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9.1. Integer sequences

9.1.
Integer sequences

References:

The On-Line Encyclopedia of Integer Sequences (OEIS).

for wilder sequences: the OEIS Superseeker.

Richard Stanley, Enumerative Combinatorics.

Sage Cell Server or your favorite programming language.

FindStat for combinatorial maps.
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Let’s play a game...

I will define a sequence. You guess whether it has...
... an explicit formula (no

∑
signs)?

Think

(
2n

n

)2

−

(
2n

n − 1

)2

.

... a reasonable-sized formula using
∑

or a recursion?
(More precise question: Can the n-th term be computed
in polynomial time of n ?)
Think Stirling numbers, or Bell numbers.

... no good way of computing it at all, short of brute
force?
Think number of n × n Latin squares.
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Example: derangements that are involutions, 1

Recall: An involution of a set X is a map f : X → X such
that f ◦ f = id.
Involutions are always permutations.
Let an be the number of derangements in Sn that are also
involutions.

n 0 1 2 3 4 5 6 7 8 9 10

an 1 0 1 0 3 0 15 0 105 0 945

Formula (as proven in Midterm 2 Exercise 4):

a2n =
(2n)!

2nn!
;

a2n+1 = 0.

See https://oeis.org/A001147 for the sequence
(a0, a2, a4, . . .).
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Example: derangements that are involutions, 2

Here is a quick proof of the above formula for a2n:
To construct a derangement σ in S2n that is also an
involution, proceed as follows:

Let x1 be the smallest i ∈ [2n] such that σ (i) is yet
unset. (This is just 1, since no values are set yet.)
Let y1 be any of the 2n − 1 other elements of [2n]. Set
σ (x1) = y1 and σ (y1) = x1.

Let x2 be the smallest i ∈ [2n] such that σ (x2) is yet
unset.
Let y2 be any of the 2n − 3 other elements of [2n] (other
than x1, y1, x2). Set σ (x2) = y2 and σ (y2) = x2.
Let x3 be the smallest i ∈ [2n] such that σ (x3) is yet
unset.
Let y3 be any of the 2n − 5 other elements of [2n] (other
than x1, y1, x2, y2, x3). Set σ (x3) = y3 and σ (y3) = x3.
And so on, until all σ-values are set.

Total number of choices: (2n − 1) (2n − 3) (2n − 5) · · · 1.
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Example: derangements that are involutions, 3

Thus,

a2n = (2n − 1) (2n − 3) (2n − 5) · · · 1
= 1 · 3 · 5 · · · · · (2n − 1)

=
1 · 2 · 3 · 4 · 5 · 6 · · · · · (2n − 1) · (2n)

2 · 4 · 6 · · · · · (2n)

=
(2n)!

2nn!
,

qed.
A similar argument works for a2n+1, but this time the last step
of the construction offers 0 choices (since there are no
elements left to choose y2n+1 from).
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Involutions

Let bn be the number of involutions in Sn.

n 0 1 2 3 4 5 6 7 8 9 10

bn 1 1 2 4 10 26 76 232 764 2620 9496

Formula:

bn =
n∑

k=0

(
n

2k

)
(1 · 3 · 5 · · · · · (2k − 1)) .

Note that we can lower the upper bound to bn/2c, since(
n

2k

)
= 0 beyond that value. Recursive formula:

bn = bn−1 + (n − 1) bn−2.

Exercise: Prove the non-recursive formula.
Hint: To construct an involution in Sn, first choose its set of
fixed points. On the remaining elements of [n], it behaves like
a derangement that is an involution.
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n

2k

)
= 0 beyond that value. Recursive formula:

bn = bn−1 + (n − 1) bn−2.

https://oeis.org/A000085; known as the telephone
numbers.
Exercise: Prove the non-recursive formula.
Hint: To construct an involution in Sn, first choose its set of
fixed points. On the remaining elements of [n], it behaves like
a derangement that is an involution.
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Zen stare numbers

n people stand in a circle. Each of them looks down at the
feet of one of the n − 1 others.
A bell sounds, and every person (simultaneously) looks up at
the eyes of the person whose feet they have been ogling.
If two people make eye contact, they scream.
How many possibilities are there where no one screams?
Mathematical restatement:
Let cn be the number of all maps f : [n]→ [n] such that no
two elements i and j of [n] satisfy f (i) = j and f (j) = i
(simultaneously).

n 0 1 2 3 4 5 6 7 8 9

cn 1 0 0 2 30 444 7360 138690 2954364 70469000

Formula (as proven in Fall 2017 Math 4990 Homework 4
Exercise 3):

cn =
n∑

k=0

(−1)k
n (n − 1) · · · (n − 2k + 1)

2k · k!
(n − 1)n−2k

for n ≥ 2.
https://oeis.org/A134362.
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Rook placements in a square

Let dn be the number of ways to place non-attacking rooks on
an n × n-chessboard.
(Recall: A rook attacks anyone on the same row or column.)

n 0 1 2 3 4 5 6 7 8

dn 1 2 7 34 209 1546 13327 130922 1441729

Formula (as follows from the formula for Rk (u, u, . . . , u) on
Homework 4):

dn =
n∑

k=0

(
n

k

)2

k!.

https://oeis.org/A002720.
Such rook placements can also be viewed as matchings of the
complete bipartite graph Kn,n.
(A rook in row i and column j corresponds to an edge joining
i with −j .)
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Formula (as follows from the formula for Rk (u, u, . . . , u) on
Homework 4):

dn =
n∑

k=0

(
n

k

)2

k!.

https://oeis.org/A002720.

Such rook placements can also be viewed as matchings of the
complete bipartite graph Kn,n.
(A rook in row i and column j corresponds to an edge joining
i with −j .)
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Queen placements in a square, 1

Let en be the number of ways to place non-attacking queens
on an n × n-chessboard.
(Recall: A queen attacks anyone on the same row or column
or diagonal.)

n 0 1 2 3 4 5 6 7 8 9

en 1 2 5 18 87 462 2635 16870 118969 915442

No formula known.
https://oeis.org/A287227.
Let’s try something simpler...
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Queen placements in a square, 2

Let e ′n be the number of ways to place n non-attacking queens
on an n × n-chessboard.
(Recall: A queen attacks anyone on the same row or column
or diagonal.)

n 0 1 2 3 4 5 6 7 8 9 10

e ′n 1 1 0 0 2 10 4 40 92 352 724

Equivalently: e ′n is the number of permutations σ ∈ Sn such
that every i 6= j satisfy σ (i)− i 6= σ (j)− j and
σ (i) + i 6= σ (j) + j .
Still no formula known. Highest value found so far:
e ′27 = 234, 907, 967, 154, 122, 528.
https://oeis.org/A000170.
Note that e ′6 < e ′5, which would be unusual for a “simple”
sequence.
Theorem: e ′n > 0 for n ≥ 4.
See Wikipedia for explicit constructions.
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Queen placements in a square, 3

Let e ′′n be the number of ways to place 3 non-attacking queens
on an n × n-chessboard.
(Recall: A queen attacks anyone on the same row or column
or diagonal.)

n 0 1 2 3 4 5 6 7 8 9 10

e ′′n 0 0 0 0 24 204 1024 3628 10320 25096 54400

Formula:

e ′′n

=


n(n − 2)2(2n3 − 12n2 + 23n − 10)

12
, if n is even;

(n − 1)(n − 3)(2n4 − 12n3 + 25n2 − 14n + 1)

12
, if n is odd.

https://oeis.org/A047659.
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Symmetric rook placements in a square

Let d ′n be the number of ways to place non-attacking rooks on
an n × n-chessboard in such a way that the picture is
symmetric in the main diagonal (i.e., if there is a rook in cell
(i , j), then there is a rook in cell (j , i)).
(Recall: A rook attacks anyone on the same row or column.)

n 0 1 2 3 4 5 6 7 8 9 10

d ′n 1 2 5 14 43 142 499 1850 7193 29186 123109

Formula:

d ′n =
n∑

k=0

(
n

2k

)
2n (2k)!

23kk!
.

Recursive formula:

d ′n = 2d ′n−1 + (n − 1) d ′n−2.

https://oeis.org/A005425.
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Tuples that grow but not too fast

Let gn be the number of (n − 1)-tuples
(x1 < x2 < · · · < xn−1) such that 1 ≤ xi ≤ 2i for each i .

n 1 2 3 4 5 6 7 8 9 10

gn 1 2 5 14 42 132 429 1430 4862 16796

Formula:

gn =
1

n + 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n − 1

)
.

These are the Catalan numbers, known from counting Dyck
paths.
https://oeis.org/A000108.
This is combinatorial interpretation #79 (out of 214) from
Richard Stanley’s book Catalan numbers. He outlines
bijections between all of them!
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Narayana numbers

Recall that a lattice path (0, 0)→ (n, n) is Dyck (or, as we
called it on Midterm 2, legal) if it never reaches above the
x = y diagonal.
Example:

Fix n and k; let Nn,k be the number of Dyck paths
(0, 0)→ (n, n) with exactly k left turns (= east-steps followed
immediately by north-steps).

Formula:

Nn,k =
1

n

(
n

k

)(
n

k − 1

)
=

(
n − 1

k − 1

)(
n

k − 1

)
−
(
n

k

)(
n − 1

k − 2

)
.

These are the Narayana numbers.
https://oeis.org/A001263.
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A digression

Let zn be the number of positive divisors of n!.

n 0 1 2 3 4 5 6 7 8 9 10

zn 1 1 2 4 8 16

No formula known. But fairly easy to compute.
Also, zn itself is a divisor of n! (Luca, Young, 2012).
https://oeis.org/A027423.

16 / 49

https://web.math.pmf.unizg.hr/glasnik/47.2/47(2)-05.pdf
https://oeis.org/A027423


A digression

Let zn be the number of positive divisors of n!.

n 0 1 2 3 4 5 6 7 8 9 10

zn 1 1 2 4 8 16 30 60 96 160 270

No formula known. But fairly easy to compute.

Also, zn itself is a divisor of n! (Luca, Young, 2012).
https://oeis.org/A027423.

16 / 49

https://web.math.pmf.unizg.hr/glasnik/47.2/47(2)-05.pdf
https://oeis.org/A027423


A digression

Let zn be the number of positive divisors of n!.

n 0 1 2 3 4 5 6 7 8 9 10

zn 1 1 2 4 8 16 30 60 96 160 270

No formula known. But fairly easy to compute.
Also, zn itself is a divisor of n! (Luca, Young, 2012).
https://oeis.org/A027423.

16 / 49

https://web.math.pmf.unizg.hr/glasnik/47.2/47(2)-05.pdf
https://oeis.org/A027423


A digression

Let zn be the number of positive divisors of n!.

n 0 1 2 3 4 5 6 7 8 9 10

zn 1 1 2 4 8 16 30 60 96 160 270

No formula known. But fairly easy to compute.
Also, zn itself is a divisor of n! (Luca, Young, 2012).
https://oeis.org/A027423.

16 / 49

https://web.math.pmf.unizg.hr/glasnik/47.2/47(2)-05.pdf
https://oeis.org/A027423


Partitions

Recall: An (integer) partition of n means a weakly decreasing
sequence (λ1 ≥ λ2 ≥ · · · ≥ λk) of positive integers whose
sum is n. (See 21 March 2018, Section 4.6.)
Let pn be the number of partitions of n.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pn 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135

https://oeis.org/A000041.
Myriad properties; hundreds (thousands?) of papers written
about this sequence since Euler, Sylvester, Ramanujan.
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sum is n. (See 21 March 2018, Section 4.6.)
Let pn be the number of partitions of n.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

pn 1 1 2 3 5 7 11 15 22 30 42 56 77 101 135

No explicit formula known.
Recursive formula (Euler’s Pentagonal Number Theorem):

pn =
∑

k nonzero integer

(−1)k−1 pn−k(3k−1)/2

= · · ·+ pn−15 − pn−7 + pn−2︸ ︷︷ ︸
negative k

+ pn−1 − pn−5 + pn−12 ± · · ·︸ ︷︷ ︸
positive k

= pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 ± · · · .
(This sum is actually finite, since pm = 0 for m < 0.)
https://oeis.org/A000041.
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Reverse plane partitions

A reverse plane partition of rectangular shape a× b is an
a× b-matrix of nonnegative integers such that

each row is weakly increasing;
each column is weakly increasing.

Example (a = 4 and b = 5):
0 2 2 4 4
1 2 3 7 8
2 2 5 7 9
3 5 8 8 9

 .

Let ra,b,c be the number of reverse plane partitions of shape
a× b with entries in {0, 1, . . . , c}.

Formula (MacMahon):

ra,b,c =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2

=
H (a)H (b)H (c)H (a + b + c)

H (b + c)H (c + a)H (a + b)
,

where H (m) is the hyperfactorial, defined by

H (m) = 0! · 1! · 2! · · · · · (m − 1)!.

See https://oeis.org/A008793 for the sequence
(r0,0,0, r1,1,1, r2,2,2, . . .).
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Rhombus/lozenge tilings of a hexagon

Let ta,b,c be the number of tilings of a 120◦-angled hexagon
with sides a, b, c, a, b, c by lozenges (= rhombi with sides 1
and angles 60◦, 120◦, 60◦, 120◦).

(Images from arXiv:math/9801111 by Saldanha and Tomei.)

Thus, using previous slide:

ta,b,c = ra,b,c =
a∏

i=1

b∏
j=1

c∏
k=1

i + j + k − 1

i + j + k − 2

=
H (a)H (b)H (c)H (a + b + c)

H (b + c)H (c + a)H (a + b)
.
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9.2. A glimpse of Pólya theory

9.2.
A glimpse of Pólya theory

References:

Combinatorial Necklaces and Bracelets (javascript).

Graham/Knuth/Patashnik, Concrete Mathematics, Section
4.9.

Tom Davis, Pólya’s counting theory .

Weeks 8–9 of Padraic Bartlett’s S2015M116 notes.
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Counting necklaces, 1

Let q and n be positive integers.
Consider the set [q]n of all n-tuples of elements of [q].
We write any n-tuple (i1, i2, . . . , in) as i1i2 · · · in (so we omit
commas and parentheses).
Examples:

[2]3 = {000, 001, 010, 011, 100, 101, 110, 111} ;

[3]2 = {00, 01, 02, 10, 11, 12, 20, 21, 22} .

Rotation is the permutation of [q]n that sends

i1i2 · · · in 7→ ini1i2 · · · in−1.
For example,

000 7→ 000;

001 7→ 100 7→ 010 7→ 001;

011 7→ 101 7→ 110 7→ 011;

111 7→ 111.

A necklace with n beads of q colors means a cycle of this
permutation (i.e., an equivalence class of n-tuples in [q]n,
where we identify every n-tuple with its rotation).
So there are 4 necklaces with 3 beads of 2 colors...
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Counting necklaces, 2

Necklaces with n = 3 beads of q = 2 colors:

{000} ;

{001, 100, 010} ;

{011, 101, 110} ;

{111} .

Necklaces with n = 2 beads of q = 3 colors:

{00} ;

{01, 10} ;

{02, 20} ;

{11} ;

{12, 21} ;

{22} .
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Counting necklaces, 3

Let Nq (n) be the number of necklaces with n beads of q
colors.
Nq (1) = q.
qn/n ≤ Nq (n) ≤ qn.

If p is a prime, then

Nq (p) =
qp + (p − 1) q

p
.

This can be used to prove Fermat’s Little Theorem:

ap ≡ a mod p for every prime p and every integer a.

(See, e.g., the Wikipedia, or this blog post.)

Nq (4) =
1

4

(
q4 + q2 + 2q

)
;

Nq (6) =
1

6

(
q6 + q3 + 2q2 + 2q

)
.
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Counting necklaces, 4

For the general formula, we need the Euler totient function.
Recall: Two integers a and b are coprime if and only if
gcd (a, b) = 1.

For any positive integer n, we let

φ (n) = (# of i ∈ [n] that are coprime to n) .

This defines the Euler totient function φ. Formula:

φ (n) = n ·
∏

p prime divisor of n

(
1− 1

p

)
.

Also, https://oeis.org/A000010.
Now,

Nq (n) =
1

n

∑
d is a positive

divisor of n

φ (d) qn/d =
1

n

n∑
k=1

qn/ gcd(k,n).
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Counting necklaces, 5

Many other things can be counted similarly:
aperiodic necklaces (i.e., those of size n);
necklaces with a given multiplicity of each letter;
“multinecklaces” (multiple beads “in the same position”);
...

Many things can be counted “up to cyclic rotation”, and
often the result will have the form

1

n

∑
d is a positive

divisor of n

φ (d) · (old result for n/d) .

What’s going on?
Pólya’s counting theory gives the answer.
The proper formulation needs some work to introduce (most
natural to do after some abstract algebra, specifically the
concept of group actions).
It also answers questions about rotation-and-reflection and
other symmetries.
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9.3. Zeckendorf family identities

9.3.
Zeckendorf family identities

References:

Grinberg, Zeckendorf family identities generalized .

Wood/Zeilberger, A Translation Method for Finding
Combinatorial Bijections.
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Negative Fibonacci numbers

Recall the Fibonacci sequence (f0, f1, f2, . . .).
Midterm 1 Exercise 3 (a):

7fn = fn−4 + fn+4 for all n ≥ 4.

We can extend the Fibonacci sequence “to the left”:
Recursively define f−1, f−2, f−3, . . . by using the recursion
fn = fn−1 + fn−2 backwards.
Example:

f1 = f0 + f−1 =⇒ f−1 = f1 − f0 = 1− 0 = 1;

f0 = f−1 + f−2 =⇒ f−2 = f0 − f−1 = 0− 1 = −1;

. . .

n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

fn −8 5 −3 2 −1 1 0 1 1 2 3 5 8
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. . .

n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

fn −8 5 −3 2 −1 1 0 1 1 2 3 5 8

Note the symmetry (similar to binomial coefficients):

f−n = (−1)n−1 fn.
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f0 = f−1 + f−2 =⇒ f−2 = f0 − f−1 = 0− 1 = −1;

. . .

n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

fn −8 5 −3 2 −1 1 0 1 1 2 3 5 8

Note the symmetry (similar to binomial coefficients):

f−n = (−1)n−1 fn.
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Negative Fibonacci numbers

Recall the Fibonacci sequence (f0, f1, f2, . . .).
Midterm 1 Exercise 3 (a):

7fn = fn−4 + fn+4 for all n ≥ 4.

We can extend the Fibonacci sequence “to the left”:
Recursively define f−1, f−2, f−3, . . . by using the recursion
fn = fn−1 + fn−2 backwards.
Example:

f1 = f0 + f−1 =⇒ f−1 = f1 − f0 = 1− 0 = 1;

f0 = f−1 + f−2 =⇒ f−2 = f0 − f−1 = 0− 1 = −1;

. . .

n −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

fn −8 5 −3 2 −1 1 0 1 1 2 3 5 8

With this definition,

7fn = fn−4 + fn+4 for all integers n.
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Zeckendorf family identities, 1

So we know that

7fn = fn−4 + fn+4 for all integers n.

Similarly, for all integers n, we have

1fn = fn;

2fn = fn−2 + fn+1;

3fn = fn−2 + fn+2;

4fn = fn−2 + fn + fn+2;

5fn = fn−4 + fn−1 + fn+3;

6fn = fn−4 + fn+1 + fn+3;

7fn = fn−4 + fn+4.

Notice that the sums on the right hand side
never use the same fi twice, and
never use two consecutive fi ’s.

Theorem. For each k ∈ N, there exists a unique identity “of
the above form” with these two properties for kfn.
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Zeckendorf family identities, 2

More generally:
Theorem. Any sum of the form

fn+a1 + fn+a2 + · · ·+ fn+ak

(where a1, a2, . . . , ak are integers, which may and may not be
distinct) can be “reduced” to a form

fn+b1 + fn+b2 + · · ·+ fn+b`

in which the integers b1, b2, . . . , b` are distinct and
non-consecutive (i.e., form a lacunar set) and independent of
n.
Moreover, these b1, b2, . . . , b` are uniquely determined.
Proof idea (for existence): Reduce your expression step by
step using the following two rules:

fm−1 + fm −→ fm+1;

2fm −→ fm−2 + fm+1.
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Zeckendorf family identities, 3

Proof idea (for existence): Reduce your expression step by
step using the following two rules:

fm−1 + fm −→ fm+1;

2fm −→ fm−2 + fm+1.

For example,

4fn = 2fn + 2fn −→ 2fn + fn−2 + fn+1 = fn−2 + fn + fn + fn+1

−→ fn−2 + fn + fn+2.

(I’m underlining the terms to which I apply the reduction rules
above.)
Need to check that this reduction eventually terminates; this
is not obvious! (I use the golden ratio for this.)

Also need to check uniqueness (easy using the Zeckendorf
theorem).
I’m currently working on generalizing this to other recurrent
sequences.
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9.4. Determinant identities

9.4.
Determinant identites

References:

Grinberg, Notes on the combinatorial fundamentals of algebra
(aka [detnotes]).

Prasolov, Problems and theorems in linear algebra.

Zeilberger, A combinatorial approach to matrix algebra.
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Behold the determinant

Recall: If A = (ai ,j)1≤i≤n, 1≤j≤n is an n × n-matrix, then its
determinant detA is

detA =
∑
σ∈Sn

(−1)σ a1,σ(1)a2,σ(2) · · · an,σ(n).

Unsurprisingly, combinatorics of permutations can be used to
prove properties of determinants. We’ve seen that on
Homework 4.
There is much more to say about determinants...
A few examples:
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Cauchy-Binet formula, 1

Well-known theorem: If A and B are two n × n-matrices, then

det (AB) = detA · detB.
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Cauchy-Binet formula, 1

Well-known theorem: If A and B are two n × n-matrices, then

det (AB) = detA · detB.

More generally:
Cauchy-Binet theorem:
If A is an n ×m-matrix and if B is an m × n-matrix, then

det (AB) =
∑

I⊆[m];
|I |=n

det
(
A |I
)
· det (B |I ) ,

where, for each n-element subset I = {i1 < i2 < · · · < in} of
[m], we let

A |I be the matrix formed by the i1-th, i2-th, ..., in-th
columns of A;
B |I be the matrix formed by the i1-th, i2-th, ..., in-th
rows of B.
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Cauchy-Binet formula, 1

Well-known theorem: If A and B are two n × n-matrices, then

det (AB) = detA · detB.

More generally:
Cauchy-Binet theorem (restated):
If A is an n ×m-matrix and if B is an m × n-matrix, then

det (AB) =
∑

1≤i1<i2<···<in≤m
det
(
A |(i1,i2,...,in)

)
·det

(
B |(i1,i2,...,in)

)
,

where, for any elements i1, i2, . . . , in of [m], we let
A |(i1,i2,...,in) be the matrix formed by the i1-th, i2-th, ...,
in-th columns of A;
B |(i1,i2,...,in) be the matrix formed by the i1-th, i2-th, ...,
in-th rows of B.
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Cauchy-Binet formula, 2

Example:

det

(a11 a12 a13
a21 a22 a23

)b11 b12
b21 b22
b31 b32


= det

(
a11 a12
a21 a22

)
det

(
b11 b12
b21 b22

)
+ det

(
a11 a13
a21 a23

)
det

(
b11 b12
b31 b32

)
+ det

(
a12 a13
a22 a23

)
det

(
b21 b22
b31 b32

)
.
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Desnanot-Jacobi identity

Desnanot-Jacobi identity. Let A be an n × n-matrix where
n ≥ 2. Let:

ANW be A without its last row and last column;
ASE be A without its first row and first column;
ANE be A without its last row and first column;
ASW be A without its first row and last column.
AC be A without its first row, first column, last row and
last column.

(“NW” stands for “northwest”; “C” stands for “center”, etc.)
Then,

detA · detAC = detANW · detASE − detANE · detASW .

Doron Zeilberger, Dodgson’s Determinant-Evaluation Rule
Proved by two-timing men and women proves this using
matchings in bipartite graphs.
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Desnanot-Jacobi identity

Desnanot-Jacobi identity. Let A be an n × n-matrix where
n ≥ 2. Then,

detA · detAC = detANW · detASE − detANE · detASW .

Example: (n = 4)

det


a1 b1 c1 d1
a2 b2 c2 d2
a3 b3 c3 d3
a4 b4 c4 d4

 · det

(
b2 c2
b3 c3

)

= det

 a1 b1 c1
a2 b2 c2
a3 b3 c3

 · det

 b2 c2 d2
b3 c3 d3
b4 c4 d4


− det

 b1 c1 d1
b2 c2 d2
b3 c3 d3

 · det

 a2 b2 c2
a3 b3 c3
a4 b4 c4

 .

Doron Zeilberger, Dodgson’s Determinant-Evaluation Rule
Proved by two-timing men and women proves this using
matchings in bipartite graphs.
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Chio condensation

Chio condensation identity. Let A be an n× n-matrix where
n ≥ 2.
Let B be the (n − 1)× (n − 1)-matrix whose (i , j)-th entry is

ai ,jan,n − ai ,nan,j

(where au,v denotes the (u, v)-th entry of A). Then,

detB = an−2n,n detA.

Note that the entries of B are themselves little determinants:

ai ,jan,n − ai ,nan,j = det

(
ai ,j ai ,n
an,j an,n

)
.
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Pfaffians

An alternating matrix is an n × n-matrix
A = (ai ,j)1≤i≤n, 1≤j≤n satisfying

ai ,j = −aj ,i for all i and j ;

ai ,i = 0 for all i .

In other words, AT = −A, and the diagonal entries of A are 0.
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A = (ai ,j)1≤i≤n, 1≤j≤n satisfying

ai ,j = −aj ,i for all i and j ;

ai ,i = 0 for all i .

In other words, AT = −A, and the diagonal entries of A are 0.
Alternating 3× 3-matrices look like this: 0 a b

−a 0 c
−b −c 0

 .

Alternating 4× 4-matrices look like this:
0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 .
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Pfaffians

An alternating matrix is an n × n-matrix
A = (ai ,j)1≤i≤n, 1≤j≤n satisfying

ai ,j = −aj ,i for all i and j ;

ai ,i = 0 for all i .

In other words, AT = −A, and the diagonal entries of A are 0.
What can we say about detA if A is alternating?

det

 0 a b
−a 0 c
−b −c 0

 = 0;

det


0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

 = (af + cd − be)2 .

What is the pattern?
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Pfaffians

An alternating matrix is an n × n-matrix
A = (ai ,j)1≤i≤n, 1≤j≤n satisfying

ai ,j = −aj ,i for all i and j ;

ai ,i = 0 for all i .

In other words, AT = −A, and the diagonal entries of A are 0.
Theorem. Let A be an alternating n × n-matrix.

If n is odd, then detA = 0.
If n is even, then

detA =

 ∑
M is a perfect matching

of [n]

± ∏
{i ,j}∈M

ai ,j




2

,

where ai ,j are the entries of A, and the ± signs are
chosen appropriately.
The sum inside the parentheses is called the Pfaffian of A.
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9.5. Partitions

9.5.
Partitions

References:

Andrews/Eriksson, Integer Partitions, Cambridge 2004.

Wilf, Lectures on Integer Partitions.

Pak, Partition bijections, a survey .

Sagan, The Ubiquitous Young Tableau.

Fulton, Young tableaux, Cambridge 1997.
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The pentagonal number theorem

Recall: An (integer) partition of n means a weakly decreasing
sequence (λ1 ≥ λ2 ≥ · · · ≥ λk) of positive integers whose
sum is n. (See 21 March 2018, Section 4.6.)
Let pn be the number of partitions of n.
Euler’s Pentagonal Number Theorem:

pn =
∑

k nonzero integer

(−1)k−1 pn−k(3k−1)/2

= · · ·+ pn−15 − pn−7 + pn−2︸ ︷︷ ︸
negative k

+ pn−1 − pn−5 + pn−12 ± · · ·︸ ︷︷ ︸
positive k

= pn−1 + pn−2 − pn−5 − pn−7 + pn−12 + pn−15 ± · · · .
(This sum is actually finite, since pm = 0 for m < 0.)
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The pentagonal number theorem: proof idea, 1

Here’s a brief outline of a proof of the pentagonal number
theorem.
Define gk = k (3k − 1) /2 for each k ∈ Z. (This is an integer,
called the k-th pentagonal number.)
Thus, we want to prove

pn =
∑

k nonzero integer

(−1)k−1 pn−gk .

Equivalently, ∑
k integer

(−1)k pn−gk = 0.

Equivalently, ∑
k even integer

pn−gk =
∑

k odd integer

pn−gk .

40 / 49
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The pentagonal number theorem: proof idea, 2

So we must prove∑
k even integer

pn−gk =
∑

k odd integer

pn−gk .

For each m ∈ Z, let Par (m) be the set of all partitions of m.
Thus, we need a bijection⋃

k even integer

Par (n − gk)
A−→

⋃
k odd integer

Par (n − gk) .

Here it is: If λ = (λ1 ≥ λ2 ≥ · · · ≥ λp) is a partition of n− gk
for some even k , then
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A−→

⋃
k odd integer

Par (n − gk) .

Here it is: If λ = (λ1 ≥ λ2 ≥ · · · ≥ λp) is a partition of n− gk
for some even k , then

A (λ) = (p + 3k − 2, λ1 − 1, λ2 − 1, . . . , λp − 1)

if p + 3k > λ1

(this is a partition of n − gk−1, where any 0 entries at the end
are ignored);
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For each m ∈ Z, let Par (m) be the set of all partitions of m.
Thus, we need a bijection⋃

k even integer

Par (n − gk)
A−→

⋃
k odd integer

Par (n − gk) .

Here it is: If λ = (λ1 ≥ λ2 ≥ · · · ≥ λp) is a partition of n− gk
for some even k , then

A (λ) =

λ2 + 1, λ3 + 1, . . . , λp + 1, 1, 1, . . . , 1︸ ︷︷ ︸
λ1−p−3k ones


if p + 3k ≤ λ1

(this is a partition of n − gk+1).
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The pentagonal number theorem: proof idea, 2

For each m ∈ Z, let Par (m) be the set of all partitions of m.
Thus, we need a bijection⋃

k even integer

Par (n − gk)
A−→

⋃
k odd integer

Par (n − gk) .

Here it is: If λ = (λ1 ≥ λ2 ≥ · · · ≥ λp) is a partition of n− gk
for some even k , then ...
A is bijective, and its inverse is given by the same formula.
(The proof is laborious but not difficult.)
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The pentagonal number theorem: proof idea, 3

What is the idea behind the above bijection?
Recall that any partition (λ1 ≥ λ2 ≥ · · · ≥ λp) can be
visualized as a Young diagram – a table with p left-aligned
rows, having λ1, λ2, . . . , λp cells respectively.

Now, if λ is a partition of n − gk , then A
either removes the first column of the Young diagram of
λ, and adds a new row on top so that the new diagram is
a partition of n − gk−1;
or removes the first row of the Young diagram of λ, and
adds a new column to its left so that the new diagram is
a partition of n − gk+1.

Fortunately, for each choice of n, k and λ, exactly one of
these options works (the first row cannot be shorter than the
second, and likewise for columns!), so A always knows what to
do.
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second, and likewise for columns!), so A always knows what to
do.
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The pentagonal number theorem: proof idea, 3

What is the idea behind the above bijection?
Recall that any partition (λ1 ≥ λ2 ≥ · · · ≥ λp) can be
visualized as a Young diagram – a table with p left-aligned
rows, having λ1, λ2, . . . , λp cells respectively.
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The pentagonal number theorem: proof idea, 4

Now, if λ is a partition of n − gk , then A
either removes the first column of the Young diagram of
λ, and adds a new row on top so that the new diagram is
a partition of n − gk−1;
or removes the first row of the Young diagram of λ, and
adds a new column to its left so that the new diagram is
a partition of n − gk+1.

Example for the first case (removing first column and adding
a new row):
n = 9, k = 2 and λ = (2, 2, 1):

7→
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Odd vs. distinct entries

Theorem (Euler again). Let n ∈ N. Then,

(# of partitions of n whose parts are odd)

= (# of partitions of n whose parts are distinct) .

Example, for n = 6:

odd parts: (5, 1) , (3, 3) , (3, 1, 1, 1) , (1, 1, 1, 1, 1, 1) ;

distinct parts: (6) , (5, 1) , (4, 2) , (3, 2, 1) .

Proof idea (Glaisher): To construct a bijection

{partitions of n whose parts are odd}
→{partitions of n whose parts are distinct} ,

we proceed step-by-step: Keep merging equal parts
(a, a −→ 2a) until no more equal parts remain.

Inverse map: Keep splitting even parts (2a −→ a, a) until no
more even parts remain.
Needs proof: These two maps are well-defined (i.e., the result
does not depend on choices).
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{partitions of n whose parts are odd}
→{partitions of n whose parts are distinct} ,

we proceed step-by-step: Keep merging equal parts
(a, a −→ 2a) until no more equal parts remain.(

5, 3, 1, 1, 1, 1
)
−→

(
5, 3, 2, 1, 1

)
−→

(
5, 3, 2, 2

)
−→ (5, 4, 3) .

Inverse map: Keep splitting even parts (2a −→ a, a) until no
more even parts remain.

Needs proof: These two maps are well-defined (i.e., the result
does not depend on choices).
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Odd and distinct entries

Theorem. Let n ∈ N. Then,

(# of partitions of n whose parts are odd and distinct)

= (# of self-conjugate partitions of n) .

Here, a partition is said to be self-conjugate if its Young
diagram is symmetric (i.e., the lengths of its rows equal the
length of its respective columns).
Proof idea: To construct a bijection

{partitions of n whose parts are odd and distinct}
→{self-conjugate partitions of n} ,

we proceed as follows:

7→
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Standard Young tableaux

The Young diagram of a partition serves as a canvas for its
“Young tableaux”.
Let λ be a partition of n. A standard Young tableau of shape
λ is a way to fill the n cells of the Young diagram of λ with
the n numbers 1, 2, . . . , n (each appearing once) such that

each row is weakly increasing;
each column is weakly increasing.

Example: The standard Young tableaux of shape (3, 2) are

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 3 4

2 5

1 3 5

2 4

How many are there?
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The hook length formula, 1

Let λ be a partition of n. Let c be a cell of λ.
The hook length of c is

h (c) := 1 + (# of cells of λ due east of c)

+ (# of cells of λ due south of c) .

Examples for λ = (3, 2):
Thus, for λ = (3, 2):

c c c

c c

h (c) = 4 h (c) = 3 h (c) = 1 h (c) = 2 h (c) = 1

Theorem (hook length formula): The number of standard
Young tableaux of shape λ is

n!∏
c is a cell of λ

h (c)
.
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The hook length formula, 2

Theorem (hook length formula): The number of standard
Young tableaux of shape λ is

n!∏
c is a cell of λ

h (c)
.

Exercise. If λ = (m,m), then you the hook length formula
yields the answer

(2m)!

((m + 1)m · · · 2) (m (m − 1) · · · 1)
=

1

m + 1

(
2m

m

)
, which is

the m-th Catalan number.
This suggests a bijection between standard Young tableaux of
this shape and Dyck paths (0, 0)→ (m,m). Find it.
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The hook length formula, 2

Theorem (hook length formula): The number of standard
Young tableaux of shape λ is

n!∏
c is a cell of λ

h (c)
.

Thus, for λ = (3, 2):

c c c

c c

h (c) = 4 h (c) = 3 h (c) = 1 h (c) = 2 h (c) = 1

we get that the number of standard Young tableaux of shape
λ is

5!

4 · 3 · 1 · 2 · 1
= 5.
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Counting all standard Young tableaux with n cells

Theorem (Knuth?). Let n ∈ N. The number of all standard
Young tableaux (of all possible shapes) with n cells is the
number of involutions in Sn. (See “telephone numbers” in
Section 9.1.)
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