A, ¢, s, t and ¢ be as in Definition Let f: A— Q4
be a flow on N.

The value of the flow f is defined to be the number f* (s) — f~ (s). It is
denoted by |f].

For example, the value of the flow f shown in @) is [f| = f(s) — f~ (s) =
2-0=2

Proposition 2.6. Let N, V, A, ¢, s, t and ¢ be as in Definition2.2] Let f : A — Q4
be a flow on N. Then,

fl=F(s)=f(s) )
=f ()= fT (). (6)

Proof of Proposition [2.6| (sketched). The definition of |f| yields |f| = fT (s) — f~ (s).
It thus remains to show that |f| = f~ (f) — fT (¢).
Each arc a € A has exactly one source. Thus,

Y f@=1Y Y. fla =Y f (o). (7)

acA veV a€A is an arc veV
Yvith source v
=f*(v)
(by the definition of £ (v))
Similarly,
Y f@)=) f (v). 8)
acA veV

Comparing this with (7)), we obtain

Y ff)=)Y f (v).

veV veV
Hence,
Y. (ffo)—f @)=Y f - f (=0 9)
veV UfVZ —~ )/ veV

veV

But the conservation constraints (which hold, since f is a flow) say that for any
vertex v € V' \ {s,t}, we have

fr)=f"(0). (10)
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Now, recall that s and t are distinct elements of V. Hence, we can split off the
addends for v = s and for v = t from the sum Y. (f* (v) — f~ (v)). We thus

veV
obtain
ZV (f" () = f (v)
=IO OO0 T (e @)
veV\{s,t ~

=111
=fl+(fFF B —=f (1),
Comparing this with (9), we find |[f|+ (f* (t) — f~ (t)) = 0. Thus,
fl==(F"®O—-fF ®O)=f OO,
This completes the proof of Proposition O

-
(by (1))

For the next proposition, let us recall the conventions we made in Definition
In particular, if S is any subset of V (where notations as in Definition , then S
denotes the complement V' \ S of S. Also, for any two subsets P and Q of V and
anymapd: A — Qy,wehaved (P,Q)= Y. d(a).

ac[P,Q]

Proposition 2.7. Let N, V, A, ¢, s, t and ¢ be as in Definition2.2] Let f : A — Q4
be a flow on N. Let S be a subset of V.

(a) We have B B
f(S8)=f(58) =) (fT(0)—f (v).

veS
(b)Ifse Sand t € S, then

fI=1(55)=f(55).

(@Ifs€Sandt ¢S, then|f| <c(S,S).
(d) Assume thats € Sand t ¢ S. Then, |f| = ¢ (S, S) if and only if

(f (a) =0foralla € [S,S]) (11)

and
(f (a) =c(a) foralla € [S,S]). (12)
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Proof of Proposition 2.7 (sketched). (a) We have
Y, (fT () = f (v)

vES
— + -
Y e ST [
veS vEeS
= z f(a) = )y f(a)
a€A is an arc a€A is an arc
with source v with target v
(by the definition of f*(v)) (by the definition of f~(v))
=Y Y fl@-y Y f@
vES a€A is an arc vESacAis an arc
with source v with target v
——_— ——
= Y _ 3
ac A is an arc a€A is an arc
with source in S with target in S
= )Y fla- )  fl) (13)
a€A is an arc acA is an arc
with source in S with target in S

But recall that S denotes the complement V' \ S of S. Thus, any vertex in V must
lie either in S or in S (but not in both). Hence, any arc 2 € A must either have
target in S or target in S (but not both). Hence, the sum Y, f (a) can be

acAis an arc
with source in S

split as follows:

Y,  f(a)

acA is an arc
with source in S

- Y f(a)+ Y f(a)

acAis an arc acAis an arc
with source in S with source in S
and targetin S and target in S
N—— N————
= Y = Y
a€(S,S] aG[SS]

(by the definition of [S,5]) (by the definition of [S,E])

= ), flo+ )Y f(a). (14)

ag[s,S) ae[s 3]

Similarly, we can split Y f (a) according to whether the source (not the

acA is an arc
with target in S

target this time) of an arc lies in S or in S. We thus obtain

Y, fl@)= Z}f(ﬂH Y, fla). (15)

acA is an arc ac(s,s S,
with target in S [ ac [S'S]
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Now, becomes
Y, (fT (@) = f (v))

vES
= Y, fla) - Y, f()
a€A is an arc a€A is an arc
Xvith source in S | Xvith targetin S
=¥ f@+ L f@ =y far ¥ fl)
agls,s] ac[s3) a€ls,5] ae[3,9]
(by @) (by ()
=| X f+ ) fl@]|-| Y fl@+ ) f()
a€ls,s] a€[S,5] a€ls,s] ac[S,S]
=) f@- ) f(a).
ac [SS] ac [?,S]

Comparing this with

f(8,9) - f(5,9) = Y fl@- X fla),
_‘Eﬁ) _‘—[ZSS]VT(Q ) ac[ss] ac[5,9]

(by the definition of f (S,g)) (by the definition of f (g,S))

we obtain f (S,5) — f(S,S) = ¥ (f" (v) — f~ (v)). This proves Proposition
@ veS
a).

(b) Assume thats € Sand t ¢ S. Thus, S\ {s,t} =S\ {s} (since t ¢ S).

We can split off the addend for v = s from the sum Y (f* (v) — f~ (v)) (since
veES

s € S). We thus obtain

Y @-f @)= 6-f )+ Y (- @) =l

veS ~ g ~
=f|

veS\{s} N

(by 1
(since v€S\{s}=5\{s,t} CV\{s,t}))

Hence, _ _
fl=X (fT ()= f (0)) =f(S,5) - f(5.9)
veS
(by Proposition 2.7] (a)). This proves Proposition 2.7 (b).
(c) Assume that s € S and t ¢ S. The definition of f (S, S) yields

f(88) =) j:\(/al < Y c(a)=c¢(S,9) (16)
ae [S,g] <c(a) ae [S,E]
(by the capacity

constraints)
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(since ¢ (S,5) is defined tobe Y. ¢ (a)). The definition of f (S, S) yields

ae[S,?]
f88)= Y fla =) o0=o0 (17)
aclss] g ac[S,5]
(by the capacity
constraints)

Proposition (b) yields
fl=£(55)-f(55) <c(55)—0=c(S,5).
—_——— e —

<(5) >0
oy OO

This proves Proposition 2.7] (c).

(d) Let us analyze our above proof of Proposition (c). We have obtained
the inequality by adding together the inequalities f (a) < c(a) for all a €
[S,S]. Thus, the inequality becomes an equality if and only if all of the latter

inequalities f (a) < c¢(a) for all a € [S,S] become equalities. Hence, we have the
following chain of equivalences:

(the inequality becomes an equality)

<= (all of the inequalities f (2) < c(a) foralla € [S,S] become equalities)
< (f(a)=c(a) forallae [S,S]).
We have obtained the inequality b‘adding together the inequalities f (a) > 0

for all a € [S,S]. Thus, the inequality (17) becomes an equality if and only if all of

the latter inequalities f (a) > 0 for all a € [S, S| become equalities. Hence, we have
the following chain of equivalences:

(the inequality becomes an equality)
<= (all of the inequalities f (2) > 0 for all a € [S,S] become equalities)
< (f(a)=0foralla€ [S,S]).

But we have proven the inequality |f| < ¢ (S, S) by subtracting the inequality
from the inequality . Thus, the inequality |f| < ¢ (S,S) becomes an equality if
and only if both inequalities and become equalities. Hence, we have the
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following chain of equivalences:

(the inequality |f]| < ¢ (S,S) becomes an equality)
<= (both inequalities and become equalities)
<= (the inequality becomes an equality)

> (f(a)=c(a) for all ac [S,g])
A (the inequality becomes an equality)

= (f(a)zO}gr all ae [?,S])
< (f(a)=c(a) foralla e [S,S])A(f(a) =0foralla€ [S,S])
— ({@) holds) s ((T) holds)

<= ((12) holds) A ((T1) holds)
< (both and hold) .

In other words, the inequality |f| < ¢ (S, S) becomes an equality if and only if both

11) and (12) hold. In other words, |f| = ¢ (S,S) if and only if both (11) and (12 .
hold This proves Proposition 2.3/ (d).

Remark 2.8. Let N, V, A, ¢, s, t and ¢ be as in Definition Let f: A — Qy
be a flow on N. Assume that there is no arc 2 € A whose source and target

are both equal to v. Then, it is easy to see that f* (v) = f <{v},m> and
f~ @) = f (o} {o})-

2.3. Cuts in networks

Definition 2.9. Let N, V, A, ¢, s, t and c be as in Definition

(@) An s-t-cutting subset of V shall mean a subset S of V satisfying s € S and
t¢S.

(b) A cut of N shall mean a subset of A having the form [S,S] for some s-t-
cutting subset S of V. B

(c) The capacity of a cut [S, S] is defined to be ¢ (S, S). (Note that this is indeed

well-defined: In fact, ¢ (S,S) = Y c(a) clearly depends only on the cut [S, S]
ac[S,5]

rather than on the set S.)

For example, if N is the network shown in (3), then {1,3,4} is an s-t-cutting sub-
set; the cut [{1,3,4} , {1,3,4}} corresponding to this subset is {B, v, A, k} and has
capacity

c<{1,3,4},{1,3,4}): Y cl@=cB et +elg=4

A
ac{p At 1 -1 -1 -1
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We can illustrate this cut by drawing all arcs belonging to the cut as double arrows
(=):

w:2 7:1 2 H:2

v:l 2
Al
B:1 6:2

€3 x:1 6 : 8=t

o:1

(where the vertices in {1,3,4} have been marked by boxes).
Notice that every network N (with notations as in Definition has two special
cuts: the first is the cut

[{s} ,E} = {a € A | the source of a is s, but the target is not}
corresponding to the s-f-cutting subset {s}; the second is the cut

[m, {t}} = {a € A | the target of a is t, but the source is not}

corresponding to the s-t-cutting subset {t}.

2.4. The max-flow-min-cut theorems

Proposition [2.7] (c) thus says that the value of a flow is always < to the capacity of
a cut. But can we achieve equality?

One of the most important results in combinatorics — the max-flow-min-cut theorem
— says that “yes”: In each network, we can find a flow and a cut such that the value
of the flow equals the capacity of the cut. More precisely, there are three “max-
flow-min-cut theorems”, corresponding to different kinds of flows. The first one is
about the kind of flows we have defined above:

Theorem 2.10. Let N, V, A, ¢, s, t and ¢ be as in Definition 2.2} Then,
max {|f| | fisaflow} =min{c(S,S) | SCV;seS; t¢S}. (18

In particular, the left-hand side of this equation is well-defined (i.e., there exists
a flow f for which |f| is maximum). (Of course, the right-hand side of is
well-defined, because there are only finitely many subsets S of V satisfyings € S
and t ¢ S, and because there exists at least one such subset)

The equality in Theorem says that the maximum value of a flow equals
the minimum value of ¢ (S, S) where S ranges over the s-t-cutting subsets of V. In
other words, the maximum value of a flow equals the minimum capacity of a cut.
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Another variant of the max-flow-min-cut theorem makes the same claim about
integer flows — i.e., flows f : A — Q. such that every arc a € A satisfies f (a) € IN.
Accordingly, it requires that the capacities ¢ (a) of arcs also are integers. Let us
state it precisely:

Definition 2.11. Let N, V, A, ¢, s, t and ¢ be as in Definition An integer flow
means a flow f: A — Q; satisfying (f (a) € N for eacha € A).

Theorem 2.12. Let N, V, A, ¢, s, t and c be as in Definition Assume that
c(a) € N for each a € A. Then,

max {|f| | fis an integer flow}
=min{c(S,S) | SCV;s€S;t¢S}.

In particular, the left-hand side of this equation is well-defined (i.e., there exists
a flow f for which |f| is maximum).

Finally, a third variant (which we shall not prove) makes the same statement as
Theorem but with Q4 replaced by R :

Theorem 2.13. Let N, V, A, ¢, s, t and c be as in Definition except that c is
now a map A — R, instead of being a map A — Q. (That is, the capacities
of arcs are now allowed to be irrational.) Also, let us temporarily modify the
definition of a flow in such a way that a flow is a map A — R, instead of being
amap A — Q4. Then,

max {|f| | fisaflow} =min{c(S,S) | SCV;s€S; t¢S}.

In particular, the left-hand side of this equation is well-defined (i.e., there exists
a flow f for which |f| is maximum).

There are various proofs of these three theorems. In particular, Theorem m
and Theorem can be viewed as an application of linear programming duality, a
fundamental principle in linear optimization. We will instead proceed elementarily.
Along the way, we will see how to construct a flow f maximizing |f| and an s-t-
cutting subset S minimizing ¢ (S, S) (two problems that occur in real life).

2.5. The residual digraph

First, let us define the so-called residual digraph of a ﬂowﬁ

®This definition is somewhat abstract. See the discussion below and Example for what is
really going on.
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Definition 2.14. Let N, V, A, ¢, s, t and ¢ be as in Definition
(a) If p is a pair (u,v) € V x V, then we let p~! denote the pair (v,u) € V x V.
(This is simply a suggestive notation; it has nothing to do with reciprocals of

numbers.) We call p~! the reversal of the pair p. Notice that (p~!) ~! = 4 for each
peVx V

(b) Let A be the set {0,1} x A.
For each arc @ € A, we define @ € A to be the pair (0,a), and we define

T e A to be the pair (1,4a).
We shall use (some of) these pairs 7 and 7 as arcs in a multldlgraph we

—
shall soon define. Notice that any element of A either has the form @ for some
uniquely determined a € A, or has the form @ for some uniquely determined
a € A, but not both at the same time.

(c) Let f : A — Q4 be any flow on N. Define a subset Ay of W by
Ap={7 | acAand f(a @YU{% | acAand f(a) >0}.

Define a map ¢r: Ay = V X V by

(¢f (@) = ¢ (a) for each a € A satistying f (a) < c(a)) and
(qbf (‘@) = (¢ (a)) " for each a € A satistying f (a) > 0) :

(d) We define the residual digraph Dy to be the multidigraph (V, Ay, ¢¢).

Let us unpack this definition. The residual digraph Dy of a flow f has the same
vertices as the multidigraph (V, A, ¢) that underlies the network N; but its arcs are
different. Namely, the arcs of Dy are described as follows:

e for any arc a € A satisfying f (a) < c(a) (that is, for any arc a € A that is
“used under capacity” by the flow f), the digraph D¢ has an arc @ whose
source and target are the source and target of a;

e for any arc a € A satisfying f (a) > 0 (that is, for any arca € A that sees
some positive throughput by the flow f), the digraph D¢ has an arc ‘@ whose
source and target are the target and source of 4.

Thus, informally speaking, the residual digraph Dy shows the “wiggle-room”
for modifying f without breaking the capacity constraints (ignoring, for the time
being, the conservation constraints). Indeed:

e an arc a € A can afford an increase in the flow going through it (without
violating the capacity constraints) if and only if the corresponding 7 is an
arc of Dy;
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e an arc 2 € A can afford a reduction in the flow going through it (without
violating the capacity constraints) if and only if the corresponding 7 is an
arc of Dy.

Of course, if we modify the flow on a single arc, then we will most likely break
the conservation constraints. The key to finding a maximum flow is thus to change
a flow in such a way that both capacity and conservation constraints are preserved;
the residual digraph Dy is merely the first step.

Notice that the arcs of Dy are not arcs of (V, 4, ¢).

Example 2.15. Let f be the following flow:

. 0of 1
s—1 a:l of 2 2 B 4
\ \ w
¥:1of3
3 51 of 2 5 A2 of 2 6=t

(where, as before, we write “f (a) of ¢ (a)” atop each arc a). Then, the residual
digraph Dy is

7 B
/\
s=1" T 1
u
v < .
%
& /‘5\
3 5 = 6=t
k4 5

Notice that the multidigraph Dy has cycles even though (V, A, ¢) has none!

2.6. The augmenting path lemma
The main workhorse of our proof will be the following lemma:

Lemma 2.16. Let N, V, A, ¢, s, t and ¢ be as in Definition [2.2]
Let f: A — Q4 be a flow.

(a) If the multidigraph Dy has a path from s to ¢, then there is a flow f’ with a
larger value than f.

(b) If the multidigraph Dy has no path from s to ¢, then there exists a subset S
of V satisfying s € Vand t ¢ V and ¢ (S,S) = |f].
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Before we prove this, we need to lay some more groundwork.

Definition 2.17. Let N, V, A, ¢, s, t and ¢ be as in Definition

(a) We identify the maps ¢ : A — Q satisfying (g (a) > 0 foralla € A) (that
is, the maps g : A — Q satisfying g (A) C Q1) with the maps A — Q.

(b) We extend the notations f~ (v) and f* (v) from Definition 2.4{ to arbitrary
maps f : A — Q (not just maps f : A — Q). Of course, f~ (v) and f* (v) will
then be elements of Q, not necessarily of Q.

We also extend the notation |f| from Definition [2.5|to arbitrary maps f : A —
Q (not just flows). Thus, |f| = f* (s) — f~ (s) for any map f : A — Q.

@Iff:A—Qandg:A — Q are two maps, then f + ¢ denotes a new map
A — Q that is defined by

(f+8)(a)=f(a)+g(a) for all a € A.

(d) We say that amap f : A — Q satisfies the conservation constraints if and only
if each v € V' \ {s,t} satisfies f~ (v) = f* (v).

Notice that any flow f : A — Q. satisfies the conservation constraints.

Lemma 2.18. Let N, V, A, ¢, s, t and c be as in Definition

(@) Any twomaps f: A — Qand g: A — Q satisty |f + g| = |f| + |g]-

(b) Let f : A - Qand g : A — Q be two maps satisfying the conserva-
tion constraints. Then, the map f +g : A — Q also satisfies the conservation
constraints.

Proof of Lemma (sketched). (b) This is exactly as straightforward as you would
expect: Fix v € V'\ {s, t}. Then, the definition of (f + g)~ (v) yields

(f+8) ()= ), (f+8)@ = Y (fla)+g(a)
a€A is an arc — a€A is an arc
with target v =f(a)+g(a) with target v

(by the definition of f+g)

= Y, fl@ + Y, s

acA is an arc acA is an arc
with target v with target v
=f(v) =8 (v)

(by the definition of f~(v))  (by the definition of g~ (v))

=f (o) +g (v).

Similarly, (f +¢)" (v) = f* (v) + g% (v). But the map f satisfies the conservation
constraints; hence, f~ (v) = f* (v). Similarly, ¢~ (v) = g™ (v).

Now, (f+g) (v) = [ (U)+§__\£Z_J)=f+ (0) +8% (0) = (f+8)" (v).

=f*(0)  =¢"(v)
Now forget that we fixed v. We thus have proven that each v € V' \ {s, t} satisfies
(f+2)” (v) = (f +8)" (v). In other words, the map f + g satisfies the conserva-
tion constraints. This proves Lemma (b).
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(a) The proof (which uses the same ideas as the proof of Lemma (b)) is left
to the reader. O

Lemma 2.19. Let N, V, A, ¢, s, t and ¢ be as in Definition Let f: A — Qy
be a flow.
Let p be a path from s to ¢ in the multidigraph Dy = (V, Ay, ¢5).

Let P be the set of arcs of p. Thus, P C Af - ?

Let p € Q.
Define a map ¢ : A — Q by setting

o, if 7 ePp;
g(a) =1 —p, if T ep; for all a € A.
0, otherwise

(This is well-defined, because the conditions 7 € Pand 7 € P cannot hold at
the same timeﬂ)

(a) This map g satisfies the conservation constraints (i.e., each v € V' \ {s,t}
satisfies ¢~ (v) = g™ (0)).

(b) We have [g| = p.

Proof of Lemma (sketched). (a) Letv € V' \ {s, t} be arbitrary. We must prove that
§ (v)=g"(v).

If v is not a vertex of the path p, then this is obvious (since in this case, each arc
a having source v or target v satisfies g (a) = 0 (since neither @ €Pnor @ eP),
and thus we have ¢~ (v) =0and ¢* (v) = 0).

Thus, we WLOG assume that v is a vertex of the path p. Since v is neither the
starting point nor the ending point of this path p (because v € V '\ {s,t}, but the
starting and ending points of p are s and t), we thus conclude that there is exactly
one arc x € P having source v, and exactly one arc y € P having target v (because
p is a path, and P is the set of its arcs). Consider these arcs x and y. Notice that x
and y are arcs of the multidigraph Dy, not arcs of (V, A, ¢).

’Proof. Let a € A. We must show that the conditions @ € Pand 7 € P cannot hold at the same
time.

Assume the contrary. Thus, @ € Pand @ € P both hold. The definition of ¢ shows that
ol (7) = ¢ (a); thus, the target of 7 is the target of a. But the definition of ¢ also shows that
Pr (7) = (¢ (a))"%; thus, the source of ‘7 is the target of a. Hence, the source of ‘2 and the
target of @ are identical (since they both are the target of a).

But both ‘7 and @ are arcs of the path p (since 7 e€Pand 7 € P). Since the vertices of
a path are distinct, this shows that the source of ‘7 and the target of 7 are distinct unless ‘7
directly follows 7 on the path p. Therefore, ‘T directly follows 7 on the path p ésince the
source of @ and the target of @ are equal). But an analogous argument shows that 4" directly
follows 7 on the path p. The preceding two sentences contradict each other. This contradiction
shows that our assumption was false. Qed.
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The arcs x and y are distinciﬂ
We have

yEPgAf:{ | a€ Aand f (a (M) U{7 | acAand f(a) >0}
:{7|b€Aandf(b)<c(b)}U{ |b€Aandf()>O}

(here, we renamed the indices a as b). Thus, either y € {7 | be Aand f (V) <c (b)}
ory e {? | bEAandf(b)>O}.

We have
x€EPCA;={7 |acAand f(a ()YU{7 | acAand f(a) >0} .
Thus, eitherx € {@ | a€ Aand f(a) <c(a)}orxe {7 | ac Aand f (a) > 0}.

Hence, we are in one of the following two cases:

Case 1: Wehavex € {@ | ac€ Aand f (a) <c(a)}.
Case 2: Wehave x € {% | a€ Aand f(a) >0},

Let us consider Case 2. In this case, we have x € { a | aeAand f (a) > 0}.
In other words, x = @ for some a € A satisfying f (a) > 0. Consider this a. Since
‘T = x € P, we have g (1) = —p (by the definition of g).

But recall that either y € {7 | be Aand f(b) <c (b)} or

VRS {? | be Aand f (b) > 0}. Hence, we are in one of the following two sub-
cases:

Subcase 2.1: We have y € {7 | be Aand f(b) <c (b)}
F
Subcase 2.2: We have y € { b | be Aand f (b) > O}.

%
Let us consider Subcase 2.2. In this subcase, we have y € { b | beAand f(b) >0

In other words, y = b for some b € A satisfying f (b) > 0. Consider this b. Since
3 =y € P, we have g (b) = —p.

8Proof. Assume the contrary. Thus, x = y. Hence, the arc x = y has source v (since x has source v)
and target v (since y has target v). Thus, the source and the target of this arc x are equal (because
they are both equal to v).

But the arc x is an arc of the path p (since x € P), and thus its source and its target are two
different vertices of p. Therefore, its source and its target are distinct (since the vertices of p are
distinct). This contradicts the fact that its source and its target are equal. This is a contradiction,
ged.
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Here is how the two arcs x and y look like in the multidigraph Dy

Y X
— 00— .

And here is how the corresponding arcs a and b look like in the underlying multi-
digraph (V, A, ¢) of our network:

AU . (19)
(because 7 = xand ? = y). Both arcs a and b are sent to —p by g (since g (a) = —p

and g (b) = —p). All other arcs in A having source or target v are sent to 0 by g

Hence, in particular, all arcs in A having target v are sent to 0 by g, except for
the arc a. Thus, ¢~ (v) = g (a) = —p. A similar argument shows that ¢* (v) = —p.
Thus, g~ (v) = —p = ¢ (v). Thus, ¢~ (v) = ¢ (v) is proven in Subcase 2.2.

The proof in Subcase 2.1 is rather similar, with the little difference that now the
picture is replaced by

Y U )

and so we have ¢~ (v) = (—p) + p = 0 and ¢* (v) = 0. But again the result is the

same.
Thus, Case 2 is settled. The proof in Case 1 is similar (again, we need to consider

two subcases, depending on whether y € {7 | be Aand f (V) <c (b)} or

<_
ye{D | beAandf(b) >0}
Altogether, we have now proven ¢~ (v) = ¢ (v) in each possible case.

9Proof. Let d be any arc in A having source or target v. Assume that d is distinct from both a and
b. We must prove that g (d) = 0.

<_Fron(l d # a, we obtain <E # Z = x. Also, clearly, 7 # ‘7 = x. From d # b, we obtain
d # b =y. Also, clearly, q b =y a

Let us first assume that d has source v. Thus, the arc d of D ¢ has target v (by the de(ﬁ_nition
of Dy). But the only ar<c_ in P having target v is y (by the definition of y). Thus, if wehad d € P,
then we w(o_uld have d = y (since d wgﬂd be an arc in P having target v), which would
contradict d # y. Hence, we cannot have d € P.

Recall again that d has source v. Thus, the arc 7 of Dy has source v (by the definition of D).
But the only arc in P having source v is x (by the definition of x). Thus, if we had ? € P, then
we would have d = x (since d would be an arc in P having source v), which would contradict

# x. Hence, we cannot have 7 € P.

Hence, we have neither d € P nor 7 € P. According to the definition of g, we thus conclude
that g (d) = 0.

Now, forget our assumption that d has source v. We thus have shown that if 4 has source v,
then ¢ (d) = 0. A similar argument shows that if d has target v, then g (d) = 0. Combining these
two statements, we conclude that we always have g (d) = 0 (because d has source or target v).
This completes our proof of g (d) = 0.
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Now, forget that we fixed v. We thus have shown that each v € V' \ {s, t} satisfies
¢~ (v) = g™ (v). In other words, ¢ satisfies the conservation constraints. This
proves Lemma (a).

(b) This is somewhat similar to our above proof of Lemma (a), with the
vertex s playing the role of v.

The vertex s is the starting point of the path p, but not its ending point (since its
ending point is t # s). Hence, there is exactly one arc x € P having source s, and
there are no arcs y € P having target s.

We have
x€EPCA;={7 |acAand f(a (@)YU{7 | acAand f(a) >0} .
Thus,eitherxe{a | ae Aand f(a) < }orxe{a | a€ Aand f (a) > 0}.

Hence, we are in one of the following two cases

Case 1: Wehavex € {@ | ac€ Aand f (a) <c(a)}.
Case 2: Wehave x € {% | a€ Aand f(a) >0},

Let us consider Case 2. In this case, we have x € { a | a€Aand f(a) >0}
In other words, x = @ for some a € A satisfying f (a) > 0. Consider this a. Smce
@ = x € P, we have g (a) = —p (by the definition of g).

Thus, the arc a is sent to —p by ¢. All other arcs in A having source or target s are
sent to 0 by ¢ l ')l Hence, in particular, all arcs in A having target s are sent to 0 by
g, except for the arc a. Thus, g~ (s) = g (a) = —p. A similar argument shows that
¢" (s) = 0. Now, the definition of |g| yields |g| = ¢* (s) —¢~ (s) = 0— (—p) = p.
Thus, Lemma (b) is proven in Case 2.

A similar argument works in Case 1. Thus, Lemma (b) is always proven. [

We are now ready to prove Lemma

Proof of Lemma (sketched). (a) Assume that the multidigraph Dy has a path from
s to t. Fix such a path, and denote it by p.

Let P be the set of arcs of p. Thus, P C Ay (since p is a path in Dy = (V, Ay, ¢y)).
The path p is a path from s to ¢, and thus has at least one arc (since s # t); hence,
the set P is nonempty.

For each arc b € P, we define a number p; € Q by

_Jc(a)—f(a), if b= 7 for some a € A;
Pr = f(a), if b =7 forsomeac A"

(This is well-defined, because each b € P either has the form b = @ for somea € A
or has the form b = @ for some a € A; this follows from b € P C Ay.)

19This is easy to check — just as in the above proof of Lemma m (a).
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For each arc b € P, the number p; is positiveEl We now define p € Q by
p =min{p, | b € P}. (This is well-defined, since P is nonempty and finite.) Then,
p is positive (since all p, are positive), so that p > 0.

Now, define a map g : A — Q as in Lemma Then, Lemma (a) shows
that the map g satisfies the conservation constraints. Also, the map f satisfies the
conservation constraints (since f is a flow). Hence, Lemma 2.1§| (b) shows that the
map f + g satisfies the conservation constraints. Also, Lemma [2.18] (a) shows that

f+gl=Ifl+ Iy = [fl+p.
~—

=p
(by Lemma (b))
Next, we claim that the map f + ¢ also satisfies the capacity constraints — i.e.,

that we have

0<(f+g)(a) <c(a) for each a € A. (20)

[Proof of (20): Fix a € A. Recall that f is a flow; thus, f satisfies the capacity
constraints. Hence, 0 < f (a) < ¢ (a).
Now, we are in one of the following three cases:

Case 1: We have a € P.
Case 2: We have 7 € P.
Case 3: We have neither 7 € P nor T e P.

Let us first consider Case 3. In this case, the definition of g yields g (a) = 0.
Thus, (f+g)(a) = f(a) + (a) = f(a). Hence, 0 < f(a) < c(a) rewrites as

0 < (f+¢)(a) < c(a). Thus, (20) is proven in Case 3.
Let us now consider Case 2. In this case, we have 7 cP. Hence, the definition of

&yields g (a) = —p. But the definition of p yields p = min {p, | b € P} < p« (since
a € P and thus p& € {pp, | b € P}). Also, the definition of p« yields p< = f (a).

1Proof. Let b € P be any arc. We must prove that pj, is posmve

WehavebGPCAf—{a |a€Aandf() a)}yU{% | ac Aand f (a) > 0}. Thus,
eitherbe {@ | a€ Aand f (a) < }orb€{<_|a€Aandf( ) > 0}. So we are in one
of the following two cases:

Case 1: Wehave b€ {@ | a€ Aand f (a) <c(a)}.

Case 2: We have b € {7 | a € Aand f (a) > 0}.

Let us first consider Case 1. In this case, we have b € { a | a€Aand f(a) <c(a)}. Thus,
b = @ for some a € A satisf ing f (a) < c(a). Consider this a. The definition of p, yields
pp =c(a) — f(a) (since b = a’), and thus pp = c(a) — f(a) > 0 (since f (a) < c(a)). Thus, we
have shown that pj; is positive in Case 1.

Let s now consider Case 2. In this case, we have b € {% | a € Aand f(a) > 0}. Thus,
b = ‘T for some a E A satisfying f (a) > 0. Consider this a. The definition of p, yields
pp = f(a) (since b = a 7), and thus pp = f (a) > 0. Thus, we have shown that p; is positive in
Case 2.

We have now proven that p; is positive in both Cases 1 and 2. Hence, p, is always positive,
ged.
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Hence, p < p& = f(a). Now, (f+g)(a) = f (a) +§£ﬁ2 = f(a) —p > 0 (since

=—p
p < f (a)). Combining this with (f + ) (a) = f (a) +§\(ﬁ2 = f(a) —\p// < f(a) <
=—p >0

c(a), we obtain 0 < (f + g) (a) < c(a). Thus, is proven in Case 2.

Let us finally consider Case 1. In this case, we have a" € P. Hence, the definition
of g yields g (a) = p. But the definition of p yields p = min{p, | b € P} < p-
(since @ € P and thus p= € {py | b € P}). Also, the definition of p— yields
o = c(a) — f(a). Hence, p < py = c(a) — f (a). Now, (f+g) (a) = f (a) +
g\(f.), = f(a)+p <c(a) (sincep <c(a)— f(a)). Combining this with (f + g) (a) =

=P

f(a)+g(a)=f(a)+ p > f(a) >0 weobtain0 < (f+g¢)(a) < c(a). Thus,
is proven in Case 1.

We have thus proven (20) in all three Cases 1, 2 and 3. Thus, is proven.]

From (20), we conclude in particular that (f + g) (a) > 0 for each a € A. Thus,
f+gisamap A — Q4. We have shown that this map f + g : A — Q. satisfies
both the capacity constraints and the conservation constraints. In other words,
f + g is a flow (by the definition of a flow). Furthermore, this flow has value
If +g| = |f| +p > |f] (since p is positive). In other words, it has a larger value
than f. Thus, there is a flow f’ with a larger value than f (namely, /' = f + g).
This proves Lemma (a).

(b) Assume that the multidigraph Dy has no path from s to . We must prove
that there exists a subset S of V satisfyings € Vand t ¢ V and ¢ (S,S) = |f|.

Indeed, define a subset S of V by

S = {v €V | the multidigraph Dy has a path from s to v} .

We shall show thats € Sand t ¢ S and ¢ (S,5) = |f|. This will clearly complete
the proof of Lemma (b).

First of all, the multidigraph Dy clearly has a path from s to s (namely, the trivial
path (s)). In other words, s € S (by the definition of S).

Furthermore, the multidigraph Dy has no path from s to ¢ (by assumption). In
other words, t ¢ S (by the definition of S).

It thus remains to show that ¢ (S,S) = f.

We first notice the following:

Observation 1: Let b € Ay be an arc whose source belongs to S. Then,
the target of b also belongs to S.

[Proof of Observation 1: Let u be the source of the arc b. Then, u € S (since the
source of b belongs to S). In other words, the multidigraph Dy has a path from s to
u (by the definition of S). Fix such a path, and denote it by p.
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Also, let v be the target of the arc b. The arc b is an arc of the multidigraph Dy
(since b € Ay), and its source is the ending point of the path p (namely, the point
u). Thus, we can extend the path p by the arc b (that is, we append the arc b and
the vertex v to the end of the path p) to obtain a walk from s to v in Dy. Hence,
there exists a walk from s to v in Dy. Thus, Proposition (applied to D¢ and v
instead of D and ) yields that there exists a path from s to v in Dy. In other words,
the multidigraph D has a path from s to v. In other words, v € S (by the definition
of S). In other words, the target of b belongs to S (since v is the target of b). This
proves Observation 1.]

Next, we observe that

f(a)=0 for eacha € [S,S]. (21)

[Proof of (21): Let a € [S,S]. Thus, a € A is an arc whose source belongs to S and
whose target belongs to S (by the definition of [S, S)).

We must prove that f (a) = 0. Assume the contrary. Thus, f (a) # 0, so that
f(a) > 0 (since f (a) > 0). By the definition of Ay, we thus have TeA f- But the
source of the arc ‘7 is the target of a, and therefore belongs to S (since the target
of a belongs to S). Hence, Observation 1 (applied to b = a ‘) yields that the target
of ‘7 also belongs to S. Since the target of a is the source of 4, this means that the
source of a belongs to S. This contradicts the fact that the source of a belongs to S.
This contradiction shows that our assumption was false. Hence, f (a) = 0 holds,
and is proven.]

Similarly, we have
f(a) =c(a) foreacha € [S,S5]. (22)

[Proof of : Leta € [S,S]. Thus, a € A is an arc whose source belongs to S and
whose target belongs to S (by the definition of [S, S)).

We must prove that f (a) = ¢ (a). Assume the contrary. Thus, f (a) # c(a), so
that f (a) < c(a) (since f (a) < c (a) (by the capacity constraints)). By the definition
of Ay, we thus have 4" € Ay. But the source of the arc 4" is the source of 4, and
therefore belongs to S (since the source of a belongs to S). Hence, Observation 1
(appliedto b = a 7) yields that the target of @ also belongs to S. Since the target of
a’ is the target of g, this means that the target of a belongs to S. This contradicts the
fact that the target of a belongs to S. This contradiction shows that our assumption
was false. Hence, f (a) = ¢ (a) holds, and (22) is proven.]

Now, the definition of f (S, S) yields f (S S) Y f(a) =

ae[g,S] v
(by 1))
Also, the definition of f (S,S) yields f(5,5) = ¥ f(a) = ¥ c(a) =
s

aE[S S] t?(’; ae

_ B (by 22))
¢ (S,S) (by the definition of ¢ (S, S)).
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Now, Proposition [2.7] (b) yields
fI=£(55)~f(55)=c(S5S5).
——  N——

-

=c(8.5) =0
In other words, ¢ (S,S) = |f|. This completes our proof of Lemma (b). O
An analogue of Lemma holds for integer flows (assuming integer capacities):

Lemma 2.20. Let N, V, A, ¢, s, t and ¢ be as in Definition Assume that
c(a) € N for each a € A.

Let f : A — Q4 be an integer flow. Then,

(a) If the multidigraph D has a path from s to ¢, then there is an integer flow
f'" with a larger value than f.

(b) If the multidigraph Dy has no path from s to ¢, then there exists a subset S

of V satisfying s € Vand t ¢ V and ¢ (S,S) = |f].

Proof of Lemma (sketched). The same argument we gave above for Lemma
works here, but we need to notice that all the p;, are integers (since the f (a) and
the c (a) are integers), and therefore p is an integer. O

2.7. The Ford-Fulkerson algorithm
We next claim the following:

Lemma 2.21. Let N, V, A, ¢, s, t and ¢ be as in Definition Assume that
c(a) € N for each a € A. Then, there exist an integer flow f : A — Q4 and a
subset S of V satisfyings € Sand t ¢ Sand ¢ (S,S) = |f|.

Proof of Lemma (sketched). Let us first recall that if we are given a multidigraph
and two of its vertices, we can easily check whether there is a path from one vertex
to the other. (A stupid way to do this would be to try all possible path but there
are fast algorithms, such as Dijkstra’s algorithm.)

We claim that the following algorithm always terminates and constructs an in-
teger flow f : A — Q. and a subset S of V satisfying s € S and t ¢ S and

c(S,8) = |fl:
Ford-Fulkerson algorithm:

Input: N, V, A, ¢, s, t and ¢ as in Definition with the property that
c(a) € N for each a € A.

Output: an integer flow f : A — Q4 and a subset S of V satisfyings € S
and t ¢ Sand ¢ (S,5) = [f].
Algorithm:

12This is doable, since Proposition (c) shows that there are only finitely many paths (and the
proof of Proposition (c) tells us how to find them all).
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e Define an integer flow f : A — Q4 by (f(a) =0foralla € A).
(This is clearly a flow; it is called the zero flow.)

) Whileﬁ the multidigraph Dy has a path from s to ¢ E do the
following;:

- Apply Lemma (@) to construct an integer flow f’ with a
larger value than f. (Strictly speaking, what we mean is to
apply the construction given in the proof of Lemma (@.)

- Replace f by f’. (Thus, the flow f now has a larger value than
it had before.)

Endwhile.

e Now, the multidigraph Dy has no path from s to t. Therefore,
Lemma (b) shows that there exists a subset S of V satisfying
se€Vandt ¢ Vandc(S,S) = |f|]. Consider this S. (Again, the
actual construction of S is hidden in the proof of Lemma (b).)

e Output (the current values of) f and S.

Why does this algorithm work? In other words, why does it necessarily termi-
nate (i.e., why don’t we get stuck in the while loop forever?), and why does the
output satisfy the requirements (that f : A — Q is an integer flow and that S is a
subset of V satisfyings € Sand t ¢ Sand ¢ (S,5) = |f]) ?

The second question has already been answered in the description of the algo-
rithm; so all we need to do is answer the first question. In other words, we need to
prove the following claim:

Claim 1: The algorithm cannot get stuck in the while loop (i.e., it cannot
happen that it keeps running this loop forever).

[Proof of Claim 1: The value of any integer flow is an integer. Thus, |f| is an integer
throughout the execution of the algorithm (since f is an integer flow throughout
the execution of the algorithm).

On the other hand, Proposition (c) (applied to {s} instead of S) shows that

If] <c ({s} ,m> throughout the execution of the algorithm (since s € {s} and

t & {s}).

13This word “While” marks the beginning of a while loop. The end of this loop is marked by the
word “Endwhile”. Roughly speaking, the instructions inside a while loop need to be performed
over and over until the condition is no longer true (i.e., in our case, until the multidigraph D f
no longer has a path from s to t). So we need to check whether Dy has a path from s to ¢, then
— if there is such a path — perform whatever is inside the while loop, then again check whether
Dy has a path from s to ¢, then — if there is such a path — again perform whatever is inside the
while loop, and so on, until we finally fail the check (i.e., until D £ no longer has a path from s
to t). Only then do we proceed beyond the while loop.

14This can be checked, e.g., using Dijkstra’s algorithm, as mentioned above.
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Each iteration of the while loop increases the value |f| (because f is replaced by
a new integer flow f’ with a larger value than the previous f), and thus increases
it by at least 1 (since |f| is an integer throughout the execution of the algorithm,
but if an integer increases, then it increases by at least 1). Hence, if the while loop
is traversed K times (for some K € IN), then the value |f| increases by at least
K, and thus this value |f| must be at least K afterwards (because the value |f| at

the beginning of the algorithm is 0). Applying this to K = ¢ ({S} ,@) +1, we
conclude that if the while loop is traversed c <{s} ,@) + 1 times, then the value
| f| must be at least ¢ ({s} ,Q) + 1 afterwards. Since the value |f| can never be

at least ¢ ({s},@) + 1 (because we have |f| < ¢ ({s},@) <c <{s},m) +
1 throughout the execution of the algorithm), we thus conclude that the while

loop cannot be traversed c ({s} ,m> + 1 times. Thus, the while loop can only be

traversed at most ¢ ({s} , {s}) times. In particular, the algorithm must eventually

leave the while loop. This proves Claim 1.]

So we have shown that the algorithm works. Clearly, its output gives us precisely
the f and the S whose existence is claimed by Lemma Thus, Lemma is
proven. [

Finally, we can prove Theorem 2.12}

Proof of Theorem (sketched). Lemma shows that there exist an integer flow
f:A — Q4 and a subset S of V satisfyings € Sand t ¢ S and ¢ (S,S) = |f|.
Denote these f and S by g and Q. Thus, g : A — Q. is an integer flow, and Q is a
subset of V satisfying s € Q, t ¢ Q and ¢ (Q,Q) = |g]-

The set {c(S,S) | SCV;s€S; t ¢S} is nonempty and finite. Hence, its min-
imum min {c(S,S) | SCV;s€eS; t ¢S} is well-defined.

We have [g| = ¢(Q,Q) € {¢(S,S) | SCV;s€S;t¢ S} (since Q C V and
s€ Qand t ¢ Q) and thus

g >min{c(S,S) | SCV;seS;t¢S}. (23)

On the other hand, |f| < ¢(Q, Q) for every integer flow f (by Proposition
(c), applied to S = Q). In other words, |f| < |g| for every integer flow f (since
¢ (Q,Q) = |g|)- In other words, any element of the set {|f| | f is an integer flow}
is < |g|. Since we also know that |g| is an element of this set (because g is an
integer flow), we thus conclude that |g| is the maximum of this set. In other words,

|g| = max{|f| | fisan integer flow} (24)
(and in particular, max {|f| | f is an integer flow} exists). Now, yields

min{c(S,5) | SCV;se€S; t ¢S} <|g|=max{|f| | fisan integer flow}.
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Combining this with
max {|f| | fisaninteger flow} <min{c(S,S) | SCV;s€S; t¢S}

(because every subset S of V satisfying s € S and t ¢ S and every integer flow f
satisfy |f| < ¢ (S,S) (by Proposition [2.7)(c))), we obtain

max {|f| | fis aninteger flow} =min{c(S,S) | SCV;s€eS; t¢S}.
This proves Theorem [2.12] O

Remark 2.22. The Ford-Fulkerson algorithm that we used in our proof of Lemma
constructs an integer flow f and a subset S of V. Denote these f and S by
g and S. Then, g is an integer flow of maximum value (among all integer flows
on N). This follows immediately from (24). Thus, we have found an algorithm
to construct an integer flow of maximum value.

The proof of Theorem is no longer far away. We first need an analogue of
Lemma [2.21}

Lemma 2.23. Let N, V, A, ¢, s, t and c be as in Definition Then, there exist a
flow f : A — Q4 and a subset S of V satisfyings € Sand t ¢ Sand ¢ (S,S) = |f].

Proof of Lemma (sketched). The numbers c (a) for a € A are finitely many non-
negative rational numbers (since c is a map A — Q). Thus, they can be brought to
a common denominator: i.e., there exists a positive integer p such that p-c (a) € N
for each a € A. Consider this p. Define the function c, : A — Q4 by

cp(a) =p-c(a) for each a € A.

Thus, ¢, (a) = p-c(a) € N for each a € A.

Let N, be the network which is the same as N, except that the capacity function
¢ has been replaced by c¢,. Thus, Lemma (applied to N, and ¢, instead of N
and c) yields that there exist an integer flow f : A — Q. on the network Nj, and a
subset S of V satisfying s € Sand t ¢ S and ¢y, (S,S) = |f|. Consider these f and
S, and denote them by f, and S. Thus, f, is an integer flow on the network N,
and S is a subset of V satisfyings € Sand t ¢ Sand ¢, (S,5) = |f,|.

It is easy to see that ¢, (P,Q) = p-c(P,Q) for any two subsets P and Q of V.
Thus, ¢, (S,S) = p-c(S,S),sothatc (S,5) = ¢, (S,S) /p = |fp‘ /p.

——

=|fy]
Now, define a map f : A — Q4 (not an integer flow, in general) by setting
f(a)=fy(a)/p for each a € A.

This map f is obtained by rescaling the flow f, on the network N, by the factor
1/p; thus, it is easy to see that f is a flow on the network N. (Roughly speaking,
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the capacity constraints for f are obtained from the capacity constraints for f, by
dividing by p; the same holds for the conservation constraints.)

Also, it is easy to see that |f| = |f,| /p. Comparing this with ¢ (S,S) = |f,| /p,
we obtain ¢ (S,S) = [f].

We thus have found a flow f : A — Q. on the network N and a subset S of V

satisfying s € Sand t ¢ S and ¢ (S,S) = |f|. This proves Lemma O
Proof of Theorem (sketched). The proof of Theorem is analogous to the proof
of Theorem but we need to use Lemma [2.23|instead of Lemma [2.21 O

As we said, we will not prove Theorem [2.13] here; its proof is harder. An analogue
of Lemma for R, instead of Q4 indeed holds, but the way we proved Lemma
does not generalize to IRy (since there are no common denominators for in-
commensurable irrational numbers). Notice also that the Ford-Fulkerson algorithm
(which we showed in the proof of Lemma works for flows f : A — Q, but
may fail when Q is replaced by R ; the paper [Zwick95] gives an example where
it gets stuck in the while loop due to an arc with irrational capacity (the golden
ratio). The good news is that Theorem is almost entirely useless in combina-
torics, to my knowledge at least. If you want to see a proof of Theorem check
out texts on linear programming.

Exercise 1. Assume that we generalize the concept of a network by allowing the
capacity function c to take the value co as well (where co is a symbol that is
understood to satisfy co + 4 = oo and o0+ 00 = co and oo > g for all g € Q).
In other words, some arcs 2 may have “infinite capacity”, which means that the
capacity constraints for these arcs a simply say that 0 < f (a) (without requiring
f (a) to be < to anything specific). Prove the following:

(a) Theorem and Theorem still hold in this generality, if we addition-
ally assume that there exists some subset S of V satisfying s € S and t ¢ S and
¢(S,5) < co.

(b) If every subset S of V satisfying s € S and t ¢ S satisfies ¢ (S,S) = oo, then
prove that, for every n € IN, there exists an integer flow f of value |f| = n.

3. Application: Bipartite matching

3.1. Simple graphs and multigraphs

As we said, the max-flow-min-cut theorems (particularly, Theorem have mul-
tiple applications. In many of these applications, the network isn’t visible right
away, but instead has to be constructed. Let me present one such application: the
bipartite matching problem.

This problem is concerned with undirected graphs, so let us first define the lat-
ter. Again, there are two types of undirected graphs: the simple graphs and the
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multigraphs. We will use the latter, but let us define both of them. We begin by
defining simple graphs.

Definition 3.1. If W is a set, then P, (W) shall mean the set of all 2-element
subsets of W. For example,

P2 ({1,2,3,4}) = {{1,2} ,{1,3} {14} ,{2,3} {24} {3,4}}.

Definition 3.2. A simple graph is defined to be a pair (W, E) consisting of a finite
set W and a subset E of P, (W). The elements of W are called the vertices of this
simple graph; the elements of E are called its edges. If e is an edge of a simple
graph, then the two vertices contained in e are called the endpoints of e. Moreover,
if u and v are the two endpoints of an edge e, then we say that the edge e joins u
with v.

Example 3.3. (a) The pair

{123}, {{1,3},{2,3}})

is a simple graph. Its vertices are 1,2, 3. Its edges are {1,3} and {2,3}. The edge
{1,3} has endpoints 1 and 3, and can also be written as {3,1}.
(b) The pair
({1,3,5},92)

is a simple graph. Its vertices are 1,3, 5. It has no edges.

Note that a 1-element set {v} can never be the edge of a simple graph, at least
according to our definition of a simple graph. Thus, the two endpoints of an edge
must always be distinct. (Some authors use a slightly different definition of a
simple graph, which uses W U P, (W) instead of P, (W); with this definition, the
two endpoints of an edge could be equal.)

A simple graph (W, E) can be visually represented as follows:

e For each vertex v € W, choose a point in the plane and label it with a “ov”.

e For each edge {u,v} € E, draw a curve from the point labelled “u” to the
point labelled “v”.

There are many ways to represent a given graph.

Example 3.4. (a) The simple graph ({1,2,3},{{1,3},{2,3}}) from Example
(a) can be represented as follows:

2

N
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It can also be represented as follows:

1\3/2.

(b) The simple graph ({1,3,5}, @) from Example 3.3 (b) can be represented as
follows:

1 5 3.

Note that an edge of a simple graph is uniquely determined by its two endpoints:
indeed, it is the set consisting of these two endpoints. Multigraphs are similar to
simple graphs, except that this is no longer true: their edges are not uniquely
determined by their endpoints any more, but rather have “their own identities”.
Here is how multigraphs are defined:

Definition 3.5. A multigraph is a triple (W, E, ¢), where W and E are finite sets
and where ¢ is a map from E to P> (W). The elements of W are called the
vertices of this multigraph; the elements of E are called its edges. If e is an edge
of a multigraph (W, E, ¢), then the two elements of the set ¢ (e) € P, (W) are
called the endpoints of this edge e. If (W, E, ¢) is a multigraph, and if w € W and
e € E, then we say that the edge e contains the vertex w if and only if w € ¢ (e)
(that is, if and only if w is an endpoint of e).

Example 3.6. Let «, 3,7, 6 be any four distinct objects (it doesn’t matter which
objects we take; for example, 10,11,12,13 do the job). Let W be the set {1, 2,3},
and let E be the set {«,,7,6}. Let p : E — P, (W) be the map given by

¥ (a) ={1,3}, ¥ (B) ={2,3},
¥ (r) ={13}, $(0) ={2,1}.

Then, the triple (W, E, ¢) is a multigraph. Its vertices are 1,2,3; its edges are
«,B,7,d. The edge « has endpoints 1 and 3; so does the edge +.

A multigraph (W, E, ¢) is visually represented in the same way as a simple graph
(W, E), with one difference: An edge e € E is now drawn as a curve from the point
labelled by its one endpoint to the point labelled by its other endpoint, and we

£“ 7

furthermore label this curve with an “e”.

Example 3.7. The multigraph (W, E, ¢) from Example [3.6| can be represented as
follows:
2 .

v

<1_>3/3
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Let us summarize the difference between a simple graph and a multigraph: An
edge of a simple graph (W, E) is merely a set consisting of its two endpoints,
whereas an edge of a multigraph (W, E, ) can be an arbitrary object (so it “has
its own identity”) whose endpoints are assigned to it by the map ¢. Thus, we can
regard multigraphs as a refined version of simple graphs. Every simple graph gives
rise to a multigraph as follows:

Definition 3.8. Let (W, E) be a simple graph. Let:: E — P, (W) be the inclusion
map (i.e., the map that sends each e € E to e itself); this is well-defined because
E is a subset of P, (W) (since (W,E) is a simple graph). Then, (W,E,!) is a
multigraph. This multigraph (W, E, 1) is called the multigraph induced by (W, E);
we will often just identify it with the simple graph (W, E) (so that each simple
graph becomes a multigraph in this way).

Example 3.9. The simple graph

AN

becomes identified with the multigraph

2
{1,2}/ %3}
1———3

{13}

in this way.

Both simple graphs and multigraphs are subsumed under the concept of a graph,
or, more precisely, undirected graph.

3.2. Bipartite matching and Hall’s marriage theorem
We now define bipartite graphs.

Definition 3.10. A bipartite graph means a triple (G; X,Y) (the semicolon means
the same thing as a comma), where G = (W, E, ) is a multigraph, and where X
and Y are two subsets of W with the following properties:

e Wehave XNY=@gand XUY =W.

e Each edge of G contains exactly one vertex in X and exactly one vertex in
Y.
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For example, if G is the following simple graph:

—2 5 (25)

1
4

—3 6

(regarded as a multigraphEL then (G;{1,3,5},{2,4,6}) is a bipartite graph, and
(G;{2,4,6},{1,3,5}) is another bipartite graph, and (G;{1,3,6},{2,4,5}) is yet
another bipartite graph, but (G;{1,2,3},{4,5,6}) is not a bipartite graph (because
the edge {1,2} of G contains two vertices in {1,2,3}, rather than one in {1,2,3}
and one in {4,5,6}).

We often draw bipartite graphs in a rather special way. Namely, in order to draw
a bipartite graph (G; X, Y), we draw the graph G, but making sure that all vertices
are aligned in two columns, where the left column contains all the vertices in X
and the right column contains all the vertices in Y. For example, if G is the graph

shown in (25), then the bipartite graph (G; {1,3,5},{2,4,6}) is drawn as

1—2,
3——4
5——6

whereas the bipartite graph (G; {2,4,6},{1,3,5}) is drawn as

2>—<1.
4——3
6——5

Note that the graph G will be a simple graph in all our examples, but it can be
an arbitrary multigraph in general.

Definition 3.11. Let G = (W, E, 1) be a multigraph. A matching in G means a
subset M of E such that no two distinct edges in M have an endpoint in common.

For example, the set {{1,2},{5,6}} is a matching in the graph G shown in (25);
so is the set {{1,2},{3,4},{5,6}} (but not the set {{1,2},{2,3},{5,6}}, because

15Thus, formally speaking, G is the simple graph whose vertices are 1,2, 3,4, 5, 6, and whose edges
are {1,2},{2,3},{3,4},{4,1},{5,6}.
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its two edges {1,2} and {2,3} have the endpoint 2 in common). Also, the empty
set @ is a matching in any graph.

In graph theory, we are often interested in matchings that contain as many edges
as possible. There are, of course, simple bounds on how many edges a matching
can contain: For example, a matching in a multigraph G = (W, E, ¢) can never have
more than |W| /2 edges (since each edge “uses up” two vertices). Also, if (G; X, Y)
is a bipartite graph, then a matching in G can never have more than |X| edges
(since each edge “uses up” a vertex in X). How can we find a maximum-sized
matching in G ? This is known as the bipartite matching problem (when (G; X,Y) is a
bipartite graph). It turns out that the Ford-Fulkerson algorithm (developed in the
above proof of Lemma gives a way to solve this problem in polynomial time.

Let us introduce a couple more concepts:

Definition 3.12. Let M be a matching in a multigraph G = (W, E, ¢).

(a) A vertex v of G is said to be matched in M if there exists an edge e € M
such that v is an endpoint of e. In this case, this edge is unique (since M is a
matching), and the other endpoint of this edge (i.e., the endpoint distinct from
v) is called the M-partner of v.

(b) Let S be a subset of W. The matching M is said to be S-complete if each
vertex v € S is matched in M.

For example, if G is the graph shown in (25), then the matching {{1,2}, {3,4},{5,6}}
is {1,3,6}-complete (since all three vertices 1,3,6 are matched in it'°), but the
matching {{1,2},{5,6}} is not (since the vertex 3 is not matched in it).

Definition 3.13. Let G = (W, E, ¢) be a multigraph.

(a) If v is a vertex of G, then a neighbor of v means any vertex w of G such that
{v,w} € ¢ (E). (Note that the condition {v,w} € ¢ (E) simply says that there
exists an edge of G whose endpoints are v and w.)

(b) Let U be a subset of W. Then, N (U) shall denote the subset

{v € W | vhas a neighbor in U}

of W.

For example, if G is the graph shown in (25), then the neighbors of the vertex
1 are 2 and 4, and we have N ({1,2}) = {1,2,3,4} and N ({1,3}) = {2,4} and
N ({2,5}) ={1,3,6} and N (@) = @.

The following is almost trivial:

Proposition 3.14. Let (G; X,Y) be a bipartite graph. Let U be a subset of X.
Then, N (U) C Y.

16Their {{1,2},{3,4}, {5,6} }-partners are 2,4, 5, respectively.
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Proof of Proposition Write the multigraph G in the form G = (W, E, ¢). Recall
that (G; X,Y) is a bipartite graph; hence, XNY = @ and XUY = W. Thus,
Y=W\Xand X =W\Y.

Now, let p € N (U) be arbitrary. Thus, p € N (U) = {v € W | v has a neighbor in U}
(by the definition of N (U)). In other words, p is an element of W that has a neigh-
bor in U.

The vertex p has a neighbor in U. Fix such a neighbor, and denote it by g. Thus,
ge Ul C X =W\Y,sothatg ¢ Y. We know that g is a neighbor of p; in other
words, {p,q} € ¢ (E). In other words, {p,q} = ¥ (e) for some e € E. Consider
this e. Thus, e is an edge of G (since ¢ € E), and has endpoints p and ¢ (since
{r.a} = ¢ (e)).

But (G; X, Y) is a bipartite graph. Hence, each edge of G contains exactly one
vertex in X and exactly one vertex in Y. Thus, in particular, each edge of G contains
a vertex in Y. Applying this to the edge ¢, we conclude that the edge ¢ contains a
vertex in Y. In other words, one of the two endpoints of e lies in Y. In other words,
one of the two vertices p and g lies in Y (since the endpoints of ¢ are p and g). This
vertex cannot be g (since g ¢ Y), and thus must be p. Hence, p lies in Y. In other
words, p € Y.

Now, forget that we fixed p. We have thus shown that p € Y for each p € N (U).
In other words, N (U) C Y. This proves Proposition [3.14] O

We shall now study matchings in bipartite graphs. The most important result
about such matchings is the following fact, known as Hall’s marriage theorem:

Theorem 3.15. Let (G; X,Y) be a bipartite graph. Then, G has an X-complete
matching if and only if each subset U of X satisfies |N (U)| > |U|.

Theorem has applications throughout mathematics, and several equivalent
versions; it also has fairly elementary (but tricky) proofs (see, e.g., [LeLeMel7,
§12.5.2]). We shall derive it from Theorem

In order to do so (and also, in order to reduce the bipartite matching problem
to the Ford-Fulkerson algorithm), we need to construct a network from a given
bipartite graph such that the integer flows in the network shall correspond to the
matchings in the graph. Let us do this.

Convention 3.16. For the rest of Section 3.2 we fix a bipartite graph (G; X, Y).
Write the multigraph G in the form G = (W, E, ¢).

We know that (G; X, Y) is a bipartite graph. Thus, each edge of G contains exactly
one vertex in X and exactly one vertex in Y. In other words, if e is an edge of G,
then exactly one endpoint of e lies in X, and exactly one endpoint of e lies in Y.

Now, we shall construct a network N out of our bipartite graph (G; X, Y). Before
we give the rigorous definition, let us show it on an example:
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Example 3.17. For this example, let G = (W,E) be the simple graph with
vertices 1,2,3,4,5,6,7 and edges {1,4},{1,5},{2,4},{2,7},{3,5},{3,6}. Set
X ={1,2,3}and Y = {4,5,6,7}; then, (G;X,Y) is a bipartite graph which can
be drawn as follows:

1——— 4.
=<,
7

Regard G as a multigraph. Now, we shall transform this multigraph G into a
multidigraph by replacing each edge e by an arc . The source of this arc ¢
shall be the unique endpoint of e that lies in X; the target of this arc ¢ shall
be the unique endpoint of e that lies in Y. Thus, our multigraph G has been
transformed into the following multidigraph:

1X4
2 5
7

(where we are omitting the labels on the arcs). The arcs of this multidigraph will
be called the G-arcs (to stress that they come directly from the edges of G, as
opposed to the next arcs that we are going to add).

Next, we add a new vertex, which we call s and which we draw on the very
left. This s will be the source of our network. For each x € X, we add an arc
(s,x) to our multidigraph; this arc shall have source s and target x. These new
arcs (a total of |X| arcs, one for each x € X) will be called the s-arcs. Here is how
our multidigraph now looks like:
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Next, we add a new vertex, which we call ¢+ and which we draw on the very
right. This t will be the sink of our network. For each y € Y, we add an arc (y, f)
to our multidigraph; this arc shall have source y and target t. These new arcs (a
total of |Y| arcs, one for each y € Y) will be called the t-arcs. Here is how our
multidigraph now looks like:

7

This 9-vertex multidigraph will be the underlying multidigraph of our network
N. The source and the target of N shall be s and ¢, respectively. The capacity
function c is determined by setting c (a) = 1 for each arc of the network.

We claim that the integer flows on the network N are in bijection with the
matchings in G. Again, let us show how this bijection acts on an example. Con-
sider the following integer flow on N:

1— 4 ) (26)

~

3 6

7

where a simple arrow (—) stands for an arc which the flow sends to 0, and
where a double arrow (=) stands for an arc which the flow sends to 1. (This
is just an alternative way of drawing an integer flow when each arc has capacity
1.) Consider the arcs that are sent to 1 by this flow. Two of these arcs are G-arcs,

namely {2,4; and {3,6 ; The corresponding edges {2,4} and {3,6} of G form
a matching: the matching {{2,4},{3,6}}. This matching has size 2, which is
exactly the value of our integer flow.

Let us now formalize what we did in this example. First, here is the general
definition of the network N:
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Definition 3.18. (a) Pick two distinct new objects s and ¢. Let V be the finite set
WU {s,t}.

The elements of V will be the vertices of our network, with s being the source
and t being the sink.

Next, we shall introduce three sets A;, A; and Ag, whose elements will be the
arcs of our network. (More precisely, the elements of A; will be the G-arcs, the
elements of A; will be the s-arcs, and the elements of A; be the t-arcs.)

(b) Define two finite sets As and A; by

As ={s} xX={(s,x) | x€ X} and
A=Y x{th={wb | ye ).

Note that As and A; are disjoint (since each element of A; is a pair whose first
entry is s, whereas no element of A; has this property).

(c) For each edge e € E, we let @ be the triple (x,y,e), where x is the unique
endpoint of e that lies in X, and where y is the unique endpoint of e that lies
in Y. (Here, we are using the fact that exactly one endpoint of e lies in X, and
exactly one endpoint of e lies in Y.) Note that the triples ¢ fore € E are pairwise

distinct (i.e., if two edges e and f satisfy e # f, then e A 7), because the third

entry of the triple e is always the original edge e € E.
(d) Define a finite set Ag by

AG:{? | eEE}.

Thus, the set A is in bijection with E (since the triples e fore € E are pairwise
distinct), and is disjoint from both A; and A; (because the elements of Ag are
triples, while the elements of A and of A; are pairs).

(e) Let A be the union Ag U A; U Ay; this is a finite set. Definea map ¢ : A —
V x V by the following three equalities

¢ ((x,y,e)) = (x,y) for each (x,y,e) € Ag;
¢ ((s,x)) = (s,x) for each (s,x) € As;
¢ ((v.1) = (v t) for each (y,t) € Ay

Thus, (V, A, ¢) is a multidigraph. The elements of Ag shall be called the G-
arcs; the elements of As shall be called the s-arcs; the elements of A; shall be
called the t-arcs. Thus, the arcs of the multidigraph (V, A, ¢) are the G-arcs, the
s-arcs and the t-arcs.

(f) Define the function ¢ : A — Q4 by (c(a) =1 foreacha € A). Thus, cis a
constant function.

(g) Let N be the network consisting of the multidigraph (V, A, ¢), the source
s, the sink ¢ and the capacity function c.

As we have seen, the sets Ag, As and A; are mutually disjoint; i.e., there is
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no overlap between the G-arcs, the s-arcs and the t-arcs. All s-arcs have source
s, whereas none of the other types of arcs do. Likewise, all t-arcs have target ¢,
whereas none of the other types of arcs do. The G-arcs have their sources lie in X
and their targets lie in Y.

We notice that each s-arc is literally the pair of its source and its target, as in a
simple digraph. The same is true for the t-arcs. However, the G-arcs are not pairs;
thus, (V, A, ¢) is not a simple digraph.

Our specific choice of capacity function c ensures that integer flows on N have a
very simple form: If f is an integer flow on N, and if a € A is any arc, then f (a)
is either 0 or 1. (Indeed, f (2) must be an integer since f is an integer flow; but the
capacity constraints enforce 0 < f (a) < 1, so that this integer f (a) must be either
0 or 1.) Thus, an integer flow f on N is uniquely determined by knowing which of
the arcs a € A it sends to 1 (because then, it has to send all the other arcs to 0).

Another consequence of our definition of capacity function c is the following:

| Lemma 3.19. Let P and Q be two subsets of V. Then, c (P,Q) = |[P, Q]|.
Proof of Lemma The definition of ¢ (P, Q) yields

c(P,Q) =}, c(a) = ) 1=|[P,Ql-1=P,Q].
a€[P,Q] ] a€[P,Q]
(by the definition of c)
This proves Lemma [3.19 O

Now, we want to formulate the bijection between integer flows on N and match-
ings in G. First, we need a simple property of integer flows on our specific network

N:

Proposition 3.20. Let f be any integer flow on N. Let M be the subset
{ecE | f(¥)=1}of E.
(a) We have f ((s,x)) = ¥ f () for each x € X.

e€E;
X€e

(b) We have f ((y,t)) = ¥ f (?) foreachy € Y.

ecE;
yEe

(c) Wehave M = {e | (x,y,e) € Ag; f((x,y,e)) =1}.

(d) Theset M= {e € E | f () =1} is a matching in G.

(e) We have |[M| = |f].

(f) For any vertex x € X, we have [x is matched in M] = f ((s, x)).
(g) For any vertex y € Y, we have [y is matched in M| = f ((y,t)).

For example, if f is the flow shown in (26), then the set M in Proposition is
the matching {{2,4},{3,6}} in G.

17We are using the Iverson bracket notation: If A is any logical statement, then [.4] denotes the integer
1, if Ais true;
0, if Ais false’
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Proof of Proposition (sketched). We shall only prove the parts of Proposition
used in the below proof of Theorem (namely, parts (a), (b), (d) and (e)); the
rest is left to the reader.

We first make the following observations:

Observation 1: Let x € X and e € E. Then, the arc 2 has source x if and
only if x € e.

[Proof of Observation 1: Recall that (G; X, Y) is a bipartite graph. Thus, exactly one
endpoint of e lies in X, and exactly one endpoint of e lies in Y. Let u be the unique
endpomt of e that lies in X, and let v be the unique endpoint of e that lies in Y.
Then, @ = (u,9,¢) (by the definition of ). Hence, ¢ (¢ ) = ¢ ((1,0,¢)) = (u,0)
(by the definition of ¢). In other words, the source of the arc ¢ is u, and the target
of the arc ¢’ is v.

We now shall prove the = and <= directions of Observation 1 separately:

= Assume that the arc ¢ has source x. We must prove that x € e.

The arc @ has source x. In other words, the source of the arc ¢ is x. In other
words, u = x (since the source of the arc 7 is u). But u is an endpoint of e; thus,
u € e. Hence, x = u € e. This proves the = direction of Observation 1.

——: Assume that x € e. We must show that the arc ¢ has source x.

Recall that u is the unique endpoint of e that lies in X. The vertex x is an endpoint
of e (since x € ¢) and lies in X (since x € X). Thus, the unique endpoint of e that
lies in X must be x. In other words, u must be x (since u is the unique endpoint of e
that lies in X). Thus, u = x. Now, the source of the arc ¢ is u = x. In other words,
the arc ¢ has source x. Thus, the <= direction of Observation 1 is proven.]

Observation 2: Let y € Y and e € E. Then, the arc ¢ has target y if and
only if y € e.

[Proof of Observation 2: Analogous to Observation 1.]
Observation 3: The arcs ¢ for e € E are pairwise distinct.

[Proof of Observation 3: We have already shown this in Definition (0).]
Now, we observe that s ¢ W, so thats ¢ X and s ¢ Y. Also, XNY = & (since
(G; X,Y) is a bipartite graph), so that X C V'\ Y.

Observation 4: Let x € X. Then, the arcs 4 € A having source x are
exactly the arcs e forecE satisfying x € e.

[Proof of Observation 4: We have x € X but s ¢ X (since s ¢ W). Thus, x # s.
Hence, there are no s-arcs having source x (since all s-arcs have source s # x). Also,
x ¢ Y (since x € X C V\Y). Thus, there are no t-arcs having source x (since all
t-arcs have source lying in Y).

Recall that there are three types of arcs a € A: the G-arcs, the s-arcs and the
t-arcs. Among these three types, only G-arcs can have source x (because we have
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seen that there are no s-arcs having source x, and that there are no t-arcs having
source x). Hence,

{the arcs a € A having source x}
= {the G-arcs having source x}
= {the arcs ¢ (with e € E) having source x}
(since the G-arcs are precisely the arcs e (withe € E))

={ @ | e€E; the arc ¢ has source x

< (x€e)
(by Observation 1)

= {7 | ecE; xce} = {thearcs ¢ for e € E satisfying x € e} .

In other words, the arcs a € A having source x are exactly the arcs e fore € E
satisfying x € e. This proves Observation 4.]

Observation 5: Let y € Y. Then, the arcs a € A having target y are exactly
the arcs @ fore € E satisfying y € e.

[Proof of Observation 5: Analogous to Observation 4.]

Observation 6: Let x € X. Then, there is a unique arc a € A having target
x, namely the s-arc (s, x).

[Proof of Observation 6: We have x € X C W but t ¢ W. Thus, x # t. Hence, there
are no t-arcs having target x (since all t-arcs have target t # x). Also, x ¢ Y (since
x € X C V\Y). Thus, there are no G-arcs having target x (since all G-arcs have
target lying in Y).

Recall that there are three types of arcs a € A: the G-arcs, the s-arcs and the
t-arcs. Among these three types, only s-arcs can have target x (because we have
seen that there are no f-arcs having target x, and that there are no G-arcs having
target x). Hence,

{the arcs a € A having target x} = {the s-arcs having target x} .

But the s-arcs are simply the pairs of the form (s, x’) for all ¥’ € X (by the def-
inition of the s-arcs), and their respective targets are x". Thus, there is a unique s-arc
having target x, namely (s, x) (since x € X). In other words, {the s-arcs having target x} =
{(s,x)}. Hence,

{the arcs a € A having target x} = {the s-arcs having target x} = {(s,x)}.

In other words, there is a unique arc 2 € A having target x, namely the s-arc (s, x).
This proves Observation 6.]
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Observation 7: Lety € Y. Then, there is a unique arc a € A having source
y, namely the t-arc (y,t).

[Proof of Observation 7: Analogous to Observation 6.]

Observation 8: The arcs a € A having source s are exactly the arcs (s, x)
for x € X, and these arcs are pairwise distinct.

[Proof of Observation 8: We have s ¢ W and thus s ¢ X (since X C W). Hence,
there are no G-arcs having source s (since all G-arcs have source lying in X). Also,
s ¢ Wand thus s € Y (since Y C W). Thus, there are no t-arcs having source s
(since all t-arcs have source lying in Y).

Recall that there are three types of arcs a € A: the G-arcs, the s-arcs and the
t-arcs. Among these three types, only s-arcs can have source s (because we have
seen that there are no G-arcs having source s, and that there are no t-arcs having
source s). Hence,

{the arcs a € A having source s}

= {the s-arcs having source s}

= {the s-arcs} (since all s-arcs have source s)
=As ={(s,x) | x € X}.

In other words, the arcs a € A having source s are exactly the arcs (s, x) for x € X.
Furthermore, these arcs are pairwise distinct (since the targets x of these arcs are
pairwise distinct). This proves Observation 8.]

Observation 9: There are no arcs a € A having target s.

[Proof of Observation 9: We have s ¢ W and thus s ¢ X (since X C W). Hence,
there are no s-arcs having target s (since all s-arcs have target lying in X). Also,
s ¢ W and thus s ¢ Y (since Y C W). Hence, there are no G-arcs having target s
(since all G-arcs have target lying in Y). Finally, s # t. Thus, there are no t-arcs
having target s (since all f-arcs have target t # s).

Recall that there are three types of arcs a € A: the G-arcs, the s-arcs and the
t-arcs. Among these three types, none can have target s (since we have seen that
there are no G-arcs having target s, no s-arcs having target s, and no t-arcs having
target s). Thus, there are no arcs 2 € A having target s. This proves Observation 9.]

Recall that f is a flow; thus, f satisfies the capacity constraints and the conserva-
tion constraints.

(@ Let x € X. Then, x € X C W = V\ {s,t}. Hence, f~ (x) = f* (x) (since f
satisfies the conservation constraints).

Observation 6 shows that there is a unique arc 2 € A having target x, namely the

s-arc (s, x). Thus, Y fl(a)=f((sx)).

a€A is an arc
with target x
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The definition of f~ (x) yields
ffo= 3  f@=f{sx). (27)

acA is an arc
with target x

Observation 4 shows that the arcs a € A having source x are exactly the arcs e
for e € E satisfying x € e. Since these arcs ¢ are pairwise distinct (by Observation
3), we thus conclude that Y f(a)= ¥ f (7).

e€E;

acA is an arc
with source x X€e

The definition of f* (x) yields

ff= Y f@=Yf(e). (28)

acA is an arc ecE;
with source x xe€e

Now, recall that f~ (x) = f*(x). In view of and (28), this rewrites as
f((s,x)) = ¥ f(7€). This proves Proposition (3.20| (a).
eck;

xee

(b) The proof of Proposition (b) is analogous to that of Proposition (a).

(d) Clearly, M = {e € E | f (¢ ) =1} is a subset of E. We must prove that this
subset M is a matching in G. Since we already know that M is a subset of E, we
only need to verify that no two distinct edges in M have an endpoint in common
(by the definition of a matching).

Let us assume the contrary. Thus, there exist two distinct edges ¢ and h in M
that have an endpoint in common. Consider such g and h.

The edges ¢ and h have an endpoint in common. In other words, there exists a
w € W such that w € g and w € h. Consider this w.

We have ¢ €¢ M C E and w € g. Thus, g is an edge e € E satisfying w < e.
Similarly, & is an edge e € E satisfying w € e.

From g € M = {ecE | f(7?) =1}, we conclude that f (¢) = 1. Similarly,

%
f(H) =1

We have w € W = X UY (since (G;X,Y) is a bipartite graph); thus, we have
either w € X or w € Y. So we are in one of the following two cases:

Case 1: We have w € X.
Case 2: We have w € Y.

Let us consider Case 1. In this case, we have w € X. Proposition (a) (applied
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to x = w) thus yields

=L f@=f@r(H)+ ¢ f (@)

ecE; —— eCE; —
wee :1 _ wee; >0

e¢{g,h} (since f isa map A—Q4)
here, we have split off the addends fore = gand e =1,
since ¢ and h are two distinct edges e € E satisfying w € e
>1+1+ ) 0=2

e€E;
wee;

e¢{g,h}

But recall that f satisfies the capacity constraints. Thus, 0 < f (a) < c(a) for
each arc a € A. Applying this to a = (s,w), we conclude that 0 < f((s,w)) <
c((s,w)). Hence, f ((s,w)) < c((s,w)) =1 (by the definition of c). This contradicts
f ((s,w)) > 2 > 1. Thus, we have found a contradiction in Case 1.

Similarly, we obtain a contradiction in Case 2 (using Proposition (b) instead
of Proposition (a)).

Hence, we have found a contradiction in both Cases 1 and 2. Thus, we always
get a contradiction. This completes our proof that M is a matching in G. Thus,
Proposition [3.20] (d) is established.

(e) For any edge e € E, we have either f (') =0or f (¢) =1

Observation 8 shows that the arcs 2 € A having source s are exactly the arcs
(s,x) for x € X, and these arcs are pairwise distinct. Hence,

= S, X = i
Y., f=3)  fsx) 2, 2 f(

a€A is an arc xeX . xeXe€E;
with source s =Y f( e ) x€e
ecE; ~—

x€Ee X
(by Proposition (@) ecExeX;
X€Ee

=Y Y f(@). (29)

e€E xeX;
X€e

But each e € E satisfies

Y F(@)=1(7) (30)

xeX;
X€Ee

18Proof. Let e € E. Then, ¢ is an arc in A (namely, a G-arc). But recall that f satisfies the capacity
constramts Thus, 0 < f (a) < c(a) for each arca € A. Applying thistoa = e, we Conclude that
0<f(e)<c(¥).Hence, f(€) <c(?)=1 (by the definition of c). Thus, 0 < f( ) <1
But f is an integer flow; thus, f (?) is an integer. Combining this with 0 < f ( ) <1, we
conclude that f (¢’) € {0,1}. In other words, either f (¢") = 0or f (') = 1. Qed.
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@ Hence, becomes
Y fl=Y Y f(€)=Yf(¥)

a€A is an arc ecE xeX; ecE
with source s X€e
=f()
(by (BOD)
— —
= fCe)+ Y f(e)
ec€E; ~— ec€E; —~—
f(@¢)=0 =Y f(@)=1 =1

because for any edge e € E, we have
either f (?) =0or f (7) = 1 (but not both)

2'0+21:21

)

ecE; ecE; ecE;
f(T)=0  f(¥)=1 f(7)=1
h\/d
=0

7

:ieeE]f(

-

=M

)=1}|-1=|M]-1=|M]. (31)

On the other hand, Observation 9 shows that there are no arcs 2 € A having
target s. Hence,

Z f (a) = (empty sum) = 0. (32)

a€A is an arc
with target s

But the definition of |f| yields

fl= [r(s)
——
X

a€A is an arc
with source s
(by the definition of £ (s))

= f(a)

a€A is an arc
with target s

(by the definition of f~(s))

Y fla)-

acA is an arc
with source s
N

i
(by)
|M|—0=[M].

Y, f@

acA is an arc
with target s

by 62)

9 Proof of : Let e € E. Each edge of G contains exactly one vertex in X and exactly one vertex in
Y (since (G; X, Y) is a bipartite graph). Thus, in particular, each edge of G contains exactly one
vertex in X. Applying this to the edge ¢, we conclude that e contains exactly one vertex in X. In
other words, there is exactly one x € X satisfying x € e. Thus, the sum )} f (?) has exactly

xeX;

one addend. Hence, this sum simplifies as follows: Y f () = f (). This proves

xee

xeX;
xee

i
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In other words, |[M| = |f|. This proves Proposition (e). O

As already mentioned, we omit the proof of the rest of Proposition it is
an easy exercise on bookkeeping and understanding the definitions of flows and
matchings.

Proposition allows us to make the following definition:

Definition 3.21. We define a map

® : {integer flows on N} — {matchings in G},
fo{ecE | f(¥) =1},

This map is well-defined, because Proposition (d) shows that if f is an
integer flow on N, then {e € E | f () =1} is a matching in G.

We aim to show that this map & is a bijection. In order to do so, we will construct
its inverse, which of course will be a map transforming each matching in G into an
integer flow on N. This requires the following lemma%

Lemma 3.22. Let M be any matching in G. Define a map f : A — Q. by setting

there is an e € M such that a = 7} , ifac Ag;
f (a) = { [x is matched in M], if a = (s,x) for some x € X;
[y is matched in M], ifa=(yt) forsomey €Y

for each a € A.

Then, f is an integer flow on N.

Again, the proof of Lemma is easy (just check that the capacity and conser-
vation constraints are satisfied).
Lemma allows us to define the following:

Definition 3.23. We define a map
¥ : {matchings in G} — {integer flows on N}

by the requirement that ¥ map any matching M in G to the integer flow f
constructed in Lemma

Proposition 3.24. (a) The maps ® and ¥ are mutually inverse bijections between
{integer flows on N} and {matchings in G}.
(b) For any integer flow f on N, we have |® (f)| = |f].

20We are again using the Iverson bracket notation.
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We leave the proof of Proposition to the reader again. (It is fairly simple:
Part (b) follows from Proposition (e). Part (a) requires proving that o ¥ =id
and ¥ o ® = id. The proof of ® o ¥ = id is obvious; the proof of ¥ o ® = id relies
on the conservation constraints.)

We now see how to find a matching in G of maximum size. Indeed, we can find
an integer flow on N of maximum value (see Remark for how this is done).
Then, the bijection ® transforms this integer flow into a matching in G of maximum
size (because Proposition (b) shows that the value of an integer flow equals
the size of the matching corresponding to this flow under the bijection ®). Hence,
we obtain a matching in G of maximum size.

We are also close to proving Theorem now. Before we do this, let us prove a
really simple lemma about matchings:

Lemma 3.25. Let (G; X, Y) be a bipartite graph. Let M be a matching in G.
(@) We have |M| < |X].
(b) If |[M| > |X|, then the matching M is X-complete.

Proof of Lemma (sketched). Recall that (G; X, Y) is a bipartite graph. Hence, each
edge of G contains exactly one vertex in X and exactly one vertex in Y. Thus, we
can define a map x : M — X that sends each edge e € M to the unique vertex in X
contained in e. Consider this map x.

The map x is injective’} Hence, |x (M)| = |[M|. Thus, |M| = |x (M)| < |X| (since
x (M) C X). This proves Lemma (a).

(b) Assume that |[M| > |X|. Combining this with |[M| < |X]|, we obtain |[M| =

Now, x (M) is a subset of X that has the same size as X (because |x (M)| = |M| =
|X|). But the only such subset is X itself (since X is a finite set). Thus, x (M) must
be X. In other words, the map x is surjective. This shows that the matching M is

X-complet This proves Lemma (b). O

21 Proof. Let m and n be two distinct elements of M. We want to prove that x (1) # x (n).

Assume the contrary. Thus, x (m) = x (n). Define an x € X by x = x (m) = x (n). Now, x (m)
is the unique vertex in X contained in m (by the definition of x). In other words, x is the unique
vertex in X contained in m (since x = x (m)). Thus, x is contained in m. In other words, x € m.
Similarly, x € n. The edges m and n are two distinct edges in M, and have the endpoint x in
common (since x € m and x € n).

But M is a matching. Hence, no two distinct edges in M have an endpoint in common (by
the definition of a matching). This contradicts that the edges m and n are two distinct edges in
M that have an endpoint in common (namely, the vertex x). This contradiction shows that our
assumption was wrong; hence, x (m) # x (n) is proven.

Now, forget that we fixed m and n. We thus have shown that if m and n are two distinct
elements of M, then x (m) # x (n). In other words, the map x is injective.

22Proof. Let v € X be any vertex. Then, there exists some m € M such that v = x (m) (since the
map x is surjective). Consider this m. The vertex x (m) is the unique vertex in X contained in
m (by the definition of x). Hence, x (m) is contained in m. In other words, x (m) € m. Hence,
v = x(m) € m. In other words, v is an endpoint of m. Hence, there exists an edge e € M such
that v is an endpoint of e (namely, e = m). In other words, the vertex v is matched in M.
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Now, we can prove the following crucial lemma:

Lemma 3.26. Let (G; X,Y) be a bipartite graph. Then, there exist a matching M
in G and a subset U of X satisfying |[M| > |N (U)| + |X| — |U].

Proof of Lemma Consider the network N. It clearly has the property thatc (a) €
IN for each a € A (since ¢ (a) = 1 for each a € A). Hence, Lemma shows that
there exist an integer flow f : A — Q4 and a subset S of V satisfying s € S and
t ¢ Sand c(S,S) = |f]|. Consider these f and S.

Let U be the subset X NS of X. Then, N (U) C Y (by Proposition 3.14), so that
NU)NSCYNSandthus [IN(U)NS| <|YNS|. Also,U=XNSCS.

However, the set N (U) is clearly the union of its two disjoint subsets N (U) N S
and N (U) \ S (indeed, the former contains all the elements of N (U) that belong to
S, whereas the latter contains all those that don’t). Thus,

INU)[= [NU)NS|+[NU)\S| <[YnS|+[NU)\S|.
~—

N —

<|yns|

Hence,
lYNS|+ |NU)\S|>|NU). (33)
But the set X is the union of its two disjoint subsets X N S and X \ S. Hence,

X = |XOS| +[X\ S| = U]+ |X\ 5]

—u
Thus,
[ X\ S| = [X] —[U]. (34)
Lemma 3.19| (applied to P = S and Q = S) yields ¢ (S, S) = |[S,S]|. Thus,
8/5][=c(s,5) = IfI. (35)

Let us now analyze the set [S, S]. This set consists of all arcs 2 € A whose source

lies in S and whose target lies in S. Recall that the multidigraph (V, A, ¢) has three

kinds of arcs: the G-arcs, the s-arcs and the t-arcs. Some of these arcs belong to
[S, 3]:

e For every vertex x € X\ S, the s-arc (s, x) belongs to [S, S] Of course,
these s-arcs (s, x) are distinct (since their targets x are distinct). Thus, we
have found a total of |X \ S| different s-arcs belonging to [S, S] (one for each
x € X\S).

Now, forget that we fixed v. We thus have shown that each vertex v € X is matched in M. In
other words, the matching M is X-complete (by the definition of “X-complete”).
2Proof. Let x € X\ S. Then, x € X\ S C X, so that (s,x) € As (by the definition of A;). Thus, the
arc (s,x) is an s-arc, and has source s and target x. Hence, the source of this arc lies in S (since
s € S), but the target of this arc lies in S (since x € \X/ \S C V\ S = 5). In other words, this arc
cv
(s, x) belongs to [S, S]. Qed.
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e For every vertex y € N (U) \ S, there is at least one G-arc with target y that
belongs to [S, S] g If we pick one such G-arc for each vertex y € N (U) \

S, then we obtain a total of [N (U)\ S| distinct G-arcs belonging to [S,S]
(indeed, they are distinct because their targets y are distinct).

e For every vertex y € YN S, the t-arc (y,t) belongs to [S,S] Of course,
these t-arcs (y,t) are distinct (since their sources y are distinct). Thus, we
have found a total of |Y N S| different t-arcs belonging to [S,S] (one for each
yeYnSs).

Now, recall that there is no overlap between the G-arcs, the s-arcs and the t-arcs.

24Proof. Let y € N (U) \ S. We must prove that there is at least one G-arc with target y that belongs
o |S,S].

\/[\7e kllOW thaty € N (U)\ S € N (U). In other words, y has a neighbor in U (by the definition
of N (U)). In other words, there exists some x € U such that x is a neighbor of y. Consider this
x. Also,y e N(U) CY.

We know that x is a neighbor of y. In other words, {y,x} € @ (E) (by the definition of
“neighbor”). In other words, {y,x} = ¥ (e) for some e € E. Consider this e.

Now, e is an edge of G (since e € E) and has endpoints y and x (since ¢ (e) = {y, x}). Hence,
the unique endpoint of e that lies in X is x (since x € U C X) whereas the unique endpoint of e
that lies in Y is y (since y € Y). Hence, the definition of ¢’ yields e = (x,y,e).

Now, e E E (since e is an edge of G), and thus = Ag (by the definition of Ag). Hence,
(x,y,e) = @ € Ag. In other words, (x, y,e) is a G-arc. This G-arc (x,y,e) has source x and
target y. Thus, its source lies in S (since x € U C S) and its target lies in S (since y € N (U) \S C

——

cv
V'\'§ = §). In other words, this G-arc (x,y,¢) belongs to [S,S]. Thus, there is at least one G-arc
with target y that belongs to [S, S| (namely, the G-arc (x,y,e)). Qed.

BProof. Lety € YNS. Then, y € YNS C Y, so that (y,t) € A; (by the definition of A;). Thus, (y, t)
is a t-arc having source y and target t. Hence, the source of this arc lies in S (sincey € YNS C §),
but the target of this arc lies in S (since t € S (because ¢t ¢ S)). In other words, this arc (y, t)
belongs to [S, S]. Qed.
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Hence,

1[S,S]| = (the number of all G-arcs belonging to [S,5])

J/

Z[N(U)\S| B
(since we have found |N(U)\S| different G-arcs belonging to [S,S])

+ (the number of all s-arcs belonging to [S, S])

>[X\$|
(since we have found | X\ S| different s-arcs belonging to [S,g])

+ (the number of all t-arcs belonging to [S, S])

J/

>|YNS|
(since we have found |YNS| different t-arcs belonging to [S,g])

> [N (U)\ S| +|X\S|+]Yn§|
=[YNS[+INU)\ S|+ [X\ 5|
! . )

>INU)| =[X|—-|U]
(by (33)) (by (34))

> [N (U)] + X[ = [U].

Hence, (35) yields |f| = |[S,S]| > [N (U)| +|X| — U]

But let M be the subset {e € E | f () =1} of E. Then, Proposition (d)
yields that the set M = {e € E | f (") = 1} is a matching in G. Also, Proposition
(e) shows that

M| = f| = IN (U)[ +[X] = |U].
We have thus found a matching M in G and a subset U of X satisfying |M| >
IN (U)] + |X| — |U]|. This proves Lemma [3.26] O

We can now easily prove Theorem [3.15

Proof of Theorem (sketched). =: Assume that G has an X-complete matching.
We must prove that each subset U of X satisfies [N (U)| > |U].

This is the so-called “easy part” of Theorem and can be proven without
any reference to flows and cuts. Just fix an X-complete matching M in G (such
a matching exists, by assumption). Let U be a subset of X. We must prove that
[N (U)| = |Ul.

The matching M is X-complete; thus, each vertex x € X has an M-partner. Let
i : X — Y be the map that sends each vertex x € X to its M-partner. Any two
distinct elements of X must have distinct M-partners (because otherwise, the edges
joining them to their common M-partner would be two distinct edges in M that
have an endpoint in common; but this is not allowed for a matching). In other
words, the map 7 is injective. Hence, every subset Z of X satisfies |i (Z)| = |Z|.
Applying this to Z = U, we obtain |i (U)| = |U].

But each x € U satisfies i (x) € N (U) (because the vertex i (x) has a neighbor in
U (namely, the vertex x)). In other words, i (U) C N (U). Hence, |i (U)| < [N (U)|,
so that [N (U)| > |i (U)| = |U].
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Now, forget that we fixed U. We thus have shown that each subset U of X
satisfies |N (U)| > |U]|. This proves the = direction of Theorem [3.15
<=: Assume that

each subset U of X satisfies [N (U)| > |U]. (36)

We must prove that G has an X-complete matching.
Lemma shows that there exist a matching M in G and a subset U of X
satisfying |M| > |N (U)| + |X| — |U|. Consider these M and U. Then,

[M[ = [N (U)| +[X] = U] = U] + [X] - [U] = [X].
u
>
o @)
Hence, Lemma (b) yields that the matching M is X-complete. Hence, G has an

X-complete matching (namely, M). This proves the <= direction of Theorem [3.15
Thus, the proof of Theorem is complete. O

3.3. Konig's vertex cover theorem

Lemma puts us at a vantage point to prove not just Hall’s marriage theorem,
but also its close relative, Konig’s vertex cover theorem. Before we state the latter
theorem, we need to define the concept of a vertex cover:

Definition 3.27. Let G = (W, E,¢) be a multigraph. Then, a vertex cover of G
means a subset C of W such that each edge e € E contains at least one vertex in

C.

For example, if G = (W, E, ¢) is the simple graph

2/1—\3

(regarded as a multigraph), then every 2-element subset of W is a vertex cover (but
no smaller subset of W is). Clearly, any multigraph G = (W, E, 1) has at least one
vertex cover (because the whole set W is always a vertex cover). A classical problem
in computer science is to find a vertex cover of a given multigraph whose size is
minimum.

Now, Konig’s theorem on vertex covers states the following:

(37)

Theorem 3.28. Let (G; X, Y) be a bipartite graph. Then, the maximum size of a
matching in G equals the minimum size of a vertex cover of G.



https://en.wikipedia.org/wiki/Vertex_cover
https://en.wikipedia.org/wiki/Vertex_cover
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Notice that the claim of Theorem isn’t true for arbitrary graphs G; for exam-
ple, if G is the simple graph in (37), then the maximum size of a matching in G is
1, but the minimum size of a vertex cover of G is 2. Nevertheless, the claim is true
when G is part of a bipartite graph (G; X,Y).

What is true for arbitrary graphs G is the following inequality:

Proposition 3.29. Let G be a multigraph. Then, the maximum size of a matching
in G is < to the minimum size of a vertex cover of G.

Proof of Proposition Let m be the maximum size of a matching in G. Let ¢ be
the minimum size of a vertex cover of G. We must prove that m < c.

There exists a matching M in G such that |M| = m (since m is the size of a
matching in G). Consider this M.

There exists a vertex cover C of G such that |C| = ¢ (since ¢ is the size of a vertex
cover of G). Consider this C.

Write the multigraph G in the form G = (W, E, ¢). Recall that C is a vertex cover
of G. In other words, C is a subset of W such that each edge e € E contains at least
one vertex in C (by the definition of a “vertex cover”).

Each edge e € E contains at least one vertex in C. In other words, for each edge
e € E, there is at least one vertex v € C such that v € e. In other words, for each
edge e € E, we have

(the number of v € C such thatv € e) > 1. (38)

On the other hand, M is a matching in G. In other words, M is a subset of E such
that no two distinct edges in M have an endpoint in common (by the definition of
a “matching”). No two distinct edges in M have an endpoint in common. In other
words, no vertex of G is contained in more than one edge in M. In other words,
each vertex of G is contained in at most one edge in M. In other words, for each
vertex v of G, there is at most one edge e € M such that v € e. In other words, for
each vertex v of G, we have

(the number of edges e € M such that v € ¢) < 1. (39)
Now,

(the number of pairs (v,e) € C x M such that v € e)
= Z (the number of edges e € M such that v € ¢) < Z 1
h “  veC

veC Dl

<1
(by G

=|Cl-1=C| =c
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Thus,
¢ > (the number of pairs (v,e) € C x M such that v € e)
= ) (the number of v € Csuch thatv ee) > ) 1
ecM R 7 eeM
>1
(by (8))

= |M|-1=|M|=m.

In other words, m < c. This completes our proof of Proposition O

Proof of Theorem (sketched). Let m be the maximum size of a matching in G. Let
¢ be the minimum size of a vertex cover of G. We must prove that m = c.

Proposition [3.29 yields m < c.

Write the multigraph G in the form G = (W, E, ¢).

Lemma shows that there exist a matching M in G and a subset U of X
satisfying |[M| > |N (U)| + |X| — |U|. Consider these M and U.

The size |M| of the matching M is clearly < to the maximum size of a matching
in G. In other words, |M| < m (since m is the maximum size of a matching in G).
Thus,

m > [M] > [N (U)]+|X| - ul. (40)

On the other hand, let C be the subset (X \ U) U N (U) of W. Then, we have the
following:

Observation 1: The set C is a vertex cover of G.

[Proof of Observation 1: Let e € E be any edge. We shall show that e contains at
least one vertex in C.

Indeed, assume the contrary. Thus, e contains no vertex in C.

Each edge of G contains exactly one vertex in X and exactly one vertex in Y
(since (G;X,Y) is a bipartite graph). Thus, in particular, each edge of G contains
exactly one vertex in X. Applying this to the edge e, we conclude that the edge e
contains exactly one vertex in X. Let x be this vertex. Thus, x € X, and the edge ¢
contains the vertex x. If we had x € C, then e would contain a vertex in C (namely,
the vertex x), which would contradict the fact that e contains no vertex in C. Hence,
we cannot have x € C. Thus, we have x ¢ C. Hence, x € X \ C.

But C = (X\U)UN (U) 2 X\ U, so that X \ L < X\ (X\U) = U (since

ox\u
U C X). Hence, x € X\ C C U.

Now, let y be the endpoint of the edge e distinct from x. (This is well-defined,

since we already know that e contains x.) Then, x and y are the two endpoints of

the edge e. Hence, ¢ (e) = {x,y}. Thus, {y,x} = {x,y} =9 <L_| € P (E); in
€E

other words, x is a neighbor of y. Hence, the vertex y has a neighbor in U (namely,
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the neighbor x). In other words, y € N (U) (by the definition of N (U)). Hence,
y € N(U) C (X\U)UN (U) = C. In other words, y is a vertex in C. Thus, the
edge e contains at least one vertex in C (namely, the vertex y), because e contains y.
This contradicts the fact that e contains no vertex in C.

This contradiction proves that our assumption was wrong. Hence, we have
shown that e contains at least one vertex in C.

Now, forget that we fixed e. We thus have proven that each edge e € E contains
at least one vertex in C. In other words, C is a vertex cover of G (by the definition
of “vertex cover”). This proves Observation 1.]

Now, C = (X \ U) UN (U), so that

Cl=[(XANUUNU)| < | X\U| +[N(U)
N s’
=[X|-|U]
(since UCX)
(this is in fact an equality, but we don’t need this)
= [X] = Ul +[NU)[ = [NUW)]+[X] - [U] <m (by (0)) -

But the set C is a vertex cover of G (by Observation 1). Hence, its size |C| is >
to the minimum size of a vertex cover of G. In other words, |C| > ¢ (since c is the
minimum size of a vertex cover of G). Thus, ¢ < |C| < m. Combining this with
m < ¢, we obtain m = c. This completes the proof of Theorem [3.28 O
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